-
Notifications
You must be signed in to change notification settings - Fork 824
/
Copy pathPostProcessPass.cs
2016 lines (1720 loc) · 101 KB
/
PostProcessPass.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
using System;
using System.Runtime.CompilerServices;
using UnityEngine.Experimental.Rendering;
using UnityEngine.Rendering.RenderGraphModule;
namespace UnityEngine.Rendering.Universal
{
/// <summary>
/// Renders the post-processing effect stack.
/// </summary>
internal partial class PostProcessPass : ScriptableRenderPass
{
RenderTextureDescriptor m_Descriptor;
RTHandle m_Source;
RTHandle m_Destination;
RTHandle m_Depth;
RTHandle m_InternalLut;
RTHandle m_MotionVectors;
RTHandle m_FullCoCTexture;
RTHandle m_HalfCoCTexture;
RTHandle m_PingTexture;
RTHandle m_PongTexture;
RTHandle[] m_BloomMipDown;
RTHandle[] m_BloomMipUp;
TextureHandle[] _BloomMipUp;
TextureHandle[] _BloomMipDown;
RTHandle m_BlendTexture;
RTHandle m_EdgeColorTexture;
RTHandle m_EdgeStencilTexture;
RTHandle m_TempTarget;
RTHandle m_TempTarget2;
RTHandle m_StreakTmpTexture;
RTHandle m_StreakTmpTexture2;
RTHandle m_ScreenSpaceLensFlareResult;
const string k_RenderPostProcessingTag = "Render PostProcessing Effects";
const string k_RenderFinalPostProcessingTag = "Render Final PostProcessing Pass";
private static readonly ProfilingSampler m_ProfilingRenderPostProcessing = new ProfilingSampler(k_RenderPostProcessingTag);
private static readonly ProfilingSampler m_ProfilingRenderFinalPostProcessing = new ProfilingSampler(k_RenderFinalPostProcessingTag);
MaterialLibrary m_Materials;
PostProcessData m_Data;
// Builtin effects settings
DepthOfField m_DepthOfField;
MotionBlur m_MotionBlur;
ScreenSpaceLensFlare m_LensFlareScreenSpace;
PaniniProjection m_PaniniProjection;
Bloom m_Bloom;
LensDistortion m_LensDistortion;
ChromaticAberration m_ChromaticAberration;
Vignette m_Vignette;
ColorLookup m_ColorLookup;
ColorAdjustments m_ColorAdjustments;
Tonemapping m_Tonemapping;
FilmGrain m_FilmGrain;
// Misc
const int k_MaxPyramidSize = 16;
readonly GraphicsFormat m_DefaultColorFormat; // The default format for post-processing, follows back-buffer format in URP.
bool m_DefaultColorFormatIsAlpha;
bool m_DefaultColorFormatUseRGBM;
readonly GraphicsFormat m_SMAAEdgeFormat;
readonly GraphicsFormat m_GaussianCoCFormat;
int m_DitheringTextureIndex;
RenderTargetIdentifier[] m_MRT2;
Vector4[] m_BokehKernel;
int m_BokehHash;
// Needed if the device changes its render target width/height (ex, Mobile platform allows change of orientation)
float m_BokehMaxRadius;
float m_BokehRCPAspect;
// True when this is the very last pass in the pipeline
bool m_IsFinalPass;
// If there's a final post process pass after this pass.
// If yes, Film Grain and Dithering are setup in the final pass, otherwise they are setup in this pass.
bool m_HasFinalPass;
// Some Android devices do not support sRGB backbuffer
// We need to do the conversion manually on those
// Also if HDR output is active
bool m_EnableColorEncodingIfNeeded;
// Use Fast conversions between SRGB and Linear
bool m_UseFastSRGBLinearConversion;
// Support Screen Space Lens Flare post process effect
bool m_SupportScreenSpaceLensFlare;
// Support Data Driven Lens Flare post process effect
bool m_SupportDataDrivenLensFlare;
// Blit to screen or color frontbuffer at the end
bool m_ResolveToScreen;
// Renderer is using swapbuffer system
bool m_UseSwapBuffer;
// RTHandle used as a temporary target when operations need to be performed before image scaling
RTHandle m_ScalingSetupTarget;
// RTHandle used as a temporary target when operations need to be performed after upscaling
RTHandle m_UpscaledTarget;
Material m_BlitMaterial;
// Cached bloom params from previous frame to avoid unnecessary material updates
BloomMaterialParams m_BloomParamsPrev;
/// <summary>
/// Creates a new <c>PostProcessPass</c> instance.
/// </summary>
/// <param name="evt">The <c>RenderPassEvent</c> to use.</param>
/// <param name="data">The <c>PostProcessData</c> resources to use.</param>
/// <param name="postProcessParams">The <c>PostProcessParams</c> run-time params to use.</param>
/// <seealso cref="RenderPassEvent"/>
/// <seealso cref="PostProcessData"/>
/// <seealso cref="PostProcessParams"/>
public PostProcessPass(RenderPassEvent evt, PostProcessData data, ref PostProcessParams postProcessParams)
{
base.profilingSampler = new ProfilingSampler(nameof(PostProcessPass));
renderPassEvent = evt;
m_Data = data;
m_Materials = new MaterialLibrary(data);
// Bloom pyramid shader ids - can't use a simple stackalloc in the bloom function as we
// unfortunately need to allocate strings
ShaderConstants._BloomMipUp = new int[k_MaxPyramidSize];
ShaderConstants._BloomMipDown = new int[k_MaxPyramidSize];
m_BloomMipUp = new RTHandle[k_MaxPyramidSize];
m_BloomMipDown = new RTHandle[k_MaxPyramidSize];
// Bloom pyramid TextureHandles
_BloomMipUp = new TextureHandle[k_MaxPyramidSize];
_BloomMipDown = new TextureHandle[k_MaxPyramidSize];
for (int i = 0; i < k_MaxPyramidSize; i++)
{
ShaderConstants._BloomMipUp[i] = Shader.PropertyToID("_BloomMipUp" + i);
ShaderConstants._BloomMipDown[i] = Shader.PropertyToID("_BloomMipDown" + i);
// Get name, will get Allocated with descriptor later
m_BloomMipUp[i] = RTHandles.Alloc(ShaderConstants._BloomMipUp[i], name: "_BloomMipUp" + i);
m_BloomMipDown[i] = RTHandles.Alloc(ShaderConstants._BloomMipDown[i], name: "_BloomMipDown" + i);
}
m_MRT2 = new RenderTargetIdentifier[2];
base.useNativeRenderPass = false;
m_BlitMaterial = postProcessParams.blitMaterial;
// NOTE: Request color format is the back-buffer color format. It can be HDR or SDR (when HDR disabled).
