|
52 | 52 | "name": "#%%\n"
|
53 | 53 | }
|
54 | 54 | },
|
55 |
| - "outputs": [], |
| 55 | + "outputs": [ |
| 56 | + { |
| 57 | + "name": "stderr", |
| 58 | + "output_type": "stream", |
| 59 | + "text": [ |
| 60 | + "0.3%" |
| 61 | + ] |
| 62 | + }, |
| 63 | + { |
| 64 | + "name": "stdout", |
| 65 | + "output_type": "stream", |
| 66 | + "text": [ |
| 67 | + "Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz\n", |
| 68 | + "Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ../data/MNIST/raw/train-images-idx3-ubyte.gz\n" |
| 69 | + ] |
| 70 | + }, |
| 71 | + { |
| 72 | + "name": "stderr", |
| 73 | + "output_type": "stream", |
| 74 | + "text": [ |
| 75 | + "100.0%\n" |
| 76 | + ] |
| 77 | + }, |
| 78 | + { |
| 79 | + "name": "stdout", |
| 80 | + "output_type": "stream", |
| 81 | + "text": [ |
| 82 | + "Extracting ../data/MNIST/raw/train-images-idx3-ubyte.gz to ../data/MNIST/raw\n" |
| 83 | + ] |
| 84 | + }, |
| 85 | + { |
| 86 | + "name": "stderr", |
| 87 | + "output_type": "stream", |
| 88 | + "text": [ |
| 89 | + "100.0%" |
| 90 | + ] |
| 91 | + }, |
| 92 | + { |
| 93 | + "name": "stdout", |
| 94 | + "output_type": "stream", |
| 95 | + "text": [ |
| 96 | + "\n", |
| 97 | + "Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz\n", |
| 98 | + "Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ../data/MNIST/raw/train-labels-idx1-ubyte.gz\n", |
| 99 | + "Extracting ../data/MNIST/raw/train-labels-idx1-ubyte.gz to ../data/MNIST/raw\n", |
| 100 | + "\n", |
| 101 | + "Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz\n" |
| 102 | + ] |
| 103 | + }, |
| 104 | + { |
| 105 | + "name": "stderr", |
| 106 | + "output_type": "stream", |
| 107 | + "text": [ |
| 108 | + "\n", |
| 109 | + "19.9%" |
| 110 | + ] |
| 111 | + }, |
| 112 | + { |
| 113 | + "name": "stdout", |
| 114 | + "output_type": "stream", |
| 115 | + "text": [ |
| 116 | + "Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ../data/MNIST/raw/t10k-images-idx3-ubyte.gz\n" |
| 117 | + ] |
| 118 | + }, |
| 119 | + { |
| 120 | + "name": "stderr", |
| 121 | + "output_type": "stream", |
| 122 | + "text": [ |
| 123 | + "100.0%\n" |
| 124 | + ] |
| 125 | + }, |
| 126 | + { |
| 127 | + "name": "stdout", |
| 128 | + "output_type": "stream", |
| 129 | + "text": [ |
| 130 | + "Extracting ../data/MNIST/raw/t10k-images-idx3-ubyte.gz to ../data/MNIST/raw\n", |
| 131 | + "\n", |
| 132 | + "Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz\n", |
| 133 | + "Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ../data/MNIST/raw/t10k-labels-idx1-ubyte.gz\n" |
| 134 | + ] |
| 135 | + }, |
| 136 | + { |
| 137 | + "name": "stderr", |
| 138 | + "output_type": "stream", |
| 139 | + "text": [ |
| 140 | + "100.0%" |
| 141 | + ] |
| 142 | + }, |
| 143 | + { |
| 144 | + "name": "stdout", |
| 145 | + "output_type": "stream", |
