-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathLinearFilter.py
183 lines (154 loc) · 5 KB
/
LinearFilter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import numpy as np
from math import exp, log, sqrt
class LinearFilter():
""" A linear filter, state space, re-discretizable
"""
def __init__(self, A, B, C, D, x0, dt=1/100):
"""Summary
Args:
A (np matrix): state transition matrix
B (np matrix): input matrix
C (np matrix): measurement matrix
D (np matrix): direct input matrix
X0 (np matrix): initial filter states
dt (float, optional): Time step
"""
self.A = np.array(A)
self.B = np.array(B)
self.C = np.array(C)
self.D = np.array(D)
self.dt = dt
self.discretize_taylor_3(self.dt)
self.Cd = C
self.Dd = D
self.x = np.array(x0) # avoids side effects
self.y = self.x
def discretize_taylor_3(self,dt):
"""Discretizes the continuous state space system using the Taylor series
approximation of the matrix exponential
Args:
dt (float): the time step
written by Leo
"""
self.dt = dt
self.Ad = np.eye(self.A.shape[0]) + self.A * dt + (0.5 * self.A @ self.A * dt**2) + (1/6 * self.A @ self.A @ self.A* dt**3)
self.Bd = (self.Ad - np.eye(self.A.shape[0])) @ np.linalg.solve(self.A,self.B)
def discretize_tustin(self,dt):
self.dt = dt
# z = (ω₀ + s) / (ω₀ - s)
# (ω₀ - s) z = (ω₀ + s)
# ω₀ z - ω₀ = s + s z
# s = ω₀(z-1)/(z+1)
# s I x = A x + B u
# y = C x + Du
# s = 2/T * (z-1)/(z+1)
# 2/T * (z-1) x/(z+1) = A x + B u
# ξ(z+1) = 2 x
# 1/T * (z-1) ξ = A 1/2 ξ(z+1) + B u
# (z-1) ξ = T A 1/2 ξ(z+1) + T B u
# z ξ - ξ = T A 1/2 zξ + T A 1/2 ξ + T B u
# (I - T A 1/2) z ξ = (I + T A 1/2) ξ + T B u
# z ξ = (I - T A 1/2)\(I + T A 1/2) ξ + (I - T A 1/2)\T B u
# y = Cx + Du
# y = C (z+1)/2 ξ + Du
# y = C/2 z ξ + C/2 ξ + Du
# y = C/2 [(I - T A 1/2)\(I + T A 1/2) ξ + (I - T A 1/2)\T B u] + C/2 ξ + Du
# y = C/2 ((I - T A 1/2)\(I + T A 1/2)+I) ξ + (D + C/2 (I - T A 1/2)\T B)u
I = np.eye(self.A.shape[0])
print("tustin, eig A", np.linalg.eig(self.A))
self.Ad = np.linalg.solve(I - 0.5*dt*self.A, I + 0.5*dt*self.A)
print("tustin, eig Ad", np.linalg.eig(self.Ad))
self.Bd = np.linalg.solve(I - 0.5*dt*self.A, dt*self.B)
self.Cd = 0.5*self.C @ (I+self.Ad)
self.Dd = self.D + 0.5*[email protected]
assert(self.Ad.shape==self.A.shape)
assert(self.Bd.shape==self.B.shape)
assert(self.Cd.shape==self.C.shape)
assert(self.Dd.shape==self.D.shape)
def discretize_N_tustin(self, dt, N=5):
self.discretize_tustin(dt/N)
A = self.Ad
B = self.Bd
for i in range(N):
