-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSource Code
110 lines (87 loc) · 3.84 KB
/
Source Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import mnist
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix, precision_recall_fscore_support
import matplotlib.pyplot as plt
import numpy as np
# Load and preprocess the MNIST dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0 # Normalize pixel values to between 0 and 1
# Reshape the data to fit the model
x_train = np.expand_dims(x_train, axis=-1)
x_test = np.expand_dims(x_test, axis=-1)
# One-hot encode the labels
y_train = tf.keras.utils.to_categorical(y_train, 10)
y_test = tf.keras.utils.to_categorical(y_test, 10)
# Build the CNN model
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
# Compile the model
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
# Train the model
history = model.fit(x_train, y_train, epochs=5, batch_size=64, validation_split=0.2)
# Save the model
model.save('mnist_cnn_model.h5')
# Plot accuracy and loss graphs
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'], label='Training Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(history.history['loss'], label='Training Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.title('Training and Validation Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
# Evaluate the model
test_loss, test_acc = model.evaluate(x_test, y_test)
print(f"\nTest Accuracy: {test_acc * 100:.2f}%")
# Select random images from the test set
num_images = 10
random_indices = np.random.choice(len(x_test), num_images)
# Make predictions
predictions = np.argmax(model.predict(x_test[random_indices]), axis=-1)
# Plot the images along with their true and predicted labels
plt.figure(figsize=(12, 6))
for i, idx in enumerate(random_indices):
plt.subplot(2, 5, i + 1)
plt.imshow(x_test[idx].reshape(28, 28), cmap='gray')
plt.title(f'True: {np.argmax(y_test[idx])}, Predicted: {predictions[i]}')
plt.axis('off')
plt.show()
# Evaluate performance using different metrics
print("\nConfusion Matrix:")
print(confusion_matrix(np.argmax(y_test, axis=1), np.argmax(model.predict(x_test), axis=-1)))
print("\nClassification Report:")
print(classification_report(np.argmax(y_test, axis=1), np.argmax(model.predict(x_test), axis=-1)))
# Calculate overall accuracy and class-wise accuracies
overall_accuracy = accuracy_score(np.argmax(y_test, axis=1), np.argmax(model.predict(x_test), axis=-1))
class_accuracies = np.sum(np.argmax(y_test, axis=1) == np.argmax(model.predict(x_test), axis=-1)) / len(np.argmax(model.predict(x_test), axis=-1))
print(f"\nOverall Accuracy: {overall_accuracy * 100:.2f}%")
print(f"Class-wise Accuracy: {class_accuracies * 100:.2f}%")
# Calculate precision, recall, and F1 Score for each class
precision, recall, f1_score, _ = precision_recall_fscore_support(np.argmax(y_test, axis=1), np.argmax(model.predict(x_test), axis=-1), average=None)
print("\nPrecision for each class:")
for i in range(10):
print(f"Class {i}: {precision[i]:.4f}")
print("\nRecall for each class:")
for i in range(10):
print(f"Class {i}: {recall[i]:.4f}")
print("\nF1 Score for each class:")
for i in range(10):
print(f"Class {i}: {f1_score[i]:.4f}")