diff --git a/.Rhistory b/.Rhistory deleted file mode 100644 index e69de29..0000000 diff --git a/01_slides/1_motivation_big_o.ipynb b/01_slides/1_motivation_big_o.ipynb new file mode 100644 index 0000000..37756a2 --- /dev/null +++ b/01_slides/1_motivation_big_o.ipynb @@ -0,0 +1,594 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "9ec1036b-804c-4610-9821-2ee711c1f24b", + "metadata": {}, + "source": [ + "# Motivation and Big-O\n", + "\n", + "## Outline\n", + "\n", + "- Motivation\n", + "\n", + "- Time Complexity: Introduction to Big-O Notation\n", + "\n", + "- Average, Best, and Worst Case\n", + "\n", + "- Space Complexity\n", + "\n", + "## About Me\n", + "\n", + "- PhD candidate in the Department of Computer Science at UofT\n", + "\n", + "- Thesis is on remote patient monitoring using wearables and mobile\n", + " devices\n", + "\n", + "- Did BSc from Vancouver (SFU) and MSc from UofT\n", + "\n", + "- Co-Founder of a remote patient monitoring startup (Tabiat)\n", + "\n", + "## Why should a Data Scientist take this Course?\n", + "\n", + "- Problem solving. This course provides you with a framework to solve\n", + " coding problems you may encounter in your career.\n", + "\n", + "- Efficient programs. We want to write programs that scale well with\n", + " big data.\n", + "\n", + "- Interview preparation. Many data science jobs require a technical\n", + " interview, which involes solving algorithms problems.\n", + "\n", + "## Learning Objectives\n", + "\n", + "- Assess options and choices around methods to solve problems and data\n", + " representation methods using Big-O notation.\n", + "\n", + "- Develop comfort with recursive functions.\n", + "\n", + "- Decide on appropriate methods to represent data for a problem.\n", + "\n", + "- Take a client-led problem and translate it into an optimization\n", + " problem.\n", + "\n", + "- Identify why code is running slowly and know how to improve its\n", + " performance.\n", + "\n", + "# Motivating Code Demos\n", + "\n", + "## What are Algorithms and Data Structures\n", + "\n", + "- An **algorithm** is a procedure to solve a problem\n", + "\n", + " - Sort a data observations from smallest to largest\n", + "\n", + " - Find the nearest neighbor to a data point\n", + "\n", + " - How fast is each algorithm?\n", + "\n", + "- A **data structure** is a concrete method to store some data.\n", + "\n", + " - A pandas data set is a good way to store observations with many\n", + " features.\n", + "\n", + " - How much space does the data sturcture need? How long does it\n", + " take to access each observation?" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "491f7dba", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import timeit\n", + "import random" + ] + }, + { + "cell_type": "markdown", + "id": "8b877adb-0aec-4d11-ae70-1dc037c7835b", + "metadata": {}, + "source": [ + "## Loop Versus Vectorized Operations" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "14abe057", + "metadata": {}, + "outputs": [], + "source": [ + "size = 10**4\n", + "\n", + "# Using Python lists\n", + "list_a = list(range(size))\n", + "list_b = list(range(size))\n", + "\n", + "# Using NumPy arrays\n", + "array_a = np.arange(size)\n", + "array_b = np.arange(size)\n", + "\n", + "# Timing for list addition\n", + "list_time = timeit.timeit(lambda: \n", + " [a + b for a, b in zip(list_a, list_b)], number=1)\n", + "\n", + "# Timing for vectorized array addition\n", + "array_time = timeit.timeit(lambda: \n", + " array_a + array_b, number = 1)" + ] + }, + { + "cell_type": "markdown", + "id": "ec6ce099-d7f9-4372-8679-e529c4805094", + "metadata": {}, + "source": [ + "## Loop Versus Vectorized Operations\n", + "\n", + "We will learn about what vectorized is in lecture 6." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "8dd27b22", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "List Addition: 0.000406 seconds\n", + "Vectorized Addition: 0.000333 seconds" + ] + } + ], + "source": [ + "print(f\"List Addition: {list_time:.6f} seconds\")\n", + "print(f\"Vectorized Addition: {array_time:.6f} seconds\")" + ] + }, + { + "cell_type": "markdown", + "id": "26a88ebc-1729-48ad-b291-b5f67ecaa0a7", + "metadata": {}, + "source": [ + "- Why was the NumPy vectorized operation much faster?\n", + "\n", + "- How can we describe how much faster the vectorized operation is?\n", + "\n", + "- This is useful in many iterative algorithms, such as gradient\n", + " descent.\n", + "\n", + "## Search in List Versus Set\n", + "\n", + "We will learn about searching and sorting in lecture 2." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "9ed3bd97", + "metadata": {}, + "outputs": [], + "source": [ + "# Python list\n", + "list_time = timeit.timeit(lambda:\n", + " -1 in list_a, number = 1)\n", + " \n", + "# Python set\n", + "set_a = set(range(size))\n", + "set_time = timeit.timeit(lambda:\n", + " -1 in set_a, number = 1)" + ] + }, + { + "cell_type": "markdown", + "id": "898e5f19-0327-4324-b60e-f3d4268bece9", + "metadata": {}, + "source": [ + "## Search in List Versus Set" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "794ec0d0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "List Search: 0.000064 seconds\n", + "Set Search: 0.000001 seconds" + ] + } + ], + "source": [ + "print(f\"List Search: {list_time:.6f} seconds\")\n", + "print(f\"Set Search: {set_time:.6f} seconds\")" + ] + }, + { + "cell_type": "markdown", + "id": "e736b913-8733-40f0-8730-43776a61f968", + "metadata": {}, + "source": [ + "- Why was the set search much faster?\n", + "\n", + "- How can we describe how much faster the vectorized operation is?\n", + "\n", + "- What are the pros and cons of choosing each data structure?\n", + "\n", + "## Selection Sort Versus Python Sort\n", + "\n", + "For context, selection sort is a naive sorting algorithm, while Python\n", + "implements Tim Sort for the default search function." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "34a12fdb", + "metadata": {}, + "outputs": [], + "source": [ + "def selection_sort(arr):\n", + " n = len(arr)\n", + " \n", + " for i in range(n):\n", + " min_index = i\n", + " for j in range(i+1, n):\n", + " if arr[j] < arr[min_index]:\n", + " min_index = j\n", + " \n", + " arr[i], arr[min_index] = arr[min_index], arr[i]" + ] + }, + { + "cell_type": "markdown", + "id": "0db17fb4-e029-4b81-b8f0-ce7410f0ed60", + "metadata": {}, + "source": [ + "## Selection Sort Versus Python Sort" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "58580f39", + "metadata": {}, + "outputs": [], + "source": [ + "random.shuffle(list_a)\n", + "rand_list = list_a.copy()\n", + "\n", + "sel_time = timeit.timeit(lambda:\n", + " selection_sort(rand_list.copy()), number = 1)\n", + " \n", + "py_time = timeit.timeit(lambda:\n", + " sorted(rand_list.copy()), number = 1)" + ] + }, + { + "cell_type": "markdown", + "id": "8329b6a7-a90d-4e7e-a52a-48d3b3d3dd01", + "metadata": {}, + "source": [ + "## Selection Sort Versus Python Sort" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "4c103fff", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Selection sort: 1.421455 seconds\n", + "Tim sort: 0.001110 seconds" + ] + } + ], + "source": [ + "print(f\"Selection sort: {sel_time:.6f} seconds\")\n", + "print(f\"Tim sort: {py_time:.6f} seconds\")" + ] + }, + { + "attachments": { + "images/big_o_viz.jpg": { + "image/jpeg": "/9j/4QC8RXhpZgAASUkqAAgAAAAGABIBAwABAAAAAQAAABoBBQABAAAAVgAAABsBBQABAAAAXgAA\nACgBAwABAAAAAgAAABMCAwABAAAAAQAAAGmHBAABAAAAZgAAAAAAAABIAAAAAQAAAEgAAAABAAAA\nBgAAkAcABAAAADAyMTABkQcABAAAAAECAwAAoAcABAAAADAxMDABoAMAAQAAAP//AAACoAQAAQAA\nAAAFAAADoAQAAQAAANACAAAAAAAA/9sAQwAGBgYGBwYHCAgHCgsKCwoPDgwMDg8WEBEQERAWIhUZ\nFRUZFSIeJB4cHiQeNiomJio2PjQyND5MRERMX1pffHyn/9sAQwEGBgYGBwYHCAgHCgsKCwoPDgwM\nDg8WEBEQERAWIhUZFRUZFSIeJB4cHiQeNiomJio2PjQyND5MRERMX1pffHyn/8AAEQgC0AUAAwEi\nAAIRAQMRAf/EABwAAQACAgMBAAAAAAAAAAAAAAAGBwEFAgMECP/EAGAQAAEDAwEEAwcOCgYHBgUE\nAwABAgMEBREGBxIhMRNBURQiYXGBkbEVFjI2QlJTdJShssHR0hcjM1ZicnOSk7M0NTdVguEkJSZD\noqPTCGN1wsPwVFeDhPEnZGbiOEWk/8QAGwEBAAIDAQEAAAAAAAAAAAAAAAMFAQIEBgf/xABIEQAC\nAgEBBAYHBAcHAwQCAwAAAQIDEQQFEiExEyJBUWFxFDJCUoGRkhUjobEzU2JjcsHRBiQ0Q3OCkzXh\n8CVUZKIW8USDsv/aAAwDAQACEQMRAD8A+qQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcOjj963zDo4/e\nt8xzABw6OP3rfMOjj963zHMAHDo4/et8w6OP3rfMcwAcOjj963zDo4/et8xzABqvUWz/AN20v8Jv\n2GfUWz/3bS/wm/YbTAGZd5puR91fI1fqLZ/7tpf4TfsMeotn/u2l/hN+w2oGZd43I+6vkdfRx+9b\n5jPRx+9b5jmAbnDo4/et8w6OP3rfMcwAcOjj963zDo4/et8xzABw6OP3rfMOjj963zHMAGETBkAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGFAMZQKqFZ6audxj1rqa0VlVL\nNG1I5aVHrlGsXiqN8HfInkO3aBc7jEy02221L4auvqt1r2LhUZGmXL4uKZO1aGx6mujej14KW92b\nrW9k6VpZu6Ne8usk89mGs5LHRRlCD7PrxUXfTFJNUyOdUxufDMrvZK5jsIq8uOMZNXS3K4XDaRW0\nkdVK2ioKRvSxIveOlemUVf3vmNXorFbqa20nSm5d3B44eZr6PJTti+G5nPwLNB5KitpKVEdUVEUS\nKuEV7kanznfHIyRiOY9rmqnBUXKHK1JRzukO7LmduRk8K19GjpmrUwosKIsqK9EVmeW92Hayohki\nSWOVro1TKPaqKi+Ubs/dG7I9Bk8NPX0VSqpBUwyqnNGPR2PMe5V4BxkuDQaa5mDJ4Y7hRSTLCyph\ndK3mxHork8nM9qBxkucWGmuZkBFRQYMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAKDGACqtQMW27RNM3FODKyOWllXHYmW+dVOTcXfaW5fZR2iiRPFLUJ91T\n27TKV66eSvhaqzUFTDUMxwXDXIjvmXiebZozuulu17cnfXGue5qr8HEqsank4l5GS+z/AElvrRrd\nC78t5/Jlmpf3Xps9ZQ6P/wA+B59Ju9SdXastL+9ie9lZCnakid+vnU8+hJ921ak1K9u93XUzSt4Y\nVY4co1PSa3afJJZbtRXiJExUUNVSSu5cVZlnzrnyFhWawtptIU9pXvFWiWN6pzR0iKrl8eVN75Vr\nS13P/wDkdHGX/wDXwl+SNrJQVMbH/m7ql/t5kB0fpKh1NQpqDUDXVlTVufuNe5UZGxrlaiNRF5dh\n20dI7R2t7fbKKV62y6MfiBzlckUjG5y3OV8fjOvR2raHTVD6gX97qOqpHP3Fe1VZIxzlcitcieY7\nKOqXWOuKC50UcnqZa2PRJ3sVqSyPTGGouF4Lz8RPN6jp9Z0ufRejnu+5jHU3fE3n0vSX7/6LdeO7\nwweCCwUt82k6mgrWufSxpTySQo5WtkckbUZvYwqonFUQ7teWqhstFY6OOlljsKVMj6+OJyrxcqOb\nvKq5xlVNzpvhtL1lx/3VL/LabrWeoK6wy2ypWlbLa3PcyucjVc9iLwaqceWefmInqLvTtLCPWjGi\nGK87qb3Oa8e41dk/SaoriujWFnHs/mQVtk0Ld20sulblBQXGKRqxPy9HcFwqKx6oq5+c3e0q8y0/\nqNaVre5Iq17u66lvBWxsxlE7M5IhrCr2e3Wg3bNA2W6TK3udtNE9jlcqpneREROXUvEkWsLTdYKP\nS95kpu7JbaxErYcbyvR6NRy9ecY+fJ0wjDp9HO6V2PvFGF2N5Sxw4vmsksVHpKJTcvaSjPGU8Glr\naHZKtvWKiuEcFTG3MNQ2STfa/qVVXn/7wT/RdyqNTaMRKyRVme2WmmkTGVxw3uzKopH6zW+z1ttW\nakpqeepc3EVOlNh7n9TV73hxJrp2orKTTDKu50kNNK2N80sUEe4jWpxTvcr32OZxayVvoqU6rVPp\nVuytlmXkljkc+oc+hjmE97f4Oby/ge7TGnqfTtohtsE0kkcbnuR78by77ld7lETrJEaWwX2ivtti\nr6Pf6F7ntTfburlq7q8PGhuimtdjtn0md/L3s95XT3t+W9zzx8zIAIzUAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6Zoo54nRyMa9jkw5rkyip2KinGCCKnib\nFDEyNjeTWpuomexEPQDOXu4M54YPJUUdNUsRtRBFK1FyiPajkRe3jk9ODkqocd5O1DHFoZZ5aiip\nKlqNnp4pUTiiPajuPlO+ONkbEaxrUREwiImEOwGd6WMZGXyyeZlJTxzSTMgjbLIib70aiOdjllea\nne5u9wVEVMclOYGRlnggt9DTvc+GlhjcvNWMRqr5j27ueZlcDPhDcnxcmG5PmeFluoWTLOylhbKv\nN6MRHL5eZ6XRtexWPaitVMKiplFRTu4AOUnzkHKT5s89PTQU0aRwQsjYmcNY1Gpx8CHoAMZMAxky\ncXclAGUGUypTNHNrS83K7Mob2kMdPUuYjXxsXhnhjvTbeoe0bPtki/hM+6WE9Aq5bs9TUnhPDzwy\ns9xa2bMjVLds1tEZYT3XvZWVnuLP3kORrLaysgoadlbUNlqGxtSWVERqOd1rhMIhss8M5OCSw8cy\nrlHdbWc+K5PyOQOO83nlDjvs98nnGH3DD7mdgBxV7E5uTzmDGGcgYRUXkpjeb2oMMY8DkDijmu5O\nRfEplVRAMMyDij2rycnnMqqIMMYYMHFZGJw3k8547jV9x0VTU7u90cbnbucZwmcZMxjJuKS5m0YS\nlKMUuMuCPdkZQiumbzUXywx1sjWRyyLKiNauUTderU+ZOJ6tNxXqK1RMu87ZqtHP3nsxhUzw9ijU\n5eAlnRKG+pSScJbrj2/Ams086ulU2lKE91x7fNEiMZOCvYnNyecw53ByovVwIsMg3Xw4HNDkQTRF\n1uFyp7g6snWRY6yRjFVGphqck71EJ0SX1SpslXLmu4l1FEtPdOqeN6PPHIyAYUiIRkxk0WoL9S2K\n3yVdRlcLhjE5ucvJEIZE3aDdo21LaqntzHZVke6kj8dW9vHVVpJ2Q6SU4Vwzjek+b8Dto0M7a+ll\nZCqvOFObwm+5YLQGSsotSX2yV9PSagiidDM7djrI+Dc9jkLFmqIoad873IjGsVyqvYnE0u0ttTjn\nElNZjKLyn5Gmo0dtEq87soz4wlF5UvI9GRlCHaculbX0dZdqp6spZXK6miVqJ0cTOG8qomcu5rkj\ndFcNXambJV26rioKPfVIsxpI9+7w473Ilho5ydm9OEVDCk2+Cb7CSGz7HK1SshCNbSlOT4Jvs4dp\nauRlCv8AT1/uvqvUWW8Nj7pZGkkcsfsZGL4Oo463vd0pXUlvtL1bWTI+RVREcrWRpleDkVOIWhue\nojTmOXHKlnq4xnOTK2de9VDT5hmUd5Tz1d3Gc57iwjJpLBdo7vaqWtZjEkaKvgcnBU8im53249kh\nyzhOEpRfOLwzjsrnCyUJRw4vD80ZGUOO812cKikPuN0rLVqGjSeRXUFYnRN4JiGZOKcUTKo/w9hm\nuqVknFc8N478G1VM7ZuMeeG8d+OJNMg4ocjQiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhVwhk6pM9G/HPChcWjK4yRT01TeNbXy\nuoaO4SUVpoX9HNJEuJJ5OtEXhhEwbCTZVZ4WOkttdW0lVzbUNlVVz4U4ZTtPPse3E09VsXKTNrHp\nKi80XCc/CW2XOt1V2k1M9PQ9yuvq4SXWwuLffk7tRdZTc6q3uwhwx3+LK20RqK5z1lwsN5VrrhQK\nmZUwnSsXii4RE48U841NIt81Db9NN40yM7puKdsbVyyP/E5OPgNSjkdtecsOF3LZibHUuOGfmPRo\nn/SdZ62rH4VyTwxNXrRG7zfqQltorjKzUxio/wB1hZurkpze7/3JJ1wjKdyjj7lSx2KUuBPq2+Wm\n3VtBQ1NR0c1UknQM3XYXok3ncUTCYTtNJFtD0bNW9yMvEKy72EXDkYq+B6pur5yI7RKCG4ap0bRT\nIqxTSTteiLjLe8VU8qJhTe68sVpTR1xRtHEzueBXxK1qIrFbx4Y+cgr0mj3dH0krN/ULswlHrOOe\nPMjhRRije396zuxw44Nrr1N7R16Tn/ozlNdoihp63Z/bqSoja+Gamex7FTg5rnLw8pweklbszXpH\nKrn2jivXncN5oiJYdJWRiphe5I1Xypk0m1Xs6dXtw1nPyjg1l1NLurnG78kabQ9yqE9UbBWSK+qt\nciRpI7nJC/jG5fDjgpYSFVSJ3JtXp1ZwbV2xyPTtVnFF+YtVDn10IqyuceHSVRn5N8H+KI9TFKcZ\nL24KXzOQAOM5gcHcl8RzOLuTvEZXNGVzRRdjvN2tt0vyUNnfXI+sdvq16t3MLwT2KkoXWWq/zOm/\njL9w1Wk7zarbdNRJXVkUKvrXKxHqiZxnkTv146X/AL3pf30L/W/p/wDp+/1I9fr8equ5nqNof4l/\n+ldJ1Idfr8equ54OvUthh1BZnU80e5LhHxKvHcen/vClcrqO9XO2waeax7Lk96w1MipndY3m5e3K\nFkXbU9uobHJdGStmiVv4rdXKPcq4REXxlYrab5a6WDVKq59Z0qyVMHUsTuGOvknmNNnpdFNXRj6/\n3Kl+s7vI02Uo9BON8YrFn93Uv1uOXl3kg1laKO06CfQwMRIo3w5/SXpEVVXwr1ndBoSO4UcdXcau\nofXvbvJI2RWpEq9TETgiJyGt7hTXTQslVA9HMldCqL2fjEyim3oNbWF1rbNPVxwyRsxLE9cPa5Or\nHMJ62OjhKuMt/p5qbS454cDCltCGz65VQl0npVim0syzhcH4Gn0/qOspbPe4a+Tpqi1q5FevN7eO\n7nzYPJZNJM1FQRXO+VE08tQm/G1Hq1kbV5bqJ1nTYrRVXa0amrujWN10VyQI73jc7qr48m10fqq1\nw2aCgrZ201TSNWOWOVd1e94Z44z4SS9OEdTLTRxZ0kd/dXFdXjjwyS6hSrhqp6OOLumgp7i4xW7l\n48MnXYpq+yamksU9VJPSyw9LTOeuXNxxVueZpbZaX3fVGpaV1TJHTJUI+dsa7qyKuUaiqnHHBTZ2\nyZuodbLcaZiuo6KFY2zY4OeqY4Z8anq0f7a9X/tYvS4zOTqhqZ4irfRYOfBcJOS4+ZmcnVDVWYir\nvQ63PguE3NcfPBrJrc3SmqbHBbppW0ta57ZYHPVze9wmeOet2T16ruj6y/09lW4LR0jYukqZEduq\n7PJqL1Ho1mn+1Oj/ANrN6WGp1PTUFDq6CtutI2W31UKMVzm7zWSN5KvMzQ4Wy01tmZWPTzaeE3KS\nk0ufbg207rulo7bcytelsaaScnOMmk+PN4PFc6Gx2WlWu0/eEjqYl3nR9NvtmTrRWr1my1tXOuGn\nrDWQNRHy1MMkaLxRH4ynznG91GhaKlatBbKGsqpFakMLGo7KuXrwinp1hCkNm07H3OyDdrIEWFns\nWeBPAhmEouzSynCxy6SXWsxlrHLBtXNSu0M512OXSSxK1JNrHJruO+4aDpfU+arfW1T7gyJXpUrI\nqLvYzwROCJ4jrpcaj2fsmuCLI+JkjkdnGXQqqIq4x2cSxLh/VlT+xd6CvNII52zp7URVVYqlERE4\n+yccleoss0+/OeZQ1EN19qTzwXgcFOput0vSTnmderr3HycU85S8Dr2fWiii0+66tYqVM7JWPfvL\nhWteqJw5dR36ESsXQjW0TmNnzN0Su9ijleuFUbP6+jk0nHRtnY6djZnOjRcuRHPVUXHZxNHZ6yvo\n9mUk1HvJKj5MOTirWrJhyp4k4nTdGy2zVRljelqoJb3LHHHwOvURuut10Z+vLW1pb/LHHHPsNumi\nLQtIk98r5JavGXzOmVEa5fe8kwdmgq6dZr5b1rH1MFK5iwSuXKq1+UxnyGjtlDs9bboq+uqI56hY\n8yumlc5yuxyVueK+Q9uz10LrtqVYoFhjckKxxqmFa3vsJjq4G9sZPS6xTdktzdxvRUYp7yXVJLoz\nei16slbLc3cb8FGKe8l1TcbN/wCjXb4/L6SxnvaxqucqIiIqqq9WCudm/wDRbt8fl9JYc8Ec8EsM\niKrJGq1yZ5ovBSo2jj063PevyKLauPtG/wA1+Rr0vln/ALxpv4jftNqQRdmukFRU7gfhUwv4+Xl+\n8TpGo1MY4HPdHTrd6KU337ySx5HLqFplu9DOx9+8kvlhlX6yTunVWlqWT8l0j3qi8lVFRULQaiI1\nEQgOubPW1UNHcqBm9V0EivY1PdNXG8nzHptWu7BW0zXTVbKeZqYkhlXdc1U588ZO22ud+j0sqouS\ngnGaXFpt5y14ljfVPU7P0UqIuarUoTjHi4tyzlpd5x2h00U+l63fwm5uvauOtrk//BG9Q3Sqfs/o\nURVSWrZDGuV4rvc/PjBx1Le26qVlis2ZmukatTOid4xrVynFefLPzHu1/Rto9M0SxNXco54eHgTg\nh2aaHRx0NNqxN3uaT5pYws+Z3aOCqhs7T3L7x6lzUHzisJLPmywaWigjoIaXdRYmxIzdXkqYxhTo\ne612O3uduxU9NFl2GojWplc8E8Kqel9bTw0C1T3okTYt9XdWETJTMV1tupbmtVe7jFBRRP8A9Hon\nPwrv0n4wcGm0tuod05b/AEcZZnhNtvuSXaVuk0V2qd057/RQlmzdTbbfYl3ki0yyqvWoarUUkSx0\n6R9DSNXgrm9bvmNjYrfX1Wobvd66CSJFxBSsemFSNvNU8ZIrdfrBVyMpaGugkeje9jY5FXCdiIb9\nEQzqNVcpzXRdHmtQimnmMV2GNTrLlZaug6LNarimnmMF2LPeV9pyhr7Rdbzb1pn9wud01NIid6m8\nnfN8i8iH6T0+l7bco6uaVKKOslRsEblYj3OXirlbxXwIXc9MMdjsK82c/wBCuf8A4hN6SarVTen1\ndqSU/u1lc88snVTrbHpNdelFWfdLK554rPma6z0smn9YttVPPK6iqKZXtie7e3Fb2ZJDr6j7p0xW\nuRVR8W7K1U5orFya2t/tHt3xF5uddVEcGlbo564R0W4njeu6nzqbSlKWs2fZ7Uowbfe84yzM5znr\ntl2+3OFbm/ee9jLNxYa1a2z0FS5crLA1y+PBuSPaXp301gtkL87zKdmc8OOCQFXeoq+1R5b7x5ZK\nfVKK1Nyh6u/LHlkyACIgAAAAAABgdR0zTMhjdJI5Gsa1XOcvBEROsw3gyk28I7lBVDtfXm6zSs01\nYHVkLHbq1Ur0ijVfAi8/OZi1/dbZURQ6msbqFki7ralj0ljz4d3l5yH0irnl478PHzLL7I1vLchv\n4z0e/Hf+nOS10B1Mka9jXtVFaqZRUXKKh2ZJysaayZBxyZyAZBxRRkAyCEaw1PVWJbP0FPHJ3XWs\ngfvqqbrXdaY6yaI7KZNVJNyXcSzothXXZKPVnnd8ccGdgOOTOTYiAOKqqEdsmo6a8VV0hgje1KKf\nonOd7p2OOE7ENXJJxT5s3jTZOE5xjmMMOT7svCJIEIxZ7neau6XqnrLf0FNTyMbSy8fxzVzlePZh\nCTGU01lCyuVct2WOSfB5XFZOQOOTkZNAAADAPJW1lNRUstTUSIyKNque5eSIhWLNc6lvDnP0/pt0\n1MjlRtTPIkbXY7Grj0kc7IQeHxfcllnXp9FqNRGU4RShHg5ykoxT7sstkFX0Ov6ymr4KDUlofbZJ\nVxFNvpJE5fCqcE86lmo5FbvdRmFkZrKNdRpL9M4qyPCSzGSalGS8GjmCKWS/TXm4XPoYmpQUz0hj\nm470srfZ47Gt5eElJspKSyiG2qdU9yaw+GV3Z4nIeQ45IjrHUclhtjZaeFs1VLKyOnhXPfucvHl2\nJxMTnGEd6XI2ootvthVXHMpPCJgOoj+mr5FfbLR3GNEb0rO/anuXpwcnkVCK3PWt0lvFRabBaUrZ\n6fHdEr5OjjiVeSeE1lZCKi+/ljjknhoNTO62lQxKrO/vNRUccOLZZOQVxaNa3BLxDZ77a+4qqZF7\nnka/fjlxxwipyN5eb/NaLra454W9w1jliWdFXMU3uEd+i7knhCtg1nxx5PxFmg1Ndsa3FZlDejhp\nqSXamuZLQccnIkOMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQACoK6z6g0vfau7WOk7so6xUdVUSLuua5PdMXxr\nngeiTaDdKhjobfpK5vql4I2ZvRsRV61dx4FqYM4Q73roWbju00LJxSW+202lyzjmdXpEZbrsqUmu\n3LWfMr3RWl663PrrrdpWyXOuVFl3U72NqcmIarTCOtu0DVVDJlEq2w1MOV4ORM72PK7HkLXIPqmz\n1r662Xm2QrJXUMiosSORnTQyd69mXKiZxxTJvXrJXWalWyS6avd7lHdw4ry4G0NQ7JWqftxx4LHF\nGo1dTVMms9FSxwSPYyWp6R7WqrW5RuN5U4JnqySTW8Us2k7zHExz3rSvRGNTeVVxyRE5koTjhcYO\nSoQemSzpOqvueXj1t4i6d5qe76n48ckFoppKDZ/TyPt7qh8VtbvUqoqK/vcKxUwq8fEb7TdX3XY6\nCfuBaNHRcKZc/ikTgjeKN9BvDx10tRBSTyU9O6eVkbljiRUar3dSZcqImfCRzuVm91MOdm9nL4Z7\nDWU1Phu8ZTznP4FbUiLc9qNdO3Kx22hZE5f+8l4+hVLWQiOj7FNaLa51W5H11XK6erenJZHr7FPA\n3khLiTW2xnbGMHmNcFBPvxzfzNtRNSmlHlGKivHByAByEAMKhkAEbl0npyaV8ktrpnPe5XOcrEVV\nVetTh6zdL/3RTfuISYyTrU6lcFfZ9TOlazVpYWpt+pmidp6yvhpoXW+BY6d2YWK1FRi88onUbZ0U\nb2qxzEVqoqKiplFQ7gROdj5yb833kLssljenJ+bb5lX6+t1BbtGVkVJTxwRdLE7dYm6md9CWRWCy\n1LKapnt8EkqRph7mIq8u0kTka5MKhk6Jay10RrUpJqcpOWXl7yX9DqeutenhUpSTU5Sc955e8ksf\ngcWsRrcIiIickQ1NbYLLXyJJV0EEr05OcxFU3IOeM7IvMZST708HLCyyEt6Emn3p4Z56emhp4mxQ\nxtYxOTWphEPPTW2hpaipngpo45Z1RZXtTCvVOWe3mbAGN6XW6z48/HzMb8+t1n1ufj5mvqbbQ1U9\nNPPTRyS06qsL3JlWKuM47OR6KimhqInRTRNex3NrkynznoA35dXrPq8vDyG/Pq9Z9Xlx5eRpaPT1\nloZOlpbfBE/3zWIi8T11ltoa1IkqqaOVI3o9iPTOHJyVPCe8GztslLec5N9+eJs7rZS35WSb723k\n6pImyMVjmorVTCp2oeait9HQU7aelp44oW5wxibrUyuV4eM9wNcyxjPA0UpJY3njng1FNYrRTVEt\nRBQwxyyNw97Woiqi9S4PRR22ioqZKamp44oUVcRtTDePFeB7wbOyyXOyT833G8rrZ+tZJ8ubb5Gi\ni01YoqjuiO20zZM53kYiKeuG1UENVNVxUsbJ5URJJETDnIiYTK9ZsgHdbLnOT7OL7DMr7petZN8M\ncW3w7jX0VtoaFJEpaaOJHvV7kYmMuXmq46zYAGrbk8t5ZG5Sk8ybb8eJkwqGQYMHFUNLWadstdJv\n1Vugldn2TmIqm7BtCdkHmMmn4PBvCyyt5hOUX4PB4qWhpaONI6aCOJvY1qInzHVdbfDcbfU0k3sJ\nY1aq9mes2RxUKc1JT3nvZzntCssVkbFJ76ec9ue8gulH912mostyYySej/EVEbkyjmL7BcL1OabV\nNG6X/uim/cQkqYyciaWpt35yrlKG88tRbSyTz1l3STnVKdW+8tRk0s/A0dFpyx0E6T0tvhilRFRH\ntaiLheZu0MmSGdk5vM5NvxeSCyyyx705yk+9ttnFURUPBRW6joWSNpYGRNe9XuRiYy5ea+M2AMZe\nGs8DVSaTSfB813mvdbqN9YysdTxrUMarGyqnfI1eaZ7CGakY693mhsjMOhiVtRWrnk1OLGr+sqFh\nKhx3U5klN8q57/NpNR48vEno1Eqp7/NqLUePqt9qMtTCIickTBzMIZIjnAAAAAAAAAOKlX7Wq+Wm\n0pLFG7C1ErI3KnvfZKnlxxLQUge0Wxz3rTFVDTt3polSWNvvt3mieFU5EGpTdE1HngsdkzqhtLRy\ntxuK2LeeS8WSezW+nttspKSBiNjiiRETHnXxrzPPqS1wXWy11JM1FR8K4VepycUXxopqdIaroL7a\n4nNlalTGxGzwquHNenBfJ2KRS+bR4YKG5UU1vqqW47qshgciP39/vUc1zcpjrNLbKuheZLDi8ePA\nnp0O0p7TahXN3QtTfeuPreXiaux3q4Jsoqp46h7J6VkkbJUXvkRrstwvgRcFp6YnnqNPWuaaRz5H\n0rHOe7mqqnFVK5Sw1Np2VVtLKn491NJLI1E5K5d7HXxROBNNH19I7SNrnSdiMZSN3lVeDd1MLnxG\ntLlGWJc+jidm04U2U6i2mKae0JpNLsa4Go0VcrhV3jVcVRUySsgrGtha5coxvHgnYa+G366v9RVV\nFVc5rPTNlVsNNGxivVqe6c/wnh2e3GGWq1nXwor41qEkYie6REcqY8fUefTcN81jRvudXqWop43y\nOa2kpt1iMRq4wq8VXJpCW/CpcW5Jvg8cM82T3aeVGq1k1GmqMIUxcpw33FyinhRw+ZtdP3HUVr1a\n6wXO5JXRS0yywzuajXJu9S4+tTNxumoNQ6lq7LZ6/uGmoUb3VUtaj3uc5M7rc8uwjNlpLXRbTIKW\nhqpahI6WRJZZZFkcsmOW8vYhvtKzR2zXuq6KqcjJKt0UsG9w32pvKqp+8Yrk5qEZSeOkkufcspZJ\ndRRTXOd8KoO1aGFkU60k5OWHLd5ciM6xodQW6q07TXC4d30y3OJ8NQ5qMka5FwrHY588opLtf3a9\n0V40vBbKhWPqFnasar3j3d41qvTrRucnn2mXKlWo07Qtka6d1xhkVqL7FjXImV8/A7tce2/QnD/f\nT/8AkMtYVyjJ/pIrOePZwM0Sdq2VO6iH6LUyw4pRliLaeDe0Vs1NZKO4VUt3nu8ywIsNM5jY/wAa\nmc4XqRepOo0dLp3XNyo21ldqmWjqJG7yU8UTUZF+iuF74lmtb5UWLTlbX08bXys3GsR3JFe5GIq+\nLOSG27TVbc7VT1921dWyNliSR7YnthjRF4473HBPIbzUd7cW892PvYSy+bK/TTtdEtTN0Q37d1T6\nJSk8L1VFLB6tJXW+XaDUNlr63/TKJUjSsjaiOxJvIjsJwymCP7PbPXLe7zKl3nRlJXubNHhMVC7q\npvP8J3bK+4kvWq20T1fT70KRPVVVXNRX8VVeZutnbmpdNXJvJn1TXhniQ19eWmlLi8S7X2ciw1j9\nGe2aqYxjB10Sa3EuMsZ4dnM9Gk7rXz6o1lDU1T5IaaaLoWOXhGi7+ceY09tqNU60lqa2lvD7bbGS\nuZTtijRZJd3hvK5eKcfsOzSkTptT7QY28FfJGieXfPVsnrIW6efbZHIyqo55WzRKuHNVz1X/ACN4\nN2bkZSeMSfPGWnjsIdRCvTx1V1VUHZCvTJZipKKnDLeHw59psdMVOqKO9Vdnu7n1cTYkkp69I9xF\nRfcvxwyWKi8CIw6qhn1S+yU9Osix0/STTtdwjX3rkxz8pLuZ11Y3eDz2ZKHXOcrYzsoVcpwjLEcJ\nPPbhcsjfb2mclUS7MHSSSPTVN4bvOVcJNhEyvJCzaKn7mpKeDpHSdHG1m+5cudhMZXwiEpv1oY+O\nSO+rTwUXVf0j7VuuOPmVbtXmkkpbNa2uVrK6uY2THvUVMfOuS06SmhpqaGCJjWRsajWtTgiInIrv\nabaKustFNXUcavqLfUNnaxOOURePjxzJTp3UtrvtviqaSdq96m/Gq4cx3WjkI62ldanz4NeWCw1C\ndmx9E61mMJ2K3HZJvKb+HI1+vbXBcdLXJkrU3o4lkjXra5nFP8yIw6qqIdlTbmqu7oSBYEeq5XfR\n/Qo76za7RNS09Na5rVTPSWvrW9FHCzvnIjuCquM458DQ6usbrTsrZRImX0/Quk3etzpEVy+dSC14\nlc4dleH5ndoKovR6CrULhZroutP3MYb8mywdIWuO1aYttNG1E3adHO4Y75/fKvnUrTTE2sNSMr6d\nt7kpaenrJGun3UklkyvBjVX2LWlx26Vs1rpZWLwfA1yeVCAbLf6ruv8A4lPnzks4p2VR443XwTxy\n8jnpucadqXyrhK3pobrlFS3W284TOiwXDUNp1ZJp+6V610MtOs1PO5iNc3HNFxz8plj26j2hyL7K\nkskStTsWeZOPmRDnXIn4U7Z/4dJ6S0t1OwxXHfWHJ4hY/HlyMavURplTdGqKsu0iy49VKUnhtJd6\nKr049LFrG72F7kSnq/8ATKJOXFyZkanl9BN7Pp+3Wd9dJSI9FqplmlV71d3y9meSeA3qo0qa/X66\n3+6z6fsUqQsiw2trl/3efcs5cergbPFSiuby1Hv49hBD0jaFs919HHo49PNvq4jw3n/TvPNeqlmo\n9d2ajoMPZa3ulqpkTg1XYXcRf8OF/wAia64tkdx0pdKd6cUhWRi9jo++RfOh7NO6ftdgoGUlE1ET\nm96rlz3daqp7b5KyKz3CR/FG08iqniaOjcabd7i3lvu+Bm3Vxeq0UKFLo6Gowb5ye9lt+bNXou7O\nvGmrbWvXMjot2Rf02KrXfOhK0K42VwyR6Kt2+iornTORF7FkcqFjoS1tyrg3z3V+Rx7RhCvXaqEP\nVVskvLJkAEhxgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAA8FyuNLbKKesqnq2GJqK9UarlRFXHJOK8wD3g0Nj1JaL7HO+3\nTukbC5rXqrHMwrkynskQ3wAAAAAAABxya71Wty1q0fdkPdKLhYd9N/lvcufLiFFyziLZlJvkbMGE\nUyDAAAAAAAAAAAAAAAAAAAAAAAAAAABgHFzt1qr2EM05q9l7r62lbSPjWn5vVUVF75Wpjr6iWFFs\n67LIxzGGN592SavTXW1W2QjmFeHN92eRNgAREIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAMZABg8Vwr6e3UU9XUPRkULFe5fAhrdP6it1/ou6qGRXNR269HNVrmu7FRTRyjvbuePMkVFzpdy\nrl0aluueOCb7DTXnZ7pi71C1M9GrJ1XKyROVjlXtXHBV8ODxRbLtHxwSxdxvc56cZHSOV6Ki5y1c\n8F8RYpnBq6KW8uEfkjqhtTaMIRhHV2pLklJ8CP2ayvt9udQ1FdLWs3nI10+FduLyaq9eO1SMpsu0\nl3QsncsqRq5HLTpK7olVOWW55eAsYYMyrhLdzFPHLPEjhrtXXKyVd84ufrbrxn5EftWnbdaaivnp\nGuRat7XSNVctTdTHep1JxI3UbMdKT1Mk7YJoekVVkjilcxjs+BOSeBCw8GTDqrkopwXV5GYa/Wwn\nKyOosUpJKTUnlpcFkh1LoiwUVdbqykp3QPo2vbGkbsNVHphd9F9lzPVftJ2S/sjSupt58eejkY5W\nvbnsVOrwKSbAwZ6KG7u7qx3Gnpur6WFvTz34rhPeeUV9Ds20xCkSshm6RtQyZZXSK57nMXKZVc8P\nAhIbnp233K4WuuqOk6Whe50O67CZdjOU6+RIMDAjXCKwopcc/I2nrtZZOMp3zbimk3JtpSWGkeWs\no6atppaapibJFI1WvY5MoqKQKLZbpKOTjBUPiRyOSF871jyngzx8pY4EqoSeZRTZinWaqiMo1Xzg\npc1FtZI3a9L2u1XGtrqNjo3VTWNkYi94iMTCbqY4Gv8AWLYvV5t6ZHLHVJJ0iqx67rnYxlUXt68E\n0wMDo4dVbq4cV4MLW6tSnJXzzOG5J5eXHlhmgtunbfbLhdK6n6Tpq57XzbzsplucYTq5mpvGgtO3\nes7slgfHUqmFmhesbnJy444L4yajAdcGsOKwIazVQs6SF81PCjlPjhLCRH7Dpmz2CndDbqVIkcuX\nuVVc9+OWVXiSBOZkG6SisLgiGyyy2cp2TcpPi23lsyADJodbkReZA7ns30pcal1U+jdDM5cufC9W\nZ8OE4Z7VwT8cTSVcJetFPz4k1Gpv08t6m2cH3xbRD7FojTlil6WiokSXH5V6q93kV2ceQ3l2t0Vy\ntlXRS+wnicxfKbQxgdHFR3FHCE9VqLLo3WWzlZFppt5fDiuZX+z+smdZ32qs4VtskWnmb4ObHeJW\n8lJJY7BQ2SCeGj6TdlmdK7fXPfO5+Q2LKCjjq5atsDEnkY1j5ETvnNbxRFXwZPXgxCGFHe4tcMkm\no1LtstlDMY2tSlDs3uf58jRS6foJb5BeHdJ3TFC6JuHd5uu58O03uBgybJKPLzOedk57qlJvdW6s\n9i7kcVRFRUUq9+yPSr1Vz+6nOVVVVWXmq815FpYGDSdUJ+vFPzJ9NrdXpd7oL5173rbrxnHeVrQ7\nK9L0NZT1cLajpIZGvZl/DeauU6ju2hVUr7ZBZKVyd2XSRII05/i04yO8SN5liHjdQUbqxlYtOxah\nsasbKqd8jVXKtRezgauqKg4QiknzwTx2jfLU1XaicrZV8Y7zzxXL8TrtlBDb6Cmo4kxHDE1jU8CJ\ng2CGDJOjgnKU5SlJ5cnl/EyAAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDtoHtPvH7Jn02kxIZtB9p13/Zx/zGgEO2O/\n0G8ft4/olyFObHU/1fd/jEaf8JcYAAAAAABhT59pGJJtpneqcWPcqeSmRp9AlB2Xv9sFyd2dL8zG\ntLvYyXR7Tf8A8Of4lhoPV1f+iy/UMhAUhXgAAAAAAAAAAAAAAAAAAAAAAAAAAHlrJEjppnryaxVX\nyIVBsljVfVedy5V3QtVfCmVX0lnaik6Ox3F/ZTv9BBNlUO7aqyT39R6GohcaXq7I1796dcfxyX+i\ne5sHacvfsqj8nktYAFOUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgDJpr7d6ezWqqr51\nTdiZnGeLnLwRqeFVNZNKOWb11ztsjXCOZSkkkubb4FR7UbzPXVtFpmg7+WV7XTNTrVeLGr9JS19O\n2amslopaCFExG3vndbnLxVy+NSpNmFoqLpc67UtwTfkdI5IVXkr14OcngRO9Qvg5dNFzc7pe3y/h\nPQbcshpaqNl1SzGnrWte1a1x+XI5AA7DzgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAIXtD9p13/AFI/5jSaEK2ie027fqxfzWgES2Pf1ddvjLE8zC4intj3\n9V3b4036BcIAAAAAABgoPTS721q8r2JUelqF9ryUoTRv43adf5fepOn/ABon1F1snhptqP8A+K18\n2ix0P6LWP9yX6gCApSuAAAAAAAAAAAAAAAAAAAAAAAAAAUAiOuZkh0vc1Vcb0W4njeu6npNVszi3\ndNRv9/PKvmdu/UZ2lyImmJWe/miTzPR31Gy0JAkOl7aicN6NXr/jVXfWW/qbD/j1P5Iv/U/s5/qa\nz/8AzEmAAKgoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgUHtLudTer5QaaoHZVJE6ZE5\ndI5Moi/qpxUt/Ul6gslnq6+XCpE3vW++evBqeVSq9ldlnq6mt1HXLvySvcyFypzXPfu8/BDj1Ldk\n66I+1xl/Cek2HXDSUanatseFPVpT9q2XL5cy37Pa4LTbaWhp24jhjRqeFetfKbQwhlDriklhHnZ2\nSsnKcpZlJttvm2+JkAGTUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQADQV9zlprlQUrWNVs6rv\nKvNMdhvSIXn+v7P+svpJeV2junZdrFKWVCzC8FhHTfXGFWmcV60G34vOBkxk0l8ub6GmasTcyyOR\nkaeFTXepl+6PpvVZ3Tc9zdTc8X/tBdr1C2VddU7XBJz3cdXJiGnzCM52RgpNpZzxx5EsGSN0N96S\n11FRO1EkgykjfCnI8dLTXy4RJVuuKwK9MxxtaioidWTV7SrluKmudspw3sLCxHll5NvRJR3+klGK\ni8ZeeL8MEwRTkQ6yVdwlutbDVSKqsY1FansUVOGU8ZLyfS6uGpp6SMXHi1h8HlPBHdS6Z7jknwT4\ncuKyaOvuctNcqClaxqtnVd5V5pjsN6hELwv+v7P+svpJfgj0d1ll2sjKWVCzC8FhM3vrjGqhpcZQ\nbfi84NZdKmsp6ZH0tP00m8iKzjy7eBsUX0Ee1NUzU1uR8MjmO6VqZbwXB59RVlVTJb3U8jkV0mFa\ni43uHJSK7Wxos1Mpb7UFDgsY6zxwN6tNK2NSjhb7kk/JZ4kqRRngQ6so73T00lX6qOWRjd5Y91EZ\n4kNil5RtjbXvaiuVnse12cek3jtCKlYra51bkN/rYeY9/A0elliLrnGeZ7vDPP4khMERgor5VRNq\nJLqsL3pvNja1N1vj48T3Wa5VE/dNNUoi1EC4creTk6lFW0YTshCVcob/AKmcdbHHHAzPSuMZOM4y\n3PWSzw7O0kGQikRhpr7X78s9Y+kbvLuwtamURO1es52uqr4bpLb6mfpkSPfa/GFNY7RXSVRnRZFT\neIyeOL8VzMvSdWbVsG4Ry0s8ESsyhCFkulVeq+jhrHRRpuqq891ETk1OrOeJK6GCenp2xzVLpnIq\n9+5ML4CbS6z0hy3apKKbW88YzF4waXafooxzOLbinhZzhnuBx3jOTtyjnMKaO53qKieyFkSzTv8A\nYxN5+XsN24hunWpU3C6Vj+L+l3WqvUn/AOMFfrbrYzooqeJ2t9fGd1R45OrT11uNttkcxgl1eWW+\nCR3Lc9RM/GPtDVZzVGvTe9P1G5tl0prhCr4so5qojmLzaqmzVCGvalHqqLo+DaiNd9E61x/kc85a\njRWUuV7trnNQlvJZTfasEkFVqI2RVShOMXJYbw8djyb663DuKBu41HzSORkTO1y/UbFiv3E3sb2E\nzgi7V7r1O5q8WUsXBP0nJz+c56krKuldQrTuciulVN1FwjvApt6duV6nUyy64z3IJeDxn5mFpt6V\nFMcb8o7zb8VnBKM5MkNq6O+09PJV+qiukY3edGjERmOxCQ2qrWtoKedyYc9vFPCnBTo0+s6W51Sq\nnXLc3lvY4rvIbKNyHSRnGazjhng/id1dOtPR1EzURXMjVyIvgOm01b6y3wVD2ojnouUTlwXAu/8A\nVlZ+yd6DQ0Felv0zDUKmVRFRqZ5qrlRCK7VdDrZKcsVqhzfmnjJJXSp6bMY9d3KK+K5EuRRyIjDb\n79VQNqJLq6KR6bzY2sTdanhPVabtO9KuCtwk9NxeqcEVvabV7Ri5xjZVOpTTcZSxh44mJaVqMnCc\nZbvrJZ4dnaSTKBVUhlIl2vCOqm1rqaFXKkbGplVx2iiqro2/MpKqfeRsS8uCPTmjsdpGtqxcqvuL\nFCyajCbxh57Tf0J4sStg5wg3KPHKwb+6XDuKBqsZvzSORkTO1y/V2mxjV+43exvY445Z8BF0XuzV\nDmrxbSRcEX3zk5/OctSVlXSuoFp3ORzpVy1FwjvAo9O3IX6ieXXGe5GK4vg8Z+Zj0belRVHG/KO8\n2/FZwSnJ56l06QSLAjVkRqq1HclVOoi1XRX2CnfVpdVdIxu86NGIjPEhIbXVrW0EE6phz298nhTg\npNVq+mnZRKudU9zeWccu8jnR0cI2RnGcd7Dxng/iLdXR11KydiYVeDmr1OTmh009e9bhUUc7Wtei\nb8ap7pi/WnWaq3qtLqGvpU4Mma2VqeHrM6j/ANGkoK9nB0Uu6q/ou5oc/pli0sbnzrs3bV2PDw3/\nADJlRB39GuU4Zh4NrJLQcUXLUU5FwuKOEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEI2j\ne0y7eKH+c0m5BtpC/wCxl1/+h/OYARnY8n+qbqv/AO7b9BC3yodj39UXT44n0ELeAAAAAAAOKrwU\noPZ0vSa81I/sWZP+bgvp/sV8RQmy7vtXamf+lJ88ri72bw2ftZ/uYr5yLHScNLrX+wl+Jf6Awhkp\nCuAAAAAAAAAAAAAAAAAAAAAAAAAUBQCqtqk25aKSP39Qn/C1VJxpuLorDbWdlMz0FabXJsR2qLt6\nZ/7qIn1lu0UTYqWCNOTY2onkQuNT1NjaBe9ZZL5cC/1i3Ng7Nj79lsvk8HrABTlAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAYBhTQalvUNks1ZXy4Xo2YY33z3cGp51NZSUVJskpqndbXXCOZzkk\nl3tvBTu0Wvn1DqWg03Qv9hIiSKnFOkcm9x/UblS8rZQQW+gpqSnbuxxRoxqeBCntk9lnnfW6hrF3\n5Z3OZE/t778Y7yrw8heCIculi5710uc+XglyL7b9sKfR9mUyzXpY4m17Vj4yf8jODIB2HnQAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAdbntYiucqIiJlVXsPLW11PRQrLO9EROSdar2IhBJau5agnWG\nBOjp0Xvuz/F2r4Cq121KtM1XCLsvl6tceb8zr02jsuTm3uVx5zfL4Fhxyxysa+NyOaqZRU4op2Iu\nTXWygjt9KynY5zkbxyq54qbHBYUyslVF2R3Z4WUnnDOaaipyUZZWeD8CIXlf9fWfxuJdvN7UNRcr\nLR3J0b5t/LEVEwuOCms9Z9o/7397/IqoQ2hp79S66K5wnPeTc918sdx2SlpraqIzsnFwi08Rz257\nzhqjLEt9ThVZFOivx1IuCSd1U/c/TdK3o93O9nhg6ae3UsFE2kRu9EiKmHcea5NV61LRvZ3JN3Od\nzfXd+02dOtrutsqrrfSxW8nJrdklju4mFPTzqrrnKa3G8NJPKbyRymp5am0XmVjV3ZZkcxMccMdv\nKTCzVUM1rp3Ncnexo1yZ5KnPJ6p1bR0T1ggRyRs72NOGcdScyHxQ6Xq290OekKuTL4uk3U832HHG\nqWgshuzrc+hxJTe6nh5ymdDmtVCbcJqO/lOK3nyxho9donjqb/dZI3Za5rcKnXjCZO/1sO5eqlX+\n8dOm4mPra+qgj3KdytZF1cE5+gmKYJ9naSvUaSEr45lvzaxlLDlnJFqrZVXuNcsdSK7G+C5EOure\njvdkblV3c8V8BMN5vahqblZaS5OjfPv5Yiom6uOCms9Z9o/7397/ACN4V7Q09+pdVFcoTnvJueHy\nx3Gsp6e2qhTslFwi08Rz257zOrv6rav/AHzfrOvUPGe0fGE+o2j7HROt8dCqv6Jjt5MO48Vzz8p6\nqu3U9W+ndJvZhfvMwuOPhF2ivunfLgt/ouGeW48szXqK61SuL3JT447JLCMXVP8AVtZ+xd6CHyxP\nk0fCrUzuLvKngRy5J3PCyeF8T87r2q1cc+J00tFBS0rKaPKxtRURHLleK5JdXoZ6m2eZYg6HDxy2\nR0alVQjjnG1T8OCIvRWS0VdIyds8yoqZX8ZyXrTwGbS620/qlPRtmd0TcOe9co7HHge+TS1pfIrk\nY9iLza1yoi+Q3NNR01NAkMMbWsROSeHtyctGzrYzrfQVVuEX145k28YTWeRPbqoSjL722e811XwS\nWc4ZE7fT1t2pu6Z7nI1rlVOjjw1Ewp57VHSxakfHBI6RrYVRXq7eVXdfE3b9LWp0iu3HtRebGvVE\n+09sNmoIKmGohYrHRsVqI1eCovb2kUNm6py00pQhmuxSlNzbcvFZ5Ej1lCVyjKWJwaUFFRUfPHM1\nVr9sV4/VZ6CWYNfBbqeGsqKpm90kyJvZXhw7ENihb6KiVFO5Pnvzl9UsnBqLY2TjKPuRXyWDU3O1\n93pEndMsW4qrli4zntOm3WZaKV0ndk8uW43XuyiG8Bu9JS7+mcev35ZorpqHRqXAwpCaGZtou1XT\n1C7kU7t+N68v/fUTc8VZRU1XF0dREj06s8MeJSLWaay11W1SSsqllZ5NPmmSUXRgrITi3Caw8c1h\n5TR3STxMjV73tRqJlXZ4EQoXeqt/dWMRVgp27rHL1qqf5nubpK0I7KskVPeq5cfNxJBDBFBG2OJi\nManJE4EEtPq9TbU74wrhCe9iLbcmuWSVWUUxs6KUpTlHdy1hJPmRi2fi9SXZq83NaqeZFOWpP6Ta\nfjKfUc7o3uO6UlxT8mv4qZepEXkpuay309Y6nfJvZhfvMwuOPhIIaec9PfpVzhfvce2LlvZJXbGN\n1Fz5OvD80sGLr/VtX+yd6Dx6b/qak8TvpKbeeFk0L4n53XtVq47FOqipIqSljp4s7jEVEzxXiuSw\n6CXpsbvZ6Hd8c5ORWx9HlX276fwwdN3/AKsrP2TvQQ2eF8mj4FairuO3lx2byovpJ7UQMngkhfnd\ne1UXHYp0UtFBS0raZiKsbUVEyuefE5tXoZ6m6bcsQlQ4eOW8ktGpVVcUuatU/glg40dXBPSRztem\n6rUyueXjIlSMWvr75NBncfHuMXtXGPqNu/S1pc9XdG9qKvFjXqiG6hpYaSn6OniRrWouGpwz5eJF\nPS6rUdF06hGFUW+q23JtYN1dRUrOic3KfDikklnJo9L1Eb7XHFlEfE5zXNzxTKqp5G1MU+rG9GqK\njIVaqp24PGz1v3FXT1CdyzoqpIzf3fsTxnZZ4aaS9vkomYpoIdxHJyVy+PmV/SW2LQUp1yUbo4cX\nmTUe1rsOrcri9VbJTTlXLg1hJvx7T2WzvNSXZjubmtVPMn2nLUn9JtHxhPqOd0b3HdKO5J+TX8VM\nvYi8l85uKy3wVr6d8quzC/fZhccTthp5z09+mjwnG/e84uW9k53bGNtFz5OvD8GljAuqf6tq/wBk\n70Hk03/U1J4nfSU208LJ4ZIn53XtVq48J56angt9G2JiqkcbVXLlzw5rlTvlTNazp3jcjS4v55OV\nWL0d19rsT/DBoMdJqzh7im4nPVy/6sRnNzpWoiHZYYnSyVdykTC1D+8RepjeCHCtb6oXulp04x0q\ndJL+svsU+YrHXKWgtju8dTc8Ltw3z+XE7VOMdVU3ypgs+cVnHzJNEioxqLzREOwyD0EVhJFY3l5A\nANjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAILtK9pd0/Wp/57CdEE2l+0q6/rU/89gBHtj/\nAPUtz+Pf+m0twqPY/wD1Lcvjv/ptLcAAAAAAAOt/sHeIoXZCvSXvUknbuf8AE96l9Sewd+qUFsTX\nfqL/ACLzVlMvnWQvNn8NkbYfhSvnIsdL/gtb/t/M+gUAQFGVwAAAAAAAAAAAAAAAAAAAAAAAACgK\nAUftJXp7/Zabn1Y/aPan1F2Rp3jfEUrqhUqNoVrhXijeh9Kr9RdiJwQuNpdXR7Nh+5cvqZf7W6uz\n9j1/uJS+qRyABTlAAAAAAAAAAAAAAAAADGQDIMZGQAFMGi1HUXqns1ZLZqVlRXNZmGJ64RVzx54z\nhOSdZhvCyZit5pL8eCNdU3e/x6qorbFZVfbpYHOlrleiIxyJnGEz4EwuM58BLjXWqSvlt9JJXwsh\nqXxNdNExd5rXqnFEXrwbJECWDabWcKKWOHDt8TIAMmgAAAAMZAMHz7tHuM9/1HQ6boXZ3JESTHFO\nkemeP6jePlLl1JeoLJZayvl49EzvW++e7g1PKqlUbKLLPVT1uoq3v5JXvbC5etVVekd5+CHFqXvz\nhQva4y8Io9LsOENJRqdq2R/Qx3KU/atkuHyLjtdvgttBS0ULcRwxoxqeI2JkHYlhYR5uc5znKUpZ\nlJ5fxMgAyYAAAAAAAAAAAAAAAAAAAAAAAAAAAABxVxjIBobtfKa3N3fykypwjRceVV6kNTdtSYd3\nLQd/I5d1XomcL2NTrUzadN7ru6bh38irlGKucL+kvWpQajaV2otlptAt6S9a5+rH+rLKrS11QVuq\nyl7Na9aX/Y19Haq69TJVVz3Ni9ynLKfop1J4SdU9NBTRJFCxGMROCIehqIcju0OzadKnN9e6XrWS\n4tnPqdXZfw9WC9WC5IyACyOUAAAAAAwqJg1slqtsj+kfSRK7tVqZNmYwRWVV2YU4KXmsm0Zyj6sm\nvJ4ODGNYiNa1GonBEROBzQzgEiSRqAAZAAAAAAAAAAAAAAAAAAAAAAAAB0TQxzRujkY1zXJhUVMo\npzjY1jGtaiI1EwiJywczJqorORl8gADYAAAAAAGuntdvqH781LG93arUU9UMMMMaMjjaxqckamEO\n4EUKaoTlKNcU3zaXFmznNrDk2u7PA6poo5o3RyNRzXJhUVMopljEjY1rURGoiIiJ2IdgN91Zz2mu\nXyMnRNDHPG6ORqOY5MK1eKKd4DipLD4hPB1MY1iI1qIjUTCInUdcVNBC6R0cbWq9289UTGV7VPSY\nMbkeq+4zlmQAbmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQXaUv+xd1/Wp/57CdED2mL\n/sXc/wBan/nMANBsg/qS4/Hl+g0tsqXZB/Udw+Or9BpbQAAAAAAB0TruwyL2NUonYg3CX13alKnm\n3/tLxr3btDUu7InL5kKX2Jt/0O8O7ZIU8zV+0vNDw2JtbxlSv/tkstP/ANP1fnD8y9EAQFGVoAAA\nAAAAAAAAAAAAAAAAAAAAAMKpkw7koBRr3PqdqjU5pFLjyJDn0qXiUppxO6Notzl4Kjel4+FFRqF1\noXG2eE9JD3dNBfNZL/b/AFZ6Kv3NHWvmsnIAFOUAAAAAAAAAAAAAAABgwqmclbaov99mvNPpzT3R\nsrZIHT1FXImWU0fJq7qphzlXkhrKW6SVVStlhYXDLb5JLtZsrzpzUFdVSz0WrqyiRyJuQthhfEzC\nY5K3eXK8VypFKhu1ewZlbU0l/p0XLmdG2nmx+ijcJ4+anTRXzV+mNR2+3amuMFbQ17ZeirdxsPRO\nibvKjkaiJjx+cntp1npe81b6agu9PNMmfxaKqK7HNW7yJvJ4UIluy5ScX3ZO1xvqS+7hbXjOVHKx\ny5ria/SOu7TqdskUSPp66FPx9HLwezjhce+TKeTrQ9lkbq1L1e1ur6ZbesjFoGxp3zUxhUVeC9WV\nznivBcGi1rolbirLzZ3JTXuk7+CZvDpMe4f1LlOCKvi5El0lqGPUNlpq5I1ily6OohXnFKxd1zFz\n2KbRbbxLmvkyK1Vbjspj1ZcHF8XF+BJ0QyASnGAAAAAAYMKZNBqS9Q2Sz1dfLheiZ3jetz14Nb5V\nNZSUVJvkb1VWXWV1wjmcpJJd7fAqDaRcKi+agt+maJ6KqSJ0q806RyZTP6jeKl22u309tt9NRU7c\nRQxoxqeIp7ZTZpqqat1FWrvyTPcyJy9a5793n4J4i8EOXSxct66XOfLwXYX+3ra6PR9mUyzDTR+8\na5StfGT+HI5gA7DzoAAAAAAAAAAAAAAAAAAAAAAAAAABgA1Vzu1Nbo9+R2XKnesTm5f/AH1kN99V\nFcrLJqMVzbNq652TjGEct9iPbUVMFPE6WV6MYnFVUgVZdLhep1paFjmw+6XtTtcvUngOEVPctQzp\nLMqx06LwXqT9VOtfCTuioaaihSKBiNanPw+NTz7lrNryxDep0na+Up+XgWmKNCutiy/u5xh5+JrL\nRYqa3N3lw+ZUw56p8yJ1Ib/BkF9p9NTp6o11VqMV2IrbLbLZuc5ZYwZAOgjAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAABAtpntMuP68H81pPSA7TfabcP2kH81oBpdkKf6ir/AI6v0GlsFUbIv6hrfjq/\nQaWuAAAAAAAau8u3bTcHdlPIvmapUuxVv+q7s7tqWp/wIWnqF27Yro7spJfoqVnsXZiyXF3bV+hj\nS603/Q9oeNtS/NljTw2dqf44lzoAgKUrgAAAAAAAAAAAAAAAAAAAAAAAAp1SLhj1/RU7Tw3CVIaO\nolX3MTl8yG0FmUV4m0I704r9pFPbN07o1BeqrOefmke5U9BdxTWySFEius3WqxM/dRV/8xcpa7ca\n+0bYrlGMYr4Iuv7Rtfa10VyhGEV8IoyACoKMAAAAAAAAAAAAAAA4ZK/n09d4df018opIu5KijWCu\nY9e+Tc4sVnhVfQRTXVbq23apt3Qaidb7ZWtSGOVIGTRxzInsZEfy3up3zG4SPa3RrG1JrLXMTGVc\n18Ll8PDh4yHeUnxi+DO+FEqq4zV1f3kHweeXd5m71Joym1FebRU18qSUVE2VVo1RcSSPxhzlReKJ\njkQnajpSyUGnZb3b6eOirqB8T4ZYU6PKq9rcKjeCrx4FsXaK6zWqpit9THBWui3Yp3N3msevut1c\n+TOSuKXQ2qrpV0j9V6gZWUtPIkjaOGJrGSPbyWRWo3KJ2cTFkcvCjxl29xnS3yjuSlfiEPY45ks5\nwki0aCWWegpZpmbsj4WOe3scqZVDyW6yUVvrLnVU7XNdXTNmmbnvd9GozKJ1ZROJuMIiGcE2OOTg\n3nmWOCZlAAZMAAAAAAHBT5+2i3Go1BqSh01QSewkRJFTksjkzx5Z3G8S4NT3yKx2arrpMK5jcRs9\n893BqecrDZRY55n1moa1VfLM5zIXO5qufxj/ACrwTxHFqW7J10R9rjLyR6XYcIaPT6natsf0S3KE\n/atkufwLhtdugttBTUcDcRwxoxqeI2RxTJnJ2JYWEebnOU5ynKWZSeW+9syADJgAAAAAAAAAAAAA\nAAAAAAAAAGMgGFMZOMkjI2Oc9yNaiZVVXGCCXG/VNfL3HbWuVF4K9Oa+LsTwldrto0aOKcutOXCM\nFxk2dGn0tt8sR4RXOT4JLxNpedRRUmYafEk/Jexvj8PgNfbNPVFVN3ZclcqquUjXmv63YngNlZtP\nQUSJNNh9Rzz1N8X2kowpX07P1GtsjqNf6q410J9WPi+9nVZqatPCVWl58pW9r8vA4sYjGo1qIiIm\nEREwdgwC/UVFJIrQADYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgG072nV37Wn/mtJ+V/tP9\np9b+1g/mIAanZF/UFb8dd9BpaxVeyP2v1fx130WlqAAAAAAAEb1a/d0zeHdlHL9FSD7HmY03O731\nW/5kQl+uFxpG+fE5E86EZ2RNxpTPbVy/UXVPDYOqffqYL8Gyxr4bMt/1kvwLTABSlcAAAAAAAAAA\nAAAAAAAAAAAAAAYI/qqXodPXSTspn+gkJB9oc6xaWrsc3rGzyOeiKdOihv6vTx77Ir8Tr2fX0mu0\nsO+2K/E1GyyJG2Sof7+oX5kRCziB7OIlZpemVeCvkld5N9cfMTxCbakt/aOqf7x/gdG2p7+1dbL9\n7L8OBkAHAVgAAAAAAAAAAAAMZBHtUXZ1nsNzr40R0sFNJJGxfdOY1V//ACYk91ZNoRc5RiubeDlq\nGy0F+tNXbKxEWOZmOHNrk4tcnhRTXaKptQ0thgpb2rXVED5ImvR28r4mO3WOXwqicPBz4lb0Wydt\nwt0F0qr3WtvkzWzrWtdlGPcmURETHBE4cFQ9dLrjUOk546DWdK59O527DdoU3mO6+/a1OfkRfARJ\n4lmUcdnh8SwdGapVU3KzdeXFrDz2uOS7TODohljmjZLG5HMe1HNVOtF4op3kxW4wAAAAAAAAAYMZ\nMkX1df47DZKqtdhXom7E1fdPdwRDWU1CEpPkiWimy+6uquOZzkkl4sqPaBXVGpNU0OnKJ67sUmJF\nTlvuTeVV7dxpettoaegoaakgbuxRRoxqdiIVDsnsMro6m/1eXTVKubE53NUyu+7/ABL6C7EObSxc\nt66XrT5eEexF5t66up6fZtEs16WOJNcpWP1mZwZAOs88AAAAAAAAAAAAAAAAAAAAAAAAYPBXXCmo\nYllneiJyROtV7ENbd77TW5u4mHzKnBiLy8KqR2itFbeJ0q7g5yRL7FvJVTsROpCk1m1J9J6No4dL\nf2+7DxZ36fRpw6a+W5X+MvBHS6S6ajn3GIsVM1ePWiePtXwE1ttrpbfFuQt4r7Jy81PdDBFBG2ON\niNaiYREO4k0Oy40y6e+XS6h85vs8Ea6nWOyPR1x6Opcor82MGUALc4gAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAACK6r1hZdJ23u+6TOaxztyNjE3nyP57rU8Rrrzr+zWjR8GpZkkWnnhifDE3G/I6VMt\nYnVntUAnYKP0ltqpr1dqS2XOxVFqlrGotG+R6yRy55cVYzGepeKF4AAAAAr7af7T6v8AbQfzELBK\n82oe1Cq/bQfTQA12yT2u1Pxx/wBFC1CrdkntcqPjj/ooWkAAAAAAAQvaC/d0deV7YMedUQ1GyduN\nH0y9s86/8ap9R7dpj9zRV2XtSJv70jU+s8+ypMaLt/hkqP5rkLyLx/Z6zx1i/CJYx/6XL/WX5FjA\nAoyuAAAAAAAAAAAAAAAAAAAAAAAAClabUJtywMjzjpKhiebj9RZZTu1ubFNa4s8XPkfjtRrcfWWW\nx4b+0tMv2s/JZLfYFfSbX0a7p5+lZJ3o+HotOWti80p2Z8qZJMa+1Qdz26ki95C1PMhsTj1Et++2\nXfNv8Sv1Vm/qb5+9ZJ/NgAEJAAAAAAAAAADCmMmgvmprFYYkludwip0VFVqOy5zse9a1FVfIhhtL\nmZjGU3uxi2+5LLI5qq81mn7zZ7nNMvqRIjqatReUL3qixzcuWUwp79W6OtmrKCFlRLIySLedTTxu\nXvFenFcZwqLjrNWzWugNVU9RafVSKVtQzcdFKx8O9ve9WRG5XswQ2lu2odm8iUN1hmuFg3kbTVzE\nTfgavJr07OrjjwdhDKUeUuMX8kWNVNy3HCLrvhyT4OS8M9p20WodTaCSG36jpnVlqZhkFyhTKsb1\nNe3ivgTPHxlt0tXZ7/bUlgkgrKSZMKuEc1cdSovX4FPJa9Qac1DSr3FXU9VG9uHRrzwvU5juKeVD\n32izWuzUfclupWU8G+9+43ON567yrxz2+Tkbwi17WV2EOosjLjKl125444J+OOw2qIcggJDjAAAA\nAAABjIBhT501lVz6u1lSWKkevQU8isc5PfYy9/8AhTgnhLa1vqJLDYaioaqdO/8AFwJ2vd1+JOZD\nNk2nHUtA+81CKstWn4tXc0jRef8AiXicOo+9thQuXOfkuw9NsaMdDotTtWz11mvTJ9tjXF/BFs0d\nJDR0sFNCxGxxMRjGpyRGphD2AKdqWOCPNSlKUpSby5PiZABkwAAAAAAAAAAAAAAAAAADCg81TUw0\n0T5ZXoxjUyqqRznCEN6UsLvfYZSblhHeqoQy7akcr+5bfl8iru76Jnj2N7TX1dyuF8mWlomObD7p\ne1O1y9SeAlFpslNbmZRN+VU76RU4+JOxDz89XqtpTlTo810cp3vm/CJZxpp0cd/ULes9mru8ZGrt\nGnEjVKmuXfmVco1VyiL2r2qTBvIyC40eho0de5VHHvS7ZPvZw36i2+e9OXkuxLuRkAHYQgAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAFDbRKanrtp2zmjro2vo1WpcjH8WukREVEVOviiGo2wJ6v6y0\nTpRjkVkkyz1DE965cJ/wtdgtbXehbfrG2xU808lNU08nSUlXHxdC9evGUyi44plCM6I2URadvU98\nuV5nutyc1WxzysVm4ipurzc9VXHDOeCAGn27pTx2LT7ot1K1l2hSjwnfIuOO74OCF7oVPLszW4a7\ndqW7XWWqggka+goVyrIlRE5qqrwRyZREQthADIAABXm1H2o1H7eH6aFhld7UvalP8Yh+kAePZN7W\n5/jj/QhaBWGyZP8AZqb45J6ELPAAAAAAAK62pr/sVcU7ZKf+c057L2buibWi9azr55nKebau7Gj6\nlO2eBPM9F+o22zxm5o2zp2wK795VUu5LH9noeOsf4RLF8Nlx/wBZ/kTUAFIVwAAAAAAAAAAAAAAA\nAAAAAAAABgpHaYvdN8s1JjKK1Wr/APVe1PqLtyUlqFe69o1th5o1YuHiy5S42J1dZKz3KZy/DBff\n2d6uust/Vaeyf/1wXXH7Bv6qeg7Di3qORTvmyifNgAAwAAAAAAAAAaq83KK1Wqur5UVWU8L5HInN\nd1M4Kr0LpGC8U7dUahjbWXCvTpI2yJvRwxKveNa3ly48eRZWp7W+76fulvYqI6opnsaq9TlTgQTZ\njqmlq7TDY6pegudvb0EtO/g5zY1wjkzz4J3xE8O3Eu7h3HfTvR0Vsqs7++lLHNRwb2/bO9KXuBzJ\nrbFDJjvZoESN7f3eC+JckQ0VX3iyX+p0ZfJ+6mdD0lvqHJ+UjxlWLnPVyReWF6i6lKandHfNrduW\nkXeZZaOTuqRE4JJM1WtZnt74xJKM447eD8Ubae2yyq6uyTcFByWeO61ywyS3HZfoa4y9LLZo2SLl\nd6F74ePbhioir5DbWPSFtsc0ktLPXPc5m4iT1UkrWp+i1yqiL4SVgkUYp5UTjlfdKO7KyTXc3kyg\nANiIAAAAAAwcXLg5FebRtTeodkeyJ6JVVSLHDx4onuneROXhNLLI1wlOXJHTo9LZrNVTp6o5lOWF\n/N/Ara/Sya31xBbIHOWhpXOa9zV4bqflHdXNe9Q+hYIY4IY4o2o1rGo1rU6kQrbZfpr1JsqVc8eK\nmsRHORebWJ7Fvz5Us8g0tbSlZP158X4LsRa7e1VUrq9Hp5f3fSx3Iv3pe1L4s5AA6ihAAAAAAAAA\nAAAAAAAAAMDJhSJ3jUcdKqwUuJJ84VeaN+1fAcmr1tGkr6S6WF2Ltb7kTUae2+e5XHL/AAXmba6X\nelt0WZFy5U71ic1IbDS3PUM6TVDljp0Xh2eJvh7VPdbNOz1Mndlyc5zlVF6NV4rj32PQTdrGMaiN\nRERE4IhSx02r2pONmpzVp+cas8ZeMjvdtOjW7S1O7ts7F4I8tFQ09HEkUDEa1POvhVT3HHicj0Nd\ncK4RhGKUY8ElwRVylKUnKUstmQASGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAClNq2otTw\n1+ntM6cmSCtur5FdPlEVjGY5KqLjrVVTjwI+zYvrFzEdLtNuSPXmjWyuTzrMnoPbteuttsV90pfe\n62Jcbe6V7KNzXp3TTvwx6NeiK1rkzwyvE31Jtz2bzwtfLdpadypxjkpplVPBljXJ84BF02K6sRf7\nT7mvgWOX/rn0OiFVpts2ZKqIl/VVVcInctT/ANMtRFAMgAAFc7U/alN8Zh+kWMVztT9qcnxmH0gH\nn2T+1iT45J6ELOKy2Ue1d/xyT0IWaAAAAAAAVZtddjSmO2ri+slGh0xpGxp/+zj+dCG7YpN3TlM3\n31W35mqTzSbdzTVnb2UkX0ULq7hsHS/tamb/AASLGfDZlP8ArS/IkIAKUrgAAAAAAAAAAAAAAAAA\nAAAAAADipR9KxavalM/OUilc5PE2JGelS73L3q+IpPRC9160u9Vj2PS4X9Z+PqLjZfUo2jZ3adr6\nngv9i9TTbWt93SuPxk8F3IZCApygAAAAAAAAAAAAOK5K71Zs5tGoZkrGSSUVxbjcq4eDspy3kymc\ndS8F8JMrtdKK026qr6yXo4IGbz3Yzy6kTrVeSHO2XKjulvpq6ker4J40fG5Wq3LV8DkRUNGoz4Ml\nqnfS+lrk1xxns8iqG6H2iyt7ln14/uXkrmQokqp48oqfvFgaZ0ratM29KSgjdxdvSSvXL5Hr7pyk\nnGBGuMeKN7dXdbHde6l3Rikn54MgA3OcAAAAAAAGADqkeyNj3uVEa1Mqp87UjX6+1w6eRFW20iIq\nIvJY09in+NUz4iX7VdSLRW5lppnr3RWJh+7zbGi8fK7khKdB6aSwWKKKRqJUyr0k6p75eTf8KcDh\nt++vjV7EOtPz7Een0K+y9lWa58NRqM16fvjH2pL8kTRqI1EROrgcxgHceYAAAAAAAAAAAAAAAABj\nIAOqWRkTFe9yNaiZVV5Hlr7jTUEPSzvwnUnNVXsRCDK66ainwn4qmavHrRPtUqddtOGnaqpj0t8v\nVrX5vuOvTaN2rpJy3K1zm/yR6a+91dxm7jtrXbq8HPTgqp4OxDdWfT0NA1JH4kn98qcG+L7TZ2+2\n0tvh6OFvP2TutV8JssEOj2ZN2ek62XS3dkfZh4JEt+siodDp47lfa/an4syAC8K8AAAAAAAAAAAA\nAAAAAAAAABQYwAeKathhqIYHb29J7HhwPYR64/1vbvGvpJCcWmvnZbqYv2J4XyJLIKMa2vaWX8zy\n1lXDSRdJLndyicEzzPUi5TJqrvUdz0yP3GP79Ew7kYuFwWj7nXdRWvXvu1E8Bierrqna7JcIKOeH\nFZEa3JR3VxefwNuOJHpLlco2dM6hRIk5pvd9jwmz7tg7kSqVcRq3P+XjNq9dp5ua3mt1Ze8muHfx\nDqmsfLg88e49wI8243OVvSw0SdF1bzu+VDZUdfHVQq9EVqoqo5q9SoKtbRZLdUmnjKymsrvQlVOK\ny/jh5x5nvBH23OtqVctHSI6NFxvudjPk4HooblJNM+nnh6OVqZXjlFQ1jr9PKyMVvcXiLcWk34My\n6Z4b7ufFZRuAR+S61Xdc9NDTte5qpu8ccMZVVNtSyVEkKOniSN+Vy1FzyJKdXTfKShl7uU+HDK7D\nWVcoLMvz4nrBx4mcnUaA8tTVQU7N+Z6NTqyehVIzSRpcLhUyzJvMiXdY1eKf++BxarUSrdddcU7J\nvCzyWO1klcFJSlLlHmexL/b1XCueidu6beKaOZiPjcjmryVFMPijczcc1FavUqEepU7iuy0zcpFK\nm81OxUT/ACIHfqtPZWrpQnCc93eSw4t8iRQqsUtzKcVni85Rvqiojp4nSSKqImOXXnqO5i7zUXCp\nlM4XmaOod3TdoafmyFN9yeFeR6LlcHUSwLuorXuw7wJ4CT02KV9s+FcJbucdveadE+pFcZSWfgbc\n6ZpGxRukciqjUyuEyppJLlc429M6hRIk5oru+x4TcQTR1EDJW8nJlMklerrucoQypqOVvJr4mJVS\nisvly4PJziljmja9i5a5Mop3Ggtjugq6qi9y1d+NOxF6jfoSaa3palLk+Ka7mjFkd2WPijIAOg0A\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItqOzaSqoFr7/QUEsVNG\nuZ6pjXJGzPHi7khRdRrjYDDKrI9PU8zUX8oy3tRq+FN9Gr8xItq8Et/1VorSb6h8VHWyyz1W6uFe\nkSZRPMi48KlrW/SGl7dSR0tLZKJkTEwiLE1y+VXIqqvjAK90rBsb1W2T1Js1qkljTMkD6RscjU7d\n1yJlPCmS5m8j5v2n6ctukLhYtYWOnZR1ENwZHUxRJuslbInHveSLhFRcJxyfSKAAAAArfaov+yb/\nAI1D6SyCttqq/wCyjvjUX1gHHZR7Vl+OS/UWWVrsp9q3/wB3L9RZQAAAAAABS+2l+LJbW9tX6GOL\nP0+3dsdrb2UkX0UKp21uxbbS3tqHr5mL9pb1oZuWuhb72CNPM0utUsbE2d422v8AIsbuGz9N/HI2\nIAKUrgAAAAAAAAAAAAAAAAAAAAAAADx1krYqWeR3BGxuVfIhUWyeFyuu1S5c5SJufCmXL6SxNXVH\nc2nLnL1pA5E8aphCL7Lqbo7FNNjjLO5fI3vfqLjTfd7H1svfshH5cS/0n3WwNoz/AFt1cPlxLNQB\nAU5QAAAAAAAwq4MnByZAMI9qplFynanHkcslKVWlNV6QqZq/StU+so3vV89rqHK5VVV4uY9y5VeO\nV6/GS7Su0Cy6ictMm9S3BnCWimTdkaqc93ON5Ex1cU60I1PLw+D/APOR1T0klDpKpdJDta5x80eX\nW2lrvqWus9Gs8bLO2VZK5iOVJHq3i1qcOXVz4cyw4o2xRsjY1Gta1GtaiYRETkiHbgG0YpbzXaQy\ntnKuuD5Qzj49rMgA2IwAAAAAAAADia+53GmttBUVtS9GRRMVzlXwGwUoPaTeqm9Xik0zbV316ROm\nROSyeya1fA1O+Ugvt6KvPbyS72yy2Rs96/WRrct2uOZWz7IwXFtnm0Pb6nVeqazUVexeihkzG1eK\nb+MNangYnzn0KhpLBZqayWmmoKdO9ibxXrc5eLnL4VU3icjGnq6OGHxlLjJ97ZvtnaC1usbrju01\nxUKYd0I8F8zIAOgqgAAAAAAAAAAAAAcHOamVXgic1MNpLLBlSOXi/wBPb2qxmHz44NzwT9ZTVXTU\nck0ncluRXvcuOkTj+79p6bPpxlOqVFZiSbOUTmiKvpU8/ftDUauyWn2es9llz9WPl3ssq9JVTBW6\nr/bX7UvPuRrqGzVt0n7ruL3IxeTV4KqeBOpCeQxRwxtjjajWomEROGDmiIZwWGh2dTpIt+vZLjOx\n8ZSZzajV2XvjhQXqwXBIzgyAWJzAAAAAAAAAAAAAAAAAAAAAGAdUs0cLFfI9GtTmqqR6pv6Ku5SR\nq9V5Kqc/EnNTi1Wv0umX3lnW7IrjJ/Akrpss9WP9CRSSxxtVz3I1E5qq4OeSJR2u4Vz0krJFa3qR\neK+bkhKYo0ijZGiqqNRERV4rwNNHqb9Q5SnQ66/Z3nxfmjNtcIYSnl9uORorj/W9u8f1khyaW4UF\nTUVEE0MrWOYi4VUydSUt9/8Ajmfup9hz12XUajU/3aclOzKccdxu1GcK+vFbsccc95y1B/QU/aId\nd3RqyW5F65U+o76mgqamhZDJM1ZUciufjCL5juraGSofSK1zUSJ+8uesjv091s75Kt9dVYz4PLNq\n7IxUE3y3vxR6a/8AoVR+zX0EYnz6gU2OW/x86krqYlmp5Y0XCuaqIp44beiW5tLNhyYVFVPHngSa\nzSW32zUeCdDjnx7jWqyMYxz7+fgeJkN56NqtrIt3HDvDFuj7nkrZZaiJ/DMm71YzzQy233OJvRQ1\nyJGnLLeKJ857aS2Q09PJFlXdJnfcvXkhp01rsrl0VilCL9eWVnGMI3lOKjJby62OS7PE8EFXcalm\n/SU0UcSquFcvPyIdFGk6Xtene1z0iXKt4Jx6j0RW24wJ0UNaiRZ4ZbxTJ2U9qkp61s6Tb6bqo9Xc\n1VesiVGrnPTynGzMLE5Za3V5JG+/VFWJSjxi0sJ5+OTjQonqxcF7EaSA1dNRSRV1VOrkVsiJhE58\nDaFtoapVVSjKOHvyfzZzXNSkmnnqr8jX1qXDvO5Oj697f+bBwo/VPpF7q6Ld3eG7nOTaA39G++6T\npbP4d7qmu/1d3dXnjicF5Ecs7mwVVbTu4OV+8iL1oSNTWV1sjqlSRrljlbye3n5SHV02OdN1cczq\nb4ZxvJrGDaucUpQlwUu3yNnkjjnd035m5xbC1d5fDj/M7Forw9Fa+vRGL1o3j8yJ6TY0VDDRxq1m\nVcq5c5eaqQ2K/WTqTpddcJKT3sZbXYjaLhWpPey2sLH5mtoP65uGeeEx4jlekRZqBFTnN9glb3Ne\nY5fcVDdxV/SQ9lfRyVMlK5rmokb95c9ZBGqyWkuoUczjfxXg5Z/Ik30rYT5Lc/lg9Ff/AEKo/Zr6\nDzWb+rqfxO9KntqY1mp5Y0VEVzVRFOmgp3U1JFC5UVzUXinhXJ3dHJa7pN3qdDjPjkh3l0O727/8\njWKv+0LcdcPEkCGgtyd0V1XWe5zuMXtxzJAY2en0ds+ydspLyzgze+MY90EmZABYEIAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK717r71nrbE9Rqmu7rWX8iuOj6Ld9lw\nXnvcADS7VNK3y5R2m+6f43a0TOkhjTH41j8bzU3lRFVMZx1plCGQf9oajpWrBetM19NWsREkiYqY\nz4pNxzfFxLB15tI9aFZQ0/qHVV3dETpN6Fcbu6uMLwUgv4f/AP8Ahdz/AHv/AOoBqoJ9UbWb7Z5Z\n7PJb9OUM6VCrIuenVPY4VUbvKvLhwRM8T6fQ+dU2/ZVP9jbkmVRMq7/+p9EooBkAAArbar7Vf/u4\nvrLJK12re1b/AO7i+sAzsq9qifGpfqLJK32Ve1VPjUv1FkAAAAAAAFC7bpMRWRnatQ7zI1PrLypW\n7lNC3sYifMUPtsRzp7CxOasqvnWNC/I/YN/VQvNc8bG2Sv8AWf8A9ix1PDQaJfx/mdgAKMrgAAAA\nAAAAAAAAAAAAAAAAAAACutpc+5puSLOFlmiTyNcjl9BtdC0vcul7ezCor2rIue2RVd9ZCNrFQ7dt\ndK1M7yyPwna1ERPpFsWynbTUFLC3lHE1qeRC5v8Au9i6SP626U/lwL/U/df2f0UP1t85/SsHvABT\nFAAAAAAAYNRe7vRWa2VdxrJN2GBm89fmRE8KrwQ10uqKSLU1PYnU1T081O6ZkvRr0Xe803vB1r4c\nGi2mWm6XXTSxW+mSpljqoJlp8oiStY7i3jhMdakcpdWTiT1VJ21KzhF4efAhNZrLaVb7emo6u10M\ndrVWOWidJiZsb1w1Vd2rlPsNg6LQ+0uBJYZHUd2hTO8n4upic3tTk9ExwXq8BsNXPlvOptLackaj\nIHqtdXMVc5SFMtjTtRXczUaq0nZr3tDt1PGstPO+3zT1MtM7o5GKxzWxvzheK8UIHnOPWWccefmi\n1hKndg93obNyU1OHJRXJNduSd6Oo9YUUdXS36sgq2ROa2lqGpiSRuOO/4uSdfhJuh0xQshiZGzO6\n1qNTKqq4TtVcqp3HUlhYKaybnZKWEvJYRkAGTQAAAAAAGFMnW97WIrnKiIiZVfEBjJFdY6ji0/ZZ\n6rgszu8gZnG893LyJzUgWyvTkm5LqCu3nz1OehVycd1V75/+JeXgIzWyy7QtZMpolX1Npc98nD8X\n7p3VxeqYTwH0TBDHBDHFG1GsY1GtRExhE5YOGv7+/pPYhwj4vtZ6jV/+k7Ljo1w1OqSnqO+EPZh/\nU9AAO48uAAAAAAAAAADGQAZOOTR3a+U1vZhV35VTLWIvHy9hBqNRTp6nZbYoxXazeqqy2cYQi22b\nGqrKelhdNPIjGp2kEqK25X+dYKVisp0XvlXs7XL9RypLdcb7MlTWOcyFF71OWU/RTqTwk8pqWGmh\nbFCxGNRMIiFDjW7XlxzTpPlKa/oWWaNCuG7Zf84w/qzX2qzUttZhib0ip3z15qbkcAX9Gnq09ca6\n4KMVySK2yyy2cpzllvtZkAExoAAAAAAAAAAAAAAAAYGQAZPLPVQU7N6V6NT/AN8iPz32WV/RUcSq\n5eTl5+RDg1W0dLpuE55m+UFxkyWuiyzio8O/sJFNPDAzfkejUTrVSPVN+c93R0caucvBHKnoQ64b\nNVVL+lrZlyvuea49CEhpqOnpm4ijRvavNV8pw52nrfV/u1fe+M2v5E393q5/eS+USOxWetq3pJWy\nqn6PBV+bghIKahpaVuIo0RccV618p7cA7NNs3Tad727vz7ZyeW/mRWaiyfDku5cEZABYkIAAAAAA\nAAAAAAAAAAAAAAAAAAAAB46ukjqoljflOOUVOaL2oehiKjURVyqJxU5mVNFCKlKSjxlz8cGcvGAd\nE8SyRvYjlbvNVMpzTJ3gzKKksPkYR5qeCOniZExMNamEPQDIjFRWFyDeeLAANgAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTXi/wBlskUUt0uMFJHI9WsfM9GIrkTOEVes\n3Jpb9p+0aht0lvutKlRTPc1ysVzmcWLlFRzFRUXxKAVtcNrlhg1ZZbfTXa2yW2ohmdV1fS56FzGq\nrEznCby4TiS38JOgvzotv8dpX9XsJ0k+/wBtqaahjjtsUciVdIs1Q50znIqMVH76q3dXjwU3f4Gt\nlX9yM+WVH/UANLr3bBQW6ioWaYuVBXV1RUtZuJmZGsXmq7iomc4RMqXohV1DoHZbpyrbcYaCip5Y\nF3myTVL3oxU45RJXuRF8JaKAGQAACtdq/tVT45F9ZZRWW1f2rs+ORehQDt2V+1Rvxqb0oWQVxss9\nqcfxqb0ljgAAAAAAFA7XPxl903F27yfvPYn1F+M9g3xFBbTe+1npln6UXzzIX632KeIu9ov/ANN2\nTH93Y/nIsdX/AITRL9mX5nIAFIVwAAAAAAAAAAAAAAAAAAAAAAMKuEUAo7VuLjr22UecpGsSKiL1\n531+ZC8GphqJ4CjrE1LltHraleLYnyuRfC1qRIXihcbX+7Wio9yiLfnLiy/2793HZ2mX+VpYt+cu\nLOQAKcoAAAAAdb3o1FcqoiImVVTDeAeKsrqClRvdVVDDvrhqvejM+JVwU9LYtY6JlfV6fqH3W1ue\n6SW3zOzI3eXeVzH8VVcrnh5UUzRaWs+s9Q6mrbzItUlPVNpqWJkrmtiiaxHI5FYqZ3s57Dg606y0\nFmS0K+8WVFVXUL1/HQp+gqZVU8SeQgbct2Tjjua4/Mtqa4Vvo1YpTaW9XNYi+3CfecpvW9tIfR1l\nsu09svVDlERW/jY0X2TXNym8nhRfGT3Sej4NPpV1ElZLW3CrVq1NZLwc/c5IiZXdanYamx0mjdWz\nW/VVLQOSphkciSK1Y132puqj0Tg/GeC8SyMYN4QXrPGfDkc2p1EkuhhKagucJJZTzyz3HMAEpxAA\nAAAAAAAHEp7anqh9LSsstErnVNUidJu+yaxVxup4X8kLF1Be6Wx2uorqhe9jTDWpzc5eCNTwqpT2\nzuy1N+vVVqe5pvYkVYexz/YqqeBicEOPUzct2mHrT5+C7z0OxNNVVC3aepjmnT+pF/5lnYv6ljaE\n0uzT1nZG9GrUzYfUOTrd1N8TeRN+JhEOR0whGEYxjyiUuq1N2q1Ft9ssznJtsyADcgAAAAAAAAAO\nOQqoiHRUVENPE6WV7WMbxVVIHWXauvM60tAxzYvdO5Kqdqr1IVuu2lTpEo8Z2y9WuPFs6tNpLL3l\ndWEfWm+SNjd9SIx3c1D38qrhXomURexO1ThadNuc7uq4d/Kq5Rirnj2uXrXwG1tFiprcxHezmVML\nIqfMidRvzho2ddqrY6jX4bXGFK9WP9WdFurrqg6dLlL2rH60v+xlG4OQBfJJLgVoABsAAAAAAAAA\nAAAAMgKAYB46mtp6ZMyyInYnNV8SEelvNZVP6KjiVF7ea/YhXaraWn073XLfs7IR4tk1dFk+Kjhd\n74IkdRV09Ozelka1OrPNfEhHp73UTv6KihdleteK+Y5U9he9/S1krlVebUX0qSGCnggZuRMa1OxD\njxtPW8/7vX4cZv8AoS509P7yXyiR2CxzzvSWtlVVX3KLlfOSGClgp2bsUaNTwfaejBk7tLs7S6br\nRhvT7ZvjJ/Mhsusnzlw7uwYMgHeRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFCbXXXS833Smj6StfTQ3N8\nrqp7Uyqsj44XtRERVx1laXXY7p62690/YpLhXLR3OmmVkuY0kbNEiux7HG6uOzrLU2tQ3K03XS+s\nqOjdUstEkrauJq8eilTG9njhOaKuDS7Q713batD6/ttLM6moKtz5WORGvSKZUYueKpzbhPGAQ277\nIbFpTUlmkuM89ZY66o7mc/e6KWnmeibivVnsmqvWiJg+vUPl3Xu0Sza5pbPpvTiTz1VZXwuc50ax\n9EjFz18161xwwh9RIAZAAAKy2se1iL45H6FLNKw2s+1qH45H6FAPTss9qcPxmb0ljFdbLU/2Sg+M\nTfSLFAAAAAAAKC14nTbQ9Ox9iwr/AMzP1F+JyQoPVPf7VrKzsSn4f4nKX2nJPEXe1eGk2VH/AONn\n5yZY67hTol+6/M5AApCuAAAAAAAAAAAAAAAAAAAAAMHhr6llLRVM7uUcTnL5EPcQjaBW9yaZq932\nUu7EiZx7NcL5kJ9LU7tTTWvaml82dOipd+r09S9ucY/NkP2VUr5H3Svk4q9WMyqc14ucvlyXOhA9\nndEtNpqmc5ER0znyr4Ucve/MTxDq2vb0u0dRJclLdXlHgdu3L+m2rqmuUZ7q8o8P5GQAVxUgAwqg\nGFXBT+up4NQagsGl23BqUs8863Fkb0R/4mNJWRr2b2clkXm/WiyUndVzrY6eLKoiu4q5exqJlVXw\nIU9cKHQGua91TYb0yjvTXI9kzGPie9yccqx6MV3LmnEhslngsPvXbg79DDE+klGaik8TUcqLxzZ7\nazZtcdPz+qWiq51PMjUSSimXfimROredy8vnQkmk9esvFbJaLjb5qC7xNV0lM5qua5qe6a7HBOPX\n5MkfoNfXjTlRHbNa0nRZXdiucab0MuPfI1OC+LzFwtjhc9JkjbvK3CPxx3V44z2CEVnMJcO1G+ps\ns3cXxjN/5dqfF/HtOyNjGcGtREyq4RMcVXK/5naMAmK0AAAAAAAAA4qcVVGoqrwRE4nLJUG0/Vkl\nJTpZqFzlqqlMSKxe+Yxy4RE8L+SEVtiqrlN//s7Nn6G3XaquirnJ9Z9kUubZEr5V1WvtVw2uheqU\nFM9cyJ7HCeyk+pp9AW+hpqCjgpKZiMiiYjWNTqRCH6C0mzT1pRJGtWsnRHVDkTl2NTwNyTwi01co\n71k/Xnxfh4FjtrXU2Sr0ml/wunW7D9uXbJ+ZyAB1FEAAAAAAAMmMmMgKae53elt0aOkdl6p3rE5q\naq8akjp1WnpcST5wqpxRv2qeC2adnqZO67k5XK7j0a81/W+wotVtO2216bQR6SzlKfsw+JY0aSuE\nOm1Mt2HZD2p+R4oqe5ahnSWZ25TtXh2J4Gp1r2qTyioaaihSKBmETmvWq9qqepjGRtRrURExhEQ5\nnRoNl16ZuyyXS3y9ayXPyRDqdXK7qRjuVrlBcviEMgFscgAAAAAAAAAAAABjJjJjIMqYPDVXGmpU\n/GPTe6mpxVfIaB9zuNc5WUkatbyVU5p415IV2p2npqHuJ9JZ2QjxZNXp7Jre5LvfBEhqq+mpW5ke\niKvJqc18hHpLtX1j1jo4nNTrXmvnXgh6KWwtzv1T1e5eKonX415qSKOKOJiNYxGtTkicDj6Paes/\nSS6Cr3I8ZPzZLvUU8o9JLvfIjlNYd53SVcivVeKtRfSvNSQQwRQs3I2I1qdSId4LHTaDS6bjXDrd\nsnxb+LILLrLPWl8OwyADtIwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeCtulut6MWtrYKdHqqMWV6MR\nypzxleJ7yO6m0xZ9T2t1uukCyQq9r03V3XNc1eCtVOXYARO47SbVS6tslniqKGWlrIZnz1fdDcQr\nG1VRFxlO+VMcVQk7dQaRSDoEu1sSHdVqxdLHuYXmmM4wpT1XsB08uoLZJSxubamxy92ROnf0r3qi\n7m4uOCIvMkP4BNnf/wAJV/KHAGq1XqvR2hqemqdMW2yS19XUJE5kO6125xy5Vi44zwL7TkVZaNjW\ngLTXwVsNtkkmhej41lme9rXN4ou7nC46slqAAAAAq7ayv+zcHxxn0VLRKt2tL/s5T/HGfRUA92y7\n2pU/7eb6ZYhXmy72oU37ef6alhgAAAAAAFBXhel2w25vvVjTzRucX4nI+e3uWTbU1OpkuPIlJn6z\n6DQu9svFezI92jh+LbLHaHCOkX7mJyABSFcAAAAAAAAAAAAAAAAAAAAAYUpnanVSSzWu2xLlz3Oc\nqZ90uGt9Jcq8EUpCTevW0precVK7HPqjbn6SlvsaO7qbL36tNUp/HGEXv9n4qOrs1MvV09M7Pilh\nFxW+lbS0VNAz2McbWp4kQ9w8AKmUnKUm+1lJOTlKUnzk8mQAYNTBhTJXOptpundO13cM/Tz1DUR0\nscLd5Y2qmcuVVROXHBpKSisuWCSqm22e7XByfgR+201HqLaPqRbrG2ZLSynjooJEy1qStVXv3eSq\nqpz8Jv8AVOzmwXqkVYKaOjrY25p6qFu45rk4pvI3GU4eTqIrWW6k1VVM1Vou7xw3SNqMnY5MJKmM\nbsrV5LhMIqoqKh6vVja1cIO4E03TUMz0Vr6907HMjRfdIxFVVXsxkgWN3dcc9zXHJaSjap1zruVe\n5FKUJPdcWufB80b/AGe3Ko1HpGnfd4mTTxTPhlV7UVHOhd3rlTlnlle0sdCPaYsFNpyyUdsp3Ocy\nFq7z3c3vcu85y+NVJFk6IppRzzxxK3UThO6bh6u82l3JmQAbEIAAAAABgA8tZVwUdPLUTyNZHG1X\nOc5cIiIYbwZjGUpRSWW2aHVmpKbT1plq5MOkXvYY84V715J9alX7OdOVN0rZNUXXL5HvV0G8nsnc\nlfjsTk00kbKvaNqxZHo5ttpuGOW7GvV+s/HHsQ+i4II4IY4omoxjGo1rUTCIidSHDBek29I/0cPV\n8X3nqNU47G2f6HH/ABmoinfLtrg+KgvF9p6MGQDvPLAAAAAAGEBg1dyu1Lb4t+V3fKnetTm4huuq\norlZZJRguLbNoQnZJRhHLfJI9008MMbpJHo1rU4qpBa69Vl1nWktzXI1eDnpwVU8fUh0sjumopke\n9eipkdw7PJyyvhJxQ2+loYejgZjtXmqr4VKHpNXtWWKs06XtnylPy7iy3aNEszxZf7vOMPPxNVaN\nPwW9Ekfh82OLlTg3xEjwZMl1ptLRpa4wprUUv/OJX23WWz35yywADqIwAAAAAAAAAAYUAA1dXdaS\nlyjn7z/et4qaNay63Jd2nYsca81RfSv2FXqNqaeqXRwzbZ7kOL+JPXp5yW8+rHvfA39Xc6Sl4Pfl\n3U1OKmgdcLlXqrKVisbyVUX0qv1HupLDDF307ukd2ck/zN81jGojWoiInJEQ5ug2lreN1nQV+5D1\nn5sk36KvUjvy958vgiP0mn4mrv1LukdzVE5f5kgZGyNqNY1GonJETB2ICx02h02mWK60u+XNvzZB\nZbOx5lLP5DBkA7CMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq3Xuzyv1ZWUNRT6lqbYkEL\no3MiY52+rlzvKqPZyIH+Ai9//MO4/wAJ/wD1i0tWbRdNaRqKWC7zTMfPG58e5Er0VGrheRFPw97O\n/wD4ur+TuAKouez+5aav1qp75qy6yWyvl6CKup5XRrFOvsWyser+DupUU+vUQ+VNba6o9o1XY9Ma\nbp55OkrWTT1D2bm41nWidiIuVVT6rQAyAAAVZtb9rtN4a1n0VLTKr2ue1+k+Ot+ioBstmHtPpP20\n/wBNSwiv9mHtPov20/8AMUsAAAAABQF5KAfP9ub022Osf7x0i+aFGF/lBaX/ABm1e9O54So4+JWo\nX6Xe3eF2jj7ujq/LJY7R/SUr9zEyACkK4AAAAAAAAAAAAAAAAAAAGMgHgudZHR0FTUyexjic5fIh\nVOy+jlmmulzm4ue5GNX9Je+f6UN3tNuXc1jSlauHVL0bw963i77DfaLtvqdp2iicmHvasj/G9c/N\nnBc1/wB32PbP2tRYor+GPFnoKv7rsC6ft6q1QX8MOL/EloAKY8+AYyMgGovNyS2WurrVpp5+hjV3\nRQt35HeBqdpWOyq42S4JqCogla+tqLhLLMrkxI6Jy/i+C9SJw4dZtde1OoLLUW3UNC+Sajokeyuo\nk4I+KRUzJ4248niyeS6aJsOqYqbUNhrHUNdI1JIa2DKI5eXftTHHqXkvaQNvfyo5xwx/NFlTCqOm\nxOTSs9tcVFrsaO7UGzaCWsW7adqltV0bxR8afipPA9vLj18PGhMdMSaiktEK36CGOtRz2vSJ2UVG\nrhHcMoiuTjwNDo65axdUVNs1FbUR9PG1zbhGqdHPlcJwTHHhxx5kLBN4RXrLKz2EGostx0VkoT3e\nU1xeO7JyABIcgAAAAAAAMZAODl4ZPn3W9/rNU3iHTln7+JJMSu9zI5vFVVfes6+1SRbR9avo2+ot\nse51bMiNkczi6NHcmp+k7q7De7P9HN0/bumnYi107U6VfeJ1MTxdfapw2yldZ0MPVj+kl/JHqNn0\n17K0i2lqIp3S/wALU+1++13LsJLpvT9FYLbFRU6ZVEzI9eb3LzcpITGOwydkYKK3VyPN3XW322W2\nScpyeW3zbZkAGxGABkA4mFU65p44I3SSPa1rUyqqQOvvdbdJe5bcxyNXm9OCqn1IVuv2lRpEk+vZ\nL1a48ZNnVp9Jbe+HCC9ab5I2151JFS5gpsSTclXqbn0r4DX27T1RVzd13NzlV3Ho1XivjxyTwIbW\nzaep6FEklxJP244N8SfWSY4Kdn6nWWRv2hyXGFC5R8+9nTPVVaeMqtL5StfN+XcjgxjI2o1qIiIi\nIiJwTB2AyX8VFRxErOYABsAAAAAAABk4qpjIMmFU09XeqWny1F33p7lPrU0+/drn7FOjiXrTgnn5\nqVd+1aK5dHVF22e7Dj82Tx082t6XVj3s3dXd6Wmy3e33p7lv1r1Gl7pu1yXELejiXrRcJ5+fmNlR\n2Olgwsn41yda8k8hvEamMY4dhzei7Q1nHU29FX+rg+PxZJ0lNX6OO9L3pcvgjQ0lhposOm/GO7F9\nj5jetajW4RERE6jmC00+j02mju1VpePa/NnPO2yx5lLP5GQAdRoAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAR2/Q6bipn3C9QUXQ07OM1QxrkY1V5Zcnb1FJVW1fY7DPuRWVs7UXHSMoW\nNb5n7q/MbjabRN1BrbQ+mayV7LdUuqZ52NcqdK6Jm8jcp4EwnjLdo9PWGjpm09NaqOKJG7qMbE3G\nPNxAItojVmhL4yVunlp45WoiywJCkEqJ2qmE3k8KZQsM+cdq2nbdpitsWr7JAykrobjHHJHCiNbO\n16LnveSLjKLjmin0agBkAAAqna4v+z9H8db9BxaxVG11f9QUPx1v0HAG42Y+06h/a1H81xPyA7Mv\nadQftKj+a4nwAAAAMLyUycX+xXxBBcyhNAr0+0LUU3PCzJn/AOpj6i/CgdladLqnUs3UqvX9+Vy/\nUX8hdbeTWv3X7NNa/wDqWG0/8Sl3QivwMgApSvAAAAAAAAAAAAAAAAAAMGFMnhuNWyjoqioeuGRx\nucviRMmYxcpRS7WbRi5yjFc5PCKY1Mvq9rijtqZdFC5GO6+rff50RELxY1rWtanJEwUxs1pZa65X\nK8VCZcq7rV/Seu87zcC6ULfbElCdGljyorSf8T4tl7t+Ua7NLoo+rp6VF45b74tnMwqmTClOUBDt\nWavo9MRUc9XS1MlPNKrJJYmK5sSY9k/xrwRDqud5u1xskNbpJ1FWPkei70r1Ru4nNMJ7rqwuMEsq\nkpe55O6ej6JWqj9/G7jw54YKaqtEy0VVLd9A3aGCbOZqJHpJTy/o81RvXhF8ioRS3l4rw5nbp46e\najvdWa7ZZcJeDxyPYuudY0TFZe9B1Kxq1Ue+lkbPz6t1uU8ffEI0freyaf1LPbaeeZlorZd5sM7F\nY+hmX3K55scvmLK05tIo62sW1Xumda7qxcLBKveSL2sdwTj1IvkySXV1utFdp+4tuVN0sLadzlVG\nK6Ru7xRWYRVzlOGCNxb68bM4/wDMHWrK63Km3S7qnhdWTx4NZySlFReKHIr/AGYVFyqdEWeS4byy\n9G5GudzdGjlRjl8bcFgHQnlZKqyG5ZOG9nEmvkZABk0AAAABhQDBX2vNZQ6doNyFzXV0zVSJnvU6\n3u8CfObLVuq6PTluWaXEk8mUghRcK931InWpVui9L1+pLiuo77mSJz0dCxyYSVU4IuOpjepOs5L7\nZZ6Kr15c37q72eg2Vs6iNUtoa7hpq31IcnbNeyvDvNxs60ZMj0v923nVUqq+Fj+bd7m936TkXyIX\nShxRMJwORNTTGqG7H4+L7yt2jtC/X6mV1vlCK5RiuSRyABKcIGQYUwwYNVc7vS2+Peldlyp3rE5q\naa76ljgVaek/GTKuFcnFEX61PHbdOz1Mvddzc5yuwvRrzX9ZU9BRaralttr02gj0lnKU/Zh8Sxp0\ncIQV2qluw7Ie1LyPAyK66hnSSRejp2u4daJ4uWV8JOqC3UtDF0cDEROtear41PYxjGNRrURERMIi\nJyOw6NBsqvTN22y6W+XrWS5+SItTrJ2pQjHcrXKC5fEIhkAtjjAAAAAAAyDirsZVeCYMOSXMGTCq\nnaaKrvtNDlsf4xydnJPKaxIrtc+L16OJeSKmE83NSpu2tUpdFRF3Wd0eS82dENPJrenLcj48/gjb\nVd7pIMtYvSOTqTl5zU4u1z5/i4l8ifapuaOzUlNhVbvvT3TvqQ25D6FrtXx1dvRw/V1v82bdLTX+\njjl+8/5I0tHZKWnwrk6R6dbk4eRDd4wDJaafS0aeO7VWorw/qQTsnY8ylkxgyAdJoAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUPtko9TV0lnZZNPzVNRTu6eC4QuVJKaRHJlqd\nSo5E4oprKDXe2aGmZHV6DWolRMLKiLHveFWoqpnxFka/2hW7RVFTSTU76mqqXObTUrHbqv3cZVXY\nXCJlOpSuW7W9oUjd9mzWr3V5ZdLn+WgBDLrU7WrzqG3XS56LlngoXK+loMK2Fsi8nuwuXOTHDJOU\n1/tgymdniIirxXL1+s602r7Rcp/+m1UnHmrpPuH0OgAQAAAqfa9/UND8dT6Di2Cptr39R2/46n0H\nAG82Z+0y3fr1H81xPSB7M/aXbf16j+c4ngAAAAOuT2DvEp2HkrJOjpp5PeRuXzIZisyivEzBZkvM\novYsvS1WoZl902nX95XqX8UbsSjxRXeTtlibn9VufrLyLj+0Ms7X1P8AsXyiju2m86y34fkZABTH\nAAAAAAAAAAAAAAAAAAAYKw2n3ZtLaWUTXYfUquce8jwrvsLNVesoyqV2p9fMiREdTUzsKueG7HxV\nfK7gWuyKovUu6f6OmLsl8OSLvYNEZauWos/R6eDsl/t5L5ll6OtPqVYqWByKkjk35M++fx+bkSo4\ntajUwcyuutldbZZLnKTb+JVai6V99ls+c5Nv4swpjgQjWmsG6cpadkFMtVcKuTo6SlavF7splVxn\ngmeJAZdc7Q9Oviq9TWGD1Pkc1HyU6pvRb3bhz8r5s9pzuyK4P49y8yWrQ3Ww3o7vH1U5JOWO49tV\nRR651pebbcZZPUuzJCiUrHqxJpZkVVe9W4XCYwgu+ymlt6eqOkZ5rdcIGqrG9I57Jf0XdIrufh4e\nA5X203623xdXaVa2sjrIY1raPOOmajURr2Z68eUyu1KsrIO5rbpa6Ouj03Uglj3I43L1vevV48ET\nUcSUvW7+192DvT1P3UtPKPRpJODawn27yZsrHHZto2laGrvNtjfKx7mSImWq2SN3HdVOKI7GVTyF\nosY1jGtaiI1EwiJ1InURPROnXae07S0EsiST5fLUSe+lkXedjwJyQl6E0I4jx59vmVmpmpWzUJPo\n1J7q7EvAyADcgAAAABxyACN6k1Jb9P291VVv48UjjRe+kd2IcdTant+nqBaiqdl7uEMKL30juxPr\nUpmw2G669uq3i8OclA12GNTgj0RfycfJURFTvndZy33uLjXXxsl8l4su9mbLrsrlrNZLo9JDm/as\nfuxOembBcNcXd99vWe40cqRxoveybq43G/otXmvWp9CxxtjYjGoiNRERETkidiHGCCGnhZDExrI2\nNRrWomERE6kO7ib00qtd8n60u1s5tqbSs11sVu9HTWt2qperCP8AXvOQBjJOVoBjJpbpeqa3R98u\n9Iqd7GnNfH2IQX6inT1ystkoxXNs3rqstkoQjl+BsqipgponSzPRjG8VVSCVd3uF5mWloGObFycv\nJVTtVepDrgo7nqCdJ6l6sp0XvccvE1PrJ5R0VNRwpFBGjWp518alDvaza0sR36NL38pTXh3IssUa\nJdbFt/d7MPPvZqbRYKa3oj3YfNj2apy8SdRIUMgu9NpadNXGumCjFd38yuttstnKdkstmQAdRGAA\nAAYODntYiucqIic1U1coxWZPAOanBzmtRVVURPCaCrv8LO9p29I7lnq/zPElFc7iqOqX7kfNEVPQ\nn2lTdtaDl0emrldZ+z6q82dMdM8b1ktxePP4I99XfqaHLYUWR3byb5zX9zXW5LmZ3RxLxRF+zn5z\ne0drpKXi1m873zuK/wCRs0Io6DV6t72tuxD9VDgvizbpqquFUOPvS4v4GppLTS02FRu89PdO+rsN\nsAW1Omooju1VxivA5pTnN5lLJkAE5qAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAUjtJpfU/V2i9U1USvttvmljrHom90PScGSKiccIq8V8BcFNcrdVRNlp62CWNURUeyR\nrkXyopSO1tbxedQaV0hR3B1HT3RJnVMjUzvJGmcKiKmUREXhnieNP+zhpLCZu91z1qjovuAH0F3T\nT/DM/eQ7j55T/s46SRUX1Wuq4XkrovuH0K3kAZAAAKl2v/1JbvjyfQcW0VJtf/qW2/Hf/TcASDZp\n7S7Z+tUfz3k7IJs09pVq/WqP57ydgAAABTS6hk6Kx3R/LFJKuf8ACpuiJa4l6PSd6dnC9ySInlTB\nNpYb+ppj32RXzZJSt66tftL8yC7GIlbZLi/31Zw8jGoXMnUVZsij3dKb/v6qVfNhPqLTQ7dtS3tq\n6x/vGvlwOjaDzrLv4vyMgArDjAAAAAAAAAAAAAAAAAAIrq+8+pNkqp2r+Nc3ciTtc7gnm5qRbZlZ\n+gtktwkRd+qcm6q89xqqiefmR7WFTJqDU9HZKdy7kTt1ypy3lTLl/wAKF1UlNFS00METd1kbEa1E\n6kQu7v7psuun/M1D35/wLkj0Wo/uGxqqOV2qass8IL1V8T1IdE8zIIZZX7ytYxXLuorlwnHgicVO\n848yjZ51FCbP7jQaq1bdL/W1Mfdkf4qgonL38EOFy7HJVXrxy4kj2r3PFkjsVLF01fdpGwwxJx71\nHIrnL2InLPlNjqvZxaL9J3bTudQ3Nq7zKuHgu8nJXoipnx8F8JVlDXXPSGsfVHWsM9Q58SQUtxbh\n8bERFyqNanNU8vPguTmeYrclylzl2F5WqdRb09cuNcOFD55S4Y70fQ1ltyWy00FAjt5KenZHvdu4\n3GTaYQ8VBcKO4UsVTSVEc0MiZZIxd5q+U9x1eJSycnKTlzzxGDIANQAAAAYUAxkiGq9W27TlH0ky\npJO9F6GnRe+eqehE61PBrLXVv05AsTd2ate3McKLwRPfPVM4T0le6Y0Tc9R13q7qRXuY9UcyFyYW\nROrKJ7FidTes5Lb5b3R1cZ9r7I+LL/Z2y6VT6dtCTr0y9WPKVrXZHw8Tzae0zddbXFb3fXP7jVfx\nbPY9I3qaxEXvWJ29Z9BQU8NPCyKJiMjY1Gta1MIiJ1IhzjjZGxGsYiNRMIidSHYhJTRGtd8nzk+b\nZx7S2pdrpx6qrphwqpj6sF/UzgyATlYYycHORvFVwiHjra+mooulnkRqdSc1VexEIPNV3PUEqw07\nVjp0XDs8v8S9fiQqtdtSrTNVwi7L5erXHi35nXp9HO5b76la5zfL4GxumpVdJ3Nb035FVU30TP7q\ndYtemXK7um4LvyOXPRqueP6S9ZvLXZaW3M7xN6VU76Rea/YhuTlo2ZdqLY6jXy3pc40r1I/1J7NX\nXXDotLHdXbN+tIw1uEwmEROSIcwC9SSXArQADYAwDplmjhar5Hta1OaqppKUYrMpYXiZSzyO465J\nY42q57kRqc1UjtTf03ujpYle5eCKvDzJzU88druFc9JKuVzW9SLz8ickKmzaynLo9JTK6feuEV5s\n6I6Zpb1st1ePN/A9NVf42ruUzFe7kiry83NTytt1yuCo+qkVjc8EX6k6iQUtvpaVE6KNM44uXiq+\nU9xotnajUve1t2V+rhwS8+826euvhTDH7T4s19LbKWl4sYiu63LxU2CIZMltVTVTDcrrUV3Lgcsp\nSm8ylkxgyATGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5\n/wBs1Xc4KuwPtVirqi40rnVFLX0zXSJA7eRHRvYjHI5r0TjxQ1lJtn1yyJqVWzevlkROLo0miRV8\nSxPx5y6NX6utGkrO+5XF7t1HbkcTOL5Xrya3PXwypTkG1Dalc4mVds2fqtLJxjVyvcqt8feZ8eAD\nu/DVqz/5YXRPCskuP5B9DouUKY0bta9Vr36gX2zy2m6OXETHq7dlXGcd8iK1cJw5ovaXOgBkAAAq\nLbAv+prZ8e/9NxbpUO2H+p7Z8dX+WoBJNmvtLtX61QvnneTog2zb2l2rxz/znk5AAAAMKQDabKsW\ni7oqc3dEz9+RrfrLAKu2ty7mk3s+EqYk8y731HfsqG/tLRR/fR/M6tEt7V0L9tHq2Vs3dF0C8t6S\ndf8AmuT6ixyHaDgSHSFlbjGaZrlTwu776yYGm0Z7+0NXLvun+Zpqnvam5/tsyADjIAAAAAAAAAAA\nAAAADBHdTXqKzWmoq3YV6N3Y2++cvBEJCq4TiURqKpn1ZqmG1Uzl7ngcrXOTinD2bvJyQsNmaWOo\n1G9ZwqrW/Y/BFrsfRR1Wp3reFFS37Zd0V2fE3ezWzy7tTeanLpJ3K2Nzk4qme+d5VLcQ89LSxUtN\nDBC1GxxtRrWp1Ih6SHXaqWq1U7XwT9VdyXBIg2jrJazWW3PhFvEI+7FcEjIAOU4QeOtoaSup5Keq\ngjmhkbh8b27zVTwop7DBhrJlNp5RGdNaUs2mqepgtkLo45pukcjnq/jjCJl2VwiEmGAFhcEJSlKT\nlJ5b5tmQAZMAA6nyMjYr3uRGoiqqryREASbeEc1Kk1vtGitjnW61YmrnLuuciZbEq9WPdOXqQ0Wq\n9oNbdan1H0yj3ve7ddOz2Tsc0jzyTtcpKdFbPKWyNZWVu7NXqmc82xZ6m+HtU4pWzulKunl2z7F5\nHp9Ns7S7Ophq9pxzOXGnS8pS8Z9yNHozZ7O+pS9ag3pap7t9kL1zh3vnrnivYnJC6kTGEQyiIOJP\nVTCqO7H4vtfmU20No6jX39JdLhyhBcIwXckcjBjJ0z1EVPG6SV7WMRMqqrg3lOMI70pYRxJNvCR3\nKRm76jp6LMUWJJuSp1N8a/UaWtvtbc5e5baxyNXm9OCr91Db2jTdPR4lnxLNzRfctXwJ9ZQ26/Va\n6cqdBwhyle1wX8PeWUNNTpoqzVet7NS5vzNNRWWuus3dVwe5GLxRq8FVPAnuUJ5T08NPE2OJjWNT\ngiIh3IhksNDs2jRptZnY/Wslxkzm1OrtvazwguUFwSMgAsTlBgHnnqYadm/LIjU7VI5WQhFynJRX\ne+BlJt4R6FPPLPDC3fke1qJ1qpHqi+Syv6KjiVVXk5U4+RDhDZqupektbK5F7M5Xj8yFTZtWVsuj\n0VMrX7/KK+J0x026t62e6u7tZ2VF+c9ejpIlc5eTl+pDqjtFbVuSSslVPBwVfm4ISOmoqambuwxo\n3tXr856jWOzLr5b+tvlPurjwiv6h6iEOFMMftPizw0tDTUrcRMRFVOa8VXynuALeuquqO7CKiu5c\nDmlJyeXxMgAlMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAFCbR4Kat2lbOqK4I11E51Q7cd7B0iYwip40RC+skA2haFptY2iOn7oWmrKaTpaOpTK9G/hl\nFRFRcLjj2cyroJv+0Va2LSJQ0FxazCNqXvhyvlV8ar5UyAbXbtDTR2/Tlwjw25QXWNKRyJ3y575W\n+FMoil+IfP8AprZ3rG76hodRa6uDJZKRd6loWbqtjcvFN7cw1MLxwmcrzUv9ADIAABUG2H+qrX8b\nd9BS3yn9sP8AVdq+Nu+goBKdnKf7GWnxTfzXE3ITs69ptp/Vl/muJsAAAAYKX20Tq2z22JF9nVKq\np4GsUuhSgNs6unrbBSMXvnNmwnherGoXH9n4721tNnlFuXyTZ37MWdbV4ZfyRc+n4egstsixjdpY\nkx4mobhDqhYjImNRMIjUTB3FVZLesnL3pN/icU3mc3+0AAaGoAAAAAAAAAAABhADy1dVFS08s8r0\naxjFc5y8kRDKTlJJdpmMXKSiuLfIh2utRpZ7WscL0SpqMtj/AEU63eTJ4dnmnfU63LWzsxUVKIuF\n5tYnsU8vNSG2iCbWOqZa6pavckDkXdXj3qexZ5eal8NREaiJyLvWNaHSR0UP0k8Tufd3RPRbQa2d\noY7Ph+lsxPUtfNR+B2AAozzgAAAAAAAABgKCHaq1lbNN0+Z3dJUORVigavfO8Kr1J2qppOcIR3pS\nwibT6e/U3Rqprc5y5Jczf3S6UNro5KqsnbFExMq5y/MnavgKDuV61Fr+vdbrXE6G3NdiRXcExzR0\ni+Tg1DFvsupNoFe2vucr4Lc12Y0TljsjTycXKX1arTb7TRx0tFTtiiZyROte1V618Jx/e6p9sKvx\nkek/uOwl7Go1/wA4Uv8AnI0mldH2zTtNuwN353onSzuTvnr9SdiITABTthCMFuxjhHm9RqLtTdK6\n6xznLi2+LBjJ1yzRwxufI9GtamVVV4EHr9R1FXJ3LbGOVV4dIicV8SLy8anDrdo6fRx68szfqwXG\nUn3JG2n0t176kequcnwS8zf3W+0dvRWqvSSqnCNF9K9SEXhobrfpWz1T1ZBnLUx9FPrU2tq0zHE5\nJ61UllVc7q8Woq9vapL0RE4IVkdHq9pSjZrfu6uaoT5/xHY9RRpFu6frWdtrXL+FHiorfS0MSRws\nRqdvWq+FT3YBkv66q64RhCKjGPBJcEislKU5b0pZb7wAeSprKemTeleidida+QWW11x3pyUV3vgh\nGLk8Lies81RVwUzN6WRGp4evyEclvNXVP6KiiVM+6XiuPQhygsUkr+lrJnOcvNqLx85US2pZe9zR\nUub998Io6Vp4w43S3fDm2YnvdRO7oqOFVVeTsZXzdRmCxzzv6Wsmcqrzai5Xz9XkJFBTwQM3Yo0a\nnYh3ivZU7mp626Vj7ILhFB6lQWKY7vjzbPPT0sNOzdija1PB9p6QC3rrhXGMYRSS7jmcm3lmQASG\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACl\n9ql+1ClZp/S9gn7nrbvJIj6hFwscUeM4XmmeKqqccIWTpmzz2WxW+2z176ySnjVr6h6YdIqqq5VF\nV3pUqna5BdLTctM6zoKValtokkbVRJwXopeG9njhOaKuOGTcUm3HZvPTskku76dypl0UlNMrm+BV\nY1yeZQCC1lDqDZVerfXQ3meusFfW9FVU0yIiwulXO8nNM5VXZRE7FQ+lz5h1Vqqn2n3iz6Z09FLN\nRR1TKiurHRqxqMZ2I5EVEx24yp9PIAAAACntsP8AVtp+Mv8AoFwlObYv6vtHxiT6IBL9nif7HWj9\nWT+Y4mhDNn3tPtH6kn8xxMwAAADipQOvP9M2iWClT3PQL55N76i/lPn6VX1+2VjcbzKeRE4dSRwb\n30lLvYS3b9Vb+r0tkvwwWGzuE7p+7VJn0EnJDIBSFeAAAAAAAAAAAAAAAcFKb2hXmatqoLBQLvvc\n5OmanW7grW/WpYOqL7FZLVNUuwsi97Ez3z15eTrUgmzuwyyukvtaqvllVehVycVz7J/l6vAXGza4\nUVWa+5ZUOFUX7U/+x6DZFVemqs2lfHMa3u0xft2Pl8iwNN2SKy2yGlZxciZkd75y81JAYMlVZZO2\nyVk5ZlJ5bKO66y+2dtkszlLLfe2ZABoRgAAAAxkAwpxc5GplTwXK60NrpX1VbUNiiYmXOcvo7V8B\nQ131ZqHWta612KF8VLwSR+cK5q9ci+5b4E4qQXXwq4c5vlFc2WuzdkajXOU+FdEONl0+EYr+pKdX\nbTIqR62+yp3RWOduLInfMY5epqe7d4E4Gt0ts4qqyo9VtSudLLI5HpTvXKqvUsip8zU4Ey0hoC2a\neY2Z+7UVqph0ypjd8DE6k+csFCKFE7ZdJf8ACHYvMsNRtXS6KmWl2VFpPhZqX68/BdyOuNjY2o1q\nIjURERETB2mDoqKmGnjWSZ7WNTmqrg6ZThCOZS3Yrt5I83iUpYXGTO80d1vtJQNVFXflxlI0+tep\nCO1uoqyuk7mtkbuPu/dL4s8vKe216XiiVJq1Ulkznd5tRfD2qUFm09Tq5yp2fXnjiV8vVj5d5Yw0\nlVEYz1csd1S9Z+fcamKku1/kSWdyx06LlOz/AAp1+NSbUFspKGLcgjRM83c1VfCpsGo1OXAzjidm\ni2VTp5dLZJ23vnZLi/h3EOo1llq3I/d1rlBcvicjBjJ4aq4UtL+UemepqcV8xYW3U0x3rJqK73wO\nWMZSeIxye88VTX01Kn42REXqROKr5CPyXS4VqrHSROa3kqpz8q8kO+msLc79VKr3LxVv2r1lVLaV\n+oluaKne/eS4R+B0qiEON0sfsrizolu1bVuWOjiVPDzXj8yHdT2FXL0lXIrlXirUXn41JFHDFExG\nRsRqJyREO3BtXsl2S6TWXSun7vKK8kYep3Vu1R3V39rOmGCKFiMjY1qJ1Ih3mDJbQhCCxGKS8Dmb\nb5gAG5gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIAAAAAA\nAAAAAAAAyAAAAAAAAAAABkAAAAAAAAAxkAyDGTIAAGTGQAAZAAAAAAAAAAAyMgAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAHFURUVF4ovNFIbVbO9DVczpp9N29z3LlXJEjcr4cYyb6vvlqt1XQUt\nZWxQzVj1ZTRuXjI5uMo3t5odtzulvtVFNXV9VHT00W70kr1w1u85GpnxquADja7ParTB3PbqCnpY\nc5VkMaMRV7VxzNmdFNURVMEM8MjXxSsR7Hpyc1yZRUO8AAAAFN7Yv6FZ/wBvJ9FC5CmdsX9Ds37a\nX6KAE10B7T7P+yf9NSYkO0B7T7P+xd9NSYgAAAHB3IoHQbvVDaJf63mjOmx1+yk3U+ZC9LhUpS0N\nTULyjic5f8KZKU2K0rujvNY9cq98UaKvPLUVy/SQu9nfd7M2pb+xCteO8+JY6Xq6TVz/AGVFfFl8\nAApCuAAAAAAAAAAAAOJwfIyNjnuVEREVVXqOalS7RNQyI1llosumnwku6vFGqvBqfreg6dHpZ6q+\nNUfi+xLtbOzZ+is1uphTDhn1pdkYrm2R+d82uNUtiYq9wU/WnBEYvNfG/GPEXpBDHDEyONqNaxqI\n1ETGEQjOktPR2O2RxLhZ399M9Oty9XiTkhLUOnaWqhbONNPCipbsfHvb8zs2vra7ra6NPw09C3a1\n398n5jBkArSnAAABgdR0TTxwRukke1jGoqq5y4RETtASlKSSR3ZINq3XVr07ErVVJ6tW5ZTtXj43\nL7lCDaj2l1VdUepemInSyyKrUqETKr+zav0l4Hu0psyjhlS435yVVW5d/olXea1y9blz3y/McUr5\nWPco49836qPSUbJ02iqjqdqycU+NemX6Sfn3Ii9v09qjXtYy4XaZ0FCi5iTGOC9Ubf8AzKXtZ7Lb\n7NRspaGnbHG3zqvaqrxVTaNa1qIjeCInBEOZLTRCrjzm+cnzZw7S2vfrVGpRVWnh+jphwjHz72YG\nTxVtwpaKLpJ5WtTqTrXxIQme63W9SOgoo3RxcnLnHDwu6vEhx6zalGlfRrNlz5Vx4t+fccmn0dty\n3uEa1znLgkb+66jpaLMceJZveouETxqR+C13W9SpUVsjo4vcov8A5U6vGpvrXpqlo92SXEsqccqm\nETxISbCHDHQavXzjZrpbtfNURfD/AHPtOh6qjTLd00cz7bWuPwR4aK30lFHuQRo1Otear41PecVU\n11XdKSlyjn5f71vFS3c9Lo6uO5XWuXYcGLbp560pP4s2R4Ku50lLwe/LvepxUj7qy63FVbTsVkfL\nKLjzuX6j3Ulghj7+d3SO545J/mVr2jqtT1dFRw/WT4L4d5N0FdfG2fH3VxfxPE64XK4KrKWNWNzh\nVRfSv2HrpbBEi79S7fdnOE5Z8PaSFrGMajWoiInBERDkhJTsmEpdJqrHdPx9VeSMS1LS3a47i8Of\nxZwZGyNqNY1EanJETCHYZBbRhGKxFYOZvIABuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAFAUwwRK86ldbL3Y7b3IkiV73tWXpN3o93Hud1d7n2oStEKs1l7d\nNF/tpfS0tRCOuTlv57JYI4ybssXdgGMoRjVeoY9P2p1X0XSyuekcMSLjfe7q6+Cc1IwlHtNdD3Z6\nrUSS7u8lD0Ldz9Xf558vlMSuSckot4547DLnh43W3z4Fn5MELsesKa4WGquVTGsD6TfbVxc9xzEz\nw8fUR631GvtQQNulNX0tvpnrvQUzokkV7epXuVM+VMB3R6uMvKzw7jHSLEccc9xauUGSstJ6hvtx\n1Ld6O5NSFKaBiLTt3Va2RFRHOa5ERyo7mmVU7J6zWl5udfT21zLZSUz9xKiaHffKvWrUemMGFcpR\ni4xbz/IKxNZ488FkjJV9DedT2jUlvtF6qYKyKsa7oaljEjcitTOFRqIng8pi/wB91JHrGGz2yaNG\n1FEisSRrVZG7Kq6RVxvLhG8EzgdPDGePPGO3JjpFiXPg8fMmOpbxU2e2uq6e3SVr0ka3oWKqKqLz\nXvWuXh4jsvV+obLQpV1m+jXORjGtaqq5zuSf5qQbUdZq3T+lKiee8smq0qo0jnZAxqpGvNFaqK3P\nkPDtRgua0VHUJXIlIssTVpujTPSrnv8AexngnUaTulHexFvlw4cMmJ2YUmucY5J7qzULtPWh1elK\nlQqSsZ0av6PO915w70EjY7LUXtQqLXNLdabQz4rncEq5+641WZI0jy1V4JhqY4Gx6PaJXUja+nr6\nSjRY9+Oh6Nsiq3GUR73Jz8WB0rUppxbxh8OwdI97G6/VzjtLPygyQSy6mqbxpCpuaNSGpjhnRUbx\nRHxouFRFzz4LhSN2Ku13qO0U89NcoKRrEVqzviY+Sd7V75d3d3Wp1cEJHcs4UW+GeHcZ6VdXGety\nLfyMlRWfUWsb0lTaoUpqeso5HNqqxzd5reKo1GM5K5cL4OBtbBeNQUupJLBeZ46ly0/TQVLGIxXI\nnNFRqInzdRhXwbjwfHk+zIVifY+7yJLQ3mrqb9dLa+2yRQ0rY1ZVKq7su+iKqIitROGccFUkmSA2\ni8XKfW2ordLUK6lpooFgi3WpuK5jVXiiIq8+tTXSXrUuoLtcKKwzQ0lLRv6OWsexJHOk60a1yKnA\nxG1bsebbz58DO+l48cFnopkre0XnUNvv8Njvbo6lZ4nPp6uNm5vbqKqo9qJhOXgLGJoSUllGylnw\nOQyDCmxscHOa1FVVRERMqpXU+0BtRUSwWKz1NzWNcPkYu5Ei/rYX0GdqFxno9LyRwuVrqmVsKqnv\nV4qnlRMEwstrprVbKaip2NRkbETh1u61XwqpzuU52SjGWFHm8dr8yJybnuR4cMsiNJr+FtVDSXm2\nVNrmlXDFl76N3+PCegsNFI7qmz013sVdSzNRV6Jz41x7F7Uyip9ZF9JahkTQPqhULvuo4ZWqq+66\nL2PzYQwrHByjPjhbyfgN5xnh8n/IlVPfEqr9V2yng32UsTXVE+/hGSP4tjRMcVVOK8eB5dPakW81\nt6pu5EhShnSJHdJvdJlXccYTHsfCeHZ9Rvg01T1My5nrHvqZnrzcsi8F82DR6Ee2O861e9URra1F\nVV6kRX5MqclKtPti2zG8+o/eb+RauUMlT0d11jqrpaq01UNst7ZFbC98SSyS45qqORURDZ2TUV5p\nb76g35sTqiSPfpqmJMNmRqKq5TqXCeAzG5NrqtJ8m+0yrY/DlnsLFOOUK2uF81Bdr7VWewSxU7aN\nre6qyRqP3XO5Na1UVOrHI0t2vetbLWWigraqGRtRWRI2tjjanSMyiPjexUVEXjwVMDp48+OM4z2d\nwdqWXxwueC3amohpqeWeZ6Mjjar3uXkiJxVTWWG6zXa3RVz6R1O2VzliY5285Y84a9eCYVyccES2\nhTvqI7PY2OVFudW1siovHoo1RXelCQaoqqi2aYuE9E/oZYKf8U5Gou7jCJwcipwMu3G/J8omXPrS\n/ZWWSfJkqmgl19f7ZTV1LcqegjWNNxHRNkfNjgr3qqYajl4oiIb7Rmoa+7QV0FwjYysop+im3PYu\n54VPMqCNqk8brWVlZXNGFYnu8+tyNtZL56pSV9PNB3PV0c25PBv7+EdxY9HYblHJxTgK2+dxXqgo\nJ6fdhrGuSGo3+CzN49G5uOGU5LniRa/yLaNbWCvZwjr2vpKhE61TG4q+HK/MbjXlCtXpmtcxVSan\nRKiJ6c2uiXeynk4GnSSUJPthLj5DefXXbH8e0maA0unrn6q2agruuaFrnJ2O5OTzm7OhPPE3T3km\nAAZNgAAAAAAAAAAAAAAAAAAAAAAAAAAAQXWWiKfVK0Ei3avoJ6PpeimpJNx343G8i9qd6hOiDay0\n/qa79wyWPUz7TLT9Ir0SLpWzb+7jeyqIiNwvUvMA+ftaaZ1zZNSaKi9daXSolrJUoFqoujSGRu5n\ne4vVUXKZ8RtNol42pt0dd6G/6coe5JEjSS4UsybrcSNci7iuV3FUxxRDWazZtOtupdFeq01BdqiO\ntldbuiRIXSv7zebJwY1qcsGz2ia81NXaOu1qvWh663OnZFu1LX9LCisla5d5d1Eai4wnFQCTaf20\n6ct1rtdFeLddLe5lJE1sksCqyRGtRN5mOKp18i+aeeKoginidvRyMR7FwqZRyZRcKUxpbaxs8qrL\nbbbVXWOKSOliikjqonNYqsaiLlyorMcOtS54HROhidCrViVjVYrfYq3HDHgwAd4AABS+2Nf9Es37\nWb0IXQUttj/o9k/azehoBOtBe1Cz/sV+kpLyI6E9qFm/Yf8AmUlwAAMZAIZtBrUo9IXeTiiuhSNM\ndsqoxPSaXZRTdDpGCXGFnnmfyxwR6sT6Jqtsdf0Njo6RFTNRUbypnHexJnPnVCwtL0PcGnrVSqmF\njpo0VPDjK/OXc/udgVrtv1LfwgsfmWMups2K9+xv5LBIQAUhXAAAAAAAAAA4qZPPU1EVPDJNK9GM\nY1XOcq4REQJSbwjKUm0lzZpNSX6GyWyWpfhZPYxM985eSFeaCsM9dVSagr+/e96rCqpxVV4K/wAX\nUhqWpU661Irl3m2+n6uKYYv/AJn48iF6QQxwRMijajWMTDWpwwiF5c1s7Sejr/EWpO1+7H3T0eoc\ndlaD0WP+KvSd0u2EOyP9T0gAozzYAGQDBhTg97WNc5zkRqJlVXgU1qjagxsi2+wMSpqXO3OmRMtR\n3YxPdL8xDbdCuOZS8u9+R3aDZur19u5RXle1J8IxXe2WBqPVlp09TK+rmzKqL0cLeL3r4E6k8KlK\nK7V20apVETua2Ndx64248yyORU8SG+07s0q7hUeqeppXySSLvLAq98v7RyL/AMKF3QU0FPEyKGNs\nbGphrWphEROo5lC7UcbOpX7na/MvHqtnbHju6Td1Or7b2swg/wBhPm/Ejum9I2nTtP0dLDvSuROk\nmdxe9fCvZ2IhKAaG56goqDeZnpJUT2DV5eNeolu1Gl0dO9ZKMIo89KWr118pSc7bJ8W3xZvHyMja\nrnKiIiZVVIfcdUsR/QUDOlkVcI/HDyJ1msbT3q/PR8zuipl4p2eROvxkwt1noaBn4qPL1Ti93Fyl\nP6RtDaLxpo9BR+tkutJeCOvotJpVm6XS2e5F9VebIzRacq6yXum5yOVV9xnivjVOSeBCawQQwRpH\nExrGpyREO7kamrvNLTZRHb709y361OqrT7P2ZCU5SSk/Wsk8ykc9t+o1csez2QjwijbZNXWXekps\nort96e5bxNJ0l2ufBidHEvkTHj5qbOjsdLBh0n4xycePLzEXp2s1fDR07sP1k+C+CMdDVX+lll+4\nv5s1vdN1uXCFvRxLzVF+v7DYUlhp4sOlXpHdnJvmN8jURMImEORNTsmve6TUWO6zvlyXkjSepljd\nhFQj4c/izi1qNwiIiIicEQ5gFqlFLCOcAA2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyMgADIyAA\nMmMgGQYycXPa1MuciJ2qpjKBzBrpLrbIvylfTN8cjU+s8MmqdOxezu9Gnjlb9pq5wXOS+Zq5QXOS\nN/kERk13pKPneKdf1cv+iimvftL0a3//AGTnL2JBN9bTV3VL/Mj80auyte0vmT4FbP2qaVb7F9U7\nxQqnpweKTa5p5vsaWsd/hanpU1epoXtox01XvotYFNSbY7Yn5O11C/rPY30ZPC7bNl2IrG1y+Gpw\nvmRimj1mnXt/gzXp6veLzBRqbU77N+Q05nswsj/otQ5ev3XM35LTip44ZfrwY9Lp7N5/Bj0ivx+R\nd4yUeupdqU35Oyo1F6+51/8AM44LVbYp/YUzo/E2mb9NVHpceyuz6WOnXZXP5F5gpBtBtfm9nWpH\n+s6BP5bVOfrW2mzcJr81qeCd31NQx6TPson8h0z/AFU/kXYYyhSK7O9YzfltSu8KdLKv1ocF2S3O\nbhPqFF7cxOf6XoZd1/ZQ/mh0tv6l/NF0y1lJD+VqImfrORPSeCTUNij9ndaRPHK37SrYNjVG3HS3\neRf1IWs9KuNlFsisLfZ1lY/ysT0NMKzVP/JS/wBw3r3/AJa+ZLptbaUhaqvvVLw5o1++vmblSTRS\nMljZIxctc1FRfApXUeyvSrfZsqX46lmVPo4LDghjghjiYi7jGI1qLx4ImEJq3c/0kUvIkj0ntY+B\nWWsvbnov9rL6WlopgiGpdI02oKiinkramnfTI9GOhVGr3+OOVRVymDSfg5//AJPef4/+RHHpYOeK\n85eeaRHicbJtRypY7Tr2l/iYtP1r0XoKa5MdKqccJ2/MWSk0SxJIjmqxW729nhjnnPYaWlsFIyxp\naauSWthVrke6d2896OcruKpjlngRb8G1u3O50u1zSjz/AEVJvxeOzlyyZ3bIym1FPe4+TxgziSlv\nKPNL8CEUVPNcNO6+qqVFWGoqUdCqJjeSN6vcqeNFLb0jVU9Tpq1SQKitSmYxUTqcxN1U86HrWGgs\nVmlSlpFSnpoXOSFnFVROK43uar4SuLdYNKXGnWvtl7q6Cmn76amjqEjRF5KjkXKtNIxdUopYfUSf\nHHLtNYxcHF8G+P4vJ7tPVMFTtF1TJEqKxIIWbyclViNavmVMHRbbjqrV01dPb7xHbaGGZYmI2Fs0\nj8JnLt7GPIqHVs/pKD1yaiqbYzFujbDBA5MqjlanfYVefFMr4yQVOz+3Pr56uiuFdQrO7elZTybr\nXKvgVF7TWuNkoQfZ1spPGcvgzEVKSz+2847SFVdvlt+u9MwzXior51c50iyqn4tFRcIiJyRSUS4X\nanB/4Sv0lNhFs/s1PV0FXTyVDJ6ad0qyq/pHzOdj8or855cMYN4un6ddRNvXTSdM2mWBI+G5u5zn\nlnJtCmUcf6meeTMa5Le8ZJ888iL7VfalJ8Zi9J59qHtcofjkXoUmWpLBT3+2LQzzSRsWRr95mM5b\n40UzfbDRXu2rQVe8jFVrmuauHNc3kqczedcn0jXbu4+BtZBy38dsMES2qLnSUnxiL0ljRcIWfqoQ\nqfREFRp91oqLnWyxrOkvTPcjpEx7nKoqYJw1uGInYhsoS3rJe8kbRT3svuKc0L7Qr346n+WSzZx7\nS7V4pv5rj2WfSlJarNV2uKomfHOsm89+N5OkburjCIniNpYbPBZbVTW+GV8jId7D343l3nK7jjCd\nZpVXKOM9laj8TWMGnF+f4shWhPbBrT46z0vM1P8AanQ/+FO9Kkrs2nqe1Vt2qoppXurpklejsYaq\nZ4NwicOPWZk09Tv1HDe1nlSWOmWFI0xuYVV48s54h1S3al7s02Iwahj9pv8AHJEbD/aRq39jT/Qa\ndWzNyQR32glXFTDcHrI1eeF4I7xcCY0Wnqakvtzu7JpVlrWsa9i43W7iI1N3hnq4ngvOjLbcq7u+\nOepo6xUw6emfuOcicO+Tii8jEapQ3JLi1vfKTyY3Hz/bb+DPfWaipKW+W60KySSeqa9ybuMMRiZy\n7jnC4XBIuoiti0jbbNPNUtfNUVcqYkqZ378ip2eAlZ0Q3sdbn+RJHe45K4qdI6qlqZ5Y9aTxMfK5\nzI0gVUY1Vyjc9ImccicW6mqaahpoJ6laiWONrXzOTdV6pzcqZXn4z34BiFahyz8W2FBJ5X5lf7SL\nTPcdMzLA1XS072zI1Oao3g7HiRckg07faO92unrKeRqq5qJIzrY/raqeg36kCuGz6zVFXJV0c1VQ\nTyezdSyLGjvJyTyEbjOE5Sjx3sZXl2msotS3l3YZstYX6kstjq5pXokskbmQMzxc5yY4eBM5UhDb\nNV27ZVVU8jFSZ0Lp5GrzRFejsePdTiSm2aBstHWMraiSprapiorJaqRZFb2cOCcOrJMKqmiqaeen\nkblkrHMenajkwprKuUukcubWEjG65PL4dXC+JptJOR2mbMrVynccSf8ACV7pmCSon2hQxcXySva1\nE61VH4JHoCSSkoq2xVK/6TbZ3MX9KORVex6eBc8DfWXTlNZ6y61MU8r3V0ySPR+MNVMrhuEThxMu\nDs6N9m40/iaxi3GrwfH4LBoNmdVTzaRoo2ORXwulZI1PcqsiuTPkU1moHsq9ommKeBUdJTskfMie\n5aqZTPm+c3dfoK2z101bR1dZb5plzKtNJuI/xouceQ2dh0rarH00lO2SSebHSzyvV8jsdq9XkMbl\nstyMopRi1nxx3Do5bsa+HZx8ERTQzkptRauoZlxULWJKiLzVjsqnk4p5zO0Wqg7q0zTZTplucUiJ\n1o1qoir85xukOmb7qGqppZ6i3XWi3WpUNekTpGuTKbq8UXgvjwpGbtZrTHftP0NBVy11xkrWy1M8\nknSvSOLiiKqcETrwnYRcVXCCxjfST+JrPMYTisdv49hKNWordb6MkdwYskrUXw8PtJJrr2pXn4uv\npQ8OvrZUVVnjraRu9VW+ZtTEnajF75PNxN1PFR6m06rGzObBW06Kj2YVUR3HrymUJdx4th2t5XxN\n93rTXvRz+GDOlExpqzfE4vooRLQvtg1p8eZ6Xk/ttCy32+lo2Oc5sETY2udzVGpjK4NXZ9PU9qrb\ntVRTyPdXTJK9HYw1UzwbhE4cesl3Xv1v3UzO48U/s8/kRLaJ31XpSJqZet0Y5ETsaqZ9JN9QPYyx\nXRz8bqUkuc/qqRCSP1b17E5MrTWSJd5epZ5kzup4kwq+I9evqiV9qjtNKv8ApVzmbBEnY1F3nuXw\nInMhbe5bJe0+H5BcHZL4fI7NnEb2aNtSOTCq2VyeJ0rlT5lJyeK3UcVDQ0tJF7CGJrG+JqYPcdMV\nuqK+BvWsQivAAA2NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAACH6g0fR3676fuU9TPHJaZ3ywsj3d16\nv3c7+UVcJu9R7dVacptS2Gus9VPLFDUoxHvixvpuPR/DeRU4q3iSMAEXfo/TtRbqSirbZS1bYYY4\nkfNExznJGiNRVXHPgSOGGOCKOKNqNZG1GsROpqJhE8x2gAAAAFK7Y1/EWRP05/Q0uopTbH+TsX61\nR6GAE/0N7UrN8WT0qSwimhvalZfirfSSsABQYcuEAPn3aN/rfW9jtCcWtRjXJ+1dl3zNL/amGt8C\nHz9plqXvajcrhzjp3yvRfC1Ogb8x9BoXe2fu69Bpf1VCb/inxZZbQ6kNNT7lab85cTkACkK0AAAA\nAAAAA47xS2tb3U3q5x6ftvfIsiJKqcnOTjjPY3mpvtdauW3Qrb6J2ayVMKrePRovL/EvUh6NC6V9\nSaXuqqandkyd8i8ejbz3fH2l1o64aKj025df/Ih3v3n4I9FoKK9BpvtHUR674aat+1L3n4IkunrH\nBZbdFSxJlU4vf1ucvNVN9gGSnssnbZKc5ZcnlvxKG62y62Vlkszk8tvvZkwZOqSRkbHPc5EREyqq\nuDUjSy8I5qRnUOqrPYKfpaydN5U7yJvF71TsT6yvtT7UWMk9T7Azumoeu6kyIrmov6Ce7X5jX6e2\na1txqPVTU08j5HrladXd8v67mry/RQ45alzluUR3n2y9lHotNsWqiqOq2rY6anxhUv0lnkuxeJpZ\na3V+0OpdDTM7ltqOw/j+LTHvl4K9fAnAt7S+ibRp2LMMfSVCph9Q/i5fF2J4EJVT0sFLAyGCJscb\nEw1jUwiJ4EOU08MEaySyIxqJxVeAhTCpdJbLMu2T7PIh122bdRX6LpKlRpuyqHOXjJ9rO88FdcqO\nhj355ETsROKr4kIrX6pkmf3PbY1e5Vwj1T0IcaLTE9RJ3RcpHKq82Zyq+N31IVlu17L7JU7Pp6WX\nJ2PhCPx7TlhoYVx6TVWbi7ILjJ/A8812u14kdBQxOjjzhy54+VeryG4tml6WmxLUYllTiiY71PJ1\n+UkcUEFNEjImNYxqcERMIaqrvtLDlsf41ydnJPKQrR6bTyjqNo3q27sUvVj/AAxMy1Vti6LS19HX\n4c35s3aYanZg09Xe6WDKMXpHJ1NXh5zU9Fdrn7NdyJerki+TmpuaSzUtPhyt33p7p31IT+l67V9X\nS09FX+smvyRzuumv9JLefur+bNN/ra5/93EvkT7VNvSWSkp8OcnSOTrdy8xuMHJDo0+yqYT6W6Tu\ns96fHHkjSWok1ux6q7kYRMHLABaJJcDnAANgAAAAAAAAAAAAABlAAYNbUXe102enr6ePHNHSNb6V\nNDU690jTezu8Lv2aOl+gjiN2VrnJfM0c4rnJExMFaT7VdLR56NamTsVsSoi/vYNJU7Y7ezPQWuZ2\nPfyMYnzbxFLVUR5zXw4mjvqXtFzZBSLdpupKvjRaaVUXkqdJL87WtQyuodqdV+QsrY0Xl+KRF88j\nkQ19Lq7IzflFjp4dm8/JF2gpBtFtfq/ylUkCL1K6Bv8ALRynJdE7QKr+k6k3F8E0i+hEHpE36tE/\nyMdNLspn+RdmUTrPBNdrXB+VrqdmOp0jU+sp52yOvqVRavUO+ueuF0nzuebCDY9aW/lblUu/Vaxi\nehR0upfKj5sb9z5VfNk7m1lpaH2d6pPEj0cvmTJq5dpOjY+Hqk5y9jYZV+fdwa6LZTpZvs+6pPHL\nj6KIbGLZvo6Pj6mK5e180rvm3sDOsfs1r5sZ1D9mH4msl2raXYneJVSY7I8fSVDWTbYbQ38nbaly\n/pOY361J3Do/S8PsLNSJjrWNHek2kdotUOOjt9M3HvYmp9Rjc1b52Q+C/qN2987EvJZKeXbHI9Vb\nBY2uXq/0nK+ZGHJNpOrJ/wCj6bVc8l3JX/OiIhdqMa1MI1ETqREOWECpv7b38EkOjt7bfwRSPrr2\nmz/kbCjU8MDvrchhavbDUewpeiTtRKdv01Uu/CGTPo0+2+fzHRPtsn8yj/Uza9UezuKR+N8Tf5bV\nOS6P2jz/AJbUCN8U7/qRC7gPRIvnKf1DoF2ym/iUeuzPU8/9I1IqovPvpX+lUOLdjLnO3pr41yrz\nxTcfOr1LzA9Do7U38WPR6vd/FlORbHbUn5S51Kr+ixjfSimxj2Sabb7Oesf/AI0T0IhaJk3WloXs\nIyqKl7CK6j2XaSb7Knnf+tM9Poqh7GbONGsXKWvP600rvS5Scg2WnpX+XH5GyqqXsL5EVj0TpNnK\ny0i/rM3vTk90em9PxewtNGniib9hvAbKutf5a+SM7kPdXyPAy2W6P2FFTt8UbU+o9bWNamGtRE7M\nHYDbdj3G2F3GMDBkGcIyYwZwAZAwMAADAwAAMDAAAAAAwMAADAAAOKoQ6r0DpKrqFqJrTH0irldx\nz42r42sVEXzEzMGkoRl60U/Mw0nzPJSUVLRU7KelgZDEzO6xjd1E8iHrwZBuEschgYABkAAAYAAB\njBkAAYAAAAAAAAAAAAAAAwYwZBjANatso1uKXDosVKQ9F0iOcmWZzuqiKiL4MobHAM5GMcgBgAyC\nPXjTFjvW76oUEczmphH5Vj0Ts3mKi4OVo01ZLM1yW+hjhVyIjnJlz3InHCucqqqG+Bp0cc726s9+\nDXdWc7oVDXW610dtp1p6OHoolkc/cRyqiK9d5d1HKuEz1JwNiDbBsZwMAGQa23WuitsLoaSLca6R\n8jsuc9XOeuVc5zlVVVfCHWuidcWXB0O9UsiWJkiuVd1irlUamcJnrVEybIGMIxhGMGQDJkAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFJbZPYWHx1H/AJC7SkNsi/1D46n/ANMAsbRPtTsv\nxVhKSL6K9qdk+KMJQAYNRfbg222evrV4dDA96eNE4G3Kp2uXFKbTKUqLh1XOxuOvdYu+voOzZ+n9\nI1unp9+aT8s8SfS19LqK4d8l8jU7Gba6O33Kveiqs8rY2qq5ykaZ9Li7CH6Dt3qdpW1QKmHLF0j/\nANaRd9fSTEk2tf6RtHU2LlvtLyXBfkb66zpNXbLszheS4AAFecoAAAAMZAMKpDNXapgsVFhqtdVS\noqRR/wDmXwIezU2paWxUSyyKjpXZSKJFwr1+xO0rPS2nqzUlwfe7uqvhV2WNVOEqpyRE943q7S10\nGjq6P0rVcKY8l2zfci82Zs+ropa7WdXTwfCPbZL3V/M2ehdMTzz+rlzy+WR2/Cj048fdr4+pOouB\nvBEOLWtRqIiYREwiHI5NZq7NVc7JcFyjHsilySODaGvt12olbPguUILlGK5JGTjlDpqKmGmhfNNK\n2ONiKrnOXCIidqlKai2nVFZOlt01C6WV6q1Kjdzlf+7aqcfGvAr7L6611ufYu1+RtoNmazXzcaYd\nVetN8IxXe2WRqPV1m0/DvVc2ZXJ+LhZxe7ydSeFSmXT6w2hzqyJvcts3uPXHw7V4K9c9ScCQ6c2X\nSVE63HUkzp5pHI5YM5yv/eOz33iTgXTDBDTxNiijaxjUwjUTCIidhzbl1/Gz7uHuLm/Nl09VszZH\nV0e7qdV23yXUg/2E+fmRPTOirRp2LMEfSVCtw+ofxcvi7E8CEwVzUTKrw61U0Vz1BQ0OW56SVPcN\n6vGvURnF8vzuP4qmVefucelxx6jamn076DS19Lb2Qh2ebKuVOr1kpanVXYT52TfF+SNxctU01PmO\nmTppOWeTU8vX5DURWi73eRs1dK6OJOKNVOPkTq8pJbfY7fbW9JhHSInGR/V4uw41d+hj7ynb0juS\nLyb/AJldfVOz73ampSj2aeD4fHvNoWwr6miqbfbbLn8M8j3UVtobdGqRMRvDvnKvFfGqnjq79TQ5\nbCnSO8zfOa5KK63HDqhysj7F4eZvD5ze0dqo6XCtZl/vncVOqqetuhGvSadaensnJcceCOWaqjLe\nusdk+5P82aNKa7XJ2ZnLHGvJMYTzc/ObqktFLTYcjd96cnu6vEhtcGTt0+ytPXLpLM22e/Pi/gQz\n1E5LdXVj3IIZGAWiIAADIAAyADAya2tu1uoG71ZWQQpj3b0b6TDklzZhtLmbPJgrut2naVpt5Iqi\napcnVHG7H7z91CKybV7hWyOitFhdKqdbnLI7ytYnDzkEtVRH28+XEid9a9r5cS7jirmoiqq4RPIU\ngsu1u7O72PuON3gjiRPPvP8AMZXZlqO4qjrtqHe45VuHzebeVqIaekSl6lM358PzMdLJ+rW3+BZ9\nZqrTtFnui60zVTqR6OXzJlSLVe1TS0OehfUTqnvIlan/AB7p0UeyfTkKfj5aqdevL9xF/cwpJ6PR\nGlaPHRWiBVTksiLKvnerlH97l7i+bH377l+JXc22Dff0dFZHSOXlvzd9+6xrs+c4+u7aPXp/oVh6\nNq8lWF3pkVqF0w01PAzdhhZG3sY1Gp8x34MdBc/WvfwSQ6K187X8EkUclu2t1+emre50zyWSJn8l\nFXznF2zLUtf/AFjqFHIvNF6SZPM5zULzGB6JW/WlN+bHQR7ZSfmynKXY7bGY6e51D1TnuMaxF8+8\npvoNl+ko/wApTzzfrzPT6CtLFGCRaWhewvjxMqipcor8yL0+i9LU+Ojs9NlOSubvr53ZU3cFvoqf\n8hSwx/qMRvoPbgEqrguUY/IkUIrlFfIzhOwAG5sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACj9sq8bB4qr/0y8Cjtsvs9P/q1f/pg\nFl6M9qlj+JR+gkxGdG+1Wx/EovokmAMHz9tLzedY2OzMXgiIjscMdM5N7/haX+vWfPul0S97ULnc\nebKZ8jkXwtToW/Nku9h/d2avVP8AyNPJr+KSwix2d1JXXe5W2vN8D6AjYjGNa1ERERERE8B2mEMl\nJnjkrm8sAAAAAA45I3qTUdFYqNZZl3pHIqRQp7J6/Unap5tT6rorDTIrsSVD2r0USLxXHWq9SJ1q\nVxYdO3HVVc673lXdzqves5dInUjU6mektNHoYur0nVS3KI/Ob7kXWz9mwdXpmsk69NF/7rH3ROqx\nWO5avuS3W6qvcu9wTkj0TkxidTe1esvSKKOKNsbGo1rUwiJyRBFDFFG2ONqNa1ERqInBEQ8twuNF\nbaZ9TWVDIomJlXuXCEGv18tTKPDcqhwrguUUQ6/X3bQurhCvdrj1aqY8orwXee/OCDap13ZtPscx\n7+mqlTLadnPxuXk1PGV3etod5v8AVepmmaWVM85kT8Y5O1EdwYnhU3eltltLSvSsvT21dSrt7o1y\nsbXLzVc+zXxlLLUWWvdojnvm/VXkWNex9Loa437VscXzhpov7yXn3IicNv1jtBnZPVyrTW3ey1Md\n5/hbwV6+FeBc+ntKWbT8Cx0cCb7kTfldxe9fCv1G4qayjoYkdLI1jUTgnX5EQh9TqC5XGRae2wua\nnJXe6+xDhv1mj0L60nbe+SXWk/LuNdRrdbtGHRVVw02khyhHqxXi32slVfd6Kgb+Nk75U4Mbxcvk\nIi+53q9PdFRxrFFnDlRfS77D10mmoYkWe5zI9c5Vu9w8q81PfNe4YkSGigz1NXGE8idZV6nUaq9Z\n1d3o9UuVMHmyXng5K46el4oh01nvy9ReSZ10GmqGjak1W5sj045dwYnk+09VTfomd5TRq9eSLjCe\nTrU8sdruFc5JKuVWt5oi8/MnBDf0tupKZPxcab3W5eK+cn0un1UobmkoWmq9+SzORBdbCUt66x2z\n91cIoj7Lfcq9UfVSKxvNEX6kQ31LbKSl4xxorvfLxU2GAha6bZelpl0kk7LO2cuLOWzUWTWFwj7q\n4IzgygBZYIAAcHOREVV4IhkHIERueuNMW3KTXKNz04bkWZHf8OUTykDrNrTpZegtNofK9eDVkXiv\niYxFVfOc89RTDnL5cX+BFK2uPOX8y6jwVt0t1Azfq6uGFva96N9JS+5tUvzu+V1FA7q72BE82Xns\notkaPkWW53Z8jncXJG3Cr43vVVXzEfpFs/0dL83wNellL1a38eBI7htS0vS5SB81U9OGI41an7z9\n1PMRF20vUl0e6KzWRM5xlEdOqePCNRPKWJbtBaUt6o6O2skenu5lWRfM7KJ5EJbHHHExGRsa1qJh\nGomETyIOj1U/WtUf4UNy6XrTS8ijWWPajev6bcH00a9TpGx/8MP14NlQbIKJrt+4XOWZVXKtiakf\nHwqquVfmLkwZNo6SvnLMvNmVRDty/NkPoNB6VoMLHbI3uT3UqrKvj79VRPISuKGKFiMijaxqcmtT\ndRPIh2mSeNcIerFLyJFGMeUcGEM4ANzYxgyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACjtsv5TT/AOrV/wDp\nl4lG7ZV/Gaf/AFav/wBMAs7R6f7LWT4jF9EkhHNIe1eyfEYvooSMA01+uHqdZrhWcE6Gne9PGicC\nq9jFA5lvula5FzNMyNFXrSNM+lym42t3BKbS/c29haqojYmOxi76/RJDoC3ep+k7XEqKjnx9K7Pb\nKqv+bOC8h9xsC2Xtai9R84w4/mWUPutmWPttsS+ESZoZAKMrQAYVUROIBhV4EB1brWlskSww7stY\nqcG571idrvqTrNRq3XbqeRbbafxlU5dx0jUzuKvU1Otw0loZ1PI25Xb8ZUuXebG5d7cVety9bvQX\nOn0VNFUdTreC511e1Pz7keg0uzqNLTHWbR4RfGqnlKfn3I1umtG1d1qUu9+Vz1eqObC9MK7HJXY5\nJ+iXI1rWNRqIiInLwGjveobTYqbp66obG3kxqd85y9jWplVKVrNUat1tUvobLTvp6RF3ZHIuOC+/\nf1eJOJU7R2rK+zrcXyrrjyiu4lWm2htmfT2SjRpYcN+XVrgu5d7J3qvaXabL0lPSqlVWJwVjVwxn\n6zvqQgtBpPVWtKplffal9PTIuY2K1EXC+8Z7nxrxJzpnZ5ZNPsbV1jmVFSxM9K9N1kf6reSeNeJu\n6/VUaL0VBEsj1XCOwuPInNSh1eqppW/q7UvdpXFv5HTVqqNJvVbIpc7OU9ZYllfw55I2VttNk07Q\n9FTQxwRN4ucq5c5e1yrxVTUVuqJZ5Ogt0LnOXgj1TiviT7TxpaayqVKq7VSxN6mqqby+JE4Ie+Ks\np6ZOgtlJxXhvqmXL/wC/CVWo2lqrlur+7U9ixm2XklyK3o6lZKyyT1NucuTfUT8W+Z5YdPySL3Vd\nqrdzzaruPiVfqQ2XqnBAxKa3UyJ1Iu79XNfKc4bNV1LkkrZnJ4M5X7EJDTUdPTM3YmInavX5VN9H\ns/Uy/RQ6CD52S61sv6HPfqlL9JLfxyhHqwRHIrRW1j0krJXInUnX83BCQ0tDTUqYijRFxxVea+U9\niIZLzTbM0une/u79nbOXWf4nDZfZPg+C7lyCGTB4qy4UVDEstXUxQs989yNT5ywbiubIG8HtUFXX\nXatp6ka5KNstW9M8UTo2eVz+PmRSMeuXaNqLHqXQLTQu5Pa1ETH68uM+RDmlqqlwj1n+zxInfBPC\n4vw4l4VFXTU0ayVE7ImJzc9yNTzqQO57TNL0W82GaSqenVC3h+87CebJFINlt0r5kqL3enPd1tZm\nR377+XmJ5bNAaWt2HMt7ZZE93MqyL5ncE8iGu/qp8oKC8eLMZulyil58SvnbQNX3rLLHZtxqrhHo\nnTKn+Jd1qL4zCaF1tfUR16vHRsXisbl6T/gYrWfOXm1jWtRrWoiImEREwiHLBn0be/SWSl+CHQ73\nrzb/AAK1tuy7TVIjVqGy1T065HK1v