Projet TuxML
User Manual
ISTIC - Université de Rennes 1

Valentin PETIT Julien ROYON CHALENDARD
Cyril HAMON Paul SAFFRAY Michaél PICARD
Malo POLES Luis THOMAS Alexis BONNET

Encadrés par Mathieu ACHER

Lundi 22 Avril 2019

Ce rapport sera en Anglais, étant donné que son contenu sera aussi disponible
sur le dépdt git du projet.

This report will be in English, since its content will also be available on
the git project repository.

Table of Contents

1__Introductionl 4
(1.1 Requirement|. 4
(1.1.1 Python|. 4

1.2 Docked 4

2 User entry point : kernel generator.py| 5
2.1 Goals and functionalities oL 5
2 Howtowuseitl 6
3__Database : what do we retrieve!| 8
4__lutorialsl 9
4.1 Compilation inside the docker image tuxml|. 9

[4.2 Compilation and boot testing with specific options|. 10

1 Introduction

This report aims to provide help to the users of the TuxML scripts and
programs, we’ll cover which options to use for which use case. While last year’s
report is still relevant for some utilities (those sections have been copied), others
have greatly changed. We also provide tutorials for advanced use cases.

1.1 Requirement

But first let’s go over what’s necessary on your machine to get you started.
Obviously an OS, Windows, MacOS or any flavour of GNU /Linux should do it.
Most of the development team was working on GNU/Linux but the others are
just fine. If you have any problems don’t hesitate to open an issue on our GitHub
repository.

1.1.1 Python

The project is almost entirely written in Python so you’ll need that. But
not just any version, Python 3 and at least version 3.5. In order to check whether
or not python is installed: open a command prompt or terminal (depending on
your OS) and type "python —version" if it returns an error or a version number
lower than 3.5 you’ll need to update your Python install or even install it.

On Windows and MacOS go here: https://www.python.org/downloads/
on GNU/Linux it will depend on your distribution, if you’re on a Debian-like
system just type as root (or sudo) "apt install python3".

1.1.2 Docker

The other absolutely needed component is Docker. Docker is a tool that
allows us to create a stable environment in order to compile the Linux Kernel.
That way even if we’re not all on the same machine we have the same versions of
the tools, what’s especially important is that we have the same compiler versions,
otherwise we won’t get the same results (We tested different versions of GCC).

Now if you don’t have docker on your machine head over to:
https://www.docker.com/products/docker-desktop if you're on Windows or Ma-
cOS. For Linux users either your distribution supports a version in its reposito-
ries, or you’ll have to install it manually, here is the procedure for Debian users:
https://docs.docker.com/install /linux/docker-ce/debian/, follow that tutorial and
you should be good to go.

2 User entry point : kernel generator.py

2.1 Goals and functionalities

This standalone script is a way for the user to use this project with ease,
without any need to go through all the project and understand everything.

This script provides to the user a simpler usage of our docker image, by
managing all by himself the fetch and building, providing also a way to use different
versions of the Linux kernel (this part is still in development and we can’t assure
that every single Linux kernel version 4.x.x will work at the moment), while also
providing a way to use the stable (prod) or the latest (dev) version of the image.

This script also gives an easy way to the user to test a specific Linux config
file and fetch its compilation logs, to compile a whole bunch of random config or

to simply check if the project should not crash on your system.

Let’s go over on how to do it.

2.2 How to use it

$./kernel_generator.py --help
usage: kernel generator.py [-h] [--dev] [--local] [--tiny] [--config CONFIG]

positional arguments:
nbcontainer

incremental
optional arguments:

-h, —-help

-—dev

--local

--tiny

--config CONFIG

[--linux4 version LINUX4_VERSION] [--logs LOGS]
[-s] [--unit_testing] [-n NUMBER_CPU]
[nbcontainer] [incrementall

Provide the number of container to run. Have to be
over 0.

Optional. Provide the number of additional incremental
compilation. Have to be 0 or over.

Show this help message and exit

Use the image with dev tag instead of prod's one.

Don't try to update the image to run, i.e. use the local
version.

Use Linux tiny configuration. Incompatible with
--config argument.

Give a path to specific configuration file.

Incompatible with --tiny argument.

--linux4_version LINUX4_VERSION

--logs LOGS
-s, —-silent

--unit_testing

Optional. Give a specific linux4 version to compile.
Note that it's local, will take some time to download
the kernel after compiling, and that the image used to
compile it will be deleted afterward.

Optional. Save the logs to the specified path.

Prevent printing on standard output when compiling.
Will still display the feature warnings.

