-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnet_launcher.py
261 lines (210 loc) · 11.9 KB
/
net_launcher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
from feature_selection import FeaturesLoader
import numpy as np
import tensorflow as tf
from sklearn.model_selection import train_test_split
from time import clock
class NetLauncher(object):
def __init__(self, name_csv = 'feature_importanceRF.csv', predict_var ='vmlinux', drop_feature = True,
nb_features = 1000, learning_rate1 = 0.5, learning_rate2 = 0.025, nb_node_layer1 = 200,
nb_node_layer2 = 300, batch_size = 50, nb_epochs = 30, training_size = 0.9):
self.name_csv = name_csv
self.nb_features = nb_features
self.drop_feature = drop_feature
f = FeaturesLoader(predict_var = predict_var, name_csv = name_csv, nb_features = nb_features, drop_feature = drop_feature)
self.features = f.get_selected_features()
self.predict_var = predict_var
self.learning_rate1 = learning_rate1
self.learning_rate2 = learning_rate2
self.nb_node_layer1 = nb_node_layer1
self.nb_node_layer2 = nb_node_layer2
self.batch_size = batch_size
self.nb_epochs = nb_epochs
self.training_size = training_size
def create_train_test_set(self):
n = 92000
sizes = np.array(self.features[0:n][self.predict_var])
x_train, x_test, y_train, y_test = train_test_split(self.features.drop(self.predict_var, axis=1)[0:n], sizes, test_size = 1-self.training_size)
x_train = np.array(x_train, dtype = np.float32)
x_test = np.array(x_test, dtype = np.float32)
y_train = np.array(y_train, dtype = np.float32)
y_test = np.array(y_test, dtype = np.float32)
return (x_train, y_train, x_test, y_test)
def compute_tiny(self):#, batch_size=20, nb_epochs=5, learning_rate=1000):
e = clock()
batch_size = self.batch_size
nb_epochs = self.nb_epochs
learning_rate = self.learning_rate1
training_x, training_y, testing_x, testing_y = self.create_train_test_set()
nb_features = training_x.shape[1]
nb_batch_train = int(len(training_x) / batch_size)
nb_batch_test = int(len(testing_x) / batch_size)
dataset_train = tf.data.Dataset.from_tensor_slices((training_x, training_y)).batch(batch_size)
iterator_train = tf.compat.v1.data.make_initializable_iterator(dataset_train)
xtr, ytr = iterator_train.get_next()
dataset_test = tf.data.Dataset.from_tensor_slices((testing_x, testing_y)).batch(batch_size)
iterator_test = tf.compat.v1.data.make_initializable_iterator(dataset_test)
xte, yte = iterator_test.get_next()
with tf.device("/gpu:0"):
w_h1 = tf.Variable(tf.glorot_uniform_initializer()((nb_features, 1)))
outputs_tr = tf.reshape(tf.matmul(xtr, w_h1), shape=[batch_size])
ytr = tf.reshape(ytr, [batch_size])
outputs_te = tf.reshape(tf.matmul(xte, w_h1), shape=[batch_size])
yte = tf.reshape(yte, [batch_size])
train_cost = tf.keras.losses.MAPE(ytr, outputs_tr)
test_cost = tf.keras.losses.MAPE(yte, outputs_te)
train_step = tf.train.AdamOptimizer(learning_rate).minimize(train_cost)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for ep in range(nb_epochs):
sess.run(iterator_train.initializer)
for i in range(nb_batch_train):
val = sess.run(train_step)
mape_train = 0
sess.run(iterator_train.initializer)
for i in range(nb_batch_train):
mape_train += sess.run(train_cost)
print("Training final cost =", mape_train / nb_batch_train)
mape_test = 0
sess.run(iterator_test.initializer)
for i in range(nb_batch_test):