// Request color might have alpha or might not have alpha.
// The actual post-process target can be different. A RenderTexture with a custom format. Not necessarily a back-buffer.
// A RenderTexture with a custom format can have an alpha channel, regardless of the back-buffer setting,
// so the post-processing should just use the current target format/alpha to toggle alpha output.
//
// However, we want to filter out the alpha shader variants when not used (common case).
// The rule is that URP post-processing format follows the back-buffer format setting.
bool requestHDR = IsHDRFormat(postProcessParams.requestColorFormat);
bool requestAlpha = IsAlphaFormat(postProcessParams.requestColorFormat);
// Texture format pre-lookup
// UUM-41070: We require `Linear | Render` but with the deprecated FormatUsage this was checking `Blend`
// For now, we keep checking for `Blend` until the performance hit of doing the correct checks is evaluated
if (requestHDR)
{
m_DefaultColorFormatIsAlpha = requestAlpha;
m_DefaultColorFormatUseRGBM = false;
const GraphicsFormatUsage usage = GraphicsFormatUsage.Blend;
if (SystemInfo.IsFormatSupported(postProcessParams.requestColorFormat, usage)) // Typically, RGBA16Float.
{
m_DefaultColorFormat = postProcessParams.requestColorFormat;
}
else if (SystemInfo.IsFormatSupported(GraphicsFormat.B10G11R11_UFloatPack32, usage)) // HDR fallback
{
// NOTE: Technically request format can be with alpha, however if it's not supported and we fall back here
// , we assume no alpha. Post-process default format follows the back buffer format.
// If support failed, it must have failed for back buffer too.
m_DefaultColorFormat = GraphicsFormat.B10G11R11_UFloatPack32;
m_DefaultColorFormatIsAlpha = false;
}
else
{
m_DefaultColorFormat = QualitySettings.activeColorSpace == ColorSpace.Linear
? GraphicsFormat.R8G8B8A8_SRGB
: GraphicsFormat.R8G8B8A8_UNorm;
m_DefaultColorFormatUseRGBM = true; // Encode HDR data into RGBA8888 as RGBM (RGB, Multiplier)
}
}
else // SDR
{
m_DefaultColorFormat = QualitySettings.activeColorSpace == ColorSpace.Linear
? GraphicsFormat.R8G8B8A8_SRGB
: GraphicsFormat.R8G8B8A8_UNorm;
m_DefaultColorFormatIsAlpha = true;
// TODO: Bloom uses RGBM to Emulate HDR.
// TODO: Lens Flares render into the bloom texture, but do not support RGBM encoding at the moment.
// RGBM is disabled in the SDR case for now.
m_DefaultColorFormatUseRGBM = false;
}
// Only two components are needed for edge render texture, but on some vendors four components may be faster.
if (SystemInfo.IsFormatSupported(GraphicsFormat.R8G8_UNorm, GraphicsFormatUsage.Render) && SystemInfo.graphicsDeviceVendor.ToLowerInvariant().Contains("arm"))
m_SMAAEdgeFormat = GraphicsFormat.R8G8_UNorm;
else
m_SMAAEdgeFormat = GraphicsFormat.R8G8B8A8_UNorm;
// UUM-41070: We require `Linear | Render` but with the deprecated FormatUsage this was checking `Blend`
// For now, we keep checking for `Blend` until the performance hit of doing the correct checks is evaluated
if (SystemInfo.IsFormatSupported(GraphicsFormat.R16_UNorm, GraphicsFormatUsage.Blend))
m_GaussianCoCFormat = GraphicsFormat.R16_UNorm;
else if (SystemInfo.IsFormatSupported(GraphicsFormat.R16_SFloat, GraphicsFormatUsage.Blend))
m_GaussianCoCFormat = GraphicsFormat.R16_SFloat;
else // Expect CoC banding
m_GaussianCoCFormat = GraphicsFormat.R8_UNorm;
}
/// <summary>
/// Cleans up the Material Library used in the passes.
/// </summary>
public void Cleanup()
{
m_Materials.Cleanup();
Dispose();
}
/// <summary>
/// Disposes used resources.
/// </summary>
public void Dispose()
{
foreach (var handle in m_BloomMipDown)
handle?.Release();
foreach (var handle in m_BloomMipUp)
handle?.Release();
m_ScalingSetupTarget?.Release();
m_UpscaledTarget?.Release();
m_FullCoCTexture?.Release();
m_HalfCoCTexture?.Release();
m_PingTexture?.Release();
m_PongTexture?.Release();
m_BlendTexture?.Release();
m_EdgeColorTexture?.Release();
m_EdgeStencilTexture?.Release();
m_TempTarget?.Release();
m_TempTarget2?.Release();
m_StreakTmpTexture?.Release();
m_StreakTmpTexture2?.Release();
m_ScreenSpaceLensFlareResult?.Release();
}
/// <summary>
/// Configures the pass.
/// </summary>
/// <param name="baseDescriptor"></param>
/// <param name="source"></param>
/// <param name="resolveToScreen"></param>
/// <param name="depth"></param>
/// <param name="internalLut"></param>
/// <param name="hasFinalPass"></param>
/// <param name="enableColorEncoding"></param>
public void Setup(in RenderTextureDescriptor baseDescriptor, in RTHandle source, bool resolveToScreen, in RTHandle depth, in RTHandle internalLut, in RTHandle motionVectors, bool hasFinalPass, bool enableColorEncoding)
{
m_Descriptor = baseDescriptor;
m_Descriptor.useMipMap = false;
m_Descriptor.autoGenerateMips = false;
m_Source = source;
m_Depth = depth;
m_InternalLut = internalLut;
m_MotionVectors = motionVectors;
m_IsFinalPass = false;
m_HasFinalPass = hasFinalPass;
m_EnableColorEncodingIfNeeded = enableColorEncoding;
m_ResolveToScreen = resolveToScreen;
m_UseSwapBuffer = true;
// Disable obsolete warning for internal usage
#pragma warning disable CS0618
m_Destination = k_CameraTarget;
#pragma warning restore CS0618
}
/// <summary>
/// Configures the pass.
