-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprojections.py
48 lines (42 loc) · 1.52 KB
/
projections.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import jax.numpy as jnp
import numpy as np
#-------FOURIER LENGTH SCALE-----------#
def computeFourierMap(mesh, fourierMap):
# compute the map
coordnMapSize = (mesh.ndim, fourierMap['numTerms']);
freqSign = np.random.choice([-1.,1.], coordnMapSize)
stdUniform = np.random.uniform(0.,1., coordnMapSize)
wmin = 1./(2*fourierMap['maxRadius']*mesh.elemSize[0])
wmax = 1./(2*fourierMap['minRadius']*mesh.elemSize[0]) # w~1/R
wu = wmin + (wmax - wmin)*stdUniform
coordnMap = np.einsum('ij,ij->ij', freqSign, wu)
return coordnMap
#-----------------#
def applyFourierMap(xy, fourierMap):
if(fourierMap['isOn']):
c = jnp.cos(2*np.pi*jnp.einsum('ij,jk->ik', xy, fourierMap['map']))
s = jnp.sin(2*np.pi*jnp.einsum('ij,jk->ik', xy, fourierMap['map']))
xy = jnp.concatenate((c, s), axis = 1)
return xy
#-------DENSITY PROJECTION-----------#
def applyDensityProjection(x, densityProj):
if(densityProj['isOn']):
b = densityProj['sharpness']
nmr = np.tanh(0.5*b) + jnp.tanh(b*(x-0.5))
x = 0.5*nmr/np.tanh(0.5*b)
return x
#-------SYMMETRY-----------#
def applySymmetry(x, symMap):
if(symMap['YAxis']['isOn']):
xv = x[:,0].at[:].set(symMap['YAxis']['midPt']\
+ jnp.abs( x[:,0] - symMap['YAxis']['midPt']) )
else:
xv = x[:, 0]
if(symMap['XAxis']['isOn']):
yv = x[:,1].at[:].set(symMap['XAxis']['midPt']\
+ jnp.abs( x[:,1] - symMap['XAxis']['midPt']) )
else:
yv = x[:, 1]
x = jnp.stack((xv, yv)).T
return x
#--------------------------#