-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathanalysis_utility_functions.py
313 lines (247 loc) · 12.3 KB
/
analysis_utility_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import numpy as np
import scipy.stats as st
from matplotlib import pyplot as plt
from tlo.analysis.utils import extract_results
plt.style.use('seaborn-darkgrid')
"""This file contains functions used through maternal/perinatal analysis and calibration scripts to extract data,
derive outcomes and generate plots"""
def return_95_CI_across_runs(df, sim_years):
"""Returns a list of lists from an outcome DF containing the mean and 95%CI values for that outcome over time.
The first list containins the mean value of a given outcome per year across runs, the second contains the smaller
value of the 95% CI and the third list contains the larger value of the 95% Ci"""
year_means = list()
lower_CI = list()
upper_CI = list()
for year in sim_years:
if year in df.index:
row = df.loc[year]
year_means.append(row.mean())
ci = st.t.interval(0.95, len(row) - 1, loc=np.mean(row), scale=st.sem(row))
lower_CI.append(ci[0])
upper_CI.append(ci[1])
else:
year_means.append(0)
lower_CI.append(0)
upper_CI.append(0)
return [year_means, lower_CI, upper_CI]
def get_mean_95_CI_from_list(list_item):
"""Returns the mean and 95% CI of data in a provided list"""
ci = st.t.interval(0.95, len(list_item) - 1, loc=np.mean(list_item), scale=st.sem(list_item))
result = [np.mean(list_item), ci[0], ci[1]]
return result
def get_mean_from_columns(df, function):
"""Returns mean value for each column in a provided data frame"""
values = list()
for col in df:
if function == 'avg':
values.append(np.mean(df[col]))
else:
values.append(sum(df[col]))
return values
def line_graph_with_ci_and_target_rate(sim_years, data, target_data_dict, ylim, y_label, title,
graph_location, file_name):
"""Outputs and saves line plot of an outcome over time, including uncertainty, in addition to a pre-determined
calibration target"""
fig, ax = plt.subplots()
ax.plot(sim_years, data[0], label="Model", color='deepskyblue')
ax.fill_between(sim_years, data[1], data[2], label="95% CI", color='b', alpha=.1)
if target_data_dict['double']:
plt.errorbar(target_data_dict['first']['year'], target_data_dict['first']['value'],
label=target_data_dict['first']['label'], yerr=target_data_dict['first']['ci'],
fmt='o', color='darkseagreen', ecolor='green', elinewidth=3, capsize=0)
plt.errorbar(target_data_dict['second']['year'], target_data_dict['second']['value'],
label=target_data_dict['second']['label'], yerr=target_data_dict['second']['ci'],
fmt='o', color='darkseagreen', ecolor='green', elinewidth=3, capsize=0)
elif not target_data_dict['double']:
plt.errorbar(target_data_dict['first']['year'], target_data_dict['first']['value'],
label=target_data_dict['first']['label'], yerr=target_data_dict['first']['ci'],
fmt='o', color='darkseagreen', ecolor='green', elinewidth=3, capsize=0)
plt.xlabel('Year')
plt.ylabel(y_label)
plt.title(title)
ax.set(ylim=(0, ylim))
plt.xticks(sim_years, labels=sim_years, rotation=45, fontsize=8)
plt.gca().set_ylim(bottom=0)
plt.legend()
plt.savefig(f'{graph_location}/{file_name}.png')
plt.show()
def simple_line_chart_with_target(sim_years, model_rate, target_rate, y_title, title, file_name, graph_location):
"""Outputs and saves line plot of an outcome over time in addition to a pre-determined
calibration target"""
plt.plot(sim_years, model_rate, 'o-g', label="Model", color='deepskyblue')
plt.plot(sim_years, target_rate, 'o-g', label="Target rate", color='darkseagreen')
plt.ylabel(y_title)
plt.xlabel('Year')
plt.title(title)
plt.gca().set_ylim(bottom=0)