/// </summary>
/// <param name="baseDescriptor"></param>
/// <param name="source"></param>
/// <param name="destination"></param>
/// <param name="depth"></param>
/// <param name="internalLut"></param>
/// <param name="hasFinalPass"></param>
/// <param name="enableColorEncoding"></param>
public void Setup(in RenderTextureDescriptor baseDescriptor, in RTHandle source, RTHandle destination, in RTHandle depth, in RTHandle internalLut, bool hasFinalPass, bool enableColorEncoding)
{
m_Descriptor = baseDescriptor;
m_Descriptor.useMipMap = false;
m_Descriptor.autoGenerateMips = false;
m_Source = source;
m_Destination = destination;
m_Depth = depth;
m_InternalLut = internalLut;
m_IsFinalPass = false;
m_HasFinalPass = hasFinalPass;
m_EnableColorEncodingIfNeeded = enableColorEncoding;
m_UseSwapBuffer = true;
}
/// <summary>
/// Configures the Final pass.
/// </summary>
/// <param name="source"></param>
/// <param name="useSwapBuffer"></param>
/// <param name="enableColorEncoding"></param>
public void SetupFinalPass(in RTHandle source, bool useSwapBuffer = false, bool enableColorEncoding = true)
{
m_Source = source;
m_IsFinalPass = true;
m_HasFinalPass = false;
m_EnableColorEncodingIfNeeded = enableColorEncoding;
m_UseSwapBuffer = useSwapBuffer;
// Disable obsolete warning for internal usage
#pragma warning disable CS0618
m_Destination = k_CameraTarget;
#pragma warning restore CS0618
}
/// <inheritdoc/>
[Obsolete(DeprecationMessage.CompatibilityScriptingAPIObsolete, false)]
public override void OnCameraSetup(CommandBuffer cmd, ref RenderingData renderingData)
{
overrideCameraTarget = true;
}
public bool CanRunOnTile()
{
// Check builtin & user effects here
return false;
}
/// <inheritdoc/>
[Obsolete(DeprecationMessage.CompatibilityScriptingAPIObsolete, false)]
public override void Execute(ScriptableRenderContext context, ref RenderingData renderingData)
{
// Start by pre-fetching all builtin effect settings we need
// Some of the color-grading settings are only used in the color grading lut pass
var stack = VolumeManager.instance.stack;
m_DepthOfField = stack.GetComponent<DepthOfField>();
m_MotionBlur = stack.GetComponent<MotionBlur>();
m_LensFlareScreenSpace = stack.GetComponent<ScreenSpaceLensFlare>();
m_PaniniProjection = stack.GetComponent<PaniniProjection>();
m_Bloom = stack.GetComponent<Bloom>();
m_LensDistortion = stack.GetComponent<LensDistortion>();
m_ChromaticAberration = stack.GetComponent<ChromaticAberration>();
m_Vignette = stack.GetComponent<Vignette>();
m_ColorLookup = stack.GetComponent<ColorLookup>();
m_ColorAdjustments = stack.GetComponent<ColorAdjustments>();
m_Tonemapping = stack.GetComponent<Tonemapping>();
m_FilmGrain = stack.GetComponent<FilmGrain>();
m_UseFastSRGBLinearConversion = renderingData.postProcessingData.useFastSRGBLinearConversion;
m_SupportScreenSpaceLensFlare = renderingData.postProcessingData.supportScreenSpaceLensFlare;
m_SupportDataDrivenLensFlare = renderingData.postProcessingData.supportDataDrivenLensFlare;
var cmd = renderingData.commandBuffer;
if (m_IsFinalPass)
{
using (new ProfilingScope(cmd, m_ProfilingRenderFinalPostProcessing))
{
RenderFinalPass(cmd, ref renderingData);
}
}
else if (CanRunOnTile())
{
// TODO: Add a fast render path if only on-tile compatible effects are used and we're actually running on a platform that supports it
// Note: we can still work on-tile if FXAA is enabled, it'd be part of the final pass
}
else
{
// Regular render path (not on-tile) - we do everything in a single command buffer as it
// makes it easier to manage temporary targets' lifetime
using (new ProfilingScope(cmd, m_ProfilingRenderPostProcessing))
{
Render(cmd, ref renderingData);
}
}
}
bool IsHDRFormat(GraphicsFormat format)
{
return format == GraphicsFormat.B10G11R11_UFloatPack32 ||
GraphicsFormatUtility.IsHalfFormat(format) ||
GraphicsFormatUtility.IsFloatFormat(format);
}
bool IsAlphaFormat(GraphicsFormat format)
{
return GraphicsFormatUtility.HasAlphaChannel(format);
}
RenderTextureDescriptor GetCompatibleDescriptor()
=> GetCompatibleDescriptor(m_Descriptor.width, m_Descriptor.height, m_Descriptor.graphicsFormat);
RenderTextureDescriptor GetCompatibleDescriptor(int width, int height, GraphicsFormat format, DepthBits depthBufferBits = DepthBits.None)
=> GetCompatibleDescriptor(m_Descriptor, width, height, format, depthBufferBits);
internal static RenderTextureDescriptor GetCompatibleDescriptor(RenderTextureDescriptor desc, int width, int height, GraphicsFormat format, DepthBits depthBufferBits = DepthBits.None)
{
desc.depthBufferBits = (int)depthBufferBits;
desc.msaaSamples = 1;
desc.width = width;
desc.height = height;
desc.graphicsFormat = format;
return desc;
}
bool RequireSRGBConversionBlitToBackBuffer(bool requireSrgbConversion)
{
return requireSrgbConversion && m_EnableColorEncodingIfNeeded;
}
bool RequireHDROutput(UniversalCameraData cameraData)
{
// If capturing, don't convert to HDR.