7rMfPkntHb6Ghj6OlpYoW9jGo1PmPaCaNVUPVikSRrhHlEy\nACU3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABRm2T8rYf1Kr0xl5lFbZPy9i/Z1PpYAWppL\n2sWX4lF9EkJHtJ+1iy/Eovoob9y4RQD5+2mudedW2WyROXvURHY6lnVMr5GtyX9DG2OJkbUwjWoi\nJ4EKA0U1moNod1vHso4Fc9i/rJ0TF/dRT6DQvNsvooaDRr/JpTn/ABz4sstofdw09HuQy/OXEDJg\n1tzulFbKZ1RVSpHG1Oa/UhSRjOclGMcyfJFfCudk4xjFuT5JcWz2yzRwxufI5GtamVVeSFM3/WFw\nvlT6k2Fr3NflHSt4K7HPCryb4Tw1dxvuuKx1HRMdBQsXv1Xl4Ff2rw9ihJZrlpTQNF0O90tW9uVa\n3vpZFT33U1PGXW5pdk19Lqt2eo5xrb6sPGX9D1Wk2fHQyr36fSNdLjXQusoeM8fkbTS+jqCwQd01\nLmPqd3vpFTDWJ2NReSeEjOptqUMUncVgi7qqHLu9LhVYir7xE4vX5iKb2stoUy8qS2IvHP5Ph5lk\nX5icWqi0zpWNW0MPdVYqYdUOXr8C8kTwNPJbS21K2Urbr9xP2pc34RR1z0tNd7t2hJ6zWc/R4PqQ\n/jl2eRGrPs6ud2nddNU1ciK5MrCrkR6p1bzmrhqeBCxH3y1WqnbR2qlYqMyjUYm6xPtNZMy53LEt\nfUdzwqvBqp2djU4r5T10jY4ndHb6VXSdcru+f9iHmrdq2y6mmj0aftyW9ZLyRyazUWalp6mxSjD1\naYdSqHged9Hca9yT3Op6GLOWtXn/AIWoe6nlgp16K20q76phZHJvPX7DaU9jkld0tbK5VX3KLx8q\n/YSCCmgp2bsUbWp4CXSbI1Vsuklmty5zn1rH5dxU362LW5zS5Qjwgv6kdgslRO/payVc9iLlfP1E\nhp6Snp2bsUSNTrx9p6cHlqqykpIllqaiOKNObnuRqedT0Om2dpNL1lHM+2cuLfzK62+yfOXDu5I9\nZjJWd22p6comuSl6SrenvE3GfvOROHiRSLLqPaLqPCWu3rSQO5PaiJlF/Tkxn/ChPLU1J4jmT7o8\nTklfBcFxfhxLprbjQ0EXS1dTFCz3z3I1PnK6uu1bT9Kjko2S1b05KiLEz956Z8yKaWj2VVVVP3Te\n7s+WRfZNZlzv3359BYtp0hp204dSW+PpE49K/L3+d2ceQxvaqzlFVrx4s1zfPlFQ8+LKy9XdpOos\nep1D3HTu93hG8P15OK/4UPVSbKaiqn7pvV4fK9fZNZlXfvvVfQXSiGQtLF8bJOT8eRnoE/Xk5EVt\nWjNOWpUdTW+NZEXKSSZkf53Zx5CU4ORg6IQhDhGKXkSqKisJYBnABtg2AAMgAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAFE7Y1/wBJsf7Oo9LC9iiNsa/6XY/2VR6WAFr6W9rVm+JRfRQ1\nmu7utp0vcKhi4kdH0Uf60i7ufJnJtNL+1uz/ABKL6KFSbW62eur7PY6ZcyPdvvanvnruM8nPJY7I\n0y1G0KIS9SL3p/wx4vJ16GrpdTWnyXF+S4kk2SWptHpvupW4fWSufx94xd1voyWn2nht9HDQUNNS\nxcGQxNY3xNTBCNVa6prWjqWjxNVrw7Wsz29q+Azcr9pbQunXHLnNvyXZl+BLDT6naWtlGmtycpfB\nLlxJBqLU1BYqbfndvTOz0cLfZPX6k8JUSQ1+ppFu17q0pLZEuWuVURuOWGfW5SL1Vypaapkrbw9a\n2tVcpSqvBOzpXJwROxqHNaG9ajmZUXid0NOz8lAxqJhOxjfc+NeJBr9s7P2HVKumyNmq5Stfqw8E\ne40OxI6GnfU1CTXX1LWX4xqj/M3tZrepn3LJo+hkjjxhsqN/GOTrVEd7FP0nGLVpG22+Rau9ypX1\narvLTtcqsa7/ALx/HeUkNut7aal7no4W0tOvFy8VdJ4XKuVd6DeUNA5XolNAsj0/3jur6kPm+q25\nqdXa+ijKc5S9eSz9K/qQX62nTVzq033UJfpJb33tnjKfZ5I63vuFdG1JHNpqbCI1iJhMeBE4r6D1\n0VMjH7tFTOdKn+9cmXZ8HU0kVNYEzv1UivVebU5eVeakgZHDBHhiNY1E6uCHRpdh6u+XTaqxxfe+\nMvh2I8vftGCjuVrh3Lgvj3keprCrl6SrkVyrzai+lSQwwRQM3I2I1qdSIQ677QNM2xVY6s6eVP8A\ndwJ0nnd7FPOQKTaFqm9yOhsFpVict/HSuTPaqojWr48l/RRoNHwrjvT7X60mU12t33iUs+C/7F3y\nzxQxrJLI1jETKucuERPGQG7bS9NW/fZDK+rlT3MSd7++vDzZIjDs61LeZI57/eHJxysaL0rkz2cm\ntXxZJ9adBaZtm65lEk0qf7yZekXyIvBPIh1b+os9WCgu+XP5EG9dL1Y48yu11jrrUWW2S2rBEq46\nRqI7/mSYb5kPRS7L7pcJm1N9u7nO62sVZH+LffwTyIXc1rUbhERERMJg5GVpVLjZZKX4IKhPjOTl\n+RE7TovTlpw6moGLIn+8kzI/xors48mCWIhnAOiEIQWIxwSqMY8gADc2AAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAABgKuCIX7WtksczKaokfLVP9hTQsWSRezgnLPVk2hCdkt2EW34GkpxgsylhEvMlZw7TrU2W\nNlxt1xtzZHYZLUQq1irz5pksaOVkkbXscjmOTKOTiiovJUNrKba8b8Gs8u5mIWwn6ss/mdwGRkjJ\nADGRkAyDGTHEAyZNQ+829l0htazp3XJE6VIkRVVGN4K5V5J4Da5Eotc14owmnyOQMZGRkyZBjJ1y\nysijdI9yNa1qucq8ERE5qAdpg1lpu1Fd6KOtopekp5HPRj8KmdxysXCLhcZQ2gaaeHwZhNNZQACg\nyYB0zTRwxvlke1rGIrnOcuERE5qq9hXUu060PlfHbbfcbikbsPfTwqrU8q4JK6bbc7kG8c+5Ec7I\nQ9aWCywQ2w64sd6qHUkT5IatqLvU07Fjk4cVxngq9qcyY5NZ1zrluzi0/EzCcZrMZZ8jKg0VovtP\nd5K/uaN6w003QpOuNyVyJ325hc4avBVU77zd6Kz2+euq5N2KJuV7XKvJqJ2r1Dcnv7m6893aN6LW\n9nh/Q25g1dquTLlbKOujY5jKiJsiNdjKI5M4XGeJ5aa+wTXmttTo3xVEDGSN3sYljf7tmFXgi8Fy\nNyWZLHGPPwM76xF9/I34MZMmpsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAACh9sf9Msv7Gf0tL4KF2x/02zfsZ/S0AtrTa7unLQq9VFFn91CltLvi1BtDuV7kd/o1\nIqvYq8kTHRs8ioiuQ77ztBqLVaYbJDb0Vy2unRKnpsK1ZY0XO5u9WeHErKlrZaS2up2vVscz957G\n85FTgiL4E7D1ezNC9PszW6u+yNMbIKEZya4QfGTPTf2c2XbtGN6qlu56jk0+C7cFuau2iOlbJSWq\nTcjTg+pTmvgZnq8PmKkpXV1bKsdC1yLld6XrTPh6vD1npbbmNa2e7T9BGvFkCd9I/wAicjY0ur6O\nkTo6a0NdEnscy7ufGiNX0nk9XtHaOvos0v8AZ/SvoeU7m1Fzfi2erv2t/Z3+zOn9GrandL1n63Hv\nZv7HpOGl3ZXI18qcd9U71viT6ywaG1ySL+KhWRyc3ryTz8Cu6baOka/jNPJIqckWqVqJ5Oj4m6dt\ngqki3IbHBC7GG5nV6J5EY30njX/ZbWws6TaWojF59SMlJ/geL2h/bGOslJwm34tNFsUtgjau/UvW\nRfepy8/NTrumqtN2NvR1NdExycEhjTff+63OPKfON21tqS57zaivlSNf91CnRs8Xe4VfKqmvtdys\n9Jh1Vp99Y5F5OqljZ+61nHyqp6rZ+w9Qq/7no1Fe/NpN/M8rqNruyfGXzzhfItqr2oXGvnWlsFnf\nI/qe9Fe7HbuN5eVTypo7XWou+vVy6CJV/JOw7/lxqjfOp4aTawtHEkVLpWCGNOTWTK1PMkaHq/DL\nXfm435Q7/plj/wDj20p/pet4KUUvzOf0rTy9e2T8k0icWnZppq37jpYXVcqe6mXLf3Ew3zk9hhih\njbHFG1jETCNamETyIUV+GS4fm435Q7/pj8Mdx/Nxv8d3/TOiGwdXWsRogv8AdH+pLDW6SPq8Pgy+\nwUJ+GO5/m43+O7/pmfwxXP8ANtP4zv8Apm/2Nr/cj9cTf7Q03fL5MvsFCfhhuv5tp/Gd9wfhgu/5\ntp/Ff9wz9j673I/Wh9oabvl9LL6BQ34X7x+bafxX/cH4X7x+bafxX/cH2Pr/AHI/Wh6fpu+X0svr\nIyUJ+F69fm2n8R/3B+F29/m2n78n3B9j673I/Wh9oabvl9LL7GShfwuXz82k/ff9wx+Fu+/mz/xy\nfcH2Prvcj9aHp+m75fSy+8goX8LV/wDzY/4pPuD8LOoPzZ/4pPuj7H13uR+tf1MfaGm75fSy+hko\nX8LGoerTHzyfdH4WNR/mz88v3TH2Prvcj9a/qZ+0NN3y+ll9AoX8K2pPzZ/m/dH4VtS/mx/N+6Ps\nfXe5D60Y+0NN3y+ll8gob8Kup/zXXzS/dH4VNUfmv80v3R9ka73YfWjP2hp++X0svocShfwqao/N\nhf3Zfuj8KeqvzYX92X7o+ydb7sPrQ9P0/fL6WX0Chfwpar/Nhf3Jvumfwo6s/Nd37k33TH2TrPdh\n9aHp+n75fSy+QUL+FDVv5ru/cm+wz+FDVv5rO/hzfdH2Trfdh9a/qPT9P3y+ll8goX8J+r/zWd/D\nm+6Pwnaw/NZ38Ob7o+ydZ3Q+uP8AUx6fp/2/pZfQKG/CbrH81nfwpvsH4TdY/ms7+FN9g+ydZ3Q+\nuP8AUz6fp/2/pZfIKG/CZrP81nfwZ/sH4S9afms7+DP9hj7K1f7H1x/qPT9P3T+ll8jgUN+EvWn5\nqv8A4M/2Gfwla1/NZ38Gf7B9lav939cf6j0+j9v6WXxkZKH/AAla1/NZ38Gf7B+EnW/5rO/gz/YP\nsrV/u/rj/Uen0ft/Sy+AUP8AhI1v+azv4M/2D8I+uPzWd/Bm+wx9l6v939aHp1HdP6WXuCiPwja5\n/NZ38Gb7DH4Rddfmuv8ABmM/ZWq/d/Wh6fT7s/pZfORkof8ACJrv82F/gzD8IevPzYX+DMPsrVd9\nf1oenU+7P6WXwCiPwh68/Nlf4Mxj8IWvfzYX+BKZ+ytV31/Wh6fT7s/pZfGTBRP4Qdf/AJsr/BlM\nfhA1/wDmyv8ABlH2Vqveq+tD0+n3Z/Sy+MjJRHr/ANoH5tL/AAJR6/toP5tf8iUfZWq96r60PT6f\ndn9LL2BRHr92h/m0v8CUev3aH+bf/Il+0fZWp9+n60PTqfdn9LL4BQ/r82ifm3/yJftM+vvaJ+bf\n/Il+0z9k6n36frRj0+n3Z/Sy9wUR6+to35t/8iT7Tj6+do/5t/8AIk+0fZOo9+n/AJEPT6fdn9LL\n4BRHr42j/m4n8CT7R6+NpH5uf8iT7R9laj9ZT/yIen0+7Z9LL4wMFD+vfaT+bqfwJPtHr22lfm5/\nyJPtH2VqP1lP/Ih6fV7tn0svgFD+vTaZ+bv/ACJPtHr02mfm7/8A88n2j7Kv/WU/8iHp1Xuz+ll7\ngoj157TfzdT5O/7w9eW0783k+Tv+8PsrUfrKf+RD0+r3LPpZfGRkoj147T/zeT5O/wC8Y9eG1D83\n0+Tv+8Psq/8AW0f8iHp9X6uz6WXuCiPXftR/N5Pk7/vD13bUvzeT5O/7xj7Kv/XU/wDIh6fX+rs+\nll8Aof13bUv7gT5O/wC8PXZtV/N9Pk7vvGfsq/8AXUf8iHp9f6uz6WXxkFD+uzap/cCfJ3feHrr2\nrf3A35O77w+yrv12n/5EPT6/1dn0svgFD+urav8Am+35O77w9dW1f+4G/JnffH2Xd+u0/wDyIenQ\n/V2fSy9wUR66drP9wN+Tu++PXRtZ/uBvyZ33x9lXf+40/wDyIenV/q7fpZe4KI9c+1r+4m/JnffH\nrn2tf3E35M775j7Lu/8Acaf/AJEPTofqrfpZe4KTt+otqUlfSR1Vla2B07GyuSncmGKuHLnfXGEL\nrQ5NRp5UOKlOEs+7JS/I6Kblam1GS81g8dxq20dBV1SplIYXyKnbupnBWmy+3snt1Rf6nElbXzyb\n0q8VRrHK3CdnFOJZVypO7LfV0ucdNA+PPZvJgrrZVXN9QZLVL3lVQVErZYl9km+9XZ86qhNS2tFq\nd3nvx3v4f/2R2/4ije5dbHmWDdLZSXS31FFUxo+KZitVF6uxU8Kc0NHaqODSGmViqq980NIx71kc\n1EXdVc7qInVleCEjrKunoqaapqJWsiiYrnuXkiIVJqS+yan2aXKvho5YGrJGm65Udlscrd5yKnNE\nxx8Rpp4W2qMHnonZFPzfcbWuuD3vbUHjyRsKO97QL3TpcLZQW+lpH8YWVDnOkkb25bhEySDSmqX3\nl9bRVtItJcaNyJUQK7eTjyc1etO03WnpoJrHa5IXIsa0sW6qfq4IDbMTbVr1JBxZHQRsmVOW/huM\n+En+7t9Jj0MYbibi1nKw8Yee8hzOCqn0jlvNJrs49qPPaNXavvbq6kt1HSLNT1MjZKqXLYmM3sMa\njUVVc5cLk3Nh1PfW6gdYL7S07KlYVlhmgVejkROK8Fz/AO0PJsuanc2oFxxW7TZ+Yxd/7U9O/EZv\novJbI0u++lUwSjW2ms5TSyaRlZ0cbeked/HhjOD2XDUuoa6/1tm0/TUu9RNYtTUVKuVqLImUa1rc\nKpztGpL/AAagjsd9o4WzTxOkp6mn3ljejcqqKi5xwTrNdctPW+9aguNVYr9LRXWn3G1iMa5WrlMN\n3k73j3vUq+I6qO+avsV9tVqvstPWQ1z3MhqY0Rj0VvaiIic1ROXlMdFVOrdrjBvo8uMsxnnGW0+0\nzKc42ZlKeN7g1hxxnkzQVzNXrtFVIZrelatC9YFc16xJBvrhHJnO/wBpP9RakudFcLfaLXQMqbjV\nRq9VkcrYo2t5qq9ZqJv7WKf/AMHX6R7r7qa8u1CywWOCnWqSHppp51XcjavY1MZXj85tZ95LTLoo\nNR0+XngvN47DKxDp30klmaXe+PYjT3TUOvNOQNrrtS2+poke1svc6uY9m8uE9lnr5G+1pqmeyWq2\n3Cl6N0c1VGkiubvZiciuXd4pxwnAgWvbbq2HTlVUXfUcMsPSRNSjip2sa5VemF3/AGXDnjwG4121\nrtLaVa5OC1lIip4FabxoonLSSca3vWSjLcTSaSz2kfS2R6dLfWK8re4tfI2NXdto7aSS5x2y3R07\nGrJ3G9znToxOPFyYTPXg2FRerjf9FeqVoSGJ80UnSsmRXI1rMtkaipjK5TgpNbgn+gVf7B/0StNA\n/wBmP/0az6Tjmg4Tp6XoYJwuilhPinngybrRsjB2N70HnzXajGydt69QaV0rqb1OVs3c7Wo7pkf0\nrt7fXljOcFtFebLPaRav1qj+c8nlQ2R0MrYno2RWKjHLxRHY4L1nPrZb2sv6qXXfJY7SXSLGnh5H\nfkxzKpWw7U8Kiaxps4xnuaL/AKZaqciKytQ3cWxl/Dnh55JITc+cGvPH8iqdpM8tZU6f09HI5jLj\nUqs6pz3I1bw+fPkLKoaGkoKSGlpYWxRRt3WMamERCsto7H0Fz01f91zoaKpVk+OaNkVML8ylp01R\nDUwRzQva+ORqOY5q5RUXkqHTf/g9Lu+r1t7+LPb8CCv/ABFu9z4Y8ittp1njfZlvNP8Ai66gex8c\nzU77dVyIqL24zlMndqXVUkGgEusHezVdPE2LHU+XGVTxJlUG0+6xU2mpqFq5qa57IoYk4ud36K5U\nTxcCPa1oH23SWlKSTG7T1dMyZervW4U6tPHpKtHGzj9893Pu4z+ZDa3C29w/VZfmWhp60xWeyUFv\niaiJDE1q463LxcvlUrTWGlrhU2++Xe83JZ0p4pXUNLGm5FCnJHOx7JxcyciJ669p99+JvOTS3WLV\nxknxnYsvt4vsJ7q4+jSj2KDx8EdujOOk7H8Si+ihGdoira1suookXpKCq3JMe6hn4Oav1En0X7U7\nH8Si+ihotqasTRNy3ut8CJ4+lab1/wDUWuyVri/FN4NcZ0S/00/kslgscj2tc1coqZRTsNVZUclo\ntyO9klNEi57d1DanDJYlJeJ1Qe9CL8AADBsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAChNsf9Ps37Cb0oX2VhtC0fcL/wBzVNG9ivpontSBeCyK9ycnKqImPCAU9e6P\nUdyqKGkVkkkcdNCsOFTo2xuaiIvVx4LnrJTb7BZrIxs9wrIUlxxkkXH7rUyvmQ757HtJkpYadlCk\nbWsRrntmi33461Xe4eQjr9net5ZFkkoFe9eb3Txqq4TCcVcvkK7alu19q6WjTXyhXRU2lXXw3vGR\n6K7+0F9WmjTpYqHUSljgnheBJajXdkpMNoaOatlzhFfmGPPgbxcpya7adqJURjHUFM5OGESBqJ87\n1I1Fs91xC9HxULo3Jyc2ojaqeVHIer1l7Rve1Pyxv3zTS7O9Hr3IzcY90eHzPM29PqJ719ufLgTi\n1bJ6FipLdaySqeq5VjMxtz4Vyrl+Ysm3Wa2WyPo6KihhbjjuNwq+Neanz96y9ovvKn5Y3749Ze0b\n3lT8sb9874UwhyX9RGquHKJ9K4QxhOw+a/WVtF+Dqfljfvj1lbRfg6n5Y375Kb4XcfSmE7DOE7D5\nq9ZW0X4Op+WN++PWVtF+DqfljfvgYXcfSuE7BhOw+avWVtF+Dqfljfvj1lbRfg6n5Y374GF3H0rh\nOwYTsPmr1lbRfg6n5Y3749ZW0X4Op+WN++Bhdx9K4TsGE7D5q9ZW0X4Op+WN++PWVtF+Dqfljfvg\nYXcfS2E7BhOw+afWVtF+Dqfljfvj1lbRfg6n5Y374GF3H0thOwYTsPmn1lbRfg6n5Y3749ZW0X4O\np+WN++Bhdx9LYTsGE7D5p9ZW0X4Op+WN++PWVtF+DqfljfvgYXcfS2E7BhOw+afWVtF+Dqfljfvj\n1lbRfg6n5Y374GF3H0thOwYTsPmn1lbRfg6n5Y3749ZW0X4Op+WN++Bhdx9LYTsGE7D5p9ZW0X4O\np+WN++PWVtF+DqfljfvgYXcfS2E7BhOw+afWVtF+Dqfljfvj1lbRfg6n5Y374GF3H0thOwYTsPmn\n1lbRfg6n5Y3749ZW0X4Op+WN++Bhdx9LYTsGE7D5p9ZW0X4Op+WN++PWVtF+DqfljfvgYXcfS2E7\nBhOw+afWVtF+Dqfljfvj1lbRfg6n5Y374GF3H0thOwYTsPmn1lbRfg6n5Y3749ZW0X4Op+WN++DO\nEfS2EGEPmn1lbRfg6n5Y3749ZW0X4Op+WN++Bg+lsIMIfNPrK2i/B1Pyxv3x6ytovwdT8sb98A+l\nsIMIfNPrK2i/B1Pyxv3x6ytovwdT8sb98A+lgfNPrK2i/B1Pyxv3x6ytovwdT8sb98A+lgfNPrK2\ni/B1Pyxv3x6ytovwdT8sb98A+lgfNPrK2i/B1Pyxv3x6ytovwdT8sb98A+lgfNPrK2i/B1Pyxv3x\n6ytovwdT8sb98A+lgfNPrK2i/B1Pyxv3x6ytovwdT8sb98A+lgfNPrK2i/B1Pyxv3x6ytovwdT8s\nb98A+lgfNPrK2i/B1Pyxv3x6ytovwdT8sb98A+lgfNPrK2i/B1Pyxv3x6ytovwdT8sb98A+lgfNP\nrK2i/B1Pyxv3x6ytovwdT8sb98A+lgfNPrK2i/B1Pyxv3x6ytovwdT8sb98A+lgfNPrK2i/B1Pyx\nv3x6ytovwdT8sb98A+lgfNPrK2i/B1Pyxv3x6ytovwdT8sb98A+lgfNPrK2i/B1Pyxv3x6ytovwd\nT8sb98A+lgfNPrK2i/B1Pyxv3x6ytovwdT8sb98A+lgfNPrK2i/B1Pyxv3x6ytovwdT8sb98A+lg\nfNPrK2i/B1Pyxv3x6ytovwdT8sb98A+lgfNPrK2i/B1Pyxv3x6ytovwdT8sb98A+lgfNPrK2i/B1\nPyxv3x6ytovwdT8sb98A+lgfNPrK2i/B1Pyxv3x6ytovwdT8sb98A+lgfNPrK2i/B1Pyxv3x6yto\nvwdT8sb98A+lgfNPrK2i/B1Pyxv3x6ytovwdT8sb98A+lgfNPrK2i+9qfljfvl36PorlQ6doaa4o\n5KpnS9IjnpIvGRyp3yKueCgElXkQS+aForjX+qVJVz2+4ddRAvsscO+b18PETwG9dtlcswlh/wDn\nM0nCE1iUclVrs6rq5zW3zVNZX07XI5IEZ0LVx77DnZ8aYLFZbqGOhShbTsSmSLo0iRO93MY3cdh7\nxg3s1F1m7vS5ckkopfI1hTXDio/Ntv8AEq5uz64UCuisuqKuho3OVy0yxpLu557jlVFT5yVac0vb\ntPUskVL0j5JXb008i70kip1uXyknwDM9TfOO7KXDt4JN+eDEaKovMY+XPh5ET0rpl2n4bhGtWlR3\nTVvnykfR7u/7nm7OO0xWaZWp1Vbr53WjUpYHx9B0ed7eRUzvZ4ey7CWg0d9u/Ke9xkmny4p8DPRQ\n3dzd4Zz/ADIDe9EpWXR11tt0nttc9iNkljTfY9E4JvNVUyvDtFn0StPc4bpdbrPc62FqpC+RvRsj\nzwVWsRV44Unxgk9K1G5ub/DGOSzjuzzNfR6nLe3fHm8Z7yB6k0ZPdblT3SgvEtvrIoljWVsfSZYq\n8sZb2nG96IdcauluNLdZqK5RQpG6pjbvJIiJjLmZT0k+x4TJiOqvjuYl6qwuC5PsZl0VS3sx58+L\nKtrdnEtzopmXXUFVWVSs3YZnt3Y4VVeLmxNVEVVTguVNzd9IzXOz2egfcWsfRTQyLKkOek6JMY3d\n5N3PjUnIMvV6h7vX9V5XBYTfPCHo9XW6vNYfF8Ueaoh6enlizjfY5uezKYI5pnTKWTTsdnlqUqWo\nkqPkRnR7ySOVVTGXY545ksGCJWTjBwUuDab80buEXKMnzWcfEgWldIVunah7GXyWegRjkipHxY3F\nc7e3t5HcV7eBPRgyLLJ2y358ZeSX5CEIwWI8gADQ3PHV0lPWU0lNUQtkikarXsdxRUUrn8HlbQ7z\nLFqast9OrlXoFb0zG597lzcFojBLXfdVlQlwfNNJr8SOdVc/Wjx7+TIFZtCUNBcEudbV1Fxr0ThU\nVDs7vV3reSfOe7W9iffNNV9FGmZlakkXhexconl5EvBl6m52wtcsuLTXcsdnAwqYKEoKPCXMjelL\nwy82Cgrmr3z4kbImOKSM71yL5UPXfrWt2s9fb0m6JamF0fSbu9u568ZTPnOdvs1Hbp6+Wm32pVTd\nLJHvZYj1TCuanVnrNsaymlbvw4dbK8O0zGL6Pdnx4Yfiaiy21bXaKGgWXpO54GR76N3d7dTGcZXH\nnIRrtnqxXWPTcaKqVM3dFUqe5gh55/WVcIWdg1FNZqKnudbcW77qmpRjXvc7O6xicGNTqTrNqrty\n12S4y4tfxPtNZ15r6OPLgvgbVqY4JwTqOajAUhJVyAABkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAADAABjBkAxgAAGQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAABkFcbXE/8A051J8Wb/ADGgFj5BVmxjCbM9PcETvahf+e8saCvoqiJ00NVDJG32T2Pa5qY7\nVRcIAe0Hjpa+iq95aaqhmRvsljej8ePdVTnU1VPSxrLUTxxRoqIr3uRrUVeXFQD0g8M1woKeOOWa\nrgjjf7B75GtR2exVXietj2SMa9jkc1UyiouUXygHMHjlraSGWKGWpiZJJ7Bjno1zv1UVcqexAAYy\neKK4UE6TLFWQSJD+VVsjV3P1sLw5dZRlp1Y+p2zXyCqvMbrdTUCNpEdKxIWq9sbnbuFwq5zx4qAf\nQIOtj0e1HNVFaqZRUXgqHRW1TKSjqap6KrYYXyKidaMTe+oA7Zp4YI1kmlZGxObnORqJ5VOmluFD\nV73c1XDNu8+jka/Hjwp8w6M0fLtS7q1Nqm41EkK1D4qWjifutjanPxInBExzxlSUXzYPYoqN9Rpy\nqrKG5QtV8D0mVyOcnuc8FTPJFRQD6ByZyVLse1jX6p0sslwVX1lJMsMsqpjpExvNdhMJnC4XxHr0\nfpCjsuqdU3SG9Q1clxlRz6ZjEa6Bd9Vw5Ue5V59iAFng1C32ytcrX3Sja5FwqLMxFRU6uY9X7F/e\n9D/HZ9oBtwdUUsc0bZI3texyIrXNXKKnaioeaouVvpXoyorKeJy8Ua+RrFXyKqAHuBxaucKmFRU4\nKhyAAPPU1NPTQrLPNHFGmMve5GtTPBOK4Q65a6jhgbPNVQxxOxuyOeiNXPLCquFyAewHTDNFPG2S\nKRj2Lyc1Uci+JUO4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFc7XP7ONSfFm/\nzGljFc7XP7ONSfFm/wAxoB4Njn9l9i/ZVP8APeUVse0hJrG01dLda2dtloqrebSRO3EnnkTKukcn\nHDURMeMvXY5/ZfYv2VT/AD3kL/7OCJ61buvWtzXP8NoBF9pWh6LZ6y16n0rLNRyxVSRviWR0jVRy\nKqcXKq4XGHIvPJZO22Xp9mFXNjHSSUjsdm89FNf/ANoX2jQ/+Ixehx37YP7I3fq0P0mgGv0fsptd\n8s1Dd9XJNca6ppo1Yx0r4mU8KJ3jGJErfc8/CamhpqnZntGtlopquWSw3vKRwSO3uhk5cFXPFHKn\nHhlF48i6dDXaku+krLWUsiPYtJGxce5fGm65q+FFQp/aPLFfNqmhLNSSb89FM6eoRq/k0VWy8exd\n2PKgHr2mf2pbNv2zvpofQZ877VJ4qbaTs4qJnIyJs7kV68k/GNT6z6Bnnip4ZJpntZHG1XPe5cI1\nrUyqqAfPOxWmiqqvaNTzN3o5bjuPblUy1yyIqZTC8lInZdn+kKra9qOwTWvet1NSMfBB00qbjlZG\nqrvI5HLxcvNSVbAKmOrn1xVR53JrhHI3PPD1kcnpPRp3/wDyA1f8QZ/LiAPoCngjp4YoYm7scbEY\nxMquGtTCJxOUsccsckcjUc17Va5F60XgqHaRvV0t5h01dprMqJXx0zpKfvUdlze+VMO4ZVEwgBQk\nmhdpugq2pl0ZUtrbbNKr1o5NxXNTHJzZFTOOWWLlT0s256gss7INVaNqKZFXCyx7zMqie5bImHeR\nxYOyfXTNV6bh7rrWSXWn3m1jMNY5e+XdejWoiYVOxOZZFfFQyUdQyubE6mVi9KkqIse71729wwAa\nzTmpbNqW2MuNqqemgc5WrwVrmuTm1zV4opTeyz+0naV8ZZ/Mea7YNDE29a3fbVeto7qjbTKqrhcO\nfu4zx4NXj18jY7LP7SdpXxln8x4BMKvYxs8qqqepms73SzSukkd3TMm8565VcI7tUoer0LpXVOsm\n2HSNB0FFQuzcrn0skvP3DEkcqc0VEXrXwIWhtI1jdLpdGaH0q7euFTltdUNXCU8eMq3exw4L3y9X\nLmWfo3SNr0nZILbRNzu99NMqYdLIvN7vqTqQAg207Ub9CaKo6KyosVRKrKOiX2SxsYnFyb2cqiJh\nM9ampsuxDR/qe19+nmuFymbvVE7qhzcPdxXd3V445ZXOTX/9om3yS2aw16xOfT0ta5s6N4d7KiY4\n+Hdx5TaW7YlsxuVFTVtIlXLBPG18b21CqitXyecA02mn1uz7aFSaUZcH1VkujHPpEkciugk4rhF8\nKphcc85PpE+aaDTGy6ybR7ZZaCmucl1ic2Zr2So+KJzUV+JM4XgiZU+lUAKn24f2Z3v9el/nsIdo\nzZlb9Vaftl61XLPWzT0rEpoEldHFTwNTdY1qMVOKoiKpMNuP9md6/Xpf57CW6CRE0VptE4J6mwfQ\nQAoyxWuXQG1+isNtqpXWq6wOesD3Z3VRjlTxqit4L2Lg+oD521d/bvov4svokPokAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEa1dp/wBcenblZ+6e5+6o0Z0u50m7hyOzu5bnl2kl\nABE9G6ZXTGl6Cyd2JUrTJKiT9H0e90j3P9jl2Mb2OZpdnGgl0Paqug9Uu7Omqum3+h6Hdy1G4xvP\nzy5ljAAgW0PRK6zskds9Ue492oZL0nRdLndRUxjeZ29pEttUHc2y2pg3t7o3UjM4xnde1M4LqIZr\nvSnru05U2fu3uXpZI3dL0fS46NyOxu7zc5x2gFXWvZPJNaLZX6e1PXWR9XQwPqooUWSKRysTLkbv\nM3VXr4qWBorZvY9IrUVED5aqvnRUmrZ3b0jsrlUROSIq8+tesmNnoFttqt9CsvSdzU0cW/u7u9uN\n3c4yuM45ZNmAQvWuhbLrK3Mo7ij2uicroJ41w+Ny8FxnKKi9aKV/R7GaiRIqa+6yuVzt0bkVtCu9\nCxyIuUa92+5VTxYL0ABX+i9Cx6VrtQzxVjJI7lVNmZCyHoUga3ewxO+dvJh3PCEa1lsiZftQLfbb\nf6q010jEbNJExXb+63cRU3XMVq4TC8eJcoANfbKWekt9JTT1KzyxQsY+bd3ekc1MK7Cq7GfGpsAA\nCmdSbFNOXa4uudvqqm01znK9ZaZe9V6+63cphe3dVDQx7C6yqVI75rq63CmRyL0GHNRVTt33yJ8x\n9CAA01jsNrsFtgt1spWwU0SLhiKq5Veaqq5VVXrVSJaY0E6wah1Nd0ufTLdno5Ikh3Ohwqr7LeXe\n59iFjAA+crVsNv8AZ5ama3bQainlqFRZnso++fhc8V6XK8VN1+C7Xn/zTr/kq/8AVLzABFqPTaO0\nwyyXupW6osTo6iaVqsWbLt7KplyoqdXHqKu/ArXW90sen9cXO20kiqrqbdWVEz71WvZjx4yX0ACu\n9E7N7FpB1RUU7pqmunTE1ZOuZHZXKonUiKvPrXrLEAAIjrjS3rr01W2XuzuXp3RL03R9Ju9G9H+x\ny3OcY5m2sFrWz2S221Z0mWlpo4VkRu5v7iY3t3K4z2ZNwACubvoFbjryy6o9U0jSgh3Epeh3t/2X\nHf3kx7LsUsYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAA/9k=\n" + } + }, + "cell_type": "markdown", + "id": "1acc6c51-47f6-49d9-ba4f-79fdc1e069da", + "metadata": {}, + "source": [ + "- Why was selection sort much slower than Tim sort (not in detail)?\n", + "\n", + "- If we double the size of the list, how much slower will the code be\n", + " in each case?\n", + "\n", + "# Time Complexity: Introduction to Big-O Notation\n", + "\n", + "## An example\n", + "\n", + "- Imagine you are writing an algorithm to search for a landing\n", + " position for a rocket. You want it to be simple (to avoid bugs) and\n", + " fast (since you only have 10 seconds to find a site). [1]\n", + "\n", + "- It takes 1 millisecond to check each element. You decide to test a\n", + " simple search and binary search on 100 elements (more on these\n", + " methods later).\n", + "\n", + " - Simple search takes 100ms. Binary search takes 7ms.\n", + "\n", + "- Then you test binary search with 1 billion elements and it takes\n", + " 32ms.\n", + "\n", + " - Binary search is about 15 times faster than simple search,\n", + " because simple search took 100 ms with 100 elements, and binary\n", + " search took 7 ms. So simple search will take 30 × 15 = 450ms\n", + " with 1 billion elements.\n", + "\n", + "- Since that is within your threshold, you decide to go with simple\n", + " search. **Is this correct?**\n", + "\n", + "## A practical example\n", + "\n", + "- Definitely wrong!!\n", + "- The run time of different algorithms can grow at different rates.\n", + "- Big-O tells us how run time increases as the list size increases.\n", + "\n", + "### Comparing run times of simple and binary search\n", + "\n", + "| Elements | Simple Search | Binary Search |\n", + "|---------------|---------------|---------------|\n", + "| 100 | 100 ms | 7 ms |\n", + "| 10,000 | 10 s | 14 ms |\n", + "| 1,000,000,000 | 11 days | 32 ms |\n", + "\n", + "## Big-O Notation\n", + "\n", + "- Big-O tells you how fast an algorithm is in terms of the number of\n", + " operations, $n$.\n", + "\n", + "- Simple search needs to take each element, so it will take $n$\n", + " operations. The run time in Big-O notation is $O(n)$.\n", + "\n", + "- Binary search needs log $n$ operations, so the run time in Big-O\n", + " notation is $O(\\text{log}n)$\n", + "\n", + " - Note: log in computer science usually refers to log base 2.\n", + "\n", + "## Big-O is Upper Bound Run Time\n", + "\n", + "- Big-O notation is about the *worst-case* scenario.\n", + "\n", + " - If you were conducting linear search through a phone book, even\n", + " if you were looking for Abe Aberdeen, it is still considered\n", + " $O(n)$.\n", + "\n", + "- Formally, it characterizes an upper bound on the asymptotic behavior\n", + " of the run time.\n", + "\n", + "- For example, the function $7n^3 + 30n^2 - 200n + 9$ has\n", + " highest-order term $7n^3$. The function’s growth rate is $n^3$\n", + " because the function grows no faster than $n^3$. The Big-O is\n", + " $O(n^3)$.\n", + "\n", + "## Common Big-O Run Times\n", + "\n", + "Here are seven Big-O run times that you’ll encounter frequently, sorted\n", + "from fasted to slowest.\n", + "\n", + "![](attachment:images/big_o_viz.jpg)\n", + "\n", + "- $O(1)$, known as *constant time*. Ex: addition, division\n", + "\n", + "- $O(\\text{log}n)$, known as *logarithmic time*. Ex: binary search\n", + "\n", + "- $O(n)$, known as *linear time*. Ex: Linear search\n", + "\n", + "- $O(n\\text{log}n)$. Ex: Tim Sort\n", + "\n", + "- $O(n^2)$, known as *quadratic time*. Ex: Selection sort.\n", + "\n", + "- $O(2^n)$, known as *exponential time*. Ex: Naive recursive solution\n", + " for nth Fibonacci number\n", + "\n", + "- $O(n!)$, known as *factorial time*. Ex. Traveling salesperson\n", + "\n", + "## Determining Time Complexity\n", + "\n", + "Consider the following code. How can you determine the Big-O?\n", + "\n", + "[1] Example from Grokking Algorithms" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "71eaaf09", + "metadata": {}, + "outputs": [], + "source": [ + "def f(n):\n", + " for i in range(n):\n", + " for j in range(n):\n", + " print(i, j)" + ] + }, + { + "cell_type": "markdown", + "id": "17e02fc8-5ee9-4abe-bf4f-aa5f8b9c7808", + "metadata": {}, + "source": [ + "## Determining Time Complexity\n", + "\n", + "- With “raw” Python code, you can usually count the number of nested\n", + " `for` loops to determine the Big-O\n", + "\n", + " - A loop gives $O(n)$\n", + "\n", + " - A nested loop gives $O(n^2)$\n", + "\n", + "- It’s usually not so simple in Data Science because of packages we\n", + " use.\n", + "\n", + "- There are many factors affecting the constants in your run time\n", + "\n", + " - How complicated is each step? Is it $n$ or $2000n$?\n", + "\n", + " - How are your algorithms implemented? Is your programming\n", + " language fast? Are your libraries fast?\n", + "\n", + "- Implementation issues will be covered later in the course.\n", + "\n", + "## Big-O with Two Variables\n", + "\n", + "Consider the following code. What is it’s Big-O?" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "0f4dc5ca", + "metadata": {}, + "outputs": [], + "source": [ + "def fun(n,m):\n", + " for i in range(n):\n", + " for j in range(m):\n", + " print(\"Hello\")" + ] + }, + { + "cell_type": "markdown", + "id": "182caf57-bfe3-4d25-a27c-13334b0715aa", + "metadata": {}, + "source": [ + "## Big-O with Two Variables\n", + "\n", + "- The time complexity here is $O(nm)$.\n", + "\n", + " - If $n = m$, then $O(n^2)$.\n", + "\n", + "- All terms should be combined into one Big-O\n", + "\n", + " - $O(nm)$ is correct and $O(n)O(m)$ is incorrect.\n", + "\n", + " - $O(n + m)$ is correct and $O(n) + O(m)$ is incorrect.\n", + "\n", + " - $O(n^2 + mn + m)$ is written as $O(n^2 + nm)$. We can’t throw\n", + " away either term because we don’t know which term will dominate.\n", + "\n", + "- Important to think about this when working with datasets.\n", + "\n", + " - They have $n$ rows and $p$ columns.\n", + "\n", + " - Can you reason how long it will take to fit a decision tree?\n", + "\n", + "# Best, Average, and Worst Case\n", + "\n", + "## Best, Average, and Worst Case\n", + "\n", + "- Big-O deals with worst case.\n", + "\n", + "- If we can develop a notion of an “average input,” then we can devise\n", + " the average case of an algorithm.\n", + "\n", + "- Best case is useful to think about the constants in your algorithm.\n", + "\n", + " - $O(\\text{log}n)$ is always faster than $O(n)$ expect with very\n", + " small $n$.\n", + "\n", + "# Space Complexity\n", + "\n", + "## What is Space Complexity\n", + "\n", + "- Aside from our algorithm taking too long to run, its also an issue\n", + " if you run out of memory.\n", + "\n", + " - Note, memory (RAM), is not the same as disk space.\n", + "\n", + " - The computer will load data into memory from the disk\n", + "\n", + "- It will be problematic if you need to load 2 billion observations\n", + " all at once.\n", + "\n", + "- We can also analyze space complexity with Big-O notation\n", + "\n", + "- Notice that time complexity is usually about the *algorithm*, while\n", + " space complexity is about the *data structure*.\n", + "\n", + "## Examples\n", + "\n", + "- Code that prints `hello {your name}` will have $O(1)$ space.\n", + "\n", + "- Code that sums a list of size $n$ has $O(n)$ space.\n", + "\n", + "- You have users on Instagram, and you want to store who follows who.\n", + " The answer depends (why?). The worst case space is $O(n^2)$\n", + "\n", + "# Recommended Problems and References\n", + "\n", + "## Recommended Problems\n", + "\n", + "- Cormen: Chapter 1 exercises\n", + "\n", + " - 1.2-1, 1.2-2, 1.2-3\n", + "\n", + "- Bhargava: Chapter 1 exercises\n", + "\n", + " - 1.3 to 1.5\n", + "\n", + "- Additional (for the mathematically inclined)\n", + "\n", + " - In CS, log is usually base 2, but a strong distinction is not\n", + " made because *logs of different bases only differ by a constant\n", + " factor* and constants are dropped in Big-O. Show this is true\n", + "\n", + " - Show that exponents of different bases **do not** differ by a\n", + " constant factor\n", + "\n", + "## References\n", + "\n", + "- Bhargava, A. Y. (2016). *Grokking algorithms: An illustrated guide\n", + " for programmers and other curious people.* Manning. Chapter 1.\n", + "\n", + "- Cormen, T. H. (Ed.). (2009). *Introduction to algorithms* (3rd ed).\n", + " MIT Press. Chapter 1 and 3." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": "3" + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/01_slides/2_ds_search_sort.ipynb b/01_slides/2_ds_search_sort.ipynb new file mode 100644 index 0000000..1d60dd9 --- /dev/null +++ b/01_slides/2_ds_search_sort.ipynb @@ -0,0 +1,441 @@ +{ + "cells": [ + { + "attachments": { + "images/insertion_sort.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAARoAAAFOCAYAAABZrNJbAAAACXBIWXMAAAsTAAALEwEAmpwYAAAA\neGVYSWZNTQAqAAAACAAFARIAAwAAAAEAAQAAARoABQAAAAEAAABKARsABQAAAAEAAABSASgAAwAA\nAAEAAgAAh2kABAAAAAEAAABaAAAAAAAAAEgAAAABAAAASAAAAAEAAqACAAQAAAABAAABGqADAAQA\nAAABAAABTgAAAAAZpl/0AAAgAElEQVR4nOx9d7weRdX/98yT3NyEEEhuFIgklIASmoK+8gqiKArS\nVSwoSJH2oyko0lSaIC/ltaBIEVAQRIio9KoSikiTpmDoIUCAhBISIO2Z8/vjnDNln+eG6Mvuxpud\nfHKf3dmZ+c45O/PdM2dmZ4mZGV0CA6BCBFOMYwaI0rRJDjtkAMRgUF5WZ+kNfoPf4A9gfBfLyfmG\nivxDBWDi9FJeLbtGghiuWBamQkSD3+A3+AMZn9gzF8ktZTNmBil1LYwHuzFgGtEtL8e6NPgNfoM/\ngPFd59X0egQBOvgoJcQsD2CkySFNDpPgNPgNfoM/8PFZQlZgljWhvcIVxNg8piOw/qEu15CzZoPf\n4Df4Aw+fmJmLhVGxxEUIWZa3yN9xucFv8Bv8AY3vOESQXmM5DDk4K4mRB9a/VKwg5YlSZxPBzDCN\nbfAb/AZ/QOMTs+eMyfqxvP4Fclt4/u502uA3+A3+AMZ3gckWUlqY6uJORlsUkA72zHAa/Aa/wR/o\n+OSZuWv5zJlJ1V8B/V4MtVxIbka2CKjBb/Ab/IGJH4ZO/eXOo2IFH3v8MTz6yKNd0YgYzGQmE3wo\ngxCkcyaMnneAEYgYSe0AyBpDNiX0I23Z+D09PdjowxthSM+Qhd5IK66jmh227L+u/4XJ3+A3+Isd\nfrBo3jJzDDfceCO23OJTWNBug5hQXFUIJGV0udSZkDsO4ymhHwSAUBv+hz+8EW6aNCnHNx5Tkor4\nRaXGcyu/Cysm+MhqEG4jUYNfAX58ui958rtWC8WQ00hn6LzCGJQ8wPU3ZZy09hQOr7nmarQXtKMc\nhQ4aL3QPpPcuJLT8nBfF+rejKJJqMteHf9utt2G190zAoNagWJlFYGoG4AiAB9h0nYA6MHwX/ROT\n3AIG2Ml0YRuQZlgR/tSnp2C55ZbH4KFDasGvS/5npjwF9oyxq6xSq/6rlv/pJ5/EoYcehmOPPTrr\n/7Lkpkg1Eb/4ZhVAGCTX0yzFXy1UcUCAb3theuudQScUHEdcNBTCOcnQJwjIoXoAa7pUYV0Yg7FY\n4P/y0huw7Mg+ifAEuIjvHQAvC6GIGW1HcS2BZ3hHIAKozaAWg9kFfOqC74H4YlqQysc0FeBv/l+r\n46Lr/oJhw4bXgl+X/Lt+9hP46v7fwkc+vnmt+q9a/j9dewWmPXYfiv0/1qAbuSXUExYCMgaBChwU\n8uR81cmR0jWHDR+BiX+6A44JzKT+EWHN0IU9gR2DvLCxlZdaDmTaBEAO4ES1kSMomiLe0hE8+Urw\n/3jNZTj56EOj/EwASO6xiw8VZsB5gEluHtjBseEz4ICWrpOEA9pMcGCRCRAZ0pfWTJ6ESK0RMVWH\nn7W0GvDrkt/p/7r1Xxd+ctcLgawn2DM7dFEixNXGTBhULESYq5tRlEih1gADWG6FMRiz/IriX/WI\n5h3ZcSzLQ9J4JzcuWHzOsMXacIiRrI5dBy/mI7NoFZzxThX4Kyz/rqhgYiUthlM8pzfPwfAZxBzI\nre0SfIr4zvBb3fE9BN95RPkdB4usKnxixPtfA35d8rf1UeM816r/6uWP/Tzr/4VXGYItQ/mvlgpQ\nsk2ERZJl5S5xkM4Y4oJxQaC2mmsqJDxAbZjYoQJEgPNiinl7VGhw3kcbwnO4uc6sEiJ4p/gMeF81\nfq4Tbi9h8gM1678e+QnmI6m7/VWPb66FvP8rjj3kw59uQUm6GMnJdU4A0mxmJlloMYNbwpA2/Aj2\nJhjETkaTlsnp8KadozMTPFRRDnqsnnVVcIshJiBFi6Y6/ER1rEOsSvFrlt8Mmdr0X4/8gD1k6m5/\nFeM7oFv/19SCb3F5skLINr4qFhRHYJylkAqZV4dIlWGVVoVwgs7EcLAbJmzswEnnFQHhpEJOlaXG\nI9oEAF495WJPkDqvnKsQ36xHmPwV49ct/xKKH9r/kia/L8hvga1ss3aKodO8cR12CxcPAqXEXMQR\n3uwmx4FMARNcy2YGPKsPxIE52EXhvykVatZFZxShxep4NVp0HMauleKHIln/VYxft/z6BK0Nvyb5\nSR8tteu/NvmBvP9DU6c0k7+2mXMNw8UCuFBItwLykA8mCC0VWthRrzChTaRmHsPBq1KoUEo06xAU\nKMpoq9UEIPGTAK2g2erwU926GvDrlp9qxq9DfrMi6sKvXX50D/nEFOUlJfVk6NDJCs04ibtXhE1a\nSmLUKxWGgEkeEU5YssVRYS6lMh0U+oSBnbepPFEisc06UWRdVy1+psUa8BcH+ZlRG35t8rMMLurW\nf+X4GcWk/V+jSE8yr3DKMay6U96LD+vUFIqBisfkQwEgkmkxLY2Y4cHqmCJB8B5QYeERnVJWpsyb\nosXG2uoBSZRi5pwDA86LM9ZLmsrwCwpE1fiLgfwOqA+/Jvn1jtev/6rxjeTStADEdYLkoUvJxcRc\nUYMEYWgWVJl0prRjFW2hFFiZ14mvCm2dM2cyAQAiCmzpnSnQPPkEYlWQE6cUeZn79yRjU/II04vm\nWTeHOLVRIX6BdFtcMX698pPJX5v+65Hfsfho6tZ/5fhOfVNd+j/Zn8TEEbpKiCnx87iYzEzEpDBj\nvn5Ix1geEJOuxTaNRfq0VxcTAc5LrVzMKUoiG4M6UFuu2wIj1xanFzugTVIfcUZSKNc0XgW+49Sq\nUZOzQvy65Q9Wck34tclPJO8V1az/WvCVFPo1OoxxlDuon3QunHKBZQCA8lFaVjAQuEucTwwmn2Y1\nNDAJO8JrPvP/OFt1CzHvHBCLIMDFeX0jR0rxuWJ8ipJLOVjy5K8Tvyb5sbjov2r8fvt/HiKncL/p\n4tApnU4opu/gILVi9EKLzfxyOsVmY0otg21sr7kZOo50URktZWlnbCwYDgC1EczBMJ0HArMHV4gf\nVSPXPHGl+Iub/FXj1ya/h75rVK/+q8fvr/9bSNLoUQcxaXDZmQ0NLGcydCqGUKSa020CmL16tjVN\nG2FMKcLbXD/BgdB2sVrOi4AerE4tgNSJBaes3o41No88VYiv9zfIL/6pJUv+2Hirx69Lfia99TXr\nv3J8m/XqzjIRCPEBlCXl+OuyiKRMIRwq5IiHnJboZGwnb5NaJRHGklJxWc3oND0x4hJoT2Lauch8\nHgjLro1duWVKQzI+rQ7fG9nUhL84yE814tct/xKHT9bgO/s/gIyAqBiRnpKV28FYxaXF1ElGZuyw\nQ7YHjA1qtYJm7jEheL4BeZM0U5S38qTwViJQ6nk3tg0hrDcoH99xok67XiH+YiE/1Ydfq/xcv/7r\nwi/2/yxw+JOc53EsUBxGSPFyXhoXsNI6MHmYd1sqDRVQXgYDOBhGLRv3MeCSCqX4bd34JDIzwYPg\nW1FRojQJMl1XDX6Xtz4qxV9s5K8Jvy75GQTv6td/5fgAwrI9ytt94ALSixaoeCBGyyCAEg+1ztOr\nIyomFBRLR0C2F4xMuxFs+bJVwzt7vR6gNsncPIAWIONBB7RILKLg/GpzKEfeHvUgEFxbkZ2skHz6\nick4/oiDsNveB2Gjj32yEvzsrQ+zSr29RVsu/g2X/Q43Xns5Xpg2FSuMGYvNt90eH9t8m8rwo/xi\ndrec3P+y8ac98yQuPOcMPPrggxg/YS1svu1n8L71/xutFlWCD3gQyRPf+dj+ypb/lZdexg1X/x6T\nbrwSSy8zEpt+clt8cqvPVoYPyIZaTD5Y8BlPKDsUDZzOIClcMcJ6ERfjQ/XlWvqRljYRKLx4weq1\nji92ydw/B0DvRDkO0awzHCKA2MlsO0ezFYA8VYkwvz0fh+6/B+66/RZMm/ZMdfhC8bn8rnz5f3zC\nUTh0/11w2y1/xLKjRuPWP1+Pg/bcEWf+6H8qwU/lZ/UDeFNGifj/fPB+fGmLj+Cy35yPpUaMwNVX\nTMSu22+Ga6+4tBL8MFwqtL+y5ec2Y5+dP43/PfZwDBs2Ao/98yEcst/OOO/sUyvVPzHsopUc0nWO\ngjoiYMMqRkI0nCYEwrgvRhTZK5pkDpwRTxjzKTM66E0LCnChDFNMZhY6BrE8OdOXGZ3GnXbKcZj8\nj/tqwPeJPhlEySv3JeG/8srLOO/0H2L8GmviT3c/ih+fczH++LcnsNyYMfj5T07EnDffrFj/ls6X\nLv/ppxyHN998A2dPvA4/OvsiXP/Xh7HSyuNx1qknwqNdif67tb+y5T/v7B/jnw/eh5N++gucdMav\n8Ourb8X7/3tjnPnD4/H6rNcq039quXf0/8RRlNj5+TWK1k94typ9o4EBs5PACeHYUTdzyVu5Kkzc\nmFhytAlgpwTmZAzpQZLRAS0OnBdWP8oGy14VJFbE3/56K84/40fYcrsvZJWqBL+L75xLxn/6icew\n2nsm4PM77oGenqEAgN6eXnzsE1uhvWABnpnyRIXyy1OUPGAv7pUl/zNTp+CWm67Dl3bbBxMmrAMm\noKdnKI7/8Tk44FtHwi9YUIn+obvOpVZs2fJf+buLscKYsdh4860A7zHEDcYXd9sbb7z+Bm667qpK\n9A+nQyff2f+lxKLZgexqcOxoGJSnjwxk57Gy3Fl4Urozb7fzIHbwjuGYAU+gFqvlRurPYdhUGmkD\nNhYFZCm17XcKkhtOzHh99mv47kF74wMf+gi+9NV9cPVll1SKT0EHyv5tKh3/ve//IC654Q69pmNu\neNx60/VwbhDGrjy+evlVbNvKtAz8p594FOwZa6y5Di679ALcc8dtGDZsOD61zfb4+ObbCPGViJ/J\nT9YXRP/2xC4Dnxl48pHJ+PDHN5PHmup/wprrAGC88Oyzlejf5F9Y/1e6AOJPiBRnMsO8yoMAJOwX\nOxH06SX5NLMVlZhTwSRyBNir7KTz+kxgR+C2mmhOHFDOS5OFvrzFrF8xIAfAy5w+ZN6fPINbDHiH\n4779Dbw6aybO/eGZmPHC82LOUXX4UgoHNfmW4IuTunx87xggxi9+9gM88/RT2OGr+6B3yBC5AxXJ\n3wYr8agzkcuR/4UXnwNAOP2U4/D01CcxevTymDH9efzm/LNw1Ek/wae/sHOp+Kn80A4jfZnVj1GO\n/K+/PhNtvwDLjOoDEPU/YtlRAIAXpj9fif6hAx6b7k77f6AeI5MYE47DXwrQZsMoS4PMTk5KjZnJ\neEfjPFqQKThGWx1VsFWGTkrklnYEzdsmGROSlk2sC4bA8HCgNoH0LT4x9wjXXfFbXPuHi/Gd436A\n5ZcbE/AZrhJ8ig/yIL8DwFQdfouB8372A/z0xKOx5rrr48DDjqkUX5qePj29xJWF/+r0lwAwXnpp\nOs6ZeB3+ePdjuPCKSVhm5Cj879GHYvasWaXip/IDBCLZWKoK+cFAT2twpv8hg3sBAO15cyvRf5C/\nS/+3kFKK2ttITrKELnKGZeOkxCRH/iNHDIAZTD7eAABwkfUBwLVVMDsPQkYzTv9AdgCD1kz+vzTj\nRRx3xNex6uprYNTyK+Cu22/Gg/feBTDwxOOP4O6/3lwqPoDoq0pMSbDEly0/ALR9G8d/5yD8+MSj\nsd4HN8SZv74cvb1DK8M3+X3wwKuztCT8ZUf3AQA22/qzeP8HNwQzY633ro9PbPUZzJ49G5MfeqBU\n/Ez+gFO+/COGL4UhQ3oxe/armf5nvvoKAGC5FVeqRP/F+9/Z/9NzTgwQdDISA4PM9GFLSJ2clUZH\n2ycKJayYxHvED7Wxfk/Gxm1erRB1SAV8Zln9aKysZXpHeObpKZg9ayZmz56Jvb+wZSbohef8BL+9\n4Oe4c/L00vCZZbETEYRYUw0lacvCX7BgPo46cA9cc/ml2Hzr7fG9H56Jnp4hNqItHT+V37E95VAq\n/nLLvwsEYJXV14AHyWIzAlZaaVUwgAXz5lUnP2SIXJX871huebww7Xm1NET/zz//DIiAFVccW4n+\nZZxDALmO/p+G1KrpuKiBSRfs5ZXuDOYUAyOZVlfKMaZLKDR8+gG6jwsI8B6+RfqxKg4Kkc94Kl85\ngL3VQ26o84zVVl8D5156fRiXEgNPPvYojj10P+y654HYZIutS8VnZhnr2hMj1ap67cvEP/6Qr+Hq\nyy7Fznt+DV//znFoqT+NiSvBT+WPKigXf8I662HI0KG47c/X4yu77wduOaAN3HTD1XDOYa31/kuH\nCeXL79QPwvrtJFey/Otv8GFc+buL8OL05/HOdywPZsafrrkczMCq716zEv0DrMYHd/T/fmiiazBa\nGZSQYiEFxwsJnUWrqIsR5UMy/ZUnEZMwpfoyET4uHmQVJTHBvhYRTDomwlJLL431P/Ch5EnDGNzT\nAwAYu8qqeN/7NygVH2QrpmP5Zteo/kvDv+eu2/GHib9C75BeeDB+eNy34WAfeAd23G0frLDi2Mrk\nFycj0DaHY0nyjxw5Cp/baXdc8POf4qhD9sOntv4Mrr3y97j3ztuw1ae/iGHDh1eif1kgp/MtahkQ\nc6ny77zn/rh84gU4aI8v4oBvHY3HHnkYF55zGrb9/E5YY611S8cP8lsrL/R/ReufcBJqsKxh6NSR\nm6gjys7Sae0smLlGsoCoDXk5y4PVF2Us7IR1nUwZWsWoHU0+kAMRoy33W0lGp3c5VWd1+PJco0Ay\n7FMLrxz8m264BgAwZ+4cXPDzn2T4ALDZVp9RoqlI/3r/nVoTyfKLtx3/oCOOBYMw8byzcPnEC9A7\ntBdbbPN5HHnSTwWqZHyTXyRX+bl8+VdbYy18/9RzccJ3DsTeO26LocOG4aObb41vHvl99ctUo38i\nSlqaaUGYjSiedgQlMrvMAAaF2fE0Nsmcl6PkEykTDg7F0Ga5SVacSwv3gL2vASCOhbyafLbnhheL\nyunTNGwZSgxPwNrvXQ/3Tp0F1847Xun4CRa1IJ8qdeXhf+Pbx+GbRxyH+J0ds5ZljF21/Da97cDg\nluKXJP8gNxjf+u4J+Mbhx+C5Z6bine9aEUMG9+iDu3x8kz9+VSC2v7Ll33Lbz2OLbbbH01Oewgor\njEHP0F6TuhJ8eCOglAFi/6fANp3BOCXRWtixIonlkDzaQJwdhqlerbc97SyBg36uISwoipBep+uk\ntQijMolwtocpAMjqRTXfKHEOeFtSLU8WrhA/1RUBlePXLb9GV47fGjQIY8etiiGDe2qR38PH4ivE\npxZhpVVXRc/QIfXcf7DaJYX+r2V1WjtaJoqBlOyyLIm5kjF5Es1pcV6cRfqSl72E58ONAog5rK50\nanp7pwuEfMK4TuIjdrDjYB8wt5fDmLTytqKxKnxE+akO/Lrlp5rx65KfasavRf5++n+M1SPO0lqI\nry8Jbs5B3HFQLD9clzgnawscwpugap2BbJ8MduKIUhaFg37mU47bHM06+3xEalERm58gqYXX5eCg\nyvBzJVSPv3jIT7Xh1yW/w+Kh/+rxY+js/zHWmMB4JS4501xMnf0nmmEJMyV/pRQCyNJ6OBXQJTeG\nCdH0VhZuOwA+DreIAVsfBADcEuaWfA7GpG31PDnPMnZU9pWMXBl+dJOo/BXjLxbyc334tcmPxUP/\ndeCLISI48pMTEJDYMpT/wvJRxAiRZFm5SxyMVTVO03jIeNDMOyYEdlSxQwWIIO9akKZPauD0TVmA\nVKGiXAcWpyuRmnbS6PVLoBXi5zqxl9qWGPmBmvVfj/yk1mvt+q8BH9yt/yuOcU/40y0oSRYj04c2\nJwBpNkpAAH2xyxYJmdMqYVz7DETY48axTNElb59KxeN3bOCMeWXcaRs1t9QEZJKVmsxV4ieqY4Bc\n1fg1y08IJng9+q9HfrMsatd/1fgd4518nGNreKgzWSFQJBoOUcVCw6qRrEL2yjiRKsMqHXZuT0og\ndQZBpgdlzMlJ59U3Y51UyN7ZcIoruzGIzcck9oR9k8a5CvFVq+IIpurx65Z/CcUP7X9Jk98X5LfA\nVna3GaZCWqtWh93CxYNAKTEXcYQ3u8lxIFPABNeyWcaWsiGPA3Owi8J/UyrUrIvrRkgdVxTNPPWo\ne1C1+KFIRpj8W5Lk1ydobfg1yU/6aKld/7XJD+T9H5o6pZlshVmBaxguFsCFQroVkId8MEH6iQYV\nWJVCTLKnKQHMDHk7VJSUlxLNOgQFijLaajUBSPwkQNgmtUL8VLeuBvy65aea8euQ36yIuvBrlx/d\nA2UXKC8pqSdDh05WaMZJ3L0ibNJSEqNeqTAETPKIcMKS8hU90jQJlemg0PYtJdYFRzbDAQLZpj5M\nkXVdtfiZFmvAXxzkZ0Zt+LXJzzK4qFv/leNnFJP2f40iPcm8winHsOpOeS8+rFNTKAYqHsu75npM\n4BYFBxIxI+x9IWulVRGaxiM6paxMWwHKxtrqAUmUYuacLFLy4oz1kqYy/IICUTX+YiC/A+rDr0l+\nveP1679qfCO5NC0AcZ0geehScjExV9QgQRiaBVUmnSntWEVbKAVW5nXiq0KbbOc5EwAgosCW3pkC\nzZMvKxmJGd6JU4p0i0FPMja1r/SJB16UZQ5xW2BUDX6BdFtcMX698pPJX5v+65Hfsa4Dr739VYzv\n1DfVpf+T/UlMHKGrhJgSP4+LycxETAoz5uuHdIzlATHpWmzTWKRPe3UxEeC81MrFnOHdChmDOlBb\nrtsbpK4tTi92sq+Gbd5sb2gZi1eF7zi1atTkrBC/bvmDlVwTfm3yE8m2HDXrvxZ8JYV+jQ5jHOUO\n6iedC6dcYBkAoHyUlhUMBO4S5xOD7QvwktXQwCTsaC+MBP+PY7ApxwtNxyIIcHFe38iRUnyuGJ+i\n5FIOljz568SvSX4sLvqvGr/f/p+HyCncb7o4dEqnE4rpOzhIrRi90GIzv5xOsdmYUstgG9trboaO\nI11URktZ2hkbC4YDQG0EczBM54HA7MEV4kfVyDVPXCn+4iZ/1fi1ye/FiKhb/9Xj99f/LSRp9KiD\nmDQMKubj8NTSGoWBeR5sjmr+3LmYO39OENBB33Rl2EyZ6kXNQH3BCwTMI8CxVdaBmYP/CgugY8Wo\nDEDrt0CLZUkHoBL8eXPnhfIIrP4pvXEOcN6jBXsVH2qaIll7An2CSANqO7aXcWVZODO8k0VYxAB5\nL/hOdB32CgHEjEa1+NY+6sKvS34mLBb6rxzfZr26s4x2Rj2E9ok0cdL/BmURSZkMIP14VFaiYoCB\nqVOexAdXGy3Cx8saYowcFc+TdMTFzJ3FpJk6wSrFj+NjAE7Gtraxs9wkfTow62yAKJiUAYkh63Ac\nAE/wLVuxKcEDcGGVp75rk2xMpMVViu8JwbSuA79O+QHUrv+q8e29xo7+b7gJp1AxAnm6Qd2uo8hM\noAhAkD1GOV4z64bzHEjX5XDyF4hEFfA478uFy2rBJHSxGOAfvOcOGNQaDCIPLtwIqZPEhfuJ5EYS\nwtMkjbd6F1cxEMcbH2UjgKky/NdffQ377rgNhvb21oJfl/yPPvQQjv7mPljtPRNq1X/V8j/yyD+x\n5x57oNj/s8BauQ4iinGShD0zUxgucX9lJb+XXXYZPv2ZzyS9vYt5gZQCFposvxRsvciSEr8Qi6MG\n/DXXWgs3XH89QPbek0eqOQbDwYHTeGktIUW4rUziA4A0Jirg28e+Un99fk+qwX/zzTkY2ttbyF0d\nfl3yz5k3Fz09gwPSkiT/qFF9GDykJ+v/nfgLC1pDDttgGUMiZ6gsPp7feecdePjhf3ZBTIRO4z0B\nxFkxTIi7rnfDT5kxuP+9KNb4oAb83iG92GLLLTBixDILVXH/ao/4VLyyiPr/d0OD3+DXgZ8QTT8V\nSiLSipmfOKZNcmSd3wyxhZbe4Df4Df4AxnexnJxvisuUQQVg4vRSXq0w6S+I4Yplycy3Br/Bb/AH\nOj6x545NJVI2Y+Yw+7QwHuzGgGlEt7wc69LgN/gN/gDGd51X0+sRBOiyyU1CelSIFNLkkCaHSXAa\n/Aa/wR/w+E5wOUnOSQmkh0JP6ZWssAyEEmBKikxrlVe5wf/X8P96x+3Yd999l1j5G/z/PHwnpxQy\nMAhhKWTIETOnVUyLZMsbT/KExVfus8sN/qLgL5g3D98+4ghsvNGHcfrpZ+Cqq65couRv8P9z8UlW\n0aQhslIHs1F+Nabu52KSiCn1fVvCt/KIN/iG//BDD2PHnXbEvffdB1l+DkyYMAH3P/AABg9qDXj5\nG/z/bHxn6w85/ClyFmXRxXJSVusKAui0WMp2ljCuf2zwu+MzCKf97HR84APr47777gWUZFqtFrba\nakt43x7Q8jf4AwQ/rKPpj40AhElztkoveojFdmPPrgkbfA3TZ8zAnrvvjssuvzyLHz9+PM4773xs\ntNGGpeLHa0um/hv8tw/fXnfozB2W3QLpVn2WjLGQwPF/LDYVksNPg98d/4833oj3vXfdQDJ2ebfd\ndsN9996LDRdGMgNA/gZ/YOGHoVNHbtvur6OEpID+0EgSmIXWkYzTijf4afHz58/H4Ycfjs02/xSm\nTZsWLi0zciQuvuRinHvuuRg+fOkBK3+DPzDxozOYBTj8LiRwqEL3hJ1XYszESybi9r/+BX19ozF6\n9GiMGjUao0ePQt+oPvS9ow99I/vQO7S3NPzieTiqSP6F4T/x1BP48g5fxh133gGE6hA+svHG+NUF\nv8K4ceNKxa9b/gZ/4OJ3edcpRUQ8tsFZUkpe4KLVdO68edjxy1/CpZf+LkYmcARgqeHD0dc3Cn19\nfejrGy3Ho0Zj9DtGo2/UaPSNHoXRfX0Y2deH0X2jMfodfVh6+PBFws8V2y1tufL3h3/RRRdhn332\nwWszZwbkVsvhu989Et/57rfRokGl4tctf4M/wPHZM8tWEQsP3VP4hV/18XqaYv68+fyFL+7Auk07\ny9akcoz0OPx2+59f6+np4UsumbhI+OyTGtcgf4o/67VZvNtuu3TIP27cOL7llltKx69b/gZ/ycAn\nZuaMgzpsqbcOgcsYcd+M7pZaCL7dxi677ooLLrigo7yUT7PzwgUbWoAYKyy/Ap544in09vYsEn63\n+ucn5coPAHfeeSd22mknPProo1n857bfHmf9/CyMHDmqVPyulyuUv8FfcvB1ZXAS1wWEk78ojrSS\nlME5ndWPM2HzMsEAACAASURBVFMLLL+u1cL5552HL3z+C0lBlCCR/CclEyB5YVTjKRa4/wH7o7e3\nZ5Hxu9W/KvnnzpuHI488Eh/eaKOMZIYttRROP+MMTPztxIxkytB/t/xAdfe/wV+y8As+mgSgH2ZL\nz5Lp9e7Dva658uC9x7777oszzzyzw5IxITpFi8wJAMOWGo6pU6ZgVF9/FsCisnP58t/7t79ht6/u\njvsfuC9eArDuuuviol9fiDXXWrtU/IWH6u9/g79k4Ls8IpnOotSySFPEzAGkM1khZOsP4xEDzjmc\nfsbpOOCAAzLsLJ1FJD8pPe6+264LIZmF43dPh7dd/tffeAOHHnoINthgA9x//31C9Cr/N77xDdxx\nxx1Yc621K9d/93QNfoP/9uJj4c4eueKLKXzHwSK5jhbmQPLM/M1vHsxAeKUr+Z84ftVZShrXajl+\n5JFH3xb8/tL/X+W/8qoreZVVVg0ykL4Iu+qq4/mmm24qHb/7terkb/AbfHREvmUh/RXX6dnOTvTc\ndxSbRxx+2OEJoSza/5VWWomPP/44fv6F5//P+G+n/JMnT+att946EifJhzCca/H+++/Ps2bPKhU/\nO6lB/ga/wbcT9HMlyeb7h+znQjE659AOfuzIddRRR+WWTMf0NwqWj1wb0tPDO+ywA19/ww3cbrf/\nbXw5+/flf/6F5/mAAw7gwYMHh7pZXddea02+7bbbSsX/v+q/wW/w3258MEeWy4rsOEz+drCl78gT\nr/VXyyRVF/zjjzsuG0LlwyliELQjd7NyiFdaaRwfddSRPPmfk/8t/H9H/ukvTufDDjuMhw9fOq8P\nES+11FJ8wgkn8Lx580rDfzv13+A3+G8nPoqXugF1RvgugIVr2fVirRdFeuaTTz5loUOm31z0G/7F\neb/kD27wwWDpUBdiev/66/Mpp5zCjz/x+L+E339ELv/kRybz/gfsz8OGDevAJyL+8pe/xFOnTv2X\n5V9U/GK6t0v/DX6D/3bhdwyd8uIWATRB9B1JfcdR/yJ2xz/1x6cmPo7YgVdbfTX2vh3w77rrLt5j\nzz156REjOqyglHTWWnttPuKII/hPf/ozvznnzbfE70/+ma/N5F+dfz5v+vFNmaibAxv8sU0+yrf/\n9a//J/n7w88Py9N/g9/gvx34WGiBvrOi/da0I2+384K4vpC0H/zTTz+9oxOfdtppXfFmz57Nv/zl\nL/mjH/koO9fqPnOl/4f2DuVNPrYJf/Pgg/miiy7i+++7n1977bWu8r86cybfeuutfPJJJ/Pmm2/O\nvb29HcM1mwnbcMON+Prrrn/b5F9omn7zdjtv8Bv8evCTja8YxU2LgThPHubLu4R4rf9UjG6LepKI\nt8A/+5xzsPfee4HbHqP6RuPpp6dg2LBhC8WfOnUqLr74Yvzm4t/gnrvv6af2eSAAy44ciaVHjMDw\npZbCgnYbM2ZMx8svvQxZ4SimlfyNn9x1zmGrrbbEwQcfjI985KNvu/x167/Bb/D/L/jdv1RZTN9v\n/s4LC6tQmijfw3TR8M//1fn46q5fxeFHHI7vfe97/xL+lClTcMUVV+Dyyy/HzZNuxtz5c0GcfJvb\ntGkH4Ty5nMXJybiVxmHnnXbG7rt/FSuvskqp8r91wnL13+A3+P8ufk40jHyrvn5YrlupcliAyehQ\nDSdQYNZuBPtW+BdffDE22WQTLLfccv82/pw35uD2v/4Ff550E+64/Xbce++9eGnGy+j4Wh+i9WKh\nNaiF9677Xmy+2WbYZptt8d8f+m8QUWXyo5C+av03+A3+v4MvRNOFhvKojhLfnpApol78qc9OxeOP\nPY6nnnoKzz33HGa//jreeP11OOewzKhlMe5dY/HuNd6D9669LoYvPfxtx69b/ga/wS8Tv/vQ6a2R\nC/HdKhLjusmz8Po2+A1+gz+Q8B3A2QuKcpiXyBrFxThAXytP0lPxIH5KM92BNGXLBr/Bb/AHNn5i\n0XAsLXNPp/HJ+b8Z0mLyTzc0+A1+gz9Q8ZNtIij56Y/74nknC3ZE6G/uYiW7QMXqNvgNfoM/UPFd\nvJZWB6Ci66ZYMSpWhTqvKTOGK6ECVIho8Bv8Bn8g4xN75ryE3DhiZlCyxWZ/RlPHtUJEt7wc69Lg\nN/gN/gDGd51X0+sRBOjgo8xaKhpY6X6++XUEu4s6LzT4DX6DPxDx9VWErMAsa0J7hSuIsXlMR2D9\n08/inwa/wW/wBzZ+smAvyVYssZjPe5xz7i/wz8kPAyxjMJ+yoa7V947h0g9PZaLYEmgShnUMMEms\njQ8T/PS9IjlyUtGK8adMmYJnn3kGa0xYE6P6Ri5R8pMjbLbZZvjEJz6BYsiazFu1n+Llf7H9vWWZ\nDf5ihx8/iZtl6cJuHH/OPuss7LX33m+NnjZw0n6RVCCcA4gfhEHWKTrLlI6wsCQNfon4rRbOPuMM\njO32ed6k6RAC34EYgfTYgJXQvNJdxGd0OiuT9kcEl8hfBf6LL07HiKVHoHdoby34dcq/5pprYsUV\nx6ILxELxs8DAoOwtHVbAECgWlgjwj4ceypP01z7TeI71YNVAlt7GjaHx6zNcFUCm72Ina/CrxW+3\ncf5vJmLsSqsibVlkRVAWDQLQRpzeDG+/h8emJPYQo8p21re8ngjMjBY8QK7wWaFq8K/+w0T0jRyJ\nD31001rw65L/wb/dic0++QmcdNKJWf9PA6Wx3UgGwluDQtL+2AgQU1prEM0flYiBlVZdLZFQ0pgc\nyp0g9vCO0lmxEJwqyfJ5ilWRa9Lg82uCFwm4fPwpTzyWagXLLDsSI0eOqgy/LvlffmkGZs58NbTA\n7b6wCzbdYjsp3SP5DGEnvlwmwHv4FsGl+JqXWDuJQ1KeaplFfjgCPOCdXabK8BfMmYe+5ZbD3l87\nvBb8uuT/07VX4PnH7uvo//3QRNdgtDIo8Esxt5nRIKR0RiGp1HjV1dfA7/54V6x4EkiZk83cVwWw\nsVpQnD5hCXDe4Dn7jmbaoYgZbZLLmaVXMv4Pv/8d/PLMH1tqXDbpXoxcdlRl+HXJ/8pLL+Hj662c\nP2khHwWLT0AO+JTgt0hxSRp5hq9VdmT1lP4EjvhM0v6IAda6ivzV4jsAqBG/FvnN6i30f0Xrn3AS\nMrOsLl0DmNnSJJSSPwBVpC5PRSlN/lNLlNRW+vTaiAHZ8xLeiQId5AskZqy3pdMwAXAORBT6jk2X\nGfs61VLmYCoZ38M2u9K4ivHrkp8pNg0C1ab/Ou9/G/Xi1yV/t/5vQ/LOsboGkgRWNwbgwuy4UVQh\nM3U5C8IR4IofuwTQZqcsKmld7JpKoT7ObHjN7wFuIT6VvaQVBo+ATKxZGNwCyHfyaln4DslGWQCo\nYvy65HdJa2YwPFWLX7f88sitEb8u+cWcSUpO+z8XySEEDtoKtRZLKY9NKpVWMDkkM6G03gFYEzgw\nnCdQu6NweAdRnNcqqckGJ4xKhu9YTTwGk08UQDpkkCcrV42vxRFQD34d8hfGZGJp16T/WuTn2C3q\nbn9V4iP5jFra/7WsrtZOoJk0kJEdZ5HxN2XSJJrT4pQdvaS3Lbp9UBRkGo1MCaIg7whMTllbzSkn\n8RE7+MoD8Zo3i0kr77hafET5qQ78muRPg4zza9J/XfefasavRf5++n+M1SPO0lqIW10Jbs5B3HFQ\nLD9clzgHr+M9m7lQ6wxEqh124ohSFoUDWqwKckCblb28siqbNWWKEpVzOvXuWU1KqhC/IH/l+DXJ\n360R1KL/+uSnxaL9VY0fQ2f/j7HGBMYr9htWG7M609NCohmWMFPyN0zWk6X1tqg0jAWtUwbTT1m4\n7QD4ONwihjKqFt0S5pZ8DsakbRJFOM8ydlT2hY5VK8MPulf5q8avSX6vDSYMHwxkSZEfi0n7qwFf\nDBHBkZ+cgIDElqH8F5aPIkaIJMvKXeJgrKpxmsZDxoNm3olnGzpGdCGhztTBeb2BQVkSnPd6SqpQ\nUa4DgzyBidS0kzGz9xXjB5XqluXtJUN+cxymTawW/dclP3RVbd3trwb8sFgz6/+KY9wT/nQLSpLF\nyPShHQ3HPBslIICYYdyKDAmTTxmX2MEDocHCyfaBro0sMMfpVDhjXhl3siq4pSYgE4dV01XiB9Ux\nQK56/DrkD20gaQp16b8W+UmHJ4tB+6sUv2O8k49zbA0PdSYrBIpEwyGqWKhN6EZmYSbYdjoyhZZ4\nuFUhnKAzqTMIMj0nY05W5Uk6r3kdEBaNOcVtE2A2H5PYE8TC1M5ViK9aFUcwVY9fk/zBN2WtilGP\n/uuSn+vFr01+9el02LNsZXebYSqktWp12C1cPAiUEnMRR3izm1w6CWqCa9ksY0smArPTd23MQlAT\n0TDVrDOPOUDquKJo5qlH3YOqxQ9GDSNM/i0B8me7rRnZ1qH/uuQ3oetuf7XJD+T9H5o6pZlshVmB\na2SvgXCSF9KtgDxQdkRoqdDCjnqFCW0iNfMYDl6VQoVSolmHoEBRRlutJgDx6QqgFTRbHX6qW1cD\nfh3yp09H1Kz/OuT3mXWw5Mnfb//PLlBeUlJPhg6drNCMk7h7RdikpSRGvVJhCJjkEeGEJVscFeYS\nLNZBYdhThXXBkc1wQV4KlEVKFFnXVYsfhVb5K8avVX5LzwC4Hv3XJb8MNepvf5XjZxST9n+NIj3J\nvMIpxzDAci7unvCwSk2hGKh4TD4UACJwi4IDSfa40JWUngTBSycN3vDCFJm9b9FiY231gCRKMXNO\nFil5ccZ6SVMVvg8aFgWiYvy65O94qlE9+q9PfnPM1tv+KscPD5kkLQBxnSB56FJyMWkr5m4IQzOE\nXDERJcdFWygFVuZ14qtCm8RMYjIBoC+HybF3pkBbbShPDGKGd+KUIs9gB3iSsSl5sbBsqwR4Y0iE\nBUZV4BPlWqAWV4pfp/zWJkz+OvRfm/xqWdTd/irHdzLt0a3/k/1JTByhq4SYEj+Pi8koWikhXbSF\nupGOWNF6E5jQYpvGIn3aq4uJAOelVi7mDO9WyBjUgdpynZX+XFucXuyANkl9mAF7Q8tYvDr8RA9Q\nk7NS/HrkT0fP0s7r0n9d8qs7uPb2VwO+kkK/RocxjjYT6iedC6dcYBkgKDiPiwUYd4nzSV/+ilkN\nTYYdjmEvjAT/j2OwKccLTcciCHBxXt/IkVJ8rhY/WIIBH0uE/MHuTSyaKvFrlz88uettf5Xj99v/\n8xA5hftNN6hQs5iTkvScX7YExnYytmMATjfksTEl1CzTcrTBMotZ2GIHm0bjlphw7Eim4lpiNjow\n0Bb8WW/MxkVnnYb7770Db745B6uutjp22vMArLzy6pXgR1WK/J4Ep+Wrkd8T4NttfOegvbDcmLH4\n+iFHgR1Vgw97DpojkcDsS8d/fupT+PU5p+ORhx7AqhPWwhZbb491P7ABiFwl+A4MeKCl5cnYonz5\nX5k5Azdc8XtMuvEqjBgxEpt+ahtsus1nKsPnVhjndOn/FqQe8VJYCNARXHZmQwNLmQydiiGdhWAW\n047Zq2db07QRxpSAzf1LbgcKG/MAatp5dbg6VY46seCAOXPnYJftNsVpPzwOzzw9BS0CLr3wl/jC\nZh/Cww/dXzp+eKoEAmb1T1UjP5OU9/Ofnoyr/3AJHn7gHrnJVeAT4lBcn6jpjExZ+JMfvBdf2uoj\n+MMl52PYiGVw3WUTscvnPonrLr+0EvxUfq/lWY8pE99zG/vu9Gn88NjDMGypEXj0kX/g4H13xq/O\nOLUS/CC/zXp1JRlEIMQHcIc9or8ui0jKFMKhQo54yGmJTsZ2RJSxaNjtxkGdarpNltPVibaa0ZOY\ndi4ynwfCsmsmxuUTL8TjjzyEPfY9GH/48z046+KrcdZFV2Lu3Dk4/QfHl46vyXL5LXEF8gPAAw/e\njbN+dGLl+N4aZMXy//R/j8ebb7yOs397LX509kW4+s7JWGml8Tjr1BNDh6hE/vDU1wsly3/+z3+C\nhx+8Dyec9kucfPp5+PU1t+AD/70xfvbj72P2rFnV3X9K7VgNyWGHq6bISBR/XbfrHcyUeoOMjKzt\nsQtO42BaJoY2kzAuE5LpYX2TNFWUt/Kk8FYiEDFh1iuvYKWVV8Nnd/pqGK9+YMONMWrUcpj6xKOl\n45NH2GkulR9hvUO5+G/OfgPf/dqeWPf9H8QKY94Vrc0K8GVNhQEUmktJ+NOmPIlb/3wdvrz7vlhj\nzXVBHhja04vjTz0HB3zrSCxYMK86+dn226XwtC9T/qt+fxHGjBmLj262FQCgp9WDHXbZG3Nmv4Gb\nrr+ydPyi/MX+nwUOf5LzPI4FikObjZfz0riAldaByQfvtlQaKiCp04mDYdRSDREj2XIhx2/rxjuR\nmQkehN2+fjB+P+lejHnXWFUa8I/7/4aXX34B48avUTq+b8Ubld1nh0rkP/m4QzH9xedx3A/OAlwr\nPAqqwGeyqdAov/kMy8Kf8sRjADPWmLAOLrvkQnz30H1xwpEHY/78efjYp7ZBa/CQ6uRXnHD/qTz5\nFxDw+COTsfpa68C28fQgrLHOugAY0559plT8TH4AYdke5e0+cAHpRQtUPJCWOgigxEOt8/SpMwJx\nLt3SERDeHJWKs071Wj5WJbA2VIDaJHPzAFqAjAcd0CKxiGya3LU5lCNvj8onrlxbkZ2skFwwbw5O\nOvoQEBG+sud+Mq4pGT+zaMwq9fYWbXn4N193FX7/61/i6JNOx7vGjYNDYhVXgE8kprZujgGCOke5\nPPwXXngOTMBPf3AsnpnyFN7Rtxymz3gRE88/E0ed+FN8eoedS8XP5QecVz+Gtr+WK0f+N2fNgm+3\nsezIvqz9jVh6JADCS9OfBzFKw8/kJzEkjB4ynlB2KBo4nUFSuGKE9SIuxofqy7X0+5ZtIlB48YIh\nc/jxxS6Z++cA6J0oxyGadWGURzIcY45PFDMVfUvKnTX7Ney38+dx/z13YK+vH4b1NvhwNfgOgdmD\n/K5c+V968UUcc8j++Nhm22CbL30FTDLl6a0yJePb3rShKaj8XreOLAv/5ZdeAhh4ZfoMnDPxOtx4\n92O44MpJGDGqDycfcxhemzmrcvmt/TGVJz876catwYOz9jekZwhAwLz580rFL8rf6fDVeibmDSd/\ns0NWfCREU1hkHsZ9MaJzQGUmmQNnxBPGfMqMDnrTggJcKMMUk5mljkGsT9FkebNjxoxp07DLZz+J\nu26/Cft+89vY96AjKsVPx6D2pC8T/3uHH4hXXn4Jm2+7Pe6+bRLuuu1mzJ87FzNnzsBdt0/Cq6+8\nXIn80mai/Ey+VPlHjhoFArDZNp/D+z+4IUDA2uuuh822+DRmz56FyQ/fX4n+bTm+1/tPJcu/9FJL\no6d3CN54bWam/9deexVgxgpjxlWif2LOLPeO/p84ihI7P79G0foZpJZQYgypcWQNjDkeIzzUOoKH\nvrTFALcI8Axy8S3QNjEcKYE5McA9oApBPqfPADndENrry2QOmPrUFPy/HbfCi9Oew7GnnI7tvriT\n7HJH1eD7RKWBtLlc/IcfuAcE4NADdtWnizSAGdNfwF47bIVTz52IjTf9VKnyO29CR8ntxb2y5F9+\nhRXBBKy86mrSQZxYkWNXHg8C0J43vxL9w8f3nJlJOrcHnCtP/r53Lo8Xnn9OLGhtf9OefwYA4V1j\nx5WOn8rPPhKK9X8psWh2pLxARiIhZlCePjKQnYcNhs1Xk6ZOjB5n3m7nQewgHxVn8Yq3WC03Un+O\nCOu0LgwKLArIUmrZoIcBkrHy66/NxB5f3AyzZs7Ez87/Hf7rw5uErTSrwCfWLRUTmuE2lY5/6i9+\nizfnvA7bK9aBcNCeO2D5FcfhkCNPxKrvmVC6/NwykfM2UKb+J6yzHnp7e3HbpBvxlf/3tZD2lhuu\nhXMOa633/sruvznCxYKg8MQuC/+/NtgYV/zu15jxwnN4xzvHwDvgT1dfBoCx+rvXDj26CvkX1v9T\ndimYKepMZphXeRCQWi3ps1rPGcEECk/xxJwKr5s7AuxVdtJ5fSawI3BbTTQnfg5n++/qy1vMHrIn\nqwPgdd2GzPuTrlL82SnfxwvTnsNqE9bCpJuux6Q/Xw8m2cZw6WVGYc+vHVIqPrxsh2irocEyZidi\nKask+SdMWBe+xaC2C+tZhiy1FJYesQzW/eCHZBvHkvUvz0tS6ZN1RU63kSxB/mVH9+FzO+2FC39+\nKo46eB98asvP4pqrfo+77rwFW33mixg+fIQ+xcvVP9neuXA6c8zqxyhP/q/stS8u++2vcNAeO+Jr\nBx+JRx97CBecczq2/vxOGL/WWvJt9BLxTX7Awaa70/4fqMfIJMaE4/BX+8ogOaWksOj8jOOkNLMR\nuuTxaEE21xH2dwBsZZtviSUg+5lSyNvWJ0RL2ZQY0pkY8HDi+QYBThRBTPjjtZcBAB57+B94/OF/\niKJkEIvllh+D3b/2rVLxzXlmZTDsLVmnZZYrP5HtJwIMIm0EBDDKx2d2oYUAOvTXJ2WZ+AcefjQA\nxiXnn4UrL/k1hgztxRbbfA5Hn/STSvBNfui9Nv2T12FUSfirrb42TvjRuTj+Owdir522Re9Sw/Dx\nzbfGIUeeIARSMn6QH5w7ipGHNJb1mOJJQhjAIAbyF7XAQGIuhZQcf8I1BsAMJi9jdh3v2crDYOy0\n5TvALZ1qk3cxSPIyIMsAHKTbeIQvjSf4193+T2FkIrQ8B6tKrFtNVyJ++BhWmNcX+Vnd82XLb+au\nJ8KVt/w9uEuqwBdiTeTXTkgl4w9yg3Dwd4/HgYcfg2lTn8HyK74LrZ4hev/Lxw8FKA6Ttj/m0uXf\n4jOfx+bbfRZTn3oCy48ZiyE9vbH9V4Af5Y86SGgghMQ8iReLjMSAM4OIw580FSGYTBRjOEmBYGYm\ncR6BCIhlFaLt8kUegHcIHv3ggGLAR+aVMsWc85AnOhHgmLOyjSSrwgdzJn/V+HXIbzMvRfmrwneD\nejBu5VXQ09NTj/wqe9X6b1EL48a/G4N7h9Zz/0GAyp/2/zRktk7xogYhN0tapKq0MHuac0oyFOKk\nMApjC27FvG2Csq3svcrKuKYQU5J5v6ODWRTqPMN5DyaA2wgrIqGKs4hK8CN4lL9K/JrkJ+/NeM3k\nr1z/dcnP8jJi7e2vanxI3+/e/xctGK24kLHD3EnMpmQtSbSMipDCiPCQhUIeIG8bJgNE9r5Intcj\nKomVtYkB+4AVEwCnjK3MLGNJzqpWCX5G3DXg1yU/5fMN0r6XLPltdFFr+6sDPwWhSBMLJRyO/y19\nGDp15NaxeF6gmVn9ADj5Ty0GHMJr6D5xKgkLuyCc7VcKiIKY1OxzDrIFoSKT4Mu4VMk7MRGrwPc6\nFjXxuWL8uuRnik2DQLXpv877LzPJ9ba/OvC79f9AIP3xAEkCqxsDcJwOgagzM3U5S4ZxcGavJaHN\nLrCjOZ8CiAdkrl/j7DueHtlr+PCS1l4sM0Am1izqTfdFU6w8fAdC6qGhivHrkt8lrZlhnx+pXv+1\n3X9Yy6+3/VWOL+ZMUnLa/7lIDiFw0FaodXg3L4lNKpVWMDkkM6HYTC9kaR30cw1hQVGElMVvpALJ\nIihhUIQ9TAEAztZryKxWVIAtqaawIr5SfC2OgHrw65A/E97M65r0X4v88dWD2ttflfhgtd8L/V/L\n6mrtBJpJAxnZcRYZf1MmTaI5LU7ZUV/yspfAfFAUxJlGpgRRkHe6QMgb44op5x0l2C6AGvGaV4lJ\nK28rGqvCR5Sf6sCvSf402IxFLfqv6/5Tzfi1yN9P/4+xesRZWgthSYji5hzEHQfF8sN1iXPyAXT1\nWBtZOg+Q7ZPBThxRyqJw0M98ynGblb3UkUXBEW2KEpWn39mB1+XgoArxC/JXjl+T/N0aQS36r09+\nWizaX9X4MXT2/xhrTBAmp/Q3vL7A6kxPC4lmWMJMyd/wFhdZWg+nAtpY0DplMP2UhdsOgI/DLfFu\nR97mljA3m4tdmbQtCzjgPMPe+THHF8DV4Qfdq/xV49ckv9cGk63VqEP/dcmPxaT91YAvhojgyE9O\nQEBiy1D+C8tHESNEkmXlLnEwVtU4TeMh40Ez78SzDR0jupAwLDryegODsiQ47/WUYNNrzuvLjJ7A\nRGra6XJpXzF+UKkc2UttA13+sFVkTFqP/uuSH6zvAtXc/mrAB3fr/4pj3BP+dAtKksXI9KEdDcc8\nGyUggL7Y1YoMCZNPGZdYXkgLnm4nS5/D5sih4nE6Fc6YV1doqoJbagIycXgboEr8oDoGyFWPX4f8\noQ0kTaEu/dciP+nwZDFof5Xid4x38nEOKUdQZ7JCoEg0HKKKhdqEbmQWZl2eDOgUWuLhDjv3JyWQ\nOoMg03My5mRVnqTzmtcBYaNkp7jyEpjYfExiTxALUztXIb5qVRzBVD1+TfIH35S1KkY9+q9Lfq4X\nvzb51afTYc+yld1thqmQ1qrVYbdw8SBQSsxFHOHNbnLpJKgJrmWzjC2ZCMwOzMEuCv9NqVCzzjzm\nAKnjiqKZpx51D6oWPxg1jDD5twTIn+22aGRbh/7rkt+Errv91SY/kPd/aOqUZrIVZgWuYbhYABcK\n6VZAHig7suXOKrAqRbaQIDXz7O1QRty3rICvL2lywppttZoAxKcrgLBNaoX4qW5dDfh1yJ8+HVGz\n/uuQ32fWwZInf7/9P7tAeUlJPRk6dLJCM07i7hVhk5aSGPVKhSFgkkeEE5aU/TxI0yRUpoPC8P4G\n64Ijm+ECgWxTH5kGEdZ11eJHoVX+ivFrld/SMwCuR/91yS9DjfrbX+X4GcWk/V+jSE8yr3DKMQyw\nnMvGV+FhlZpCMVDxmHwo4InHJuPWm64P5RKELZ0JbpVJTKWwK11e4yRGFCs7flmapAxIfsem7Jik\nTPx//P2+TIG33HgtRvb1VYZfl/wvv/JS/lQjL85ED/gW6fc7AHLSSNvWqM3c9x5wuietV/xk9sJW\no9p+KeIAtTQy68IqhwPUmUmV4QPmmK0Hvzb5w0MmufUAoO2HGIivCcS2xpbH3A1gIRoJajKFwpLm\naQV2szXK/wAAIABJREFUCwzsv+vnsmabVoqBrtfEKmCpjDV7TRiOIZZVsLQsS6H84nGp+ElZR35z\n7+rx65afAd9ug9sL0AbAcwF5Y47QDiUzFlhj9QQiRrutxIiE1hTflrmLD0H6BhPg29L4paNIJxD5\nGSCqDN8vmI92m9FuL6gFvy7557fnQ73PHf3fOEKuRe7IiIkMjXTPYLvMeXm2OXORdHp65CuBaeM1\nFuOkaXMS09ncOT5dWZu6mmCcFJ6NELmjhAa/Bvwfff87OPvU/0EWWP0Ahm9tJxREkKWpCf2xPIXb\nrOY+c3w6AkkZYlHYSCFLUwH+tOeeAw1qYdJ1l9WCX5f8L8+YgWOOPWbhRocxToE7iumI7YUELqZM\n0hfke+CBB7Hpph/HSzNeyhtigp55fLo/UruGrkmTCpB1CnARpcGvAH/9962HSTffguHDlwqXY9vo\nrxfolY7LScS/0P76S9PgL774kWj6we8v/9y58/Diiy+AHIWWSRDmjaYTujdwho53XewOIa0ya8E9\nIet1DIABODD7yvH9Ao+Zr83EyJGjasGvU35qOSy/3PJwzsULhYaxsAZZxO/PJ7go7a/B/8/Cz4mG\nEf03QL8s161UOSzAZHSohhMoMGs3gm3wG/wGf+DhC9F0oaE8qqPEtydkimjwG/wGf6Dih3eoijB5\nlNJft7Qc/iTneRx3xOixldXgN/gN/oDGd4C9y5FezkuzSnVUFMhXjWaHFFJGebgzWYPf4Df4Ax4/\n8dFwLC1zT6fxyfm/GdJisvFgg9/gN/gDFj9ZV0rJT3/cF887WbAjQn/zCViyC1SsboPf4Df4AxU/\n2SYirQ7yN3a1fMoTFKpCndeUGcOVUAEqRDT4DX6DP5DxiT13bCrBSTZmDnt/pvHF0HGtENEtL8e6\nNPgNfoM/gPFd59X0egQBumxyk5Be0cCyl8AsTQ6T4DT4DX6DP/DxWUJWYJY1ob3CFcTYPKYjsP7p\nZ/FPg9/gN/gDGz9ZsJdkK5a4CCHL8hb5Oy43+A1+gz+g8eVDDIkNRWA5DDk4K4mRB9a/VKwg5Yny\njf7MDNPYBr/Bb/AHND4xe86YrB/L618gt4Xn706nDX6D3+APYPywZ3B/IHIt0lmR0RYFpIM9M5wG\nv8Fv8Ac6Pnlm7lp+2ASnO/pCWS6tTffC5QKjsDqxwW/wG/yBiO+yDYizBEJ9OYNFZqNi+jSQJDAG\n60gW9oksIDT4DX6DPyDxo0VjFLVQqooZp7/4Ap6aMgXkCZ6KX3gB8tmypHDb+FTPmZ1sjszQjZRj\nUiLoRtti9uVEKQmqxp8zZw6mTp2K1cavCtdqLTHyt73HY48/jrFjx6K3t7c2/dcl/0orr4x3vvOd\nsfyFdJTOK8WYeB6O/sX+95+G32WHvRQRyG+QHP7l9r/gE5tuijfnzJHrdqMWMRAhe1cihUuR+y8g\nhWzwG/zy8Yf2DsWNf7wRG35ow9CL8g61aD0179jd0r51//tPxB/UCVj8leMwliPg0ksvxZtz5kaA\nUKf4VUMu3rxwThBus4rHHXAB/awEpxXucts5pm/wG/wq8N+c8ya22mpr9I0ejVhqvtk3E8EpvicA\nXhbCERiedGc7CMuxbvpPnkFOLKsUnwr4nd23fPznnn0WRx75XRx22GFZ/4816EYuCfWEhYCMQSBR\ncricU14mloV2u53cmuSJkj5YsvZByQ2151DcB0N+OeSLG2uHZ5a1kQygwW/wq8Tfcvsv4ZCjTpR0\nXi0jkqGbY4CZwlcl5JMlWkNPYMfyObTwBUkEH0b4woF+eVLKjf3P0nJCpFXg/+naKzHtsfuCDjoD\nhTuhnB2sRSLE1casn1tJCxHmyklG+TLcMHsasN6li6++DSDAcfqpTbtDsSyGrBCUMbV85KydIlkl\nITVNFQcwWvo0YkosLI55y8a/6ZorcMapJ6r8jJPPvBBjx65cGX5d8k996kkc/P92Cv15r68fho9v\nsU3l+q9D/h223BCsFo5jAJ4B56QgLd9pp3Uct0Rg7azEHDp32+lH9xzgjB+1OADglsjnQilShviJ\nPJyHWGOV4cd+nvX/wqsMwZah/BemdaL0A3ISqS91W+l5HBKW1Hu46uprYPW13gvnGdxCXB1o3wV2\nBDPxmKDKInBLnxbJkyd+nQ+BZi1O2JjgIV/rI9ZSSR12FeA/+/RTiZ6A1VZfCyuPH18Zfl3yDxnS\nq1JLeM+a62DChHUr138d8q+62nvwxKOTVX6Cd+IcJhbOCfhthm8lloLXHuOih1me8oDzgh/80lZV\n7xWflNAgchHUKiF4QnX44GAJpv3feCRYMKbHrmaPknQxkpPr0XDMs4UHhYYWJzc53GCEL14RO/1K\niGZyat61kQVm0k+PSl5vgrEoGWC0GNLoiIOZVh1+ojpGeNoOePmtmSRNoR79Vy9/bPGoT/91ye9M\n/hjiGUeS6UxWCBSJJrFAC4Xm41WrkPGajRPJKq0K4QRdviEkN0zMOWHl2HlFQDipkFNlqfGINgGA\nB7yahCCQOq+cqxDfrEeY/BXj1yS/td3Qqhj16L8m+UPgmttf1fJ7wS/2fzkUnO78wh0xrsNu4eJB\noJSYizjCs6Z1SYOECW7mqdh58m1fp2NebbH6P9xUT2F8aWW1mEFMpnlhZB27VoofimT9VzF+TfK7\npORAtnXovyb5Q1+wLlBX+6tJ/s7+D02d0owxgibIuIbju05FZSb2Sxd+ypLCzMuWCi3sqFeY0Cb9\nLjCzNFqXOu0K+E5aMies2VarCQA4ka0VNFsdfqrbFqdlDFz5fZquZv3XIT8y62DJk7/f/p9doLyk\npJ4MHTpZoRkncfeKsElLSYwXicMQMMkjwglLtjgqzKVUpoNCnzCw8zaVJ0ok9jJWZYqs66rFz7RI\nMnuxZMgvrSPIz/Xovx75oVwjA+Y621/l8mcUk/Z/jSI9SfQUoi1CeVrcPeFhlZpCMVDxmHxC9CTT\nYloaMcOD1TFFguCj1x8e8QZamdphzUIwz3aqFDPnHBhwXpyxXtJUhl9QoGOqFr8m+fW5nmSoSf+1\nyE92x9FGze2vavmN5NK0AMR1Yo2CUgJBZgGpQYIwNAuqTBpU2rGKtlAKrMzrxFeFNomZxGQCAEQU\n2NK7eAPNYUWsCnLilCIvc/+eZGxKXiws8cCLsswhTm1UiJ9rgYkrxq9HflttikT+evRfvfwu6SJE\nqLn9VSy/06UtXfo/2Z/ExBG6Sogp8/OFZBStlJAuNrBupCNWtJh3zIQW2zQWqYdcXUwEOC+1ip58\n7aRkY1AHast1W2Dk2uL0Yge0SerDDPWsI7B4VfiO8yc7o1r8uuT39sRS+W18X7X+65Dfpy5WGyXU\n1P5quf9KCv0aHcY4yh3UTzoXTrnAMgBA+SgtKxgI3CXOJwaTT7MaGpiEHeUFDET/j2OwKccLTcci\nCHBxXt/IkVJ8rhifouSpGge6/EHQxKKpEr9O+e3Qyqm1/VUtf7/9Pw+RU7jfdLldmOVM0ndwkFox\neqHFZn7ZRKiNKbUMViBFY4aOI11URktZ2hkbC4YDQG0EczBM54HA7MEV4kfVGD4qxa9Lfvh8RsHV\npP865Dehg/w1tr/q5e+v/1tI0uhRBzFpcNmZDQ1yrXZFSWchmMW0Y/bq2dY0bYQxpQgfp0odCG0X\nq+W8COjB6tQCSJ1YcMrq7Vhj88hThfhI2h6hevza5E+df/pErUP/9cgfBxvE9ba/yuW3Wa/uLBOB\nEB/AWVKOvy6LSMoUwqFCjnjIaYlO3z8hCmae3BQz0SBOLVbXmtPVibaa0ZOYdi4ynwfCsmtjV26Z\n0pCMT6vD90Y2hm/27ACXP9rtBfkr1n898vvQKTzVo//a5Ce74Z39H0BGQFSMSE/Jyu1grOLSYuok\nI2t77JDtARIG9YxgwinL+qSWbVdQlLfypPBWIlDqeTe2DSFZ71A2vuNEnXa9Qvy65Afr0Im7NKcl\nQn4p0dXc/mqTv9D/s8DhT3Kex7FAcRghxct5aVzAytugh3m3pdJQAeVlMICDYdSycR8DLqlQit92\nBCBlZoIHwbeiokRpEmS6rhr8Lm99VIpfl/wM45gofx36r0N+sQEo66h1tb/K8QGEZXuUt/vABaQX\nLVDxQIwWB1DmoTZGS4u0y5Scp75jeZcisZOCEjhUGl6m4IJT24uyiJw6ugTTtTngewd450HEcG2E\nKTpioGVWoefK8NO3PqgG/Prkt3YR5a9D/7XIr44O6Zz1tr/K5ScxJIr9P0UpGjidQVIMKkaYs4+R\nNisECGM42wwIkEVCLedjnAe4RaC2UCczgZRCnSrAeV1YxBET0A7Mshy6iD9rzmxcdPZP8cA9d+GN\nN97E+NVXx0577Iexq767EnwvFC95zEnlgDaqkd+3ALQ9vnPg3njnCiviwMOPARyXj2/PHYrtwHt9\nQJWM/9zUp/Hrc0/HI39/EKusuRa22PazeO/6GwDeVYIvYw/VvwPCO0cly//SyzNw41W/x6Qbr8KI\nZUZi0822wce3/Wx42JWNH1YXFxy+AZ/jw1bpLG8gRg8kLx+7WEhqxSCM+2JE54AqPNXByL4OZWM+\nZVQHNQO93Chqu1CGKSYzC52wNHG8sXPmzcGu230cPzvlODzz9JNwzuN3F/0CX9h8Qzzyj/tLxwcB\njn1i7HF40lchv+Azfn7qybj6DxfjoQfvBtmTtgJ8MXQ5yM/kS8f/59/vx5e23hh/uPh8DFtmBK6/\n7BLs+plP4rrLL60Enwp9x1lcyfK3eT72/8p2+MH3Dsew4cPx6OR/4OD9dsYFZ/yoEvwgP6L8Hf0/\ncRQVH4jhGkVqCu9WpW80MBDoKv1IQuHBlgVv5aowcWNiydEmgJ0SmJMxpAdJRge0OHBeWP3oHQDv\nQR64fOKFeHzyw9h9/4Nx2R/vwdkXX4Ozfn0l5s6dg9N/cHzp+PJg6/Sdm3qqwH/g3ntw1qknhrFz\nZfhB6Ci5qwD/tP/9Ht6Y/Tp+MfE6/Ojsi3D1HY9gpVXG4+xTT4wdrnT5Y4ezFdHky5X/vLN+iof+\nfj/+57Rf4KTTzsfFV9+KD3xoY/zsR/+D2bNnlY4f5CeAfWf/lxKLZgeyq8Gxo8Hl6Rn55bSynZvc\npEaPk/kwyNSZ3CSWlUEyxrTqMWDbBDoYn+n0muLby12kyvItYOarL2OlVVbF5768e6jg+zfYGKP6\n3oEpTzxWOr7In73JAfaJIkvGf/ON1/HdA3fHe9ffAMuPeZfgJzuklYkfR8kF+UvEf2bKU7j1T9dh\nxz32w2prrwOAMXRID0748bnY71tHYsGCeZXIj0R+2UIzPtrLwr/m9xdjhTFj8dFPbgkighs8GDvs\nshfmvD4bk667qnT84v1XtE4DI+n/BTMlTh5oGvFRB8awFpWcs2WmcCVYaZSYRI4A8sHTLeYaAY5E\nISqcd9DKk7IvwOx1es1pGq8YTpdEM/bY7xD8ftJ9WG7FFXWLQeDvf/8bXnlpOlYe/+7S8eGdys9B\nftlOsRr5TznmcEx/8QUc+4MzgVYLALSsavCtKYn8XDr+008+CmbCe9ZYG1dc8iscdfD+OOHIb2HO\ngrnYZIttMHjwkErkj7Mz4khtE4f2VwY+s8ejjz6Ed6+9DohaQf9rrLkeAODZZ6eWit9x/7v0fwuB\nTGJMaCfhr1KKfgWBEAujOPwiy5FmRjIDwfBoQTbXEfZ3AGxlm2yWzLqfKYW8ba1gixDwfEvGmx5O\nPd/CzmLuiePLVj2SB+bMnYuTjz4EIIdd9jxAxpgl46fyMySOyWmZ5eFPuu4q/O6iX+Lok0/DiuNW\n0repxRnKKB8fHFsIoEN/T6AWl4b/wrRpABg/+8FxmPr0k3jH6OUxffrzmHj+WTjqxJ9gu8/vUiq+\nyW9GKwFoQboieYiDtQT8Wa+/AV7gsewyfQBi+1tm2WUBAC9PfyFssF66/OGhmvd/C2ks63HGPalB\nEjgjZOOEYBIOy38QzCKWl7kcEBb9wEVHKQC4NqIXG2qCavny+QjoLQRkBzBozSK+fGYD8ESYPes1\nHLDrZ3H/3Xdgz68fivU2+FAl+KIg057IzyXLP2P6NBxzyP7YZLOtsd0Xv6JvUhMAL4RXlf6Ryk+w\n1aVl4b/y8gwAwMszXsS5E6/DDXc9iguvmISlR/XhlGMOw+zXZ1YnP6slB8Q32UuSn3Tz38E9gzL9\nDx7cAwCYO39eqfj93f/O/p+e65KXDgMlJnIUktqfNIXkSKPTJ5sJhdQKAoJJBgVvO8B2+SIPwAsL\nM1Ew/cJ4MhmXyR4cDl6tByLgpWnPYeftP4k7/3Iz9vnGt7HvN46oFB8c5+co3LDy8L93+Dfwyssv\n4VPbbo+7br8Zd982CXPnzsXMV1/B3X+5GTNnvly6/PZ865CfUZr8I/tGgwBsts3n8b4PbgQiYO33\nrY/Nt9gOs2bPwuSHHiwV3+QHmXdDsBxzVvbbjT9i2DIYMqQXs2fNytrfrNdeBREwZszYUvEz+SHy\nF/t/GjJbp3hRAxMwKCTl/hOaUwwcBQiUY0yXUGj6fZ02iZDwHr5F+rEqDgqBEyU5BuAA9lYPuaHO\nC+uyIzzz5FPYc8etMX3aczj2lDOw7Rd2DF7zKvBtN0+Tn3WcWyb+Px/8GwDg0P13ze7JjOkvYo8d\ntsJPfjERG2/6qVLlJyOX7AlD4qspSf7llh8DBjB+/OryvSFHQBtYceXxAIAF8+ZLWyz7/tvyfsg1\nhStV/r7llscL057N2t+0ac+AGRgzdlwl+jcbVqb58/7fD010DUYrgwK/FHMzxwvJWo5oFXUxonxI\npr+EFskNIyI4hjJpZDWRVZSkvqswJIkKJLz+2mvY/Yub47WZr+L083+H9394E8GgaL6ViZ8SMYXb\nUD7+j8+diDffeB0OVjzhm3vugOVWHIdDjjoR4989oRL9U3LHpX/HWYsy5J+w9vvQO7QXN990A3bc\n6wA4BtgBN99wNVrOYcJ661eif4+kTO20xIw2lSf/f/3/9r47zo7iSvc7dUdhRjkhNIBylkaAicYk\nkyQ5rb1+GHudlsUYvLYx2PDA5tnGbx2w/Xa9YDaYNQY2eFnCrgEvSCIIMGATJIxmFFBGEhpJM0JY\naZRunfdHnUrd9w5a/3S70VWXfprbXV1VX53TVV+fOlVdfdqZePiBX6Jjy0YMO6oZIML8Rx8CAIyf\nONX5ZGqpf+MqkFae6P+CVp1wAmqwWRsqrugLUsQFmrPkWj4XlM1qFhCVYV7O0mB5kdSysDKsq2TW\nRsqjMtzuXiAFIkbZ3G/89K+/i83tGzFxynQ88+Q8PD1/nigNGDBgEC6/6rqa4jMZtZuV0ezUwaG2\na4A/cdoMWywABrFCr8Y+6N9/AE486d0ILtZMfnvnTQnm/hunY5D+EOMPGjoMF3/6cvzL7T/Ft6/9\nS8z8wEcw99f/iVdefB6z/+QS9O/bv6b4Vn6veat/8wy2L3bXAv9Tl38JD973b/jq5X+Gv7z221i9\nfCn++Y6/w4cu/iQmT50BZq4pvpc/ub+MsIEYOFXZRojMXmYADW5lRBgbZI7LEfLxlAkVtXQTymxu\nki1OhYVrAMpOw0Hm6Ew8l+D33NDGolJiTcyf8yAAYPnSNixf2ubwiQnDjh5hiKaG+G7L0lD1Cu4D\n6rWW3+ETg0pmGpJLgCpngB+UzbAzMQwuUU3xr77hO9BMuP/un+Gh+/4VvRsbMfODH8U3/99tmeAb\nwVVgzRn928/S1gp/wuRp+MGtP8f3b7wGX/jkn6CpqRHnzfwAvvatmzPBd/IbcyYo2fd/cmyTDpZT\nPE0wGlxSFxsyDvyxHZxJ+QTD7NoCs89npgAp8Gh7SK3MbutmhpZlihggBbeHKYMA5bs0E2Pub18T\nBZhrxnyE+44waowf7jJnCA5uRX4W8vsd7QmPPGscoeWs8BPPNRKC16gtfkk14Lpvfg9Xf+Pb2LTu\nDRx97DHoUerl7n+t8Y3UOpZeE5RdFFdD/NkfvhgzP/RRrF+7Bkcfcwx69Wh09z8LfCM/w62eSfT/\n0GKxrcQmSK4aBkjILlJlYK6EnBRGsylONA//9qjx1BvrzC/sIvZPQSWmt1bGo25m06SSysR7bGfH\nuUVKdgUVk1Re3svIDB9efsoDPyf5w2AsrOzwe5R64pgxY8wUby7yByFDfKUaMGrsePTq1ZjT/a/S\n/32sHHGU1ga/ENjgBqSBgHMST7GUxm0uZdYWKHnCk7POQHafDDYrLN0qUwX5zKc5LrOwl4b7fAQs\nk8I0bCXKdUHLcnBQZvixEryBWPfyV2oEOeg/b/n5iJPfh3T/97GWCSyv2F/3+gJTuv+wMF/SKHLA\n1kQjm1abGQGyzGiVIiY/2I0hywqADodbgF0fBABcknc0iKUUw6Rl8TwpzWbsKOxrMnJm+N43SAHh\nZ4efl/xu5iVseznoPw/5wwexWRGdX/vLT36DY35iAgICW4biX9h8lLINrUpd6XEcLKuy7WMAAA0C\nleHMOyY4dhSxXQWIYPwqJOmDGiit5ZTgXvzSDAU2Y04iMe1kjK6zxo91omV9er3L757oPmlO+s9e\nfgRPd0be7S8f+dP9X3As97g/lYKQZDIyfGjHhqPPRgEIYMwwt0jIPv4CxrWfgXB73Cg2U4TB26em\n4v47NlCWeWWFqii4JCageaHR1CM7/EB1DJlGPALkt80kaAr56D97+QPTNT/95yV/arwTj3PsGh5K\nJ0uEaOOrZEF+BBaZTlIh61k2XmsS9gTsih8O0M03g80NY2IZc3LQeWWLQWUqZN/ZUIJrXgIzNh+L\nKWu/SaNUhviiVeOdoezxc5Lftl3Xqhj56D8n+V3gnNtf1vKLTyfZ/82hWFaoFNLmjUrZLZw8cJTi\ncxF7eGs3qaBBwgouZbMZW5oNeRSYnV3k/rubKmad9ZgDJI4r8maeeNQ1KFt8VyTDTf4dAfKroGRH\ntnnoPyf5XV+wXSCv9peT/On+D0kd0ky4CIISXMNQoVkYF1KpgDjEgwmSTzSIwNbaZkKZZEsFZtNo\nlVFSXIo36+AUaJRRFqsJQOAnAUpOs9nhh7otcVhG/cqvw3Q56z8P+RFZB0ee/FX7f3SB4pKCejJk\n6GQLjTiJK1eErbQUxIhXyg0BgzxGOMOSZj8ZkjQBlcmg0C6NIjabJ/tFSARis5qRmTzrqmzxIy0S\noMWrX//ym9bh5Od89J+P/BCukZVTOba/zOWPKCbs/xJFchJ5hUOOYcfTxt3jHlahKeQDJY9JB0RP\n4BI5BxIxw+194VazakCEhYa/gbZM6bDWQmBZ9h4qxZpzZpGSNs5YbdJkhp9QoGLKFj8n+eW5HmTI\nSf+5yE/2jqOMnNtf1vJbkgvTAjCuE9soKCQQRBaQGCRwQzOnyqBBhR0raQuFwMK8yviqUCb5jANZ\nAQAicmzpP1lhp4vNSkZihlbGKUWawcpYDOFX+owH3ijLOsTtAqNs8GMtMHHG+PnIb7dKQCB/PvrP\nXv7wXT4i5Nz+MpZfyaLUCv2f7J/AxDF0Fb6q400f5ZORt1JcOt/AKpGOsaKNecdMKLGdxiLxkIuL\nieA+fuU9+ezerTBjUAUqm+v2DVJVNk4vVua9JmIzLWe/KWxZPCt8xfGTnZEtfl7yu13lRH47vs9a\n/3nIr0MXqx0l5NT+crn/QgpVjQ7LOMIdVCWdcqecYBkAoHiUFhUMOO4yzicGkw6zWjQwGXa0G7A6\n/49isFWONjTtiyBA+Xl9S44U4nPG+OQlD9VY7/I7QQOLJkv8POW3h7acXNtf1vJX7f9x8JzCVdPF\ndmGUM0if4iCxYuRCia35ZSdC7ZhSymABEjRmyDhSeWXINz5ZWTY2GAoAleHMQTedBwKz2a09K3yv\nGouPTPHzkj98c51hHYnZ6z8P+a3QTv4c21/28lfr/zYEaeQoRUwSVHRmhwaxViuihLMQzMa0Y9bu\nSwUQBdkxpRHeT5UqEMrKV0tpI6AGi1MLIHFiQQmr270yAFiPPGWIj6DtEbLHz03+0PknT9Q89J+P\n/H6wQZxv+8tcfjvrVZllPBD8AzhKyv5XRRFBmYZwKJHDH3JYopI9MIicmWduijXRYJxaLK412U/E\nLYHW8gEr5ZlPA27ZtWVXLlmlIRifZoevLdlYfGvP1rn83m5PyJ+x/vORX7tOoSkf/ecmP9kbnu7/\nACIComREeEryXac0Y0W+Y5PAPs0sGQng6hWv4T2Th3suE0ZVYBdnswYGgd2/yl1XUTpZsxDUwAwx\nCZY12aZmApHOBH9n126nLmbgT849EU2NfTPDz0v+3bt3iczm6rVXfBKNTU2Z6z8P+Xfv3gVIvDIF\nGysiKIhIg8lPH7t9NgE/3CFjLdiOXFYeH8rMGlmSYJLNqaxlwmbmCYocSWSB70Pc/6PAgHNghsoO\ntM0AGgDjEKIoHaXLoviGhVd37e5KxULKidYVpjOnL5HVjGdJE89V81Yr+JDjSwiL2N21Mzv8nOQH\nyDxVJd50wN2Z4ecpvyUcJsYz8+egY/MGAGFfkL2FE2tTDHkRzGDFMUbAEAGtMUFJ/zJT2LH85nM/\nOpqvyQL/tbZFuOSSS1L9P8pNCb6g5IEh7QaAAg+1zNMTpxKC4dKdftppuNXfj8Tt9HeTbeOwNQoU\naNNb68zlDxTGrl62nfknGgr8Aj9j/C9feSXe9/5Zpj9E+L5uUelRlHRqiPUkfV4JsXkLDb7/hf1S\nQ4YyOlP8Y489xlUj4olA290HoUvmBBVaJScLYcteJjzyyBy89tpS4/kGQRGLaQ04abSpdHIgBjIL\nkao+oEBg5sjKUgxoJc8XhlhhDKO87PDbN76BtWvWYvr0Gejfv2/m+HnJv2v7Dry6uA1jRo9C84jm\n3PSfh/wgwtRJkzHzfbP949d1PNtXgh4T9vdK+OnelQpv1/8OO3xLNKnqhCVVrEi6+ulqJqqbivbX\nC/wCv8CvX3xizZxMH1bPMDul4qsVXS2iUt7QSivwC/wCv37xVfpqeN2DACk+sslTeQD48S0nrwNA\n7KlqAAAgAElEQVSRs6/AL/AL/PrHZxOiAqOsAe0lrsDHxjGpwPKniilW4Bf4BX594xsfTaIwSpZ4\nECHK8jb5U5cL/AK/wK9rfNLsfPUhajo7Rz+J1FUuBomYQueRTfh2HvECv8A/8vC1Zixa9Cqefvpp\nNDY24vOfv+Kwl5+YzUeGA1KrlO5/Qm7d569MpwV+gX9E469eswaPz3sMjz/xOJ588kls3fomCIzj\nTzwRCxcuPPzld+touivNTnUxorn0gwaRo+4mxAr8Av9Iwt++fTvmz5+PuXPn4rF587By1aqK+Xs0\nNGDbtm3o07fvYS1/gys/mdutdyY4J1IA0i3LsT/0/qdQSG9quYpXwd+4sR2tra2Y0dKCEc3NmePn\nLX+BXx/4rBkLFi7A3LlzMe+xufjt87/D/v37Xd3cD7sfKEWYOm0aNm3ejHF9+x7W8jdUXNEXpIgL\n9BV0L3ZWQgsdS5WSWenIp9q5cyfaWtvQ2taK1tZWtLa2oa1tETo7twIAVq1aVVP8vOUv8OsPf/OW\nzXh83mN4ZM4cPP7YY9iypcNncjiAe5eAgQkTJ+KiCy/E+RdciHPPOQsDBw0+bOWP8J0zuGqt0iEu\nptr1yjHlchkrVixHa2sbWltbsWiRIZQ1q9eYbRNDNgTAIPTr2wd/2L49sXDoj8NPnrujjOQv8OsX\n/0D5AH77/G/x6Jw5mDdvLl555RXosq5Yhg2DBg3BhReej4suvAgXXHQBRh036rCVvzv8BhfhmCxE\nhD+2LGjZLAXl81kjrX1je2ChmP+LlyzBvr174pdNA7gQmeXvtOnTXJn/E/wYIExFchCkrYH8BX79\n47+xfgPmzJuDOY8+iieeeBJvvfUWugulhga8+/TTcOEFF2HmrItw8smnoFQqBSkOL/kPFr/BAgZI\nqcoBVHEslzTO5j/1FB568FdoXdSKRW2t6NjS4avq6h6UTwA4fCeXJV1IrYyWlhkHhZ9SqluI5B1h\nlr3d6+2HUP4Cv/7x9+3fh2effRZz5szFnDmPoLW1LUgWTCAHfXXkccfiwlmzMOuimbjgggsxcMAA\nLw/bP4eH/H8sfoPBCjgoZUulYZGItfnfffoZePHFF3DHHXdix47tcTpHKOwq6YamTtnmx7/2b/7O\naGk5KHznHJdft9ox2G/HZqPg+FDJX+DXJ/7ra9fi0Tlz8OicR/HkE09i586dATrB7ZUjPz179sI5\n55yNmTNnYtasWZg2dVpKgMNJ/kOCn9wmwhRfySiSuLd5qxMANm3ahBtvvBF33X1Xt2NUy4U+guDH\nVIJBjH//93twyccuBpE6KPw4eFkseXc3RXco5C/wD2/8vXu68PQzv8GcR+dgztxHsWzpa4CzuQFH\nLnARGD9hPGbPnIWZs2bhveeei6Y+fQ5b+WuBnyCaAKAKs4VnwfR6xcU+C15egEs+/nGsWrXSRDjy\nT98ouRwTTxA3oP8AtBw/A9OnT0fL9OmY0dKCadNbMGjQwKr4FeXqNhxa+Qv8wwOfmbFkyRI8/tg8\nzJk7D08//TS6uroAVG6TANCnTxPOPvtczJ49C7Nmvw8Txo07bOXPAr+KRXMw1avEfRVSMePe//gP\nXHf99Vi/bl1049xx8m6mTR0TEf8AAI497jgc39KC6TNaMG2aIaApU6agZ8+e3da2mnIOtfwF/jsT\nf8Mbb2D+40/gsScex+NPPI72je0+cZX2N3nKZMyeNRuzZ83CWWefhd69Gw9b+bPGDza+qpYh3Kq5\ne7arXF0Tdu/uwo9//CP86Ec/RFdXl4yQKEjrf9NPkSCGALCMCcEy2orpq0ePEiZOmoSW6TPQ0jIN\nLTNmoGX6DIwaNdJ5zLtj6lrIn75W4GeJ39m5FU89NR9PPvkE5s+fj2XLXkvUI93++vXrh/POey9m\nznofZs+6CKNHjzls5c8b373rlE7z9lyVrGplp5KcyMBw3boNuOGG63HPPb+EY7hKQXRx6aWXYvbs\n2W56fFFrK9auWQOtq/l+qtNUv/79MW3qdMyY0YKWluloaWnB9OnTMGTI0MzkTw9xEzgF/iHB7+zo\nxDO/eQZPPfUUnn5qPlpbF0czQQCnmgoRcPyMEzBz1kzMnHUR3nPGmSnL+HCR/52GHwydqmXr5h2J\nKnVJRsccav4++9zzuPorV2HBggXdiEK4665f4DOf/fOovF27dqGtrQ2LW9uwqK1VFv8tQmdHRwXe\nip9Svm35o+bmZiGeGWhpaUFLSwsmT5mMxt6NNZM/nTVb/dcb/rp16/Dcs8/i6WeewTO/eQbLli6D\nadrd3/+RI0figgsuwAUXnI/zz78ARx111GEp/zseX/a9EqdOUGTKUgr+ptgS8F6hBGQ3Lm6tNe66\n6y584xs3YvPmzXBNwDIvgJdefgnvOunkg8Lf1L5JFgia1catra1Ysngpdu/pQrxCsFIImiABJVXC\n+PHjMXnKZEyeMhXT5HfS5Cno16fPIZHfpcpJ/4cr/oF9B7Co7VU8/9zzeP755/Dcs89h/YYNQYkV\nTBW5/8OGDcM5556L8887D+eddx4mTpx42Ml/OOJX/QpCxUwuwu5snkwTXIuyJGsdZ9y+fTu+9/3v\n4da/vQV79u6FbSilUgN27NiOxsbGPxq/rMtYtWqlsXraWtEmrzysXLUa5XLZZyO45RAh/0cNFgAR\nYeTI4zB5ylRMnTwFk6dOxsSJEzFx4kSMOHqE6Pt/Jn/FkKH+3+n4a9euxUsvvYgXXnwJL77wAl5+\n+SV0de0xdyfx6EzeuSFDhuDss87Cue89D+e+9xy0TGsBKRxW8tcDfmroFBeXrmcKNKi47ZJUIV14\n8yuLyFi5ajW+9rWv4eEHHwQTMGHSJCxfuqwm+Lt3d2HJ0sVoXWSGXW2ti7Bo8WJsbt8UNWDzWQ52\nBXsyimmIAPTp1w8TJkzApIkTMWnSJEyaOAHjJ07ChHFjMUBejutO/rz1/07AX7N2LX6/YCEW/H4h\nFixciIUvLcCWji2u4O70zwCGjxiBc846E2edfTbOOessTJveAqXUYSN/veKTjJwqFxh4jqqDprGr\nnyfEjX/cweOPP45rrrkGkydNwn33358pfkdnB1pbW9HW1oYlixdj6bJlWLp0KTo6OiqAhsGPaONb\natQ/eNAQjB03GuPGjcfYsWPM75ixGDdhHJqbj0FDqfSO0X8W+H/4w3YsXbIUbYtb8ftXF6F1USta\nFy3Ctre2VSi8ciAiTJ06FWeccQbec8aZOPPM92Dc+HGHhfxHGn6w8ZUvtFL+6kxYiTerpOmWGWP8\nAwfKWLlyBSZNnpwLfjJFR0cnli5dgmVLl2LJ0mVyvAzrN6xHevRppgPZn/pHb4XQo0cPHNPcjFGj\nR2PUyJE4buRIjBw5CqNGmeNjjmlG//4DcpX/j9F/uVzG+vXrsXzFcixfvgIrXluOpa8tw9IlS/DG\nG29U0FsVVUnk4CGDcdopp+K000/H6aefjtNOPRUDBw16x8pf4PtQ2UfzduzYzYXuKhQmivcwPXzx\nd+3ejRXLV2D58uVYsXw5lsnv8uXLzdO5GsEQUsMycygHiR7Xp6kJI45pxojhIzCi+Wg0Nx+Lo48e\njuFHD8fQwUMxZOgQDB0yFIOHDsGggQOhlEpBHkr5tWZ0dnZgS8cWtL/Rjjfe2IANGzbg9fXrsXbN\nGqxduxbr1q/Dvr37/ij5BwwcgBOOPwEnnXQSTjn5FJx66ikYM25sos753/8C/+DwY6JhxE7qt3uv\nISREAKlJs4gOxXCCdyJVIth6wu/Y0oHlK5Zj9arVWLV6JVavWY2VK1djzao12Lxlk+lkrp9FNpDE\nmfpGjFORh/wZAVANJQweNBj9+/VHv3590bdvP/Tr3xf9+vdDnz790NS7CQ09Smjo2QM9SiX06NET\nPRp6gIhQZo3ygQPYt28f9uzahZ1de7B79y5s374d27Ztw1t/eAtvbn0TnR0dOOCc6TF+uF4lqmcF\nMiUAI0eOxPEzTjBLC46fgZPe9S6MGzfOaPIwvv8FvscPPrdStYxKJR6a0I1dVu/4u3ftwqpVq7F6\nzWq8vnYd1m14Ha+vfR3r1q3DunXrsGnzZrgp+bCOttcm+KdyVIIAUudButDLmgyHAL+hVMJxI0dh\n0qSJmDJlCqZNnYopU6Zi6rSpGDhg4BF3/480/CrT22+LnIivVBEfV0me7utb4O/dsxfr1q/H+vXr\n0d7ejo1vbET7pk1ob9+I9o0bsbF9I9rbN2Hnzl0VbKGKPNBtgiSXJPOHRJUkKYs/ePBgHHvMsRg1\nehTGjhmNUWPGYuyYMRg/YQLGjxuHnr16HTb6L/APMT6z2cyTkukqYFSq6NsT3NuJxyjw/3j8rj17\nsbWzE1u3dqKzsxNbt25FZ2cnOrd2YteOXdi+4w/YuXMXduzYgR07t2Pnjl3Ys2cPDhzYj/37D2D/\n/n3Yv7+M8oH90MygUgk9SiX07NkTTY2NaGrqg8Y+Tejfvx8GDBiIwYMGYdCgQRg6bBiOHj4cw446\nCs3NzTimuRlNTU2Zy5+3/gv8g8NPv4KQZKgovlpVDj6ExcSLFgv8Ar/Ar1f8YGqCgh+/+CZZFXue\n3MUGSEXIb2zWk71AyeoW+AV+gV+v+MpfC6sDUNJ1k6wYJatC6WvCjO6KqwAlIgr8Ar/Ar2d8Yi2b\n+QaBg2x+g+HujabUtUREpbzs61LgF/gFfh3jq/TV8LoHAVJ8FFlLSQPLfSyKk9fh7C5KXyjwC/wC\nvx7xWfaJCAuMsga0l7gCHxvHpALLnyqLfwr8Ar/Ar2/8YMFekC1Z4kGEKMvb5E9dLvAL/AK/rvEV\nuwiSa2wOXQ6OSmLEgeUvJStIcaLQ2USwZpjEFvgFfoFf1/huz+CA1FKhSvRBhyh/ZTot8Av8Ar+O\n8ZVjsm5Kc1NdnGa0gwFJsWeEU+AX+AV+veOTeQGhUgqOTKpqBVS96GrZTW5G9S1NC/wCv8CvG/z4\ncysVcsdRvoIg4MD+AxXRiMz7E2IyQbsyCE46ZYWR8xQYgYgRfwyGQVBmwySqLm2t8bXWIEW54ecl\nP7OGolLu+s8aH25W5p3R/rLEJ1WCimakgnZflW3MhTAZtMxvs078dhNWrFzJEyaMZ5D5fLeUFf8n\n+V/pWvSf4jzBNZLrVC1vgV/gF/g1xR84aDA//NDDUf/Xb0MU6SuaVUBg8styYPHkODi8446fY+WK\nlT66EquF2RMh9QErSh/aIoD0Fgiw5l6BX+AX+DXFf2vbm/jBzd+P+r+1juLifYJ0dQhme/goCwW/\n/piD6K7dXUFxAQkR+VwBWnxO/nO45A06+5ejxBXtMoEs8Av8Aj8L/K6uPVH/D0rydahQZ7cxBBgN\nIFNpd9nl4ShTWmS/DdK3f3ybGeoxwRxYGUgUYeIVA5p8ealqSoT9mFWoAnYXhOcZUFJ3Js4E/4m5\nD+I3T8xzub5w9dcxvPm4zPDzkn/TG+vxj7fc7DKddd4snDfzg5nrPw/5b/rfX3Rp+/Tti+u+9cPM\n9Z+H/N+98Wrs37/fpa1MeUJOwh9250/761YbM6EBiUKMFzomGXMmcSy/ZOLHjp+Ej1zyGeNf0k4m\nM8AjyNSYKUvDpNHK+KKMcuDeIWciMLOYWUrijGNLQYPYXIdSRjyv90zw+/cfIERjQGZ/5GMYOWZ8\nZvh5yb925XL84y032zaMD1/yaZw/+0OZ6z8P+b//za/KBuuMj3zsM/jwxz6dW/vLUv7W1oW4/19+\nARBDO1oKWCQI9sxGp4dmFO5HYyIdh3KFOKmMi5M0GgQqGwGs0NAAlSFSsKsAEaC0GYpp5YUEAKW1\nnBLE3Q+ljeCkCUwErQSfAa2zxo91orW9gfUtvxWbfdKc9J+9/KajihWBvNtfdvik4XBCw4MDFgmW\n18SNIwqmvioZycF1dgnjbNZMsqHEDC6Zxgdta22FYBArM8VmMyk2pl/wRVpTcYKGKEpBjskwuSi4\nxABpw/SW0bPDD1THkGnEI0B+20yCppCP/nOQPxo45N3+MsQnKzEQ3viAZmSIh4QPqFIILBp2UeFl\nc4WjFKZC1qtDJMqwlRaFhE4lJpb9KPx4UoGDzmsEhDIVUqIsMR5RJgDQgJiGDAKxYWqlMsS31iOs\n/Bnj5yS/bbuuVTHy0X9O8rvA+eDnJX8gdkoPtiFU5pe0eaNSnMXJA0cpPhexpx9rN6mgQcIKLmUz\nA5plDKiM08qN+8REtJhi1jF5/BKzWU1gaVExWMaOmeK7Iln+ZYyfk/wqKNmRbR76z0l+1xdsF8ir\n/WUqf1ias1siPcQ0E7+2GXMNQ4VmYVxIpQLiEBtUhJIIbdhRrjChTCRmHptGq6yDKSzFm3VwCjTK\nKIvVBCDwkwAlp4vs8EPdljgso37l12G6nPWfh/yIrIMjRX5CJZnD4LhQyolKCvKY9cyAEyriJK5c\nEbbIFMSIV8oNAYM8RjjDkiX2ClMhlcmgVAcMrDQFHnMCsfW6k2ddlS1+pEUCtF1UWffy26eayM/5\n6D8f+SFcYwbMeba/TOXnxD2P+r9kJDmJvMIhx7DjaQXAT0tFppAPlDwmHRA9gUvkHFjEDA0WxxQZ\nBK0BERYa/gbaMqXDWguBZeFRqBRrTiowoLRxxmqTJjP8hAIVU7b4Ockvz/UgQ076z0V+snccZeTc\n/jKU38ic5gPT5zkgHAoJBAjNFTFI4IZmTpVBgwo7VtIWCoGFeZXxVaEsc+ZMVgCAiBxbauVvoHVY\nEYuClHFKkWawMhYDsZlqI+nU1rOurIxlZIgfa4GJM8bPR35lG2Ygfz76z0H+4I4TIef2l6X8RlhC\nbNk6Xdg/CWsn0ljk53PJyFspLp1vYJVIx1jRphLMhBLbaSwSD7m4mAhQ2tTKe/Klk5IdgypQ2Vxn\noT9VNk4vVkCZTH2YIZ51OBbPCl9x/GRnZIufl/zaPrFEfju+z1r/ucgf3HG/wK3+5bdeAQYDFCx7\nSRodlnGEO6hKOuVOOcEyQAyQLBhw3GWcT4zIU00ODUyADtY/O/+PsqseYcw7BfgiCFB+Xt+SI4X4\nnDE+eclDNda7/E7QwKLJEj9P+cP+YqyEbPHzkt+XhMRNRyp4HXHVdH7oRMGVZPoUB4kVIxdKbM0v\nOxFqx5RSBguQoDFDxpHKK6MkLK0sGxsMBYDKcOagm84DgVmDM8T3qrH4yBQ/L/mh4xkFlZP+85A/\n2f7zbH9Zyh/SAXRFfnF5/bUKhokEFZ3ZoUGs1YoooUea2Zh2zFo825KmDDemNML7qVIFQln5ailt\nBNRgcWoBJE4sKGH1sq+xHTdShvhyfwP5s8XPTf7Q+SdP1Dz0n5v8VnTOt/1lLr+krcIyHgj+ARwl\nZf+rooigTEM4lMjhDzksUZmxHRE5M8/cFGuiwTi1WAmzyupEu5pRkzHtlGc+Dbhl13bxEpes0hCM\nT7PD15ZsLL61Z+tcfm+3J+TPWP/5ye+S5dr+MpffIDl8OfWBkocJRiL/qypdTzGTOHvsoTUnAWOu\nWacxuxthWyQ7c48JzvMNAGWVUJS25ZnCS4FAoefdsq0LwXqHWuMrDtRpr2eIn5f8YDuEqNCcjgj5\nTYkq5/aXqfwBhNvjzxYdBnZ/gvM4jg0UuxGSvxyXxhLFURo5Jg3r3TaVhghoXgYD2BlGJTvdxoAK\nKhTilxUBCJmZoEHQJa8oozQTzHRdNvjutYtA/izx85KfYTnGy5+H/nORH/487/aXKT4gkpulimH/\nN7ng6lLBtAkOjNGiAIo81JbRwiLtZQrOQ2eReZcisJOcEtgpDdpMwTlvtjbKIlLi6DKYqswOXytA\nKw0ihirDTdERAyVrFWrODD9864tywM9PftsuvPx56D8P+dmYEtI5821/WctvHMps1uME/T9ESRo4\n6WBSNCQjrLOPETYrOAiSa+y8o2aRUElpH6cBLhGobKiTmUBCoUoUoLQsLGKPCUgHZrMcOol/AGU8\n99ijeOLRh9GxZQtOPPV0fPbzX0aP3k2Z4GtD8SaPdVIpoIzayz/v1/+JuXMfQkf7Bhw94lhc9IH/\nhfNnfxBQXHt8+9wh3w60lgdUFvgAdLmMr197JUY0N+Mr138HnBV+MGzwi91Qc/y95X345c//Dq+8\n9FuoUgNmve8jOHPm+9HU1JgJvrY3Ovi1/R+SL1heFTGGO2QAxHDvOplroRUDN+7zEekBlXuqgxF9\nHcqO+YRRFcQM1OZGUVm5MqxiIrNQGZYm9jcWBNx521/jK5d9HOvXrUGpgfCPf/NdXPmpD0Mf2JcJ\nvmIdGHvsnvS1lv+Wm7+N6770Wbzw9OMYOHAInps/D1+74hO4/ZYfZIJvU5rBvuQk86TNCv/2v/sx\n5vzXPVjy6sJM8cO+o2xcjfH36b244uLZ+OnN38b2P2zDhtdX4fqrLsU3v/K5TPCd/PDyp/p/4ChK\nPpDdNfLU5N6tCpdaM+DoigPCSTzYoqBtuSIMM8PtGQoy029KCEyZMaQGmYwKKLHjPLf6USsAWoM0\nsGb1ctx+64/w/o98HHfdOxe33fUArv3WzXjlxefxxCMP1RzfPNjSvnOrnlrhb+vswN3/8BOMnzIV\n8xasxi2/+A88sXA1RjQfh9tv/SG69nTVXv9OaC+5fXGv1vJDayx+5WXc/tMfOnzS2eGz9h1OZ4T/\n6H/dj1cWvIArvvoN/OK+ubj/0d/hU5d/GU/O/TVWLG3LRH47g+WHTMEzFjFfJK95KzjdXqLkIeX4\nyqZfsQqNHqVheqMy72doJSSlYcaYtnoMuG0KYflMptcE377cRaIsXQLm/fd/Yf++PfjEZz/vKvin\nl1yKpj598Miv7q05vpE/fveFdaDIGuFveH0Nxk6egov/7DI09uoJYkLvXr1xzgWzcGD/AWx4fXXN\n9e9HyQn5gx3aaoW/p6sLX7/mc5hx4ikY3txsns+UHX4ov4LsC1Nj/Hvv+hlGjh6Lz33pWtf+LvvC\nNbj51jvQt9/AzOT31qu994kQ9P+EmeInDyRNA4CA/SjILecMZwLZK85Ko8AkUgTYV9lFMLsFIVsH\nkzLjXKXFky0vjzFreRNaAdDOiUWszAteJcaq15YCAMZPnwGtTJV69mnE6DHj0L5xXc3xoZUYmuzU\nZB1lDKoZ/vEnnIL75v0OVJbX+MmU9exTj4F6NGDkqLE11z+CQTcjWFekZBvJGsr/1zddj61bNuEf\n7n4Il31iNjS0u/9Z4PvZGeNILZMfMtcKf9XqZTjjrAvx6oKX8NSch/Hmtg6cePKZ+NDHPwWlFHSN\n8bViN5tE8Pc/OaIxnMthjDt2f6WvNNjifGHkh1+WexKjMD8DwdAowWyuwwD5JesAQ5fMU8HsZ0ou\nb1nYrkRweLpkxpsaSjzfhp2NuUfYuX07mvr0Qe+evcxQhglUYvQbOBQrly6WTlg7fKJYfoaJY1JS\nZu3x7arPO2/7G2xY9zo+8RdXomdjU83xwb6FADL010b/jNrJ/9RjD+P+e+7CTT/+exw7cpRrjiq4\n/7XEh+Lo8yQlGGcq1RB/+85d6Nq5G0t+vxCXfWwW+vbth66u3fj1/ffgqXkP45Y77zWkUGP57ebk\nHNNGFMJYm478SdBhpM3EZMIBwXhzKvEDZxaxeZlLSQOwLdFPiQKqbJxN7hzWkczGvFOQWwiYHcAg\nNfP4WpfR0NDDv0ksqxsbGnpg777dNcd3vqpwtTSb+CzkNzjAL/7hJ7j1Rzdh6owTzOxLVvgI5Sen\n/1rhd27dhO9c/0W8d+YH8OFLPu30r+2akRrjR/KzteWQan+HGn/71i0AgPb29fjCNd/AYy+vwNwX\nluHs82fjmSfnYO5//yob+QNnbwUaiC7ZYVXaQPGJ7Pup5q9nnShHGB0+2axQbuxng/bDK2KzCtHu\n8kUagDYszESwe2a48WQwLiMx5zQIQ4cNx+7dO6GYo7J37NiGEceOrDk+kfQx9vNz5G5Y7eVnLuMH\n/+ca3PqDb+GEU8/Az375MBp7N2aCz7YlJOVn1Az/r264Gm+9+SZmfehivPD8b/Dy757BgX17sWPb\nVrzw22fw1rY3a4pv5QdZ74bBSra/Q40/aOhRAICBg4bg0r+8Bj17N2LgkKPwmcu/BCLg9y88V1P8\nSH4YoZP9PwyRrZO8KIEJaHBJuXpCspPm7AVwlGOZLqBQ9+kHyD4uIEBr6BKZb1/ZTBqAMkpSDEAB\nrG09zA1V2rDukOFH48D+A+jo2Ixhw4YDMGPRjvZ2TJp+fM3xWRHsbp5WfjPOlXw1xD9Q3o8br7kC\njz54Hy764Efx3Z/8DD179jbP2AzwyZJL9IQx+q8V/rK2hWAAN3zxsxFsx5bN+PzH34+f3nk/zjp/\nZs3ld8v7Ya4JXM3k79PYF019+uK40WPQ0NDD+AiZcdyY8WAG9u3bm4n+bSozze/NmcAXflDB0kro\n60qkCOylYC2Jt4oqGFHaVJ7K8qvJvbNBRFBsFeDzGmc5ibLgTT5xQjIZZZxy2nsAAE/894MylmS0\n/X4B2jeux/hJU2qOHxJxKL8bSdUQ/69uuBpzHrwPn/78VfjhbXehV49ebt1DFvigeDKTgJrj33LH\nvbjzgbn4xQPzcOcD83D3A/MwaPAQTJ1xIu5+YB5mnHxqNvIHMkM6rW1/tcI/+bQzsXxxK7a0v+Ha\n31Pzfg0AOOGk02uOTwwgINhk/49LqBDY/7fpGyqu6AsKD6PsWXItnwvKZjULiMowL4dpsLxIallY\nGdZVfnkzYBTkpvNJgYhRZlPsGe+9CGMnTMJtP7wJTU19MGjIEPz4putx1PAR+PMrr645PpNpdsYP\nHzN8LeV/+YXn8at7/xk9e/UGs8ZPvnuj89cQA5+47AtoPua4mspv77wpwdx/43QM0h9i/MnTT4j0\nDwC9m5rQv/8gHH/Su01kDfGt/FZu2+2MXwSmvBrh/8WXr8Vv5s/Dly79KC7/yjewfvVK3P1Pt2JE\n8zE4+7xZNccHjC+MCIm+LmzAQg8xOfggT2V7mQE0uJURYWyQOS5HyIf8qYJCMpTZ3CRbnNp7rJ4A\nAAqeSURBVAoL1wCU9mNBN1cpJp/dc0MbOlTkrYmf3H4Prvvip/Gta68EEdDyrlNx1bU3oW+//jXH\nd1uWhlyuzFODFdcM/+nH5oAA7Nu7B//6T7fFiiZg5gf+1BNNreQPymbYmRgGlwiqXFv5Q/2XVAks\n09sqI3wgnHEzHdXs+V07/BNOOg1/+/N/x3dvuArXXfEpKAImTW3B9269AwOHDpHRUm3lV7AEFN5/\n3//JsU06WE7xNMFocEldbMg48Md2cCblEwzb2XVCfgNjmcPXFHi0PaRWZrd1s/qSZYoYIAW3h6lZ\nFxA8TYgBTRg1bjzufeR36Ny6CQ2qAf2HDJHvCHMm+KGu7JONayz/V2/8v/jqjd+B39HeXCOW8XcW\n8icMZWNeyzaTGd7/Xz/bCjt1mxU+JaXXBKVqj3/OhbNxzoUrsLm9Hb0ae2Jg/6Hu/meB7++6zLcF\ntGAd0LFN4hMkVw0DJGQXqTIwV0JOCqMZ8OsENfzbo8ZTb6wzv7CL2D8FlZjeWskCIR0wrjLxHtvZ\nsbAfMIdiDB02HAOHDDX55L2MzPDh5ac88OXpxUSZyh81G84eP1/5g5Ax/vARzRg4cGhO8lfp/z5W\njjhKa4N/fcngBqSBgHMST7GUxm0uZdYWKHnCk7POQHbNg6ywtIuAoCCf+TTHZRb2EkcWOUe0VZT1\nkwS10CzmH2WGHyvBG4h1L3+lRpCD/vOWn49g+dP932vGMoGbnJJf9/oSU7r/sDBf0ihyxGNNNLJp\nNZQIaF9HUFKOYVR2Y8iyOPD8cAvCqFJ0Sd7RIJZSDJOWxfOkNJuxs7CvyciZ4dspQys/KFv8vOTX\nVurw2ZOD/vOQP3wQmxXR+bW/LOV3H88jQNthDOBZJAjOlqH4VzK46kaRZLNyhThYVmXbxwCYilAZ\nzrxjgmNHEdtVgAjiV5D0QQ2U1nJKcC9+aYYCmzEnkZh2slxaZ40f60TL+vR6l9890X3SnPSfvfz+\n6W7uer7tLzt8a/0Q2yFS2P8Fx3KP+1MpCEkmI8OHdmw4+mwUgADyYpddJGQffwHj2s9AuIU/is0U\nXfD2qam4/44NlGVeWaEqCi6JCWheaDT1yA4/UB1DphGPAPltMwmaQj76z0H+aOCQd/vLEJ+sxEB4\n4wOasWt4TVxME4kQbXyVLMiPwDhKYSpkPcvGa03CngDczu1BCSTOINgZEmPm+c4rWwwqUyH7zoYS\nXPMSmLH5WExZ+00apTLEF60a7wxlj5+T/LbtulbFyEf/OcnvAufc/jKWPxA7pQfbECrzS9q8USnO\n4uSBoxSfi+wrZtayYUAFDRJWcCmbzdjSbMijwI4y2f13N1XMOv+JBxLHFXkzTzzq5h2gDPFdkSz/\nMsbPSX4VlOzINg/95yS/6wu2C+TV/jKVPyzN2S2RHmKaCZcBUIJrGCo0C+NCKhUQh9igssudRWBr\nbTOhTLKlArNptIqhXe4EvrykyQFrlsVqAhD4SYCS00V2+KFu3QZBdS6/DtPlrP885EdkHRwp8hMq\nyRyGaHLAGSSBwePOZehkhYo4iStXhC0yBTHilXJDwCCPEc6wpNlPhSRNQGUyKHXvb7DZPNkvQiKQ\n3dSHybOuyhY/0iIBWrz69S+/faqJ/JyP/vORH8I1snIqx/aXqfycuOdR/5eMJCeRVzjkGHY8rQAE\n70xVpi5KHpMOiJ7AJXIOLGKG2/vCrWbVgAgLDX8DbZnSYa2FwLLsPVSKNSfNIiVtnLHapMkMP6FA\nsytZ/csvz/UgQ076z0V+snccZeTc/jKU38ic5gPT5zkgHAoJBAjNFTFI4IZmTpVBgwo7VtIWCoGF\neZXxVaFM8hkHsgIAROTY0n+ywk4Xm5WMxAytjFOKZItBTWZsar/SZzzwRlnKylhGhvixFpg4Y/x8\n5Fe2YQby56P/HOQP7jgRcm5/WcpvhCXElq3Thf2TsHYijUV+PpeMvJXi0vkGVol0jBVtKsFMKLGd\nxiLxkIuLieA+fuU9+ezerTBjUAUqm+v2DVJVNk4vVua9HmKWdzTIlWs1ngW+4vjJzsgWPy/53a5y\nIr8d32et/1zkD+442VFCTu0vS/mtV4DBAAXLXpJGh2Uc4Q6qkk65U06wDBADJAsGHHcZ5xMj8lST\nQwMTzIbPssDN+X8Ug61ytKFpXwQBys/rW3KkEJ8zxicveajGepffCRpYNFni5yl/2F+MlZAtfl7y\n+5KQuOlIBa8jrprOD50ouJJMn+IgsWLkQomt+WUnQu2YUspgARI0Zsg4UnllyDc+WVk2NhgKAJXh\nzEE3nQcCswZniO9VY/GRKX5e8odvrjOsIzF7/echf7L959n+spQ/pAPoivzi8vprFQwTCSo6s0OD\nWKsVUUKPNLMx7Zi126kfgIwfIfRo5/5NbgVCWflqKW0E1GBxagEkTiwoYXW7Vwjgxo2UIb7c30D+\nbPFzkz90/skTNQ/95ya/FZ3zbX+Zyy9pq7CMB4J/AEdJ2f82eC3GZTKA8ONx7orlF+l4q1csw2WX\nzDSVtTL56kNBQ7trCkAZlqmtRUCswEr7isWIYHGKmbGmYNuOH6HVFn/Bi89F8l/1uYsxVDaTrmf5\nOzo3mwPB/NoVn8RJp78nc/3nIf++fXsc1r/d+fd4re3V3NpflvIveOE5VxO/eDBRsYBVKBmBOF1D\npeuGmSjOkSQj9tcWvvBcymSqoIduE4QGA6cvy3n411+JVwDVDj+qBQOvr1qB11etzAw/b/ntR+QJ\nwILfPeeu1L387OV/+cXn8tN/TvITx/0/Cs7UCwwRig4ghiC7EZKNTJbGEmWTjRo9Orpaab5dDLu0\ncDFQOh/5ypErw07FcYWsBX6BX+DXEn/0mDFR/w+zm3oFBVPywNSuAaDAQy3z9CFDQawbhkv3pS9+\nEbt27cTSpctckSHDurOIHs2JsJsz25RZGy1XLHPKcVgvbZWgTX1Mtszx165djS2bt2Dc+HEYMmTo\nESN/55ZOrFq9GsOHD8OY0WNy03/W8nd17cbixUvQ2LM3pkybBqWQa/vLWv6hQ4fghhu+HvX/kMLS\nFJcMJgUxh/aMDyHV2AgmH8cO2KYNcjjhTKWTA7EKpRf4BX6BX8f4ypcT801ymTIoARw4iCj4G10L\npwhtBQB4b7Uvo8Av8Av8+sUn1pwa4oVsxsxu9qk7HqzEgGFEpbzs61LgF/gFfh3jq/TV8DpHU9wp\nkID0KBHpnFecvA7YwSWlLxT4BX6BX4/4bEJizUyQNaC9xBX42DgmFVj+UIVriFmzwC/wC/z6wzfO\n4ERhlCzxIEKU5W3ypy4X+AV+gV/X+GYRcmBDEdgcuhwclcSIA8tfSlaQ4kTRW7CwZpjEFvgFfoFf\n1/jEbD4yHJBaKlSJPugQ5a9MpwV+gV/g1zG+ckzWTWnhloZJRjsYkBR7RjgFfoFf4Nc7Pmlmrli+\n25+mMnq3LBfWpnLh5gIjWgRU4Bf4BX594tutfSokMNQXM5hnNkqmD4O8Y24ZLJXMvceeQCjwC/wC\nvy7xvUVjKapbqgoydpMwfSUZExp0QaUL/AK/wK9LfP+hV3vgXMcMT1kcHZJkqMh2qLp3epCK5CBI\nW+AX+AV+3eIrC5iuFEXHTInLERQn8kks++scXmX418sL/AK/wK97/P8Ptpo0pboe3lwAAAAASUVO\nRK5CYII=\n" + } + }, + "cell_type": "markdown", + "id": "8837c9a6-8a69-4356-be21-9298c4317339", + "metadata": {}, + "source": [ + "# Array-Based Data Structures, Searching, and Sorting\n", + "\n", + "## Outline\n", + "\n", + "- Array Based Data Structures\n", + "\n", + " - Stack, queue, Python List\n", + "\n", + "- Searching\n", + "\n", + " - Linear, Binary Search\n", + "\n", + "- Sorting\n", + "\n", + " - Selection, Insertion Sort\n", + "\n", + "- Hash map, hash table (Python dictionary), hash functions\n", + "\n", + "# Array Based Data Structures\n", + "\n", + "## Abstract Data Types Versus Data Structure\n", + "\n", + "- Some concepts are generally useful and transcend any programming\n", + " language\n", + "\n", + "- An **abstract data type** (ADT) defines some kind of data and\n", + " operations that can be performed on it\n", + "\n", + " - Abstract because there is no mention of *how* data is stored or\n", + " *how* the operations work\n", + "\n", + " - Concerned about “what”\n", + "\n", + "- A **data structure** is a concrete method of storing data (and\n", + " therefore its operations).\n", + "\n", + " - For instance, Python List is a data structure because it has a\n", + " specific implementation.\n", + "\n", + "- ADTs form a common vocabulary for computer scientists to discuss\n", + " problems. It allows us to focus on the design and worry about\n", + " implementation later.\n", + "\n", + "## Important ADTs\n", + "\n", + "- Set\n", + "\n", + " - Data: a collection of unique elements\n", + "\n", + " - Operations: get size, insert a value (without introducing\n", + " duplicates), remove a specified value, check membership\n", + "\n", + "- List\n", + "\n", + " - Data: an ordered sequence of elements\n", + "\n", + " - Operations: access element by index, insert a value at a given\n", + " index, remove a value at a given index\n", + "\n", + "## Important ADTs [1]\n", + "\n", + "- Map\n", + "\n", + " - Data: a collection of key-value pairs, where each key is unique\n", + " and associated with a single value\n", + "\n", + " - Operations: look-up a value for a given key, insert a new\n", + " key-value pair, remove a key-value pair, update the value\n", + " associated with a given key\n", + "\n", + "- Iterable\n", + "\n", + " - Data: a collection of values (may or may not be unique)\n", + "\n", + " - Operations: iterate through the elements of the collection one\n", + " at a time.\n", + "\n", + "## Relation between ADTs and Data Structures\n", + "\n", + "- A Python `list` is not a ADT. But it is a natural implementation of\n", + " the List ADT.\n", + "\n", + " - The designers of Python implemented `list` operations\n", + "\n", + "- A single ADT can be implemented by many data structures\n", + "\n", + " - You could implement List ADT using a Python `dict`\n", + "\n", + " - We can store the list `[\"DS\", 4, \"Life\"]` like this:\n", + " `{0: \"DS\", 1: 4, 2: \"Life\"}`\n", + "\n", + "- A data structure can implement many ADTs\n", + "\n", + " - Practice: how can you implement a set with a Python `list`?\n", + "\n", + "## Python Lists\n", + "\n", + "- Each element has an address in memory. The addresses are ordered by\n", + " index number and adjacent to each other.\n", + "\n", + "- Run time for `append` method\n", + "\n", + " - A new address is created and placed at the end of the list\n", + "\n", + " - $O(1)$ time because it doesn’t matter how long the list is\n", + "\n", + "- Run time for `insert` method\n", + "\n", + " - The worst case occurs when you insert at the beginning of the\n", + " list because each element in the list has to be shifted down by\n", + " 1.\n", + "\n", + " - $O(n)$ time\n", + "\n", + "- Run time for `delete` method\n", + "\n", + " - If you remove the first element, all other elements must be\n", + " shifted up by one.\n", + "\n", + " - $O(n)$ time\n", + "\n", + "## Stack\n", + "\n", + "- A stack contains zero or more items\n", + "\n", + " - Items are added at the top of the stack, called *pushing*\n", + "\n", + " - Items are removed from the top of the stack, called *popping*\n", + "\n", + "- The first item added to the stack is the last item removed\n", + "\n", + " - We call this “first-in-last-out” (LIFO) behavior\n", + "\n", + "- 2 minutes: is it faster to use the front or back of a Python list to\n", + " implement a stack? What is the Big-O for stack operations under each\n", + " choice?\n", + "\n", + "## Queue\n", + "\n", + "- A queue contains zero or more items\n", + "\n", + " - Items are added at the rear of the queue, called *enqueue*\n", + "\n", + " - Items are removed from the front of the queue, called *dequeing*\n", + "\n", + "- Items come out of the queue in the order they were added\n", + "\n", + " - We call this “first-in-first-out” (FIFO) behavior\n", + "\n", + "- 2 minutes: is it faster to use the front or back of a Python list to\n", + " implement a queue? What is the Big-O for stack operations under each\n", + " choice?\n", + "\n", + "# Searching\n", + "\n", + "## Motivating Example\n", + "\n", + "- You want to develop a ML method to search through a video to figure\n", + " out when an bike is stolen.\n", + "\n", + "- You could start from the beginning of your video feed and run your\n", + " ML method on each frame until you the bike is not in the frame.\n", + "\n", + " - This would take $O(n)$, probably a long time since you’re using\n", + " ML\n", + "\n", + "- What if we started halfway through? If the bike was there, then\n", + " break the remaining video in half and check again. If the bike\n", + " wasn’t there, then break the previous part of the video in half and\n", + " check again.\n", + "\n", + " - This is *binary search*\n", + "\n", + "## Binary Versus Linear Search\n", + "\n", + "- How many steps does binary searching through 100 numbers take?\n", + " 10,000?\n", + "\n", + " - We can generalize this as $O(\\text{log}n)$\n", + "\n", + "- What is the big-O of linear searching through 100 numbers? 10,000?\n", + "\n", + " - $O(n)$\n", + "\n", + "- Notice binary search requires the list to be sorted in advance.\n", + "\n", + " - We implicitly assumed this in the bike theft example (time is\n", + " “sorted”)\n", + "\n", + "# Sorting\n", + "\n", + "## Selection Sort\n", + "\n", + "- Suppose you want to sort prices of all fruits at a supermarket from\n", + " lowest to highest\n", + "\n", + "- You go through the list, find the item with the lowest price then\n", + " place it on top, then find the second lowest price and place it\n", + " second, etc.\n", + "\n", + " - You will end up with a sorted list!\n", + "\n", + "- To find the lowest price, you need to traverse the entire list. You\n", + " must do this $n$ times until there are no more items.\n", + "\n", + " - This takes $O(n^2)$ time\n", + "\n", + "## Insertion Sort\n", + "\n", + "- Compare the current item to its predecessor. If the item is smaller\n", + " than its predecessor, compare it to the items before. Move the\n", + " greater items one position up to make space for the swapped item.\n", + "\n", + "- You need to traverse the list once for each item in the list, so the\n", + " Big-O is $O(n^2)$.\n", + "\n", + "![](attachment:images/insertion_sort.png)\n", + "\n", + "## Live Coding:\n", + "\n", + "The *h-index* is defined by Wikipedia as the maximum value of $h$ such\n", + "that the given researcher has published at least $h$ papers that have\n", + "each been cited at least $h$ times.\n", + "\n", + "Given a list of integers representing a researcher. Each index is their\n", + "$ith$ publication and the value at the $ith$ index is the number of\n", + "citation. Calculate the h-index of that researcher.\n", + "\n", + "### Example\n", + "\n", + "[1] From https://www.teach.cs.toronto.edu/~csc148h/winter/notes/" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "fd88bcec", + "metadata": {}, + "outputs": [], + "source": [ + "# INPUT\n", + "lst = [2,2,5,6]\n", + "# OUTPUT\n", + "2" + ] + }, + { + "cell_type": "markdown", + "id": "7c3265c3-d522-4c73-8f61-8ac240af5395", + "metadata": {}, + "source": [ + "# Hash map, hash table (Python dictionary), hash functions\n", + "\n", + "## Motivating Example\n", + "\n", + "- Recall from the first lecture that searching in a Python set took\n", + " (basically) 0 seconds\n", + "\n", + " - How was this achieved?\n", + "\n", + " - Binary search only has $O(\\text{log}n)$ time, so there must be\n", + " something else\n", + "\n", + "- To achieve $O(1)$ time, we need something that immediately knows the\n", + " where/what the item is.\n", + "\n", + " - This is the purpose of *hash functions*\n", + "\n", + "## Hash Functions\n", + "\n", + "- A hash function is a function where you enter a string and it\n", + " returns an integer\n", + "\n", + " - Python objects have hash" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "92fbc341", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4231697768083451161" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "hash(\"DS 4 Life\")" + ] + }, + { + "cell_type": "markdown", + "id": "5e90a472-56d3-43ec-ad80-c348ccf52c6d", + "metadata": {}, + "source": [ + "- There are two requirements for a hash function\n", + "\n", + " - It needs to be consistent. For instance, if you enter “UofT” and\n", + " get “1827”, then every time you enter “UofT” you should get\n", + " “1827”\n", + "\n", + " - It maps different words to different numbers. Each string has a\n", + " unique hash.\n", + "\n", + "## Using Hash Functions: Example\n", + "\n", + "- Suppose you have a grocery store catalog with prices and barcodes.\n", + " When you scan an item at checkout, you want it to instantly return\n", + " the price.\n", + "\n", + "- You can put each barcode into a hash function.\n", + "\n", + " - Let’s say barcode “1234” *hashes* to “1” and “2” hashes to\n", + " “9876”\n", + "\n", + " - We store the price of item “1234” at address “1”. Store the\n", + " price of item “4321” at address “2”\n", + "\n", + " - We say the price at “1” is the *hash value* of “1”\n", + "\n", + "- If there are 8 items sold at the store, then the hash function will\n", + " only return integers from 1 to 8\n", + "\n", + " - The size of the hash table is often referred to as its number of\n", + " bins or slots.\n", + "\n", + " - Thus, the hash function depends on the array\n", + "\n", + "- This implementation is called a *hash table*\n", + "\n", + " - The hash table is basically a list of lists, and the hash\n", + " function maps an object to its location in the outer list.\n", + "\n", + "## Python’s Hash Tables: `dict`\n", + "\n", + "- You will likely never implement a hash table yourself, most\n", + " languages have an implementation for has tables.\n", + "\n", + " - In Python, this is the `dict` class\n", + "\n", + "- Dictionaries have keys and values (barcodes and prices)\n", + "\n", + "- Dictionaries have really good performance. Search, insert, or delete\n", + " item are all are $O(1)$ in the average case.\n", + "\n", + " - Average case assumes you have a “good” hash function that avoids\n", + " *collisions*. You can read more about collisions in the\n", + " textbooks.\n", + "\n", + " - The worst case of Python dictionaries for search, insert, and\n", + " delete is $O(n)$.\n", + "\n", + "- Recall Python dictionaries don’t allow duplicate keys, that is\n", + " because has hashes must be unique!\n", + "\n", + "## Python `set`\n", + "\n", + "- Recall during the first lecture, we showcased that Python’s set\n", + " search was much faster than list search\n", + "\n", + "- This is because Python’s set implements a hash function to store its\n", + " values\n", + "\n", + "# Recommended Problems and References\n", + "\n", + "## Recommended Problems\n", + "\n", + "- Bhargava: Chapter 5\n", + "\n", + " - 5.1 to 5.4\n", + "\n", + " - Read pages 79 to 86 on the use cases of hash functions\n", + "\n", + "- Additional\n", + "\n", + " - Give examples of 2 situations to use a queue and 2 situations to\n", + " use a stack\n", + "\n", + " - In Python, code a `stack` class with `is_empty`, `push`, and\n", + " `pop` methods using the end of a Python list as the top of the\n", + " stack. Bonus: Compare the run time of using the start of the\n", + " list versus the end of the list as the top of the stack using\n", + " the `timeit` library!\n", + "\n", + " - In Python, code a `binary_search` function.\n", + "\n", + " - In Python, code a `hash_table` that can hash 4 values.\n", + "\n", + "## References\n", + "\n", + "- Bhargava, A. Y. (2016). *Grokking algorithms: An illustrated guide\n", + " for programmers and other curious people.* Manning. Chapter 5.\n", + "\n", + "- Cormen, T. H. (Ed.). (2009). *Introduction to algorithms* (3rd ed).\n", + " MIT Press. Chapter 2, 10, 11.\n", + "\n", + "- Horton, D., & Liu, D. (2023, November 19). *CSC148 Lecture Notes*.\n", + " https://www.teach.cs.toronto.edu/~csc148h/winter/notes/" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": "3" + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/01_slides/3_recursion.ipynb b/01_slides/3_recursion.ipynb new file mode 100644 index 0000000..1246a6b --- /dev/null +++ b/01_slides/3_recursion.ipynb @@ -0,0 +1,600 @@ +{ + "cells": [ + { + "attachments": { + "images/box_recursion.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABV4AAAOYCAYAAAAt3OgYAAAMP2lDQ1BJQ0MgUHJvZmlsZQAASImV\nVwdYU8kWnluSkJCEErqU0JsgnQBSQmgBpBfBRkgChBJjIKjY0UUF1y4WsKGrIoodEDtiZ1HsfbGg\noqyLBbvyJgV03Ve+N983d/77z5n/nDl35t47AGgc50kk+agmAAXiImlCeDBzZFo6k/QUUIE+UAd0\n4MrjF0rYcXHRAJaB9u/l3XWAyNsrTnKtf/b/16IlEBbyAUDiIM4UFPILIN4PAF7Nl0iLACDKecuJ\nRRI5hhXoSGGAEM+T42wlrpbjTCXerbBJSuBA3AqAGpXHk2YDQL8EeWYxPxtq0HshdhELRGIANJgQ\nBxQUjBdAnAGxHbSRQCzXZ2X+oJP9N83MQU0eL3sQK+eiKGohokJJPm/y/5mO/10K8mUDPmxgpeZI\nIxLkc4Z5u5k3PkqOqRD3iDNjYiHWhviDSKCwhxil5MgikpX2qDG/kANzBvQgdhHwQqIgNoY4TJwf\nE63iM7NEYVyI4QpBJ4mKuEkQG0A8T1gYmqiy2SAdn6DyhTZkSTlsFX+WJ1X4lfu6L8tLZqv0X+cI\nuSp9jF6Sk5QKMQViq2JRSgzEdIidC/MSo1Q2w0tyODEDNlJZgjx+K4gThOLwYKU+VpwlDUtQ2ZcX\nFA7MF9uQI+LGqPDeopykCGV+sFY+TxE/nAt2SShmJw/oCAtHRg/MRSAMCVXOHXsmFCcnqnQ+SIqC\nE5RjcYokP05lj1sI88PlvAXEHoXFiaqxeEoRXJBKfTxLUhSXpIwTL8nlRcYp48EXg2jAASGACWSw\nZoLxIBeI2nsae+CdsicM8IAUZAMhcFIxAyNSFT1ieE0EJeBPiISgcHBcsKJXCIoh/3WQVV6dQJai\nt1gxIg88gbgARIF8eC9TjBIPeksBjyEj+od3Hqx8GG8+rPL+f88PsN8ZNmSiVYxswCNTY8CSGEoM\nIUYQw4j2uBEegPvh0fAaBKsbzsJ9Bubx3Z7whNBBeEi4Rugk3BonKpX+FOUI0An1w1S5yPwxF7gN\n1PTEg3F/qA6VcT3cCDjhHtAPGw+Enj0hy1HFLc8K8yftv83gh6ehsiO7kFGyPjmIbPfzSLoD3XNQ\nRZ7rH/OjjDVzMN+cwZ6f/XN+yL4AtlE/W2LzsH3YGewEdg47jDUCJnYMa8LasCNyPLi6HitW14C3\nBEU8eVBH9A9/A09WnslClzqXbpcvyr4i4ST5OxpwxksmS0XZOUVMNvwiCJlcMd95KNPNxc0dAPn3\nRfn6ehOv+G4gem3fudl/AOB/rL+//9B3LvIYAHu84fY/+J2zY8FPhzoAZw/yZdJiJYfLLwT4ltCA\nO80QmAJLYAfn4wa8gB8IAqEgEsSCJJAGxsLoc+A6l4KJYCqYBcpABVgMVoA1YD3YBLaBnWAvaASH\nwQlwGlwAl8A1cAeuni7wAvSCd+AzgiAkhIYwEEPEDLFGHBE3hIUEIKFINJKApCEZSDYiRmTIVGQ2\nUoEsRdYgG5FaZA9yEDmBnEM6kFvIA6QbeY18QjGUiuqgJqgNOgxloWw0Ck1Cx6DZ6AS0BJ2DLkRX\noTXoDrQBPYFeQK+hnegLtA8DmDqmh5ljThgL42CxWDqWhUmx6Vg5VonVYPVYM3zOV7BOrAf7iBNx\nBs7EneAKjsCTcT4+AZ+OL8DX4NvwBrwVv4I/wHvxbwQawZjgSPAlcAkjCdmEiYQyQiVhC+EA4RTc\nS12Ed0QiUY9oS/SGezGNmEucQlxAXEvcRTxO7CA+IvaRSCRDkiPJnxRL4pGKSGWk1aQdpGOky6Qu\n0gc1dTUzNTe1MLV0NbFaqVql2na1o2qX1Z6qfSZrkq3JvuRYsoA8mbyIvJncTL5I7iJ/pmhRbCn+\nlCRKLmUWZRWlnnKKcpfyRl1d3ULdRz1eXaQ+U32V+m71s+oP1D9StakOVA51NFVGXUjdSj1OvUV9\nQ6PRbGhBtHRaEW0hrZZ2knaf9oHOoDvTuXQBfQa9it5Av0x/qUHWsNZga4zVKNGo1NincVGjR5Os\naaPJ0eRpTtes0jyoeUOzT4uh5aoVq1WgtUBru9Y5rWfaJG0b7VBtgfYc7U3aJ7UfMTCGJYPD4DNm\nMzYzTjG6dIg6tjpcnVydCp2dOu06vbrauh66KbqTdKt0j+h26mF6NnpcvXy9RXp79a7rfdI30Wfr\nC/Xn69frX9Z/bzDEIMhAaFBusMvgmsEnQ6ZhqGGe4RLDRsN7RriRg1G80USjdUanjHqG6AzxG8If\nUj5k75Dbxqixg3GC8RTjTcZtxn0mpibhJhKT1SYnTXpM9UyDTHNNl5seNe02Y5gFmInMlpsdM3vO\n1GWymfnMVcxWZq+5sXmEucx8o3m7+WcLW4tki1KLXRb3LCmWLMssy+WWLZa9VmZWI6ymWtVZ3bYm\nW7Osc6xXWp+xfm9ja5NqM9em0eaZrYEt17bEts72rh3NLtBugl2N3VV7oj3LPs9+rf0lB9TB0yHH\nocrhoiPq6OUoclzr2DGUMNRnqHhozdAbTlQntlOxU53TA2c952jnUudG55fDrIalD1sy7Mywby6e\nLvkum13uuGq7RrqWuja7vnZzcOO7Vblddae5h7nPcG9yf+Xh6CH0WOdx05PhOcJzrmeL51cvby+p\nV71Xt7eVd4Z3tfcNlg4rjrWAddaH4BPsM8PnsM9HXy/fIt+9vn/5Ofnl+W33ezbcdrhw+Obhj/wt\n/Hn+G/07A5gBGQEbAjoDzQN5gTWBD4MsgwRBW4Kesu3Zuewd7JfBLsHS4APB7zm+nGmc4yFYSHhI\neUh7qHZocuia0PthFmHZYXVhveGe4VPCj0cQIqIilkTc4Jpw+dxabm+kd+S0yNYoalRi1Jqoh9EO\n0dLo5hHoiMgRy0bcjbGOEcc0xoJYbuyy2HtxtnET4g7FE+Pj4qvinyS4JkxNOJPISByXuD3xXVJw\n0qKkO8l2ybLklhSNlNEptSnvU0NSl6Z2jhw2ctrIC2lGaaK0pnRSekr6lvS+UaGjVozqGu05umz0\n9TG2YyaNOTfWaGz+2CPjNMbxxu3LIGSkZmzP+MKL5dXw+jK5mdWZvXwOfyX/hSBIsFzQLfQXLhU+\nzfLPWpr1LNs/e1l2d05gTmVOj4gjWiN6lRuRuz73fV5s3ta8/vzU/F0FagUZBQfF2uI8cet40/GT\nxndIHCVlks4JvhNWTOiVRkm3FCKFYwqbinTgj3ybzE72i+xBcUBxVfGHiSkT903SmiSe1DbZYfL8\nyU9Lwkp+m4JP4U9pmWo+ddbUB9PY0zZOR6ZnTm+ZYTljzoyumeEzt82izMqb9XupS+nS0rezU2c3\nzzGZM3POo1/Cf6kro5dJy27M9Zu7fh4+TzSvfb77/NXzv5ULys9XuFRUVnxZwF9w/lfXX1f92r8w\na2H7Iq9F6xYTF4sXX18SuGTbUq2lJUsfLRuxrGE5c3n58rcrxq04V+lRuX4lZaVsZeeq6FVNq61W\nL179ZU3OmmtVwVW7qo2r51e/XytYe3ld0Lr69SbrK9Z/2iDacHNj+MaGGpuayk3ETcWbnmxO2Xzm\nN9ZvtVuMtlRs+bpVvLVzW8K21lrv2trtxtsX1aF1srruHaN3XNoZsrOp3ql+4y69XRW7wW7Z7ud7\nMvZc3xu1t2Ufa1/9fuv91QcYB8obkIbJDb2NOY2dTWlNHQcjD7Y0+zUfOOR8aOth88NVR3SPLDpK\nOTrnaP+xkmN9xyXHe05kn3jUMq7lzsmRJ6+2xre2n4o6dfZ02OmTZ9hnjp31P3v4nO+5g+dZ5xsv\neF1oaPNsO/C75+8H2r3aGy56X2y65HOpuWN4x9HLgZdPXAm5cvoq9+qFazHXOq4nX795Y/SNzpuC\nm89u5d96dbv49uc7M+8S7pbf07xXed/4fs0f9n/s6vTqPPIg5EHbw8SHdx7xH714XPj4S9ecJ7Qn\nlU/NntY+c3t2uDus+9LzUc+7XkhefO4p+1Prz+qXdi/3/xX0V1vvyN6uV9JX/a8XvDF8s/Wtx9uW\nvri+++8K3n1+X/7B8MO2j6yPZz6lfnr6eeIX0pdVX+2/Nn+L+na3v6C/X8KT8hS/AhisaFYWAK+3\nAkBLA4ABz2eUUcrzn6IgyjOrAoH/hJVnREXxAqAe/r/H98C/mxsA7N4Mj19QX2M0AHE0AJJ8AOru\nPlgHzmqKc6W8EOE5YEPC18yCTPBvivLM+UPcP7dAruoBfm7/BRvEfHmMGP5tAAAAimVYSWZNTQAq\nAAAACAAEARoABQAAAAEAAAA+ARsABQAAAAEAAABGASgAAwAAAAEAAgAAh2kABAAAAAEAAABOAAAA\nAAAAAJAAAAABAAAAkAAAAAEAA5KGAAcAAAASAAAAeKACAAQAAAABAAAFXqADAAQAAAABAAADmAAA\nAABBU0NJSQAAAFNjcmVlbnNob3SP/4LCAAAACXBIWXMAABYlAAAWJQFJUiTwAAAB12lUWHRYTUw6\nY29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4\nbXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cu\ndzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9u\nIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29t\nL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj45MjA8L2V4aWY6UGl4\nZWxZRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpQaXhlbFhEaW1lbnNpb24+MTM3NDwvZXhpZjpQ\naXhlbFhEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4\naWY6VXNlckNvbW1lbnQ+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+Cjwv\neDp4bXBtZXRhPgrCta3UAAAAHGlET1QAAAACAAAAAAAAAcwAAAAoAAABzAAAAcwABhWMJzPfCQAA\nQABJREFUeAHs3fezbkWVP/49iijJhBJFLlFUDCAiRoKiIGbEBNboGGr8F2Z+nbGmamrGGcvSUccP\nRhRJiglFMCAoKoKCKEoSkKAgGMA83+99tb6vfTfPc85z7j333hNWV/XptNbq1e/uvZ+11+nd++/+\nv7VhqFAIFAKFwAYg4PaROIn9Pve5z3rVf/d3f7deuQqFQCFQCBQChUAhUAgUAoVAIVAIFAKFQCFQ\nCKxUBP6uHK8rdWprXIXA5kEg/7tJ2vc6drz2bZUvBAqBQqAQKAQKgUKgECgECoFCoBAoBAqBQmAl\nI1CO15U8uzW2QmAzIdA7XWtX62YCvbopBAqBQqAQKAQKgUKgECgECoFCoBAoBAqBJY1AOV6X9PSU\ncoVAIVAIFAKFQCFQCBQChUAhUAgUAoVAIVAIFAKFQCGwHBEox+tynLXSuRAoBAqBQqAQKAQKgUKg\nECgECoFCoBAoBAqBQqAQKASWNALleF3S01PKFQKFQCFQCBQChUAhUAgUAoVAIVAIFAKFQCFQCBQC\nhcByRKAcr8tx1krnQmCJI5AzX+u81yU+UaVeIVAIFAKFQCFQCBQChUAhUAgUAoVAIVAIbDIEyvG6\nyaAtwYXAykcgDtZpIy3H6zRkqr4QKAQKgUKgECgECoFCoBAoBAqBQqAQKARWOgLleF3pM1zjKwQ2\nIQIcr5Ocrxyu5XTdhMCX6EKgECgECoFCoBAoBAqBQqAQKAQKgUKgEFjyCJTjdclPUSlYCCxdBMrx\nunTnpjQrBAqBQqAQKAQKgUKgECgECoFCoBAoBAqBLYtAOV63LP7VeyGwrBHIbtek/S7XPr+sB1nK\nFwKFQCFQCBQChUAhUAgUAoVAIVAIFAKFQCGwAQiU43UDQCuWQqAQ+BsCcbr+rWaoYwZ6MCpfCBQC\nhUAhUAgUAoVAIVAIFAKFQCFQCBQCqxKBcryuymmvQRcCi4tA73ytna6Li21JKwQKgUKgECgECoFC\noBAoBAqBQqAQKAQKgeWJQDlel+e8ldaFwJJDgPO1nK5LblpKoUKgECgECoFCoBAoBAqBQqAQKAQK\ngUKgENhCCJTjdQsBX90WAoVAIVAIFAKFQCFQCBQChUAhUAgUAoVAIVAIFAKFwMpFoByvK3dua2SF\nQCFQCBQChUAhUAgUAoVAIVAIFAKFQCFQCBQChUAhsIUQKMfrFgK+ui0ECoFCoBAoBAqBQqAQKAQK\ngUKgECgECoFCoBAoBAqBlYtAOV5X7tzWyAqBQqAQKAQKgakI5Fzm/uN4iHNWc9qnCqiGQqAQKAQK\ngUKgECgECoFCoBAoBAqBOREox+uc8FRjIVAIFAKFQCGwshGI4zUOV6NVF8drX7+ykajRFQKFQCFQ\nCBQChUAhUAgUAoVAIbC4CJTjdXHxLGmFQCFQCBQChcCyR6Acr8t+CmsAhUAhUAgUAoVAIVAIFAKF\nQCGwBBAox+sSmIRSoRAoBAqBQqAQ2NIITNr5uqV1qv4LgUKgECgECoFCoBAoBAqBQqAQWM4IlON1\nOc9e6V4IFAKFQCFQCGwgAr2jNXlpjhZIuoHii60QKAQKgUKgECgECoFCoBAoBAqBVY9AOV5X/RIo\nAAqBQqAQKARWOwJxvMbZOi6vdnxq/IVAIVAIFAKFQCFQCBQChUAhUAhsCALleN0Q1IqnECgECoFC\noBBY5ghwrv7hD38Y/vjHP7Z4n/vcZ7j//e8/POABD1jmIyv1C4FCoBAoBAqBQqAQKAQKgUKgEFga\nCJTjdWnMQ2lRCBQChUAhUAhsNgQ4Xf/0pz8Nd9111/CrX/1quOeee4atttpqePCDHzw87GEPa/ns\nft1sSlVHhUAhUAgUAoVAIVAIFAKFQCFQCKwwBMrxusImtIZTCBQChUAhUAjMh8D//d//Db///e+H\nW2+9dbjlllua8/V+97vfsOuuuw577rnnsM022wx2wFYoBAqBQqAQKAQKgUKgECgECoFCoBDYcATK\n8brh2BVnIVAIFAKFQCGwLBGI4/Wmm24abrjhhuGOO+4Ytt566+Z03XfffYftt99+3Ue2luUAS+lC\noBAoBAqBQqAQKAQKgUKgECgElgAC5XhdApNQKhQCqx0Brz1Peq25PvCz2ldGjX9TIRDH62233TZc\ne+21zfFqx+see+wx7L333u3IAX1Pui43lU4ltxAoBAqBQqAQKAQKgUKgECgECoGVhkA5XlfajNZ4\nCoFCoBAoBAqBGRD485//PNx9993DnXfe2c54ve997zvssMMOw0Me8pD2ka38Q6ScrzOAWSSFQCFQ\nCBQChUAhUAgUAoVAIVAITECgHK8TQKmqQqAQKAQKgUJgNSDA+frHP/5xsANW4Hy189X5rnG8rgYc\naoyFQCFQCBQChUAh8DcE8tbZ32runat/zN4bk6opBAqBQmASAuV4nYRK1RUChUAhUAgUAoVAIVAI\nFAKFQCFQCBQCqxCBcryuwkmvIRcChcAmQ6Acr5sM2hJcCBQCC0UgRl79B32hyBV9IbBwBLKjNdcd\nCXXtLRzH4lh6CPRremO1q2tiYxEs/kKgEFiOCMxyH63743Kc2dK5ECgEtgQC5XjdEqhXn4VAIXAv\nBBh4MfIYcmXM3QuiqigENgkC06499XUdbhLIS+gIgdz7R9VLoljXwJKYhlKiECgEFgmBWe+3de9b\nJMBLTCFQCBQCaxEox2stg0KgEFgSCDhjsnf0MPjK6FsSU1NKrAIEXHu5/nLdpbwKhl9D3AAErI9Z\nwqx0WXezyJyPZjFlzddX2rfEONN3pYVAIVAIzIpA3atmRaroCoFCoBBYPATK8bp4WJakQqAQ2EAE\nGIGJRHhoTtxAkcVWCBQC8yDgnx1xUPUPYnXtzQPcKmju18PGDndWWVmLG9sf/sWUNav+i6H3lpSx\nmJhtyXFU31sOgcW8Vmo9rj+Pi4nt+pKnl2oOpmNTLYVAIVAILBSBcrwuFLGiLwQKgUVHgEGZr6pH\nuK+ql9EXNCotBBYfgTzIuc6S14u8urr+Fh/z5SKxXw9z6TwL3azraFa6ufTZFG2zjHFT9Lu5ZS5V\n/Dc3DtXfhiOwmNdKrcf152ExsV1f8vRSzcF0bKqlECgECoGFIlCO14UiVvSFQCGw6AjE6RrDkrGX\nuOidLXGBMChjd4lP0gpXr78OV/hQl93wMje94u4XqU8+95H+XuI+6x9ak0LP37enXl0vq68f0/d0\nY76eVn4sZ8zb06Odq72nnZQf94VmVnk9b3hSl/K4z7Snn74c2mm8aR/zhD714/K4PnKiQ19Ofi6e\n0Egn0Y3rUu75+nz07esqvzQQyNyN50j9uG6axtNkjOlDl/qx/LSP60OfduXQzFWXttAmHcsb06V9\nnOJHG3rtY5ljHuXQh7Yvp24SX18XntSN+cbt6MY04Z0rjRy/G7HR8/shTR3ZIvq0zyW32gqBQqAQ\nWK0IlON1tc58jbsQmIIA46k30mJ89XVTWDe4OgYcAZP6mVS3wZ0tYUZYB/+MOfiPsUn9JLrxEEPT\n14/5+7bKz4ZAMJyLehL2c9Gv9LbCbOEz3GMmnzWV+pRJllcfurQpu8/e9773bW2hjTaTZGmbVk8W\n2ZE/Tc40/sjWHhnycz2497TT+otcMtN36pQT6Z+8dv3iSSqfGH6poF6I/JRbZfdn3N6X5fH1dR3r\netlpNJERYuUx7TTdwpN0LCv1fRr5ZEZu+gvdLHJCGxnKkdPXhW6pp9F9Lj2X+riMIeOYpmtfH9qM\nOW3qk0/btDQyJtGnLbxjGu2hcc32ZTw9fd+mvm9Lvqfp+0wffV3yaZNGTtIxjfrQawvd+D4aurSH\nJ+Wx3F5W2qThm9be007K4//zn/88/P73vx/uueee4Y9//OOw1VZbDfe///3bb4i23/3ud8P97ne/\nVrf11lu3e6fflwqFQCFQCBQCkxEox+tkXKq2EFhxCDCkxsbbpEEyBPPwiycxD6STeDa2Th+Twiz6\nTuJbjnVjDDJ28yEop27W8WXuFso7TZdZ+y26QqAQ2DgEcg26dnMdk9hfy6kPjfbcu+WnhchOO/6F\nBPyTHAZkaIu80Knv69SP6ZSFMQ++8DaCCX96XvmU6chBIFX3pz/9qZX/8Ic/NEdCykRyGHAecCSI\nytL87kmDba+TfGjI6dtSlkanSXXaMsak6Powib9vnzW/GHJ6fcf9Rv5844iM0M3HN+6nyhuOQLCe\nJmHcbn2nLvOFN9dV6nJ9jOWGV31o+7q+PrzztYcuKfrE9DFOQyudRtvTjOkib0wzX1lf03jHbWO9\nxrInyRnLGPNMK+MTIjNyzCuH669//evhjjvuGG6//fZ233zwgx88PPCBD2zzfuedd7b27bfffnj4\nwx8+PPShDx3k84+9yCQ/cuUrFAKFQCGwmhEox+tqnv0a+6pCgDHVG0MGPy6r640k+URt/QOm8mIF\nfSRM0iltSyXt9V2ITnPxZdxJIzf4q+/b5pIV3qST+Hr+Xnb6m8Tby0l7pYVAIbA+Av21tX7LvUvT\naPtrLXm0yd9b0l9qcv2iEyM/vOFPfcq4UyefenXhVS/0bcrT2v3mcHyil3J0cnraKeXBPnLQ2VGV\n9rTZYcX5KUWLLjoqp069iD/x7rvvbju17Nb67W9/22L6JV8+fRqDfrbddtthm222aTu47OySf8AD\nHtDq08Y5Sx8pGmnyZMhzPuS3MmPUhxC9+/p+TGjGeKpLmKstNBuaRo/w9zqmThodkvZtfb6XJ5/y\nJAwiV5p+Q9/LnCsfvrloVnPbJDz7usxLj1Hap2Gb9qTTnK+9zM2dj27TxjCXPuFFM4k/7UknYdjL\nD91Y3rT6Me9YB3xi+k058xC5C+Fz77zllluG66+/fvjJT34yKHO47rbbbs25yiH7ox/9qDlld911\n1+Exj3nMsN9++w077bRTu++5F6e/Xrd+LJUvBAqBQmA1IlCO19U46zXmVYlAbwyNAYiRNK6P0ZY0\n7THyUt7YtJc/TRd99HTT+pyLfxrPLPWz9D2LnF6/Xmbq1SU/i7zFptF/r1fkb0mdosPGprOOYdL4\nx33PKmvMV+XNj8Dmns9Z+oNC1tAk+rShS3tfp17QJqYttHnw/gvVX+j8BsQhmPqk4UtZGpmp6/sa\nt4VGH+g4NTlZRc5Qjk4P8L/5zW9a5AyNLpyynKGcpGhEgWOTwzM7TyNbW/pXJ/b9kUUGefqTVyfS\npaeVx89Zqj+Rs1WM43W77bYbRLrE2apNWb2dXomhic7GSL7AYaufOG7jUG6N3Z9pc5F6qfEHA6xp\nk1ffl9UJPf1fav62ftIemvQROmlk9jRp7+uST1uf9nL7PBrl9NHzyM8lc0w7X3kxZc3X10Lbp41/\noXIm0Wfc4z7Upy555dAnDQ3ZqRv3MwtNeELb95U26aQ+wqO9z0+636HpwzR5vRz06CbR9rLG+V7G\nXLy5F/R9TOJNXVL9GWNf7vuZVt/riUb/UvdB/LkHpc19+rbbbhuuvfba4Zprrhl+9rOftX533nnn\n5nh137MD9vLLL29te+6553DooYcOj3vc49Y5XskiWyqO56bXqfKFQCFQCKwmBMrxuppmu8a6qhHo\njaGNASJyeqNvmjy0GxvSz6yyQr+x/Y75Z+1/zNeXJ+k2lptyaJP2chaSj7zwzCdvTB++lZDON/aM\ncaliMKv+GceGpv34F7vPXvaG6rcp+BZ7nAvVcYxLr08e1vMAG1o0yY/705aH7MhCOymSiyby8KXP\nyE2dFH1eKVXmOBU5MT24x+FpZxTHp9dSf/nLX7ZXUzlBOV05ZPVHFhnK+MJDT85Pjk3OTo7M6DjW\nN32ToX9p+uFs1a4POmdHqnGpyw5ZdMr64IzQX/qMszT9khFnbByuO+ywwyCqpzdefHiMRUpuHLrh\njyNXvbwYbPFFd3olBAcpmr6sH1HQZkxScVLoeft+Q580ciMbn6A9+Uny+7oxbWT3NJsjvxB9F0uf\nLdHnGO9pOmQe0q6cusw3HNRZT1lTSYPRmD9y0FnHiZEdvlxfrg/5Xg6atNNl3BYZqU+5T/WX9vSd\nMrrUhUdbX9fT9vST6tNX35a6nle+76fHEn36jxxlNPkHkrwQbFqh+5PrFT/a/p9f7r/uk0LuU/Lq\nfvGLXwy33nprc766ZwsPetCD2nEC7m9o7IK94oormsyDDjpoOPzww4fHPvaxg6MIoi++jIMu8n2b\n9gqFQCFQCKw2BMrxutpmvMZbCKxFIEZdwBiXU89QGhtLCzGgpsmN/FnSvv/55PW0s8heCM18fS9E\nVq/nXHJ7uoXI72nH8ueTOabvZS33/Hxjz/iWMgazjiFjWWg6Hvti9zeWv1D9NhX9Yo9zFj3nwqLX\nJ3SpUxbjFEmZY8ODuYfjPKB74BY8fGvnlOQgjcORzDy8y4cODXqypehTRs/5iF4dWtEDfZyuv/rV\nrwYx5wR6iNdOPgcL3ePgJEc/2iJDXj92WHFGckzqM46C6C0VoiM9jN046awdX3aoemXWrtToH/rs\nkNUv3fDJkxOdjCUOizhKyYnz1HgmOY/IyXzh07/Iadvn6aaOTPT0139wp5NIv+iYfOZQKgrpF798\nYmtc+4es6By9tWUuenq4B0dp5iF86bfXS130JVNQTkhdyn3a06mfi7bnmyU/lj2NZ7n3Sf+MNemk\nsaILbegydmvAOnRN5dp2HbgmrE10WYNkK+PJmk0ebe5JWY/6wms9JWZdRQ9rKNeMa7hfe/2aI0e5\nTyMjOmXs6Tfl6JNy6KWhjeyeRj7XSFJ1aPFJBXIS0aUOru4//f1aOfqQIeINHexFeGoLbukz/SjD\nEh761If78V133bWOHw1+9y/XsT7INk/43JvckzhUteO/4YYbhuuuu679M23NmjXDs571rOGQQw4Z\nHvnIR7Z5aoP765/oEh2kFQqBQqAQWM0IlON1Nc9+jX1VI8AoEpLKM+T6kPJcND39ON/zjdsWWo4u\nC+XbVPQbOjZ8xjJpPGmLzuOy+vQ7iT98k9Lwaet5U9/XTeKvunsjEOzu3bL5ahZ73iaNaTH7mCR/\nU6K1mLovtp6TsJikb+i0ySfSx0O1h3BOEQ/GXgMVPWDnFXsP+B7mPVhzmHiw9iCuTKYHbzEPyOSh\ni2NAGhn6RudB3IO9kDZ9JC+NsyWpvjgW7aCS9g5Lssgk35jifNCXNk4A9Jww6MjSJvZOB7zRAQ1e\nDhs7TPUZx6t67fqBBfyMGT+Z2uADK7jmIzMcyOSHBn36DLb4RLKNXUyd8dFXNA5yOD/i5LCrzBjR\nBTe8vV54EsmIrGAYPKIbPYJnsDFv6PStP7yi0M8BHQTY0xGGHDEpx6FNhkgeOdr7mLGSFez0I8B6\nWkAzV/s0vsWoj36LIWtLjCH6T+u7b7dWQpf1bO27h1jzP//5z9tOSLshRdeEdYnHfJtT8qwv/L1s\neeuILNH1hgaPdYHfupHPOtFmfVpTrol82Ck7ytVbX/gSlft6sgRrn170IFd/aVNvnPTTnmulp4/D\nVz/4hWDUX6N4tEcf/cCH3Fz/aPDqR7/eCLDLFJ7y7kNkau/7Qssp6r6OFk3wMebxNZ9x0kH/6Usf\n7lPhhafr2hjJkfpQlqMFfDTLvZq+N9544/C9731vuPLKK1v/+++/f9vp+pSnPKU5XcnQp74y5gbU\n2j/Kme/UVVoIFAKFwGpEoByvq3HWa8yFwF8RYCSNAyOpDwwmdDGoGFdjmp6+8nMjMAnzcMBaCN7y\nsO7x7vPaE6bV97J6WvRjXdRNkxPeSheGwBjjhXHPT73Y87Wh+i6mHrPqsJh9zo/05qHI2KXjvPG6\nR3gol3qI9xDNMeLB2E4k0augHtA5ONDEmeBhnYw4C7RxQHhoFjkMBHxxrKAR6CKPN/epODD6h3hO\nEtEDPXn60y54sOf49GCPJvzo4jSJs4LO+tNX5MfRohynhNQY4kjRT7DTN3mRLVWOPmgF/XCMZKxk\nisGas8hxCRwksI4jtMckjm+05iQy49TBE+cHGjjGCSIv0C1OFP2HR5qgT+MKrlIBvXHBIeOjf8aQ\nNJgqo4VJHEtkJGhHS2epNnTWCR3Nr7kUzaWUUzaOHHWcNhxmD3nIQxpv8M98Rffo35eNU+jH2yo2\n45/oMFeXvc5z0W2JtmA37lt9orbMuzpzbX3G2WqHo+i8T/cVTlf/hLAmzWOcdWRYM2RkbeW6tq5d\nz+S6r1hTcBOt1fD0/PSKfGvJ2so6zfWsb3lrUhua0FqH2gRjoq9++vuBNvc6Dk3XIhrlrHntZJAp\n6oNOgmtWNCbR9a8f7dEHr/GpJxONPnJvw+e+IupfRIcmsuBKb/X0zD93yKWPPvSJRsRHvoDXeKVZ\np1L0eIMVfUXX6R577DGsWbNm8NEsZf047/W8884bzj333OHqq68e9tlnn+E1r3nNcOyxxw6PeMQj\n2hpoHXZ/6JKgT+XokPpKC4FCoBBYbQiU43W1zXiNd9Ui0BtCQJjFCMrDF0NOPoYcY2wW/lUL9pSB\nm4M8XPRzAN/eGGdkZ74YyfBONAfqxIRJc6FOX3ngUBbxJ4avn8/QRXbSMpyDxJZLsyZ6DTKHfd3G\n5Cf1MYu8xdZjlj5XEk3uC9Lcb+Xz0K4uD/tS9aKHcTtcOV49IIs33XRTo+3n0vwoi+S6B6jjHInD\nzMO4B3X3DE4B/eg3tHj1mXr0nB+ih/jeEedBnix9uL/Io+MQQatdvfsYHbQnqg8O+icDnXa09ElI\nm3Z8At6MvW9HoywGC3kh5aTqtOnLmDlFOI04PuI8QasveKjnWOlxQ8eRk/mSDx1azi2p+70+0qd+\njVudVB/GJp+YOZGGdqy7shAZrbD2T48PuWLmITRS/HSLs0dd6OOssQZE8yrN3Eo5XXfcccfmaI8j\nLHxSTiM8kSk19sxJUv1WWBwEskb6tWF9CObaP2w4V33V/uabb273FfcWebterVl0uZ5d8xzs5tf8\nRZb1lHVhnq0515DrA7+QudamzvWRNa+djES06FxTQpy6ZCeftdXfz9CSiQ8/WnR0c+3o0z00DmFl\nuqQf8o3PesZDH9hpd127fo1Lqh+4wEIf8gJackW8ZBiPsn/mwESefkLGSj+0AtlopAK9cu9Fl6Av\nkQz9o9OuLJCnPhjQVTQ249x9993bDtaHPexhjY5T+NJLLx0+/elPD1/60peavj6m9eY3v3k45phj\nGi/Zka+PrLHUKfc6oqlQCBQChcBqRKAcr6tx1mvMKxYBhltv4DB41EkZxNpihDGK1OVhZwwKHgah\nXQ52O5Dj9SKGGcMWHxohBpb8uK43JtGlfcynnIBGRN/L1h7+1IdW2yR69UL45MMrPyn0OmtXhlUe\nKtSREZmMYfleLh6GMoNchKU0D+6RYT7wqmeEe8Dx8MP4V89wFvuHC0ayMgM6853+Y6jTNQ8GUiGy\n8Jm/GObkMcTNK+PbwxRjHH3mmfz01YT99Y96oR97dFE/qV39tDCm72XNxRM+NNElafhC09fPIj/8\n0kn0k+p6nuQn9d+39XqlPumkPibJm1RHxqT6SXXpL2loUp5Lx9BI8U2jjcxJ7WO+cTmypT3/LDJD\nM+adT+aYPnLSv2vdNSb29wh82tDnHpJ7Qv9wr03ZPSKOOSna1Mun7MHaPUdfUrS5v9CBPPcHD+a5\nd7gvuH7V5V7iunfNcyq45nNfMS59RHdl9wEx9wB1ZMXBECeA/txX0h+6RLxkaFOn3Kehg5sQnOXT\nFh51CdrmCuGdj46Mvk9lPP38ZX57OjiJmZPQS1OHTzQ/5lQ0b6J88E6fyujJlZKVtO9bHn+/NtAJ\nmT80cDMv5l4+cuknL6rPHMsL9PC75TeJE4aDSjn64RcTzK0+xPSXNZeyNccp67cmae/Y0jedI8u6\nzLoiK2uaPLSieUo6aZ4n1fU4TmrPmKShnY8utOjRhj7lXmZopaFLXV9WZ34EYxyHXrZ85lNqLZgf\n82WtcRLm1fbYI7l3qPdPHDtaxThZrQlzIMZOMF+ZRzvYc//IfJib8Jgv47FG6UCX6CyNbvRBk3ay\ntFvfnKPRj17kGJd2MaEv01vUt5hxxDGqTIZ+YaBvMdcPmWiMJWtRKpIHX9czGaI66z7t5EQeveAA\nPxE2Wa/6wWNtR7es99BkLumiDX+uhfRHTuY+80D/yKBf8niiKxqRTPNKrn5gcvnllw+nnXba8LnP\nfa49C+y1117Dy172suFVr3rVcMABBzQ6/fZBPxUKgUKgECgE7o1AOV7vjUnVFALLCoEYnYwd+aQZ\nBKPVDijOUwat/2Q7CN/5TTHCYiiFX5mRe9lllw0XXHBBO9fJa0fHHXdcO0gfL0MtfPrC2+uSttSF\nRqpNZJjGUJTOEvp+wquOvBiQxtWHjFNd+sYTfvWRoV2I0cwo97CS3Una0o88GWijV+QyyPF5YPWw\n6sFB2Xzgib4MXPLQ68NuE6kyWXmAjaGszDCO0UyHGP7kGquIV30Mf/2FJ2OU6t+DAIPfw5P1YX6l\nHoo9XOEjE23k0yc4qBP0KZAbHOhgLMEo/JGJNvR4J8lQL6DDr1+p8nwh9OmDfJE+CeQlRG9leEaf\n9BcdtGtT7vUIfU8Xmp4Ofx8yd33dOE/2pD5D1/etLmX5ufrWPmuIDugzLvm+r7RJxwHdWJe5eNM2\niSdt+ujzmbekaYu+Y1l9fdqk4Zs0BvdS9wbXtWvc/dK1hid8+rfOXAPycTDg4TjQZl1pc1+IA0Se\nrFzX4ScXT8ZFx6zvPIhLcz3nAd+DuuvN9Zt7h7o85Icu96LolHH0/bhWgpF7ANrcC+RF7aEZY5f6\ncTqmW45lc5Nx0T/4Sc1Z5i1585r1EZqMW1vqQq8s9kHZ/VW0vkT0Qk9PL/OUe7g2dKGXV2f+sg7I\noJ+1GsdrXo3OGrVOtUsjKxgYg7rc/5NaQ9ahdec3Js6erC38dFHOOrVW8fg9EvFmXWfNoTdGUZtx\n9DFt6cf4BP1F514WHVIvH1ppyq1y7Z+eLvj3deiCcXi1j2nQwRyeMO6xzdwYhzEYW/Jkhg9v5gXm\nZLi3sEP6s4ojX5t50o7WvJELb07VnXbaqb16bvcyG8F8wV/s5yPrxpj6uQjeWetwyLiNN+uEPvRQ\nRmO8UmOgo7WXM6xjj2V94ekxUw+T4OP+Z02IuQfSCw1afetHf4K+0786dHSOPGPtx9CPGX/mgt54\n9QW3ROs5a5Q+7tti7snq9EUufkGa9Ww8YmgawV//RFe80bHPa8/40o6VrMij/2233Tacc845w7vf\n/e7hu9/9bsPt6KOPbscMHHXUUW3uyRmHXua4rcqFQCFQCKxmBMrxuppnv8a+IhBgRPWGlkEpJ2Wg\nekXoU5/6VDO6ncn05Cc/eTjssMOGvffeuxlaMZ4YW5yDdl1yun7lK18ZLrroouGnP/1pO8vpxBNP\nHF7wghc0PoZhDKy+v9RJo1d0YcAycvMgwCiVZ/TGKI+s8EgjCw0ZSRnb8ngYtgxRejFolRMZk/1D\nAZkx1KViDO7ozwj3IBJjnxGqLPQGb3h74xwNvYwrYyQPrUCX6OrhhcGtjozQGVPwCyZ9HT1Djyc4\nqhuPVzkPEXlQyUNKdEJDJ/p4uOJotyPJgxVMY/CHbvwAY1z6ppdo/GTTK7rRP2P3gEFW8NaGX4gM\ndcZGltD33fOGvhF1f7ImMl/BoH/AyxohIzrQO/pLtekv/YeHPFE5/GTIGyd6qXZp6KmIZlKM+pFL\nd/wC2Ql4x2HcPi6P6Wcpj2WkLI3+kZM25egHP/VpCwbaU5+2lK0D0VrN3Pd9aUNrbeR6Gc+Z+jxQ\nS9Gbj9wbop+0n8+U6SnoK2OQRi/3gv6DMxyvdIh8vPpUh4dc5Vx/9Mu6yPymn+hgzZCXa01qDMFQ\nisYaiTPKtTq+ZtGI4/WYsjY6kKfvBPqK6tImTdAmTONJW+ga8Yg+dSshzTz3eGRcYwxSnzTtSdXL\nJ5Kdupb56x99abN2sn4mycgcZh6x40Pbp9qzFtBot4b9XvhHQ/4RmWsv99Jcb+mbTHXu/eGTKpOl\njb76w6Ocdnn8Yr9GrXPrW/SbmevB2MggC7167aENvToypOiMM1E5vOhz31VHbqK+gnn6hZOxuLYz\nth6HzA0cM248wRltxosGpu4vnN0imwwf+lzvPRZ0JEP/7A30wZyszF3mQh3d8ZFnbOTJw8b9g0Oc\nDeAfsDkugtMwuKLFLwYrcoKP8SVPN1E5oc/34w8OPb0646d3/oFtnMYFr2CPxhilsMCX+c34onN0\npY++yEjf2vq5IUu7QG9t5MhHTuq1kYM+OkcP6yr/QLBGg5v6fl7VR74+6ScK0S369ThqD924XlvC\nmKYv0xUv3X/84x8PJ598covW1MEHHzwcf/zxw4tf/OJ2zis6+giRIT9X39orFAKFQCGwWhEox+tq\nnfka94pBgMEToycGT1JG1M9+9rPhAx/4wPCOd7yjOVQZzpyuJ5xwwvD85z+/7W5k6KFl1NoZe/75\n57f/dH/nO99pDwDkMQ5f+tKXDq997WuHJz3pSc0oj9GFV0CXvpXplXIe3jxI2NVpFy7dlGMsM6xj\nAI/lqWcAi4zCGLby+snDFqdhjFvjSj2HYozZ8DImJz0IGpd+4BHHqzPPOFcEGDKUBf3H+FdOf1L9\nMZBjqKeNLnQUPeTk9X71cMYXbOlKfj92Zf2KMDOGRHR06/uCA3keVDywiB7sjE8+GORhjXzzRo/E\njIFsOtI1+mobr0Myohu5+hbC6yEuGFo/xpJ1RFcyM0/GpM040qfxZb2hzzpDl3UXen3h059+jJlO\n8hkXfnz6pLc2Ud/a6G3exayrzDG54ZeSqU00v1I8wRINnZXRJsInupOpr+iOph8nWgG9QGZCZKQs\nDd24Dt+YNzTq8fXyUtfLTHv6CI1ycISr+uBgLNrNl6g9eTzWpDmSooMHHiFrS7t17DrOnOU6McfW\nd9a5vs0hPM1HZEmjE4wzR/LpKzKl+tGfe5d/SLmX2YVFZ3Jcy65r+tJbFPSp/4xDv6nL2sIvb61a\nN4m5P+S+Rgb9jClyMgb6pw/tgjT08qlvjX/909dFZ03JT+PrZfTjVT8LT8+/VPPBIPr1WKVOGrpp\n7aFFN41mmozUR8a0dBpd+hz329P3eXTK1lfyuT5df8m7btEphx+9susl13J+Y/rrMvdh16jfWf/I\nsCMz1zN+8sU+b+zRS54+YvR1XbkGXBO5pvJbm3sqGm2hy3XnWnOPcO25DtH0tLmOMtaM3e+bf3Kz\nEehPZwEOMNAuwkEZX+7/kWEM2vGTI8Y+0gZX/YvRm27kCGjym0uOcuYHb7AwRg5VjtX8g9WY7W4V\nOVrV57cHDrkvwl3/dBYFshP6fOqyNrQlTuIN/Vh2L9N4Mq6MjU76ULZO0k4e3uhsDOk/fSVNn9Lw\n4FMmW0xIe8rS1EWX8CRFk/mGH7o+Rq+k6KOTvKAs4BPQjkNoJrWFNjTK6JRDD0N5v53f/va323PD\nZz/72ab7y1/+8uGkk04anvGMZ7S1ZBxCL085suQrFAKFQCFQCPwNgXK8/g2LyhUCyxYBhk+MH0ZP\nDB9GFKfAqaeeOrz97W8frr/++mZA7rzzzsNzn/vc9t/rxz3ucc3AZqg7z/Ub3/hG2yFrt6sHo8hi\n6HO4Otvp6U9/etsBy5DXrh+RQcgY6w1LoHoY8FDiwYoDk9OV04LzQn2MZQazvLGQFUNZ2cMKOR5e\n8hAmr45x68HJw5KHijjZ8mDloUtdDEX0+uK4ESNHnX7z4KasDQ4eDD0IqaNXxq5MB+Mnnx6cv6I+\n07cHPm1S9VJtogccMTxkkxVsjdf4Rfm+rG/R/AUbc2UM6T+6ojFeRrWHuzhe8Smbi5ztJq/e+AS6\n0EmMfHLzMJEHDHSisnkLPnSHEb2CATlojafHUH0eLvBFD33rE47RJSkdsw7J0zc5cM3DtLJ+zKfx\nkqt/9eTgobc+gylZxghLsswX/enRj58c/FL0mWtrMvL1EbySRn+pvnMdka0/D8F5xRN26PQhpD9l\neCmLaUu+Vfz1T2ik+sMXrMlJRN73M+bDm6gNrTR82uAI6zgB9AMXeMijMd6ksLZe4lCNU5VcfDCR\nNzdoyOaYsI6zvsgiI84L9z80mUPXGFn9mDM/UlE/mQ86kS3KG4v+yHVPUCdkzvt7kHr66itr3voJ\nBvoRlXOt5t5g7snK+g2fNRD9yBeCZ+ZLXT8XyuOgPTTa+nkf004rh7/vdxrtuD684/rlVJ5l3JPG\nOYkvdGkbl6fhYr0L+Ma8qW8Ea/+QOUlu+EKXNLJzraR+nPZytUVermvXY66fXLt+X1yj/e+O3x7X\nlOvLdYYHfWKuRSmZUvdw9wE0vb7R2XXs+nBdiflddL3mHixF43rL0Qfy6F1r4XUNoyMzY3b/ogcd\n6M/GMSb6JaDRTtfYG3Qli3y6wgxd8Mm9L799+tMuoM34yMmc9r8N6JTFjMG9j0PVUUJswDhY1WXs\nxi8qGy9s0heZCRk/XTLf2qKLfF+vPA5z0aZtPhlkhjb5vpw+yZk0jrTjEdHN0mf40mfK4Y0Oyv26\nDN20NHyTdElbz5v++rrQTWoLnbXU49HT0tdbb+edd97w3ve+d/jWt77VHPWvf/3rm/3/2Mc+tonB\nk74iV9rL6usrXwgUAoXAakegHK+rfQXU+FcUAgwmxhRjKAYRQ/6KK65ojlfnNXEYMMYZ4QcddNDA\n8WqXgweeK6+8cvje977XHIweJmJAkSvvQWHfffcdHv3oRw+77bZbeyBhmOdhQp6Ty5lgjHn9eOCw\nK8yXcTl2vbLvocuDCZkeauIsjUPCw5EYB0keXPKAZUx58PKApl1fHhREY0fjwU2bBw8RjT61h0cZ\nZnQX0cHGQ4ldIeQJZBmnftHDQhRgJUQHY8KXMUjJJV8+vNFLOc4XNNEphjFd9Ss1F5lfZZFu2kVt\n+DMesjNutHRN9FAnjx+OxueBj6PKQ6SorB5v9NEHPfDqMzirDw7GBgP9q0erv6xRD3ZoyNROjpA5\noLMQ+RkjORmHdvKjF5qMwcOvNQALemRO8GTMUiFYkUM/kSztdNMHGXkYzVzi046eTsGfHDzm2ji0\nk5X+1OGlW8+vPXOChrPNQ/Iee+wx7LLLLi1vbeo/45aPPsZCBzLEXANZD/RIXcYWvKVZm0kzvugF\nW3Iz38Yc/aWioB96ZC76azSYhA9teMmln3uRe0ScL8Zq/oxTn+gyPrrBitzoS5529wvrAL02ckJD\nP7z9nPU0/dzQUci8yuvTmuAYdf90r5CaH3X0IUOQ6ts1rj7zpb+sBXV9W8rqRH1HXmRK6TZuM/6e\nFp0Q2r+U7v0XX8Ik/rRJ56JNW9L5ZEVu6FOelM4qaxLvYtfNp0s/ntCqMw/KiZP06nm1h38S7ULq\nIneSvLna0geaSbxpH6eRmVS78bv2ch9xnYuuWdF9I+25J6jHJ7pm1eNxn/A7JVUX/egYWvTJa0eX\n6H6jL/cV12OuyYwx9xb3n/zzA03k5X4qpQ/dc08JFvrUh6hNICO/KWS7N7jm01/uBcoCGbnfRrfI\nVB++6Jh7pn7I0offL7aWe5Q0tPqli4jP/URIP9Lg2hrW/hmX1adOmog3MbwbmkZ++NNH9E29dBrt\nNF0iq2+fVJc+xvJTn1S7QN6k0LfPJSt0Y1l9fS9/Un89bfJJgx0+60jZ7+all146fPzjH29vy7lW\nXvjCFw6OGnvmM5/ZbGN9ugYm9Teprtex8oVAIVAIrFYEyvG6Wme+xr0iEYgBHqOKAcQ48jBw8cUX\nDx/72McGrw35bzYDi6HN+GZ4M644KfKAoy4PIeTmgQFwDHkPCtr1kQcb+TwwMOA9DGjzQMKYI1sZ\nn7Nm16xZM+y+++7rXmvjsPCAQC/yxcjwYIM/D0zG5cFDWapvtCI6DsPsnNEnTBLRkK2vPkZ3Dyac\nx5xd8rDKOPu+YrSSR3avQ3impWjFtMOVnNQrywvRWzoO6mAhpj0y+jR8oZcmH36puTZGa8Z6iLNb\nfXhCA3tzK80a0E/w9aAHUyHzho5eWT9oYUC2emtDWUzQH35roF8HeEIvj4a+5t6DeL+eyevXdOYM\nX/qT0kEKC0FeH9Yz/jyY4qOX8cBLDA7h04d66xGedFfux6wf9dGX7vSGq+BayIOy60M5YyYHvuro\nRnf66C84yAv0FqJndCeLHO1kmRfyXBf93NGfjlLjDD5kBgv9kyUKWSfywVF/mU9p2vAqZ47Jp0si\n/dCoz1pLG3zs0nIv03fmEa2IT130pD9c0lfWJDpBilbABwf9wyT9ZGdYUjpY72gyP5FHFjnRKyn5\n0U3a59N3aLVFp/Api9omhXH9mH8Sj7qebhrNLPXpf5K8tEXOJJq0jdMx77h9sctj3ab1P6abS49p\nMvBEzlw0kY02dOFLmzRt8tp7+nHbNPrUh76XoW1SGNP0fZOj7NoUXPfyoZlWTj+hcy9zn/Q7n9+p\nXMtoyVRG51rP/dn9Nb9tuddqjzz3ODL9A1I9Ga5p99jcZ3OvoovxuO9oc/27LykHL2loQofW/co9\nI3YPXnl17ifac9/TT3AhQ1CmmzZ1+nXvFvHl3iHt7/NolemkLTFl8hLUCRnnON8ap/yJnMiYQrZe\ndd+PhsiQH8vp27QLY5q/1M7+t5fZyxrrlbUbmqTpaZqctPdpaMcyepr58guVYe0IWSPyxkQHb6TZ\n7frBD35wuPDCC4cDDjigHTHwvOc9b9h///3b7yFavJPCxoxjkryqKwQKgUJgpSBQjteVMpM1jlWP\nAMOLMcSolmf8SEUGkl1kX/va14azzjpr+MxnPtNe84/hhAYfo99OVq+h2WVnV4QHBCGOF0cF2DXr\ngYXzQkx/jHlOCjwMf2UhRqoHAjvDOFvJ53y1s9QDhocO7T1/Hh7we8BIZDTqU718yhmPhyX6RkcP\nVKHDgy4PPn2/+oODOg8+8KBP5KZPY0pdnw8O0wzPtOPp8ylL5+LVLmRuk2+Va/+MZaZ+vnTMp9xj\nDbvMIVmZD7gmqsMnBl/zaQ2oI4NMqaAenZgx9+XUSclOnx6e8wBNTs9Pdube/It5oKYDWeY4UTn1\n8mJ0IFtQtibEvo0+GZNxBQd12iJPPR3i6EsbWULGleurP+eQXAFtdA2GabM+44BER56+OCRE/avP\nmKWwJw9t+o9c/aEhk2zjjsyMIXNMjoiGPGmufbxpl1cfWXF86hMfOn2Sq06a6zPO++jb42t90RON\n6LqNPsFMqt+ErJ+k8CFTn4JUNOboRhdjEHOvcm8Q9UmH4KovffaBPLKEyJdXl3rlPqAbB7S9LO3T\n6Pq2vo8xfcqhSdr3E5pJ+vT99O2R09dVfn0Exrj2mI3b1uf8WwnPXLS9TFxop/FETs8Teryp7+vC\nM27vy/I9nfI4jGXqq+8v9GM61+743tv3lXscGvcW0f0498fc0yJDPbvBP8AcLcSh615Bl9ynpLlv\n6ss1r879yH3I/UA5AS+a0EWO+wme3MfwJS/VnvuJfhKDjTI9pO455KaPYEeH0CcvxZOgPeXwKfd5\ntCnLh16+D+GbhbbnS36aXO1k9nLHPJPa0ETmuD31kdOnC6Ht+eTDG/kp93Rp6+tCpy3tqZOmrufZ\n0Hx+3/rfKvLVX3755cPpp5/eNmqwS3xQ9xWveMXwxCc+cd2bbOGf1H90ntRWdYVAIVAIrGYEyvG6\nmme/xr5iEIhBJmVISWOo9XV2ujpuwMe2LrjggvUMWQ8MjhBw/IB0zZo1zcjidBA8oHC43nDDDW3H\nrLyHE1EfvbOGM8JDgzrBw5EHAs7MOFy9Qm23GNo4LTw4iMaQGCNOH3GQ9ONjAIpCxqzsQcoDlocm\nD1vqwo+WPh50oqcyfv3SR0xdr0P6Th1ZCdqESW2hSRranj510/jTN57Q9vx9fWT0PNpnDb38MY82\nMdgH/54OjuaSHpEVPqn66DhOezlpC+94HkOLDo32PESbd/Nv3kWBTv3c4hHSj5TuCcqT6tJXZEcv\naS8zD/t0Qqud/PSnH/TWql1Wzj3OtYUn7eTEWZAUn/GM13CcinjQGC8a69315qEeH3304dr2gEUu\nXsHaz3VA34yTvMxtHJKhC7bpK84D/aLBZ/xxRNMPDvhE7eSnLo4IvOq0BUM6qo8O+pTPNUuWiC91\nePr5yJxFrnb5PsUbLJKmL/2nvTFN+ZMxRW76oJs4KYSmb5tEO4kOD9q0hU+5r1fuaUKXNH2HJuXI\nT3ncPuYP3UpPexxmwSD0SfGEL3Uw6/M9hqFPe9LIkI7rwp/6lKXjusjpaSIzbXjC53qbJEdd6Ke1\nq08gL/RJ+zb5SfXRQ3vy6OTFXO/a3fdyL3BPkc/90P2Jw9X9mBPWPZEc9yj3GFEZD7ny7gO57+V+\npZ8E2ORe0edzz8w9sL+nkNtHsjIueW3Twnx0fXsvo5eZsU2j7fmSD0/KC0nTT1K8vT4pp24uuvSL\nJnThk6YudElDM+Yb84QufGN5Pf18tJERur7vcVvKs6STdAqfNv1Fz6SuC7tcP/KRj7QNGjZHvO51\nrxuOPvro4ZGPfGRb42Sgdz0l3zJ//aOtQiFQCBQChcC9ESjH670xqZpCYNkhEAMrBk/K/UC0cbBc\ncsklw4c+9KHh5JNPbg8faD0QOLv1yCOPHI444ojhUY961LqdqNrywMLJauesnSDSPJiQHQeIBwd5\nqYcJQR/ynLt2vOZMV3Tq4yAhJ3Gse+RkbOjkU+7pQxtnEf3Fnj4PP/o3xoS+/z6f9g1N9U1eQq93\n6ifVhX5SOol+bAyn3/TRy0lb0rSNy+rHdcrTwrhtjOM0WZN0nNRH5GesaHpe7WLmPSka8571FtnR\nJ3qOZYWur1eXPqQpJ98q1v5J30lTH12UtcVZ6prySr8H/97xKh+HgDaOUnzGYg1nHZMbR4J2ZdcZ\nJ+Ykx6t+OVzjeNVH+FwXcQRk7FL1+usdkPqILnjihMi9ILgbr7Hol56RlzlRTj79SNUFb/rJo819\nJjTqhF5OyurwJpKR+VKXEBnpQzlRP2IvM3yp68uRH5njtr4+/fU0yc/XFro+HcvWlrro1dMnH5qU\npWP60Eyr73mn5XveyJtGuxzqFzKennZjxga3WWT1+M5Hn/aep9exr0cbeteokHJSdXh6vtCN69T3\nITLmo+t55Md8yolkpR2ta58TNcF9yf2JvSSmLfdZ9xwy0CUYu4hGGn31Iz+OoUl9X04+sntdUxf5\nyn176tNv6Kel6MKv34TUR79J98e+r/BNqtOW+tClz5TH6bh9zN/TaxvT9+3yfXsvq8+HB20/3n4+\nImcS37ifyJsv7WVGbup63rRN6qdvC88kGWkLfWhSZnt84QtfGD760Y+2c14PPfTQ4Q1veMPwhCc8\noT0T9L99MMInRg75kZW+Ki0ECoFCoBD4CwLleK2VUAisMAQYQGMjKIaR1MetPv/5zw//+q//Olx3\n3XXtoYJD5vDDD29fLPVakQ9jjY1wMOFnbHngEOXTn7YYqEkDrbZxTNusaT+muXj0s1TDLGOYhcb4\nFnOciylrS2E/C27LYZzG0V9j8EwdZ0B2i453p8YhaIy5LvEqux45QEUO0ThTyY2TgVzyxX4nV2jJ\nEFOOo1e/6pX1lagufdOjwr0RmGXN3ptrcg2sKxQCmwOBWrebA+XN18cs87mU7y+z6L/50Fy/p+WA\nGx1hKF511VXDqaee2pyvbIWXvexl7aiBXXfdtdkOS3k86yNfpUKgECgElh4C5XhdenNSGhUCG4VA\nDKgIYSj1xhIHy/e///3hve99bzs8344O7Ycddlg7QP/FL35xO+OV44QDR5AnN3LkE/p82qe1jdtD\nt1rSHqulNObVPi9LYS7G15fyuK7XM9emun7+5Pt11uddx6EPT9qlYpy22hMb04R+JtWnblqafqe1\nr6b6YL8YYy5cFwPFkjELArVuZ0Fp+dDMMp9L+f4yi/5bajaWMm4wgV2iI47OPPPMFr3R9sxnPnM4\n/vjjh4MPPrgdT2Qsoe3H1ee3FM7VbyFQCBQCywGBcrwuh1kqHQuBBSIwNkR7w8gONwbWRRdd1I4c\n8FqR14zXrFkzHHfcce0/3A7Rdx5rHDW655DJa0azqBMd+r5n4SuaQmA1IuB6metayQMPbNCNaWe9\n3kLXY9zL6tv7+p6+8oVAIVAIFAKFQCGwPBHwHMC+9xsv74gjzwLvf//7h6uvvno48MADh5e85CXD\ns5/97GGXXXZZZ/vHDumfDZYnAqV1IVAIFAKbH4FyvG5+zKvHQmCTI9A7T3TGuOI4jSPFLtcbb7xx\nOPvss9tZrwwtxw0ccsghwwknnDAcddRR7SNY6vD0xlbkRFYGM+4z/aY96SS6tC21dDzGpabf5tZn\nMeduVmwXs8/NjZf+Zh3nLLr1WPRyU5+6lCMz9Sn37XO1oR+3R8Y47WUuhG8sJ+WxvNQvh3RWzJbD\nWErHQmA5IbBY942FXMOL1edi4rwQ/Rez35K1PBBgxwvWibfgrr/++uE973nPcMYZZ7TjhI455pi2\n2/UpT3lKezaIo9VaF5Wz7mutLY85Ly0LgUJgyyNQjtctPwelQSGwSRCIUUQ4w2j8H24f6LniiiuG\nj33sY8P555/fDK+ddtppeO5znzs4bsDrRTvuuGP7T3dvWJGjHEOM/L4v5YTwjdvH5dCFb1I65plE\no24WWdN4x/WLKWssezmWZ52DWcY2K7az9jkL3ax9zqL/rDSbo8+MPX3lnyO9jmnr6yblIytts/CN\neXrecdvGyIvcpZ7OMsalPobSrxBYbgiM7zUbq/8s1/Fi97mxOvf8s+jf01d+dSHAlrd+vQH3pS99\naXjXu941fPe73x288eZs12OPPXbYZ599GijsfesJvViO19W1Vmq0hUAhsDgIlON1cXAsKYXAkkaA\noRSjqVfUztdLLrlkOO2004Zzzjln+OlPfzrsvffewytf+cp27MC+++47bLfddo0l/GQlqBOnhZ62\nz/f0c/H3dPLTZIRuIbLCM1e62PLm6ms5tM2H/0LGMCu2s/Y5C92sfS5kHPPRztrnJP0n8aKbVB89\nJslJW9Ixf8/Tt03rq6ePzGlpT9vLnka/EupXyzhXwlzVGFYWAv39ZmWNbOGjqfvQwjFbTRwcr7/5\nzW/aNx/sdvUc8KAHPag5XV/+8pcPdrtus802623a8E9d15hjx6S1xlbTiqmxFgKFwMYiUI7XjUWw\n+AuBZYBADCSGlpCzWpV9xdx5r6eccspw1llntdeOnO100kknDU9+8pOHhz3sYetGiN5/umN8Mbry\nn3BEeehJOp9RNl/7uo4rUwiscARcM5OuG3W5TpKGVjl14El95ASyniZ1k9KeLrLGfYSvp03dOB3r\nMW6fVp5F9jTeqi8ECoFCYDEQmOX+VfeqxUC6ZGwJBNjxP/7xj4ePf/zjw9ve9rbhV7/6VXvj7VWv\netVwxBFHtOPGrO/Y/XTMNcHur1AIFAKFQCGwMATK8bowvIq6EFiWCDCw8mpQDCcGlah88803D5/7\n3Ofax7Z++MMfNoerV42e8YxnDHvuuedw//vff71xx4GLvzfAIjvE2vuQ9nF9T1P5QmC1IpDrw/hz\nbbp2U1aXayf//OjbGuEMf/p+wt+n8mjEvs/US4XIkfb3AW3RU75CIVAIFAKFQCFQCCwdBG655Zb2\nptv//u//Dt/85jeH3XbbbXjDG97QPqr16Ec/up312mub3/v8tiuLYxuh56l8IVAIFAKFwN8QKMfr\n37CoXCGwYhGIk6Z3jvTG0y9/+cvhwgsvbLteL7744uGAAw4Ynv/85w/Petaz2hlPXjeKgRVZk4yt\n0AAy8ntQtU9r6+mm5cM/rX1jZM8ls9qWPgIrYW1kDP21k7r5ZqDnGdOOZaCdVDeNb5rsWWSMZVa5\nECgECoFCoBAoBLYcAjZPXHrppe0bDx/60IeGO++8c3j6058+vPGNbxwOP/zw5oTtnxdomn8Cq+9/\n+6fZB1tudNVzIVAIFAJLE4FyvC7NeSmtCoFFRYCRJJ/RPjwAAEAASURBVMZASqoT9Y4bcKj+Jz7x\nieGrX/3qsOuuuzbjiyHmnNftt9++GV2OKIjxhZecyJpkiPV9pq8xvXJ4+7aeN/VkVCgEVjMC/XWx\nmnGosRcChUAhUAhsHgTGNppeJ9WlPjYbGpGzju2ovm+L9qlLudKFIzCejxwRMMbWPNx4443D2Wef\nPZx66qnNAbvHHnu0bzu89KUvHfbbb79h2223bfPUyxznx3IXrnFxFAKFQCGwuhAox+vqmu8a7SpH\nIIYTGBhNylIG2lVXXTV89rOfHb785S8PD37wg9vB+g7X33///duB+4y1/Ac8cvDOZXyFLrArT5Ix\niS46hneufkJTaSFQCBQChUAhUAgUAoXA4iEQG623w3rHnnZtofvTn/40iOxG8QEPeECz/dCMbUBa\n9nIXT+vVIym49yOOzd5ja8684XbuuecOH/nIR9pGCx/UOuaYYwZnux500EHDAx/4wHvNRy+j76Py\nhUAhUAgUArMjUI7X2bEqykJg2SMQ4yxGcowpBrKzXZ3zev755zfDy4e1nvrUp7ZjB3bcccd1BjUe\n/GMZ08AJbdrxp9/URRajMHnGeegYkJP4wl9pIVAIFAKFQCFQCBQChcCmQ4B9JrDH2Gu9XRZ7jT15\nxx13NAeft6l8I8BHWnfYYYf2YdfQRVbkNcH1Z4MQ6LGMgOCsrF383e9+13a4vuc97xm+8IUvtLfd\nfMvhxBNPHI488sjhoQ99aHOMo+35+3zkV1oIFAKFQCGwMATK8bowvIq6EFi2CMR5aQAx0rLz4I9/\n/OPwgx/8oL16dOaZZ7bdCXa7PvvZzx6e9KQnDbvsskszwmKMSZOfyyALTQ9a/gufOmV0jjG45557\nmiEoz1jfaqutJhqB4a20ECgECoFCoBAoBAqBQmDTIhC7L3bj2KZkC4qcrpdffvlwzTXXtN2uXmP3\n+rqPN9n5GpuRvITUpVzpwhDosZQ3N+xouKbMIf6LX/xi+J//+Z/hve99b5sndv7xxx8/vOhFLxoe\n+chHrtuVnN4jt+YniFRaCBQChcCGI1CO1w3HrjgLgWWFQIzksQHFsGKQMZRPO+20FtF65YgxdsQR\nRwx77rlnG2uMMAV5ssbyelDGfYanl4Mfnf/E33777QMnsI95ef1Jysgfy+n7qHwhUAgUAoVAIVAI\nFAKFwKZBYJLNFvtPW2+j/eQnPxkuuOCC4Xvf+15ztB522GHD4x//+Lbrdeutt17n3BvL3DSarw6p\nwTJpb5cn/9vf/rYdKfbv//7vw2c+85lmwz/nOc9pZ7seffTRzeYObdJJ8lYHojXKQqAQKAQWH4Fy\nvC4+piWxEFiSCPSGcRSMUeV1sG9/+9vD+9///uGUU05pjti99tqr/SfcYftPfOIT1/33HC8+kXEW\nAy0y+zTyp9Fo17cdEs6YveWWW5qz1X/eOXunvfbU91H5QqAQKAQKgUKgECgECoFNi0BsP2mOg0od\nO88/zi+88ML2oVYfbLXL9YQTThie9rSnDQ95yEOG+93vfutsRnwJ02zEtFc6NwI9lih7PNn+4s03\n3zx8+tOfHv7rv/6r5dn1L37xi4fjjjuu7Ug2n9nNTAaZkZNUfYVCoBAoBAqBDUOgHK8bhltxFQLL\nDoFJhlkMK/8JZyy/+93vHs4444w2Nq/6v+AFL2hnP/mv+HbbbbfOCMMX3vkMsvSLLnyMOwa6Q/7t\njrj00kuHK664ojlh995773a8wWMf+9jh4Q9/eNNl1r6W3aSUwoVAIVAIFAKFQCFQCCwDBDjw2GOT\nnK7OfL3xxhubDelDrf6h7lX2V7/61YNvBniDyevvCbENleezI8NT6WQEJmFprsyTefn5z38+fP3r\nXx/e9773Deedd15ztD7/+c8fjj322OHggw9u5++GvpeV3mp+gkSlhUAhUAhsOALleN1w7IqzEFh2\nCDCoYlQxyOQZVByvXg1717veNXzyk59sddoOPfTQ4XWve13b+erjCDG+Ikc5dcCI7L6OMRc67Y41\nsMv11ltvbefKfutb32q7be+8885h9913b336qNdjHvOYtuMVv9DLbBVT6tJWaSFQCBQChUAhUAgU\nAoXAxiMQu08aB2rq2HWce5x6Z5111nD99dcP++yzz/C85z1v8I/7nB9Ki9hyeBNSl3KlC0OgxzKc\ncaT+6le/ajb2qaee2pziNlVkp+shhxwy7LTTTutsdLyRZU76fORWWggUAoVAIbBhCJTjdcNwK65C\nYFkiwIiKIcXxmvD73/++/Tfcl04ZZwK6Rz3qUcPf//3fDyeddNLwiEc8IuStTXuM5aSRPS6H0X/e\n77777uGGG24YLrnkknXngHHE7rrrrsOBBx44MASdB+aoAbtsEyI7ZWn66esqXwgUAoVAIVAIFAKF\nQCGwOAiwv2KDsbt624td56NN/on+zne+c3DEANvRK+ycrvvvv//gbNeE8Eae+tSFptKFITDGUhmm\n5saHc9n1jhLjHD/yyCPbm2zPfOYzm13vWYCTljMdX3jxR27Nz8Lmo6gLgUKgEJiEQDleJ6FSdYXA\nCkagN6SSZ3R53f/kk08eOF/tXmBoMZg5XcU1a9asQwVfeNH1BlqIUpc0Rwtwul588cWtP6+lqXf2\nl90RjHU7XR03sOOOO65njJMzDpPqxjRVLgQKgUKgECgECoFCoBDYMATy5lH/D3t1bDAfRr366quH\n008/vb01tdVWWw0vfOEL267KJz3pSe2jWtkh28uJDUmjsuU2bF7C1WPZ42lTxfnnnz/8v//3/4az\nzz67Hffwmte8pp2764xXtreA3xxIE5UzL0kbcf0pBAqBQqAQ2CAEyvG6QbAVUyGwfBFg+DKsGML+\nG54jB2666abhnHPOGf7jP/6jGdFG6NV/RtrrX//6Yd999133epm2sXGmLMRAU5bnWP3Zz37W/uv+\njW98YxA5XB/84Ac3Bytnq7jffvu1owUe+MAHNuOQXpHVBK/9Q2YM9xjy435DO05Dl/qx7NRXWggU\nAoVAIVAIFAKFwGpBIPZR7KLeToRB2uVDI/+b3/xmuOyyy9or7ByvXmt/2cteNvgoq6OqHFEVZ21S\nfBUWjoA5gD27XRrbXb6fH5KV0dmF7IO5nK533XXX8PSnP31485vfPDjOy9xwkvehl9PPc09T+UKg\nECgECoENQ6AcrxuGW3EVAssSAUZV77hUjtHGYPaK2Ac+8IH2WpJzXx/wgAcML3rRi4Y3vvGNzWBz\nNlSMsRhoKQcQ9Qy+e+65p31cwcezfvjDH7aPZ9kVoR+7WQ844IDBB7Q4XR0r4D/vjEAO1V5m8ukv\n/aQ+Ze3GFods6sdp5Iz5x3RVLgQKgUKgECgECoFCYCUjwCaKPSQfG0nKnkoZBj0dp+vll1/enHpn\nnnlmO7f/mGOOGV7xilc0p+suu+zS+ONwxRv7M3UrGdfFHpt5CIb9PEzC0vFdztn94Ac/2L7bcO21\n17Y32Hzo7OUvf/mw2267Dex5oZcVnVOXcqWFQCFQCBQCG49AOV43HsOSUAgsGwQYbjF846CMUc1Z\nevPNN7fXkv7zP/9zuOqqq9qRA754euKJJ7ZdDHbA9kZejMDU5TiBW265pRl9V1555cDg83Vb/Tz0\noQ9tH1nYa6+92tlSjL+HP/zhg12uMfBj8MXIDLjRU7t8X+7r5CMjvJUWAoVAIVAIFAKFQCFQCKyP\nQOyp2E2xrVCx7fpyONl6nK4+xvqZz3xmYPM5VoCteNhhh7Uz++93v/s1XrZd7M7wx2ZMudL5ETAP\nmSPUmbd+jrSz5dncX/jCF9aduesDWpzijg076KCDmtM1c4Cnn+O+j/m1KopCoBAoBAqBWREox+us\nSBVdIbBCEIixFuOqN+bscuUsfetb3zp88YtfbK+RcYwy2N7whjcMT37yk5vBFl6QMKgZcNI777xz\n+PGPf9y+oPr1r3+97aB1/pcv2jpPimFul6sPaW2//fZNVv+qUy93LrjprD/0PY98P565ZFRbIVAI\nFAKFQCFQCBQCqxmB2FNx4MWuUp8Q20qZ7eUjTWedddbw4Q9/uB0j9YQnPGF45Stf2T6otfPOOw+c\nrgl4OQMFfShXWDgCmY8ev9