-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize_dataset.py
executable file
·129 lines (107 loc) · 4.75 KB
/
visualize_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os
import sys
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
import argparse
import torch
import numpy as np
import transforms3d
import plotly.graph_objects as go
from hand_model import HandModel
from object_model import ObjectModel
translation_names = ['WRJTx', 'WRJTy', 'WRJTz']
rot_names = ['WRJRx', 'WRJRy', 'WRJRz']
joint_names = [
'robot0:FFJ3', 'robot0:FFJ2', 'robot0:FFJ1', 'robot0:FFJ0',
'robot0:MFJ3', 'robot0:MFJ2', 'robot0:MFJ1', 'robot0:MFJ0',
'robot0:RFJ3', 'robot0:RFJ2', 'robot0:RFJ1', 'robot0:RFJ0',
'robot0:LFJ4', 'robot0:LFJ3', 'robot0:LFJ2', 'robot0:LFJ1', 'robot0:LFJ0',
'robot0:THJ4', 'robot0:THJ3', 'robot0:THJ2', 'robot0:THJ1', 'robot0:THJ0'
]
device = 'cpu'
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--object_name', type=str, default='Asus_M5A99FX_PRO_R20_Motherboard_ATX_Socket_AM3')
parser.add_argument('--result_path', type=str, default='BimanGrasp-Dataset-Release-v1')
parser.add_argument('--num', type=int, default=0)
args = parser.parse_args()
left_hand_model = HandModel(
mjcf_path='models/left_shadow_hand_wrist_free.xml',
mesh_path='models/meshes',
contact_points_path='models/left_hand_contact_points.json',
penetration_points_path='models/penetration_points.json',
device=device,
handedness = 'left_hand'
)
right_hand_model = HandModel(
mjcf_path='models/right_shadow_hand_wrist_free.xml',
mesh_path='models/meshes',
contact_points_path='models/right_hand_contact_points.json',
penetration_points_path='models/penetration_points.json',
device=device,
handedness = 'right_hand'
)
object_model = ObjectModel(
data_root_path='Object-Release-v1',
batch_size_each=1,
num_samples=2000,
device=device
)
# load results
data_dict = np.load(os.path.join(args.result_path, args.object_name + '.npy'), allow_pickle=True)[args.num]
# print(data_dict)
right_qpos = data_dict['qpos_right']
right_rot = np.array(transforms3d.euler.euler2mat(*[right_qpos[name] for name in rot_names]))
right_rot = right_rot[:, :2].T.ravel().tolist()
right_hand_pose = torch.tensor([right_qpos[name] for name in translation_names] + right_rot + [right_qpos[name] for name in joint_names], dtype=torch.float, device=device)
if 'qpos_right_st' in data_dict:
right_qpos_st = data_dict['qpos_right_st']
right_rot = np.array(transforms3d.euler.euler2mat(*[right_qpos_st[name] for name in rot_names]))
right_rot = right_rot[:, :2].T.ravel().tolist()
right_hand_pose_st = torch.tensor([right_qpos_st[name] for name in translation_names] + right_rot + [right_qpos_st[name] for name in joint_names], dtype=torch.float, device=device)
# load left results
left_qpos = data_dict['qpos_left']
left_rot = np.array(transforms3d.euler.euler2mat(*[left_qpos[name] for name in rot_names]))
left_rot = left_rot[:, :2].T.ravel().tolist()
left_hand_pose = torch.tensor([left_qpos[name] for name in translation_names] + left_rot + [left_qpos[name] for name in joint_names], dtype=torch.float, device=device)
object_model.initialize(args.object_name)
object_model.object_scale_tensor = torch.tensor(data_dict['scale'], dtype=torch.float, device=device).reshape(1, 1)
#Current color scheme: right hand - lightslategray, left hand - powderblue, object - seashell
right_hand_model.set_parameters(right_hand_pose.unsqueeze(0))
right_hand_plotly = right_hand_model.get_plotly_data(i=0, opacity=1, color='lightslategray', with_contact_points=False)
left_hand_model.set_parameters(left_hand_pose.unsqueeze(0))
left_hand_plotly = left_hand_model.get_plotly_data(i=0, opacity=1, color='powderblue', with_contact_points=False)
object_plotly = object_model.get_plotly_data(i=0, color='seashell', opacity=1)
fig = go.Figure(right_hand_plotly + object_plotly + left_hand_plotly)
# background color: #E2F0D9
fig.update_layout(
paper_bgcolor='#E2F0D9',
plot_bgcolor='#E2F0D9'
)
fig.update_layout(scene_aspectmode='data')
# do not show axis
fig.update_layout(
scene=dict(
xaxis=dict(
visible=False,
showgrid=False,
showline=False,
zeroline=False,
showticklabels=False
),
yaxis=dict(
visible=False,
showgrid=False,
showline=False,
zeroline=False,
showticklabels=False
),
zaxis=dict(
visible=False,
showgrid=False,
showline=False,
zeroline=False,
showticklabels=False
)
)
)
fig.show()