// If not last in the stack, don't convert to HDR.
return cameraData.isHDROutputActive && cameraData.captureActions == null;
}
void Render(CommandBuffer cmd, ref RenderingData renderingData)
{
UniversalCameraData cameraData = renderingData.frameData.Get<UniversalCameraData>();
ref ScriptableRenderer renderer = ref cameraData.renderer;
bool isSceneViewCamera = cameraData.isSceneViewCamera;
//Check amount of swaps we have to do
//We blit back and forth without msaa until the last blit.
bool useStopNan = cameraData.isStopNaNEnabled && m_Materials.stopNaN != null;
bool useSubPixeMorpAA = cameraData.antialiasing == AntialiasingMode.SubpixelMorphologicalAntiAliasing;
var dofMaterial = m_DepthOfField.mode.value == DepthOfFieldMode.Gaussian ? m_Materials.gaussianDepthOfField : m_Materials.bokehDepthOfField;
bool useDepthOfField = m_DepthOfField.IsActive() && !isSceneViewCamera && dofMaterial != null;
bool useLensFlare = !LensFlareCommonSRP.Instance.IsEmpty() && m_SupportDataDrivenLensFlare;
bool useLensFlareScreenSpace = m_LensFlareScreenSpace.IsActive() && m_SupportScreenSpaceLensFlare;
bool useMotionBlur = m_MotionBlur.IsActive() && !isSceneViewCamera;
bool usePaniniProjection = m_PaniniProjection.IsActive() && !isSceneViewCamera;
// Disable MotionBlur in EditMode, so that editing remains clear and readable.
// NOTE: HDRP does the same via CoreUtils::AreAnimatedMaterialsEnabled().
useMotionBlur = useMotionBlur && Application.isPlaying;
// Note that enabling jitters uses the same CameraData::IsTemporalAAEnabled(). So if we add any other kind of overrides (like
// disable useTemporalAA if another feature is disabled) then we need to put it in CameraData::IsTemporalAAEnabled() as opposed
// to tweaking the value here.
bool useTemporalAA = cameraData.IsTemporalAAEnabled();
if (cameraData.antialiasing == AntialiasingMode.TemporalAntiAliasing && !useTemporalAA)
TemporalAA.ValidateAndWarn(cameraData);
int amountOfPassesRemaining = (useStopNan ? 1 : 0) + (useSubPixeMorpAA ? 1 : 0) + (useDepthOfField ? 1 : 0) + (useLensFlare ? 1 : 0) + (useTemporalAA ? 1 : 0) + (useMotionBlur ? 1 : 0) + (usePaniniProjection ? 1 : 0);
if (m_UseSwapBuffer && amountOfPassesRemaining > 0)
{
renderer.EnableSwapBufferMSAA(false);
}
// Disable obsolete warning for internal usage
#pragma warning disable CS0618
// Don't use these directly unless you have a good reason to, use GetSource() and
// GetDestination() instead
RTHandle source = m_UseSwapBuffer ? renderer.cameraColorTargetHandle : m_Source;
RTHandle destination = m_UseSwapBuffer ? renderer.GetCameraColorFrontBuffer(cmd) : null;
#pragma warning restore CS0618
RTHandle GetSource() => source;
RTHandle GetDestination()
{
if (destination == null)
{
RenderingUtils.ReAllocateHandleIfNeeded(ref m_TempTarget, GetCompatibleDescriptor(), FilterMode.Bilinear, TextureWrapMode.Clamp, name: "_TempTarget");
destination = m_TempTarget;
}
else if (destination == m_Source && m_Descriptor.msaaSamples > 1)
{
// Avoid using m_Source.id as new destination, it may come with a depth buffer that we don't want, may have MSAA that we don't want etc
RenderingUtils.ReAllocateHandleIfNeeded(ref m_TempTarget2, GetCompatibleDescriptor(), FilterMode.Bilinear, TextureWrapMode.Clamp, name: "_TempTarget2");
destination = m_TempTarget2;
}
return destination;
}
void Swap(ref ScriptableRenderer r)
{
--amountOfPassesRemaining;
if (m_UseSwapBuffer)
{
r.SwapColorBuffer(cmd);
// Disable obsolete warning for internal usage
#pragma warning disable CS0618
source = r.cameraColorTargetHandle;
#pragma warning restore CS0618
//we want the last blit to be to MSAA
if (amountOfPassesRemaining == 0 && !m_HasFinalPass)
r.EnableSwapBufferMSAA(true);
// Disable obsolete warning for internal usage
#pragma warning disable CS0618
destination = r.GetCameraColorFrontBuffer(cmd);
#pragma warning restore CS0618
}
else
{
CoreUtils.Swap(ref source, ref destination);
}
}
// Setup projection matrix for cmd.DrawMesh()
cmd.SetGlobalMatrix(ShaderConstants._FullscreenProjMat, GL.GetGPUProjectionMatrix(Matrix4x4.identity, true));
// Optional NaN killer before post-processing kicks in
// stopNaN may be null on Adreno 3xx. It doesn't support full shader level 3.5, but SystemInfo.graphicsShaderLevel is 35.
if (useStopNan)
{
using (new ProfilingScope(cmd, ProfilingSampler.Get(URPProfileId.StopNaNs)))
{
Blitter.BlitCameraTexture(cmd, GetSource(), GetDestination(), RenderBufferLoadAction.DontCare, RenderBufferStoreAction.Store, m_Materials.stopNaN, 0);
Swap(ref renderer);
}
}
// Anti-aliasing
if (useSubPixeMorpAA)
{
using (new ProfilingScope(cmd, ProfilingSampler.Get(URPProfileId.SMAA)))
{
DoSubpixelMorphologicalAntialiasing(ref renderingData.cameraData, cmd, GetSource(), GetDestination());
Swap(ref renderer);
}
}
// Depth of Field
// Adreno 3xx SystemInfo.graphicsShaderLevel is 35, but instancing support is disabled due to buggy drivers.