Optional. Run the unit testing of the compilation
script. Prevent any compilation to happen. Will
disable --tiny, --config, --linux4 version, --silent,
--fetch_kernel and incremental feature during runtime.

-n NUMBER_CPU, --number cpu NUMBER_CPU

Optional. Specify the number of cpu cores to use while
compiling. Useful if your computer can't handle the
process at full power.

Here are some examples to get you started:

A simple compilation: kernel generator.py (nothing else !)
With unit testing : kernel generator.py —unit-testing
With a custom .config file: kernel generator.py —config /.config

Running 100 compilations on 2 cpu cores: kernel generator.py 100 -n 2 or
kernel generator.py 100 —number_ cpu 2

Running 4 compilations on 16 cpu cores with kernel version 4.15.1: ker-
nel generator.py 4 -n 16 —linux4_version 15.1

3 Database : what do we retrieve?

In order to work, the TuxML project needs an access to the internet, and
more specifically to the database server holding all the data.

compilations incrementals_compilations_relation

cid cid
compilation_date cid_base
compilation_time incremental_level
config_file

stdout_log_file

stderr_log_file
USEF_OUtDULﬂlB _

compiled_kemel_size

cid
dependencies hoot_time
number_cpu_core_used boot_log_file
compiled_kernel_version
sid
hid
sid
hid system_kernel
architecture system_kernel_version
cpu_brand_name linux_distribution
number_cpu_core linux_distribution_version
cpu_max_frequency gcc_version
ram_size libc_version
mechanical_disk tuxml_version

Above is a graph showing those data. As you can see the only things
concerning your hardware is your machine’s CPU, RAM and Storage type (HDD,
SDD ...) in the hardware environment table. As for the software environment we
save on which Os and Kernel version it was done (in the software environment).
The rest of the fields should stay consistent across all rows because those data are
gathered inside the container.

Now about the data needed for the machine learning process, all of them
are contained in the 3 remaining tables (compilations, boot and incrementals com-
pilations relations), here we save everything related to the time taken to compile
the configuration, the config file and even the compressed kernel sizes. All of this
will help to predict some aspects of the kernel depending on the configuration.

4 Tutorials

4.1 Compilation inside the docker image tuxml
The goal of this tutorial is to use the docker container in order to build a

specific kernel configuration, to do that we need to manipulate the container.

First of all we need to install the docker image locally if it isn’t done yet, using
this command you can download the image:

$ python3 kernel generator.py —unit_test

First we need to run the container based on the tuxml/tuxml:prod, then copy the
file, you can use this command to run a container:

$ docker run —it tuxml/tuxml:prod

(Hint: to list all images use:

$ docker images
or

$ docker image 1s

Both commands have the same output.)

This will open you a shell inside the container, from that point you could exit the
container to start it again then copy then attach. or you could simply open an-
other terminal, list the running containers, and then copy your file in the right one.

e open another terminal

o use $ docker container Is to find your container’s id or alias (funny two words
names).

o then: $ docker cp <file> <container-id>:/<rest of the path>

So as an example:

$ docker cp .config objective montalcini:/TuxML/linux —4.13.3/.config

The other method (one terminal):

e exit the shell with the "exit" command.

 restart the container, to know which one it is use $ docker container Is -a,
once you find it use: $ docker restart <container-id>

o then: $§ docker cp <file> <container-id>:/<rest of the path>

So as an example:

$ docker cp .config objective montalcini:/TuxML/linux —4.13.3/.config

And then do what you have to do, that is installing dependencies through apt or
using make on the kernel to see what happens (as an example if you need git: "apt
install git").

4.2 Compilation and boot testing with specific options

You may want to test a specific configuration, e.g to study the impact of
some options. In order to do this, you can use kernel generator.py and give it the
configuration file that you want to test (use —config followed by the path to the
.config file).

Starting from a basic configuration, here is a command to switch an option
with bash. To disable an option :

sed 's/CONFIG <option>=y|# CONFIG_<option> is mot set/' -i .config
To activate a disabled option :
sed 's/# CONFIG_<option> is mot set/CONFIG <option>=y/' -i .config

Note : this method is only for the study of options and their impact, and
you should be careful about the dependancies before any changings. You can find
information about an option and its dependencies here : https://cateee.net/
1kddb/web-1kddb/

10

https://cateee.net/lkddb/web-lkddb/
https://cateee.net/lkddb/web-lkddb/

	Introduction
	Requirement
	Python
	Docker

	User entry point : kernel_generator.py
	Goals and functionalities
	How to use it

	Database : what do we retrieve?
	Tutorials
	Compilation inside the docker image tuxml
	Compilation and boot testing with specific options