i78FUvsrmvueaa5nT92Mc+1t4+8yEtTvFjjz22bXaIjKSRTavULVzD\n4igECoFCoBCYC4FyvM6FTrUVAisUAUZWDC1GVvIMajsX3v72t7dzoW677bZmQDOq3/SmNw0veMEL\n1juzCzx47r777nZ+lGMFvvOd7wwXXHBBSx3sv2btR7k4XDltDzzwwGGPPfYYHvSgB7VjBWLgkUGH\nGOXRJ+366evkE/Ek9GPp65KvtBAoBAqBQqAQKAQKgULgbwiwwdhSceDJx8ZCxbZC4xX2X/7yl8Ml\nl1wynHbaacNFF1007LDDDu2f8852fdzjHtfeXkLf229k9DbcuE17hfkRCIYoewwzb+qd5frtb397\n+Jd/+ZeW+p6CM3df9apXNVt8m222WY+3lzmWq1yhECgECoFCYHEQKMfr4uBYUgqBZYEAA4uxJk0+\nxlvq/Lf8y1/+ctv16mB+r5QxrJ/73OcO//zP/9zOZHX2q8AQt8vVB7O+9rWvDd/85jfbea4csc5t\nfc5znjM4quDRj370unNc4yhNv2PgyBS0R9eUpfRE4wxZ6dZbb73utSlt4zCtnzFdlQuBQqAQKAQK\ngUKgEFitCMSBF9srdhg8OFy///3vt4+wOtPVR1PZd74DwNbbe++9m83Gxgs/vthgsd2UYwdqrzAb\nAvDrccUVbNnC8n/605/ax3E/+tGPDv/2b//WNji85CUvaU5Xu159SyGh7OUgUWkhUAgUApsHgXK8\nbh6cq5dCYEkgEOMsxhvDa2wAM9zsXH3nO985MK6vX3tAv9fG9lp7Lus//dM/DUcccUQ7mB/dTTfd\n1L6a+ulPf3q4+OKL2+tnvpTKGEf3jGc8Y3Au7HbbbddkOOtLfzEgAwq9hLEuPR2aX//61+3sKh/o\nUnZcAUPSGbF5tc3YYoxGfqWFQCFQCBQChUAhUAgUAvdGIDbYJPvJLlfn/9vdevbZZw9f+cpXmoOP\ns5XT1Zmuzutng4U/Tr3YYhy67LuU761B1cyHQG8P9/im3hzeeOON7Ziw97znPW2369Of/vR2ruuz\nn/3sYc3at8/ybQd9RUb6rbkJEpUWAoVAIbBpECjH66bBtaQWAksSgRhaMbAmGdvqfK32U5/61HDy\nySe3YwM4We1yddTAUUcdNeyzzz5tfBy0Xjn77ne/OzhWwFdsHSdwyCGHDI4nYIzj6x2q+taHNHqM\n9Qp4MSjJdgSC82Ovu+66doaVc8TsqnV+rI92jb/QGhmVFgKFQCFQCBQChUAhUAisjwAbK3ZW3xI7\nje3F7vr85z/fPtb0ox/9aPDqOjvQW1DsPbaYN496Oy55MtNHOV57hDc+H4xjR3v7zDFfp5xyStuV\nbNODc3d9o+GAAw5oGxQyH3jCH00iJ+VKC4FCoBAoBBYXgXK8Li6eJa0QWLIIMLJiWPUGV18f5e1O\ncGwAx6tdrww6RrMvo/oP+v77798cnT6wwBHKMevsVkcKPP7xj29GHlofzkqfSfWR/vu69N23yYv6\n8QVd51bpj1xniYl24u64447rHK+RMy3t5U+jqfpCoBAoBAqBQqAQKARWMgKxsdh3sY0yXnadc/4/\n+9nPDl5dd/SUf6b7QJOdrv657o2j8EoTelnybL2kk+y+8FU6NwLBNXgqw91mhmuvvXY4/fTTh/e/\n//3DDTfcMBx99NHD61//+uHQQw9ttns+ZJuND31P4znp++npKl8IFAKFQCGw4QiU43XDsSvOQmBZ\nIRBjqzfYYmyN65QZcWecccbgq6iXXXZZG6v6NWtfV7Lj1ZECdrOq23XXXVvdfvvt13ahcrrmtTP9\nCujESSFGnjb50Dlf1rliV155ZftY1w9+8IP24YCHP/zh7WNdnLx2vNqBEaMy8vXrwUEkh3GKhl7y\nkx4S0m9kVFoIFAKFQCFQCCxFBPrfyrF+c7WNaau8MhFYyBpAm8B2+u1vf9veMrr00kubM4/Tlb3n\nnNAXvvCFzf5iA7Kp0OPPa+zpNzJjV6GTTzn9VTo7Av2RDfCFKdwdw+W4L7tdP/GJT7TjvV796le3\ns10f9ahHtbJe8GR+0uuk+RjPXWgrLQQKgUKgENhwBMrxuuHYFWchsGwRiFGVdGx4KTO8fTTrwx/+\ncIvO+RI4LO0w5fR8ylOeMhx00EFtByxnKwco47wP+kg/cXamPO43fIxLH/ny8QZO369//evDNddc\n076oy+m67777NsPf61PKjhkgi1wpfvrbqXvHHXe0oxO23XbbdiSBHRrOhs1Dgj4ZrwL9IqNVjP7M\np/eIvIqFQCFQCBQChcCCERj/Dk0qq5v0m6q+b1tw58WwIhDoHZ1ZE+yj2EoGKS9ol/ePak489tY5\n55zT3niS9+Gs5z//+cNxxx3X3jRiQ02S04TVn02GwHhOU/7hD3/YHOQ2SzgCzJtpb3nLW9r5u9mV\nTKm6L2yyqSnBhUAhUAjMi0A5XueFqAgKgZWHAONLiLHdj1Bd2h3Uz5B7+9vf3j6kFQelYwWc7+Vr\nqQy8HXbYoRnhDPEY43kg5ARNffjHDs70qR4NZ6ndrc6r8kGHu+++u+2w5XB1nAGHqyMGnO3a73RN\n35y2duw6e9aZZB4mHvGIRwyPecxjmpOYs1bona/K+haziyN6axOCi/oKhUAhUAgUAoXApkBg0m9N\nfif73x+/V343+zr6ZGccnvHv2KbQt2QuTQSsj2nznzVGczYSu8fRAv7R/clPfrKd8+9Dpocffng7\nK9RuV28YbbPNNk1mvx7H629porEytDKnAszNwT333NPmy3EQbF5z9NKXvnQ44YQT2tto+fBsz1Pz\n1SCsP4VAIVAIbFYEyvG6WeGuzgqBpYNAb3T3WsWYk951113towpve9vb2mtMaeP4PP7444eXv/zl\nbfcD/jz8xRiPczWy+/6SJy906hj//lvvLNevfvWr7XgBxwTYVXvwwQcPj33sY4c1a4868IqbXa7p\nM/0zSO109TEIu3XJcT6s3bjOg33Sk57UHK927Opb9IBqhwc+/D4S8cAHPnDdkQTRX9rr3ddXvhAo\nBAqBQqAQWCwEpv3WpF4/+T3O75i6/Cb2//DUXmH1IRCnqzWTddPbW9aFiE50rIBdrueff377h7V/\nqD/taU9rTjxvOPmIVt4uQp+1Blny1Y3/mb36UF+8EcM0126Pb+ZSG7vVUVzvfve727x56+x5z3te\n25nMbs5HZ2llvoRebquoP4VAIVAIFAKbBYFyvG4WmKuTQmDpIRDjbZJm2hhpdo5eeOGFwzve8Y52\nblSMQDtP/UfdF1Of+MQnNkMuRl3kkRE5UkY5fnTKkYU+dLfeemtzmH7pS19qH3Kw89Urbket/YLu\nk5/85HbEQM6WDR/e5B2H8NOf/rQdT8DxetVVVzXH6pq1zlrHInDe7rnnnu2oATx0YbjedNNNg745\nfu2itWPAQ0e/mzZ9SHvdlSsUAoVAIVAIFAKLhUB+18a/Ner7Nnm/Y35fBXmhp2kV9WfVIdCvlX7w\n/ZqS//3vf9/sprPPPrvZef5hzf6xw9XRAna8OsffP6WFrK2stdRlLTai+rPRCMCzn6uUg78ObBo4\n77zzhv/+7/9uH6Blj9vpeswxx7QP3vZzhL63w5UrFAKFQCFQCGw+BMrxuvmwrp4KgSWFQG+8jRWL\ngWfXjFf1zzrrrOF973tf+1Iqw82OUMa4Ha8MPGdIjXc65EFwLBvduG+Gv/Ncv/Od7wxf+cpX2n/w\n7XR1pIGdFpyuHLB2qmana+TS0atWznPlPHXEgDPJOGA5YvHsv//+bccrByxdc5QAHa+77rr2etbV\nV1/djFIfCHvqU5/adnfkA2HpK3r3xnDaKi0ECoFCoBAoBBYDgUm/Ner8ZvldE+U5w0S/afldQtfn\n6ZPyYuhWMpYPAtZCvx6smdhq6v1z/YYbbhjOPffc4bOf/ezADuJ0tVuSjXfooYc2O8zZ/XHiRV5k\nQyNtyweZpa8pfAXXrry563FmI998883DqaeeOrznPe8ZHAtx9NFHtw9qPetZz2rz2NvbmS8y6n6w\n9Oe/NCwECoGVh0A5XlfenNaICoEFIRDjrmeKoafNf9SvuOKK9oEtX0z9zW9+04xA56Ryuv7DP/xD\n20m63XbbrWfMMRITyOsNxhiA0uxSdbSAyPAny9EAzo91Luvuu+/ezhXrZZDPYcvhascqZ6sjBpTJ\nfdCDHtT4OGz32Wef5kjtHx4Yrbfffvvw5S9/uZ0ly2Gr38MOO6w5lPXZv6ZlLOQKZbQ2GOpPIVAI\nFAKFwCZAYNJvTX7zfvnLXw6/+MUvmqPFPwe9XpyPRuYtDb+VZERO/9u5CdQtkUsQgcw91ZKXWgts\nGLYce4sN5HxQDljHSB155JEDx53z9B3TNM3esR4jNzKXIAzLUqXg2isPb3OR6Cgwx0NwutqtvMsu\nuwyveMUrWrRhIXNCVi8v/L3syhcChUAhUAhsegTK8brpMa4eCoEljUBvkMkz7vyXnHGmLOXM5BR9\n61vf2naHcngy6ry2/9rXvrb9h33N2t2kHJsCHgF/5MfYS1nqNX87Tp0pZleth0kyncXqaACpHav6\n6uXhtcuVs/Wyyy5rr1j5EJijAjwocLZ6aHAkglfkOGH1b3esYIyOMbDD9tOf/nRLjcluVw8dvt67\n2267tXNeG8Nf/0T3jK9vq3whUAgUAoVAIbAYCOS3hqz83vjdskPRPxp9fNKXzJ1hzuHi/HNOM3k7\nYP1mRkZ+exdDr5KxfBBg71gH1o2Q3Y/WBXvHP9Q57E4//fThlltuGQ455JB2tICjnbwl5CNaQtZR\nK6z9k/WYcqWLj8AYcz3A3VxKtXury07ld77znc0GZi+feOKJwwte8IJ2XFZoYz+TgU+9uppHiFQo\nBAqBQmDzIVCO182HdfVUCCxZBMZGXgz2GGzKjgJg4H3gAx8YODkZbQxzDtI3velNbYeEjy/EaWuw\n+GLc6UM+MjlZL7nkkvZ6G8ernbV2mz772c9uDwAcsI40EMKLn9Foxw+nKT5f4LVTA+0TnvCE9mqc\nc67sco3TFl/0sNPVWHz9Fb8dAxzA+vNanfFw2pJnLH0ITpHVt1W+ECgECoFCoBBYLAT83uS3j0y/\nO94Q8c9KZ5g7lufiiy9uTjS/WXYpekvEPxCdVV7OlcWaieUrJzZL1pI1cffdd7d/pH/iE59oqTVl\n7XhN3bFOj3jEI9o/0fH0NlBkscHks76sy17+8kVr6WgerHuNervTxgP/eOE4/+AHP9hsWg5zjlc2\ntG8hjENk9nLGNFUuBAqBQqAQ2HQIlON102FbkguBZYNADLIYzzHMpKJ6zsmPf/zj7UNb3/ve99ru\nUq812lH6j//4j8MLX/jC5uzsd71Gbg9E5DkWwJlidro6R5bj8znPeU4zGg888MB1D45j3pxJ9qlP\nfWr4whe+0HZtcKba3epjEB4gHFPgKIR8gTfjoQ+nrZ2yF110UXvocEaWh9ScJSv14DE+35UeGU/k\n9bpVvhAoBAqBQqAQWAwE+t8aeTG/nXa6+QDSF7/4xeHzn/982/nG0eIflxyvzuf0e+h3bXwm+mLo\nVjKWDwLjdcRp+v3vf38444wz1q0d/6R+0Yte1D5iutdee7WzQTlV8Y53R2YtQsB67G2hrNHlg87S\n1TQ49/jKZ1OEYyLsWP7kJz85nHzyyc0eN4e+u/C0pz2tHT+C3vwJ8mLkmt8KhUAhUAgUApsXgXK8\nbl68q7dCYMkiEINMOjbKGGxe4/da/7vf/e72er5do+o5X5/3vOe1/7Qz+LzqqD47JcgT1DEC7bbg\ndL3wwguHr33ta80J6ow6H7R6xjOe0c50dVyA1yXx4gsvY9Pu1m9+85vNYesBQv8eHDxs6p/TFn//\nwEkO56zX6ZxpxnF85ZVXttc0PZx6RZOz1k4hRwzkFbv0TX8yen3UCakztuTxCdLUtYr6UwgUAksG\nAdemII2jQTnXr/ysIbLQbwj/rP0U3epBIGtq/DviIzreOuF48Q9Eb45wxlrD/hHqn5h7rXWg+V2U\n+kglx+z222/ffpf9VpEZuVn/kJWv9bs81ti0uerrkzfn7Cd2j+OV2F/WkfXBYc/2cryAY5l62w2f\ndVVrYvOvCXMn9NjH8eqNsW9961vtw1qnnXZaO17rxS9+cTsqwuYBGyByfUdGyuSObfzWUf1Zh8AY\n+1xHIUi7cj8/0+rDV2khUAisbgTK8bq6579GXwishwCjIYZDjDQEjDQGOGOP0e4rqhdccEHbBYs+\nh/q/5CUvGbzm7zV9/JGB15linLUeFr0iKbWL1u7SvOLvIYATNrtN8ZEh9ZDAaepogfD7+m6OF+A4\ndbZrjheIYYnXAwenK8exowV8SIsj+ZGPfGRz2Dofz8OpvvNBLePKGGAQXfoxoSFHqj8PLFI0QmiT\nb5X1pxAoBDYrArmWx52qF3L9SkObazg0KY9lpBw65flow1NpITAXAllTWU9Zm5wvfjv9Hjvv1T8S\nHb3j+By/kd4K8Rvs983OV79v/iHpH4z5aGSca/on1+9W+lOXPuUrLD0E+rmapF0/f/7p7Cxg6+Qz\nn/lMO6bC/OcDpgcffPCwZu0Z/T4u2tsvfR+9vEn9Vd2mR8B8ZE5c947K+tCHPtTm0zEDL33pS9tb\nX+bSPIp9yBySkXzfvlrzwTV4pQyPvi6YpT3labjN1z6Nr+oLgUJg5SJQjteVO7c1skJggxHoz2Zl\nPIiMDfVXXXXV4DV/r6pxYqpjxDsbzPlSxx133MDwQ4/PQ6CPc/3kJz9pr0d6NdKuCw5SHwPwaqQd\nF3bpcLj2gYw8NOiX09VODUcFcNLqE6+HSg+UMTZjGDm7LH3nI1x2BumHkxa/nbJ4c0QCXoGs5JXl\nY4QZkwdfUR/qPeh6cLEDtze4IqOvI69CIVAIbD4EZrkOQ0Or3PPU9ddun5+k/Zh+Ek3VFQLzITBe\ni+in/fOPU81bJHbAOfP18ssvHxyh4/cJjzdAONcOP/zw9vFIv51+r/xWCVnTk/psBPVnySFgruaa\nr9y/8k9nu6LPOeec5qTzT2Zn2bOdOF/943xs/2RNGHj66euWHCCrQKHMA5vTx/UcM/DRj360OdXZ\n3o4asNs1mw8yX+EDUdZF2lYBbPMOET5iMAleKQc3qecd+HsGcP/0Zl42iuDrnxt6/nmVKIJCoBBY\nFQiU43VVTHMNshBYGAKMizgZcTIgPMCpY3Qw4j/2sY+1D205M1VwpuqrXvWq4TWveU3bwaqOnOuv\nv745Sz/3uc8NX/rSl9oZq4961KOGI444Yt2HtLzeH/npK8aQVyrtcMWvXztnHQngLCtOW7t67HzN\nQ2QeThlGjiVwFp6HUbtcyfYqph1AnL5exfQKJsdxjCRpb4QZR182Jjt3feDktttua4aXsdu5mzP1\nIit8UiH1rVB/CoFCYLMikOtw3GmuS+25ZtW5lwhpD9+4nPpKC4HFRiDrkdx+PWYNpt2bF/7J6HeJ\nA/a8885rv31+o/zzknNgzdp/iHLOHHvsse1NEb9XvZxe99T3dZVfOgiwQ8x97B55Ian5YyvZCe0s\nYG8osVse85jHDM997nObjeaf3f5ZnLnOWhrLiU0VutZR/dliCLjObUDgdOV8tXHgLW95S5vXvdb+\nUyXHDETBrAllc9jPc2gq/cv9NdjEgRrsUvZc4Z7quQbO7qnuoxywCeGp6yWIVFoIFAJBoByvQaLS\nQqAQaAjk4a53vDIk1HNQyttdc+aZZ7bzXjk3Beei+sAWxyunqvPk7rjjjrZL1ettPoTFiWqnTb6g\n62NYnKjZbZG+GSzyv/71r9t5rs6w4rS1i2fnnXduD46veMUr2n/3nUkWXWNU4rULyM6fL3/5y22X\nh6/AMpLs8LD7xy5ZDtOcJWsMkWOMkaU+BpT6HHngi7LG53gCr3MyeB/ykIc0eejDL824Ip/MCoVA\nIbB5EMj1PFdvHBkJuX5Tnpaiq1AIbEoErF2hX2upU++3xe+yYA37zeQU8M9GDrevfvWr7bcQv99Z\nv9H+aWm3o99Sv0nh7+X2/TXh9WfJIZD7Gqe7eeztC2vBW0I+YHruuee2NWGnq/lnn7FX4nSNnPBb\nU+O6JTf4FaxQrsPxNWhezJFjs9jTjhnggPXWFserjQg5SqSHJ/LUjWX2dKs5n/Xer31Y9Xihuf32\n2we2vx3HnmW8NRfMMz/BsedNXaWFQCGwuhEox+vqnv8afSFwLwQYFyIDL/negJD3H3cOzXe+853t\nnCl06jk0nfN69NFHt52kzpuzW5XTlLOWoYLGjgsPfmvWOkJzrpgHhfRpp4b/Ktut4UgDRwxwunqF\nitP2+OOPb2dZ+U9zdnwYCD3wcgZzutr541yzu+66qz1oOEvWTleOUrLw0jv6Z5wxvshMnbyHWnJ9\n3IsTme52kBgT42vbbbdd9xCLPoaYVMiDTSvUn0KgENjsCLjWhf66Tl2vTNontYUuNClXWghsCgSy\nBietN22pl/dbY1eW81+do+6301sfjvrx++MVcx/D9FvoNytve6SP6B+ZKVe6dBDo58p8m6tEdpTj\nBdheZ599dnO6+mfxox/96OGItQ5Xx03Y6cpWsR7w9WvIKHv5k9qXDhIrU5PgD/s+qOdkZ4Pa+HD6\n6ac3u9jZrq973evaLnYbAcZ2ZuSRNZbZy1+J+X7sc43PdZSNJZPoyOF09dadf2R4nlmz9vnFP7F8\nZ8IGECHXS/Ktsv4UAoVAIfBXBMrxWkuhECgE7oVAjHkNDA7GRG+wMf481H3kIx8Z3vve9zaHJFrO\nTA92nKPOleOc5AT1EOijVV7tdwaV3aZezWf8C2TngcHRBc5hZVx6XZLjluPU7hxf3j3mmGOafPzZ\nqRN+jlGvWnrQ5BxlHGnztd6nPvWpbberhw7G6dhh2xTp/mTcqryqaQwcwXYYeIjldHVkwSGHHNLk\nj2Xi63FU7jFUrlAIFAKbHoH+WnafcVyKKLgv5YN6812f5Ajz0TWi+lMIbAQC47XmtyRh2vpTjw+t\nNL+lzkT3O8wh63fUUT/eNPGPyzhp0t98faS90i2HQNZC5jtzyC7jHPr+97/fjmbidHefY3NxunK2\n2/Xqfhena0Zh/rMGyM0aiw2Tcugr3TQIZA4ivcddm2vapgdvgUnZna9+9auHl73sZcOatY5Ab57h\niZzwj8uRv9LTjHu+caKDVY+XulxbcL/ooova0Q4+auaZxPX0pje9qT1bOLIMbd9fZM3Xd7UXAoXA\n6kGgHK+rZ65rpIXAzAjE2MYwNkgi5NZbb23nhr3vfe8bvva1r7WHOoYHh6gdoM5e5Rh1/ionrN01\n6pyxqo7xzzDRF2cIpymHpodEr/H4cBfn6d133z3stfa1ODtk7dZg7OgjB9rj93DBMLp+7SuW/iMt\nOtNV/5y8jjR44hOfuO4jEuOHjoxTOjaWyLb71hejfRiMXMau/3LTxU4SRwxEnxhe5PT54FZpIVAI\nbD4ExtegDw4565CDwu549yIPTY5GcQ27Z+T+IE2IHOXxPSI0lRYCi4VAfoOz1qw/MWX9pJxUGz7R\n2hX909AOSLserXd13jyxQyv/cIisXve+n76+8lseAfMrmMusC3Prvsbp6jxXR0y4p3nD52lPe1pz\nvrK93OOytsjIPEdO6tSry1oKnfYKmw4BmPehx91cePPL0V0crz5S642rk046qe1iz1tcWRfk9Pxk\n9+W+n5WaH+M5aZzBpKeVT9mRYt6cs8sY9jfddFM7tsVZ2W94wxvacQP5J1Z49BO5k/qsukKgEFid\nCJTjdXXOe416AxDof1A3gH09lqX+g9yPNfnemDOYvNL/iU98op019aMf/ag95Hmo4+y0y4JRmPNP\n7bTh5ODYiOEPh+x0tVP1sssuaw5XZ5PZLeuBca+1TlcOV87TnMtKRkJeq+Sw5XD14MEp7Dw7O105\nbJ2B5cu9drnq25giI+OLvMyNerQcNPRyVhr5nMgeZuygjT548eER5VMey0250kKgENg8COSa1Jtj\nUtxfPLS6T9h17x9Ce++9d3NIuW8kZmcYPjIE98G5Qt/XXHTVVgjMhUDWG5r8JvX02kPTt/vNEvL7\n1v/Whj5yer652kJf6dJAYDxXbLEczeSNHPc29zBvHjn30+5mjvbMN/7ISJ2Ryac+I1We754X2ko3\nHoEx/v38sJXZuWeddVbbeckB6IzR1772tcMRa3c0j+eYNj2/MvnjOvXLLYxxmqb/QsZKZu6X5MHb\nhg5v0H384x9vGy+cr+s5wj8xTjjhhMG3Jjzn5LxkfNFtIX3jq1AIFAIrH4FyvK78Oa4RLhICeaBZ\nDHFL2ZCNYSZNZEBE576OUWJnxcknn9zOcbWrhuOVY1Jk9DNKdtttt+bgiCEyNm78R5lzM2eycrp6\nbc7Hr3wM66ijjmpOTk5POzYEejCMHAHAaethw3+lGaMcJnutddjalco5yrHiQUT/0SHzSI7Q16fO\nB7kcpO/VIsce2C3naAFHHpBtXOQK4enlzFXfmOpPIVAIbBYEcs9xv3CvsSvMcSnuIXbjewXXzle7\n1+0ccu+Rup/5AJ/73/ja7hXP9a9uLrqep/KFwHwIWFdZT1ljfVk+tklo81udNY8mbekvPNp6eWlP\nXcqVLi0EzJ85lbqnOZrJq9DeFjJ37B7OOMdKeEOHI75fP1kbRpW1EGd9TzdeN0sLhZWnTbDPyPrr\n0G+Vfxo629XOS3azDQB2vLJJ+6O78E+au8jv5aav5ZZmLHPpvdBxwlhwTfgnrY0c55xzTjsv2dtu\n3iBg83vTDe52vTq+LM8B+oteC+17rnFUWyFQCKwMBMrxujLmsUaxkQhM+qFUl3ri+x/UlPPD6sd6\n/GDuhzv86LQrq8+DETk9TeT1dWiWSohe9KFrzhSzG/SUU05pjlMGCKfr/8/enf3anpT1H9//iMnp\nYH7BG4MDEVGgbQEBmedZRHAeiCbeeuWFGgdMEBlknhFUGhC0xVZBwSFeeKGXHROvjP/Db72+p9/w\n9Je19tmn+3T3OXtXJbVqfuqpp2p961NP1be+TlsAJU6S9QEt5dBQNlrdn9pHq9zLSsFJqUnJ6doC\nfq/NJWMydAWB3WcnbS02gCL3LsnnhCvrtG13ryZbPDDxgZa00uML6HLC1YfBXHsg3tUCTt6625Vi\npo9zXad4+jea1XE650p5pBLQn8zs00dKc5W/syXQf53rGeFZ4+5op8M8P7yiS+nAdjUKRawT854/\nlBiuN5FmXEWPVPhZZj7Xt4j1syTwGEqgcbivcs07e4nc2eGeOZ10tZHk/nmvoXtGuVbJXfs2nG1C\np1Ct1ftxssZHknl8Xf2iL8IwuBFmpYl3/ZYPzsKlrsGCs93xCnO73zUz+3jfv9VT3tvdxW8Wr60D\nipsyqi21ebaVn5lppRfXG3TWIQ6C2MxwVzIlt/UOzG+j1qbGC1/4wu1/5kCI+Gjt64mn5S4JLAks\nCSzF6xoDSwLnSGA/gRauiDAQUHyTd+HyFS8sjRXHFq7MXLzPctF6PN14nO0ARpwKtQvva59Oq3oN\nByB04T8lpVegZrtmGyitKVF9/MNrVE5vWCi4GsDHuChde+WXktZdsF7/V487YZ12/d///d9NjgCQ\n+pyypTixCAmkzTr5k219AdTyA7MWMN/4xjc2xWv3OaHrdEEfJXHytrKzH6vnVHtLX+6tlYC+aMFS\nn4tjmdUft1bedxK1/qd49gzxWq6vftuwscDy3BH2PKHMMFYsYp129SyzgcNeO3y8hDLDs6mrU5yG\nzfQcEO75UtpylwQeKwn0zKu+NRaTxOVx4SZvGMFN3vbxTKP8sUHklKtnlU3wY32/xsftOw70DRwT\nXqn/xJmbYGzXe1G2m5/g7Je85CXbCUw4mVFm9nE0arW0fVxpt5M7+ZztKX7fBvHlk8buD8WUZ5a1\nhrEGsY6ABeAC1n/LesObfVwW7ocFbGw4WELh7XCH/kL7WN/dTjJdvCwJLAk8vhJYitfHV/6r9ttA\nAibKOQlP/yn2mrylB5DEVZZ/mtL26TNcGXHFTxq3gz8e40WYtQBw5YBXcpwioxilqKR4pay86/Da\nf0pQZfd0AJ/5ARCKVydX+wAIecijnv/5n//ZwJEPaVlsKEf50YLjiU984nYa1WtX9c2sc8q3vhdH\nIQNgUeg6PeKUq7DXjb1W1AlaYHfSzV+buLOOZHUzbrQqg94ypyUAXFOYuxqCq08sOinP5tUU9dVp\nSivlMkqg/2SuBaznhtOvTrJ4jlBe+ICe6wecnnfypeeDcWRTh/Wccc2ID9Z4xrmeYJ52qcz6z17G\nkXRntGnNH3dGPz0SLuEhiiD3VLP6nAKoK1J67Xw/Fmad6xk1pXF7+PWXOWR/ShnGgUcdcLj33ns3\nHOwV9x/5kR85e85znnN27aBoD+vo19nv+36Wto+7PVp/nYtkIASz7XmtbcfaWZqy+eUjUzKE82FE\n/x84wNt1cIADFt5+sRELD8hr/WGDlfEfszFLQSuOwvXZz372ti7wv2NmfcJ7vsUtsySwJHC1JbAU\nr1e7/1frDxJooTyF0YTZRFpa8U3iJm8LdJM0oEQBaBHOpuSJRmX3tGZ6/vJw9+Vm2mPtn/zhS5gs\nuE6eUr5+7nOf217jtft+z+FuVqCQ8rV7VvEsP4tGdMQnV3HkF/gUT6kGEFG4AkBeDwacKEWcQHOl\nAQUvRQgAigaTq769EacP2+1GlwLG6TdpTtt63Zi9dgC2lMeMNPYUKKzO8m6FDj8zvri9i+7eXKTc\nvsxVCgPTwLOrJyj9GV+Z1X8U58aRMdR/8irJZrX1+v/Vf8h/q/9S/2HP7p4tFl4UrylfbcI4gW+h\n1nPOs8X1Az6q8axnPWs7/eJZ1/NAPnVUz5L/ksDjIYE5j6yx+Hj0wKNbp+cW7En5Cgd5BrnSCR6C\nP5k5BvbcrDGxl8jjF66f6pNjWEUfO3Tgewq+NyBsA/CZz3zm9vFZysD6XUuiyR9dfkbaPu56yu3x\n21yLmz3Gnu3acyuNnUrVFK3+KyxFK9ec3uardQXs34YrWTrA4c05b7zI665XH9my/rCp4dqxH/ux\nH9uu9aCgZdQNa8bj7SzjvexWeElgSeCxkcBSvD42cl613AES2E+WJv+9aSI1mVPWWZTbCTWZm4x9\nmMWJSABY2CSsTBa96M44dUebf8+LcqXzP14mvqofT4EkQNDrT7646r5Xcrl2UFa+6EUvOvvxH//x\nTVlBPtE41R7pM03YIsOdqxRrrgHgB64ouilagSPK1640UP5UPcVrAz9adrnd+0jpqk8p69zr6JU9\npwrU0eX5yrDqYLU/f3LJnXXJcxETfXkrk3uR8lcxj7FHEe/DE6698H80JvSh18Kcnq7PrqJ8rnqb\n63v/1al8L97zxX/MuHEClsLVs8Adb54LFmWeC5778nkmvOpVr9ruePPxP896tNei66qPtNur/cY3\ns+aP26tfbgU3njdszy7PHpap33Orr3GQW/xyH18J1E/7ftG/4ljrDR+Pfc973rPdOWqd4eO1lH+U\ngML1v9ZEk39PV9o+Tr7bxUz+jrWDXMqjHf0XzM+woM0IG/CuDmBhfG/L9UaUtYPyFKrinSSWJt4b\nLb4t8eQnP3nD/9YU5n53wn/5y1/e3oqxFvAxs+c///ln3/3d373JPp4ov+P5dpbx7dLXi48lgasm\ngaV4vWo9vtp7UgL7yXKCHoVKN1lbnLdDagfUgt1pSDulTtl53YuyjsLHJN0JWBNx9hgj6mDLU53y\n3g6T+ORn8kRWjJOiTrx+4AMf2BQXFK2AIeUroOJS+r2pvXt5z3zAFHAETAFR+oBMyRYwcrqR/Cli\n0ZnKFXTIbk9fGF13OnW1AIULpTng5TQBBYu+VE/yz0UX7xY+7crPNOkPx6CZnKOX+3DoXZYyyWS2\nJ7kAzBSvXhX3IQTjhOLVPVyuiNCHe7OnF619vhW+PBLQ56f62f+Ykcci1ykYinynXylfnXhxqt/i\nzhUDnmmebU7FeGb03DlF//JIcbXkTpLAeWP+TmrH4vVbEmju8qzhD9vscY/4aXo25c605X98JaAf\n+6/WPynV9Stlou8OvOMd79jwKnzjtKt7Rin/bP6FQxsftSh6he8Ed8oDv/s2lG6MW385vUpG1gew\noEMaTgi7QkCcPHAi5TQ5eXOlE8Jo8ZOhk65wo3kdbpSmvGvU3K0LC1jnueKB4tXhDGuPyZ8yx3je\nItfPksCSwJWWwFK8XunuX40ngcBpE2du0rHQNqmbuE3oFt8W4U53cil55DGZUwI6eXntcNLTh6G8\nXu9eQHcA2ZE2QXNZSkJlGBP19Ivb8yHu8TYTUEw/vsjR7jLF1yc+8YntHioKUgpMl/8/73nP2+5K\npcSsrHLTP2WAHhmwACj5s2QNPKHj9bqU2mi14z9p7uUoDV/AlFeLv/rVr25gimJXX7m7yUkCSlf9\nNenHb/Txy18d0y/vNOel7fPNMH/09/FXKZzMZ5uTizQnF/wf/+Iv/mJboOg7CxNXXfggWmOr8nt6\n0Sp9uZdDAvrZs6Rng1YJi9fns9/5y+8ZIZ/XEi3ibNB4FdHz3vPbAs2JaptJPdOUV4bZj7ctcv0s\nCSwJLAk8Qgk0d/Xs6lk2yfYcKk9p+3Dxy318JaAP68f6SB/yi4etP//5z5/90R/90fZGhutuXvzi\nF2/X3Vw7rDfky8o/TfRm3OPh3/OFh5vlzVqAXFwtZS5OycrvZCrXpinLbxPVAQs43rztQIx1mkMh\nrMMx4ilZzeVkaR0g3hyuLodrPvShD5195jOf2WTvYMYb3/jG7Y5X9LpbV/vwF9a42bY9Hn2y6lwS\nWBJ4bCWwFK+PrbxXbbehBAI3xyZJO6h2TCl0nIo0AdtF9Ro9ICTdRBugMFGbhJ2AMqlTuJrkTeIU\nQV5hN1FT6t11uI+UYtaET4GobDxEr/AUW2kz7iL+Y7QuUm7m2ded7PAujZKCMvMLX/jC2Yc//OFN\nWaHNduVf+MIXbne92i1m9rSqp/j45aqH7RUheVNcS1dGeoBnT0t6IIqCzslWXy11ms3VBWjgk4LO\n6QFKlXmCAD004omfZcThi1sflm/LcPgpb+Hz3H3Z8/JepbRkmEtOU1aU8k6hf+pTn9pOXVOc+fjB\ny172su2aC+Nl5kfnFK2rJNer0Fb9rO+5nhNM46cxIb64xkWysXCzgLM54/khr+d6bzVE2/OnstGN\nxnKXBJYElgRulQR6zqDXs2bGHaunfMfSVtzjKwF9x+qjfT+Zf2AbBxo++MEPbvl+9Ed/dHvrwvcT\nYNfKasV+HOzpPV4t3fOFjxvxpgxrnWW9RQ7WYawNUfOxgzHSM+ZnmNwhDcaazPrLfG39wRW2TnMn\nMmutJl6c/PFl3r///vvP/viP//jsH/7hH7Z0m/lvfetbt7epwpWwPxOO4I8G/zJLAksCSwIksBSv\naxxceQmYsE2QKQ+3P8aDi3RKV6/3/OVf/uXZ3/7t3267qBQ6TfIAgbLHJlhpaFqMsylk7a6a/H0M\nioLvu77ruzaFnysKKGhvtHhH9+GYYzzeLJ3qzo1mLrlQSLsbkQLM6zlAkfuSKF4pwrTX7jMayrH5\nudEOyJSG15k+y5UWvdkuZYAh/WZH3Ill9zd6jRioovjWF5Th7ney2w2U6Ydp4ksdQF0X9MsjTpso\n0ANte14nrfP8aC3z7RJI/rn7vta/lOgWJ14Jc2fX3XffvSle3YE2r4tAfd8/S+7fLvPLFlOfz7Ej\nTrhxVZv340G655vFnP+//7v/es8J6c0h+7LRXO6SwJLAksCtkEDPq/msKW7Sn+kzfvlvHwnoN1Zf\n7ftLPOUizPqRj3xk+4aCk5nwtG8neCUetplmPw72NGfex9K/50vd5/EGt1M6O9363//939thCddJ\nefsElpdOaWoTtAMu1ldsClSYnIXpOwxjnWXuNoez5m1htJrD8Qbj+/4DZfef/umfboped7q/9rWv\nPXvNa16zreP2fSZcO89rG/rLLAksCVw9CSzF69Xr89XinQRSou4VnuLdWUrpCvA48dqkOidWEzZr\nchcPKKScPZZf9SZ3+Z149crQM57xjLOnPOUpZ9/xHd/xTeWrPMdMdR9LOy8uXuR5uICgunP3PAJC\nTh5SbpKb13OcgAUU7RJ7NUo7gaIJcCZP0cZjPMevtOkvPOOmHz8UJSygpj8BWGAKmMWXO0D/3//7\nf5vSFXgzDvQ9/qKFv/jit/OOHhoMIBfY06+1Tf1oZKORO+lvhA4/4qQru+dBHmnHylX+srravZfb\nlAOQ3KmQv/qrv9rE8PSnP/3sBS94wdbH+kX+5CvDefQuqxxXux4qgcaA2OlvrDw090P/f+Wf43Cf\nf4WXBJYELrcEPAcej2fArLdnEbf4U8+wy90bd17r9n2mBfUhLOqV+X/913/dFICuxnJ910tf+tIz\np14dGNjjRGWneSzHZnzP+vPv+RI/eZvp2g3Tabs1hAMwPnDl7UMHJihRrZesobhO/Tq1Kt43H+Dx\nTrPCfpTTwvyUrdOolyXHjLBDJOr8vd/7ve37AdLc6/7mN795u8ZqbuZHY7Zn+qO73CWBJYGrLYGl\neL3a/b9af5CACZ7Zgxenmuys+pLlRz/60Q34yEMhlqFwdcm9yd+kb/KlkHMdgUm7112mAi6FGhoA\ngFOWLnN3r6iPtlAGotWO7QQJTeSTXryou/TiphswECffPq/00jbPOT/lPZZfm9279I//+I9n73vf\n+86+9rWvbXU97WlPO3v5y1++nXoFksgunlJ2Tr6k7cOxJD4e9u2QR59Sfjtt6y5XO+Z4ophzKlI8\n+Tp968QA4Aaw4SkzZVxd0oBBNOzAo+tVI2PAiWU0evVIXnw0rqKBX/G1bfIvjzTKey5+0Js05BG+\nKia5aW/+ZJZLVv53vvrrjleLFODbBxDc86qPk2FlzpPfRfKcV36l3XkS8H83vmbf88/wndeqxfGS\nwJLAoymB5qTq2D8vShefX959vspfxI3OpJlfGmu+4+7rKTzTpv8i9T+aefCSidfCl9nV7to+8R1s\n42osCsCu73J4wXcTfLDW23O9dZF8onNMfuelVf7hurVhX29h6fzxoJ7S+MO+Dm843OCeVmswylbY\nzvVg3mTqLbXeVIO/nWhlHYJgXRVGMUrRSj7sKQwYX3jIb/3gAMlnP/vZ7V5d6wff73B1lROvlN/W\nZpN/ZdnZf2gusySwJLAkkASW4jVJLPfKS6BJs4nTQryrBu69997tFR+AoImWUszEf/fhdWb3LFGg\nmoj/7//+bztZ6SNT//Zv/7Yp6SgjmergDwSIY4AFJy9N6E5h+nAL+hR6QAN+mCZ1ICUaW8L4QTM+\nRVe2eGkzfRS9KW/tiVYu5STF5Kc//emzj33sY9sJU/LxatQb3vCG7Uug2jsBY7zFgDATzeKnW57i\ntFN+O+KUo063ejUJL/pOna4SuOtwv66vkVKYC3casvbEV2H00SVzH9jRr//1X/+1KWG1y+tH7od1\nRxRamfhL/rO/os1FW5p8wGZKe0ASf5TEeDpPFtV52dzkU7uEyYlbP7l70329X/ziF8/++Z//ecvq\n/3PPPfdsJ6zJkFHmIuYqyvkicrnMeXp23KiNa2zcSEIrfUngckhgP/ec16rmpOZ4ZZtvxO1p7cPn\n0d6nRdezqHr51XPMzPzSe9atZ9kxaT0+caf6kaKRwhG2cX0XhaBTl94e85EnJzv35kZj60bpe3oX\nDaMb7f3YEq+N/T+i2TpG2BtkDxzubv33f//37YO3PmAsDLtr57XDh69sojswYW3kkIoNdjjZegzt\n/X/gZsZ6vOPFRv7Xv/717W5Xb+9J84FgVwzY0KeEnfnrvzApGsssCSwJLAnsJbAUr3uJrPCVloCJ\nlDV5c6cCz8Xqf/0TyqvpAABAAElEQVTXf70pEZ1IdGrTBPzKV75yA0AAgElXGgBB2efVdq+1UwDa\ntbVzPZWwhK0ehtJWebu0TmD6yJNTsE960pM2wOEULKVewKVyyu5Bjrhp5D2WRzzAkJFnD1xKO+bu\neRAujhzuu+++bZfe/bgAJKXyT/zET2wKMQrLFJ7RnjxGZ8aVT9qM1wbXCZC708aUo2RO/pSY8jqN\n+oQnPGG7VzelK8A2d60nTYBQmEXfDjwQCBRSvNoB1+f6yYllQBA4TH7KTXnEu3T0Zl3S5DVWKOy1\nAb8AJvr6fgK6ffujfRnd+kHbkhn59T/QD/rjb/7mbzZXvDtdnQYx3gBk5ab8LqOcVpturQT8x6Yp\n3BgsbR8ufrlLAksCd7YEzDN7M//v0y9f+cWz85nRnF+Z5nDuzFf6vt592LzImteaC/f1N3fGz57G\n4xWuvbP+i7Z7lrlM/mSyl4ODHL6Z4I5Rb/PAzd4c635Xb0Rl0NiXL+3RdNXLGoeZ/XgvXr7Gqfz8\n3hyzNvqP//iPbePc5rkPGEuzae5ACizMOjQB08Hu1g8UrsfaLO5YPD7wwJxK97+BxX0r4J3vfOd2\nAAcPb3rTm7arq77zO79zexOtNqIVzSkD8cssCSwJLAlMCSzF65TG8i8JHCTQZGpSNgHbYabQ8wVN\nEzHw484hpyWBn9e97nUbMPBqizLKU6469UlZ51V3ZXtlxoTOiqOcbMImfH40gAnKtmuHHV7XDzi9\nR2nY6+xObrqviJKW4jDgHQ0uE7CI7vXYh/5Kiwf5K/PQXN8emmWiHy00+H3A6vOf//zZF77whe2O\nXEDJB7Ze8YpXbB/c6jWpSWvWNHmZefirg0KXctU1AupzOoDikuzJEUijyHYXFtBml5zSnAwDSdWD\nbrTxwa+PnEJF1yvsAKI4ilEKXMo9SteuGYj/+Jv0ShPHlMdYMabICeg0hihcKfYpEbsTt/KVneHL\n6u//uG8f2VGw//3f//3Z/YevznotzB29XdsBHDuB7D8y5b2ns8JLAqck0LjJnfl6Zoib/pln+ZcE\nlgTuXAkc+99rzan/u/xsuEJeYXPYxGjiM7OOU3TLO100Z9lZZ3RKLzzLX9R/K2gcq+vRonusrts9\nTl8y+omtb/WpN7fgG9eduW7AKddXvepV2xVK1gRzQ5lMH0lfP1w51ZeVx0NxudpiLeX0qgMtrvuC\n0d3ham3koASrvXC7tQ58zfbmHyVsClftTl7qYPdtn3zMtHhK5vGd3K3ZHLRxtQNMLt6dug6NeLvR\n2uw8M+s6L99KWxJYErh6EliK16vX56vFJyTQZJy7n7Qp29z36guXTthR4KV45QcWmFme4palWOuS\neHcV+VCXV6Mp8QAReQJfaKibBVYoj7zGDoBw7zooD91pJL4L5FPABkaiwb2ImTxfJL88lTmVX7rd\nene9UlZ7XcfrO5TIXtehgKUco0CeJrrJoLQZzy8dkKMUpbR0EtUF/MAbebsHiswoML2eRG69tt/p\nYjKvnuhXHxd9Sl3XCmiHV5/k099oUoqrw8nX+r/y6B6jWXxtMK4oin0Qyqtk2kJJ7G5SHyRz7QSF\ndWYusIq7zG5y0sbkySU3J6k/+clPbspqYNjHtMjN1Q+dQCdvMpt0LrO8VtturQQac6hOv3GVmf7i\nlrsksCRweSXgWbCfU3oOhOWEWeHmIBIpX8+TwheV1qx70ph01Bl/1S0cfpjY51S90S590i9uuY9c\nAuRcX5HxHD99qJbi1bVZPqjlLTtv9Dj9OjF/NB45Rw+PQu1QurEijuFSaHpDyWnWXG8GOjDh7TRr\nJJvnDjN40+/7vu/7tgMnsLzDB073pmiO7kb8QfqN7eorjRs/56WhSfbd7eobFQ7JqPeXfumXtrtd\nYX7rB/nwMvmo7yYfk4flXxJYElgSWIrXNQaWBB6UgAk028TZpCrsVXY7zu4s9UqMU5TuWrITSslT\nmQRqEo6eOEo8wALQoFwDNkzwTr4CIe6pVAeFEuvUbJM7xaqTm07Z2v29djgJS/lH2QSo2AV24rZT\nsJSALMCQkhEPeJwARBxTO4+lXc/x7b+zbbWVm1+JTnJSuv7Zn/3ZBhydDHVXko8DPPnJT96UodU7\naU557vkTJpvu053KbHH6g0KUAo7itdOPnUrGmzqTr3B18Osru/L664HD9QJOu1LoUhw7peuVp5S5\nwvqHQSMZFN4SRppwdZOPe4TdJeU0NcUuJSvACWC7auKug8I4sBnt6on2ZXZnW/m7UgIg/tKXvrR9\nvE1/6Wsy+97v/d6tjzrpqkwAmfyWWRK4WQkYQ5n8cyxNf/mWuySwJHB5JQA7eBY0J2tpzwFpGXlg\nOZvrDDzGwjfSolH+aBQ+5s5y5S/OXOgtIG9pMd7sgQ/bGA5X4UfZwvt60NubY3EzD3rxM+OX/+IS\nSMbkqI/gTgcXbMrboH/hC1+43e/qTSgHCeo/+WfZi9d4a3P2v8AX/mFcY9F1AtY+3lLSDjidIlaa\nk69wnbEK7zqcQcHZdxOsa2onbmdb436OO3Jgxe3j5U9O/DOd39rLwZqPfOQjm/VfctDl13/917dr\nBhyKYObaof97tHK3jOtnSWBJYElgSGApXocwlvdqS6DJmhRMnE2e4gEIAMGpRPe8UsC58+dZz3rW\ndsoOqG0yr1zulKo8JmlAAxBxWpPizas2XpUXB5B43YZCNkASb2iqi7KP4pcSM+Wr06+UsOK8Ss+l\ngJQujUKPpYRCZ/IX77V98nzKX1ukn6fYolAGZIBHH9uy2w1Q+TKoDwQAWUBV/MRLYfSL42eEvapE\nbk4B9AEtIK8TwhSj6nEqgCwqF1002MJcfQN4kX/38wKL+sFiyetPlLjokj95J8/AVwBx0p51yacu\nJ50pD53apHR1jQGlOuWh15kATyDUTv800aqemXbZ/cC5TQr9/bnPfW47Na5PKFsp8SlfnY5I9vVt\n4csun9W+hy+Bi44R+aZpjM245V8SWBK48yXQf/3Yf9w83jPj2FwsvQ1c+AGusBkIi1EwpQitjtxj\ntC4iSeVhCtjFGzoshZUNaBvFNu4nTguvHGvbsfrQj8dj6cUd4/+idUSDq66HU27SyB/ft4pedG+V\nG3/REyZH/dn9rj7wy7zsZS/blK+wDmxfm/Y0io/mdOU9L33mvYi/utHkb+xTrD5wOLjQeHSAQdih\nBmsRuLwDJXA6C1fDdNYwDkqEr/Exx+zkf7aHv3B5ikODPyO98VoZazIb+hSvX/nKVzbcf/fhA8pv\ne9vbtmusWkvgRVk0+KOL32WWBJYElgROSWApXk9JZsVfGQk04XKzGt+k6rQCZahTriZkilLKHTvO\nT33qU7dXYeRv4s2NRmniTdJseQIoABYFpROWdoPVYWfYSU71UvQGOiqLLloMXikGgRnKVmAGiHFC\n1g6t07GUhfh2+qETmrUxmtHbiJ7zM/MHQMoujUU7v8XAV7/61bOPf/zjmwzldeqV8vUZz3jGxjP+\nj5nqKg2P+oQCzqlhoI7M8KHdFK7XDieCKWC7GxUvzL59ysSrNICQ3AEuVwtQ7pIn2Xn9idLVKQOL\nJ6eJlUVjz3vxgbB9GyzCKFopo92BC4w+8YlP3E5Pe1WeUp9SN7rKT9734WRz2dy9HF3NQVHtQxM+\nVudqAdcx+C8C6+SVzOtbcmOFG++XTU6rPUsCSwJLAksCF5PAfj4+Vao5d+YvrjLS2OYY848wZatN\nZlgOfqNEMkc5PUdhRvEaLjmPfvVM11zGzDrFwUKuw7IpaXOyt7JcieXKIrglXpWfc6Qws2/f9dhv\n4dvCp9xj5fdxeKjN0o6ln6J/LP688ufVc4zW7RRHcXn/4X5XBxa48PurX/3qs+c+97nf/K7E5Le2\nzrgpm2PpM+8x/yx/LH3GoQ+bG+8ORbj+y9tc3uRygMHGOdxsXQKnO3RhU8CBA9i9AyL+Q+o1Prl7\nHmrHPh4vpeXOuMlrdPc0HIb4xCc+sZ0whjFtXrz5zW/eLFwurEy8TZr8/af38Su8JLAksCRAAkvx\nusbBlZeACbqJNH+TssmVMs7pR2CWsozS0gk7dyy16+xErAlX+SZ8NI5Nwk3Y0uUVZtAAWno1h2KR\nQhGAoWAECIAX8fLMOpWPZ6CFAha4pySkdKWEBfrbVbabTAFLMQlIAEMtBI7xjP408Sxv7ZGOByY5\nboHDTzL05XkX1nt9Ci8WBE69PuUpT9l4Ri8a0eHOOGF1AqV2p8nDaWTtTuGcYnTSi0+0krsy4im9\nKfUALScM8Oe0CqDlqgKnT1OGkpVyTO3c8yee2cdTuDrJrA6ysDhSPxB692FX3alN/eRETHXs6aDN\nXqSfNibu8B9tNd71jdPmPqal790BRunqv6jfjd+9vGc/8O/T73DRLPaXBJYElgSWBG5SAs0LNypm\nvoCzWPM0Y941N4ctoiVv/u6FpwilhIJHbIDbwDW/U8IyyrCT9pZwgZ/q4sI/vhnQG1lwBfyCTx/o\ndCfoPffcs/EQn8pNf/xMd8+G/Dcy8TXz7cvJU5ulZStzjEZpF3Fn+fzquF0xE1lMGeCZdWDhvvvu\n25SA1h4wKMWr7yMYT23+z3ZVFr1TRp7z0me5i+TDv8MjsLgx7xsWXP8DaxrrEesm647WIzYg/Bfm\nYRAb59XHxWcmv7ZO/osvf+Url1u+wnu3dIddPvCBD2xXo8Hq3i78hV/4he2DwDYywpnx4NmgzvhC\n9xQP+zpXeElgSeDqSWApXq9en68WH5GASTQgKDmll3iv/wOyLrcHbk2+lGRPe9rTNiANUMiXnSBq\nAqImY/nyq2uGowGsuFuIgsnkP5WvTkeKwxdFnrzKMehGD19AA2Dj9RgnKIUBH4oqJ0IBIQpaCljK\nPmUAi05aojlpCzPF5Vfvvk3SisMjJek///M/bx9DskDAuxPDFgXPf/7zNz7JvTLKM7Xneuj6rzhA\nz4KDUtdOOllTJjuhGjiqDJrKRKuwdEo91zzYlXfKlVKUbC2SvPJPGeo0KtmpY44N5dHS5/X1rEc6\nIw8enWgGoCldnQZQt3osiijy9Y0+qI7rpb/9t3Z8e8qjH6PujHYxxc1wPIorXd7C5RXHlP966Pov\nubKU4k6b2/ywAdHpYP9BCnybB8ys5zqF67/7umba8i8JLAksCSwJXD4JHJtTLjJHyJM1/8AaFJnm\nEXONOZppXpHX/M81p7vD3zxP+aS8E35O93ntH+6iiNqXPy+8ZR4/aMJUeIITexPEHAljOW2LN/zA\nMF5Pt0npdCE+lT9VnzK1K7dN/sKDlYd4lZ10H5J4CEhXNyyUwgrWgdfCT8rIs69L2fIoy8w8/Gw8\nSOcvLG22PVrl4zKT5vWYb+GKY2nlyZ315Ze2L1sal40/eesfb1/5PsJnP/vZbSzZoH/9619/dvdh\n/QH3wOnK1pZoojHjC890cUx8SeNn+W8UrqxxaLzB9w4sfO1rX9uwtLWLNQU+KYnh52xrEnjd/8kY\n0IZ42Rg7/MQDlynMv88r7jwTjfJUfsaTu//P+9///u1tNOsAWNOHtXzPg7K4tVHl4mnSy19dy10S\nWBJYEkgCS/GaJJZ7pSVg8swSxFR8UZZRyL3rXe/aFKBeOfeqD6UPQDEnYhP3nIjPm4BPpSnPoAVY\ne90diPHamhOvlIR2wilfWbvK0ikggSDl8A/UOPHaK+voArhOXwD/wE8uBSx/d8Iqa3ExAV3+jbnD\nz5SXtrDxXh6ueDxpByBJ6epDW65QwJ8Fwctf/vKz7//+798UwMl+0jomK+CbfID42qwvLGriNRqV\nL8xVjuLWqWK73BSuXCdUKNctWJzEdcoAn/vFlrahE83qED+NPtF2/WchZkFmYaac8ePEptcAr127\ntvFe+yeN28lfe/FUm2ec+MLS9Q3DX/7C5dsyPJiHX7y+dRLZeP/GN76xXTHgY3TAL0W1Kxm8otZ1\nEpXj7s2sd5+2wksCSwJLAksCd74Emk963gvnr3Xi9vHlmWnmLUpU10xRLDFwEazkxKq8cEZlwjgw\nmbczzPVwGfx11+Gu9q5AEjbHV2d8TRdNRp7oh2ngPDxRdMGBLFzlHn31SsOLsrCQ63i8WeTkK8Vv\neDX63Orjz0z+ohc/pVXuWLg09JQ3n5PnVGLjz/zdZjM6bPUpKxyt6pEurnD5uNPIs89XevIUjn5p\n062OU3RmXv5jtKIx88pX3mjLV5w2wsg2m93vqp9h0te85jWb6/BE46+2VJabH81j9U9epCfzycMs\nFz3l5NWfFJPGoXWJwyEUryzMiz/Y2Zi7dsC21hfWHv47bV4Yi+qI/8nT3j/rlzZ52+ed4X250sSj\nER1hfLvKiuKVwlvYB25/9md/dpO5NVP4/BjdaFXHcpcElgSWBPYSWIrXvURW+EpKoEmUy87JFZD2\nivNv//ZvbycWffzoJS95yXZaE7goL8FVnr9JfdIWz8wJevqvp17/Va40QAdopYiiGATo3R1GKUUZ\nBfQAP3ilkARuUqT2WpvXgCiRASbAx0nXLrd30rLdaIotZaUDxMARha3XmtjA0uQvvmurMDA1wRy+\nADXKTXebuovMSQ3g7EUvetH2ClWnF2s3eoHL4qorVx2M9PJMPsRNXvHhlAhFKAUocOskM3ky1w4g\n8fu+7/s26zQqZfTkoTrkRVf9xsBsq3iKXYskinG09RFrEWexcdeDizHANEA3+UT/djPxx2UK8yeX\n+iMwTd6lz77IHy355TU+k5srNmx6OIVASU5Wdx9Oezgp7b7dqWRXR7S2Ch/8ia8Zt/xLAksCSwJL\nApdPAs1J+7lgzgPN1bV+zkXKsTZLbcrCCN7OgQNgA1gJflJGPEUiKz8lFEwDa0lz4i9c5bVqNJSF\nocx3k6f88Y83fKJjPmQ73eqtD3OjK7DgP7hPuvzhNXU5aUtZR3nkwAAe9qdL1TPrFM7s483PKU8p\npeBBczCajPrhHmlc+fmVIR+WX1vhUhiTfPjjKznEwwxPfvinKVz+8grzlx4uKYzGLDPjZ9qs62b8\n0d6XqR5ueYoTJivYx4dXvSFFlq4YcEhBX8Lu2lJ5Zfizsz5p2fJzGfGZ/hfFlVe8foTNjEHrEGMO\nnu0KNGsLfasvYfqu5zIGrSfE78f8nod9OL64pRUXj4VPubVhn75vq7C2OV38wQ9+cJO9jRZv473p\nTW/arhyjOD42fqJ9UZ7Kv9wlgSWBqyeBpXi9en2+WryTwJyY+dkmV1kfOLzaD/z8xm/8xlbyFa94\nxQZ+fNAHuJ2m8ibgJmFxTG75Sxee/tKnO8vKK0wBG/ixy+y0AyAOqFOYOlkBKKScCqQ7EQFEAejS\nnO5sUWChoIyyQEdhIE9bnfx04gN9MtoDKTwDMIy0PbgBxikiA5R2lyljyfKtb33rdsIUL+hPM+kk\ni1Myk3fmqS/FSQOuKKmdovTBL3JD6wlPeMJ26tYJ1LsOStEWSbVR+WQfb3seqhsA1U6LI/QtxgBn\ni4w+JkDZmnI7Hvf0qud2cesH/JDHMTnHa/Iq74zX3lm+POTWmKagdzoYuCcnJ6ItIN2rbHPA2K0c\nd983xXGXWRJYElgSWBK4/BJoTsqtxeaHU/OrvOY2BjayyQf3eQuGa6PURp/rAmADylP5KGYpPuWx\nkUshBTeZn9rADoPBW1n4Bs0UlvE65zD0KXQpcSm3XIUE5zlJa07EI57NpazNX3XDGDaw4RlYw2Yl\nnlNwhjVmncnomJts1KVOm8jaDLfBgxTR5mdtoZijgLO5zMJabEpXtOSDJ5MR/Alvkk39I1+b2Xia\n8fyFpcnLMjNNXPnq29n24uQpvriN2ImfWZcss56KTD6Km240uKz641U+WNHY8naYE68OB+g/b4f5\nJoIDAcZPZtITd6r+6pNemerdx5EFixd9aGz31p1x2Jtb0vWnt4/8P7y9ZbzBt4395Bu/3H398Sbt\nvPzSmfi+Hjr/F+3Zt8ruy0vXvve+973bR4BtuBibPgDsegft87/PxH9h7p7mTFv+JYElgSUBEliK\n1zUOrrwEmkBNmvzTJRwg95Of/OTZb/7mb24KQZOwXWcf9wF0MybuSesYeChv+QpzbzRpK1O58gLn\nFKnAMPAPLPA7/QC4Uk7JC8BT/lE4AheUswyw69Qu4AQQy9spBmkWCHaqASjg2u41AHLXg0AeEAkg\nK1ub8SlMJlyWEQ+ozSsH3AmlLqeIgRwKNjvkTOX4a/t58TNN/sqgo17KUApol///0z/909a32gAs\nOkXJBbaSW+VrF/pM8ZM/9MnVwkP73AsMoFqMUOJaADmpwKXQRlN5tMiJDO5kk0xmG6Z8xMtTnLFL\nXtzSLOb83zrNo7+MBSeQKVxdzWAsokFmxt6xetGrno34+lkSWBJYElgSuNQSMBc0H8w5u7g5J0xs\nIr03VGz8UXSylF/SKL3gHspMfrQpRL3eb4OQIpKiEV6i7KSAgpXMVfKiDQdQlpnP2BRnkyedoz68\neZvpP//zPzcM0SYkXAFnlI8Lt1GA+gho+MI82WZ6Cl71ZCtfWJ2TD/WLwzu/DVGysIns7RP8aC9Z\nuAOTItCGvLzextJe1tzePC+MV9iHUo5ymIyUg7dmf+GP0Vbl8QIfxaO8/Mmq8PVS1zf/478ype3d\naIiHJx6uQSc7+RG3N+Wb8ZWRZqx4C4vSlfIVZjeunL583vOet/UtnB5tclKe0d4pm8LJQZn81b+P\niwd96f/wwGFtAZMZ58YBfrj608lWuNmBBWMQfkafLFl8oWds1MbqzZWe2fNW/MN11QtnGsPkqi6Y\n3/8Cf9UnTRv/8A//cJM77Gmz5Sd/8ifPXvWqV23jlcwzk+fiolV4uUsCSwJLAnsJLMXrXiIrfOUk\nYAI1YTaR5m8Spcz82Mc+dvY7v/M7mwLtjW9847brDFzvd0BN8oyy2WMCra592oyvPJrxGE+54oEK\nu9EWAsA6kOSVN0Aj0EGhBUC5J4pikCIWCAJ4AWHK1RR/aGqXNPEsP9BBQdtpCosQfkrF+I6v2a54\nLw5PeHDq1V2vX/ziF7eTFEDbm9/85rNnPetZ37w7V9mAW+VnHdUrrfjq4+ZXZydQAVonCIBItLWD\nYq+d+hR70UaXHw1ALbrqVD5DpuRuvPhwlkUTMEdGAByFqwWKxQqj7J52tG5nt/bjPZnjN3nlap8F\nQXnE8xdvDAD2ZGTBanwZs8aosSpNGYs0siPHTtaor8UGmtUpvvr4l1kSWBJYElgSuBoSaB7gzrm5\n+OaGwqRCsedEZq9P25y2eQ0zmfPNOTAOBSELG5mz5IEjnEClhILD5LVBSBnVlQTodw2Ak50UU5Si\ncNc0eGLRpthCO5zSPa6wRbzDa2igReHqrSHKuTAZHHNKoZkctA89rlONheMFf3g3V1NEUzT30TDy\n1ZYUr06wTuWoOuRJuYUmRR2e4Eg4iDX3y8NUrzA5eKuLghddfaBNx8xsj/TCtS1euMXJh7/iKid9\nmmjNOH75jqXt4/f0Zjh/fEQXDvJGljft/u7v/m7rG/jUXb2uOoOJyDITFqo8vmrXMR4rx63P+Y1V\nCnL1w1/GtTFH4f7AYV3hxHOYTh/pP9jWeDcOKPz9B5JBdddOdUwTj3jgz848j9Svbv9l/yltYvyP\nbVY4ONPY8/91IOPtb3/72Ve+8pWtjDa95S1v2Q6FyG/sntem0h4pz6v8ksCSwOWVwFK8Xt6+XS27\noAT2oGBOnkCGXdAPf/jD24QMWLzpcN+PnWf3GE3wo7pJa9I5xcrMP/3yK8/O+GM0gRaACVgKJFNc\nARqUjSylLPDsdCzwREmobcoCfdUH4AIilK0AMWuhIQ4f0u0UAy4A/12Hk68Ul/zA9NwRjtf4ry1c\nvJLrfffdt+0uf/3rX99AjbteX/rSl579wA/8wHYSNxobgw/KhD+a+/jC0rOApPZ7VY91aoSc8EsR\nSoHuNMsEYsqqu/qrTzjgWRr6FgcAqlOuFkvkT4Y+qMGSEfoWDuQZvfjlxu8E4TP9dvDv+SaD+E4e\n8SkcoJ7lyMsGgb6woCQn8rFQ9X+y4AKCydl4Ao4tWI27ubBTD7rqiQ9xez7ELbMksCSwJLAkcPkl\nMOea2drmBenmJRiAYo9yyXxkzqZ8NffAO5SaTqZS+JmHxIWzKHKUqZywdMpHSlDzmTnLXG6+M6eZ\nu2AAGNJbRuGA+JIPPqPg9DYOPIEuGiyMATNRkCpLwQqD9iYNuuoMu+En2rnJQ/thMPThQxvG8CIF\ntDZKT07qk07xpr3kJZ/2OLGqrfATfsJQ+MMHy8/iRzu4FFjlwZN4PFan+tVH0as+cz8lGKU2xZ78\nzL5dyrOwA4xL0aadeA1HHMOoG7HDj7JMvGyBB8P5qyMeKsNVbs9T5XLLL5x/lmlsutf1M5/5zKbo\nJkfXLL3gBS84e/KTn/zNk9RoxGs04kMas68DfeORfHKNLdbawH+A3GBm+Eyf63/0KXwp22E1Y5g1\n5ilg9Qs+Ybh4uc7BQ3/3/AjPuPPKPpTSxULGs/+SwxDaYiz537DWLdY46jfOvX33jne8Y1N2GzcO\nZPz0T//0dsrYemHiz3ieXNxq3ift5V8SWBK4HBJYitfL0Y+rFY9AAnPiD0xFDhj2WtWHPvShs3e9\n612bEu2nfuqnzp773OeeXTt8aGGfv3I3484JnH8/ee/D0Z7liuMCU8ATQG0x4YoBIJbfQkMa4Gzh\nYZGhjSywCjRZcACpQBSAHNiQjjYDPAPOgPZdB+Ur8G/nGwCjXARuyQbIm/zjOZlRBFO++Xqoj205\ngUqmwCXFtleXgLlZfqt897NPVweLX20EGr3y7xU5p1mkAY8WSMB8rwTWTuTlQfcUbfEBZO2wIHJC\nwWla8iUXJxSe8pSnbG2iqCZLJrrKzzB+GfLZ17sl3AY/yQXvLFBbnLGz5700Lgvs62eLCsp2QF8f\n3HPPPdtrasZe8jHGWEZd+qc+Ko/4/NV1G4hpsbAksCSwJLAk8DhIwDxwzJgrKFPMQb0d5NohV9tQ\nMFG8mH9gGIolCiWKV4oZczPMRFFpvocpnHhFp1OAcA8s1JU4FDx4aY40/0ebMtfc1pwFV8FrThb6\nkKsNaXVRbFFq4sX8qj6YRl3iu8MVv/BauAHdsJ36wxbiyYGSDf/mYkopLtraKF1+rvzhSe1EyxxP\nJm2+443SFY7Ch7aRIx65LN6au+ubsIJ6GLyrT//gzUlPJw8fOGBXeBQe9HEpil405ccP/vjRr92d\n1qRoIy/84pHMKA/1jfqTh/qFs+ixDFd8WGTG86PBcIVL3yLP+ancPgvZ49/bYBSv+odsvQkGG1MY\nak8mHrj1GxemJ59pjAn9SMGvjpStxrTx1wljMvN/0BeMvia/awd8TobcsL6+CO9PGezbV1r87MPF\nX1R+5b+Ra0zff//925t1yfLpT3/6plT1f8U/eZGL8fae97xn+/aD/oZLfXtCfmPYOMjs2yf+VvNe\nXctdElgSuDwSWIrXy9OXqyUPUwIBTJNmE2ugAPDwatX73//+7dSre11/5md+ZgOAwBDTBHxq0i1d\n3mN5Zvo+D94mT9IzldvTFFYOIAWsLBIAUAsMpweEgSwKQukWI6wywCuQCzSzAF6AEzhBE5gD6tSf\nohb4dnqUAhaYoXgMbMd/fONPWTTwQ2FJ8frlL395A/4WLgAm5TY/BW9lopFb25OFNqALYAJcTnEA\nW177t7BAy8kQp1wtWiwSLIjwGI1JM7/6SudXB5BKrmhTIFu8kJ/2Gyfq4AfskgF69Sl6bHXwl08d\nt6vR/0A5+fp/4F8bjZtOBuF9tk2bgfnu9vUKnQ0BCzULihe+8IWbvPSFcsaaPlRGPYzxpB59aEyq\nV95pkuWMW/4lgSWBJYElgashgeaE5gdztXmKIpOClbVBat42B0kzd5mLYBhzNr/To2jASOYgyioW\nHXM/PAFHmaPM+xR6lILecLl2UEzBT+LNfejASk7NseYwpnmOEgxO+fu///uze++9d+NPHjiiE7TK\nwV/aYx50Ws8GMgUYnIaWuszPtTfezaXSWWmUmepzTYI5Wf3SmDAIWtOYc83PsJ16YT4ysjkuTpii\nWrvxLi/bvN2cjSba6tMWVli/4dMBAZuyNuThKrKGK/SN1+zhNrLAp7ZoI/mmjKRA06+U6g8c2gnb\nUrTqk94+0r/1zWw3fvE5rXzqZ6VziysfXhpvXEZ78m8RF/zRx8aot+z+9E//dBtnruFyGAEuxrux\nxKgjOYZ5jVXYnhzIB6/4I2eyIl8HEIzllKtc41ge7dOHZKw/9av/hPEmTAnb6Vbtj4/Nc/ipzf0P\nS5/yKE3e8udG51a46oHRP/GJT2xKbOsBV3L4QNkP/uAPbrI0bow/ymf36X7wgx/cDmloJ3m/6fCG\nI/mT4zS1YcY9Gm2Y9Jd/SWBJ4M6XwFK83vl9uFrwCCUQ6DNpAihNqMKAChBoF9TuMyD8cz/3c5vi\nFfhsop1l+IvHWmn8M174Ikb5aFS+Ogrv6ZQuHjADxigGncxkAS+LBosIAA3wUgagA0RYixGgGRAL\nYAWUgcMpN6AEuAXS7MgDuBScwtLwmcWTssJAMYWwEx52+AFtCwcnRV054E4rctYvmdnm5MJllW2B\npY0AOEWzMoAjZbkde37gkokX/klbOPr58SE/AOdKAffUuheKPND1YTBj5NoB5AOn5DaB/Z5+dNFk\nkvMWuE1/yJdcnUrx/2hRk0xrgzYlL/1sIQTYfvzjH99ep5T/7rvv3l7j+uEf/uFNCa7JZK4OgNmi\n0NilILe4U6ZTSIkn2ZHtMfmWb7lLAksCSwJLApdXAs3XXBZeobiDBfowlDdfYCFYgdISVnGakvXW\njrkG/pFOuQovme/5KbLMN5RccBNsQWEFN1HUwBfe4DD/R8d8GAbilzc8gx4lG/4oQWEJG/0UZ+Y5\nvNnAxRdFWHMq/sy78Bmchi6eUkRSqlEksZSq5l+ykC7OG0DyaGMm2RWeLn6b5ylAu9YANqRkhaXY\nNkZTBqIpD96lhQ3wao7Hm/k93smYQtxmvE35cCZeyJBym1zJUB3aRVb4Iwv0tVGfSwsbKI8PfRT+\nE2bQSa4pVqXxp0AOD1M0Z+ERsteuFLbwR3IMiwjn3yo88SMPPvAP91hz2KDWPq+8UwL6AC1MHe/k\nYxzqU+MIJuvDcGQJ12sDuaBNJjAb+RgPZKrfyFQfcdE3jo1hrnbqe3WSe31YM7SvNtbOKYOZvs8X\nDW5l+KPD/3ANevrWgY53v/vd21tW2keOr3zlK7f/uzGjLvnIS1741FuO2m8N4sNarUEmX5PfeJzp\nxS13SWBJYElgSmApXqc0lv9KSgAgCRAEiBMEgPIP//APGwiyA2/n8+d//ufPnvOc52yTsXyVrUwT\n8u00CeMJyAXwAVuWH2ADfC0eArnAGLC2V7wCXWSV8pULuCunrYAZEGdHnvLVYgHIBXYAHHSnwRN6\nFMD/8i//cvaFL3xhU8wB3F5rssP/8pe/fFNmAr7Jc8qXv3jgSVv0GeBKoWt3Xx0AuwWDEyle3wMk\nlZNWn6PFzrA8xeNdGuBqEeceNos4dVAIzteXKF1ne6MRr2hNv/DNGPQuUr56axMZKZfd1yk/E+19\nPcIWm+5ec2LGGNB2i8NrB6DaIjC68pPxA4eTJ+7P8h/yCiH6lNT+R3cflK/GC0CPPzT1n0WoRa/y\n+s7pZ3WQrfbEozIZcbVVnPprg7TaX576X55MdCs/w+XJrZw8aHHZ6q2e8lWOu6crz7G4Y3knneVf\nElgSWBK4kQSOPYP2ZfbPn336oxGOr/Pqns/G8uOleGU9fz3fYRI2JROFlHnEnGW+pnSUj9LVvGUe\neupTn7rNL5RPcIznNmWgDUbzEKWoeQ/d0uEpSi/5zF0UcpRWMA9FDcwBR6EVn2EnvKY0o9RVD9xj\ns5FVD3p3HU4amvvgIWHtZNGEL9g5b1LaUdThjWKTpXzDYzKBj9QB8825s77d94O6YD9KOJiO0rVT\ntuonD4pHGE17xaGtXm3Udmn4xys+pOMxxbUw7AYLmvuTNV6UT354YcWTITvNzK/MNNLUD6NSJqZ0\na9ygKx3/+GW1Tdu1D2ZUlvKWUlz/svxwj7ZPBeysG929wZ+6a5t6Gf3nPlJv2cFL5Gjd8bznPW9T\nGuoDvJAt/A5bkRk8D/PCZTYW9D1Z4wl/6Ovv+lw8LKUvYXYuawwbb+K0TV1kw5Dh3iTnY2n7vLci\nXH3RmvXWNnFkaxw5wfrRj350k4mPgFGmvuxlL9vGsf5l/D/geFdgOWVsfeR/Z/3hdKzxQgaz7llv\nvCx3SWBJYEngRhJYitcbSWilX3oJzMm0xppUgRaT8d/+7d+eve9979sUsC62d+LV69EUTplTNEq/\nHVygBIgDeAP7ABrABqAAaoA7QMcEQAFK4IsFIKVb1KDFAs0MICdv4BRAJSMADmin8GxhIz8Zkxt6\n6neymPKVvAFwwMcr6EBSYLMyygV8cgEt4F2faZMFl/bgx0LIggGQBKhPAcnZj9WFV7SBMycKLNx8\nRAvYtZCy0HJiE7+AeCcvlCdzdU1a6DHxfT30rd94eLjp36J03Re9Gb/np/CUq/zxoP0s43XIL33p\nS2cPHAA/QOo/4cMP+tkYmGX0B3m5O+v+wz1bZEYR7+Npz3jGM7bTwUC+PmEsOuR34oWMLRIpy9F3\n6sMYqg781I+1cYaLQ3fGCzPxyV/e5ID2scVSMpCPneFjNKPHPWVm3afyiJfvPDrnlV1pSwJLAksC\nj7UEeradV+9Fn2k9/6JZOWF4BKYxvzjxR5EJz8AjnuMp+myaym/euuug1HQ6FbaAD+AEeaMLlzgF\nRxlj8x1ddJxwNIeVDz3l1EWRBeOElcz/6KT0xCccwcIO4uVh+QtzzXNowSzoUhLJp9y+jHkIH9xs\nNIXNfyxMJx9cRBbmZ340Ge2QP/rC2stOXrRVPu2ofeSBvjCaaMOHwtWNrjgK6xTX2ooWHlj55cvg\nN6MOVlzxsx/KlytN3drBpUTVNylKhaUxeIiucsXHi7iJicnEmKFQ1j/8aOun6qx+cfpTfYw2z3EA\nM6KHvnHr1PMXv/jFTQGofmPAlRM2CIxb9J1YNt4pWmFeY1NZcidDbVEnTAqLo189/MZwila4Shu0\nRZp2wGT4VZd2nDLqOS/9VLmHG1+/78vjoTTjyDPA6dVPfvKT29tWcCTltTUFLKlPlGGNV2shOBW2\ntXbwbPCxX1ee6dtJX93CyywJLAksCdysBJbi9WYltvJfOgk0Wc+GmVQBIwo8Hzuw++zkA4XRL/7i\nL26XrgPv8u0n5OjcbhNz7QT6LAAANArOTlqkgLWLDsTJB3QBYIB2Ci+gLtAIsLABUnn4ATZWOaCP\n4hXwoaQE9gC76OELUMLL/QflnF3+r371q9tuvjtjvRbkygFl0Uvee/kG6tEB6vElD9AEuFo4VOep\nPsILAB7YbHEB5AJmrkLwyjz5AKpOajqJafEGtGp7fHHxFK3qvJFbP0Wn/OL3caWd50avPMdozDzS\ntZtbXmHytPh0XxYluXHhSgj3rlkU6FNtZfSnhTB5Wbi6koFSlXJafuUsIIB/ANiY0m/u3nOS2IkD\n45Myl1Jbfv76/xiP6o3f2Z7itSH/zJdcxfHXdm0RjlbhaOzTxCsrHq1kIX5vohkf+/Rj4egeS1tx\nSwJLAksCd6IEbvQsLJ27fwZ73sIilCxOCZpnuDZIzUFe1TdH2wCGQ1KQmXfywwdt/FUXOZp/zPk2\ng12FZENQHOVVm8j8ePIcp6iDedAIX8mfIhE/bPOQuQxmSDHGjx5e4AaWaR4J37ThnXJNveZe9JRl\n4Rw2hV/x8rD4DMehh194D3/cOY+hD9fEC37k0zaKPtgovKXtyXDy3zynLvM8RaHy8tSnyqkL3+rL\nVa98eMpVRhu0Lzv5k6a8dtde+dCvbPKRF39os9o2/cmFvKQlI+NOGr7RVhcX/cbDrEvfqovRFlY+\nbU3ZKQ3+9qo75SvMhb5y8hjHxi7+YFB5Wbyhoz48GEvGuw0FFv41zimcs/M/EG/qYdHJ4LE+LW66\n0h9LEy/VKxyPXP0Do/tuhNOuTgFfu3Zte7vKG1auFLEGmcZGgP+3q7CsPYS7V/eZz3zm9r+c+fmr\nfx+/wksCSwJLAudJYClez5POSrsSEggANXlrND9gZdKmCPzABz6wTcwuZv/lX/7lsx/5kR/ZTk3I\nC6ScoiH9djGTRzwBLEAKkOFkB0UZCxQ7gQrQORUBlCsb4FEG8AM6udKANYCPO+WojDggz8lGytdO\nv1JcA4MAsDLoWOg4XQIAeSUdD05UvvnNb95e5Uej/PFTfcrjNaWxNgKjLUQClJWTziiHBluYq+2U\nhWSBL8DMgk5/A7MUrl5diqfAKvrRI5/i0awO/osa9OI5ujdbdtabP7rC8YxuYXJpbBsjwKxFqHuw\n5PdfcPKbqy8ZY8KCipxSulpAkAPlLKXr3YerBabMLC6cMLCxQenqP8fcdVDMeg3UZocxoy/l1b94\n058WEft+jf+NyOGn9irDCBc3ZSAdn/VZi7St0Ilye3poJMtkN+uTvzr3ZUvjMvF4PbROvCaH5S4J\nLAlcHgl4HjL755240vLPuVScZ7U52tsR3sSgeDVPKUc5am7q7lbhlJspyOSDZygEzVvwgzDs520L\ntOAQb2CY08xv8AcFmDmP3zOf4itrjjJfwg/NJfJRjsI7eKD0tRFM6UoJxBWmXIsmHlg8oc3FY7zi\n0xxFaaYs2ilWp4teGIif1f7kh860eCaX+kNYu/FSPjxoHxnBjmFF+VJAVpf5mdF32kCONlZd34BO\nfUo+5vlrByUZeQjjsz4iA/TJW7vVUztrj3qkCUtPkS2sHrRqm3x4Y7W1+b961KW92l+7ySAMoo87\ntVsZ+bRJWeXUAbeogzxSjuIF78YCi1d8GcuugTCe4U48Mfhj4115bWocoTEVq+IpW21Wz3GfzHLR\nwFO0q4urrsL5t4jdj7KPpZm8zLrJSv/4zzq16uNkNvL9N17xildsV5d5FpBL/YBv/WQzwHVn1npw\nKLqeHQ58PO1pT9v6Z9/GWfc+bYWXBJYElgROSWApXk9JZsVfGQmYsE2i+4nUJO6E3+c///ntxKsJ\n3cT9K7/yK2d2Qds1VW7SCBjs6T3eAp18TT++AEXtBeydYHD6lQLsgcPr5E7EigM4M8AKGsktgBmg\nES89K96iwi48UH3tAK6dRHGKVVh5ecmRnL3y87nPfW67dkCdr33ta89e/epXb4o4QArwTObS6wPA\nVzyDZhZtZt8n1SkNTUZ5yj3t9xqXMUAOQDbQ5qu6lK5O4wK16ojurCfa0UW7fPw3MspHj6ts5XMv\nSmPyUJn4Ey591qOP1UMWFkleffvYxz62LUJ8ETZQSgmtHGvhQF4UqE66On1k8SM/patX5Sjf5WXI\nmqIf6KXQ1fcWJE4qUbj6v6GPP+PPos14NFb1hZPGlK+NHzTxjO5sS/HFCefnsmhaNHEbrxZL0S5/\nZQvjLb+0jDh84CcrTXx2xs9y4plc/mN1iF9mSWBJYEngVkjAM+YiZj6XLpL/vDw3eq7F07E64RbY\nhGLUnOMuV89v87L52fwBZ1CSptzCS3XCC915am5xgtMc1klOcTZdueZB84JNZApCyi1zZBu08EHK\nVnWYN2Ae85T63Z1JEZbSFo4xd5kfWfMeHptv8Eahx/Kz2pZVt7zKdOKVgg+PFGpZecxRXDLkPyZL\nPKM5jXxkRc4sHuTBAyUqmVBAkpm5U5o5M0Vj86d5UJx02FJfdYpYHdLct+vNlu/5nu/ZcCFlIp6V\nnXLAjzZod4pV+Ron+JeOZopFMqkd0qMhH5sRj0dWe9WdLU27U74aO8YKOWg/WbDC8lUP+njM4t34\nMS64ZECGxhqlq81qNJRnpbN40RZK1rsOG9PeIIKBXKOFTuPJWCIb+VJgV/dsM5qZ6uFmSi8uV3pp\nuZV5tN3JQ3yIIxsn393R+qEPfWj7DgNZ3XPPPWdvfOMbt6ut/Afxq3/JgV9fKuekq1OyML//uG82\nwLhwKDryzrof63Y/2nJd9JcElgQeGwksxetjI+dVy20sARO2SbSJtMkV2KNwogB01YCdaK+fvO1t\nbzt79rOfvQFpzZKfjUblo3e7ND2+Js+Bj3gESIDqlK8WMk56AoRAJlkBpJlJEy1At5197SdDbmBP\nGnDYwsg9SgAkhSxgKK8FDIXdvffeu4Eoijmvm7/mNa/ZTlheOyht0avf4kFZcTO8b198c+VTZhrl\nAWaLAx/jcGpTv5MJkOyEa1cLULxrjzJ4r95oFz6Ph1n39CubFY/Pyas0dG/WKIffDBriol+dxeu/\nBw5KZ4rwT33qU9uJIosjHz6jSNV/QH4LM+PENQSu53ACCWB1Ytn/hfKV0tWCgDHW9LXx5V5fHz5R\nr/GgjHu4+C1SLPjw4aNm+oNBS75OMNQOadOvvWxtTI7lkRYvTu9Y8FgUA+kWLfWt/ExyLzzpbRke\n/CkebUa54pTNShO/pyueqcz10PpdElgSWBL4lgR6Dn0r5vbx3YpnV+1Dq+d4LfRsddqS4hVW8/w2\nX1BGUbh2r3vzNFrocHvm2+yDN2y0UpzafGYpwsxPbcZR5FFkmW9sFlOqmpfgIm8KOTWnTEo1mMab\nHdcOeIWiltJVOfHomDfRxI9nv3lmKnjw2Nw0/eLYTGW5LHpoZZXNSGPEsYXFTX9l9nGViy/zPowA\nM3HFx4+21B6yhg2VJyv99dnPfnY7YagMmdx9eBMGpqAsJy+KV/nVoTxZ1251RJ8M93M0vpMFP1ub\ntHUa8bOd0tQz86u/PPzayhonxowxAjfof3GUedLxjP/o4YkcYGBtZo0jeW0oU7r6CCn5wJyZeNRm\n48imAkW1DWqHF8QZ42QhT2MpxXOyQA8tVlwm+sLxqr3lkZ7JnzxyS3+03erPVT+eyRBOtVZzWEa6\n/5+35dzt6nkAz+2N/rPOsRFA8WqTxXPD21zud7UR0DiuTjQe63bv+V7hJYElgTtTAkvxemf22+L6\nFkrApM2YSJtMm8i9EvVnf/ZnZx84XDUAGFG8umrgx37sx7aTC8oBYntgEz3u7W4CE7VduPZbeFB4\neWXnP/7jP7ZXwgFMbZYHsAR4hIE94A+4YYHAaHVCAEBXD7Dp5MddB8UaAAncADsMuhS/lJ6UfeTP\nuJ/JK0M+ykQxlty3xMMPurVFXO3hF1/ajFcXo/+kA85A2P2Hu2aBX697AclOFnjt3etHTmBSHqKT\nRSe6ubO+6d8qPOenvLJEa59dnlNp+7zC+NNG8ndCw0IBKLezr8/0XSbagL8+oAB32tVJAH32C7/w\nCxsg1V8tpvRv4NXrWk6wout/8oIXvGBTuioLwEbfQpVym9LVCQ/jiILd4suYsMDFs3j/Q9ccUObq\nIyCaMtepBHTxwSSTZKjd2gxcizMm9Wd81+/+28a4xbeF0rXDYtkC0EI52vIy8Z+/MSSsflaema80\nLhOf10Onf9FgLpr/NKWVsiSwJHAZJdAz4la07aLPmYvWedF85/G+p9EzWxlp8Ij5wVwtzTM7Jaf5\nRhysYM6jFDOvmUNcb2PTj9JVeZjDsx9N5czxlH+UY+YMmIbrZKE4YXMLZS9aFIrC6jY/wQwUiDaZ\nzbNommfxk5y5+ZOBMB7YfZq42l16eXInnXBJaZUpT/Rm+owrfj/HVX7yUh7tyxyjZT73Vsyf//mf\nn73zne/cFOfmex8yoiCzsW2eZqo/OtHNlV6e4qZbWuULzzx7f+2YeZUvzB89ZeVnjR1jKxsujp6+\nR4NLOQ8DU76Tl1Oy8Ie3hOAnuMuYVY/8xhoFq41usrIOMcYcBkiBXzviU5h/hssT/8fSyjPd8s+4\n/BelUf5H6k5e+MkX/nQ9mY9pwZP+55TSb3nLWzacSAELxyWPeFbW/9cJ7I9+9KPbgQFyd0jAeIQx\n/Y/ln/VqQzQeaXtW+SWBJYGrJYGleL1a/b1ae0QCJtr9hCwboA4A2Zk3KZugKYZ+5md+Znt9BaBu\n4geOMk3Qt+PEjDe29sYzd58mTDYWNpR1FhZOh7D8lLIWMCywCcSkeLVgAS7JhXIWEOokgLotQoBJ\nCxKKTIAS4L52UHhZ2DBOsrhvyevtXgOyoKJ89VVSedW1B/l4FsedRp3F5RfmZ7TPaU0fNVCnr8UC\nagCb0wX4wxsln3qjNfsdneL5o81/IzPLlXeW36fPtPKf5+pHik7K8wcOinTydyoIOO2VvmhaQJC9\nsU/hev9BCa2Pn/SkJ22yd+eVPtO/8pKdBayTGgAs2TnR47/i1IBTwpSoKTstTp0opmyloKXs1Gfu\ngHV3Mp4sbI0nC1qLEacRLJApSJ00vvtwOsapW2Xwr33y48m40j7jrvt5lZNmsaJPLXrUOYG3u4XV\n539NyU6py5/ilXzk5+oPYJ+c/A8YbTZ20a6tp/okWaNT33LxVJqypYub8afo3mx8dd9sudsl/6Mh\nk9ulbYuPRyaBO31sP7LWf3vpx/q/0rPr2zl5aIx8e96O9V15puu5D1d4zptXPD8poihIzQFOo3r2\ne0uC9faMOM9uc5pnt/JMp1kps7IwB3rqbI4x/4s3N6hDvTb2KM8o28wB5ijYprlAvvh+aOuvP+OP\npU0ZlD7j0NnHF66O5qvilWeFZ9wpWvv6ojvzF1dedTaPFbfP41QhBeNv/dZvba95w3Mve9nLtjmd\nX/lp4nkfJ6wdx9Jn3umfPCWDU+niz8sz09DVdjYF/qnycCPb+IWp4SH3CcMh8HW0YU5vGbmmicIV\nfoGn4BwKavmSl7qZwltg/Jxqe7zLil