plt.legend()
plt.savefig(f'{graph_location}/{file_name}.png')
plt.show()
def simple_line_chart_with_ci(sim_years, data, y_title, title, file_name, graph_location):
"""Outputs and saves line plot of an outcome over time, including uncertainty"""
fig, ax = plt.subplots()
ax.plot(sim_years, data[0], label="Model (mean)", color='deepskyblue')
ax.fill_between(sim_years, data[1], data[2], color='b', alpha=.1, label="95% CI")
plt.ylabel(y_title)
plt.xlabel('Year')
plt.title(title)
plt.legend()
plt.gca().set_ylim(bottom=0)
plt.grid(True)
plt.savefig(f'{graph_location}/{file_name}.png')
plt.show()
def simple_bar_chart(model_rates, x_title, y_title, title, file_name, sim_years, graph_location):
"""Outputs a simple bar chart over time"""
bars = sim_years
x_pos = np.arange(len(bars))
plt.bar(x_pos, model_rates, label="Model", color='thistle')
plt.xticks(x_pos, bars, rotation=90)
plt.xlabel(x_title)
plt.ylabel(y_title)
plt.title(title)
plt.legend()
plt.savefig(f'{graph_location}/{file_name}.png')
plt.show()
def comparison_graph_multiple_scenarios_multi_level_dict(colours, intervention_years, data_dict, key, y_label, title,
graph_location, save_name):
"""Outputs and saves line plot of an outcome over time, including uncertainty, in addition to a pre-determined
calibration target. Data from the model is provided as a dictionary with multiple entries"""
fig, ax = plt.subplots()
for k, colour in zip(data_dict, colours):
ax.plot(intervention_years, data_dict[k][key][0], label=k, color=colour)
ax.fill_between(intervention_years, data_dict[k][key][1], data_dict[k][key][2], color=colour, alpha=.1)
plt.ylabel(y_label)
plt.xlabel('Year')
plt.title(title)
if 'nmr' in key:
plt.gca().set_ylim(bottom=0, top=25)
elif 'sbr' in key:
plt.gca().set_ylim(bottom=0, top=20)
else:
plt.gca().set_ylim(bottom=0)
plt.legend()
plt.xticks(intervention_years, labels=intervention_years, rotation=45, fontsize=8)
plt.savefig(f'./{graph_location}/{save_name}.png', bbox_inches='tight')
plt.show()
def comparison_bar_chart_multiple_bars(data, dict_name, intervention_years, colours, y_title, title,
plot_destination_folder, save_name):
"""Outputs a barchart comparing two data sources"""
N = len(intervention_years)
ind = np.arange(N)
if len(data.keys()) > 3:
width = 0.15
else:
width = 0.2
x_ticks = list()
for x in range(len(intervention_years)):
x_ticks.append(x)
for k, position, colour in zip(data, [ind - width, ind, ind + width, ind + width * 2, ind + width * 3],
colours):
ci = [(x - y) / 2 for x, y in zip(data[k][dict_name][2], data[k][dict_name][1])]
plt.bar(position, data[k][dict_name][0], width, label=k, yerr=ci, color=colour)
plt.ylabel(y_title)
plt.xlabel('Years')
plt.title(title)
plt.legend(loc='best')
plt.xticks(x_ticks, labels=intervention_years)
plt.savefig(f'{plot_destination_folder}/{save_name}.png')
plt.show()
# =========================== FUNCTIONS RETURNING DATA FROM MULTIPLE SCENARIOS =======================================
def get_modules_maternal_complication_dataframes(results_folder):
"""Returns a dataframe from a scenario file which contains the number of maternal complications by type per year
for a given python script"""
comp_dfs = dict()
for module in ['pregnancy_supervisor', 'labour', 'postnatal_supervisor']:
c_df = extract_results(
results_folder,
module=f"tlo.methods.{module}",
key="maternal_complication",
custom_generate_series=(
lambda df_: df_.assign(year=df_['date'].dt.year).groupby(['year', 'type'])['person'].count()),
do_scaling=True
)
complications_df = c_df.fillna(0)
comp_dfs[module] = complications_df
return comp_dfs
def get_modules_neonatal_complication_dataframes(results_folder):
"""Returns a dataframe from a scenario file which contains the number of neonatal complications by type per year
for a given python script"""
comp_dfs = dict()
for module in ['newborn_outcomes', 'postnatal_supervisor']:
n_df = extract_results(
results_folder,
module=f"tlo.methods.{module}",
key="newborn_complication",
custom_generate_series=(
lambda df_: df_.assign(year=df_['date'].dt.year).groupby(['year', 'type'])['newborn'].count()),
do_scaling=True
)
complications_df = n_df.fillna(0)
comp_dfs[module] = complications_df
return comp_dfs
def return_birth_data_from_multiple_scenarios(results_folders, sim_years, intervention_years):
""" Extracts data relating to births from a series of pre-specified scenario files"""
def extract_births(folder):
br = extract_results(
folder,
module="tlo.methods.demography",
key="on_birth",
custom_generate_series=(
lambda df: df.assign(
year=df['date'].dt.year).groupby(['year'])['year'].count()),
do_scaling=True
)
births_results = br.fillna(0)
total_births_per_year = return_95_CI_across_runs(births_results, sim_years)
int_df = births_results.loc[intervention_years[0]: intervention_years[-1]]
int_births_per_year = return_95_CI_across_runs(int_df, intervention_years)
agg_births_data = get_mean_from_columns(births_results.loc[intervention_years[0]: intervention_years[-1]],
'agg')
agg_births = get_mean_95_CI_from_list(agg_births_data)
return {'total_births': total_births_per_year,
'int_births': int_births_per_year,
'agg_births': agg_births,
'births_data_frame': births_results}
return {k: extract_births(results_folders[k]) for k in results_folders}
def return_pregnancy_data_from_multiple_scenarios(results_folders, sim_years, intervention_years):
""" Extracts data relating to pregnancies from a series of pre-specified scenario files"""
def extract_pregnancies(folder):
pr = extract_results(
folder,
module="tlo.methods.contraception",
key="pregnancy",
custom_generate_series=(
lambda df: df.assign(year=df['date'].dt.year).groupby(['year'])['year'].count()),
do_scaling=True
)
preg_results = pr.fillna(0)
total_pregnancies_per_year = return_95_CI_across_runs(preg_results, sim_years)
total_pregnancies_per_year_int = return_95_CI_across_runs(
preg_results.loc[intervention_years[0]: intervention_years[-1]], intervention_years)
agg_preg_data = get_mean_from_columns(preg_results.loc[intervention_years[0]: intervention_years[-1]], 'agg')
agg_preg = get_mean_95_CI_from_list(agg_preg_data)
return {'total_preg': total_pregnancies_per_year,
'int_preg': total_pregnancies_per_year_int,
'agg_preg': agg_preg,
'preg_data_frame': preg_results}
return {k: extract_pregnancies(results_folders[k]) for k in results_folders}
def get_completed_pregnancies_from_multiple_scenarios(comps_df, birth_dict, results_folder):
"""Sums the number of pregnancies that have ended in a given year including ectopic pregnancies,
abortions, stillbirths and births"""
ansb_df = extract_results(
results_folder,
module="tlo.methods.pregnancy_supervisor",
key="antenatal_stillbirth",
custom_generate_series=(
lambda df: df.assign(
year=df['date'].dt.year).groupby(['year'])['year'].count()),
do_scaling=True
)
eu = comps_df['pregnancy_supervisor'].loc[(slice(None), 'ectopic_unruptured'), slice(None)]
eu_f = eu.droplevel(1)
ia = comps_df['pregnancy_supervisor'].loc[(slice(None), 'induced_abortion'), slice(None)]
ia_f = ia.droplevel(1)
sa = comps_df['pregnancy_supervisor'].loc[(slice(None), 'spontaneous_abortion'), slice(None)]
sa_f = sa.droplevel(1)
comp_preg_data_frame = eu_f + ia_f + sa_f + ansb_df + birth_dict['births_data_frame']
return {'comp_preg_data_frame': comp_preg_data_frame}