mape_test += sess.run(test_cost)
print("Test final cost =", mape_test / nb_batch_test)
s = clock()
self.save_csv(mape_train / nb_batch_train, mape_test / nb_batch_test, s-e)
return (mape_train / nb_batch_train, mape_test / nb_batch_test)
def save_csv(self, mape_train, mape_test, time):
with open('res.csv','a') as fd:
fd.write('\n' + str(self.name_csv) + ',' + str(self.predict_var) + ',' + str(self.drop_feature) + ',' + str(self.nb_features)+ ',' + str(self.learning_rate1) + ',' + str(self.learning_rate2) + ',' + str(self.nb_node_layer1) + ',' + str(self.nb_node_layer2) + ',' + str(self.batch_size) + ',' + str(self.nb_epochs) + ',' + str(self.training_size) + ',' + str(mape_train) + ',' + str(mape_test) + ',' + str(time))
def compute_small(self):
#batch_size=20, nb_epochs=5, learning_rate=10, nb_node_layer1=200):
e = clock()
batch_size = self.batch_size
nb_epochs = self.nb_epochs
learning_rate = self.learning_rate1
nb_node_layer1 = self.nb_node_layer1
training_x, training_y, testing_x, testing_y = self.create_train_test_set()
nb_features = training_x.shape[1]
nb_batch_train = int(len(training_x) / batch_size)
nb_batch_test = int(len(testing_x) / batch_size)
dataset_train = tf.data.Dataset.from_tensor_slices((training_x, training_y)).batch(batch_size)
iterator_train = tf.compat.v1.data.make_initializable_iterator(dataset_train)
xtr, ytr = iterator_train.get_next()
dataset_test = tf.data.Dataset.from_tensor_slices((testing_x, testing_y)).batch(batch_size)
iterator_test = tf.compat.v1.data.make_initializable_iterator(dataset_test)
xte, yte = iterator_test.get_next()
with tf.device("/gpu:0"):
w_h1_tr = tf.Variable(tf.glorot_uniform_initializer()((nb_features, nb_node_layer1)), name="w_h1_tr")
mat_h1_tr = tf.matmul(xtr, w_h1_tr)
b_h1_tr = tf.Variable(tf.zeros(nb_node_layer1), name="b_h1_tr")
out_h1_tr = tf.nn.relu(tf.add(mat_h1_tr, b_h1_tr))
mat_h1_te = tf.matmul(xte, w_h1_tr)
out_h1_te = tf.nn.relu(tf.add(mat_h1_te, b_h1_tr))
w_h2 = tf.Variable(tf.glorot_uniform_initializer()((nb_node_layer1, 1)))
outputs_tr = tf.reshape(tf.matmul(out_h1_tr, w_h2), shape=[batch_size])
ytr = tf.reshape(ytr, [batch_size])
outputs_te = tf.reshape(tf.matmul(out_h1_te, w_h2), shape=[batch_size])
yte = tf.reshape(yte, [batch_size])
train_cost = tf.keras.losses.MAPE(ytr, outputs_tr)
test_cost = tf.keras.losses.MAPE(yte, outputs_te)
train_step = tf.train.AdamOptimizer(learning_rate).minimize(train_cost)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for ep in range(nb_epochs):
sess.run(iterator_train.initializer)
for i in range(nb_batch_train):
val = sess.run(train_step)
mape_train = 0
sess.run(iterator_train.initializer)
for i in range(nb_batch_train):
mape_train += sess.run(train_cost)
print("Training final cost =", mape_train / nb_batch_train)
mape_test = 0
sess.run(iterator_test.initializer)
for i in range(nb_batch_test):
mape_test += sess.run(test_cost)
print("Test final cost =", mape_test / nb_batch_test)
s = clock()
self.save_csv(mape_train / nb_batch_train, mape_test / nb_batch_test, s-e)
return (mape_train / nb_batch_train, mape_test / nb_batch_test)
def compute_standard(self):
e = clock()
batch_size = self.batch_size
nb_epochs = self.nb_epochs
learning_rate1 = self.learning_rate1
learning_rate2 = self.learning_rate2
nb_node_layer1 = self.nb_node_layer1
nb_node_layer2 = self.nb_node_layer2
