|
75 | 75 |
|
76 | 76 | function _mle_optimize(model::DynamicPPL.Model, args...; kwargs...)
|
77 | 77 | ctx = Optimisation.OptimizationContext(DynamicPPL.LikelihoodContext())
|
78 |
| - return _optimize(model, Optimisation.OptimLogDensity(model, ctx), args...; kwargs...) |
| 78 | + return _optimize(Optimisation.OptimLogDensity(model, ctx), args...; kwargs...) |
79 | 79 | end
|
80 | 80 |
|
81 | 81 | """
|
@@ -145,16 +145,14 @@ end
|
145 | 145 |
|
146 | 146 | function _map_optimize(model::DynamicPPL.Model, args...; kwargs...)
|
147 | 147 | ctx = Optimisation.OptimizationContext(DynamicPPL.DefaultContext())
|
148 |
| - return _optimize(model, Optimisation.OptimLogDensity(model, ctx), args...; kwargs...) |
| 148 | + return _optimize(Optimisation.OptimLogDensity(model, ctx), args...; kwargs...) |
149 | 149 | end
|
150 |
| - |
151 | 150 | """
|
152 |
| - _optimize(model::Model, f::OptimLogDensity, optimizer=Optim.LBFGS(), args...; kwargs...) |
| 151 | + _optimize(f::OptimLogDensity, optimizer=Optim.LBFGS(), args...; kwargs...) |
153 | 152 |
|
154 | 153 | Estimate a mode, i.e., compute a MLE or MAP estimate.
|
155 | 154 | """
|
156 | 155 | function _optimize(
|
157 |
| - model::DynamicPPL.Model, |
158 | 156 | f::Optimisation.OptimLogDensity,
|
159 | 157 | init_vals::AbstractArray=DynamicPPL.getparams(f.ldf),
|
160 | 158 | optimizer::Optim.AbstractOptimizer=Optim.LBFGS(),
|
@@ -188,7 +186,7 @@ function _optimize(
|
188 | 186 | logdensity_optimum = Optimisation.OptimLogDensity(
|
189 | 187 | f.ldf.model, vi_optimum, f.ldf.context
|
190 | 188 | )
|
191 |
| - vns_vals_iter = Turing.Inference.getparams(model, vi_optimum) |
| 189 | + vns_vals_iter = Turing.Inference.getparams(f.ldf.model, vi_optimum) |
192 | 190 | varnames = map(Symbol ∘ first, vns_vals_iter)
|
193 | 191 | vals = map(last, vns_vals_iter)
|
194 | 192 | vmat = NamedArrays.NamedArray(vals, varnames)
|
|
0 commit comments