-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfeature_frequency.py
75 lines (50 loc) · 1.39 KB
/
feature_frequency.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import pandas as pd
import json
print ("Starting...")
with open("option_columns.json","r") as f:
option_columns = json.load(f)
print ("(end JSON")
print ("loading CSV")
#Find the dataset
df = pd.read_csv("dataset_encoded_size.csv", dtype={k:"int8" for k in option_columns})
df.query("cid >= 30000", inplace=True)
df.fillna(-1, inplace=True)
df.query("kernel_size >= 0", inplace=True)
print("done for CSV")
# In[23]:
with open("optionsRelatedToSize.txt") as f:
options_about_size = f.readlines()
options_about_size = [x.strip() for x in options_about_size]
options_distr = pd.DataFrame(columns=["option", "val_0", "val_1", "val_2"])
i = 0
for o in options_about_size:
vals = df[o].value_counts()
nvals = vals.sum()
print(o)
val0 = 0
val1 = 0
val2 = 0
for k, v in vals.iteritems():
if (k == 0):
val0 = v
elif (k == 1):
val1 = v
elif (k == 2):
val2 == v
print(k, v, "(", (v / nvals) * 100, "%)")
options_distr.loc[i] = (o, val0, val1, val2)
i = i + 1
print (options_distr)
# In[48]:
# TODO: you can plot the whole (20 here)
#import matplotlib.pyplot as plt
#fig = plt.figure()
#ax = options_distr[:20].plot.bar(figsize=(20, 10))
#ax.set_xticklabels(options_distr['option'].values)
#plt.show()
# In[49]:
#options_distr
# In[ ]: