-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtest_healthsystem.py
2477 lines (2038 loc) · 111 KB
/
test_healthsystem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import heapq as hp
import os
import re
from pathlib import Path
from typing import Set, Tuple
import numpy as np
import pandas as pd
import pytest
from tlo import Date, Module, Simulation, logging
from tlo.analysis.hsi_events import get_details_of_defined_hsi_events
from tlo.analysis.utils import get_filtered_treatment_ids, parse_log_file
from tlo.events import Event, IndividualScopeEventMixin, PopulationScopeEventMixin, RegularEvent
from tlo.methods import (
Metadata,
chronicsyndrome,
demography,
enhanced_lifestyle,
epi,
healthseekingbehaviour,
healthsystem,
hiv,
mockitis,
simplified_births,
symptommanager,
tb,
)
from tlo.methods.consumables import Consumables, create_dummy_data_for_cons_availability
from tlo.methods.fullmodel import fullmodel
from tlo.methods.healthsystem import HealthSystem, HealthSystemChangeParameters, HSI_Event
resourcefilepath = Path(os.path.dirname(__file__)) / '../resources'
start_date = Date(2010, 1, 1)
end_date = Date(2012, 1, 1)
popsize = 200
"""
Test whether the system runs under multiple configurations of the healthsystem. (Running the dummy Mockitits and
ChronicSyndrome modules is intended to test all aspects of the healthsystem module.)
"""
def check_dtypes(simulation):
# check types of columns
df = simulation.population.props
orig = simulation.population.new_row
assert (df.dtypes == orig.dtypes).all()
def test_using_parameter_or_argument_to_set_service_availability(seed):
"""
Check that can set service_availability through argument or through parameter.
Should be equal to what is specified by the parameter, but overwrite with what was provided in argument if an
argument was specified -- provided for backward compatibility.)
"""
# No specification with argument --> everything is available
sim = Simulation(start_date=start_date, seed=seed)
sim.register(
demography.Demography(resourcefilepath=resourcefilepath),
healthsystem.HealthSystem(resourcefilepath=resourcefilepath)
)
sim.make_initial_population(n=100)
sim.simulate(end_date=start_date + pd.DateOffset(days=0))
assert sim.modules['HealthSystem'].service_availability == ['*']
# Editing parameters --> that is reflected in what is used
sim = Simulation(start_date=start_date, seed=seed)
service_availability_params = ['HSI_that_begin_with_A*', 'HSI_that_begin_with_B*']
sim.register(
demography.Demography(resourcefilepath=resourcefilepath),
healthsystem.HealthSystem(resourcefilepath=resourcefilepath)
)
sim.modules['HealthSystem'].parameters['Service_Availability'] = service_availability_params
sim.make_initial_population(n=100)
sim.simulate(end_date=start_date + pd.DateOffset(days=0))
assert sim.modules['HealthSystem'].service_availability == service_availability_params
# Editing parameters, but with an argument provided to module --> argument over-writes parameter edits
sim = Simulation(start_date=start_date, seed=seed)
service_availability_arg = ['HSI_that_begin_with_C*']
service_availability_params = ['HSI_that_begin_with_A*', 'HSI_that_begin_with_B*']
sim.register(
demography.Demography(resourcefilepath=resourcefilepath),
healthsystem.HealthSystem(resourcefilepath=resourcefilepath, service_availability=service_availability_arg)
)
sim.modules['HealthSystem'].parameters['Service_Availability'] = service_availability_params
sim.make_initial_population(n=100)
sim.simulate(end_date=start_date + pd.DateOffset(days=0))
assert sim.modules['HealthSystem'].service_availability == service_availability_arg
@pytest.mark.slow
def test_run_with_healthsystem_no_disease_modules_defined(seed):
sim = Simulation(start_date=start_date, seed=seed)
# Register the core modules
sim.register(demography.Demography(resourcefilepath=resourcefilepath),
enhanced_lifestyle.Lifestyle(resourcefilepath=resourcefilepath),
healthsystem.HealthSystem(resourcefilepath=resourcefilepath,
service_availability=['*'],
capabilities_coefficient=1.0,
mode_appt_constraints=2),
symptommanager.SymptomManager(resourcefilepath=resourcefilepath),
healthseekingbehaviour.HealthSeekingBehaviour(resourcefilepath=resourcefilepath),
simplified_births.SimplifiedBirths(resourcefilepath=resourcefilepath),
)
# Run the simulation
sim.make_initial_population(n=popsize)
sim.simulate(end_date=end_date)
check_dtypes(sim)
def test_all_treatment_ids_defined_in_priority_policies(seed, tmpdir):
"""Check that all treatment_IDs included in the fullmodel have been assigned a priority
in each of the priority policies that could be considered."""
log_config = {
"filename": "log",
"directory": tmpdir,
}
sim = Simulation(start_date=start_date, seed=seed, log_config=log_config)
sim.register(*fullmodel(resourcefilepath=resourcefilepath))
sim.make_initial_population(n=100)
clean_set_of_filtered_treatment_ids = set([i.replace("_*", "") for i in get_filtered_treatment_ids()])
# Manually add treatment_IDs which are not found by get_filtered_treatment_ids
clean_set_of_filtered_treatment_ids.add("Alri_Pneumonia_Treatment_Inpatient")
clean_set_of_filtered_treatment_ids.add("Alri_Pneumonia_Treatment_Inpatient_Followup")
clean_set_of_filtered_treatment_ids.add("DeliveryCare_Comprehensive")
for policy_name in sim.modules['HealthSystem'].parameters['priority_rank'].keys():
sim.modules['HealthSystem'].load_priority_policy(policy_name)
policy = list(sim.modules['HealthSystem'].priority_rank_dict.keys())
assert not pd.Series(policy).duplicated().any() # Check that no duplicates are included in priority input file
assert set(policy) == clean_set_of_filtered_treatment_ids # Check that all treatment_ids defined are allowed
# for in policy
@pytest.mark.slow
def test_run_no_interventions_allowed(tmpdir, seed):
# There should be no events run or scheduled
# Establish the simulation object
log_config = {
"filename": "log",
"directory": tmpdir,
"custom_levels": {
"*": logging.INFO,
"tlo.methods.healthsystem": logging.DEBUG,
}
}
sim = Simulation(start_date=start_date, seed=seed, log_config=log_config)
# Get ready for temporary log-file
# Define the service availability as null
service_availability = []
# Register the core modules
sim.register(demography.Demography(resourcefilepath=resourcefilepath),
enhanced_lifestyle.Lifestyle(resourcefilepath=resourcefilepath),
healthsystem.HealthSystem(resourcefilepath=resourcefilepath,
service_availability=service_availability,
capabilities_coefficient=1.0,
mode_appt_constraints=2),
symptommanager.SymptomManager(resourcefilepath=resourcefilepath),
healthseekingbehaviour.HealthSeekingBehaviour(resourcefilepath=resourcefilepath),
mockitis.Mockitis(),
chronicsyndrome.ChronicSyndrome(),
simplified_births.SimplifiedBirths(resourcefilepath=resourcefilepath),
)
# Run the simulation
sim.make_initial_population(n=popsize)
sim.simulate(end_date=end_date)
check_dtypes(sim)
# read the results
output = parse_log_file(sim.log_filepath)
# Do the checks for the healthsystem
assert (output['tlo.methods.healthsystem']['Capacity']['Frac_Time_Used_Overall'] == 0.0).all()
assert len(sim.modules['HealthSystem'].HSI_EVENT_QUEUE) == 0
# Do the checks for the symptom manager: some symptoms should be registered
assert sim.population.props.loc[:, sim.population.props.columns.str.startswith('sy_')] \
.apply(lambda x: x != set()).any().any()
assert (sim.population.props.loc[:, sim.population.props.columns.str.startswith('sy_')].dtypes == 'int64').all()
assert not pd.isnull(sim.population.props.loc[:, sim.population.props.columns.str.startswith('sy_')]).any().any()
# Check that no one was cured of mockitis:
assert not any(sim.population.props['mi_status'] == 'P') # No cures
@pytest.mark.slow
def test_policy_has_no_effect_on_mode1(tmpdir, seed):
"""Events ran in mode 1 should be identical regardless of policy assumed.
In policy "No Services", have set all HSIs to priority below lowest_priority_considered,
in mode 1 they should all be scheduled and delivered regardless"""
output = []
policy_list = ["Naive", "Test Mode 1", "", "ClinicallyVulnerable"]
for _, policy in enumerate(policy_list):
# Establish the simulation object
sim = Simulation(
start_date=start_date,
seed=seed,
log_config={
"filename": "log",
"directory": tmpdir,
"custom_levels": {
"tlo.methods.healthsystem": logging.DEBUG,
}
}
)
# Register the core modules
sim.register(*fullmodel(resourcefilepath=resourcefilepath,
module_kwargs={'HealthSystem': {'capabilities_coefficient': 1.0,
'mode_appt_constraints': 1,
'policy_name': policy}}))
# Run the simulation
sim.make_initial_population(n=popsize)
sim.simulate(end_date=end_date)
check_dtypes(sim)
print(type(parse_log_file(sim.log_filepath, level=logging.DEBUG)))
# read the results
output.append(parse_log_file(sim.log_filepath, level=logging.DEBUG))
# Check that the outputs are the same
for i in range(1, len(policy_list)):
pd.testing.assert_frame_equal(output[0]['tlo.methods.healthsystem']['HSI_Event'],
output[i]['tlo.methods.healthsystem']['HSI_Event'])
@pytest.mark.slow
def test_run_in_mode_0_with_capacity(tmpdir, seed):
# Events should run and there be no squeeze factors
# (Mode 0 -> No Constraints)
# Establish the simulation object
sim = Simulation(
start_date=start_date,
seed=seed,
log_config={
"filename": "log",
"directory": tmpdir,
"custom_levels": {
"tlo.methods.healthsystem": logging.DEBUG,
}
}
)
# Define the service availability
service_availability = ['*']
# Register the core modules
sim.register(demography.Demography(resourcefilepath=resourcefilepath),
simplified_births.SimplifiedBirths(resourcefilepath=resourcefilepath),
enhanced_lifestyle.Lifestyle(resourcefilepath=resourcefilepath),
healthsystem.HealthSystem(resourcefilepath=resourcefilepath,
service_availability=service_availability,
capabilities_coefficient=1.0,
mode_appt_constraints=0),
symptommanager.SymptomManager(resourcefilepath=resourcefilepath),
healthseekingbehaviour.HealthSeekingBehaviour(resourcefilepath=resourcefilepath),
mockitis.Mockitis(),
chronicsyndrome.ChronicSyndrome(),
)
# Run the simulation
sim.make_initial_population(n=popsize)
sim.simulate(end_date=end_date)
check_dtypes(sim)
# read the results
output = parse_log_file(sim.log_filepath, level=logging.DEBUG)
# Do the checks for health system appts
assert len(output['tlo.methods.healthsystem']['HSI_Event']) > 0
assert output['tlo.methods.healthsystem']['HSI_Event']['did_run'].all()
assert (output['tlo.methods.healthsystem']['HSI_Event']['Squeeze_Factor'] == 0.0).all()
# Check that some Mockitis cured occurred (though health system)
assert any(sim.population.props['mi_status'] == 'P')
@pytest.mark.slow
def test_run_in_mode_0_no_capacity(tmpdir, seed):
# Every events should run (no did_not_run) and no squeeze factors
# (Mode 0 -> No Constraints)
# Establish the simulation object
sim = Simulation(
start_date=start_date,
seed=seed,
log_config={
"filename": "log",
"directory": tmpdir,
"custom_levels": {
"tlo.methods.healthsystem": logging.DEBUG,
}
}
)
# Define the service availability
service_availability = ['*']
# Register the core modules
sim.register(demography.Demography(resourcefilepath=resourcefilepath),
simplified_births.SimplifiedBirths(resourcefilepath=resourcefilepath),
healthsystem.HealthSystem(resourcefilepath=resourcefilepath,
service_availability=service_availability,
capabilities_coefficient=0.0,
mode_appt_constraints=0),
symptommanager.SymptomManager(resourcefilepath=resourcefilepath),
healthseekingbehaviour.HealthSeekingBehaviour(resourcefilepath=resourcefilepath),
mockitis.Mockitis(),
chronicsyndrome.ChronicSyndrome(),
enhanced_lifestyle.Lifestyle(resourcefilepath=resourcefilepath)
)
# Run the simulation
sim.make_initial_population(n=popsize)
sim.simulate(end_date=end_date)
check_dtypes(sim)
# read the results
output = parse_log_file(sim.log_filepath, level=logging.DEBUG)
# Do the checks
assert len(output['tlo.methods.healthsystem']['HSI_Event']) > 0
assert output['tlo.methods.healthsystem']['HSI_Event']['did_run'].all()
assert (output['tlo.methods.healthsystem']['HSI_Event']['Squeeze_Factor'] == 0.0).all()
# Check that some mockitis cured occurred (though health system)
assert any(sim.population.props['mi_status'] == 'P')
@pytest.mark.slow
def test_run_in_mode_1_with_capacity(tmpdir, seed):
# All events should run with some zero squeeze factors
# (Mode 1 -> elastic constraints)
# Establish the simulation object
sim = Simulation(
start_date=start_date,
seed=seed,
log_config={
"filename": "log",
"directory": tmpdir,
"custom_levels": {
"tlo.methods.healthsystem": logging.DEBUG,
}
}
)
# Define the service availability
service_availability = ['*']
# Register the core modules
sim.register(demography.Demography(resourcefilepath=resourcefilepath),
simplified_births.SimplifiedBirths(resourcefilepath=resourcefilepath),
enhanced_lifestyle.Lifestyle(resourcefilepath=resourcefilepath),
healthsystem.HealthSystem(resourcefilepath=resourcefilepath,
service_availability=service_availability,
capabilities_coefficient=1.0,
mode_appt_constraints=1),
symptommanager.SymptomManager(resourcefilepath=resourcefilepath),
healthseekingbehaviour.HealthSeekingBehaviour(resourcefilepath=resourcefilepath),
mockitis.Mockitis(),
chronicsyndrome.ChronicSyndrome()
)
# Run the simulation
sim.make_initial_population(n=popsize)
sim.simulate(end_date=end_date)
check_dtypes(sim)
# read the results
output = parse_log_file(sim.log_filepath, level=logging.DEBUG)
# Do the checks
assert len(output['tlo.methods.healthsystem']['HSI_Event']) > 0
assert output['tlo.methods.healthsystem']['HSI_Event']['did_run'].all()
assert (output['tlo.methods.healthsystem']['HSI_Event']['Squeeze_Factor'] == 0.0).all()
# Check that some mockitis cured occurred (though health system)
assert any(sim.population.props['mi_status'] == 'P')
@pytest.mark.slow
def test_run_in_mode_1_with_almost_no_capacity(tmpdir, seed):
# Events should run but (for those with non-blank footprints) with high squeeze factors
# (Mode 1 -> elastic constraints)
# Establish the simulation object
sim = Simulation(
start_date=start_date,
seed=seed,
log_config={
"filename": "log",
"directory": tmpdir,
"custom_levels": {
"tlo.methods.healthsystem": logging.DEBUG,
}
}
)
# Define the service availability
service_availability = ['*']
# Register the core modules
sim.register(demography.Demography(resourcefilepath=resourcefilepath),
simplified_births.SimplifiedBirths(resourcefilepath=resourcefilepath),
enhanced_lifestyle.Lifestyle(resourcefilepath=resourcefilepath),
healthsystem.HealthSystem(resourcefilepath=resourcefilepath,
service_availability=service_availability,
capabilities_coefficient=0.0000001, # This will mean that capabilities are
# very close to 0 everywhere.
# (If the value was 0, then it would
# be interpreted as the officers NEVER
# being available at a facility,
# which would mean the HSIs should not
# run (as opposed to running with
# a very high squeeze factor)).
mode_appt_constraints=1),
symptommanager.SymptomManager(resourcefilepath=resourcefilepath),
healthseekingbehaviour.HealthSeekingBehaviour(resourcefilepath=resourcefilepath),
mockitis.Mockitis(),
chronicsyndrome.ChronicSyndrome()
)
# Run the simulation
sim.make_initial_population(n=popsize)
sim.simulate(end_date=end_date)
check_dtypes(sim)
# read the results
output = parse_log_file(sim.log_filepath, level=logging.DEBUG)
# Do the checks
assert len(output['tlo.methods.healthsystem']['HSI_Event']) > 0
hsi_events = output['tlo.methods.healthsystem']['HSI_Event']
# assert hsi_events['did_run'].all()
assert (
hsi_events.loc[(hsi_events['Person_ID'] >= 0) & (hsi_events['Number_By_Appt_Type_Code'] != {}),
'Squeeze_Factor'] >= 100.0
).all() # All the events that had a non-blank footprint experienced high squeezing.
assert (hsi_events.loc[hsi_events['Person_ID'] < 0, 'Squeeze_Factor'] == 0.0).all()
# Check that some Mockitis cures occurred (though health system)
assert any(sim.population.props['mi_status'] == 'P')
@pytest.mark.slow
def test_run_in_mode_2_with_capacity(tmpdir, seed):
# All events should run
# (Mode 2 -> hard constraints)
# Establish the simulation object
sim = Simulation(
start_date=start_date,
seed=seed,
log_config={
"filename": "log",
"directory": tmpdir,
"custom_levels": {
"tlo.methods.healthsystem": logging.DEBUG,
}
}
)
# Define the service availability
service_availability = ['*']
# Register the core modules
sim.register(demography.Demography(resourcefilepath=resourcefilepath),
simplified_births.SimplifiedBirths(resourcefilepath=resourcefilepath),
enhanced_lifestyle.Lifestyle(resourcefilepath=resourcefilepath),
healthsystem.HealthSystem(resourcefilepath=resourcefilepath,
service_availability=service_availability,
capabilities_coefficient=1.0,
mode_appt_constraints=2),
symptommanager.SymptomManager(resourcefilepath=resourcefilepath),
healthseekingbehaviour.HealthSeekingBehaviour(resourcefilepath=resourcefilepath),
mockitis.Mockitis(),
chronicsyndrome.ChronicSyndrome()
)
# Run the simulation
sim.make_initial_population(n=popsize)
sim.simulate(end_date=end_date)
check_dtypes(sim)
# read the results
output = parse_log_file(sim.log_filepath, level=logging.DEBUG)
# Do the checks
assert len(output['tlo.methods.healthsystem']['HSI_Event']) > 0
assert output['tlo.methods.healthsystem']['HSI_Event']['did_run'].all()
assert (output['tlo.methods.healthsystem']['HSI_Event']['Squeeze_Factor'] == 0.0).all()
# Check that some Mockitis cures occurred (though health system)
assert any(sim.population.props['mi_status'] == 'P')
@pytest.mark.slow
@pytest.mark.group2
def test_run_in_mode_2_with_no_capacity(tmpdir, seed):
# No individual level events (with non-blank footprint) should run and the log should contain events with a flag
# showing that all individual events did not run. Population level events should have run.
# (Mode 2 -> hard constraints)
# Establish the simulation object
sim = Simulation(
start_date=start_date,
seed=seed,
log_config={
"filename": "log",
"directory": tmpdir,
"custom_levels": {
"tlo.methods.healthsystem": logging.DEBUG,
}
}
)
# Define the service availability
service_availability = ['*']
# Register the core modules
sim.register(demography.Demography(resourcefilepath=resourcefilepath),
simplified_births.SimplifiedBirths(resourcefilepath=resourcefilepath),
enhanced_lifestyle.Lifestyle(resourcefilepath=resourcefilepath),
healthsystem.HealthSystem(resourcefilepath=resourcefilepath,
service_availability=service_availability,
capabilities_coefficient=0.0,
mode_appt_constraints=2),
symptommanager.SymptomManager(resourcefilepath=resourcefilepath),
healthseekingbehaviour.HealthSeekingBehaviour(resourcefilepath=resourcefilepath),
mockitis.Mockitis(),
chronicsyndrome.ChronicSyndrome()
)
# Run the simulation, manually setting smaller values to decrease runtime (logfile size)
sim.make_initial_population(n=100)
sim.simulate(end_date=Date(2011, 1, 1))
check_dtypes(sim)
# read the results
output = parse_log_file(sim.log_filepath, level=logging.DEBUG)
# Do the checks
hsi_events = output['tlo.methods.healthsystem']['HSI_Event']
assert not (
hsi_events.loc[(hsi_events['Person_ID'] >= 0) & (hsi_events['Number_By_Appt_Type_Code'] != {}),
'did_run'].astype(bool)
).any() # not any Individual level with non-blank footprints
assert (output['tlo.methods.healthsystem']['Capacity']['Frac_Time_Used_Overall'] == 0.0).all()
assert (hsi_events.loc[hsi_events['Person_ID'] < 0, 'did_run']).astype(bool).all() # all Population level events
assert pd.isnull(sim.population.props['mi_date_cure']).all() # No cures of mockitis occurring
# Check that no Mockitis cures occurred (though health system)
assert not any(sim.population.props['mi_status'] == 'P')
@pytest.mark.slow
@pytest.mark.group2
def test_run_in_with_hs_disabled(tmpdir, seed):
# All events should run but no logging from healthsystem
# Establish the simulation object
sim = Simulation(
start_date=start_date,
seed=seed,
log_config={
"filename": "log",
"directory": tmpdir,
"custom_levels": {
"tlo.methods.healthsystem": logging.DEBUG,
}
}
)
# Define the service availability
service_availability = ['*']
# Register the core modules
sim.register(demography.Demography(resourcefilepath=resourcefilepath),
simplified_births.SimplifiedBirths(resourcefilepath=resourcefilepath),
enhanced_lifestyle.Lifestyle(resourcefilepath=resourcefilepath),
healthsystem.HealthSystem(resourcefilepath=resourcefilepath,
service_availability=service_availability,
capabilities_coefficient=1.0,
mode_appt_constraints=2,
disable=True),
symptommanager.SymptomManager(resourcefilepath=resourcefilepath),
healthseekingbehaviour.HealthSeekingBehaviour(resourcefilepath=resourcefilepath),
mockitis.Mockitis(),
chronicsyndrome.ChronicSyndrome()
)
# Run the simulation
sim.make_initial_population(n=2000)
sim.simulate(end_date=end_date)
check_dtypes(sim)
# read the results
output = parse_log_file(sim.log_filepath, level=logging.DEBUG)
# Do the checks
assert 'HSI_Event' not in output['tlo.methods.healthsystem'] # HealthSystem no logging
assert 'Consumables' not in output['tlo.methods.healthsystem'] # HealthSystem no logging
assert 'Capacity' not in output['tlo.methods.healthsystem'] # HealthSystem no logging
assert not pd.isnull(sim.population.props['mi_date_cure']).all() # At least some cures occurred (through HS)
assert any(sim.population.props['mi_status'] == 'P') # At least some mockitis cure have occurred (though HS)
# Check for hsi_wrappers in the main event queue
list_of_ev_name = [ev[3] for ev in sim.event_queue.queue]
assert any(['HSIEventWrapper' in str(ev_name) for ev_name in list_of_ev_name])
@pytest.mark.slow
def test_run_in_mode_2_with_capacity_with_health_seeking_behaviour(tmpdir, seed):
# All events should run
# (Mode 2 -> hard constraints)
# Establish the simulation object
sim = Simulation(
start_date=start_date,
seed=seed,
log_config={
"filename": "log",
"directory": tmpdir,
"custom_levels": {
"tlo.methods.healthsystem": logging.DEBUG,
}
}
)
# Define the service availability
service_availability = ['*']
# Register the core modules
sim.register(demography.Demography(resourcefilepath=resourcefilepath),
simplified_births.SimplifiedBirths(resourcefilepath=resourcefilepath),
enhanced_lifestyle.Lifestyle(resourcefilepath=resourcefilepath),
healthsystem.HealthSystem(resourcefilepath=resourcefilepath,
service_availability=service_availability,
capabilities_coefficient=1.0,
mode_appt_constraints=2),
symptommanager.SymptomManager(resourcefilepath=resourcefilepath),
healthseekingbehaviour.HealthSeekingBehaviour(resourcefilepath=resourcefilepath),
mockitis.Mockitis(),
chronicsyndrome.ChronicSyndrome()
)
# Run the simulation
sim.make_initial_population(n=popsize)
sim.simulate(end_date=end_date)
check_dtypes(sim)
# read the results
output = parse_log_file(sim.log_filepath, level=logging.DEBUG)
# Do the check for the occurrence of the GenericFirstAppt which is created by the HSB module
assert 'FirstAttendance_NonEmergency' in output['tlo.methods.healthsystem']['HSI_Event']['TREATMENT_ID'].values
# Check that some mockitis cured occurred (though health system)
assert any(sim.population.props['mi_status'] == 'P')
@pytest.mark.slow
def test_all_appt_types_can_run(seed):
"""Check that if an appointment type is declared as one that can run at a facility-type of level `x` that it can
run at the level for persons in any district."""
# Create Dummy Module to host the HSI
class DummyModule(Module):
METADATA = {Metadata.DISEASE_MODULE, Metadata.USES_HEALTHSYSTEM}
def read_parameters(self, data_folder):
pass
def initialise_population(self, population):
pass
def initialise_simulation(self, sim):
pass
# Create a dummy HSI event class
class DummyHSIEvent(HSI_Event, IndividualScopeEventMixin):
def __init__(self, module, person_id, appt_type, level):
super().__init__(module, person_id=person_id)
self.TREATMENT_ID = 'DummyHSIEvent'
self.EXPECTED_APPT_FOOTPRINT = self.make_appt_footprint({appt_type: 1})
self.ACCEPTED_FACILITY_LEVEL = level
self.this_hsi_event_ran = False
def apply(self, person_id, squeeze_factor):
if squeeze_factor != np.inf:
# Check that this appointment is being run and run not with a squeeze_factor that signifies that a cadre
# is not at all available.
self.this_hsi_event_ran = True
sim = Simulation(start_date=start_date, seed=seed)
# Register the core modules and simulate for 0 days
sim.register(demography.Demography(resourcefilepath=resourcefilepath),
healthsystem.HealthSystem(resourcefilepath=resourcefilepath,
capabilities_coefficient=1.0,
mode_appt_constraints=1,
use_funded_or_actual_staffing='funded_plus'),
# <-- hard constraint (only HSI events with no squeeze factor can run)
# <-- using the 'funded_plus' number/distribution of officers
DummyModule()
)
sim.make_initial_population(n=100)
sim.simulate(end_date=sim.start_date)
# Get pointer to the HealthSystemScheduler event
healthsystemscheduler = sim.modules['HealthSystem'].healthsystemscheduler
# Get the table showing which types of appointment can occur at which level
appt_types_offered = sim.modules['HealthSystem'].parameters['Appt_Offered_By_Facility_Level'].set_index(
'Appt_Type_Code')
# Get the all the districts in which a person could be resident, and allocate one person to each district
person_for_district = {d: i for i, d in enumerate(sim.population.props['district_of_residence'].cat.categories)}
sim.population.props.loc[person_for_district.values(), 'is_alive'] = True
sim.population.props.loc[person_for_district.values(), 'district_of_residence'] = list(person_for_district.keys())
# For each type of appointment, for a person in each district, create the HSI, schedule the HSI and check it runs
error_msg = list()
def check_appt_works(district, level, appt_type):
sim.modules['HealthSystem'].reset_queue()
hsi = DummyHSIEvent(module=sim.modules['DummyModule'],
person_id=person_for_district[district],
appt_type=appt_type,
level=level)
sim.modules['HealthSystem'].schedule_hsi_event(
hsi,
topen=sim.date,
tclose=sim.date + pd.DateOffset(days=1),
priority=1
)
healthsystemscheduler.apply(sim.population)
if not hsi.this_hsi_event_ran:
return False
else:
return True
for _district in person_for_district:
for _facility_level_col_name in appt_types_offered.columns:
for _appt_type in appt_types_offered[_facility_level_col_name].loc[
appt_types_offered[_facility_level_col_name]
].index:
_level = _facility_level_col_name.split('_')[-1]
if not check_appt_works(district=_district, level=_level, appt_type=_appt_type):
error_msg.append(f"The HSI did not run: "
f"level={_level}, appt_type={_appt_type}, district={_district}")
if len(error_msg):
for _line in error_msg:
print(_line)
assert 0 == len(error_msg)
@pytest.mark.slow
def test_two_loggers_in_healthsystem(seed, tmpdir):
"""Check that two different loggers used by the HealthSystem for more/less detailed logged information are
consistent with one another."""