| 146 | + "text": [ |
| 147 | + "Extracting ../data/MNIST/raw/t10k-labels-idx1-ubyte.gz to ../data/MNIST/raw\n", |
| 148 | + "\n" |
| 149 | + ] |
| 150 | + }, |
| 151 | + { |
| 152 | + "name": "stderr", |
| 153 | + "output_type": "stream", |
| 154 | + "text": [ |
| 155 | + "\n" |
| 156 | + ] |
| 157 | + } |
| 158 | + ], |
56 | 159 | "source": [
|
57 | 160 | "data_home = os.path.join(os.path.pardir, \"data\")\n",
|
58 | 161 | "data = torchvision.datasets.MNIST(root=data_home, train=False, download=True)"
|
|
143 | 246 | "cell_type": "code",
|
144 | 247 | "execution_count": 5,
|
145 | 248 | "metadata": {},
|
146 |
| - "outputs": [], |
| 249 | + "outputs": [ |
| 250 | + { |
| 251 | + "name": "stderr", |
| 252 | + "output_type": "stream", |
| 253 | + "text": [ |
| 254 | + "/Users/george/PycharmProjects/TileDB-ML/.venv/lib/python3.9/site-packages/tiledb/ctx.py:448: UserWarning: tiledb.default_ctx and scope_ctx will not function correctly due to bug in IPython contextvar support. You must supply a Ctx object to each function for custom configuration options. Please consider upgrading to ipykernel >= 6!Please see https://github.com/TileDB-Inc/TileDB-Py/issues/667 for more information.\n", |
| 255 | + " warnings.warn(\n" |
| 256 | + ] |
| 257 | + } |
| 258 | + ], |
147 | 259 | "source": [
|
148 | 260 | "data_dir = os.path.join(data_home, 'readers', 'pytorch', 'dense')\n",
|
149 | 261 | "os.makedirs(data_dir, exist_ok=True)\n",
|
|
212 | 324 | ")\n",
|
213 | 325 | "\n"
|
214 | 326 | ]
|
215 |
| - }, |
216 |
| - { |
217 |
| - "name": "stderr", |
218 |
| - "output_type": "stream", |
219 |
| - "text": [ |
220 |
| - "/Users/george/PycharmProjects/TileDB-ML/.venv/lib/python3.9/site-packages/tiledb/ctx.py:410: UserWarning: tiledb.default_ctx and scope_ctx will not function correctly due to bug in IPython contextvar support. You must supply a Ctx object to each function for custom configuration options. Please consider upgrading to ipykernel >= 6!Please see https://github.com/TileDB-Inc/TileDB-Py/issues/667 for more information.\n", |
221 |
| - " warnings.warn(\n" |
222 |
| - ] |
223 | 327 | }
|
224 | 328 | ],
|
225 | 329 | "source": [
|
|
254 | 358 | "outputs": [
|
255 | 359 | {
|
256 | 360 | "data": {
|
257 |
| - "text/plain": "<matplotlib.image.AxesImage at 0x12de28bb0>" |
| 361 | + "text/plain": "<matplotlib.image.AxesImage at 0x123788ca0>" |
258 | 362 | },
|
259 | 363 | "execution_count": 7,
|
260 | 364 | "metadata": {},
|
|
305 | 409 | "name": "stdout",
|
306 | 410 | "output_type": "stream",
|
307 | 411 | "text": [
|
308 |
| - "Train Epoch: 1 Batch: 0 Loss: 2.299262\n", |
309 |
| - "Train Epoch: 1 Batch: 100 Loss: 2.262452\n", |
310 |
| - "Train Epoch: 1 Batch: 200 Loss: 2.162849\n", |
311 |
| - "Train Epoch: 1 Batch: 300 Loss: 1.927302\n", |
312 |
| - "Train Epoch: 1 Batch: 400 Loss: 1.646087\n", |