training_x, training_y, testing_x, testing_y = self.create_train_test_set()
nb_features = training_x.shape[1]
nb_batch_train = int(len(training_x) / batch_size)
nb_batch_test = int(len(testing_x) / batch_size)
# slice the datasets => feed_dict was very slow, so I choose an iterator solution
dataset_train = tf.data.Dataset.from_tensor_slices((training_x, training_y)).batch(batch_size)
iterator_train = tf.compat.v1.data.make_initializable_iterator(dataset_train)
xtr, ytr = iterator_train.get_next()
dataset_test = tf.data.Dataset.from_tensor_slices((testing_x, testing_y)).batch(batch_size)
iterator_test = tf.compat.v1.data.make_initializable_iterator(dataset_test)
xte, yte = iterator_test.get_next()
with tf.device("/gpu:0"):
# Layers training
w_h1_tr = tf.Variable(tf.glorot_uniform_initializer()((nb_features, nb_node_layer1)), name="w_h1_tr")
mat_h1_tr = tf.matmul(xtr, w_h1_tr)
b_h1_tr = tf.Variable(tf.zeros(nb_node_layer1), name="b_h1_tr")
out_h1_tr = tf.nn.relu(tf.add(mat_h1_tr, b_h1_tr))
w_h2_tr = tf.Variable(tf.glorot_uniform_initializer()((nb_node_layer1, nb_node_layer2)), name="w_h2_tr")
mat_h2_tr = tf.matmul(out_h1_tr, w_h2_tr)
b_h2_tr = tf.Variable(tf.zeros(nb_node_layer2), name="b_h2_tr")
out_h2_tr = tf.nn.relu(tf.add(mat_h2_tr, b_h2_tr))
w_final_tr = tf.Variable(tf.glorot_uniform_initializer()((nb_node_layer2, 1)), name="w_final_tr")
outputs_tr = tf.reshape(tf.matmul(out_h2_tr, w_final_tr), shape=[batch_size])
ytr = tf.reshape(ytr, [batch_size])
# Layers test
mat_h1_te = tf.matmul(xte, w_h1_tr)
out_h1_te = tf.nn.relu(tf.add(mat_h1_te, b_h1_tr))
mat_h2_te = tf.matmul(out_h1_te, w_h2_tr)
out_h2_te = tf.nn.relu(tf.add(mat_h2_te, b_h2_tr))
outputs_te = tf.reshape(tf.matmul(out_h2_te, w_final_tr), shape=[batch_size])
yte = tf.reshape(yte, [batch_size])
# Cost => MAPE
train_cost = tf.keras.losses.MAPE(ytr, outputs_tr)
test_cost = tf.keras.losses.MAPE(yte, outputs_te)
# Convergence function => AdamOptimizer
train_step = tf.train.AdamOptimizer(learning_rate=learning_rate1).minimize(train_cost)
# train step with a lower learning rate => gain few % at the end
tiny_train_step = tf.train.AdamOptimizer(learning_rate=learning_rate2).minimize(train_cost)
# allocate memory for tensors
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for j in range(nb_epochs):
if j < 20:
sess.run(iterator_train.initializer)
for i in range(nb_batch_train):
val = sess.run(train_step)
# print("Train epoch n°", j+1, ":", sess.run(train_cost))
else:
sess.run(iterator_train.initializer)
for i in range(nb_batch_train):
val = sess.run(tiny_train_step)
# print("Train epoch n°", j+1, ":", sess.run(train_cost))
sess.run(iterator_train.initializer)
mape_train = 0
for i in range(nb_batch_train):
mape_train += sess.run(train_cost)
print("Training final cost =", mape_train / nb_batch_train)
mape_test = 0
sess.run(iterator_test.initializer)
for i in range(nb_batch_test):
mape_test += sess.run(test_cost)
print("Test final cost =", mape_test / nb_batch_test)
s = clock()
self.save_csv(mape_train / nb_batch_train, mape_test / nb_batch_test, s-e)
return (mape_train / nb_batch_train, mape_test / nb_batch_test)
def launch(self):
if self.training_size < float(1/92):
return self.compute_tiny()
if self.training_size > float(1/92) and self.training_size < float(10/92):
return self.compute_small()
return self.compute_standard()