# Create a dummy disease module (to be the parent of the dummy HSI)
class DummyModule(Module):
METADATA = {Metadata.DISEASE_MODULE}
def read_parameters(self, data_folder):
pass
def initialise_population(self, population):
pass
def initialise_simulation(self, sim):
sim.modules['HealthSystem'].schedule_hsi_event(HSI_Dummy(self, person_id=0),
topen=self.sim.date,
tclose=None,
priority=0)
# Create a dummy HSI event:
class HSI_Dummy(HSI_Event, IndividualScopeEventMixin):
def __init__(self, module, person_id):
super().__init__(module, person_id=person_id)
self.TREATMENT_ID = 'Dummy'
self.EXPECTED_APPT_FOOTPRINT = self.make_appt_footprint({'Over5OPD': 1, 'Under5OPD': 1})
self.BEDDAYS_FOOTPRINT = self.make_beddays_footprint({'general_bed': 2})
self.ACCEPTED_FACILITY_LEVEL = '1a'
def apply(self, person_id, squeeze_factor):
# Request a consumable (either 0 or 1)
self.get_consumables(item_codes=self.module.rng.choice((0, 1), p=(0.5, 0.5)))
# Schedule another occurrence of itself in three days.
sim.modules['HealthSystem'].schedule_hsi_event(self,
topen=self.sim.date + pd.DateOffset(days=3),
tclose=None,
priority=0)
# Set up simulation:
sim = Simulation(start_date=start_date, seed=seed, log_config={
'filename': 'tmpfile',
'directory': tmpdir,
'custom_levels': {
"tlo.methods.healthsystem": logging.DEBUG,
"tlo.methods.healthsystem.summary": logging.INFO
}
})
sim.register(
demography.Demography(resourcefilepath=resourcefilepath),
healthsystem.HealthSystem(resourcefilepath=resourcefilepath,
mode_appt_constraints=1,
capabilities_coefficient=1e-10, # <--- to give non-trivial squeeze-factors
),
DummyModule(),
sort_modules=False,
check_all_dependencies=False
)
sim.make_initial_population(n=1000)
# Replace consumables class with version that declares only one consumable, available with probability 0.5
mfl = pd.read_csv(resourcefilepath / "healthsystem" / "organisation" / "ResourceFile_Master_Facilities_List.csv")
all_fac_ids = set(mfl.loc[mfl.Facility_Level != '5'].Facility_ID)
sim.modules['HealthSystem'].consumables = Consumables(
data=create_dummy_data_for_cons_availability(
intrinsic_availability={0: 0.5, 1: 0.5},
months=list(range(1, 13)),
facility_ids=list(all_fac_ids)),
rng=sim.modules['HealthSystem'].rng,
availability='default'
)
sim.simulate(end_date=start_date + pd.DateOffset(years=2))
log = parse_log_file(sim.log_filepath, level=logging.DEBUG)
# Standard log:
detailed_hsi_event = log["tlo.methods.healthsystem"]['HSI_Event']
detailed_capacity = log["tlo.methods.healthsystem"]['Capacity']
detailed_consumables = log["tlo.methods.healthsystem"]['Consumables']
assert {'date', 'TREATMENT_ID', 'did_run', 'Squeeze_Factor', 'priority', 'Number_By_Appt_Type_Code', 'Person_ID',
'Facility_Level', 'Facility_ID', 'Event_Name',
} == set(detailed_hsi_event.columns)
assert {'date', 'Frac_Time_Used_Overall', 'Frac_Time_Used_By_Facility_ID', 'Frac_Time_Used_By_OfficerType',
} == set(detailed_capacity.columns)
assert {'date', 'TREATMENT_ID', 'Item_Available', 'Item_NotAvailable'
} == set(detailed_consumables.columns)
bed_types = sim.modules['HealthSystem'].bed_days.bed_types
detailed_beddays = {bed_type: log["tlo.methods.healthsystem"][f"bed_tracker_{bed_type}"] for bed_type in bed_types}
# Summary log:
summary_hsi_event = log["tlo.methods.healthsystem.summary"]["HSI_Event"]
summary_capacity = log["tlo.methods.healthsystem.summary"]["Capacity"]
summary_consumables = log["tlo.methods.healthsystem.summary"]["Consumables"]
summary_beddays = log["tlo.methods.healthsystem.summary"]["BedDays"]
def dict_all_close(dict_1, dict_2):
return (dict_1.keys() == dict_2.keys()) and all(
np.isclose(dict_1[k], dict_2[k]) for k in dict_1.keys()
)
# Check correspondence between the two logs
# - Counts of TREATMENT_ID (total over entire period of log)
summary_treatment_id_counts = (
summary_hsi_event['TREATMENT_ID'].apply(pd.Series).sum().to_dict()
)
detailed_treatment_id_counts = (
detailed_hsi_event.groupby('TREATMENT_ID').size().to_dict()
)
assert dict_all_close(summary_treatment_id_counts, detailed_treatment_id_counts)
# Average of squeeze-factors for each TREATMENT_ID (by each year)
summary_treatment_id_mean_squeeze_factors = (
summary_hsi_event["squeeze_factor"]
.apply(pd.Series)
.groupby(by=summary_hsi_event.date.dt.year)
.sum()
.unstack()
.to_dict()
)
detailed_treatment_id_mean_squeeze_factors = (
detailed_hsi_event.assign(
treatment_id_hsi_name=lambda df: df["TREATMENT_ID"] + ":" + df["Event_Name"],
year=lambda df: df.date.dt.year,
)
.groupby(by=["treatment_id_hsi_name", "year"])["Squeeze_Factor"]
.mean()
.to_dict()
)
assert dict_all_close(
summary_treatment_id_mean_squeeze_factors,
detailed_treatment_id_mean_squeeze_factors
)
# - Appointments (total over entire period of the log)
assert summary_hsi_event['Number_By_Appt_Type_Code'].apply(pd.Series).sum().to_dict() == \
detailed_hsi_event['Number_By_Appt_Type_Code'].apply(pd.Series).sum().to_dict()
# - Average fraction of HCW time used (year by year)
assert summary_capacity.set_index(pd.to_datetime(summary_capacity.date).dt.year
)['average_Frac_Time_Used_Overall'].round(4).to_dict() == \
detailed_capacity.set_index(pd.to_datetime(detailed_capacity.date).dt.year
)['Frac_Time_Used_Overall'].groupby(level=0).mean().round(4).to_dict()
# - Consumables (total over entire period of log that are available / not available) # add _Item_
assert summary_consumables['Item_Available'].apply(pd.Series).sum().to_dict() == \
detailed_consumables['Item_Available'].apply(
lambda x: {f'{k}': v for k, v in eval(x).items()}).apply(pd.Series).sum().to_dict()
assert summary_consumables['Item_NotAvailable'].apply(pd.Series).sum().to_dict() == \
detailed_consumables['Item_NotAvailable'].apply(
lambda x: {f'{k}': v for k, v in eval(x).items()}).apply(pd.Series).sum().to_dict()
# - Bed-Days (bed-type by bed-type and year by year)
for _bed_type in bed_types:
# Detailed:
tracker = detailed_beddays[_bed_type] \
.assign(year=pd.to_datetime(detailed_beddays[_bed_type].date).dt.year) \
.set_index('year') \
.drop(columns=['date']) \
.T
tracker.index = tracker.index.astype(int)
capacity = sim.modules['HealthSystem'].bed_days._scaled_capacity[_bed_type]
detail_beddays_used = tracker.sub(capacity, axis=0).mul(-1).sum().groupby(level=0).sum().to_dict()
# Summary: total bed-days used by year
summary_beddays_used = summary_beddays \
.assign(year=pd.to_datetime(summary_beddays.date).dt.year) \
.set_index('year')[_bed_type] \
.to_dict()
assert detail_beddays_used == summary_beddays_used
# Check the count of appointment type (total) matches the count split by level
counts_of_appts_by_level = pd.concat(
{idx: pd.DataFrame.from_dict(mydict)
for idx, mydict in summary_hsi_event['Number_By_Appt_Type_Code_And_Level'].items()
}).unstack().fillna(0.0).astype(int)
assert summary_hsi_event['Number_By_Appt_Type_Code'].apply(pd.Series).sum().to_dict() == \
counts_of_appts_by_level.groupby(axis=1, level=1).sum().sum().to_dict()
@pytest.mark.slow
def test_summary_logger_for_never_ran_hsi_event(seed, tmpdir):
"""Check that under a mode_appt_constraints = 2 with zero resources, HSIs with a tclose
soon after topen will be correctly recorded in the summary logger, and that this can
be parsed correctly when a different set of HSI are never ran."""
# Create a dummy disease module (to be the parent of the dummy HSI)
class DummyModule(Module):
METADATA = {Metadata.DISEASE_MODULE}
def read_parameters(self, data_folder):
pass
def initialise_population(self, population):
pass
def initialise_simulation(self, sim):
# In 2010: Dummy1 only
sim.modules['HealthSystem'].schedule_hsi_event(
HSI_Dummy1(self, person_id=0),
topen=self.sim.date,
tclose=self.sim.date+pd.DateOffset(days=2),
priority=0
)
# In 2011: Dummy2 & Dummy3
sim.modules['HealthSystem'].schedule_hsi_event(
HSI_Dummy2(self, person_id=0),
topen=self.sim.date + pd.DateOffset(years=1),
tclose=self.sim.date + pd.DateOffset(years=1)+pd.DateOffset(days=2),
priority=0
)
sim.modules['HealthSystem'].schedule_hsi_event(
HSI_Dummy3(self, person_id=0),