// DOF shader uses #pragma target 3.5 which adds requirement for instancing support, thus marking the shader unsupported on those devices.
if (useDepthOfField)
{
var markerName = m_DepthOfField.mode.value == DepthOfFieldMode.Gaussian
? URPProfileId.GaussianDepthOfField
: URPProfileId.BokehDepthOfField;
using (new ProfilingScope(cmd, ProfilingSampler.Get(markerName)))
{
DoDepthOfField(ref renderingData.cameraData, cmd, GetSource(), GetDestination(), cameraData.pixelRect);
Swap(ref renderer);
}
}
// Temporal Anti Aliasing
if (useTemporalAA)
{
using (new ProfilingScope(cmd, ProfilingSampler.Get(URPProfileId.TemporalAA)))
{
Debug.Assert(m_MotionVectors != null, "MotionVectors are invalid. TAA requires a motion vector texture.");
TemporalAA.ExecutePass(cmd, m_Materials.temporalAntialiasing, ref renderingData.cameraData, source, destination, m_MotionVectors?.rt);
Swap(ref renderer);
}
}
// Motion blur
if (useMotionBlur)
{
using (new ProfilingScope(cmd, ProfilingSampler.Get(URPProfileId.MotionBlur)))
{
DoMotionBlur(cmd, GetSource(), GetDestination(), m_MotionVectors, ref renderingData.cameraData);
Swap(ref renderer);
}
}
// Panini projection is done as a fullscreen pass after all depth-based effects are done
// and before bloom kicks in
if (usePaniniProjection)
{
using (new ProfilingScope(cmd, ProfilingSampler.Get(URPProfileId.PaniniProjection)))
{
DoPaniniProjection(cameraData.camera, cmd, GetSource(), GetDestination());
Swap(ref renderer);
}
}
// Combined post-processing stack
using (new ProfilingScope(cmd, ProfilingSampler.Get(URPProfileId.UberPostProcess)))
{
// Reset uber keywords
m_Materials.uber.shaderKeywords = null;
// Bloom goes first
bool bloomActive = m_Bloom.IsActive();
bool lensFlareScreenSpaceActive = m_LensFlareScreenSpace.IsActive();
// We need to still do the bloom pass if lens flare screen space is active because it uses _Bloom_Texture.
if (bloomActive || lensFlareScreenSpaceActive)
{
using (new ProfilingScope(cmd, ProfilingSampler.Get(URPProfileId.Bloom)))
SetupBloom(cmd, GetSource(), m_Materials.uber, cameraData.isAlphaOutputEnabled);
}
// Lens Flare Screen Space
if (useLensFlareScreenSpace)
{
using (new ProfilingScope(cmd, ProfilingSampler.Get(URPProfileId.LensFlareScreenSpace)))
{
// We clamp the bloomMip value to avoid picking a mip that doesn't exist, since in URP you can set the number of maxIteration of the bloomPass.
int maxBloomMip = Mathf.Clamp(m_LensFlareScreenSpace.bloomMip.value, 0, m_Bloom.maxIterations.value/2);
DoLensFlareScreenSpace(cameraData.camera, cmd, GetSource(), m_BloomMipUp[0], m_BloomMipUp[maxBloomMip]);
}
}
// Lens Flare
if (useLensFlare)
{
bool usePanini;
float paniniDistance;
float paniniCropToFit;
if (m_PaniniProjection.IsActive())
{
usePanini = true;
paniniDistance = m_PaniniProjection.distance.value;
paniniCropToFit = m_PaniniProjection.cropToFit.value;
}
else
{
usePanini = false;
paniniDistance = 1.0f;
paniniCropToFit = 1.0f;
}
using (new ProfilingScope(cmd, ProfilingSampler.Get(URPProfileId.LensFlareDataDrivenComputeOcclusion)))
{
LensFlareDataDrivenComputeOcclusion(ref cameraData, cmd, GetSource(), usePanini, paniniDistance, paniniCropToFit);
}
using (new ProfilingScope(cmd, ProfilingSampler.Get(URPProfileId.LensFlareDataDriven)))
{
LensFlareDataDriven(ref cameraData, cmd, GetSource(), usePanini, paniniDistance, paniniCropToFit);
}
}
// Setup other effects constants
SetupLensDistortion(m_Materials.uber, isSceneViewCamera);
SetupChromaticAberration(m_Materials.uber);
SetupVignette(m_Materials.uber, cameraData.xr);
SetupColorGrading(cmd, ref renderingData, m_Materials.uber);
// Only apply dithering & grain if there isn't a final pass.
SetupGrain(cameraData, m_Materials.uber);
SetupDithering(cameraData, m_Materials.uber);
if (RequireSRGBConversionBlitToBackBuffer(cameraData.requireSrgbConversion))
m_Materials.uber.EnableKeyword(ShaderKeywordStrings.LinearToSRGBConversion);
bool requireHDROutput = RequireHDROutput(cameraData);
if (requireHDROutput)
{
// Color space conversion is already applied through color grading, do encoding if uber post is the last pass
// Otherwise encoding will happen in the final post process pass or the final blit pass
HDROutputUtils.Operation hdrOperation = !m_HasFinalPass && m_EnableColorEncodingIfNeeded ? HDROutputUtils.Operation.ColorEncoding : HDROutputUtils.Operation.None;
SetupHDROutput(cameraData.hdrDisplayInformation, cameraData.hdrDisplayColorGamut, m_Materials.uber, hdrOperation);
}
if (m_UseFastSRGBLinearConversion)
{
m_Materials.uber.EnableKeyword(ShaderKeywordStrings.UseFastSRGBLinearConversion);
}
CoreUtils.SetKeyword(m_Materials.uber, ShaderKeywordStrings._ENABLE_ALPHA_OUTPUT, cameraData.isAlphaOutputEnabled);
DebugHandler debugHandler = GetActiveDebugHandler(cameraData);
bool resolveToDebugScreen = debugHandler != null && debugHandler.WriteToDebugScreenTexture(cameraData.resolveFinalTarget);
debugHandler?.UpdateShaderGlobalPropertiesForFinalValidationPass(cmd, cameraData, !m_HasFinalPass && !resolveToDebugScreen);
// Done with Uber, blit it
var colorLoadAction = RenderBufferLoadAction.DontCare;
// Disable obsolete warning for internal usage
#pragma warning disable CS0618
if (m_Destination == k_CameraTarget && !cameraData.isDefaultViewport)
colorLoadAction = RenderBufferLoadAction.Load;
#pragma warning restore CS0618
// Note: We rendering to "camera target" we need to get the cameraData.targetTexture as this will get the targetTexture of the camera stack.
// Overlay cameras need to output to the target described in the base camera while doing camera stack.
RenderTargetIdentifier cameraTargetID = BuiltinRenderTextureType.CameraTarget;
#if ENABLE_VR && ENABLE_XR_MODULE
if (cameraData.xr.enabled)
cameraTargetID = cameraData.xr.renderTarget;
#endif
if (!m_UseSwapBuffer)
m_ResolveToScreen = cameraData.resolveFinalTarget || m_Destination.nameID == cameraTargetID || m_HasFinalPass == true;
// With camera stacking we not always resolve post to final screen as we might run post-processing in the middle of the stack.
if (m_UseSwapBuffer && !m_ResolveToScreen)
{
if (!m_HasFinalPass)
{
// We need to reenable this to be able to blit to the correct AA target
renderer.EnableSwapBufferMSAA(true);
// Disable obsolete warning for internal usage
#pragma warning disable CS0618
destination = renderer.GetCameraColorFrontBuffer(cmd);
#pragma warning restore CS0618
}
Blitter.BlitCameraTexture(cmd, GetSource(), destination, colorLoadAction, RenderBufferStoreAction.Store, m_Materials.uber, 0);
// Disable obsolete warning for internal usage
#pragma warning disable CS0618
renderer.ConfigureCameraColorTarget(destination);
#pragma warning restore CS0618
Swap(ref renderer);
}
// TODO: Implement swapbuffer in 2DRenderer so we can remove this
// For now, when render post-processing in the middle of the camera stack (not resolving to screen)
// we do an extra blit to ping pong results back to color texture. In future we should allow a Swap of the current active color texture
// in the pipeline to avoid this extra blit.
else if (!m_UseSwapBuffer)
{
var firstSource = GetSource();
Blitter.BlitCameraTexture(cmd, firstSource, GetDestination(), colorLoadAction, RenderBufferStoreAction.Store, m_Materials.uber, 0);
Blitter.BlitCameraTexture(cmd, GetDestination(), m_Destination, RenderBufferLoadAction.DontCare, RenderBufferStoreAction.Store, m_BlitMaterial, m_Destination.rt?.filterMode == FilterMode.Bilinear ? 1 : 0);
}
else if (m_ResolveToScreen)
{
if (resolveToDebugScreen)
{
// Blit to the debugger texture instead of the camera target
Blitter.BlitCameraTexture(cmd, GetSource(), debugHandler.DebugScreenColorHandle, RenderBufferLoadAction.Load, RenderBufferStoreAction.Store, m_Materials.uber, 0);
// Disable obsolete warning for internal usage
#pragma warning disable CS0618
renderer.ConfigureCameraTarget(debugHandler.DebugScreenColorHandle, debugHandler.DebugScreenDepthHandle);
#pragma warning restore CS0618
}
else
{
// Get RTHandle alias to use RTHandle apis
RenderTargetIdentifier cameraTarget = cameraData.targetTexture != null ? new RenderTargetIdentifier(cameraData.targetTexture) : cameraTargetID;
RTHandleStaticHelpers.SetRTHandleStaticWrapper(cameraTarget);
var cameraTargetHandle = RTHandleStaticHelpers.s_RTHandleWrapper;
RenderingUtils.FinalBlit(cmd, cameraData, GetSource(), cameraTargetHandle, colorLoadAction, RenderBufferStoreAction.Store, m_Materials.uber, 0);
// Disable obsolete warning for internal usage
#pragma warning disable CS0618
renderer.ConfigureCameraColorTarget(cameraTargetHandle);
#pragma warning restore CS0618
}
}
}
}
#region Sub-pixel Morphological Anti-aliasing
void DoSubpixelMorphologicalAntialiasing(ref CameraData cameraData, CommandBuffer cmd, RTHandle source, RTHandle destination)
{
var camera = cameraData.camera;
var pixelRect = new Rect(Vector2.zero, new Vector2(cameraData.cameraTargetDescriptor.width, cameraData.cameraTargetDescriptor.height));
var material = m_Materials.subpixelMorphologicalAntialiasing;
const int kStencilBit = 64;
// Intermediate targets
RTHandle stencil; // We would only need stencil, no depth. But Unity doesn't support that.
if (m_Depth.nameID == BuiltinRenderTextureType.CameraTarget || m_Descriptor.msaaSamples > 1)
{
// In case m_Depth is CameraTarget it may refer to the backbuffer and we can't use that as an attachment on all platforms
RenderingUtils.ReAllocateHandleIfNeeded(ref m_EdgeStencilTexture, GetCompatibleDescriptor(m_Descriptor.width, m_Descriptor.height, GraphicsFormat.None, DepthBits.Depth24), FilterMode.Bilinear, TextureWrapMode.Clamp, name: "_EdgeStencilTexture");
stencil = m_EdgeStencilTexture;
}
else
{
stencil = m_Depth;
}
RenderingUtils.ReAllocateHandleIfNeeded(ref m_EdgeColorTexture, GetCompatibleDescriptor(m_Descriptor.width, m_Descriptor.height, m_SMAAEdgeFormat), FilterMode.Bilinear, TextureWrapMode.Clamp, name: "_EdgeColorTexture");
RenderingUtils.ReAllocateHandleIfNeeded(ref m_BlendTexture, GetCompatibleDescriptor(m_Descriptor.width, m_Descriptor.height, GraphicsFormat.R8G8B8A8_UNorm), FilterMode.Point, TextureWrapMode.Clamp, name: "_BlendTexture");
// Globals
var targetSize = m_EdgeColorTexture.useScaling ? m_EdgeColorTexture.rtHandleProperties.currentRenderTargetSize : new Vector2Int(m_EdgeColorTexture.rt.width, m_EdgeColorTexture.rt.height);
material.SetVector(ShaderConstants._Metrics, new Vector4(1f / targetSize.x, 1f / targetSize.y, targetSize.x, targetSize.y));
material.SetTexture(ShaderConstants._AreaTexture, m_Data.textures.smaaAreaTex);
material.SetTexture(ShaderConstants._SearchTexture, m_Data.textures.smaaSearchTex);