313 |
| - "Train Epoch: 2 Batch: 0 Loss: 1.446454\n", |
314 |
| - "Train Epoch: 2 Batch: 100 Loss: 1.314963\n", |
315 |
| - "Train Epoch: 2 Batch: 200 Loss: 1.376722\n", |
316 |
| - "Train Epoch: 2 Batch: 300 Loss: 1.400400\n", |
317 |
| - "Train Epoch: 2 Batch: 400 Loss: 1.291488\n" |
| 412 | + "Train Epoch: 1 Batch: 0 Loss: 2.304748\n", |
| 413 | + "Train Epoch: 1 Batch: 100 Loss: 2.277155\n", |
| 414 | + "Train Epoch: 1 Batch: 200 Loss: 2.203359\n", |
| 415 | + "Train Epoch: 1 Batch: 300 Loss: 1.895098\n", |
| 416 | + "Train Epoch: 1 Batch: 400 Loss: 1.497304\n", |
| 417 | + "Train Epoch: 2 Batch: 0 Loss: 1.435658\n", |
| 418 | + "Train Epoch: 2 Batch: 100 Loss: 1.305221\n", |
| 419 | + "Train Epoch: 2 Batch: 200 Loss: 0.990590\n", |
| 420 | + "Train Epoch: 2 Batch: 300 Loss: 1.103210\n", |
| 421 | + "Train Epoch: 2 Batch: 400 Loss: 0.903957\n" |
318 | 422 | ]
|
319 | 423 | }
|
320 | 424 | ],
|
321 | 425 | "source": [
|
| 426 | + "import multiprocessing\n", |
322 | 427 | "import torch.nn as nn\n",
|
323 | 428 | "import torch.optim as optim\n",
|
324 | 429 | "\n",
|
|
349 | 454 | " img = np.clip(img,0,1)\n",
|
350 | 455 | " return img\n",
|
351 | 456 | "\n",
|
352 |
| - "\n", |
353 | 457 | "ctx = tiledb.Ctx({'sm.memory_budget': 1024**2})\n",
|
354 | 458 | "with tiledb.open(training_images, ctx=ctx) as x, tiledb.open(training_labels, ctx=ctx) as y:\n",
|
| 459 | + " # Because of this issue (https://github.com/pytorch/pytorch/issues/59451#issuecomment-854883855) we avoid using multiple workers on Jupyter.\n", |
355 | 460 | " train_loader = PyTorchTileDBDataLoader(\n",
|
356 |
| - " ArrayParams(x, fn=do_random_noise), ArrayParams(y), batch_size=128,\n", |
| 461 | + " ArrayParams(x, fn=do_random_noise),\n", |
| 462 | + " ArrayParams(y),\n", |
| 463 | + " batch_size=128,\n", |
| 464 | + " num_workers=0,\n", |
| 465 | + " shuffle_buffer_size=256,\n", |
357 | 466 | " )\n",
|
358 | 467 | "\n",
|
359 | 468 | " net = Net(shape=(28, 28))\n",
|
|
374 | 483 | " print('Train Epoch: {} Batch: {} Loss: {:.6f}'.format(\n",
|
375 | 484 | " epoch, batch_idx, loss.item()))"
|
376 | 485 | ]
|
| 486 | + }, |
| 487 | + { |
| 488 | + "cell_type": "code", |
| 489 | + "execution_count": 8, |
| 490 | + "metadata": {}, |
| 491 | + "outputs": [], |
| 492 | + "source": [] |
377 | 493 | }
|
378 | 494 | ],
|
379 | 495 | "metadata": {
|
380 | 496 | "kernelspec": {
|
381 |
| - "display_name": "Python 3 (ipykernel)", |
| 497 | + "display_name": "Python 3", |
382 | 498 | "language": "python",
|
383 | 499 | "name": "python3"
|
384 | 500 | },
|
|
392 | 508 | "name": "python",
|
393 | 509 | "nbconvert_exporter": "python",
|
394 | 510 | "pygments_lexer": "ipython3",
|
395 |
| - "version": "3.7.13" |
| 511 | + "version": "3.9.9" |
396 | 512 | }
|
397 | 513 | },
|
398 | 514 | "nbformat": 4,
|
|
0 commit comments