self.Ad = [email protected]
self.Bd = [email protected] + B
def discretize_substep_euler(self, dt, N=5):
self.Ad = np.eye(self.A.shape[0])
self.Bd = np.zeros(self.B.shape)
sub_dt = (dt/N)
for i in range(N):
self.Ad = (np.eye(self.A.shape[0])+self.A*sub_dt)@self.Ad
self.Bd = (np.eye(self.A.shape[0])+self.A*sub_dt)@self.Bd+sub_dt*self.B
def chain(self, filtB):
""" returns convolution of self * filtB """
N = self.A.shape[0]+filtB.A.shape[0]
Nx1 = self.A.shape[0]
Nx2 = filtB.A.shape[0]
A = np.zeros((N,N))
A[:Nx1,:Nx1] = self.A
A[Nx1:,Nx1:] = filtB.A
A[:Nx1,Nx1:] = [email protected]
B = np.zeros((N,filtB.B.shape[1]))
B[:Nx1,:] = [email protected]
B[Nx1:,:] = filtB.B
C = np.zeros((self.C.shape[0],N))
C[:, :Nx1] = self.C
C[:, Nx1:] = [email protected]
x0 = np.vstack([self.x, filtB.x])
return LinearFilter(A, B, C, D, x0, dt=self.dt)
def next(self, u):
try:
u = u.reshape(-1,1)
except :
u = np.array([[u]])
assert(self.x.shape[0] == self.Ad.shape[1])
assert(u.shape[0] == self.Bd.shape[1])
self.x = (self.Ad @ self.x + self.Bd @ u)
self.y = self.Cd @ self.x + self.Dd @ u
return self.y
def from_poly_fraction(polyNum, polyDen, dt=0.01):
""" returns (n0+n1 s+ n2 s^2 +...) / (d0 + d1 s + d2 s^2 + ...)
requires len(polyNum)<=len(polyDen)
"""
assert(len(polyNum)<=len(polyDen))
nx = len(polyDen)-1
A = np.zeros((nx,nx))
A[:-1,1:]=np.eye(nx-1)
A[-1,:] = -np.array(polyDen)[:-1]/polyDen[-1]
B = np.zeros((nx,1))
B[-1,0] = 1/polyDen[-1]
# x = 1 / (d0 + d1 s + d2 s^2 + ...) u
C = np.zeros((1,nx))
for i in range(min(nx, len(polyNum))):
C[0,i]=polyNum[i]
if len(polyNum)==len(polyDen):
d = polyNum[-1]/polyDen[-1]
D = np.array([[d]])
C += d*A[-1:,:]*polyDen[-1]
else:
D = np.array([[0.0]])
# y = nq/dq u + (n0 - d0 nq/dq + (n1 -d1 nq/dq)s +...+ (nq - dq nq/dq)s^q)/(d0 + d1 s +...+ dq s^q)u
x0 = np.zeros((nx,1))
return LinearFilter(A,B,C,D,x0,dt=dt)
def BiQuad(ωn,ζn, ωd,ζd):
ωn*=2*np.pi
ωd*=2*np.pi
return from_poly_fraction([ωn**2, 2*ωn*ζn, 1],[ωd**2, 2*ωd*ζd, 1])
def DiscreteBiQuad(ωn,ζn, ωd,ζd, dt):
ωn*=2*np.pi
ωd*=2*np.pi
c_z1 = complex(- ωn*ζn, ωn*sqrt(1-ζn**2))
c_z2 = complex(- ωn*ζn, -ωn*sqrt(1-ζn**2))
c_p1 = complex(- ωd*ζd, ωd*sqrt(1-ζd**2))
c_p2 = complex(- ωd*ζd, -ωd*sqrt(1-ζd**2))
d_z1 = exp(dt*c_z1)
d_z2 = exp(dt*c_z2)
d_p1 = exp(dt*c_p1)
d_p2 = exp(dt*c_p2)
sys = from_poly_fraction([(d_z1*d_z2).real, -(d_z1+d_z2).real, 1],[(d_p1*d_p2).real, -(d_p1+d_p2).real, 1])
sys.Ad = sys.A
sys.Bd = sys.B
sys.Cd = sys.C
sys.Dd = sys.D
return sys