material.SetFloat(ShaderConstants._StencilRef, (float)kStencilBit);
material.SetFloat(ShaderConstants._StencilMask, (float)kStencilBit);
// Quality presets
material.shaderKeywords = null;
switch (cameraData.antialiasingQuality)
{
case AntialiasingQuality.Low:
material.EnableKeyword(ShaderKeywordStrings.SmaaLow);
break;
case AntialiasingQuality.Medium:
material.EnableKeyword(ShaderKeywordStrings.SmaaMedium);
break;
case AntialiasingQuality.High:
material.EnableKeyword(ShaderKeywordStrings.SmaaHigh);
break;
}
// Pass 1: Edge detection
RenderingUtils.Blit(cmd, source, pixelRect,
m_EdgeColorTexture, RenderBufferLoadAction.DontCare, RenderBufferStoreAction.Store,
stencil, RenderBufferLoadAction.DontCare, RenderBufferStoreAction.Store,
ClearFlag.ColorStencil, Color.clear, // implicit depth=1.0f stencil=0x0
material, 0);
// Pass 2: Blend weights
RenderingUtils.Blit(cmd, m_EdgeColorTexture, pixelRect,
m_BlendTexture, RenderBufferLoadAction.DontCare, RenderBufferStoreAction.Store,
stencil, RenderBufferLoadAction.Load, RenderBufferStoreAction.DontCare,
ClearFlag.Color, Color.clear, material, 1);
// Pass 3: Neighborhood blending
cmd.SetGlobalTexture(ShaderConstants._BlendTexture, m_BlendTexture.nameID);
Blitter.BlitCameraTexture(cmd, source, destination, RenderBufferLoadAction.DontCare, RenderBufferStoreAction.Store, material, 2);
}
#endregion
#region Depth Of Field
// TODO: CoC reprojection once TAA gets in LW
// TODO: Proper LDR/gamma support
void DoDepthOfField(ref CameraData cameraData, CommandBuffer cmd, RTHandle source, RTHandle destination, Rect pixelRect)
{
if (m_DepthOfField.mode.value == DepthOfFieldMode.Gaussian)
DoGaussianDepthOfField(cmd, source, destination, pixelRect, cameraData.isAlphaOutputEnabled);
else if (m_DepthOfField.mode.value == DepthOfFieldMode.Bokeh)
DoBokehDepthOfField(cmd, source, destination, pixelRect, cameraData.isAlphaOutputEnabled);
}
void DoGaussianDepthOfField(CommandBuffer cmd, RTHandle source, RTHandle destination, Rect pixelRect, bool enableAlphaOutput)
{
int downSample = 2;
var material = m_Materials.gaussianDepthOfField;
int wh = m_Descriptor.width / downSample;
int hh = m_Descriptor.height / downSample;
float farStart = m_DepthOfField.gaussianStart.value;
float farEnd = Mathf.Max(farStart, m_DepthOfField.gaussianEnd.value);
// Assumes a radius of 1 is 1 at 1080p
// Past a certain radius our gaussian kernel will look very bad so we'll clamp it for
// very high resolutions (4K+).
float maxRadius = m_DepthOfField.gaussianMaxRadius.value * (wh / 1080f);
maxRadius = Mathf.Min(maxRadius, 2f);
CoreUtils.SetKeyword(material, ShaderKeywordStrings._ENABLE_ALPHA_OUTPUT, enableAlphaOutput);
CoreUtils.SetKeyword(material, ShaderKeywordStrings.HighQualitySampling, m_DepthOfField.highQualitySampling.value);
material.SetVector(ShaderConstants._CoCParams, new Vector3(farStart, farEnd, maxRadius));
RenderingUtils.ReAllocateHandleIfNeeded(ref m_FullCoCTexture, GetCompatibleDescriptor(m_Descriptor.width, m_Descriptor.height, m_GaussianCoCFormat), FilterMode.Bilinear, TextureWrapMode.Clamp, name: "_FullCoCTexture");
RenderingUtils.ReAllocateHandleIfNeeded(ref m_HalfCoCTexture, GetCompatibleDescriptor(wh, hh, m_GaussianCoCFormat), FilterMode.Bilinear, TextureWrapMode.Clamp, name: "_HalfCoCTexture");
RenderingUtils.ReAllocateHandleIfNeeded(ref m_PingTexture, GetCompatibleDescriptor(wh, hh, GraphicsFormat.R16G16B16A16_SFloat), FilterMode.Bilinear, TextureWrapMode.Clamp, name: "_PingTexture");
RenderingUtils.ReAllocateHandleIfNeeded(ref m_PongTexture, GetCompatibleDescriptor(wh, hh, GraphicsFormat.R16G16B16A16_SFloat), FilterMode.Bilinear, TextureWrapMode.Clamp, name: "_PongTexture");
PostProcessUtils.SetSourceSize(cmd, m_FullCoCTexture);
cmd.SetGlobalVector(ShaderConstants._DownSampleScaleFactor, new Vector4(1.0f / downSample, 1.0f / downSample, downSample, downSample));
// Compute CoC
Blitter.BlitCameraTexture(cmd, source, m_FullCoCTexture, RenderBufferLoadAction.DontCare, RenderBufferStoreAction.Store, material, 0);
// Downscale & prefilter color + coc
m_MRT2[0] = m_HalfCoCTexture.nameID;
m_MRT2[1] = m_PingTexture.nameID;
cmd.SetGlobalTexture(ShaderConstants._FullCoCTexture, m_FullCoCTexture.nameID);
CoreUtils.SetRenderTarget(cmd, m_MRT2, m_HalfCoCTexture);
Vector2 viewportScale = source.useScaling ? new Vector2(source.rtHandleProperties.rtHandleScale.x, source.rtHandleProperties.rtHandleScale.y) : Vector2.one;
Blitter.BlitTexture(cmd, source, viewportScale, material, 1);
// Blur
cmd.SetGlobalTexture(ShaderConstants._HalfCoCTexture, m_HalfCoCTexture.nameID);
cmd.SetGlobalTexture(ShaderConstants._ColorTexture, source);
Blitter.BlitCameraTexture(cmd, m_PingTexture, m_PongTexture, RenderBufferLoadAction.DontCare, RenderBufferStoreAction.Store, material, 2);
Blitter.BlitCameraTexture(cmd, m_PongTexture, m_PingTexture, RenderBufferLoadAction.DontCare, RenderBufferStoreAction.Store, material, 3);
// Composite
cmd.SetGlobalTexture(ShaderConstants._ColorTexture, m_PingTexture.nameID);
cmd.SetGlobalTexture(ShaderConstants._FullCoCTexture, m_FullCoCTexture.nameID);
Blitter.BlitCameraTexture(cmd, source, destination, RenderBufferLoadAction.DontCare, RenderBufferStoreAction.Store, material, 4);
}
void PrepareBokehKernel(float maxRadius, float rcpAspect)
{
const int kRings = 4;
const int kPointsPerRing = 7;
// Check the existing array
if (m_BokehKernel == null)
m_BokehKernel = new Vector4[42];
// Fill in sample points (concentric circles transformed to rotated N-Gon)
int idx = 0;
float bladeCount = m_DepthOfField.bladeCount.value;
float curvature = 1f - m_DepthOfField.bladeCurvature.value;
float rotation = m_DepthOfField.bladeRotation.value * Mathf.Deg2Rad;
const float PI = Mathf.PI;
const float TWO_PI = Mathf.PI * 2f;
for (int ring = 1; ring < kRings; ring++)
{
float bias = 1f / kPointsPerRing;
float radius = (ring + bias) / (kRings - 1f + bias);
int points = ring * kPointsPerRing;
for (int point = 0; point < points; point++)
{
// Angle on ring
float phi = 2f * PI * point / points;
// Transform to rotated N-Gon
// Adapted from "CryEngine 3 Graphics Gems" [Sousa13]
float nt = Mathf.Cos(PI / bladeCount);
float dt = Mathf.Cos(phi - (TWO_PI / bladeCount) * Mathf.Floor((bladeCount * phi + Mathf.PI) / TWO_PI));
float r = radius * Mathf.Pow(nt / dt, curvature);
float u = r * Mathf.Cos(phi - rotation);
float v = r * Mathf.Sin(phi - rotation);
float uRadius = u * maxRadius;
float vRadius = v * maxRadius;
float uRadiusPowTwo = uRadius * uRadius;
float vRadiusPowTwo = vRadius * vRadius;
float kernelLength = Mathf.Sqrt((uRadiusPowTwo + vRadiusPowTwo));
float uRCP = uRadius * rcpAspect;
m_BokehKernel[idx] = new Vector4(uRadius, vRadius, kernelLength, uRCP);
idx++;
}
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
static float GetMaxBokehRadiusInPixels(float viewportHeight)
{
// Estimate the maximum radius of bokeh (empirically derived from the ring count)
const float kRadiusInPixels = 14f;
return Mathf.Min(0.05f, kRadiusInPixels / viewportHeight);
}
void DoBokehDepthOfField(CommandBuffer cmd, RTHandle source, RTHandle destination, Rect pixelRect, bool enableAlphaOutput)
{
int downSample = 2;
var material = m_Materials.bokehDepthOfField;
int wh = m_Descriptor.width / downSample;
int hh = m_Descriptor.height / downSample;
// "A Lens and Aperture Camera Model for Synthetic Image Generation" [Potmesil81]
float F = m_DepthOfField.focalLength.value / 1000f;
float A = m_DepthOfField.focalLength.value / m_DepthOfField.aperture.value;
float P = m_DepthOfField.focusDistance.value;
float maxCoC = (A * F) / (P - F);
float maxRadius = GetMaxBokehRadiusInPixels(m_Descriptor.height);
float rcpAspect = 1f / (wh / (float)hh);
CoreUtils.SetKeyword(material, ShaderKeywordStrings._ENABLE_ALPHA_OUTPUT, enableAlphaOutput);
CoreUtils.SetKeyword(material, ShaderKeywordStrings.UseFastSRGBLinearConversion, m_UseFastSRGBLinearConversion);
cmd.SetGlobalVector(ShaderConstants._CoCParams, new Vector4(P, maxCoC, maxRadius, rcpAspect));
// Prepare the bokeh kernel constant buffer
int hash = m_DepthOfField.GetHashCode();
if (hash != m_BokehHash || maxRadius != m_BokehMaxRadius || rcpAspect != m_BokehRCPAspect)
{
m_BokehHash = hash;
m_BokehMaxRadius = maxRadius;
m_BokehRCPAspect = rcpAspect;
PrepareBokehKernel(maxRadius, rcpAspect);
}
cmd.SetGlobalVectorArray(ShaderConstants._BokehKernel, m_BokehKernel);
RenderingUtils.ReAllocateHandleIfNeeded(ref m_FullCoCTexture, GetCompatibleDescriptor(m_Descriptor.width, m_Descriptor.height, GraphicsFormat.R8_UNorm), FilterMode.Bilinear, TextureWrapMode.Clamp, name: "_FullCoCTexture");
RenderingUtils.ReAllocateHandleIfNeeded(ref m_PingTexture, GetCompatibleDescriptor(wh, hh, GraphicsFormat.R16G16B16A16_SFloat), FilterMode.Bilinear, TextureWrapMode.Clamp, name: "_PingTexture");
RenderingUtils.ReAllocateHandleIfNeeded(ref m_PongTexture, GetCompatibleDescriptor(wh, hh, GraphicsFormat.R16G16B16A16_SFloat), FilterMode.Bilinear, TextureWrapMode.Clamp, name: "_PongTexture");
PostProcessUtils.SetSourceSize(cmd, m_FullCoCTexture);
cmd.SetGlobalVector(ShaderConstants._DownSampleScaleFactor, new Vector4(1.0f / downSample, 1.0f / downSample, downSample, downSample));
float uvMargin = (1.0f / m_Descriptor.height) * downSample;
cmd.SetGlobalVector(ShaderConstants._BokehConstants, new Vector4(uvMargin, uvMargin * 2.0f));
// Compute CoC
Blitter.BlitCameraTexture(cmd, source, m_FullCoCTexture, RenderBufferLoadAction.DontCare, RenderBufferStoreAction.Store, material, 0);
cmd.SetGlobalTexture(ShaderConstants._FullCoCTexture, m_FullCoCTexture.nameID);
// Downscale & prefilter color + coc
Blitter.BlitCameraTexture(cmd, source, m_PingTexture, RenderBufferLoadAction.DontCare, RenderBufferStoreAction.Store, material, 1);
// Bokeh blur
Blitter.BlitCameraTexture(cmd, m_PingTexture, m_PongTexture, RenderBufferLoadAction.DontCare, RenderBufferStoreAction.Store, material, 2);
// Post-filtering
Blitter.BlitCameraTexture(cmd, m_PongTexture, m_PingTexture, RenderBufferLoadAction.DontCare, RenderBufferStoreAction.Store, material, 3);