5WWFq8CO/NjdL3+R9puDbgyf/Y/9qdrg5owLf++7CnawK4\n/qvHMHtthlfh3A8cDtco7z8Lt1K8OuQB62aqW/g8mZR/uUsCSwJLAnsJLMXrXiIrfOUkAPyYRPdg\nBTD3+vOnP/3p7eSlSd5k/pM/+ZPbjijwwwQ056Qs/nabmPf8zfDklV9acfzaaIFh0WLxAjizFjVs\nixntBnKyZEoBpiz5ccmbQZ8yDNABjuwsO2VoR7/7cykLAXT3NlGMyuP1HzvR1w6KUAua2oEePoVn\nX852bBU/+DPb5MQL4OvUgcWYhRdFI6WhegK6KeGST7Qn3cmP+PLOPHt/ZYqfdPGZFa9t7MxTuWOu\nxaBNAx8eAewpSsmRAlUbLRTRSx76s5OoXPV47Z/S24lfsiD3FrxOr1BWU1obBxak8gG9dx1ONKfY\n1f/4sMig1AVyLZgtUPW7UwYUo/Kj7dVRJ1xd9aFftMM4sfiQt2sGLHKMK23Qlk6B+P/qV7wZR64m\ncF+XkyPqMC7x4z9OuUx5rF0WfpSu2kAB3BgjB/1EThSurj3Qhtrs7t9rh7Gi/q5TONYfxfkf4KFF\nmrHVgqy+VV/jp7jK3wp3P+5uBc3HksajIZPHkv9V16MngTt9bF9UMrfzf+CR9sEsr52sOK5np2e8\nzTKu+YHxfLYRTBFKqWIesdloDjD3mVvk8az1rKZY6YSs62VYc5i5xnwiL0ygvHrMM06y2oyFXxjP\ncPzISxkG/3D387R0ZralMLf2Si9ce4vbEh782ecvrfjCp9yZD/0ZnmUmv+XRtmNGG2da+Sd9G69O\nvP7mb/7mNn+a0yle4WvzaLKLPhrH2n9eevXKsy8706JxzK3eyldOuHYWN+vZ93O0y2vup6yHteAh\nbwvBUfCK8Wq8qQP2oHR12MB3JbxlBFsYu40tNFn5c/NPnuIhN17KO8PlyZXnlKnOU+m3Oj4+4S6Y\n07VW3oYiR4ckyMlbUzbl/YePySme/G/huM985jNn733vezc86lkA63pTi+zRYJJTZc+TSXmWuySw\nJLAksJfAUrzuJbLCV04CQJJJdE6s/JQrFD8Ur3ZEgemXv/zlZ6985Su/qbAKBMyyBCh8u5kJkPiz\n8RvPtaXwbAdZWdR4Lc+Cx6X0TiwCkOKcEgZmMmgAmayFEQWZ9OKAIiCb0skiiDKNvmLS5QAAQABJ\nREFUQrCTmOpK+e1EJZ7t/L/0pS/dlGi98l8b8McGtornqhM/rDwUgRR/gK46KNEszCy68AF0ORXq\nWgNAVzn1Z4QZcflLK98scypPZXJnPnTILIU1IG6x18KkvLM+dAprs36hQHVym8KTnO8+nBgFTgFV\nMpTfQlWfBmadMEWfLABR/ULpKq9T0BTvlJXyA73+LxTm5EbpamGKT8ai1CkOeSl/gV3AmdKVMhRY\ntvjCiz63APGxLQp3954xFsQUxa6l0C/CxhS+lXEyCUgWT06UqtpLaYtn9eDNopkMLaLx47SEtlqQ\nS5OH4lUdTpUYSxnjRjk84c+YxAMlrdO6FPWAu3IZZcixvhKPn05JGYfGlxNXTmuQ2cw7yxev/DTC\n1ZG/PKfKxEfpe3rC+7Roz7zn+fc8nJdXWvn5j9U94/e87PPL+0jN5AetR6OOR8rjsfJ72RzLI262\nT9tOhWv3qfRT9KtD+WM0zis30yo74075J4/lEXeMRnmPpVX2ZtxT9ZxH4+GUid7k+xidY3GVvR3c\ni/AnD6Ot+YXN1eYd87e5xFwn3fPUXGR+cj0O5au46uKaHzynbfLCGhRalKxdJWBeEjYfNdfZ+IUX\nPJ+VMS9Kn/MDvjLxOvvIszyjXHmKy63MPn/p3Fm2/KVLY6ujvPFaevGzfHHRklZ65YQnLXnLU7no\ncKNRef3mTSYnXs2f3jCheHU1kc1XeBB95SoTjehPtzqKE2Zm/OSv9H2erdDhZ9YrrrKVS67lm+X4\nZ72lFadPzf19RwD2gLvgD/Fwi1OccDI5OH35ute9bjtsAIsyjYv4iK/43Nc54ycf4o+lRS86M09x\nj5eLN/9JGMydrJ/85Ce3dYj/s6vIXvziF2840X+ZwXvt2fvhRrjfGu9d73rXhiXhPlde2AQwLj0H\n9nQKbwnrZ0lgSWBJ4CYksBSvNyGslfVySaDJODdwIQzQUCbaTaWwchqSUonSlRIKOExhJe+dZmoz\nvqefDJLDeW1K4UWpR04sJSzlmkUQYATUoA0kspRvFkDKCkuzAEqJ6OSr0w4UX5RrXqkiWwsrp169\nggWU3nU4RQkY6Qd9gkYGTTZAKj5/YBWgpTwDdimNAS+LKspNJxz7cAFeKBpTHk7Qhm5yUl9m5lHf\nfmyUzk0G/PE40y0kKbItIi0y5QECge8WfJXDg7IsgzZ56x/KUfdfURIC8mTrFSqgkvzU44SFxRBZ\nsJSVlIEUiZ0udVJUfS1EKUcpUC0g9CtlI5lRQlqYBlj1t3GBD1cROHmrPrK28KWk1ecU3vrA6SQb\nHj6Q4L4u7QCqnbqleLVIpjjFt1NIFizGgMUyxavTrMaek9n61XgUrw71UXDi13jFC57wg198q8dp\niU671ifqU1fy9GzQfvUB6U5iUx6TqU2a+kI5/vpKWP3khkd+iwSvFDp9NcvWl9HKbZxvnf3gjzR2\nPx7LM+OL406a078fU7O8tkxT3uLK238uurny7cuIKz8/Uz3Rux57/XeWn3SlFp7ljsWdynu9hoc+\nG2feaJXvsXBry43qPpUveU23vLVNuHT1lF6dhff5a/8sK678lZ80K3Ms30w7VbZ4dVRvtArv6+s/\nGF+znvzKzHLTX55T7im60eAyufJXRtyMz3+qrhkfjUmbv/g9LfEz7rx81bPPU/l9fPlv5CrH9h+X\nP1r80Z/x0sWbU8zd9x/eVKC4Ms+JN2eZQ8wLMAnX/BFddZkDbbCZSzzn21yVBhugY35pjjX3mpPM\nj+jBKZSuNi7NxRN/4PWUiYdT6Q83Pjnt6XuW7sd7spZ35o/GzfAwy0w/Gnv68SHN/AdffPjDHz57\n+9vfvj3zbVpSmt1z+AL9XQd810Y3umg1L6Az65ptQPuxNJOPi9Qbr7CJsWncwrROu0qDS4wtGMNb\nOvCJOoyzN7zhDRveTfEarVmvOFaZeGsMFJ55lC0+OuWP/j69fI+2WzsmH3jzX4Y/YU9XUDkQQ46w\nWtcDwKuwZEYblOXWnuijB8PZ4H/3u9+9PUdgQFjO+sKbWPAdo6xyk6fitwzrZ0lgSWBJ4AISWIrX\nCwhpZbmcEpgTqImZCZjyOy1hYvcaCyUdkN5Jy07VRSN3Tu5o3M4mnvc8Bk728afC6Dh12AkTQJLC\ni8IQyOy0Jj9QSempjBOKwGanCvUBkGMhREFGAUoZJX/3gQJcFl2Uhq95zWu218Lb2UbzGO/oBrzw\noC8Bf6dcuZSb165d2/qX4owfkMOfBcA0Fg3MXABUb2OoMSBeHJeJNzTFFV+a9Jlfu8kSj5RzwCSF\nP8UjucVb9TZ20QUogXuKRa/qu0uVPO8+nHR1ctVpVCBeeygAv/71r28nUcnZqQsLU6dQWeXIWF59\niR8naCkgu4usayIodSlJLVxrC/pdc2BBYaxQ4gLIeOkOWItei1v/N0pXdWgLXik2nVglA31oIQww\nc+WhIKe0dJqXHIw99eBBXwLTQDS5UcR2ylkdZKuNFtP+4xT+Ft0M2mhou/6glHbCwnPBONJOY/Ul\nL3nJdiLF2CUrfalsbn2kjfhKyU3xqh/1qbqNvf4PjYuNkQd54Uc3q2zjauZTn/jGRGnTjT9x0VMm\nevFcODcaymT2acXPPMXFmzL7ctKOlSnvPk37iuPmL391cmdd5ROfX/qkIQ39fXwyrVw0os9NduWV\nh5llyn895aG/8XEsT3HlqaT40orjlo8rPXfmT+4zrnKTFn8y4ZdH2azytTlawtFXhilfdXCLz5Vn\nmuo6Vv/MN/37emZa/vgsfMz1/49W6fF+qnzptS25nAoXH73C6hM3TWni+Uuf8fILZytfmcLcys84\nfmW1nc1QNPbcmbTROI9OabnRu4irHmOIDPnNKTYTP3C4l9HcFn+NjcYj2vFlA9Vc4FlL0Wc+cP0M\nzAED2NRt3jDPqYcxx8Ed5mIbdDCJq47gD/NYd8BumQ8/ldu3s/jy3aw76UUrVxp/4eSQXI6VFZet\n3M3yJP+kLYwW+TPRn3nI1rz7J3/yJ1v/4dVp11e/+tXfvJNzK/zgz6RXu0p/JHxH49F28Zgc1EV5\nDwfZuIWLKBLhht7kgW+NbQc+yMqG8Wtf+9rtugG4bJraP10yYuqDwvKUT/rkqbB08TNv5eV5LIy6\n8R6+jZc28CmrXVPB9X+E+7yJ6P8IH/s/1o5TvKOvnfCY/zWM7KoBmM5zwclr2LeNenmZeOEvLlfc\nMksCSwJLAjeSwFK83khCK/3SSsAkypg4p18cwAocepXFqQoTtR1Vdy1R0tiZnhNu5aPHvVPM5H3P\n82zjPq2w8uRDZhYwgCXFqxMpFEwWLk6NUFxxLXDQpfijMKMMA5CAIDSEKb8o8+46nH5wQsWrVxTh\n7sFCnwKuy++nEry+RA9fFJAUa5SJXhPEDzoUdhZZlFzAGqWXfkVL/eiggZ/8tfdGLllQDlKwUaxp\nt0Wf9rJOVu5PNSZDdaZYpBhmneaxwHMSExAENIHLY0bd6qNA/cpXvrKVF7bAJC8gXhvxQy76yIfL\nvvGNb2xyQZPy2cKSclv/qEvfkB/ZdUJYX1MyWshSilo8aBva5E7BSd4UtV4L04dkqS3kzbZw1acW\nt8C0E6iUxp2g9dq/e1f1S0pL9Fh1WDhbDBsTKYjVrzwl8LWDMpPFG6BOYWuxTvmqfyl+f+iHfmiT\nLcUt/vEpTb+QPzlph3J4xK9TtE5NKXv3QaFdWxp7yrJ4Nv7Ubcz5P+BbWH85IWsMGn/Vr1wGL+ze\nyFN8dZW38sKlKY+3zCwvbl9m0q5MbjSrr3pK37vRFl8Z/uJz9/zt6ymfsvKSX3zmSmMqO8uIn/Xz\nl74vH41T8ZXLlX9vZl3SZl5p+Gf2+bbI8XOKh5Hlm+2NVmX2dQoXV57cPb1j8eWJxqRXmnKzL4uv\nTOHoFy886ZWeq9xFZVYd8kdf3FzQC886J8/KNL7kmTwotzfyl2fWV9w+/43Ce3q123OJH6/aUnui\npxwrn+eg+YTSIutZHn/RpEztuVdZ+Sh+WLS0Qz6bTfCPzSnP2E58yj/lxR8P/Pg077HKoCc+mU85\nxZ82ic8Km4e8CdEGmDZKn2Uqpx5vQpgfKK3MneaEuw64QnzzoGey+YmrHeY8beOnjHEljSsLyEI5\np+F+9md/dpsrzTmM+o/xEC9bplv0Uz1TZkhPHqbM9tVeNN8sV53F7esuXp+WV9/WN+W3+W6O92q3\nuzXl8d0Er9N7W4bcGTQqG7/Rq67yFH4s3dq4r3PG55//UXjCeLLZDVf4H8F1rLEJK/hQ1B/8wR9s\neBk+edWrXrWdCIaJk6N60c8KSytdP/CTGeUuzIG2eDI2bv2P+9/LN0109/Ezz6Plr24uY8zA/l0/\nBYd6jti8d7WAjRSys1aYMohO40Y4+aDr/43uvffeuylerU0cBnDi1ZtY5B3WjpZyzKznesz6XRJY\nElgSuLEEluL1xjJaOS6pBJrUm4znhGyRYjcaMORS7pjgveJOKbhXnBFR9CadO1F0teMivNfWZAjU\nkR2lHoXfAw++okfJBeB4fYryyYKIIowFAgN3LaLEUUIBUyncgCKnai285AeM7EwDpuhEI8AJbFLg\n2dEGcCmDW1jpT7SBXUovykhx+jWQrE21a9/OvWySmXzqdSLHK1CUidpEgUkx6VV8rnzRzMU3/pSj\nDOVSzlGaUj5SblowAsy1FR/KW+ACp+q1qHGPKqUnOWujTYOuFgBOKQ6rxwaDshallLvy4ZOSmCzw\nYFGqD9HUvxYLFJ2Urha0/Bbk6rPQb7GKtn4zHvQRWTtRoIwwvo0LC2l8A9TqlI9SkxKYH208oEcZ\n7bStcSCebC2GW0Tgwckm7QGcrx2UrsYTnrSZ8tSYALqNHUpmY6n/df1unOJHGUpeY4jc0NeH5MSq\nw1jFS31JBo1X4w7vlPCUsNqMP/XhMRlqg/FX3zam9mOtcHUVLv8+XvqxNONNvPrOK6P8Pj16pQmX\np7TC8jAzz/WYb/2eSouWnOgVjvaxcjOu/NVUWuXFiyuf+JlWeuW5M71yM706ZtwxPzrHyk/6+3Ll\nr46Zt7RjZcrH1e8Mf/HCs/yMb5zIM8eK+JnvWHnp4ln+G+UvX7Qqr25mHy5uSzznJ3plmXyImzIp\nT7wIl19cdsqiMtwpl8olQ+H9/7s8k0b8KkfZR2Hi2eE5bX4RT2HiOWx+9Ozp2eHZI59NTs9u83Bl\n0bJh5hmkXnOBcj271CvNszHX/MWUN6VkylfPa/nVWzllhfHK8uPVZpW5og3XFCWz7fz40MassHnH\nM9mcev9hM9wGmDlAO8jCvMjFr/rI2fPVs9p8Y4PLM5a88EkmysMkLD9e5bnrMM/CBGj3WjgXD+aS\nuw8bbW9729u2tyTghnjGJ8vUr9z8W8It+NnXQU77Oma4/MeqnvmOpd9sXDJAN9ri8pM7TO3VbgpG\n/fSWt7zl7PWvf/2GP4wveSsTPe7+P1eem+XxVubHQ2b6i0sOpfn/wQLGHFkYt8ap/4T/IQzoztHf\n/d3f3TZ9vfHjRCflq83Znh/oo5lNvsXPfGjaOIabPBtgDrS44bzyx+fkP/9j6XqG4Al2hBHvu+++\n7UoA9/ZfO2A612XBbnCx5wpclgxytSU6xXHF+894TtiId8DmQx/60Pb/t8Z7/vOfv9GF0dBl5M9M\nWsUtd0lgSWBJ4CISWIrXi0hp5bmUEghgmFBN8E2m4k3IlFcAEEUPJR3gQ4EFIM0Fg/zKNjEHYO5U\noSWX8/ivzclM3n058rD4o7Cyww8wUdxZPDEWYkD2lGULNzK0sAOoKOjEW0QCkJRfwFhKMx/bsrCy\ngFQnnvQfcAtUOf3plCagi0cLKicovVrOtRDER2NAnlPtm+3dGnH4me3GJwWfV8koEy0S0aY89SoZ\nRR0gHZ3KcgFyyke7+u44pWR2UseY67UnYy/F8KxfWe1zisKr+uolCwpUpwHQuHYAq2QN7APhPiqF\nR+UsNO853K+mHnK1OCUPi3aKQ/Kbr1pazGoTYEqJaMGrPu3QP+SuLYA+4KsftZvSFU/oM+q2iHZ6\nyR20+o3CFS9OHrgiQF5jBj3g26KNbNRn0WBBbTFMpix5W1BQiKrTf9dinMLVf1rfoEeWFK5OAju1\nSnmqzRbXZGTcym+BT15OqminfpQf8KcYRmf2p/KUrhTV5MZS4Bq7eJZfue7C1S9TcStPbZl9zF89\nxU+X7NljeYqTPo2wNh8z5a3seXmkzXyn+JAvuvsy56WdV0a5Y+Y8Hmb+Y7Rn3Mx7yn9e22+Wljom\nvVnnntZF80VzX754bml7muJnmvTCp8qXfiqvcszMN8Nb4u5nz9cu+WjQf4lRtvL7OqUXN/2zTHSk\ni5e/9PzSmP3/V3r0KyNf8af+fylJnVQzl3l+eAZ5NinrOefZSFHoOUiBgz7loeeb5zBlojLmYcpb\nz1dzhTrNl+ZY5Sh8PKc9u+RRt7lMPooHeT37+Fn5zSXi1On5ak5Wlh8dfKiTq07zvbnXs/na4Zln\n3sW/8plkQob4QYuLrrnIc9/cZjPM3CHNfOiZija+qhtNdZmrzFNkpB3yk80Dh01hcxqlDjmpQ/3m\nE3MUHuW3mdmcQSbkbm761V/91U05MxWv6kQjM/u7uFvhVkeyOxYuTX2lV/dMK+5WuqfqE0/xZy6n\neO3E60/91E9tJ15t/DaXx48yWePx0ea9em/WnW3Of4xXY9Z/guX3v2jTWDnj+iMf+cjZ7//+72//\nW2PR/be+L3EjxWv1oTOfK8Y6nOVeVM8DGMZp0fDvxODKsmhF72Zl8Ujyz/r5Pe9sfLsOgKLecwZO\npSDVBth/z2dhzxE0piykVYex6L/tjlcfe/P8cJ2cNxvJCLatbGW0Lfq5j6S9q+ySwJLA1ZLAUrxe\nrf5erR0SMJEyXBNoE7I4Cw8KsE996lPbpA+825G/+3DSgSIQeG9CNrnzc5nit8Ad+JNcLsJ6wGNf\nRnygB9AD/CxwKF4tIC0ELcYsZJIbGoAoyw8EkbWFobgUrxZJAJOFG6VrCjAL0MpbeDplqD7WaRVp\nFFxeCaf4Ylus1Y7GgPpnPwoXxy0/GeGftcjUNspGr+4DdBaLFn0p2rxeTxFYPcoZaxaCFpTu9qJY\ntNDGq/YBmcpbEFoIMnhQTp1kKT/5qpeCG+/yA9YUfFwAH9inBFRHCkWgn3LWLr/6yMSCF+D1eiW+\nuOqSFy9OoWqHhbPFdzxpL/p4IAdh/SK/k7f+RxbJ+l2bKcV9OI3VR/pceyleLcKcBDFOKD4tHChn\ntVPbycAiDX3KAP3LWBjfdVAkq0tfW3CTkcWe+ize1W9sUb6rj7IXHYaMKE4pTJXh4lVf4c94o3gF\n+i2E8KBuC37tVZbS1mKB7Pj1j3SyogxQlqwtqijXLd49U7RJPVx9mKJDOemZxg9lAbraw8iDR+WY\n/g/Ss+Klo8nyN9bVGw/4KL7xLg5NLiteHjaelGdyp3/GTTri0cA/fiwE+dGcdPmjF63yiJ/pM8w/\nTWWLq45c6Wz0uKVVJrd85Y32Plz+i7iVnXknT8fS93mF9/niVdrkk19/5tYX+/L1u7EkTR/V/9FD\nexpl5OdmlG3cKZ85RUP6npdZZp9WO/w3GHXFq7QsnuRh53gUL+w5iHf+6PjPeA43RvfjFC9TfvGG\nZkrJ3P67wqx6qs8c57llvvNsNI96vojHv/+5Z53nFgWBeVK9FBPyUdhyPT89J9COF+XkZz2/tMkz\nVX1dg4KONnpOej4pw9SXXPzjW17lC4sTrm5hfYCWedvcYX4yf+C5/sitHuWiZf73HDbHkgn62oPH\n5iPzEznjR5vxbb5RL/71lTrgAxuK5iqKVXkzeDJ34FE/U4SZy8wLaKPjDZRf+7Vfe8iJV+Un/8k6\nN/q3ylUXs6df/Ewr7lTeffxG+GH+qAs9bv7CSBoTNogpXuFr/e+qAXd02phOkV310eHKeyt5rY5b\n5eIxU9uF8ycH/8X+j/4XjDTj64EDVn7f+963fXjMmINNKF3dg2tckkEG3azyWenVye1Up3tj/ced\nFPW2mI1weM//X939F/nRmnVV56Pt1p54gTv9T70F5o0n/0/4CT6kdIVrmeTHX9l9O9BmcmE1dG38\n+64AvOmuYUpdm/6ej+hmKld4phW33CWBJYElgfMksBSv50lnpV1qCcxJ1AQ6wyZ7Jwc/8YlPbMoT\nCrM3vvGN20mHFjhNusrN8sVfNuFN+dTGfdu1OVkE5IQtbFKcOhEKXLIWlOKly89wgVKA1KLQ4sci\ny4JQWYsuCzzgyiLOq0aBMOUtNi3QKA7RsTCzILPQA6xYiyqL1XitHbULHaY2i689xUkXhzeLYosz\nJ3Gc7rWoUzclmxOkds8pP9WNHzQsXAFrCmKKUDv6FIMWJpSbwDGrHDloL5pkpY0UiE7sdAWAsHjj\n02nUuw7KR5aMAGvKP0pAJ7jVQ55kTHZ2+CkgAXu8kR/asy0UyBSF8vMHeMnA4lhbKBqBY0BZH1lE\nAbAWD3hRRvvwQqlJ0UwBLKx96PqKr/z6yEKZLMkH3/KRG4NP7apv8MGIs5hgKV3R1T8WHy2eK2tM\nOBVLRhbUaFBsaH+bBNomPzrGosWh54FylKbGljwW8xTU9QlZo8XgEV+UJJTBFjzGhTaSUWNC/Sk2\ntB1PFhr6lKIlxUEyt3Bg1aMO7UWzBYM+0Gbp5E4hIR9a+JZfn7Dah67xxRpr4thkLC4lCz7xQyZs\nechKPrT4j1np/jfRkgeN2spNgawOtDO1nczFSydbY5mN3/LvXXUx/5+9e9u1JDkKPj6PsvstEEJy\naySQEAKMsbBlGNz4NMYHDL4DCZARvkTGBmR8GM8YA5YvEBYgZIGAeQXeoB/lq1/R/1E4v7X2XvvQ\nc+iplHJlVWZkRGRk5CGismqVup745UdDG92HG60Vv3IRDtF1ofsVfzSDneXKwhce9+VN2OoHJ53l\nM9+1dikPnzxt1N/1hb4hT84qqTaDB6fPrI1SgX6mm8keLBwivOme/oIDffqubvO7uvEtTcau17gT\n3n7Q0R5RiK4ULXxqk3v00EJTe5TjDYy5QXSNv/h2Lxo38vFEJ41XaweHnuv0FA/g4EdPTC+VwWOt\nE3NucoKQTzIyVhunUvTBmNcFvOFdmwSyMW70gbbhJR0Fh76ynKfGlbEOVr14hMt6aQ3hiORsNAfC\nZR5tntJPZGqu0wZp63d9iycBj/G5Zzz7IUd40BfBg6sflQvutaE+ARMN5erhT5utMXjUTrjVI0u8\nJq/6RT352seJqw1gwkk+1gV9a/40v4Ihe0H54+0BvBOv1kJwhbW9yaLyh0zREtEQJ+31ftKdPK0y\nn3B3vYZTH4Z78uearnO8fuc739nfKAP78Y9/fH+jzINQa5JQ22qnvHC5fjeH2RfxmdxnmTxyqq30\n2x6CbP72b/92nwvsb/tzLfvJ8IQ3+UzZyIOXztN1e6wf/OAH+4lR8wEntzd9PAw3Zuov8EK63n20\n3onU2DQ/2/uZB9vjGHfGupBMps7JT67KXRdcG9v2ah76e7PRw337sldeeWXfg15dXe3zU/VWHNEM\n55EeEjgkcEjgEgkcjtdLpHTAvJASOLegyrfR9t0fjlcbIc6WJ0+e7CcdcoJNoajzflqItbeo3dNY\nIhd5Ux7BKrO5ZMxwztnsSBlANuQ2WTZ9NlBihqtNEhiGIYNUQBNem0PGEKdWeU6LOo3IaclJNr/D\nGa9wqC/gdb2e95XPNuHVRpCh6hV4m9unmzMZfg5WjjmGBKOQQ9GGV5mojQxWJ0P//d//fdc1eqa9\ndO2XfumX9j/w4IC1uQQfPY5IDl6OS45RDkIyYYA6+aMOY5k8GLbkyrnrBC7HKFlqB7z44tzFZ59r\noPvwchxydOsH+DiP+1SAzW+bXv3Jge5VfidSc7r6vAC5k7++wA8+OYp94kC7tUV9Ab6rbbMLXl18\ncgBon34PDmwbbH2vn+qr0tnHwaonVCafHOpbZfVveEonHDlzuHJicFzUn+TGmGfo4LU6UvqpbeTA\nKc5xw/mhzWA5svSva32NrrahxcDIEQmPMs4YDyD0J3kzTOgXneMMYKDpe/g4IDhVpOioT8/gNU70\npQieTPQRneGYErSvNuJRGVxwN/bwBaf68mc74EiO2gYvPui/dpAX/NoYP3QFTvhzYsWD+urAgY75\nWFsYkHC4V6++jP68L09aUI5PeqeN+DO+8YwXuMkYfm1d8YVHWnu7Drb0HOzMBytOXLNcvhhcZdWZ\n5ZVJyUyZdpEjB5rxa6xrszzybM7UbnXotrlOVEfwwMK8YR7Rd5z5cNM3c3yOvPDqO+X02hjg4BLR\nkKePjQm6KOr70sZa7aNr9JEeiPjWbyK9errNxeiCwZcx2zwMBn9gnKA3hrQLHv1vDEjJKHr41u90\nQJs9pIJvOvvgBYdXOjPHOHrkjKaIN/LQDqF+lMqTTnmgSx/xFl/xhi9yS0+NH/Dm7att3vGwh2OS\nzMFomz7Cb+PJ/KW/8Gbut2aQh36Fw5ysL8g5faET9WltkJKBeJeQHMJTKt+4JlNy0a/kII8e0iPt\no0eNYbyaq/BIPs0P+gcMPdFufQMfOTbfuiYj5eRQe8jVn2t96Utf2tdauvVOBDoST+mBlGzkk43U\nvahsylJZ9ZU/VMBXPMCPbrTRoPdOGXIuOtwA1olXpzqtXcbTrDf5XHE9FM/PE09tQaNx7TqZ6Kfk\n3/7I90Zff/31XXd91oJj2htJxuClAV307J881PdZB+PaG1D+yMwbN8aNMY2X+g1+18I7LW9tmCG+\nklc8ThjyFMDULvfJu5QeegDgFDD5GOv23WTjRK15LzroVg8uYb3/v9zj95DAIYFDAtdL4HC8Xi+f\no/QFlkCL+lxA5Vm4GaE//vGP92//cA7ZrNj8eCWb4T3ruFZH2kL9Aottb1qyc6Pd7kXX3beRcz+D\nfPKyybT5IWvGLzlzrjIuGYSMJjgZQAz/4BlJNkltsMIfbakn+U5O6i+nJ21Y9c3cjDG04ATPKBPR\nYsjVlviufeqj6yQSfp3C5HT1OjqeGH9OMnJkihxtDDO41dV2RhwnqHoclU5icmTYAHO62mh7ld3p\nUqeq0CIXG2gOUc62p5txzIEJV44UvNssPtpOljIe0WNckqf6nRZldNpwX23GNAcdg5wxDg8jE259\ngiftZmiC4TDs1S7GEXro60M8cSJzHuOXTMGgoY7IIIafs13Ux2SJRgEM3tWHu/bhbQbls56y7rW7\na/nBynM9Q3Dldw8mPDNPvr4EX1QOFo/6N/hw6hMGJT3krOEUEbSfrOhNDhA4wks22k9HK+dAUEff\nVE8fo8khoY960IBOzix8iWDhpPvoKNf3dE+7BDyACwbcdGTKF9GkA3CgDYc8fEevtpSqpy10hi5w\nigjq0zNjJacIPs0B07EDL/6SNbzompPVzzkKjzy8aVd9hj9tE+EV4ZoBDTLnlBGV59Cim5zU8CYz\nfY8PqaA+OuolK+VkhY/mF3ISwUnVUQavmMyV4TO80VBPHpxklkMKHvBkqx3aGn51yTQd6rSnVFvV\nAQsn/TGfkas8/QauftNeNI1z8xSnl1TIoRXedK621k79JZKvNsgnJ+13L9WPeOmEqXJy1Qa8eABh\nLDRWtEFUJg/v+EQHHu3BBx00L5rrard+Ss7kKM5QP+OrtyfoA1mQNV7Mt+QvjxwF/MaXazSK6Y22\n45MctdkczWEqcqDixXrju9PWS/0KP4eydcPcYp3TPvXJlL7qQ7Kb6xBeOVatIeZsfQsf3SCTp9sa\nYH0jV/zhSTvR0zb9qowcC9pTIKdk51roPhjpJXBgRP1ODh4ukj8d0wa8CNotKsMnfugQOcgnCzpQ\nX5lD9Zf+h0O/GNf61bqozXgmH2svfdFecvCGyBe/+MX9QRf8hdravbR2nyqbcDddhye47pNP99pt\nbHCKa6N2a4uUPARjonr35St+SvGx4sRTem7/9t///d8vfetb39p1WV995jOf2V/x9nCX7k54+Gpb\nOKL1Xkq1KbmsbZIvT7/ZSznw8dprr+1zxuPtdPUnPvGJl375l395199L2gyXcepEp2/5+2waPTd2\nOBe93WTeMFbQjq/knrzLv4TmQ8Mkr3ip793Hl2tRGZ2WKqtOcHibeXB7eGQP7nMXb26fsTJH9C1d\nhxeMFwFOdSde+RO3+yMcEjgkcEjgEgkcjtdLpHTAvFASmAtwDZt5FnCnXzheLco23hyvNj8ceRbo\nNgHqW4At5C3Osyz874e09tfW9b78UjJjyNhs2gQxosjaNUNIPsM5Y1w99wxqsAwL9U/R4eT6xV/8\nxX2DaROVERVNeBjCDE71bUAZUCLjC8250epaymhliHn9/T//8z/3k66MbUYzh6+TBL4B53QopxvD\nosCwtRl20sNr9pyV+GBUcpqpK3LYMqLxwWHKUcm5K3VqgXy0Ae8inUPHZpEjRD1tZUzDj2dwypzS\n4ghlYHJEqMuIJnfGNt3XHrJlrINhbDJa6T4Z4FewuWeQOpmqPp7QBYMHRlRGX3QYAPgRwAmzHfLc\nzwDnDMGUVua+PDhcFybO8mde4zZa7pWveMJXqjxYeeFEgwyceOZI53y9urraZZrcyI7syUNexgMc\ndIXh7BQa+eYYA8dJAGbyqq/oEH3XtzlbGNv1l/6BV3SdAY7/KRN44ReVaQccIjj5Uvc5IV2DVRfe\nYKovH13t1W7jWFvSE7pr/NFZ5ZwijHT6K0/9aCcnOq99RWOQHOChe+7xpxwf6mk3eeMFXnl03RwQ\nnHt0zUHKtS2c8LoHW5vhxltRHX2kfWgoD7/2pif1A3rq4tUY1Qa8y1O/8Vtd8OriEa1khw54+cZw\nc2jOPnTVM+/RJzH9AwNvgWzxkXEO75TZhCMTcwN4PIBDO4ce2PQpvZCHBvyia+3VxuRIvnCbf1bH\nq/bRodYK/GmDVDv0M1oCfNEiY/n6Bow03sBVp3r40Sb5ZC11b17kCMQbGH30dHNYkim4GeZ4Uj86\ntVP/GbO9Lm/OfLQ9QONMNVfTCe1yQstrsf58Ub/REQ/4nMC09nDW6of6TFvTJTzXJvOKtcRnYawn\neFeOT3K1vlrj0BD0Q32U7iWLcE657ZXGj3YKE2bKYIC+dRlsMjLeeqhkLGoDHu0Z9CM47bVO0RnX\n+ohMyFO+NtAR84p11byqrdqMHlmZr/v2tn4F4w0Tp6LptXX5137t11569dVX93UaLzNMvmf+pdfq\nJ6/qyBPTQ/nBJcfy8Gju9OkjY0P76RFHG5k0jybXaDxUiq94iUZ57q3/9j5epfdNerrl9LDX3z20\n1kd4TF+rC6f679Uw26EN3c92Gm/6zZ89cUwblw4QsD2ceDW21ROnbF3PfqXjdMD+1ElXzlx7Ubh8\nv7Rv/tPvGcI78+Z1PMs71RfKZ99VV95Kq7JwrvjipfLgr0tXHGDP1Td3/Ou//utu4zkIYe71OTly\n9uaQuUAIZ/zsmcfPIYFDAocE7iiBw/F6R8Ed1d6bEpiLcAuqlpQvj0FhM+5TAxyvFmjGjdehXt7+\n9IeRNDcR4Zkbn/emdN4Zrsmbkc74ySBy6oZjVb6NKUMqRwRjnjHkpKi+4aRhDOoHfSA4JWST6fQo\nJybDVcjpwjFhU2uDqh7cNlpFG1x5jALl9AMNG2OnjRjAPi3AIGP8CxyaNrS+ySUyIhjl6qLLIGeY\ne81eZPjCxyHghA0d45zzim+GNiOFw1Wkk4xFvJMJHtXNyZCxH7/oumbIMBYZXujg0zUaYBhnjG/y\n5BTWB3DRcfIge9fJWB2BrEVy1D7lhfoBn2SovnrwglOurKhe5dJo4F+QwiEtqitPgFOc9cCRD/qM\nY3JgvMtL57SdDsQP2OA4OkSw4sSN5ik+5ReU49FDAHroVNqjzZlCnoxjfU+/c/zULm2ShzeO8Bzu\n4JMxWLzqH84FjgUn2/QrRw290+Zkn5zgpT853dDXf8aUMnKAO9lKyYPBbjzMcUGO8KLhGqwowCMK\n8uAkZ3Q4TLRNCgafnCLmVXiMZ+P76TZWGI9klc7UDrKF0318dF8f5xhNBuDQg0tbc9DBpX/BqaO9\nYMHRa3zXl+GKLpqiEH3X6MCprlRZdaXwi9oWL2DIVz9yluhXsHCAE/RDeeTkYQcZhROf8a1f4VZf\nXqH2N2bxKgrqiwJ+apN0hduBnv3oYzKpr4Nt3KgvhNt1edLqyV8DvPolZ1p9Qya1MXrqzjbULvnR\niG5w0nhASyRPelmUZ9yY641DeOkJZ7B5FH946XMF4UY3elL5M+jPR9ucYI7gOOV81U7jwZwtuq7N\nnH++1eihsLkBLEcKp5UHLnQGX/hFq36JNp039jlifBrGGmQsqgMXOjlerQnGa/KBIzz6dQb558La\n5uDC5X7W73qth0cPMzkRzUX03/pvzaLL6ukvMjN+zIPWOg4n8PoMnD40v3igZU213hkn6Jk3rcPm\nauswPQDrsz5OG4M1Pj/84Q+/9KlPfWqHgXuG+K4ds+ySa/Wri2fX4syHJzrhBKMd2uWBLn71k32I\nfYWHcuSjHr1Y8YXnIdLGXbzDGb9k7ruaPjWAT/L7wz/8w/20ob5Nd2tz/Lh/r4dkMNtRu5SZW3K8\nckyb4xz2YHs4qdp+sr5LRlNP6DidtUfldPU9f/MU28UDGqeK7ReaDycvN11P/uNbnZmPF7iF+Kvc\n/ay3A20/taf7U2k4TpXJO4U32InftWhfRT4+NWCuM/9yvJKTOdlYmWHKeOYf14cEDgkcEriNBA7H\n622kdcC+5yVwavFeF2ybVQaUp6GePNvc27halG2CGFo2h4Xqz8W9siO9TAJkZ2PDMLT5zDmT45WD\nyQadIcRxwHiyaffapVM7nLTh0B82TTZSjA5Psjk0lMMv5hDIYcGoy7mEDnrqyIeP84IRyqjxdJzR\nyuBj6NAFdRgNXuXi6JVeXf3f6UYGOeP26eZIwrPTSq61g8GOPyd5Mo4YwOowrNFiQHHAgtcGdTjY\nOJcZyuTF+cJZnQEJDl/agA9P8PHHGGWU2sCrS7503ScMOJEZ5AxzQTmZ6Bd4yQ1eUSCXdB+tok03\n+aontsGXJmcpmUn1gTLtY2hoj4im+soZz4wF/YKvIj7wQ14cI/pJwAs54V8dY5YsOPfQREe7O/GF\nX/yQlQgeDFngJQclOAFvDBypPHKYcgHjXr5NPMer/nWND3yqr3340ed4da1t6dr//u//7p+joG/4\nISe8cShw0jhxRxc4A/QpJw1cAnnGJ3qie21pfBk3dIdDX1v1MZ7xUN+QH7lx6nBqSMmKjMEK0voa\nj4J7kRzQrm+NXeMBH+hoD5xoCHjxCjQDnYySqzK43SdbafQm3LyOR/Xn9QqjjK5pr/kDb+SBT3Ij\nz9o0aYZHfXHeoylEl8zQoAP1E3iyocNkrj+NV/MCXtCiY+qqJw8fxjvHmXFrfiBjuIrxEj/xcSr/\nVHt2xref68qCCfe8n9eTh5k/r5ORvMlj1+V3v+Kc9YNNFu4FMNV3r1z7jD3zizGUjMnZtT7R95xu\n5mQnLPUXPPrQmJDSEbqrTNBf6irT5/LNUXChaaxaK7xN40GdPocLrHp4mmNMnxs7//AP//DS3//9\n3+9rCRj/Tv7Zz352dxgaS8JsI91B2/i2fpnjOWPM+fAZd9YScwrezAd99zbHKznBWZjX5Z1KT8kf\nnPzCiqv7CQOWXKxhHh6afziIzeGcTGRPZsaMtdepVY5o8oTPfOMhhfY/ffZAx5iRr260zKPeTuit\nEzjRsGaLaJlzvZLM8fpom8/1wQzhqh2z7JJr9dWVhqsxSAeUhTsY5fpZG60VTjqaG/TpBz7wgb1N\nZEdu1YVLmPgu4e8SmHO45Rs/9tbf/e53d120H/njP/7j/aQhfoV4rP0zbwd4j/7M9tSE2ureXkO/\nOfDBMW1N8PaUz5z51AAHKvjwdN36AJ69Qlf/7d/+bT8cYAx4+0t9c004on/bFO3Js/qTn+6DqWzW\nq+w2tMNzrs51OCdt19Z1+2py9l8DHuLYo33kIx/Zv+9qjDeuoxuO6+ic4+3IPyRwSOCQQBI4HK9J\n4khfSAm0WGrcXEBnY9vUBmMTY4PudXBPQ23UOU1+67d+a1+cGUwMouAtxJPOxH1cXyaBKT/X+iBn\nEflygjC89JVyhqQNvJMTNk4MyZw0bYzUYWgwnqXqcqjkQGJkM4ozWtC0IcuJB48oHz2bM4Y1wzSn\nmbqMM5tbBoRNLfwMYLjV5eRSjyOJLsGlDRyDDA2vNTK6XeMTfQaeJ/Icr+gK6qDHQdA3/eCnq5zA\ncDMiBXAMakYoB7SU81IeedhUalsOPoY2g5xMGejwFuDU3vLgVjcHgXaK8JKvsQGWLEWw2goGffIx\nhjg28KEMTnUYHuSrTWRGFvgmH84B8o0G/ugIGvgDm/MpfYEbvP4Q9bn+4kxzssTJMX+sAMfV5nBl\n5PzMz/zMTgsufcfhwkDnNNF3Un2SEQ+XNgr6qOs9Y/vRp05Rca6jQQaCNqeP+pT8yIRcyUFf0GtG\nFCcJHumZU9UcA06ucBTAB4+2os15og85VUXOFfxyVOCfnER9r23kzLmAprpCbZDqN3TR4tjQB9ok\ngBcZ1LWd7LVNXv0DdxEf6IOHJ52QoodnY4UeTH7gpFvRQh989OgPnMoF12uY9YODg+z0Ad2U6gf5\n5KV/RfKq/9ESC3gDL3aNVnrYNd3Tz3RRKoLXXxyp9I286Qp9N6eQC/5E8MlJ33HMO3nvRJ77+gJf\n8JLBKTnEdym+hWC7r3yWlQcm+PLWFIxI1uFc65RfupaHs/zgyi+tvPtL20+unN3mYQ+m6IA+MDcZ\ni3jXP+Zk86SHAuYD9MxjfQ+U7OmuMvXoUWMGDf1rrBkH8JuTzeP6Gt25r8B7OgOXKI8O+tSAP9/x\nqRuyuNrmlC9/+cu7c8X4BCfgx5xBd1tPfFPcSThrhbFpLJubOOc45oxNp7/olbkHv3OcJFu8rf0A\nLlhw5DP7BHx1yi9Pqm751Z/w2mXcGBPkqV3kbS5RVx+Sp7nRHE6+8q2NnCwckvqO85xstF95PKBJ\nlv5Yx8la19ppbvRnUORNHmTMQcPxqu+N6RlqQ7zPskuuV57UCWdl9XH5YOiducB+yCv8yqxnvuep\nPeRjPoqv5i/34YPnvgHd+JqyhRf/xtA///M/745XfUHvvvKVr+x8GjPqxk941I1v1+/VMNtTG7Sr\nfOPPm0e+8fq9731vX288lHnllVde+tVf/dVd96pXqq5orNvDsVuc5LR/tFZ89KMf3Z2uffqqeg+R\nxvcpXPq6dVJ/NmfUt7ftz5XWbepXVx08mUff3L7ryvEqNYadBv7gBz+4P7Chh+bcIxwSOCRwSOCh\nJXA4Xh9aoge+d7UEWoBLLcRzAZdvYWao2MB4Mu9khM0PxysjhZNj1tHgNsRr/rtaGO9C5pIj1k7J\nUrk+snnjBPmv//qvfZPpm2EcNYJNFAODw5BxFby6nmTrQ450jg2ODHCcFhxpDAHGmVMD6tIF9Qro\n4gtOkQHIuGY0Cza/nIBS/EkZeeFRV4STQ9GJJ0Y3gxLPnGR0T9QeRiWaojrqMvx+7ud+bj/xiHe8\ncszhXwDHocWg4UzIgaMuPqRoZYTZ7Of4QV+78Yx/uET0wQucBjb0nJgi412UZ2wI2l2bbWDJiSMD\nXzlb5duM1z6pepxPxpzIuEbDa59OeKKhXjLMeJbWX/U3fODA40tUlhw4GDgwvva1r+195pSU1/mc\nDGHAay/52qTrB/ilHChkztnFINdXAnrh1y5yE9DHP0cA41cb8AAeTzn7csapq084HzmH9S39pKv6\n1KkV/U93ogNf7cIj2WkfI5cDl26Qqzakt8aJ6+QtJX8h/qT41wc5X/FfX+WMVk978QOvcv1PfvoQ\n7vRJOR3SHu1PL1zTE/Xg1Y70FQ/gleNZPhrwKENXvvbhhf6iLboWjFEyxgd916/qyDdG9A895nTF\no/aoCyd+OMy0g7OndsNLT/CAn/Rcfdf4Ui5NNtqpLXhv3tBfnF1OxONN39JBp/auNgcQuHBI9Yt2\n0BEOJc55DjV9rs3ahR+pCF7sGt+uZ+oaTOmp8sp2oO0nmO7PpZOXCSMfTamobWQuNn6Cj//ur0vB\nBj95lCeUh6Y5yWvYHmRI6YD+A0OX9Ls+f7o5KznxjCe6iVf95MGWdYWe6A9lcPTNVuNGW/QxPK6N\neWP56lnfokO3OM/UF40LeDj3Hm0nK407+R42OvFqzXOvDZwrn/zkJ/e1jf6SH3w5HTlcOVLNXcoE\n+Dhcfa/UZ3k4G+iOdnLc9eeP1oT6gvy0m05PWRqPIjhyE5WL6/1OfPvBd3jUCwf4wqTh2rghO7DG\niXEInqw4TD/0oQ+99PM///P7eManudnJPw/XOE7NRfEkDX/t8/DTZx/0q3Vd0KfejODIMuas1514\nfR6OV+3BD/nEq7zJL76SNTjy0M4f/vCH+5pEp60R1jJ7HfpJp2c4JedZfp/r5LnyjE9rEsfgt7/9\n7f2ErreS/uzP/mzXRTqJL22Co/7By7y+D2/vZN0p8/jQrvrSuk/POF7tTeib/apPiXAKmlOSafXI\n1Ji2b/3Rj3701qvzxgmHrboeXFtvJv30Kz5um4ZrpniCVzA2zWfGnLFo7cVTYx7sbUO01LtN/VmP\nvMyNToWTlzdG7Mt829VnW+wFrLe1Q93q31dmt23vAX9I4JDAiyeBw/H64vXp0aIbJNAiui7c5TOg\nOOA4Xf0bqI2D11A+9rGP7Y6suYENh7pd30D+KD4hgVPyk1efzE1Q1W1K/TuuzZN+cqqPkctI5Qjh\nuGR4gdM3cHFEPn78eDdK2ozqX8YVI7VTpr6lF/1JW1645KNjk8bYFThdbTgZsDZ4GSDKwqe+yKi+\n2gxvDliGEngOspxkObPUBS+g58QPhwwjER26inftjR6etI8jgdGFP3LAX3g4hkSbdgY8OUgzAqQ2\nzPSdYcthZPMOFwOpaEONnvI21dqqPSLe5aOFf9dkB3eyDUY98mPs54RgbGszxwBekgVYPLqXonUq\nhBu9Anh9/vrrr7/0F3/xF7tcOEJsvn2/z4kpoT4jI5EMOUE5RH3mgnMiXUlO+CQb/IAnG3kiByYZ\nKsOD9pMtGHIkW3mcPRw1TlvpX05CODslx/nKmdtcBJe+ZbhxruCJE67oFVS8aA/550glW+1iiNAf\nYwgMnurLdABv+KSrYOievkrf4U9H9LM24omDRHvUUVc76D4jzD38+ki76Qja8oraSGbk4zq82uwe\nDnXUhUc53kQ8GUcCHPh3j+d0Xb6HGYxa5dGvj/BtTQCvnrbAKw/P5IRXcOlaeq4sOSqvjfGMtnbo\nZ45TDlT9YE6w5nAm6Wd8wS1IRfRzrnGUiU48OZVHX+J/1kGrEL7uZ6oMv+IM0a5s4lhh1Qs+HNWb\nZeRDLiJ4fGsbXsMZne7Dp44w8VZWne5Ly1fHtf7W9x68MLqbZ9DX5/TXmDJfcLrmPDUeOLU46hju\n9MoDGTqS49XcS9+NA/OGMn3PqafMONRWYx3uTp73UAAv5nqnODmo0KAnTmr5Bj1dER5vaxrHqxOO\n6uDZWpbD1Sm6nK7aRZ/MIU55cbpqOx0WtM8DAA81OXe1Cf/qgam/phz1WfpWH81yePVV48G4JXey\nAG88kY0xSx71TbjUrZ/MA/pFe+g/GH1h7nYSlcORXOVrxz/+4z/u/+zO4ddcED9ScCIazbHWAn2k\nDeZOr3/3UIPjlYP305/+9O4Ux1dtDZ905rm/TcCP+vGmbrpOzq4rd69tHHX2rNZNp6jJg2OdbpNP\n/ISn+9vwdSksXRGioR2CfA5CjlefGtCHxs+f/Mmf7LpL/jNUT164ZvnbcR0PD0E/XJPv8JKN9dcD\nOHta33I27hz6+M3f/M3diU73wCdffWm8mAc8kDEveMBg/dH3bBZrSKfEJ937XteWUvjSLdd4sneR\nWpuNKXtWY18bajfY5x0mj+RlLv7JT36yf0rO3hlvThSbC+0F7GO0ZbbnefN44D8kcEjg/SGBw/H6\n/ujn900r5wJ7XaPBnVr45TMCGCo2sQwXxobXtX7jN35j3zjY1EQnHOv9dbSPsv9fAvXHKsf1vpqM\nDcYlh6tNqlfsGEAMT9/hZXgxyvSj0yqcmQxSpwc4NJwms8HSl5xVHFVe63eKkWHbKcb4iq7+btPr\n2saMfojuObGUi+qe4j+caDOIOF8EG8KMz/DAGU20bFo5l682hy3j3sacoWVza9OOLnwcNzbb5MC4\nxR9jHn704crJhQ8GsftpEOONY050bTPKMKoeWNciHMkgWdX+2iBFt/vgpDNP3zKQGeHao442oOE6\neGnyPXUNZ2HiV4esGQXf//73X/r617++0yJX49wJERtw9KqnDl7wxknilATHxJvba2pPtxNi5M2p\n/2hz+tMrTkW8akN8qK9d+oFzjIODE0++9iVv9cDoT7rJyaB/9DfDBY1OMasHHgxjgvOGo0Tb4A8H\nuuhoh37kkOfEzcjQLjjIBa3w0kM6pr4y91J5eMR/jkiy1gbRWKQfeINbHfTdp0d0CS0BXnB0ST69\npXdg4eMootd0jEzxiod4TUfRJG+4zOMiOPjhhgcO5SJ5qINmOqYcn8qKeAQPT1F70g91wArlSeHp\nfpbjW5lUvgcNHKdOrDnBiieGM33sz1DQzTGFtoAnfcwpyOnKiHy66aMoX7/VBnzEg7rx5VqYZe5P\nwcsvBL/CVS5VtoZZTznZSclDSM7ggl1xuF9xT9i1rPpgKnNdH9AxY4GzjS7JJzsPo8yvxqH1Jl2i\n3z754Xugxj3d4UQif/zDwxnLSaiP4TH30kHrkLkGTf1pzJpPOFw4XtHV1/CgwylgPuJUxKNx7oGj\nTw6Yg8BzrvUNR/zrf2uidQ1fxqo2OaGJX+ufV4859fGKl4KxpZ4TYWg4cW/8CmS3RnIU6WR6GS40\nRfpsTJOHMYhHeeZYMiBf85W2kZX2C/UXOG3HN37NOR5+cYhqP1n7DqbTu04gkzmcHHy+iWtM6bv6\nPP7i2z0+6SIe0TKno2tsmk+NJ3xxmHs49+qrr+5zsb6fAU4hPZtlN12rG4/hOVcHL3jjYPfqvr0q\n+Wv/480Rby+kHc2b4cEXuPiLXuUPkdJdgUwFNNDDc98w5XglUw85/bmWsUT2M0wZxO8sf97X6McD\n+vflIVyT73DqE3OMeYAD1d7E2LAO+H8JpzHppAAPeOOabup7/0dBtuYX/e+7rva7ZGqs6YtoTfr3\nuV7bE379TC/tpZ9uc5G9C5484DFewAV7H/q3rYtf84X9fZ+SYxtYY41pOmhuNk/HY22Ulndbugf8\nIYFDAocEksDheE0SR/pCSKBFssZ03yLffeXy54LaZpYR7NUtmwebHUaNUw42MTbnawhvdNby4/4y\nCdhMngpzw0PWNvYMyl6vY1hxSjkZ4DXAnJIMWRtZpywYURmej569uskxw9hjMDsdw0kLnkEQTfTq\nX5vX7utr913jvXt5a3vkVQ62zTA40T39Yjjil+HNSGU80b2MVnk2hwxiG0kb9IwdziqxzXb8Bsew\n5gTIccXpRF6MV0YtGqJ8BjlcOaXgxF98l2pLAT1hysT9mr/egxHKd50M0REqm7jlzXtwZClvzQcr\naj/DnVH+2muv7bLQNhtvOmSsa3u4peTGCcMpwcARObz0EwdGryqTIZmhXb/qJ0YSneVo4cygk05T\nwZ2zkXMCPrTA6zO6AJ/+r0/ohXz49T2DDS5GDsewuuYyuAW8uNZ3dN9JPaeiOGzoFlwCnarP3cNh\njOBH7FR0eeQoH59o4As+OHKu6Dt4OEI4CjhN4kUdstEGONQnA8aP9sKl7SIe6TiacKALD90EK6JJ\nfuAmv+jLp9d409fwkYeoDK7GEJ7BJOdg8StIwYhd7wXX/IBDQwhPeqq/zGH+ydqcJt8JRw+J6BWZ\nGK/aRPbag29yEZR5+EIHGOJO57knU22KLthouygBPm4AAEAASURBVL5tmG1Y604ayi6hE8xM4dH+\niW+Ww11ZqbxCsO5PlQdXqg/TAfKkCwK9TLfxI9IDD1U4EPSLhxd0jm6TOdnTmRx38Kln3ODL+KXb\n6tB5DoDWHfMKegLYeNf3v/ALv7B/x9XpV8HcQU+cinPaEc8ctFfbAzl668GOdYyexI83IIz7HK4e\nzOEPLTE+rYfmNs5d3ws1x8XLTnz8qFcAM+GUka0xbG229pobyc8YJHMyNpbpKllYr9GXHy44jHFt\n50y0TplHjBfOZePB/MsR6pSnh0pkqz++9a1v7SeDjQvtg8scJ4Xf2CAjZbVFH6Onr6T6rocY4PTf\nr//6r+9/aKb/wcwQ3+GbZZdcq68u3vDpWl75UvOFfiEDekAOZGu+4Kijm+Q9HUjRnrjKuyuv1V/T\nOY/Gv1Rf2WM5hZxj0ach/uAP/mB3wJqfZ8Br4aF5DO+5NDnNcjzch4/ZnvCGj26ZR4w9Dwz8uRY9\ndir9yZMn+xyQfMi3tx36Iy37GSdi/dkep6v13dwhRKNrfMy8HegeP7ULTtfG85vbQ+n/+Z//2R+o\neBhgT+UTHuajh6R9G7bxZq0013pjwCdIjG3jxudaPNixjzA3rTw2R6z5t6F/wB4SOCRwSOBwvB46\n8EJJoA2ARs3rFstzecpFG8Onm/PCaQ9PRBlSToh4Guo0hU12m+FowBn+0hdKqG9DY+qX0ilb12Qu\nlm/j6Um1zZNNvM08Q+Mzn/nMvknlSASvP20CGWEMuhxZDBIbKY40RhmDT79Lc1ikE9HEG5zqCfV1\nPHe/Fz4rb7M2YeBoY+daxA/jmUHKMHVqIScbQ0975DHYMxzJAN4VN3x4QbsIFk1GppNFtZU8nOBh\nlNNzBjJDmfHOKGeE4ktdAa21nXvB+IkfWcFelwdmlqsXnerLE4Kb+Wue+5kXbHnSDHffUnOqi4FD\nbgwEr+f5njPHhEBmNuccpk4VMnDoEjz6haGv3qPNoamvmiOUR1s/MKoYyxwtHuxwvuJDn6rLaGIo\nMUzoLYcEvsheP+gTqb7M+agv4aDHDDH5YMS1z/Sjh0he7cz5gl5w6jDs5Enxjm/tpycMFvyI8jhH\nRNfpIhz4JIP0h1zBcAg7ga7dxpg2htc1XHik94wfY6FxAQdewHBOkQ2HCLpg8Gt8qIc2WM4JMgeH\nPjjl+khKzxtLykVthHPKAh/6BG/4EFzXH2DrZ7IEU7oDbz/ywJQvFaunPZwo3/zmN3dHCl7QpFtX\nmzMNrzkBpeSAd7wlZ7LUXrrJ8QantpBFuo+e6L68eJTGT3mnYCp7nml8RD++J82b2lDdWeeS6/o4\n/PGizzm3OAC9/uuhBdmStfXFSXNj0PxtHjXW6KJgzOhPeqrP4PYQxlxiTFh3wEQr3t2j6dvTnFOc\nq/TOfOSUm4dGHG/6GSwe6aNIvziAOSWdzuWI4czHd3qPjrp0yhxiv2OO8/aHb8JyUNC1+JGi0/0q\nz/gvHz/mSOuLSC7NkfDSV3OB9qNtjjWf0f+C/jBezVk+I2BeVscc6nMvxqx2feITn9gdTuZSY9+e\ngOP1zc0BpG0CXI1b7RbR0o9C7UuG+IcfjDLR/MjB+/nPf36na2zOkGxWWUyYS67r04kHbg/ZOOc4\n3OxTnSqkI/annHT0k4z18amgrXBOvKfg7pqHx1M00MM7vj3w9MeW2siJ/YUvfGHv3ynL5Bgfz4vf\n8M802qWVxUNp+ZemKz714CrfWuWhihPM3/jGN3bd8wr87/zO7+xvPzSf0G9zh4cj3vrykMU494CG\nDhjrZKkfWnvQEKPXPHcp7+Di0/WUQbil9iDGnk8fOLhizuNcxxc9NabWEF9r/l3vVz67jz98+eNk\nc6exjT9vOpGb+dncWYi3UzodzJEeEjgkcEjgUgkcjtdLJXXAvesl0OJ6itG5SVjLqwfGxmcuyozY\nvrHk4/Y2PuCK6lqQ50K94j/ub5YAGQrJ1TXZ2pgL00mRzDlyPLH2RyP+tdimzgb1d3/3d3fjrD6x\nsWLk2tCKjGSGHocrI4+DguMHnBjNnfD2E0/oimtQLr+N7ApXvnoMOjrEWcIQtznmeONs4jhiVHLA\naQtjU5l8m1f1GI21i+EabTRdo1Uboqs98tBUR9ttjDl6GKRXm2PHSSKnZNBVL52uvdGRzlB5eWt5\n+delU17qR6s6p3DW3mAuTdXTNk57f4zllT7f+uK0Eh5tRrtxzvHKmNdfZMRZ6nuunBGcHvrLqTev\nSXqdj4OMQRGvyaW2uKdnTzfnvteK4eFoEDww4AzlmOC00ceMF04cBhZ+RTj0HyeJMnOTdnC+glOm\n79IbeNTR//igQ3SLg72TrvQCPs6F6nIYcS4w3GvPzuizH3C1SxYaE67raDd2jTfjlBwZjcYk2sX4\nBE/XyR4u+ckAPe3UXyIaAtkbK5w8UvXg1VecO9oJn7ZxRnFMkIcxgZ7xD04d+MEywBp74Mijtrhu\nPM5+l29cV5as1AMnKjPupfAK5jKn1t54443dmaTNyVVdsTz55AE3PpW5FsAUwZBDMlIenLyZX5+B\nke9+1p2wYIRZx/0pmODC6b6wwkcv2uDArHDVn2m8XAKrXvATx6wbL8qTmbnZiSjfTDQ30D96bB7l\n+KDPAh00zugYXaQP8EmNSf1CL51U5eTMQQ5GVF6gL5wB5iOv0ucU4KS1T/FdT/9+bvzW3+o4FcoB\nh1/RSTP8p2/BStHHizlJW+DlRLYXKpyTjfJZFrxUW4wHawp5ieRiTOHRWDOHWY+ebvOi+VBq7qt+\nqfmW89iJXfI153EOm0/ou7Z608WnOczh5kOfDeLg45zVRvw0luBd+W58BaPfwZCtND3QBxxcX/zi\nF/d5u/kGTiG86N0nwJM+RF+/a7cHhh46m1PpmTeyfArLGm4NKaw8wBOuYKLT/UOkZIm2CL9AfsaI\n9dZJbf2i3J7NA3MPL42RwsQhb21LcM8rTVbxX3vuw0u4Js/JSEr3jUVOaX/6SY85+T/1qU/tnxsx\nfuEgRw5szk0PMukkx6ZPkljfrW1CbZi8y3N/27DyvuJQbkx7e4xuWs/AeFiiDcao+eBUPbys+bfl\nb8JPXuFd5ztjyAN3Tmtzkc84cLzSQetyYx0e0X36WNmkd1wfEjgkcEjgUgkcjtdLJXXA3VsCczE8\nh+y2i284peqeq2/hnSHY6oWH8W0zb8PuNAEDiaHF6PFk3sZn0qjesRhP6d7tur6otvtT8pWnPxlt\nTiUzPJ1+YeAxvhhEDDwbKgGsfrXZAidypDmplF5ER99GV592Xb686sSndMK6n/BwMOboDh4ZwJxj\nNss2yK45uhhQUuXyGSHq2Ai61h50pv6hdSqgGQ9dd8/JQ8edlmDocvjZtHP+MYrBC8FfQu8UD5fm\noSdqm82ttIA2eUtXPsCSa+2rTvjcr/Xg4jDxWivHq+8DkwNnm+D0L1nYhHNY4IWz3rcUOQwZFZxd\nZMagePnll986JRGfO6LtB208Cox3Tn7ydlqJw4VDl0PB66qMEidW6IB64BldUvzmbGTYcCKYlzgf\n6LBxAAZf9EUfwsPJAxenI5nQM2U5XeHGAyOO4xH/HILqpoPhUAYHwwmNVRcr3xu7/aAraD++1OUk\ndjrLH/aQAYeLE1B4B6eO/kxmO4LxE05Z6M2gDE/GDZnCw3Fk3MMfvLHE8ap9HBTuBQ4NvJA5WQhk\nQWZS7YYfHVGbGpeuBTRck1mOVXzQIWmyM+45a/CKB+X0wmuZvtNnnoKr9pKdsN7vmePnpvJwhG9U\nPXkZvrXw0vprvbve4+MUzfhby+TPslk+8/ETLHnrB7DizHetz4xRewHzpDFiHqXPHEgclerRXeMj\n5z5dpA/0gv7QAbpm3HJwGsto199ouS7QU68Oew2Ws08AA4cx5G0P/w7fGFKOJmft48eP33IS4xcP\n2ojH2mp84N16UDQu4dcePNNdc0hjFI3aCo8Q//JnUB9tziDOXyde6Xzjczpe0W0uC0f9YDypL3K8\nmre032lhfHkA5tSaV4bNb9rl4aITbf5syHwp4DcZk0fX8t3j3zX+BO02TxaU61/z/pe+9KX9lCZ5\nq6MMPiE5uHdNPuGcuFxXxzVYEb4ZwkE+/nuAw90+hj558OfzOJxu5Fs70FNvhklr5j/0dfpQ+2sT\n57qH5fSWo9++xslhDxb0rbEi1F7147n0IXmd8jmFX3m8BxucNuqn2Va8Nb6Cm/yGY+aBky+1vjtl\n7lMDPjvjAavxz/FqX0L3BGPF/sWaYS/jwa9yexYPF1ddm/Ruc42vdHfyXtviG05jxV7CPsk6pq/1\n6a/8yq/svNn7Fqrf/UOnk9d4RFPfWOfNdWRMfsaQTzMYQx6m08HGM77Ug2PieWh+D3yHBA4JvH8k\ncDhe3z99feuWzsXrusrPexE9R9uGAI9zk7oujt1nNOB18tvmCQ3GhleBOfM4ZDxJVs8pCxtDC/M8\n3TAX5MnDOX6P/OslUF8F5V4U2ggFI7Up9cTaP9Mzfhlnnqx7JZOh1yZVHzJwbVQ50zna+hOU2Yfp\nBp0QKpvX8VEZPuTZvDGSOykonwMnw/PRdgpHdBKJM4ce2eAVM8rnvc1zMd6kdw14EmzaORI98Xe6\ngjPB6/X+5ZpjTmhcVGfPvMXPJfVq00Rr8y7oM9fwkC35uK4O/pSTfXnhWWmDmYEhrf/pAgPBCdRo\ncaY5WeXkFCcsRxxYzjAGjjyGrm/BMnL0qb7MyMULXJx+fQYADo4A0aafLmofPXDalePVgwLOHUaz\noA1g0kX3nCtOxIgMNPd0zLyljXigP/oQLnnhkSZHNPDHoWxMMOA5MtAyhjgE1Td+1AGfHjKUlWkz\nWGXqcQzjwzUZ4IMslcMhHw1OHqcEn26ORvLUDmWCFM/h2DO3H/gEbYCPI4dBR3buyVus/eiiKY+M\niu7l4x/v2odPAQyZJFttIX9BPfdSMT7pJJoC2Nl+PCvHX3BokZt+53ySkid8nNIeBnESMV61tQDX\nvC//knTK7hw8mAl3V1rn8N8lP35K46l0xQnuVJn8ieMUzClc4dN/nFl9G9Wf2ulzc6jToZx79Jj+\nhFs5PTOO0jN4lOtr84GHMMYufapevIJR36v1nCnmIiexOPiUgTOWjFsOLHMYPALnhvmcs4YT0prU\nOG0+QI8DzzjEP73zIMiYNB6Ni6urq30N5dCho3RbGd6NE3OoNnAg011tqR34SOZo0nvOUnOn9RE/\n8tUxJ2pLb56QozbOAJb8jBd44DOH9sDIvTnZm0keiJE7vJyyTr1ycMcfHuOtFC00otO8B1abtbd6\nUvKwVnrAS8Z4UjcY+GqDfGGW7RnP8lxPPtyDLdTfUjLiKNLnnXLEBx352Z/92Z0PegOfqE70w7fS\nKv8hU/xHe9KTbx11qIHO6j9Oct/m9ZkEa6l+LtT27ieu8u6bTlmHX175yW/lRTl40bXygjryrQnS\ncCgPb7DScLimp/Zk3sTxp5/uvY3k4IdPDhgD4O0twPk0BzrGqQe3xpf1BsxDhXiuja153aNj3TTe\nnHT1Cr+T2Ph2Ctuf3dr3kkOyeEj+TrUznpVNWvYp5j6ncX3OwYMzazG7wZ8X2ovRQXyGQ/15fYre\nkXdI4JDAIYFLJXA4Xi+V1AH3tkmgRe42BFtcZ90WTGkbp/ImbmU28gwoG0MnCt7cvgvGSSI46cLx\n6htiNvVwFKPn/gj3kwBZTjm6T75t2LqX6h9OVKc/ONFsCJ0K4nh1KomTAxyjlMGob/UrZ5NXQxln\nysWJv3vpqSA/PjMIOXo57Jx0YlgqR5ch1OvNjOKcPeqBwTParsV57f66cFP5WhffIqPNxp4BZBPq\n9I7PMzDebEKFnE6up2wuoXlObnCtYeIzDm3g8WQ82iSTE0cb2SUz/KCRYQOHKK908pBMo42G/rfx\nZgByomRE6A/9x6nHyGH40B3GDMOQU4OxywHD4ObkE9TDD77x7wGOT1owQBju8OOf0U4vOUTg65Xk\nnBFTHvBqh7p0ibODTAS4tGv2k7ry0MDPGsINn28kMjrogDHUqS71RPg5NAT15EnJQaTXyuXjIR6T\ne/Xjyb02kCd5GHvkOp2VcBTiNfrapT+MMX3A6a2P0IdXRNs9/tBzP3kDI8AFDoxrtMCRQRGfIl3R\np6JrjqH6YEe2/ahb27RHuRi9KTd9Q2f0t7kgugxpJ4Q4pslllUVyRRO+GbVBkHatPtzirAtuvZcH\nnzDLytsL3uYffJyjL1/55HVlLxhpeGad8tSLVnXkuabfxnlOV45D/cvhwUHOWckZVj+TeXil9Gvq\nWX0CXowueoJ7umuus375rquTnI+ePdyBU39yVDrtadx61dg1faNXxoYTZk5/Xl1d7eN06jg9Nic5\nbcgpyfFqrqLb6nPe2O94Zd3pL21u7BobdLPPnNBVTlsPrswn+C+kh93DoW1k2rgjg8bL1NWJR33t\nFslSTA7qoNMJX85pDh50yMjJQc5l46r5rT6CAx0x/GjBb4xyYHlAg0fttddQV4DfZxM+97nP7fsN\nNNWbAWy4V1kEVzvRn6F6UpGMrCkcW/Yv2mMf6uGTk83a3YnmFdd6P+k8r+v4jnapfDr73e9+dz/1\n6p7D3KcGnNbNOTfhJ4/lz7z7XuOhEP76uXs6kN4FK1U3mO6l9Xe4T8GAK1QO3jjUz/a0DhTQW2Oa\n49UnkPSzQCeMRQ8G0LOnoK/RDmc07pPia8oEbrH2mQPNI/6Iz6EV84n567d/+7f3ecj81V4iPh6S\nv3DONN7Kix65eVBk3uQkNj9cbfMk2Xqj0Z6CDGsfPNUtDeeRHhI4JHBI4C4SOByvd5HaUefWElgX\nwlsjWCrA1yZDkft1kbRhylBmmEwj1LU8xrVNus2CE2AcMowShjAYiy1D5MmTJ/vmxwZHXnG261iY\nl0665e3sv9mnrmdfu7cR5LxhiDgBYiMFxumg3/u939sNR8ZJsPSAg83pRQazUzD62okBm9u1H/Vl\nm80dybOf4NCymeR8YwAxIEQbNxtg9cGCozN46TRKbQnX1Bt58z7awXZ/CqaycykcNvZOu9rYew1T\n8H24z372szv/jFhws+1oied4O0fvpvwVn/FmU+wkF6PeJtnpTZt4BiY5kl28qC9M/qK5ls18jj+n\n1X74wx/uDmgGTLyEm3OAY4wj3WmSvi+Ycc9JwRjDc0YQ49jDm6fbyTHzCQcHHdXvDHnOVvg4VqRO\n+8hXLsx2uDZ/4ZVhI0ULLJnAwQEwgzaI4NQVwKxOATCcCRyvXlN2atxcKHA6MO5EtPCPPscDGHUL\n6TFdiXdl8SGve7AZr67ViVey5lQlH45/ZcYkemDxRC8ZcHRB1CfylGvvpImufCE9jla8up88xw+5\ntW7oV+sDZxX548k8olz96qAv4heMeuBE+ejUx2CUByNlPHsV2gkw+u+6NiVDKZoF7dO35hrjgq7S\nSXTA4aPPUaABX2HiKW9No7vmu59ll+CaOGbdmX/qeuI+VW8tB0MuwSZDuCes+2Bmvjx9CgfHOB3j\ngLT+c0DSBXsETlcP8cg4HQjfpCVv5s+yroMxNvSjP89ycvPx48c7bWOC/gto2ZdwtHrDQ8RH/Wst\n4qzlQPAZFGNKHTToon0Opx1nqe9DcpbAZxxdbc4Hp704W81x+Ii2+uQEF1rmDvOz9dMffJlHfHYB\nTPKsXfEtlbeG4Ge5vOqvOMFVB0xzB+e4067mReUcwRzk+DQn47ugjgAuHYk3ecaVOdb8bD7Sz+Zz\n4xMefWUu4njl5AYXzmikF+5rSzSCme0oTyofLFrmXbLVDnsVa5UHuXTzauszetlhgOY89cNd3sT/\ndlxHf9IiE445f3jmdXSy9aDcqUg67z5ZqbfiWOU3cd/1etIIvzzztL2S9c/8bwwaT2S9OhFXHPDI\nC9/kbcKWH7wyc7a9iXWZIxMfH/jAB3bbg67hQZh41I9W+d1H4z5pujx1KZ7teRxk0K9OY7u3PpuD\nPPyhp81f6j8P/k61LTqVJQ996oGMgwf2PcZ0/Jo7zR/BnsMRziM9JHBI4JDAXSRwOF7vIrWjzk9J\nYF2gfqpw3FwC16I3qp28hAts8O5tENxb4BnHNkyMDZsnhrNNjHxwruXboNvUWoxtbG0cGCltEmyo\nnXB7sjlefWeNcasMHTRr0+TlJMNH5o0SqE8DnPIl8xn0of5jQE7Hq408xyvj0Sa5enAxoOiEPmaU\nMRqdwOCI1efRnzqFpnyhfCkHB0PhajN+bNxyvDrByGgHg0eRoZY+TTwrXvcrDzvh5WettxS/dRuc\nDPwwMhlx/riB45XRjlenKV555ZVdZhw48VF9dcVLw6WwZBNutNw7PeWPQ5zG0l9OYHEMOxHDGUiW\nAnh1J47JX7zLm/zIZ9zoe3/K5tSrOWHCgUHHCRyngDkxGIYcE3RKAIM247jTivTIXMJ5xmCG13zh\nVWV6wQiR2tx3osr8Alc0d+TbD9zmLA8L4EWDAUMGnCIiB0FtC4d5LSchHdW/6qV/yZuzz8MHekDe\nxhIceHWatG+dcR5zNonGDb6E8ES3e3IDIyqTL51BnlA5h5HXqtF1wpCe4oejC9+ci2TGwYE/jgdy\nrf7EP+lFJ9rBrfmTl67BivrQ3CDO9WOFA4tvMGDVE8mBTBjr7s0/+pKOeE1bP9AhfSZffyuDR5i8\nxpN8emOsco5xvtAnRnlygRceDwHQQQMvEx88cK4hGOks77py9eb1iud53q+8kIdoTNAZsiZDUbsL\na5vKn/j0lQdonXQ1D+jTTrpyNKab6onJITzwzrzolhfdUjruFKVPmHh46JSbPG1Rh25xunG6cnBY\nt8zf9ElA19jgPPDatvrNVdpvzrPH6fMI5ll6QW+sX/Y41kztplOcwI1l9OObPO2pzB0eUJtH8WFu\nqO3JozrJ330wtXvmBQ9Gu2tXdZQHXx44vJKbOQvvyrTNQ1Z9ZkxZS8Ce0hGyjWapOUZ/eKiqjr0h\nh7X5EA904gtf+MJLH/rQh3aZgYnf/WL7icf4ls4wy9d8ZR546TNvqHh7Av/mSXx5cKd/0U0mp3Do\nw3cizLa5pgNSpwx9u5TeWA+t7aI2pa/4BStOmc3rh2oTGoXwy+Og47C37plHraXWf/pAN8g1uU9e\n01vtVR7OaEx65YFJPuwRD1S++c1v7g+gwRvTnR61np8L8aN8pXuuziX5eAhf/OPXnOghlP9Y8MaZ\nucibX/aSXt2317H3UEckm+qH7xL6d4WJVvXRtC8z972x/Ynlm9uhDfOZz4XkKM6xHX/hiP9wHekh\ngUMChwTuKoHD8XpXyR313pJAi9NbGWcuLoFrwTuD4q1scHNzA7d7wYbAprXTZzbLOUKUiTbi8mx0\nnGZg9GakwQ2flHHribNPDTBoGGXxGE33xbcYPC5uLYFkXkX3otCGtnupjZ7NEweaE6+Mbh/J9+01\nG3kGWf0C3jUd4ZRgmDEePal3+sI9Y12IRhvF7vfC7YexYwNsA87YtdnM8Xq1OWLn5jgdDe9sR3jj\nMfyn0mDDIw3XTfDwCwxMr1Z5vd4Tf0apkz0c1f6UrO8XopWs1Iu/8Mi7a1jbEW74yN8G/jvf+c5b\n/4jL+dEfy3A6kn04Vh7hkKd8wqx8Z9x8//vf3/9hWT2hemjYgD/eTp31LVcGFweh/sQnWdIjTgjO\nLa8HMo6doOA0BEf/6Ae5inQjp0bO0FN9qC7HDic5ww9uhiAnCWOVvnGQ4FN98GIPFsx9eGTIqoMP\nhuOUg3Kn33yPjRHCsaD9cGs3uRtP5kYn2zhXwJsj0QQbPrQF+Rmk8JevLNhZTx6+nCh8efvcxeON\n7qPtJBmYnMfBaIcHHebjnGvKwK6hPOViAT9rnjLwyta+qK6yYFyHp7rhl9ILbQ9eqp9E+Zxn+pUz\nnVzpinyOUc4xTqLkHF44xAK+4MvxyglkHJMPZ50y+DgMjHH6OU91T/7DGf7aXL60spk34eb1hLnL\ndbxNnGv7J15wIj0yZpt7jRfrgzGx4nRfiA4a+l+ExzgwBox7+macM9g5jOwrhOqGCw55q7zklV9Z\neeqiaV7g/DQOOAJy+ClXR3voRn+K6K0AfNAdQZusR/6d22uzHhZ1ghCMecl61zdP6aA65iUPPERj\njx7RKzzhUYhnY9+eyZzACcnxal7g4Ey/wM+2uZ/ydj8DOvCLk144ZtnMC4c885wHY/rMQwg4zfF0\nn+PSeKIHYI0Nc695yhyrTcasMvUEYwgup52doqVb5mHObuungI63RD784Q+/dLXN62DiVXm8uhbc\nrwG8sJbhB2/4J2c06bI5//E2R+Kp0/5wTBm6n21Zab4d93jQ5/jCS/fa5UGn9Z3umPd9t9RDVQ8S\njd1koc4aKlvz73M/6YQf79Yf8vdg35jDuwcTxia+ja30ZaUPpwhfOIOZ9MoLBl3j0oMVn2PwgIe+\nOhHM/vAQmJ4lV/XDN3HIP8ebsruE6KiLT/rIrtKf9pIeONNP848/JqWjzSPqisZceOL3Lrzcpk60\n1UHTaX3OYqeu9au5wDdoPUChh60f8TfrP7RMb9OOA/aQwCGBF0cCh+P1xenLB2/JXHSuQ94idR2M\nskvgWphvwnUKn82RhZUxwMDgsGCsiJ3osmmoXVKLqVS+2KYGLsEG2xN5f6zFCVO5surNPPlHuJsE\nyHPqiHtRIGOheykjkKPOqT3OU5sofzTh34a9Gs6AKky8+lZfMxYZ0l45t9llrMkXJr1ohovz3cab\nwWdzyVh1ashJJcYaB+GkV71T6Yp7hakcvrviVA8exid5+a7nT37yk/0BhBM0v//7v//S482g41gU\nwGp/YyDal9I/14Y1P77KZ2wyykSOKXL1upp/9CVf8rZ5L+ireC0vnFNuysqXcrKTA8crY1pbwYvw\n6z+OCw4MY55ThMHDgWEe4aTk1GJ4dKrQgxsPdOgGJ6E6TmhyoDzaHBqcY4xlThw8iDOgrT3oM/o4\nNzg0OHM5UhkEnLhOdfUnGmD1EZ7objzhAw9OReFjOuTQibZTatrPyHMSTj0GkzaTN6OPc4fxz0no\nGsy5AL5x0xib9FwrR19byYoR64+AjFvXTmwKYIV4lRaVhbfyHfjZz1q3snP5ysM3YU/hXmHDWb3K\n53158Gk3Jxh5e9VRn3H+0C36r6/plbEa7slbeeRI3pyEnaCmt/qdXMHpX/rzdHO8MpQbz/GWPN3j\n6zahuujE023qT9hVzt2Ht1Sd9GvSlWdsGW/mjMaQtms3+Qrwznq1QZps6J+HG8aZcWvcWWfsJYyB\nTn2HC+34Cx9ZlhddZUL5pepbt8wTHt75pqs1BG2BXtjTcCBytvo8gFOvdGgdi+ZHa5B5a/6hjfbT\nKfxzHnPuNM95QIne1dXVrk+n2gAWjh4Y0F284AleTv7ao+3JZm2z9lTWdTDdw7PqIhmZN8kpByea\n2g9eH1nvzYucz8aFOZHep/+Np4kLDvIV0VRmjnVamJPLfGT/Z5/ACcbJZF8Jnp755r99IX3BVyFd\ngm+2r/LSZDZh5JkHnHLlGOJ05XTn1PJnRXREP1cHjWQWPfei+3cqkAEe45N85XnbxrprbdMWr8/T\neXLWvwXw2jBxhCuY+6bwzzDx6wNj3h+Q2o/QAQ8wX94ejHhIbc0y56Sr1YVTO+lgeZPGSlNZcPTK\neKJr3uKyR7Nv4HgVjdNgS8OdrLp/yHTi1l4PCNlY3pTRn+ZY+wVyMff0AD8doIfqmUdq/8r/Q/J7\nDhfa5k17v7/6q7/a5y9rpz2mQzX2Pb0xEn/q1P7yzuE/8g8JHBI4JHCJBA7H6yVSegFhWgCva9ol\nMOpfuiBdCncdT5W14bGoW+AZR5w1FlVPqTlH5LW5bgGd/MKhPueEjS2j1ebH4mzTDi/DxKs+NhSe\neM/NLJxtKOLrSO8uAfKcOjL7bJW7Ms4um1OOV/9SyvjxqQGOxBx14AR4u45Dhhs9sXn0vVMOJqcY\nhehVR319Lc0ItJGkL/IYbJ72MyT6HumsC0aQV/6e8SyvcnldB1da/pqGRxrszOvaeOBks6l3+onh\n4MTJkydPdp7dVx+NNs7X0Qv3XdLkCb++4Nj70z/90/30MsOZHBm2jA4GdU5LtPCpvqB+/bVnbD+1\no/LypRwI9Oa1117bTz9UBg8d4nRxksnpaSdxOLLomvnFSR0ODPODU3DmFwajOYSjk9GhztXmyGBM\ncmZzzuMdj2iIa6g9HG8cGgxuRph8bWfcw+u6V5DpHpmBZchy4uEH3RxHrs1reIxusuHQMVeSg/HD\nuOTEeLQ5fbSDLDiaPLgyJ3JeTJmHT1vqS+2srfiTr93o45ujUJTH6OHcyMkhP5zSrpNVfLuvrLzu\ng70krW745v28Poe7/GC7j/bMTz7KOMnJ2wMfTiyO9gKZTTnLD49rNLonQzGZk58xzHg0N3HY0CeG\nMr2IB/Unr+GDX4BzBvXeLQFv+I1n7eDkMM6utjHHIZbjzTglWzKdba7t4aht8umouZwTm86Sm3FC\n/82fOTvDUd2ZrnhnWfXAJOfGnPHNeawt+ABjTNIX65STm+YuTiFzs/Lw6CPj1VhyesuexTgWwNID\nD3PggpPzztzAsZOzHm/wTR7Vd28esGZ4DZrumnPII9mCE9Q/FWorXEVwrvFePenUN/XoNx7JhX6b\nj/WLNYLTB3yfItH/5GAMkRW5mUfdC8aFcnMyWhzK8vS3OZP8nHQ236KJvvnPg11vB3CK0QG6YV36\n9Kc/ve8Lm5PRiH9tm2G9r80zX7s8GDQvkDf9Nefbe1oPrTPkMeusNJWdwj15qVzeimvC3fU6/NLw\n6wN/XMthRxed8HaogUNR32rXDM9j/zH5icdoxmf6qB88kOd41R90RT/TEX1vv+ehpvmmAKf6cBUr\nk6405UVXe41Pewy65m2sq21O8xp8n2MAL8Sja/Xp6aTdeFP+EAFu84Y9kPHvfwLwaY2xT7KPJBfz\nifEZP7VXapx1X5sfgrebcKCJHvnaL5HrN77xjX1OJ19OdPt2p+bTwepIxYeW5008H+WHBA4JvLgS\nOByvL27fXtsyi8lDhUsX0Uto3gaXzUenw5wEsRlwEsOGO0NTG8MptekWbZxtrDkYbGidlmAAMVBs\neJ02cK3cwmzjY/M7w7EoT2nc/5o86yvYkq/rNj7pkL5nDPrEwA9+8IP95KpNk1MhTrza1K+OHHja\nFEsZbl6R4qwX20jGQ/zMe3zYQErhsJmTou0Ex8c+9rFdX2zowEwck3c4w4uvu4S1fvhP4VJmXPz5\nn//5S//0T/+0G80eNngt7CMf+ciu5502DC+jWhvEhwyTT9ci59B//Md/vPTVr351f8WPIWYz7Ntm\nTuXazOMLbCm5C/iL5/icNGaZfIa4P67wBxbmjfBJ0fGwheP15e10C6PXHMPg8IqaE2NPN6cr5wd5\ncV6YI7yaKj7anB2MeKdjlNOL+Iun6LknY7joov7xSqv5B4/mKCdQGQROxOUgoXPgOVo7xeaaPPBj\nPhM5kIwBeDJ6ok1O5jeOFN/c65u6yYADQ0SLo0F97YFLexihHlKYZwXGJ9mhJ4I1z8qHUx2ykM/p\nAZ/2MNQ4OfAqP3iy0R5RXQEvQuNvvxk/YKtXKi/64XEvlC+deV2Her2He80Ldk2DlQpSxrU/JOGA\n4NBh0BbgrR3RqC6Y8lyXL08kl2QjhYd+iRNn9eAoqE8+4XBfHfBFeWs4he8mGPhPhckHfoJDd6Wt\nXGwtnw5LTkFjln7iDx76RyeldEkZPZ78K+dcAUNuYOg/uOjDVZ1wy6u8dskTC2CrJy9549+Ysf9o\nfMHV2DP/aA8e5KnX2JJXG+WbuzheRY5EeWgaq5yU2oKnxqExm86gWTu0XagMfXONU9ocF2QbfO1S\nd7ZvR/DsJzlI1wiPKFQfjDz845Fj1TcjzUnmCXOm+cvDL22TxylJB1yTC2c5x2v7QTj1K+etuYfT\nDDy85lnztzXR/K0vyNoDN/Ox9cIewQla+eRiXXqyPbS0TsCBz+T9rNk/1f/llc62lqdd5n7rjP0N\nPvBkXTG34z/5VV9ded27Ftx3vWeMn2DLOgdX+W3S+k2dSYcec7zaf5gDvVWSQ7G3WYLHTzoRb6W3\n4WWFnTKJ1oRBQ75oXHHUeSvE55k43ema+cGnOThfnZa0dhmP6uj/yffK83U01aPTDgD8y7/8y742\nw+0hChuEjSJMHuM9OvC77r7y+6T0vYcBbCyOV45zuqn/7NMcdDBuckJP+niKr/iY5eU9rzTa5gTz\nAaf2X/7lX+4PY8yRHOi+SeshsHEtqFNwrV+PcEjgkMAhgYeQwOF4fQgpvodwWERaVFr8uteM8mrS\nel9+dc6VT7hgqlPZudQGxGIvVUc6ozKGgSfoNqmeRjNgPZ22MWrzGz30RUYNR4pNN0PHCTUOCk/c\nOU/AOFVig9Umm2PA63s2FzbaFubw4t91i7Lr2nqubUf+eQms8nMvCvWha3n0gVGU45Ujg1HiNcHP\nf/7zb33jrr6pX9SlP4wAm2qvk3GocTwxJhk+YOEXqh8f+j9c8MgX5Tmt5FtcnHac9OsmNNgd8cDd\n/X3S+FtxTF4ZjX/0R3+0G87ax9h0opSRboPPcBRmHdfJYMV9l/vJJ9zuGTgc4ByAb2zfGzWGjTV/\n0sApzOiOp1lfG/BW2eRnws1ydTgpGYC+88WonuV06NFm5Hr1vT+oYdzTEwYRIx7uvt/KacggEtXj\nGEiO+AELvzh5ojt0jUODgc2QoX9okIVyf+bh+9L9OzDe8M/pap7yOirHsW/RkaG5ivFAdvqWUyFn\nQLxMGaHLkPrrv/7r3dCHA5/oMPLpM4OYoSk1b2YggzWGtEG7GJ6cOc2t6rg35+I5p5FrNMzfeOMk\nCbc64I0x7W98JTv3gnGFR/kZSvAqR6c464PDY7qsrug+fI1teTOiWT92LV1DfJY/+zu62s0h5CEP\nHeTEol/4F6oD1xrWsvgPDg4worJwlAdOXniqF5z+4ozimCIr8oOTPPEdXm1RJm+WyZsh+ZcfXfTI\nmtxF93BK9auxRRfqLzzQN6er0AuPOrP/1YUPjFOqnDvqyoOTY46uCZyQ1g9jqbbBG07XU57q4E8U\nlMfHzNsLt58J6zrYmcrHf3yTUzHaE588dcjG+DR2egCTrJ2atVcxb5oHkmt9pT565cMpuO/amPYw\nAE5jlD5w2Fo/zBecUNZL8OoJ8ea6Nrqu7TN1XVn56hTlieGnB/ru0Ta/mtPoqTXC/CXmDLNOiPjF\new+y7BHxj1fzi7XO3GbONseaK0V10RLAG5fmVvtLDmdzrTkPn/gzVpz085qyh67m/uS6I7nhJznB\nVbCn1SYOItdomNe1G++zziovOOItfGta/TV/8rCW1Q9r/rn7dGHiRNda58+1fLKB3j5+/HjXVQ8V\n9SnZxZ+64UFn4jpH9y750asuOvLKN+/YJ9J5Djv7BbqhL7yabq9pn8DpKBjP1Ydr5Tu8k55r+dpL\n5+wBvIFlX8pGcaKUDWKvIYQzOuWVvwM90I9xZD4wBnx2wTjI6ar9vnPspCvdv47+uXY/EJs3okFf\nX3oz6Ec/+tG+58Gvccvp6k05D15qw+TXdfPcjYQOgEMChwQOCdwggcPxeoOA3uniuQDgpYXhHF/g\ng6lu9+pY3Mtvo9M9uBYYeaK86ncPz6wz85XNsMK5Fy3o8eK6e5saC71Np4VSvmv5DCp57hlhNm82\nAZwinBAM2hmirU2MDZsjmxeb7jbpNn024Db2cHvN1xNdBrHTZxwJvpfmUwM2ioyd5BGt7tHrurIj\nvbsE6r+JIfm2SXVK0p9rcbrb9Ppe2Kuvvro7rPR38NJ0qT+x8bqk7+XZTDOwGOp0DGy0q4+ea7ok\nTXfxFiyDzolXr4Zx6DPiwlU6dUTeQ4Toh2vFq5zhra0cr05wCE5H5Xi1wc/oVKbObHN5K275l4bJ\nZ/JAw2mKN7c/Sfv617++j2Nl8598jbkZVjyzrOtzMPLNGYwoJ16Nd3m1S/8a8143JR+OGvMRRw6j\nm4HICKZbZMYo9jDHPdicGuEspXvmsOYxjh/txgsjmyP16XaS1rV5DU6OE45Xf+hhzsIbhwjHMZ1l\noKln3kKf4UDvzGnmN3JLX5NLfYovBr4HTF67g4/ua5/5EO2rq6u9rZxWTrdw+EiNM/pkHlZHkMfB\npRxdhil9ko8mHvGubeZu7VcXH2DAq6cOPAX8g0GPDPUTGYPnFGqMKSdbPOkvUZ4AB5zquMZPAW04\nJm2w8opgCnjBxxrwJSoXBXSCxbOAR7pkbWFYe3DE0Z4c4612q5NuusabiF/9IVWurRxQnBvaHl11\n4sd1PLoW3IefPut7p/c8mESnvoM/WcmHH8+tzdoFRn4ycj3z44lc6RldqR/hTA/QNpbAkQO8dIbc\n6A1dkieiL58uG594QpMMlKFjze80I3k5VUbmxr4xCJ+QnJJH6V64/XQf3JqCC2at4x585dV1r91S\neWSUDpRHBoJ8Ou+hnn7SFvx7y8e4Um6eMHdahziE1A1PeMNXfnyRJ/naR1kLyZHjj3NSP9EtDww4\nYJxaJOPasTO4/YSze+mEUS6eC/EYHrzSA3Mu/TQ3kxd90I8iPs3DV9t89ejZwy9y5DAzr5kj6QJ5\n2edxTpvbfRfWA3d44UdTm8gAXp8Y8DCMw5XjiSO3OQusMe2hfZ+lISd6fKp9yfhcu8vXB/RYf6Jl\njHAk0+PwSqdM1a0sPDOdsF1P+K4rm/jk6ZP0aOI9d61OOIOBg/7QG2svOXN22VfrM3qdXlbnFJ7K\nnmc65YBv80POUOsle0Oefvn4xz++O96NSfd0U/14X+UwcWtD5fLRMo8ZY+wPDzeuNp12IrM/IAuv\nuq7Dl+xmOZibQvWDix/3yowtcwyHq3Hv26749IDXAx4PHeZD+xXfKbzlPXQa7dmGaOCZztkD+48D\nn9wyth5vNh352mNZJ2Zd+MKZfMN3pIcEDgkcErirBA7H610l9y6p18IQOxaOuWDM/K5LM4QsKi0s\n4QsP2LkYVbcUvEUtmGjLE7oPzoZFtBEWLYbdu/bElyHFOWYDLI9BKbXZZrzbwCkHC0f0tSE68YMH\n+RZZmxgbJBtvG3WbeBtxm26be7gZY5x4NhocHPC0ufbxeJt0m2t0hOis93vh8XMvCSTTkHSfzOkD\nJznHq40qQ4Wx6c+YHm8bKs6oNsJ0nUHDsWXjbAPJmOJwpUurvqKZPkXXfbTlVSf+GBBe3XeClFFH\np8CJs17XpdW/axp/1V/x4tM4cSr4K1/5ym6oawtnxCc/+cl982wc5ByCp/bBBba8FfdecMHP5DEc\n8hiYb25OV6ddjTll+PKJAZt6DobgI3MKV2Wl52DkG+P+idfmm3EtoKFManwzdM0THA/mCbrEqcGp\nycBmbHB8FaorFQtkL2qn+YpDQ+zEKl3kfDXHkTN95XRlBJirGDjkwagzB5qTOANEvHMm4NOrfnRO\nPadPToV4VIanHK9OvHpwJXDcOu3rFAhc5k08rX0AtrxSeQW00DDuXGufE4acIU6gkYVoTJr/wcED\nFj3yN37KYwAa3+6VccyRiT6QpwwNc7hI3zkxlMGnT+k3/HChJ5I5OtoJF9xkytmMhjxOAThqD1q1\nT3vhQEeUL8ANDg/qCZXJow/60jd2GfVkAQ4OobRrNPDEoe60Y85+MlBmLtSfTiV6oARf9HaE42fy\nKVt98qFDPtHCKWWdQw8ObZGSHwdcDmx4Wp/1oWup9tV+shaVaV99S7bGlZTswyvttXv4Rbj0KQcA\n55f9gfbSHWPJKSYONro19wP61YM4jkinsziU8eczQh4+cWyQlzozkIeovWLrvXbVp8lWWsSretop\nz70Q7KQRrDT44ORVv1QePsw/vZ6NlvWLQ4QM8EamHFr++ImzZtZHf9KLHzDq0hmfExB7GOABlNec\nve6u78ydTi36LvTqiIS79odb204FsEX0Cyt8/dB4pB94zTmpP+Ghs3TXXo3uwkMfzGvWfH1n7FhP\nnG6l69pE98DCaV/5dHv4pY3qmF/JwVxrLwouXvHlmq46Xey1c/ThmyF4efi8TVC3Oq5FdIWJ131w\nrmc4B6ct6qz1jLU1f4WZ+K+7jrb66JmffF+e/ggcd04MG5fGWXSqB6Y8129nwK+QvF2bK3xywnjz\nsINO2TdxvmqH9draEc+1o3s4ynMtzDL4rAlwo8MBa6/BMfjy9jkLDwlmHbjCF5/uJ869wjU/1Q9k\nrWveNbfaX/sjWmv41WZH9fk1+yDzgqDuiu8c3vIfMo322gY0lBnfHqL4czenXvFOtvY7Ph1hfljr\nXofzIXk/cB0SOCTw/pHA4Xh9j/d1C0PNaMNgASlWdi6dOFp4bMDaXCqXf93izhASGb8MGWnXjC5l\nOUylDE8RLFqCTXQ4Mp5tiBluNiXgtK9rdfA2+Zc3A55FBjVj1SaP09WGOYPbZgkM2jY+FmebbbS1\n2wLN2OGk4gSx+RfQTSb4ulTek7/j+rwE1n7tPjnTA99C8yc1TlI4peK7Yf7wgqHNWQaWXjGiPO3W\nt4wxJ84YZunUykU00IzuCrPeM4o5XtuEM5SFdMM1XHALpfvNPX5W/la85MSotpn/2te+tjuewTBC\nOak5OBmrHEwFOOM7HZ+8B3dTqs6sN3nDF2fwG9vnBRhk7jm6jLOPfvSju3E8eYoWfIWJrzzpdTCc\nnXTme9/73u640c6CthrfDCqGOSeX+YLTtWge4fBCg26Zn3LeqC9qi/mETjLYzCt00DUHkjnQHEf/\nzEM2/Qwr8xOaHA2M0fDBb75s7jQ3cbIwzDgd9KV65jkyEes/17MPkg3evDrse2ecf2TNSeUTDz5v\ngDZYaeGcvNEKzjX+zP+cZBytHBoczJw12kBuyY6sctC5Jg99IIUTPrDw4YdzQ9s5mDnuyEnIwQcO\nHgG/ky9l6HPcBKe+NQBeNF3DL1on6ov40BfaV5vVN9aTOR5ne/CBH/Dg0Ghu0Kf0ggPROgkXPkQy\nYNTqFw8Hp9MVb/hSBjeDmMPIwyQnaV3Lr6+TRfd4nX2JTrpED+k4XRLUAYs3eXjLSa2ediV7bXBN\nr2fUf/UJnuHI6Qpn/V3fd09OZE1OxhA5aav+M37Ma5yOxrRrsIL6XoGly06NG8N4xZu3JLw6zPlq\nLGofHSnFG3hzIh3Tbnh7YOJEKDxkMuUJhzYL6Zzy8JLTDMk/HMrkhbd8fOtvp9DN1Y8fP951gR5z\nHju57/NIZKzfOBM4Xq2B+IhueKOrrzx0NA+QLRycK/Y+cJsD7Xs8SKQTZGANdUrb6+Lq1t7aBXf0\n5GmDvGjXpnhwj8dZXp1gldODxgw9mrqtfziIOZr1OT3Wh/h7us079AWM+dH8aizROX2orLcOmp/o\nlrYa53BwbpPHpIlfOH1/m3w4otBtPMz2kUP64PqmUPvBJUv4wknmrm+DEy544Zt1k7FyePGvHJwy\n93cJEy98cOuLN7a1nhPP3MVZba+kX9IBtNQVb9u+u/B5qk6841twXz9Yv4wR+803twfG5jCfAbBu\n0gVztLbiPTyzHeVFNxrujV86CL9PDXB4sjeMQW/dPdoe7IOvDlzhi4b7yqNxXVr9YNa65gj9Zt9s\n3jM/2xdxMl9tDthVP1Z88K44o/XQabTP0TPXO1Tz+uuv73M/Z6vDNPrP3r31Dl/hisdzOCs/0kMC\nhwQOCVwqgcPxeqmk3qVw6wKxsnluwajeqXJlorKu24iVb9PqFICNq9NbnFg2JTaqOU8ZtjavNhQW\ncDEDTP2u4zlaNi5C9216VrjuZ4rn2lR9m5I27oxqC6xNs2Aj0TV+OkmB7+gywjydZ8w4Vcaoq2xu\nsOCLtusj3F8C+nCGKV990Ikff1RDD70y5Durjzfj1IYeDB11wlXkcOXosAmzkaSThUmrfp15wcVD\nZd3bjHK82ijbMLcpBQdG2jVc1QvvXdP4qP7Eq4wuG5te8XNSiczA2EA7WcoAuto20evGk+zA3WdT\nH2/wrHzhw8kDkbGvnAHzuc99bj891Gm+2nWbNLrqTLruORk5ehmBnA4CePMAmhysHJnkw5HB+WbM\n609OI4FszGFFcx0c6Y05kH5NRyvnEX1jwKuPXkYM56kTph4WyAerPmcP5yUnk7rmMc4g9RgLjzZj\nTB0GIN7qq53JZ3wmi/TR/EomcDPwfGqAo059Thvjxwmb8HFCoG++r51w4TOcyYGu4R1uDlfrQg4N\na4M2aDt5co7QueZkczF82oC/Iv7hJVO8q6tPyEF/uScXePFKvgJc4YMDbbyZD/CiTfCih3Z6Ahe+\nOAfwJpUHb3LQXvTgVyZ1P50zeIAbDvjhrM14dk+G9RkcZA6GYzPnJjjXtROMevglD2uWOc1JV6c5\nOV6NJ/zU91OW6orw4B19eMg0Zyh+K0su8UceToIHD1a7rZ/JtD4gA6G+wU940FdXjCdlItrypOrC\nS6eMV04wuoAefeQ0pGfu4ccv3uixV+6NLfLTRs5ZD13MhU6UqT8DmhyOnGiiazwYg05BkrF1Rv8L\nySYc0S8f7wIZK5Nqn/J0JZjqgBPc49u84IQm54s/j+TcITM8cdL4w0ROGjxdbfO417fN6/PPYuCD\nF026/3RzpjjNaQ42Po1VOkM+8NAD3z/kzLSu4dFcxrFPbp0ihVeI567XtuxAz36UieqIwVZXWl7l\n3VcvmZGnPuuPmsjIGwDytEPUZvXILJ2nS5z1HtySHTk4kYke+XLOGrd0SltFc0W86UNysXaaK83F\nxkX8gnPdPT4fKmi79iST6/AGCyZekuGsB87cKeKVrOj9CnsTzWhIherrA/pl/+H/GIwrY9NeyTyO\nZrjVxQ8Zv5NhbQP+6JM5yD7SXGu82CN4U4Q+0B1htme2IZzl1Wb39Mvc4i0Izmn6CSfbI8cruOrA\nFb70y33lYC8J4QC71tVv5l5zhrbTC3ouur4urLiug32Istqx0pVPrz2gs9+x9zOXmSc5Xr0VoQ+n\nvoUrvlac5R/pIYFDAocEbiuBw/F6W4m9DfDrpL+SvM8iEO5wdI/GzLPxsdDaDDBYbUDbwILLELJR\ncILQQmYDzygCqy5DBx40ZhodNFf66z2YGZSrL8IpdB/cxNF1GxMwXYfLvWsxnN0rY/g4afLkyZP9\n2oZDuYC269Ly9sLj57lJIPnTOa+u2Uw5jTNPOeV45cBiLCrnoLCJZLS6ZrSnm5gNr/6cofyZt17b\nJPtmqo2y1xnDMXUjXVG38hXPbe9X3iZebeNcICenvP7u7/5uN7rR8EDByVIOCk4GDp4CnOrCtY6X\nYG5K4Yg3eOIr3E5RvLE5P/GlPzicvvzlL+/Oa2MuutW7id4sj668tT7Hq89TeOUsxys47e9zAvrv\nanNiOGnGADUH5ngkT9Ecl+6Y69BJ3vByBpkXg1MmaBcHAAeBU2xej0WPvjL2OZXoJccIBwmHgDmV\nYcDh9WhztnImce5zuqqTrODHx2y/62RQGX7pPwfU3/zN3+yOF84Kjh3fLORMQEtd7cYDZ4WxI88c\nKJINXPizVnACcmziH++ieq0H8YdnvKMhMr45O+gAOcGJjuhaffitQWTHMcS5xvEKF96F+oOsRPwJ\n6umzxr42WcPqm/oOnFD7cpCSL+NNvU6/4Ss61Z99jCf18ZrzlMGqjXjOsSrVJvDSyqXutaF24CH5\nkAddwZO+5NjgSPKAie60Xu8N2n7wCA955zSFXzv0mz5srSd38Non1f70Fl/6q77TRvB4gwcO14L6\nAhoiOHjwEe7aR+bKop1+qQ8nJ4d5Qr/hNZx0E133AhwMaXOxB2HmNvImL3J5Y5tzODaebrpJRvWZ\numiaF41HzjTX+KPTHk5YQ8yl9QPZCHgulOfede1zr4+1W/30ubrV614985HTnE6vGpMeCOkzsDle\nv/rVr+6fB6DLyjkTnPR1DU7UTjKku9rNgeqTAj2IpEP4QZuuWss8xPTpHjqrzU7EiuY0/IOFWxrP\n7tdwCia4ZN8LO+qQAABAAElEQVT9imfen8JDluSB177D73QuOcNNFwruycGY0Y9e6RbJQfuU6f+r\nbd4X6TedIi9ji97hB05jltOQ45WD2lyW7kprF9rxPXmJpzWFX1QnmYCZcljrXHcfPjDhDFd5eDWe\n6LhxZDybH7SRHOOj9By98IJbr+kLOTud7fNQj7Y1zPj0oNX8SDbhV7e+K+8czeeRX99FuxQtvNET\nD/DMJfTGODVPaFN6AHbWcy8kl/+7+2kY45OD/83tJK1T5XSOQ7cTrx62CuGFK3zplvvKo3FJeq4e\nWSgzDlwbb/WVNPqTxl3oz/p3vY6XlT7erf3WRvsdp/Xd0z//x+ABFR2c9cKFl5l/V96OeocEDgkc\nEkgCh+M1SbxL0jnhX8fSTYvBxDNh5YvyLKQ2XEWbI9cWJZvTDB2bcvfgW2zd26j1GinnFjibkmjg\nf9J2P/lqAZcHd7ATpjx1C8rVLbgPrrqlwUgnjOtZb8LNugw2zjzOCK9F2VjZfAgTLnzyo+P6CM9H\nAmQvOrnKiOZI48hjBHEkciAxWvUVA9WJFrA2zAwouutEASOA3tI/AU79V3/Ovgym8mDKZ6g7xcFJ\nz3Cd+LqWhrNU3n3C1EN4Jl68Gas29D/+8Y93x6uHJQJHF53+f+zdXa8vS1H48fNS1r710gsvdXHu\niDcmxgdQ8IAGTFD0NZioUUGjnoSgoggoGBNDDsSQkJjtjb6N/VL+85mzv1jp/6yHvddv7Semk1k9\n0w9V1dXV1VU1/Zvl0wwCeQIqJTD1Bau1Fm9qc1seTfWJpuDKBYj8ZM8JGAEBwY7+Sy6nV9Iu/Lfh\nW+v0K4Xbc3gLvArEVS/AgA+cHUFNzhSnnj4kO5wseo5zKkjBSS+Qpp1ElrQVCJNzpuDknNElTsT4\nCfOTzUkjLy4OVSes4BKwFeQxZ4JK9DInGE9y8K62wIBALSd56lE0GE9z51lShg45R8Q64Aj71q1/\nNkFG0CgY7PSYUyCCa3ALIhsLWsyTVFAMbrjsGwI/1hbY9g7t8QO+cFuP+jYe/LBOBdrxBB+0BQtu\nsF3u7S3u4yV5deHBGiCAx1jT1fqai/Y292hW3p4FNlol49LXFWzt9Hdpp7128V8/OOurn4tsuMw/\negW2lKNbOX5EJ5jBAAdOsganHH/l+GMM7uV4TeYEAwTGPEdfvIdTQLLP7Zhf+PXvdLKT8eQ7Ooyp\nFD/x3/xxVl1gSOYoOvEH/SXwXCWwXJKxgxm/jVld/EseyKjL2F0lPIBbOwkcAfn+WzXZQi9ZJPMf\nffTRHnAjp5J+9YXTyxbBOxf5RBu5t4cIVFoPxlKf8sYDJp441We9Wrdg4Ctew2t+5JNu/cDAN7Jh\nXdBD6SQ/jQUPjRI67F8Cr/YysOgu3xx10StoMyfmNdkgHwKP9gH6DC/Rh07j7ZvRXghZk8bukzCC\nQQKVxtCYd0K2P57R7nLfs/r4svZRV1ltlM1UvTJ8mXA9m2s6mM7ywlMA9mrTjcZTW3whN8ZhvPSr\nk8vmk4713JyCR6+mk82zevNu7Xm2XvHFqWK/EMCvuXcaS7Luvue5HuYY5z2ao3uWdw+Wesn9XWnC\nW/tWZ1xkwdzaD42N3NETeLvy/QhnNKk7wkPGnBAVeBX0B5+d5nvEeKfPHE/6Y5Yd4X2Msjl3jUfe\nGOXoo0/Yke6Ngc6hD8mQNke0ByO6Zxvr1L7/dAu8+t492XTSXXD6+vp6n48J133wkq1ZH4775Hf1\nq17eBSf6Pc80xzTLH/s+Olb85pP98t///d974FVuH7R+8db6pa/rF5zorbznMz85cHLg5MBDOHAG\nXh/CvQv1XRX9fcDetBncBMvm4+LUMEQ5K4xRDjKjU84wZXh5djHWGRYcBMa2ZLMFJ+cnx2HF2/NK\np3IwGCccCAYymsBjwEj13R+2PysM5WsZmpTpu9YFr/L1eZbXXxkanRrx8XWnKTg+HKK1/TR6jmhT\ndqbLc8Ccc2B/9KMf7QFFjgPHsxN7DCrBDgGWnFwyRtY4U37S5Wenz7YTLeTYvLrIpLmXPOtDRuEz\n14w0RrZ2nJaCS74FzOGF3ykl8p1cgnWT3Kl7SApuMJJPz/Bb58YoQO27phxwfThVHJ8vfelL+8lL\nYyqpj/Yp3xN2bY/ySdPsE1w5J0Ow3MkOcyJY7aetnH/OrXQTnCOcs+ymfsbk1Na3v/3t/cIb49Ne\noMQaF7xHiwAMuXBiE63o5KDSneRDALVvBpIzsiD4xan3szaOFNh0xtUWDPiZn/mZHa5AiqAOfHAY\nKxlDC/h+QQCfFwZkSDvt4XPv5Y+5QwO68XfyOL4pU+9CR3JsLZAB3zsT+BaM0kYqYASXYJWx2hNc\n+pmnI3z6gu/C4+Ap795YyJj5RQ+eCXD4fEunfgUD1c1gWvDK1Rs7eOi1Dl0l9fFj0mourWPXpBVc\nl4TW7usLnlSf2shnG/fRhj7PtfVcoNX9TOixvwrM2YPNe/szvpM/AaP2Z3JlLNEJFtkhf9rI1Uvo\nQQOcggJOf9KLV5s8mgf8M699J1XuGWz0SxNPY1LeWGsHDx7Jpcr3hxf4E279J75AgH8TDuX6kA3r\nzIsN48R7elqA0jrGV3yPRv2Mx1rEJ2uMLAqooEdfwWlzYT+RJn31x2enBeF2mp1sg2VOBDytOzwW\n9MNnNMRffa0JgT9zZK6sQwFReuLJFhBjjwjcw40WL63+6I/+aNfvaPLCxDdHBQTBIVfw+hasIK21\nTpaMAT58Al+Ql35CL9oFq5MPe4dfJXhJ49cC0QtfKV70PPN1rjxXNts1F2uZeXFZ4+SVXtKWjLvo\nQi/H2WkCsL1wRSf+smUFsQSb0Y//yqT0Br1mXeEL/uI3OSDPvdSwJtGt3v7+hS984b3rLSBGJwcn\n2iePbuNN7Y/yyacJA+z5fNS3MvTjnfYTnjJ19AV++Na304B44Hu1gtjGiA9zrsBZ06xXF67u0Qsu\ne+ub22nzTnJ6Se0n9OYUPTO9yBhnv0vex69oO6IJD1vDZMB60u+IT2g74lXldATeWNPmw/o2B4KD\nTrzTBRN29OkfjbNe+X3Tbf3UlZrbyo7GeVRW/8fMb6LJHFn3Dh64vECnL/xTNN//tn7jH/qCE62v\nazzhP/OTAycH3i0OnIHXR5zPVYHfhGoq9pfpM+EyDiRw3GcYMCg5di5BVk6EDYiDz7AWZLXRM5AY\nEiW0RV+w1VUOj8vGpaxnean+ytxzbjg1jDrGP4O2AG/GTTjCGb7K4TO28M36+kz86mtb+czVS9GN\nLg4Tg4cT8/72Mz9BlnWD1r4y98GZsM/7y3GgOcRz9wVeBdJ825DjKEjOoHKCkow1J9pL5JszytHw\nn+39LFoZmBx0jiiHm5xyXDnp1g254uRx5q+2wAUZsY4YdRwYDhmHRfAVfrhnivboKZ9tXua+cdV3\nwkWz9WWMAtRf//rX99M7yjn5Tgh9+ctf3n9SOukFUxuwXla+wZi0RB+46gQe8A19nBa8dRJBWvFW\ntlcuf47wKCtNGugMDmD/2RbuZElgw0lpa57scPDpQ4EKOpK+FBQjI3gl0O4STIRPvZ+zeQEgwEOm\nwHBqxT+rIhNO+sRnfHDRzfQfXVzQlryRQ7ImCCwQQ2eSScmY4HShf44RzOZMW8/GbSzWC0fbtyGf\nbidryC780uTZXrD9Ce6sUzbLq4uPPWujDH73AlICyE7toYeTanx+ztxpPu1qH45okQdbrr42nrvm\n2KufMCacyoPXc/lt/fUpTVqUGYP6AjrqCxK7V08+OjVFxuzBAvd0inLBIevWSyJyqo80aVppUF9Z\nfPBMV+F/AT17mbVGnqxDgUCBKY4/2dMHHnnwPIc7WuArzfp5rz5alLsPTn3JA5jyFfeEpY3naAr2\nLJt1M6hToA7+cOgPpjL624sA+741bl30AhpPzJcEV3S4L8HlxPYnP/nJPaAk8CoICLb9ht5xOfln\nnsGrP/0nAODFoX/So6+yAu+CMgKp11ugT0BUHblwCvVP/uRP9nUNj5/NslXAoD/Ikn8i5pSX9nCS\nBf2tQ4FcAV77pr4CrvTZ5BEdLWDhZDy9gS/ojnbj194Fdrl6+KwBeTyf86NvcKr3DAYa6U8B0F7Y\nCD4ZPxqMBx/NBdrpbS/NzKG5IEvWlZd7+I52+rX9Bhz625yZezw2VmvPvk9e0K0MvuSEbfBzP/dz\ne+DVfkFejBv9ja0x6SOpv2+KD9oHz30w3d+UZnttorlyMJR5Ni4BeXPLNiDrdIJf7LChBP3wPTj6\nrjQEd2/0/I82s9w88Dn8UzvBe6cP8Y+dZM6SnfrM/iu+iecx79ESPei7KeElGied+nm+qW7Cqp8+\n5sOLEWuavHqZJkDI/+gfdwUbDPcuKRpn/V5xgT9HMgRsuMyvhIbGsxe84j/xYqWB3eMEsc+RkUG6\ngYyTPy98s8ciNzieJ6zGW7szPzlwcuDkwMtw4Ay8vgzX7tlnKvDbukzlftTuPgo/XAxFBiRHntPG\nMOXQcbgFVuWCBzZ5DhcD08Y6LzREU3Cjq3LP1dlwuy+vvTyjoPuCFow68AoIcBKmgR4MbYLhHo55\nof2mpL1rtqksGMEOhvIZFHh/c2ScpOCoqJv9wc3o1l/dmR6PA+uckWlOg5+OF3hlVJkzDiWnzRyZ\nY3PDSORgCI4xxJz4U6+Ok8fxFJzoBCMnwcUB1gZMsiAY5lmAjTHnH3SAI5Dpu6mc76stOCuhuZT8\neNb/EmnCX+Gq4/gaA+Pzww8/3IMrygUXBAN///d/fz8pNQ1Q9fGl9aHsUjSjE3wXuBI8Ky74qr8J\n9xFd9QF39qNrnCZx8sa3gXMatHHSS4D0egtuCIAIXKCPA8QZF3zhjAtWCRKTF0Y8/tKxAld+Rin4\nSs/SF+CQRYEUjj69Apdx0r3k1yk4cuS0KzxgCggISgqM9JNPekZfY1vnxrMErvv4iDa63l7g57L9\nxPbZFkh22SekeDj5Bobn6uJjuHouX9sGSwBF0E/gyIWvZA8PrSPBEmNVNmnfCRt/wlNR8O0ZAiPG\nqj8+wdllHPrWXhvz3jN41WvbNcvDGaye1xxscM2jvVcwPd0gqCF4bn7Rax8WrG9/9jxfRhgXOoN5\nRE/4J2/muOqjHj/oQ3Mg2CSAZDz4Rg7QIUBCxqUVzl44/oRTjufWBfjWBdh0qDlVHk/l6OhZX/jw\nI7tFQM2aM25JmyNajsrRYY3BiX9gz7kOjr6SZ7SYE8E7AQ7637O16XMoAqX4E1/00z/88An2CcL5\nvAE4BW/1sfacYqN/waMb0GZ8YGhr3/DrA4Eoax/9ZMNP/AXH4KcH/Adueso4vUD5z//8z/2fE5Id\nYyFfT7YXSNYYnrKpXL1ggkswR8DBOJMF8mDujGWOD42Cl2gXoEOPvVDCI3PNjoMXTjDQjha6tsA1\nGlqfwW8ueoab3FgnAtb2WnoBbzvpT4/gmRcFAqn0Lbm52vZaL8u0pVeUoTud92zTdfhOh0tkEy/Q\nnqziF52sDX6ZO/NEDtxHr75sAJ/okYNjPkpzTyFbL5Om7BtvCQ3zufLyaOxZ2+TMvXrzIMD3gx/8\nYLed7Fva4J1f67BdvCDEG+O6aQwrromze23wlf0Bn8984DG+OZktACtFm/ZzfPM+mK8qb3zREB/h\n715d9dFu/vGs8klvMCurjXK6lzzjk3Wm7nqzRcyHF5PWaDj0dx+85mjWh+OheTDD13NwG4PneV/9\nq8rRJU0alJE9J/a9OPKimd7rn+Cyr6znmRonOCus+Tz7nPcnB04OnBy4LwfOwOsdnEqZr82OFLDN\nWEphz761n0o9mOqU16by8iM46iqvP+OQ4+Z0BYOTM8+p51Axlm3sDMocOv2jOVz3yW+i866++nG6\nGOgMaYYdg4GTZXNkGGfgrjh6lqO7sc/7m/DXtz7aKXNNA6r+jE3G+5PNgfHWv1NwV5txP1O4g18+\n25z3l+VAc4jX7jmknEKBV8aqQBeD3k/WGVgcQ0l7BjEngMP64x//eD99wRGWBAg4Hvo4VcOptJYE\nwwRQ3CsTKGIMOyEkcWD8hN8/7wKfvAi8+nYqoy5698bbH8/JSXl1L5pPWO7DlREOnjJrytoSIP7b\nv/3bPRCEVg4nPgm8Muw5tSX9WhsTXvVvao7uZGPSGK/pQXxw4pXcpP+seSdT/VxVcMM9HSDhFR66\ntNdWcIEuUyboQUYENQXZyAw6Os1JJug78iOpyxntpCE9TcbAFmAhZ31nLwdYv5kaUzDXOg42nf9s\nCzo4ySggbC8QiEWzYIj1I62wjp6VxS/30eN+PuOLIIrLmMmVwIzLWPAV/wRp/Ly5b0lqCz55Czba\n5n24lJsX+1kBSzyVwHaCTd48KS/Y1f6nf+OBA2y0z/l1r40rOmrjuX7wFDgmY3hOFgrEwylAw3nm\n6KEV782B9gK1xhJN4UKTFJ09V79X3vMPvqIdb6x9/AYPbQJVAmUFx8IT6NvwgWlMBd/MsQsOuMhB\nuLV1eYYDXOMWjCH/glyC1ewBdEm1i6Zomc/u4SFT7Av0GAse421r9wieObY+BT2vN91u3aLPOhZ0\n9aLGfIJXgs/VehU4FSBhK5B38gCn9eYlX6fYPCuX9EVrP5MHw4nw5kVAzN4iaEvG7U3a0AsS3eEk\nq2AWHuILHsTz5pNModWLH/TRcfYv8tgcwdmcgA2Wy5jpJvslvYkf6SlzLHDrBZNgqbF4eWdc6UVB\ndD/zx8uC6fEumSYP6NbXHmzfNEYXfqDbPo6nYEto8ukEL1vRI1BLb5JBuM2Xfb4XG2RAX+OUt149\nu0eTNamvcccLvBM4tz7cS2RLwPCLX/zizk/0RZcxgdXY3IMFpvsXSbf1UScF0/Ns7z68sx05MRf+\nwZCLjjLHZNY/cXIK0EtCeqox7YgGrp7Lo8XzxIs2z9a2eSDLXhTgsxe+/rGRvTGe1T44cmWN0fPr\nTMYSLXPMk6bGULtZd9s9eHSfzyB5Iexli33Spxh8+sEeaX3NpE90mOtXkcI3cb3oWPUFp37B7Hmt\nn7i6X/uTodZsbeTK6Qq/iHPamp3mxZh/Psj2vdp8Ovv2UZr0HNWfZScHTg6cHHgZDpyB15fgWhtF\nXecmUFlK+6huLTt6Ds6aa8sAZCy5bCwcFAYVB47zzzjmaNtkON4ZjdrpL5Wv8G97bky3tbmrLieN\nEcGYZtwxzDhIThoYW4ZYsI7wTvrnfX3W/AiGNsoZ3xwQBvg0YBifAjCMRA6P05BrCvdN8Nf25/PD\nOYDn8Zt8cwoZVpzQAq9OLpovTlKJ88oZ46xxpuWcUw4fJ9RJI04kWeCAkUlGG8fL+uLQclj9NJpz\nqI3vccLPuSS7HAnOi8ArRxmdLjSvstIYou9F88mHCT8ZDp91byzo/Ju/+Zs9WGyNGbefsflWHb4J\nWpT0bR0Gr7o3NY8H6I32eC83PxxAQZB/+7d/209M1Yfjb40L2gu8cvjpKv3AipfG7p480Kt0rqC2\nC4/JGDzkSQDHqS16hI4xD3QcmXUaywsycqMfXc7REsjQj+y4Nydoaxzwd4+unOPGoR4sdAjqCc64\nCvDhDTnm/ApuCXIJStB95N6Y20+MA25l8MiVtY+gg9NijemLfvf0uksdXO6VF/QIBvrtA1eb82Pt\ncf7hUI4+47DG4JPQgn7P9gyBnPhuHrQ3Djwj22hCQzDNmX5ybeec7gi2P8YED1r1BU87dLjcaxMv\n3GujvQtcwTVBM7oB7+kP/cBDk/bGULATP1zauFpv7mfqGU6p59pU3vPMawt2l/YudfAn555XWPWf\n5crAMi4BLwEoso735mDOOX6RIe2DoT8+NC/WhuCDYB0e0s1o0if+6mse1E3ZUO+FGZ0vCEcWtXm2\nBeDocPDIVLDAMWbPaKfPr7egq5N4gn/asqEE9+hNMMyt9uaPjFjj9gMntl1OXFqz4Hq5YX2zxexL\nZIEcoFlfOLUXdHXKtr7WCr6QDfuTYJWTnZ6NzWlXexQ4AmhepvgpfXNnXPE33lljXnDAQ8d5qWOt\nmTe01Eeuj9y8CGiyIQWD/PTZy0VzY3zkmI6k39CFJoFY6x3f6R/jxQO8Q6t5NjayAC8Y6Qpy82R7\n0d0p16tNJ+Cvem0lfeE2N2DibZ9KwXf40W2u2cFwFnQ3b8YswA6vlByhF3/BldBCHwkmo5VMOshA\nT+tD1uyXAq9OKcNNttHnggudkvvmYy+40B/zNNOKI1q0Ibd0JfqTaXLtHhy87gSqoBTZNEap8chX\nHHuD523mvXa11Y/ONRd+mUSe8bm91roJtj7upVkW7Dctj9ZJV+OeZfe5B4tNYF4ExK1pciU46LLu\nyW8p3OXk7G1I0TtpjWfqrBtrLPm29q3Bo/FNWNpbg/ULJp3jxde3vvWtXf7InpdPDkfQh/OFeDTV\nt+czPzlwcuDkwCU5cAZeX4KbFL6Lgp73c3OwAczn0LRZpNx7Vq+sjYexZAOSt5loq4wxybBlGKu3\nmTAcbdw2bMY4I4sRCqb+clf0Rs+L5Po/JMGNJxnejHTPxsQ4M5ab6LsNtz63pfo2/tp65qB1soyR\nj5f4yOGwkc/vM3Iw1hTucKz15/PjckDAxT8J8jOip9s3K82loCdj1Xxx/s0pp56joQ3jliNszQgQ\ncCA5p2SBw2ENWl8cOMEp600Zh5tTzknmlJFXjqU1x8AjAxyKX/3VX91PKWhLhqTkRJ6slL8shyYs\n9+FI7/SMdvrAyam//uu/3p1VdQIVPsvg7T++5ZBGb3ojeC9L56vot47fmPE32tWbo06RcW7IgHrj\nFITwfV4/QWOYk4f4Fz/ABIPeJRcuckKO6Fr6g/PPcReIYNR7Bp9+MwccUDIjgMGhJ0NkVFsBIzLr\n5Bb8aELfTXICbuNDWwEPugsOl0Az+TW3cHDmBMZyhq0JQSLONnlAr3Ebk7GS+a6CCzlGntGujwtc\nPKDXraMCVO4bh/HiGR3rQrP9wNoDQx9jgV+dgAE6JPzQFgzrGd0Cr+Bpi270CNgYizGBy3lDM5j6\nGTscaMqxw+PGVXnjAJcOQUdtjB3/28vk2uE1/uOrudZPu5maT+1LyioHu3t9tXMFp7rZH5xgrOXh\nkM+64MiVH9XVV13tZ5lxm1+8Jl9k3zySN+WNRTv9jQHv8dGakcdbc9j8xGu4wKGnyZbUWqKfzalk\nvQgoCogJ3pFF61QAzq8arHuwyZAAH/rgMNf6KhMEFXjSl0w5DehXFE+3PcOLC/T3M3jy5QWJF22C\nIgXfyKS25t9pZ8FTNBij/vhE1zrBpq/ThdZ7thCeoNsLGQFXJ9+sY3wT2HYZg7GQMy8SvcgBuzlM\nftvb4BJkYMvY66yJ5lM/qbkvt+7IL/q9qMJD+sp8mVNzgXaX8dB31h76taN3vNRxPduC3z45oI4c\n6EtWGg/+4585oP/wVhs8s56SCbjRZ/7x2NjlrXljoVPMtSueGx+85tX4zQEZLBiJXjiU0T/kJznC\nK/X4IMirHZ2hze/+7u/un5ZAL/iSeUJHefwt3xtd4A8+dIFtzqXmD697KWidCIKbC76BALpxWKvk\n3Ytke55fveAleNELHtjBrXwOobrwr/2tM/i9wHCa0xrxT+B81sCam+2DC+ZRefVvQj7HHT1H/Knu\nrpxNwJZlm/i1opevAvvmhrzRWcEPd3nzfxeO112PXtccx7y3B9Bn9K81ZK26jD051L5xz/Eo16fk\nnt5xytpnxbxAonec7CZ77RPW7oQXPcE585MDJwdODlySA2fgdXBzKl/FNyngtZ1nbWvvmdJvM6wc\nzDaGymrL6FNn42FsMk5sPu4ZUSVGJ2eTMcugYjwySBk3NiwGjvtojLb6y6ubZXfdR+/aTvl94dVO\nn3kpn9eK4yHP4QlGeJSbH06TU38cCA4jI9sG7TSFuVDvpz6+08gxWNMc01p3Pl+WA0e8tk6cKPre\n9763n8oxR35KyZngxHHaBbw4HRxhQVen0ARvGHMMMZd2yjjyYOpjPVl74SUvBQE4v9prS04kTotv\n/P3Kr/zKHoAVAEoHqJ+y55kMPiSBF4xggxfO6KZbGKBO+f7VX/3V7nxxnjmhTueiF684/yV96aPW\nSeWXzKMvmI2l5xfJ5/jBWWn3bG45nT/84Q/3kzdkIpxOk/zGb/zGHngVEOGA6wMuGaBT6WL6QUBC\nYMS9OgEOcy0QQ/4EFDjseExG6OiCcRwqOprO1kbA4erqau/nXl9yqS/c0dd4ys2x+nQ/J1uww0sA\nJzwEa9DMuXaajx5DH1knp2gXnBAUIh+CJ07FqRdYINP4BQ9ZVxZNrYnqwEOzdvgWzfLuzSXaOfzo\nFMgRnMIXsgmftnCAL2hir+vS19pT797Y1Bk/+vEievDQSw+BbONHlzZwuPQxHvKO9uDCqc4laWM8\nYJtH+LRBH2cNvTlt6DEH+GpM9Ac4+rrig/uZ0OwyLhd4XeGFGyx4S8GTB8O9Ps1PuGbbysqDd5QH\nT90Ko/7K4yUHWRCNLChDl7mSum9u8St+l6vDA+ui4K25M0ee5fBaT9ZQJ1nhMOcCjPZxL8YKnnq5\nQu/7JAx51k6ASQCVTKAjnNaJACJaBfCsVcE2uXbqBC8F5VydUiU/YHsRoz3bgZ6xtpSDjx8CrD5n\nIJDipB9dYXzoN3aySW4EFMExPmvD/Mdj8ohuukigxjpXjy/mAu34dLXpFLwQcIVLEIeOm/O2T8z4\ng47mnCyj3wlF+hIt8EjaoBtcupJewU+0tb6NAd/Qh1Z90aYfHWNt9gsTc6K/cjKkjTmmJ+AVXAUX\nj+DAT2tRGZr1AwMOfeJdPGnM+GLPa1/Wno3Nnm6e0GGOG5c+5tVnaZz6tb6tT3P3pS99aQ/iGAea\n4h0excvKjP3SybgaW/DhVYZ/XhzY88k/Xc9fwENBbTR7SXy9nfI2VvqSjOkfLPRGf+We1xQNyt3P\n/srgJNeCiuy0Z5vvQjbZHvCbU3An7CM4YL1JaY47uuYYKrtvji9ejvu/A+wLOobvITh9ta1n6yL4\n4S5feX5fnK+jXTQ3FvqsezY3vdNhBjYJPni5QT4lbYPh2f06fmX0KRsDPwWz6Utr+9Of/vR7v/iL\nv7jrDLq7vsGMFrDPdHLg5MDJgUtz4Kcm8JpSvY2B2rhWxbs+TxizLhyV2VAkir2y+oaLUcKIZJw6\n6cDQZtwx/BkrjEuJAWjj1U8ZI0ob9zlllTOSZoIbDehZaZzt1vvaVr6OofL75iu8o35w3KfdUd+1\nDKzGDua8tGXwcYI+//nP7znHRFDFG1L/CZgRwKnw02MG4tVm/KwpWh/KmxXu+fz/c+CI1xxEDpHv\nNzmdxKEzpwJJHDJrgxHLETa3nDhwOPLm27qyXjhe1h0ny3qcxmByE0XNdfRULnAmiOltOmdGYEdb\n7cq71yc49X/RfMJy75JWQ9JYyLITJ3/5l3+5ByE4j974/+Zv/uZ+6lVQgH4pgYUvaAxedZfKo3eF\n9xC+BHM6io2FjvVSpX8qQh4k4+N4fvDBB/v8CajUnwNLJjj0HCPGO0cdLP06Lee0nX4CBxnzHHvy\nJhDACSaHHH31AgX4T04Fvclqshi/0e3CD1f3aEZf8yrI4USWFxDGZx/QVrCF4+azG5wXQUg6z5ow\ndmvCT2jNuzXTz0wnHvcuKbr2h+1P5Z7Rl7zIJcGI+ssFr/BD0PXpdopQQEBgxdpT3zj1n7DhDc4O\n+OBPfVUZoyDZky04wmGzzvEcXPuttoKDAuYu40erhDforF3leK3MBQ4cHEF0oZ+M4Kmgay9E9ekC\nG96ZPFuHAiEChWhBp3I4OI5gswvIIXmKL9q4tCdz+sJl7rUXzPSsvXYzBWOWNbfqqtdv3te+sp61\n0x8tZNiYJLxCg7EE33P2SvRNePhtPPSRAJkgLD3qAh8cPLEOyb0ALDjm2Br0gsG84wedZ9055Wdu\n9NVGwMl6w0/7h8t6hsO80v/2AmuejWUc9gtOu0CmAK+1Ze2jl83mJY4XHr6DKnAAdnwhX9afXxf4\nZqMAL/pK+EN+BIftYfSFdaIfHMaGNu3w1njR28sc9OIhfNpax30bkv3SSyBtXM1FfNdP6hkePBY0\nFQgyJnzEJ7yQyD7YAiP23MZDv5kbegXPJ23w6GderU85uXehG4zGyfaFc/1Eg3b0WHJh7Vjj7fXW\nnn6u5qBxmVt96V644qX1rg3YZMeYCiaTVTrKz+SfbjqLvOlnDv/wD/9wf8lr38dTMOKtOYqv+FW5\n+0sl+LomfPNnj0KzXwLZE+gS9JCpTpvS+VebTWvNqkNzcMCQPLuXz/HMMaChNHlQefLkBLeffNP/\n9kq2h/3JXAa7PJzBfRPzxoe26H4IncnZf/zHf+zr3zw58UrnWGP0Xync5c1b9W9qjt6VV3OurS92\nDB7QAfSYIKlPutANawLPlZyC7Zmeov/B8o+15Nrgp194+bQGfUB/R49+Us8rrvP55MDJgZMDl+DA\nT03g9T7MonhtAqviPXqebddNT52rfu4lz+4ZOIxCzhEDmkHLWXI5QceQZzjZODhcNlyGP2OR4WpT\n0U97BjKjSjvtGePKGgec3U+a7suP+7S7b5v4Ufv40rN8baPsqJ3y+yTwXGA0/nDgpY3dNy5txPjL\naRCgYrTiJwP8egu6ctauNiN1TdEWzLX+fH5cDlg7GVeCT5wgJ5oEtawZTlUOqjWVE63OnOnPWeMw\nFrDQJmNwyk1zPUcERnPPGXeK45d+6Zd2B5+DNnXDhAVG/Sa8F7kHLxjB1j+c0ZsR6iejTrw6iYQ2\nDibnx0/sBTpWwz69EbwXoe0+baNvbduY1vK7nuOBHIwuz8YiKCXYJ/DqBBNHR7kk+Om/VAuau9eH\n0012BHi0FRwhJ/hJdwgYODlk3smbYEI8pNsFbwQOBGQEIuh2TqY+TzYHn/Opr6CBAELjLkcXOqTK\nPEeboJCTTBxal4AN3a8th0LA1Tdr6TbBCU63ubR3kAHrRcDIKS+f5hAcEuiZKfzKwu0enGjyPJP9\nzYW39bEO0QuvU+fxxL7VHIBX+2BP/JXBVTk69J91yozD6TYBdePDXzzRT73A6wz2cMLMqyv655i6\n1x8uvMwRpEME1c2FYBM9I+DkIgf2+kljMNAhyCgYRB8JgKARDfoVeCU3LuVznNawfuSJLHqmwwQM\nOa3xNV7Vt2djUla5Z3XVK5/36qWjMuXao6F+wfKMp8Yroas6z+rrI29MAnPmzZqy3sAGwzoWmHy2\nvQhhK4FtPugwa5es4yWeWbd+4WAvN8eCp/Z8wTfzQ/fb8134izbw4NDfPMAJNudffy9L0IZW9fSC\nuRc0FeQl640L7db49WZD0LPWmLnSVwKb/FgX9jEvfAVulaPRWHphgrb0i3mmm+Clk8DTh7y/v/06\nR7DCrz6sA3yTwgmOe5d58OwqCKG89SpIRk8UvMbveGL9FCA3T2Chhd4TQKFnwgW/erDNlTWpv3mi\nE815gVftzBeemD/zpJ9x6If3+phPazA+kRF80ceJOTSA5TI29XAUKKYDCr6gnx4WUMVDONQZg4A4\ne5CONTZw6Psvf/nLO5/1i5fGaR7IkDKXVL4/XOiPcUnyiQtuMmmf+/d///d9XzBnZMH47AsCUO6N\ne/ZtvpSB61kyppvGEB3arbQoA4Mus/cKvNL/5MYvTKwJdJmfUnhvw1nbdylnZ5gzQUd7yPWmM/x6\niz3LtiCPpXhejldvQ0o+yIT75r1x5H994xvf2Pcxnw3zPVYHGegK7Rqr+/op6x4f6HJ7hEM01gD9\nZa+lF514xdP0nfaz701yrt2ZTg6cHDg58FAOnIHXhYMZHhXfpoSnstZvGgrqGECMRs4lQ9bFAGHM\nMVC7GN7agaGPdgx/F6eNcWnTcDFWGa7aMqb042yDxbHl+DEO1UWf3DgaS+WN8ab8vu1u6r+WH+Gv\nTNtL41vx9xwvbLycE9/q4ozhL0fMT6L8RMu8cJqcDPD2mfGzpmie41jbnM+PxwHOMYeIscqg59Ry\nkK+2IDnHigFmfVgnDFdGPqfN+nCiRx+OmjVn7VlX5rT5zDhTVn3yY1TNv3unqTgTviElYJ+BGCxt\nJ+zK9X2ZNGEFG5zwKpPoELrB99W+9rWv7cE2vECvwCt6Ofg59froixdoDJ7yS6boC+Yl+IFmKbrD\nIadPnfLEBwa5YFn1AjZOvjuV5l5/ulR7jjeHwPyTL043+aIPBAIKmuEf/GRSUIixTzYFN82BlwJ4\n7sQcGBx2gQD98Bgt8Tq6Vp6QZbDRVeAUbeaXDEsCA/7rts9ecLIFeM13OAR2nGTzgknwBh3+w7SA\njXHlDIEFpksQOvlX37pQZi0Zn73NJfiB19accmvQnicQgheC0AVwmi+4JOM25sZdfc8ft/q/dRe/\noicY9kwBFuMRSBGcic9g0Q30AP5z6AR1jAX+LrhdnuFx4a32AhZw4EuBNz8xp0vaz/HNfMnBmWNw\nD6d1Ryehw74Ol/bt6/jmwtfoM0a0oMHcusihMnIgGOcnluDED3BLcE9aajPz6ut39JycNEe3tV3H\nP3G5B19/Y8AHPDE+98qqJ0t4g8fZR/Uj4+bG3OItudQGH/QDy97gp7vWLDm1Bwh4mEP8hQcc/Y1P\nbs7Rc7XJUkE78Aoy6svmKuBurGiGw9z4Sb5PDAgekENw0VR/L2fIDn1BJ5lrNPSCxvpEO7jJCZtS\ngJ1u0keCzwsUL/6ut6CNfq2L5k+75ql5U6a+y7M6/KPL8JqOwSvrl2zJjVkf6wqfJH2sifQFXMEN\nr2ft47Gxsb1aB/hNb9AR+OSZ3hWA1gZv4DF/ZME6ZqfhLVjWHDuuFxDgmC/9yBS9zY7GL894Cj9+\nWUee8Q0c4xZ8pivpXDjRU+DQiy26nC4wPnzTV9648SU+uL9kmjwF1zM59uLF/uAFl3s8Emj1stX+\nho/WCloltEqtgZ6NgyxLle0P4080KHJf+5ooM58C6f2TI/z3khr/zEfyEw54Jc+VBe9dzeltP4ln\ny5Izp4F9Bo29QLbJXSmel688r92blkdvObrdm2PrjQ70aQDfZCUzgqQz8DrlsbHpP+EoB4udAw6e\n0lVsL/LG1rFmw5t8RVPPwT/zkwMnB04OXJIDPzWB15TqXcx7EaWb4rYZ2CQYgZwkxmoGKwM5h5Sx\n6OIMMGYZ3nL1YDHeGI42EQYQo1N7xhHDibHk4lhIjEn1NhmwGJgcLw6Avhkv2oLf5hTdym9L2j1m\nmrx+FbjigTF17/TKZz/72d1hERjBOwart/PmjpHKUfOGlGG+puieY1nbnM+PxwFzxLn4/ve/vwfL\nrRVzyrDiJOdgWFsuBr91IXglwO6/23OclZlL82gN6ufeZW1b19aUpN6lvbVrDUqCXQxFxjInZ5UN\nz+HQ/qEyM2EFG1zrXKqMXuKEevPP8TF2zrLTWwLFTgFwfjimJX3xBI3Bq+5NzaMZfc1dtKozh9Y1\nWXH6V2C19GQ7gcrAd8KEU023chSdnMI7+pjzQ7YY8IIivQTLaaSHOfxO2HGi/NxVIA4tgn9+Aozn\ngvIFU454q31zJ0dLv2YQtBQIEATgWJB/82Tu0OOkFjqdrPOyiNNmPDlteCDo6tMcggn6c8AFXZ2C\nMjZ7TfuKfUwfMmQd4IM1hm50ok2ddWD87XscR8EXfeTWjjr7FNj6goFusuhCozVqf1PX2MHQx2Ws\n+K29tvprq0x7tKADXfhBro1frj28xqAfPMbu3pjUucCBxwWO53DAK1hTUNC4BWc4jH7SKyCFp/rV\nHz4wZoIHzQI+BYCMXx9jaBxgGTceguHSV1tBW/MsmCIopY1AOlqcfsbz+sCt303piD5t13Jl4OAX\nGpqnlV9H/fSVVjpm2/iMN83Jx70+DgppG2/DWf1dsM2zU9BkHHz2krVt/siYeusSXwX60EKW2Gjq\nzbm5gjd7y7o0P+Y4/GhEO1hwCfYKwFqXcJgXMOkK80XPkBswGxvc2qOX7AoGKms/Q1cnO9Ev0SsC\nC06J0TNwldCMLjAkc6Bspjkv3dePHKIZv+hEL64Ei5UHR585l8FWFjxl7pOfgp7prexb60w7uXXa\nGjEmY0cHnuEfWHhsLbDXrHt8xE889sJHn+DBBS99oC+e2M/TB3BK7HT96VyfM7J3mG9JW78k8I80\nBdXZGmDgxTpW7VceKHtIWvkcTuVkEe14xJ4ln/QMOTL29GD46+t5ynHl0d5z/conLe6Tserl4KLn\n29/+9v7iUxsvOX2aiX42r+C7JrybcE7Y78I9ufECRtBR4JX+9+KUbcZuMG90VikelR/xvLZvUk4O\nmufoas7pQS/F2SZehtFnbLJPfvKT+z25bbzyZKP7nsGl2/lxDhpYu/Bap+SNfU7m6hcdwZ5wqjvz\nkwMnB04OXIoDZ+B14eR9lC4FTZEzaGyQnEwBTz9tYAQz9Dwz/BjZHKJpnLrXr6ANWAxAxiCnlwHn\nmfHIgIJHsvEw/jMMwY0GBjDjMrg5asvwfrJx3Xeca/9LPa/42/QuBX+Fk2HCwHOP53Byjhg3NmX3\n5swpEsETNHKYnIoVwHAaYk3RvY5nbXc+P5wDk9fu8ZxDLBDFYPNzQGtK0NWcCZZzXDliAizmPYeb\n0ygAJ/BqjUpkg8MtAC+QYZ2Cx9niwAhAWZecwwKz5EW9tnA6xSGAxQGELzqjvWf4HiozE5b7cCTr\nntFFh3Aev/vd7+7BV7qJLsEfgVfBRmMWSCnVF43Bq+5NzRu/MaO7C73Wu8AfI/yjjz7ag4/0tDb6\nMcSd/J3ff3SSjE7Xhm54sgVnyZOACD2ML3CBXTBAwNX1bAtukx181qfvBgrAkjE6PHrjZ7R4Vke3\nky3BBTpJQM3FKaHvtbdXoE0gmGONNk6afcQzmsOpvUAC544DLHgbTm0FEgSKrBey7qSUva3AK3ra\ny9Kf6LRPWYfqjBkvtG18zQf5Qm/7mDUpoAIffnq2rtBuneoHjrGS4YI81qnAhz7gSdpax+YYz9Bs\nfsDupByeo9UeadzoKXjo2dqW0N28am+s1YcbrWg0XvNjzs3NfImzA9v+6OsCU3JfjiZjkCdP8RI/\n4XbVVz/ttCeznPJ+MhwtAv5OJc45CJ+8eXF/U4rGo7bqmsv0KlrxH048m/Qe4Qi+uolD+aybfbVT\nN9vXfy2fz8HLxiLr6OOckxf0Gs/VdqIVP52eZIuRIac88ZLO1M6cmw8y7nmlJbztE9Ylu4FcS/Ca\np+TUGouGxqcNONaJIHDr2rogy2SQjKPL3odO7a1fgQon5YyFnEjgNh/adU3a570+tam/53gm8Oq7\nib79al/EB7iMuXb1C7dySa4dmTcWYxO0bJx4RSe4rHHtzI0++I5380WHl09wGLvT/V42gYdH1hH9\n5bSboDH5BAdcvESzeVQnBx991pb+4MJHZ7IXvFix1sm6vnQLfts3nGY2npn0B8/V/ax/yD14M8Eh\nKTdP5oSeQ6s66xQv0a1eXvv9ZvwJdrRr3/1o9pPb2itwH+waKHORFf9cS2CRnmB3+7SP/RG/wxE8\neWXBeldzPLbHW1fsUvzxGQZBQnsy2aJ7SpNHylae1+5Ny60xtJpXY2iO6WI2/He+8533/vd//3d/\nUeAFEh7wvdg01m7tp0zGCzAldew2n5P66le/uutwsu9/dZA3+enLvWmScdJzcuCnhwPvTOA1hTyn\nblXIs+4+9/XX1j0jhjHHAWTsMpo5Wk4eeFvpjZ23uhlx4ch4sHHadFw2EUmdexfjyMUwzPBjFLoY\nUTYUqbHKbWTK3Vdfvjd+/qeNWTvXQ1Mb58vAaYOcMO6iqT7hO2pfm1mnzMWJsXnnuJgjQTNGvdMh\nAqwceU5Qn2twSsB/XxWUdZrC80wrnll33l+eA5PfoJtX8m/d+c/LAmqMe0EupwV8PuLJFnhq3elj\nHXFYnfrzEyQOlXqGGYdNe0FI60WwB7xeqljz1ikZYrjpp416uoHT5xQHw04wBAw0SmiP/srK9wYv\n8Qe8YEz4rXUg8YdM009Ou+ITI5ee8U8bfGqAwyp4Zy2UwKNHwJ/wqn+T8/Qf2uMPPphL/6WbnPgE\nAL2q3lgFJ3Pc8ULCN2P3rF5Qkx6pDzyceXpEgIYc2gs4+pJggn/2Q7cIkgm+kLMSvDOBZ38Bk34i\nV2D67ImAsb3GOMyTwAF4nFYvGtDnWZ02ZNU9Gpwcubr6+BMCghacO0F4QRs0NEanxsAReMAbQYsC\nadqBiz7BCHtgAQh7lcvY4Exemge5tSKYhUZXJz2Ng96VVw+/9nDihTXmag+Ei/yai8Zbu16EoB19\n0SU3b2DgjTppzqVntHYZr3au+ASfcYJHF+APXgniC8oIiAl66Fuf+FF5uTZS9fvD8gcMVwm9Evz0\nlLmX41cy44VBgcL61k/fytyXqj+qq005euHPVoEbj8gE2XDf3Mff8mDIbypTh45o6lkOdzTWf7Zd\n6+ojl/RJtswDOs2pNc7BZwtYM8rZAU4OC6iTp9p/DOnjv9EQ7PCjE55webZ2wNWmduWNtWftJXy2\n11jn9iY6CAyBhQLs+E0WBWk+9alP7fteOgwM7Sf8YCuX1DWO8sqjR1uyTs6d/KSTfJPWWgLP+hUs\nRa9xpifIg/tkHlxt2Lj2UYFXgW76Ed/R7cWUC0z0WCfWLX1Mt9q/BUFd7G34jd1pNi/OwFTWWOgO\ntrp1ipbWsLEpw0twe7FDruGmh8Aw916sdKIdDMnc+qyDU8Z+FSXIDm88k7uiZe/0SH/gQas08VYu\nl2rjvjL3kjmO1mTD831SsMIXHs9ddKOXfgJs9LUXBHhHts2JVNtwghOsyt7FnIx34hV/yJiAvtOe\nbIijwCtele47T7V/nfmk2711R5f4rquXOdafFykOBTjMQOelR2ffI9lQj3fsMPa9fyZr/dKhdITP\nDNAR1rcUPLDm/evkz4n75MDJgXebA2994JWyzEhgfEop0MrblI6UqzZHCnzCAY8y58w4CemkkE3y\n2XaqydtwxiXjLocjPDPfCRu0qUNvhk7POZM2GsmmxLhFJzoam/YuqbJyZdXXZ22rzUxH9comzPg4\n+836eT/bPPZ9Y43eOWY8tskyjAXGGPh4yUnmVAlmcAIEA/RngDPmORkMnuvr6/0SlBAYKIXD8xFf\nanfml+VAfJebW3Mp0ODttoCSeRXoEgD1vTvOqqS9+eVM+8SAf2LA2BOsELxg/HOcCswz1jiZAlUu\nQTsyAaeTLgJH1qi1yanjTDpB6i29E69gkovwxoXoT2Y8S2iTbtNHe4PnfybcYKoCJ1ieGfScS6cp\n/uEf/mHnk7GRead0OvHKuM350Q/MaJm0TtjavWkJ3cZsnqJVGd1MNjh+Aq+CKZw/ddpdXV3tJ3Cs\nd6eVGf/gCAoKAuBX8IxZIMHckxFGvmAA3SFAQId3GpEOKUgfr+CU8BWPJbl5oXucThZUsc8Ijgom\nJkvo8rkDsiYns+RRvX3IXJNH+5EAIfl3YoZ8k1H7lZ8JO+ktmGsc+oMn6CTwqp2xoQffjJus46ln\nsO1LxirBg0/g0JFoFLRAk77Gpj++dMIVPz3DpU6uT/12wNsffdEIlzxa6hd8dGmDLmvavTL947c9\nHI+iHTxzLNe258rCrVwyfmskOo3bGLWHD158C77+2hqfNsrNjTkgN9prsyYwJXRH+2xjzOho35I3\n/4JTzdvaP96hZeJVHj73E+esi4bgNKdy8OhHF35N+PV7kfwIr/4rffeBGSxt59g84xs5tObtG52W\ntObYek5U0v1SfcG7a3zh1OfoHrzgyF3autA04ZMh67jTnNo822xPuoGu0NaaEwQUfPSi2D4WTLkU\n/IlPefXuZ9IebHJvzQs++gdiPu2DN9aTICfdQt8JmqKDXiXnbCs6kU7ysk9unegHNhn2MpwO05ee\n9EyH0CcutJEpMg2GIKmXXPSjdRQcv9rwElFQpeA0usl6Np321qcyuPEZrcpc6NKHPLRuwScL+Owl\nLfx4gi5jxm8nN9mHdJv+1eOl/vF78vZNuEfbUbpJHo7aHpUFd8LBE3z0M3Kf+fHsRacTjfiIbzOp\nNz8Txqx/1+7pTOvLaVf2CZkn06554jV+4HF8xgvls64yOV72XJu94BX+iVb40eO59eeEq3/6yh43\nbr868I9O2fD8staUPu6tX3D0V+by3NjoKrbTP/7jP+4nrLVnh5E1BzLYOdY4OuoTf14hS05UJwdO\nDvyUcuCtD7w2b5SvtG7YlVO+FLXrKKXA5dNx4JBxkBhvgheMXRfjjyGZU6bf3ODCO3FNJa++Zzm6\nbCrTAIkWOG6DN+vAms/hD1fP8tpqP+vrX31t5dW5f51pbrrRMemtzAZrIxcME3x1qsLmzpD+n+0b\nQOaRbHAeOeUMaw6DcfqnGN6SOsFo4warpD5e3CRTtT3zy3IgviezgqnelPsJm8CVEzQCoO8//2dB\n5kdb8y7gxvAXqOVUC5441eyEKufPHHPGBEYEdOXWPsfMOgRL0IdT6F4wRXvwOcZ+yuQkB3gSWqMz\nuuVzna/t9o4v8Ae8YMMVPiDItmAMo/6f//mf94BzJ14F25yQYtxzoI2rBF6GafKtbMKu7ZuUR3c0\nRy89Tk5855Zz48WZMkkfgQ2nIfBCQFMwy/jJB75MePqRB448mAK6AiH0B/npFBc4ghLmGg5pnR/l\n5NJpIN8sFFBwogx9YJMvdIAh2M8JEzDve4boNMcCE+TUxcEV4OC0OO1Kd3FujUOdb7sKQPvHcoIN\ndCJdZx1cbQFoYzYWYwQHzfQjHsBlP4RPG8mYBR284JK7rI/4pp/LGAQ00KxO8CO48UWOJz2Db/zK\nVh5qU1KnnbkxJpf1OvdOtOO19eqqXrl7/V2eXfMeHvS6jAP9LvTDHQxw0RDe6PZsHZKVAuvuG9Mc\nR/dzfMpmW/yEGz9djd34Gos+KwzP0aT+plS7m+rDjxfhmPxacdwFb8UTzDnm2lTnufrKelaHRqmy\ncmXad5F3+to6EDjEP+vECzf633zOvvpL4CsPTm3wIXq0q7w+lc1yZSVwwYh+ciYwbI3a28D2skcA\ntMCrYKUgIB3mlwzWvgSHK3qaI3XmrjFo47k0aSPb9kqnXP1ShI6iF6x3ewi6BK0FPPEye5l84yE9\n2alSeo7eaHx0gRc2dIbcZQ7oFLDQTaYFU6wfe5cDEK72XfwRdPaZn07INV46jB4VKH626Wj49Wst\nG2/rxfiVwyuXjBMu+tgeig5JvQC3b7z+wi/8wntXm95EsxS/jVFCS/TsBa/wT/O44q88Utb6yl82\njwf1J0Pmzv7rk1DkzmlOQWvrbpW95KP+d+WXpv8ufJeux58Cr+wTclfgVVDfS4lkEm78bQ6N/Wj8\ncw7ws+f0yqXHsMKLvlkeDei17vha/gHW3//93+/rk41j3AKv7BF7W/Tq6x6vpKNxK/OizEtlgVd2\nvrFbq05X8+XoKjpDeXwL9qT1vD85cHLg5MBjcOCdCbzGnBS7Z/czP1LUtaeEc4C9rWfkMbIYCww3\nTrEgHaXOeNN2bmY7oud/wgtf97P+qLzNRbs2A/f1l3dffc/a3TfVt9wYjpL6Cd+zq/ZrfTCUl2b/\nyi6Vr/iP8HJMBT4Yd362Y8Nl6JtTQXQ/N3ZSjZMlwNGpCoa5xIHx1lXQVvACvJKxNb45d9Wf+avj\nAIeKU8hg5eAx5AVd/VzJ/Js3Dpj169SK4CunkAHHodWGw2cecxo5mtY9XSCIo635JmfaNeeVG62f\nqvrmm7fqfWqgPpMbrSEwkuNkSV757HPbvT71B2+uBfSRaw66U46C03jEufXPwAoUO3XEyC2Bh87G\nq1zZhF3bNy035uYHbWgWPDH/gs9+gsYRb3zaCGj6x2jNHZlpvHIywBlKT9gDBDnJR0FIwQMnRq82\nJxw/nZTlxKMFDAlOF3hg0UXoEsxwAt/3Wzn69h7jEMAkn3QXmaKHyCxHjKMPt8CGAId5pcv0M5fo\n8NkNwRryjQ/k26k1zq8Ar2en/ARQBHPRzSmhA9Hg4iDhB+fYOOKBvsaCDoEf4q5kUwAAQABJREFU\nutUl6IM+4wdLgrsLrObnSNbj1d7xeV/3yqsLVm3K0aNN+exTOf6s9bWbeTDrN2ltDOgoaTdhK1em\nDXxkhdw5jeOln29l4rO6OR7P0oS9Fyx/1E+aGtPsH4zG5dn9mma7ta7n2XfirV4enlnmfvZd647o\nWdvM52idZfM+eGiUei5XBoZLGzLK4bdW2XXmpIveMNfmtf76KSPnLmtUPZ0gkKBPczrxh1cuTXhg\n9lydMkmAUxDCac6rbU1bk17+e3HiRaN+Tor69YLAqxNd1iGa4gF9ox99YYz0vzFrF56JV5n+7GB7\nppeVTqaR3164wClIIvBIf3oWHKIX8MH+6aKb0ElP0W3q4yed0oWn+su7Rwf9g6f60D3uZ7CU3rXv\nstXsweYET+hr+zzdKqglWI0uOtL8mHd6Ei/0cUoYr5XDSwYcrqCf7Z/mN11IT9ovnKKjl/WbwUO8\nPFqHyl9lmjJ1G94pA7e1u60uXGDNe33Mnflnfzx9+nTne4FFcjN5h2/1T35vw3vfukuM8b64XrSd\nMZNTtolPDZBdgWkv8QVe8ai9FOz4IzeudWzKZ13t9dUWvkvyFtzSxFXZzOE3PjrBS2ABUn5Y+sSh\nCYcY2A9zbI1nheW5OnqO7Y6H//Iv/7KvefYJ3eDlDLg+zXMkb7Ns4jjvTw6cHDg5cEkOvHOBVxvK\nqqwxTJnEAGB4Mv4of4aUnIHJMGAoCq4yuBipHGMOrbqCrTug7Q+YN20y0VB9ub7RUtn6PNt03yap\nz7zUH6UjmGC4GLU2Gbwy/ozg6LkvvNvaqbsN3lHfFylbx9dzMODmVAgoCLr62blggLlmSHN6Xe4Z\n1MmDjTsZmicYBT7mxtwcwNfchPvMH4cDydM6106mCrxyDq1dJw45n077CQiZW+uXoWctS4w6jpZT\nOuaPU8op08YpJ3qATsjB0wdeNMi7nzQJcDlBysATIMtQrg8Y7smXBG9w9oLtj7rKK7srB3PSAWbJ\n2hZ05nQyRp04IfP44nQQI9cpAMHqdyXwGg8nTzjrjHsnK/DBHKtvLgU1/FTVSxanQ+vL+aYfBAzI\nlj2BDhF8oCskwQKOtwCmvhyIHPF0iZwc2k/AImvJGfklb4IE9hgnrwVbn2yncK+2QIt7sOkvwRL4\nzClYYKCLrKKHbheI0FZwQD9yro8xCVwI2BR4FYRQ73QuHUcOOCr4ZU1oX7ABDPxSBp968gWnPiVB\nXgFoAQm5wJQ2Uy61jf/1q2w+z3v9m5cV1mx30319q78Jhna11Sa8yupTHqyZ17cybfFQoF5g3Ysf\n34uUmz/zpk/7iPuJ6wge2LNNuCqrz6SzstpWV59gVr/ms7269fmm9mu555WWozZHZeG8D4zJz7U9\nOMGyr7vQZJ2Sc+vMRYeTd+s1eWdXWC8CIulN64jDb16tTetCguNorJVH46Rvzgf89jHBTTrKOqPL\n/SzXCxS6SbLWPve5z+22js/cGEN6kK5C/7PtBaUgqHLr0hgKekWHOpex0kdsJN/FFnwlv+RYQj8d\n9/M///P7iVc6yjqX4KOb4LTvyuk8Ze2p2sHpMl5w8Qzu5kWbmSqnSyT93NNxTrsKVHnRRP+BxYYX\ncDUGOT1r//cChF6X9C/wKiBjzvW3F9KBxmxerdPGbk68pPq93/u9fe+Mh81zdHp2ea5sR/oK/xzx\n8zFoaeyGFvzKPOMd/vsZvRdP9gh77fX19W6LWH/a6YPmUnLZ80PzaHsonEv3J68CrwLT7BP88hIY\nj8h0e3h4423P67hmvXv1tamu52BcKg9+eXjk5paNwwZ1et5hAC+ArTfB0T6Vwj6fc69v40DnvJ90\n0zP/9V//tcP1Kzh765PNjmLb+fUiXq4vm5K3iW/CPO9PDpwcODlwSQ689YHXlHtMmQq5e0qbAub4\nMsYYUznSjGrGa0FXxinD0WUz7Aq+fMJ137O81GbTc3ltPdd+bevZZSNwMUpynI0jI3WF1cZRP/U2\nFbkyMJzqYCAzHm2AnYAAUzvXTSk6y2e7Ni9l1d8Ga/Z9mfsjHJUFjxHtZ7kCTJwk4zfPDJy+0Wvu\n42e8AodB7tMEjAHfouL8mIfS5FV8r+7MH4cD8bx5lpszp9EZcYKvnN5+6m3+yTinybq2lhl0AqTm\nk8NEJ3CsBEScahEAoyM4XfCFqxEl55Un454FzJy8cerICaWCUbNN9yvsFV745NXNsnkPVnC1ne2N\n2RiNy8+uGLoCkE74cOQ5q5z6d+VTA/gSbydP6E1r/sMPP9y/ccr5lvDKWufkODEmkEAu0gX2CfLh\nn1xx2skTR50OJV8cIrwUwNePQ0m3ggtG/IfPHIDlcu8CXxAADeBxDLwsoq/IqcAOmVUPVkEgJ88E\nYAQzJMEC8mceCyB0ClVfvKCnyLYXFE7WOHUpwEIvol0AQ39j016A2XglY+IcgWFvtM7IVfuG8YKl\nj/6CuOSLDhWMxrOpJ+fc7Aie/1HuSoblN7XV5ba6CXe2Xcs9h6c8OqLZXCYTRzhrX157c+bCs+wM\nusjcCUTQXewR84qXUjDQ4lpTNEWH+srcK4ezVLtgeQ62+56P2te3urVf5Y+ZR/fEsdI167pf+x31\nmW3wkPw7vUl+rSN8tNb8Qsac2Resk/e3X1T4RYz25toLO+uJjrUmm8sJH109Rwuc7ntWDx5bw5q5\n2l68ZMMIlJIhwd2n26lBNFmfYNDhv/3bv/2Tf6wFDpjkjp7Rlt3jJQ1dwSbyiwcvZ/R3wWv9kkd7\noV8E2Ve9IACLHpGSac944aJrPOOPiy4g0y7B1uQbXXQJHWF8LmOgl+gUeroUT3qW40uBUXSAJejb\np4XoTIEV/KdzBYzxi85lB5gbPAyPcUcT3U0He2nlXrn2dL8cf9DEhvZ5hT/4gz/Y+U7/S+r0cR3R\nrvxVp8emI/jlxoen0iwzx+wO3xe3jqwbhyHIoTlsHvRxPQavHgPmPtAL/CHLfvHSN+jJOd/DS3G2\najZAqCZvlc2xVVcZ2O7nvFQXvEvmzeGECZ+LbmBHFRylx+gNuuiDDz7YfS2yIVlvaF7H07M2cxzW\nPD3ncIH/92B/xUe/fPut3/qtXTfSd8rAqG/0xh9wz3Ry4OTAyYHH4sBbH3ilnCVK1D2lKtlsUq7K\nGZyCKwwwzk4n25xUcDE4bQrgpNinYt6Bbn8qK1cenhR4bcu1dVU/+2rTM8XvMgbOcIapXF/GLCOW\no47W8IZHPxfDkJOsnsGDF8oZu04pMEzh4TgzQsFliMbL4EUXOFL0yTPC1YFv03Nf22A8dr7SGD40\nMp45UIxxxrTxmnunHxjSUvSCE/364pEN22cKPvGJT+z/LKkx16++2p/p8TnQ/Jir5p3smU8OLyOO\nvAtA+Tm2oBi5FNwScCf7TvoIbj3Z3oJbY4JxjF0/o9ROewku86oNXNaGq/rwJwP6kDEnbwReOcu9\nWZ9tghsOeekIprrKa7fmYIZD29kezZxewR7Grn9uwQESKBRkZNgLjqHdWEvg6QtW8q1swq7tm5RP\nGidPyIWTFV/96lf3AD2dJxmPALl5EzTnAHDs9dVHsIJsyO0TdOvVFgxxkbFOuAo8gBV/8E5/L7bs\nOwUAOuWYHKEB3wVYBSrpGzSQYTpcAovOFxARPOBQODFiTzM3ggVocdKNXOu70mI89gBOz/e+9739\nZ3homQkd1gh4cNtj0Kkcjwq8Gld7kHrtlNmb4LFfOXHOsfZzUnTZe+BXH48m7vU+2Ztt177aKJO0\nm3KqrLruJyxl0tpGmXbKu+gY4zXG9rrwwakdWvDBpU080Y9tIQAmr38BKfNoPgXHzKd+4IHvwjMJ\nHs/2IFfl8KpTpt58wOmKLrmkvjTLwJDUh9tzbdxL6uFqHo1Fm9pN+NpX7v4o3dY+WvSb90dwLlEG\nB9n3AsYa9JN1+tt6EYD0zUC2IztJoE+g08sRNoZ5NX8Cr/5xIz0Rb6JdHu/QW328V6a+RM+Abx0J\nuAoYCFDRJeihT+xXknX5mc985r3PfvazP/nMAN6TJUEuJ9zRJoBMTpzW9DI5PQOG9uTbOMBvP2Un\nwWt/oBfBVEavJXvobpzGFbz95jns7ukR+3IvqQSU4HUqlk2Od5Mn+oFdoosEetPRnu3p72+BcN9x\nfLLpP/rHOjB3xm7u6G82gHXX2sA3c5xuwxt9zSl9ZVyCwYLQYBm7ZG68WP3iF7+4n0g0Fm3xsNwY\n0N2lbo6j8Tx2Du+aXoaOlf7glk8ceCBVJ8d3J4+9HBcQd0Lb/kC+Z6rPy9A44bxt9+QVfwQNf/jD\nH+5y6fQnHvFf2BfpfGOLT+5XXlVXuefutX/sBF80wBVuOV3JDnOq14lU/qf1bKxOpBqrNa0tXdJ6\nCk6wk7FZbo/1oug73/nOHuC3zq1p33alH70oY9vMFDz4onPWn/cnB04OnBy4NAfe+sBrDKFAGTs5\nBRlvcgYqJ9PbMEEazg4nlpFXwHFuFN2niHtuE+g53FNpq3Mpu6ld7ds8embgMgQZf/LujcmGhV50\nFygNj/4SQ5LzwLAFQ71+LpuYDU25dpJAJCOacWnjj2d75fZnjhcO/TNW2xz1scHZ9BimORRgrOMP\n7qXy+AfPxKXchVZBCBs7Y1pggJNLHtCKr8YtxUNwlHM0GPICU3IGAYO7NHFGR3Vn/uo4QN6cFHCS\ngtPLiTPfTi0JipEB887YJ/veprvIA2fAzzUFopxq0ZccJEvac8A8a0tmcr7mCM2/dQCff7bhpAKH\ngkMXvOSrfsmP8qO62snX+lnnPljuV3josjY5tU+3wLSTAJx3p7kEXjmsHHAGKSO1BKa+4CXfyu6i\npf6vI48Pk150oJmOElD4yle+sjvieBKvyIJ5K2DOqVcnuOBbiv0Xb3pUncC9YMiT50FOelr7+OVe\nW8EEvBa4BcMeRA4lOqb25FHQVZDSnJgbe0HjIZf0viCKwKsAXYEP8qk9WqKH3N00V4IvHBMnn72E\nQqukPb6RebJgTMFQjh463317hTHo79l47SNkiO70qQ1jojsFjazDOS/hDbe8svAqKymrXDv3+Gc9\ngosWV+Xq5l4UnPLZzn1XY/PsXo7/9l48JzfgosFY4ZTQoR0+sCnckzn3LnDMC1mzR+Ol8gLp5sLe\nxBGFN/j4Docx2n/M9wwUaVc9OtBnTyd7aABLgs/c4otyuN1L8XN/eP7sHs3VTXrAwQPjA8t9Sbv6\n6P+QFKzgTXqD+1AcwcFf/4Tzg+3UlV8BCK7i3bPthZVgkb3F2pHoeW37zAA7in6lKwQV8CVagy8n\nL9aB+SIv5gDvWhfaGI+5Ym/Qy9YRe06yvgRG7XfsWDIpOXEpCCh44XQcOUE7nSHg6rME+jhVCtb1\n9fUeMKTDyCP86GAXOR1qLxXA8KkBdV6c2M8EScEQiHSZeyk5MU+N232p+fNMdukrL/7Q7bJmrAN2\nOdmdMNb5xUOB1k4A4qdnQRWfhvICSpDKHJg782b+zI3xgYf/2hg7OHLrCmy8xz/36GA74J21ab4k\nOAWv/QMgwSI25pxD/aJb+eTFDuAt/NN4jkg/qjPuyskWWSWL9kK2FLm+3uSQDJ7pvV22fILBvvyD\nH/xgl0s/j2ef0UX24yljeHubXKl31ae5qM9d/R8yJ+GaMMLLdxVgti4deqCn6DqyYA17iSHNddN6\nktM54NuDrGP3jYV+xDvf8feyRXv75+c///n9xTqdbd3PpI2Evmic9ef9yYGTAycHLs2Btz7wOhUn\n5qQ8KWNOjGCrN4gMSoYk54nRyxjQRkp57w/P/wSn+lnXplD/WTfbg4E+OYOO0ue4Mz4ZduC4bCCe\nMwQ5Zow/dYw9Gwqj0Vt3uc0rhwps7fRnVNukOb42amPUlvHIuDVu7dFtA2MAMYjUgdd4yhsX+IxN\n8F3GYTzaMXALBMyAsL7NTXAumTeOYMYH+cSLLy48xg88mLyrrTFK+hsrY9rPya43g4BBz6ExbyVj\nj0/1re7MXx0HzB8Dzhr3Bp0MPtmCUObMqVNBWMYX55jTaD2RfQEwzisD0EmmDDrzb545BIxA8PWz\n7jiF2ilr7o1UH8/wCrr62aMTU9bxUZqyo68UvJtkqfoJb/atXlnl2qJVMObZ5oRywJ3u5TQL9jm1\nxbD30/Z3MfA6eUXHOfH7Z3/2Z3sQNCcav/FC0MK8CTB0moos9QsJMkCnCrbQsWSD8U8P0i0S/aId\nJ92+41SagOvU2ebDBS95EZw0D3QNOsheuhUs8yZ467QW+aO/0KGtAJBc8ALN0YOW5Ci5UEYunPz6\np3/6pz0A73uPJfrOywonkYzN/mPdoIc+NMb2KTn46VZwjd3lntyTJzDRFn/UuaJpfY4W5ZJ2rtqB\n355lz8EfNKART+RwaWe+rdV0vfLgttc1F3C4t5eBXz9l5ISuMKeCa/1CpPEXGNUWXDDkwS5vzgSx\nOJq9DCRj5lZQ3TybE7QbizkVEDIX5gBf24PZCs1386GfgKv1LcgPJnnRH06XewE5p96NC6340pzE\n7/hfnfGiiWygA4/ZFa50p7EeJX2DH9yjds1PNFgH5rf1AI/xlCbMI7jRXnvPE0f9zaH9nYPutKu5\ngRM+8+5XAk5Omhv0CBoKHmqD53hALgQPySQ+NIZwy82TeXQlK8Yz6aBf6GN6CB74yIg5YwfCRV5c\nbDfjoQf8E57rzVahU5SZWwGOp9vLNnJlLHSFn3Z7mSzwRYYkcMmM/dN+6CWkMmsXTN8stx8aL1gC\nswJE1kpj3QGNP5PPij27yJ9xJUdk2N5sfOxbYwVT2/iif+sNTQKt1gZ6XGCRbbrLSx44zINALh5Y\nC882PYpevLemwDCHeEJPgYfX4STf9k3riR4Ho5dd5MUeINjtn2slL+iU4kljVub+TUiNb6Vplh/R\nuc7HUZtZBl5jtkasHWtIcNGzl5dOczrVjZ+1DQYeSsrXutq8SzmesBUcAvBNZT7cB9tLIDwiq9bJ\nffiwziP9Yg+zfqwVMg7OnJ9XyUdrkCzQlda69WgNWov8SrKAVvNPX0ru9aPT6An12menNGb2kZO0\n/qmWIL9kbdLr/dNUumHKVH3vw9sd4Pnn5MDJgZMDD+TAWx94TXHiA+XJYKKYGZqcZoEGmxlD1QY0\nNxwK/aZNaMINdm17lkuzbQp8wrbhcUSvrq52x53jYgOUtHNp4+07A9BmJKGXAczJZJTarBiC89SN\nsdqgwLRZM8LlNhg8YJznLNrc8YfRr86zDc3zHMO8Bx+tNkWbHceP4WqcYDCawc8Ji8foD0486Vnd\nJRK4aOMQciLwQGJ05xDi7W0JTXjFsAELL80FWIxDnxvwU2yOB+e5pF/jwaMzvVoOxHtYOYoCrxxC\nxtmTzfkUUHTaTqCDfJCHPjHCCXMvOMY5I7PmntPLAefAubdW6A1tOODWoLbK5/w3ck6ff+TGGfP2\n3npek37kNvrBso7AldCa8Tn71n6WzXVVvbLKtSX/BV454fPEq4AfJ1yA2rrGgxJ4+oKVfCubsGv7\npuTRnME+6cIDgYU//dM/3Z1oOk8yHvIi8Mo45wjSdWCZF7qX7JgnOoJ+djVHeESPkhMyIphPrgQy\nvOijG7UBj15PR5NLwVYnpzjxZIXeQRcHgqxxUFxgoz89Tw9fbXsJp0IQoxdhzVPjNjZ4G6ccbf6L\nsG+8wmEc5N168bICLXRfelDuAssFh1xy3zM84dLeWMGWcv7kLnwVoDQmOdlvDwIPH+QSmPinvr3G\nHlggCh663/4qp8v1CWdrNdrVgZVsNy7l5tF+2z6pDVrxv9PGaG0+6xs/wOhC+yw3HrTREXjsMo/K\n4RScF9g1NjjMqfHYa+kE47RG9XeZd/XqwICLrNFVTvdZ64Ls+MBxt4cJ6OnDjnDSXxDEXimhGwy5\nNO890w36olnwC43woXvyq75oSnbcmwdp8mcveP4nvLXRB7+sNWPUn62CV83B7F+/WRZMY5lXNMiV\nC7w5ueg7gNYjnsNnfF7Ysx858p7pAOPXxpyQBXKMLvVoVIb+rkkTPqZnWw/amW8y4VSWoCs9QfYE\n++gfPNaP7MJnn0s3GYM5psfICPzqBNfpD7Ra414GOkXLlrHGwaQD7J/9JP/Ztjeyc9g+9BP7Bz3m\nHm76TSD6G9/4xr4e43Fj9Gw8s7wybfDMnMJvneNzekC9ucYLfFavvZwuUYf3yuIDWdBWEMbYyQy+\n4Y+x0RPgoyn9jR9oaI0ZG3r0hYvcosucWivWkxN07uE1D+wDJ169aMV3NJXwXzIvxu4C83Wn5qQc\nfaXKPM/y6o/KqjvK8UAfOT6SRUF9AWx6nA4ji/3ahszhv3nG3/q/KN4jWt6GMjyia7zQYMeSL99s\nti/z6fDmPrxoHuO7U/p0Afsie4GMWw+vI9F5dKR1K5nr5t34GmP3xtEeTE8Zj7XqJTEbij7QVrtn\nm+5i17BxrVlrjh3u2/3sXONXFo54hY7K3J/p5MDJgZMDj8mBtz7wOplDkVLANhUGlxNe3/zmN9/7\n8Y9/vJerT6HPfvpIR8pXH/Bc6rV1pbSVBXfCrF4Zg89PoBi8TzYjjcGnn02I8cv5ZHAoZ1zqq9wb\nQca8y3hc7tVJNhF06QMHA5IBWoDQBlcQkvFpA7PhgW8MjEtX4wez8biXwEebjTtnzzM46OtiTHXa\n5+Oe/+fM9SyffJnlL3qPTuM3Xk4H54lBbYwCHpxYQec2+Alf3xKDmVPC0WGQ4BOeyW3sfvrrEpCx\n4ZeMo7Hg0ZkenwPxe84frIwxQTXBV44mo9WcOd1ztQWo9CMPfjLIeHNqx082BbjIvmCCE0ACExxv\nhq45LYihn0AaZ856keTgzrXDmfNfaAVeBTU5F62naJ5jcE9GC7CRObLYzyXrEz7PR7IWTO1mH8/o\nowesCc6jb4hxnsm705a+9YdPnFbyXwLTBd4KszZvWn4bzXTmj370o/f++I//eA8+No90iO9Ac6D9\n1J9BTw+DhXf0x2xL90l0N2dJ4ImcOFnFuRTQx2v6UMI7QUFBlU5lFXjjCBQsgEOAhXMPBvmk6zn6\ncNI9dDBHw+W+/YIO69LWmJo7NMQXsmPu//Vf/3X/SZ6Aov2IrJLbftacHCRrzf8RzFU+4pu9AP2c\nPsGj9gmyiG89y8k9furbnhbuaMcHcwiWC3/pevseWbaG8dkegH501dc8ugdT3nxy+rSFUwKvfaw2\n8JoXvBLIQS941ccbZS4p3NUpg9czfGi0b5lDeze6GhvegG2+7ef2cnPLOTXvdJP9jm4BgwwYhz54\n7WWzn/P6qfizzRGFl0yTbfMMhnE4/e0n2ALKjQWdEjobg/4SHOjphLV1QX/Siea08euHn8ZpfHQi\n+s1vVzDDUd/K0QOGMRt/aw6PyAp82TKzr7kKxk709sczWvAZLXLwyKZ5RYP1KPDqxDv9Cy8Zs6/g\nkxNo1rYx64sPZM6VTaA9vtpntDOnxk0+5Wgzt3IJP42NzJpLusC+5cI34zOf+oClnTboVwYPmsw3\nndEY4TJmvIKLvNjX+myBdYIPxm5PE3wX8PGrETjRYg/0Mo7ckDXt0WCMPqXgUyXf/e53f7Jm8dAl\nwd39XvC8zL1y82rsLnNnruXKyRYbuX9sBi/+pdOM0WUNekFBz7KJ9bcOtDMGc5utTN7NL96xX/EW\nLvxxkcnmSn9wzCn6wILH/m890fPmVh0+CYz5fiQdiu+lKYPdw/E6U3SUo+VoniornzTre1P5Ci88\n5oa8euEnuE/OzI05IOv2HHqMfJsf+6H1Ned90uAebLKd/Hh2r4w89awMvXCZH+ta3lxE49GYVpyP\n/cznoLe91PDPL8mrwL7Aq3t030XnHI+1aq//6KOP3nu27QMOFFxfX+8vX6wrsO6C9xhjNieTTnMx\nn9d7c2qPYbfjD51HTuxldBq/DwztBPUdtOIHsKGsZXaNl+psXPqaLEjhmWN8HfyY+M/7kwMnB346\nOPDWBV5TmKuSrNy0MY4oaJsOA5GBqf1s4zkYs1x/z23O2lDWjC3lc3Ov3wprLWf8MSidImDIMuwY\nCJwIRglHIsMZXvTbOBmQLs6gjVmZtoxFCU2uDAo5w1zi+DJQ9UEzmlw2Ptd9E3oySI2DQSShA+2u\neLJuqhPPymvP8em+tMx20YWnAqSMdmPPoeA0MfDiFVqiAZzmjGPirSjjGT2CYGSHM8Ng96ZUcMqp\nD/MWjPgJVrKirHrlZ7osB5KXyWNlHDAvWTjITh0y4jmOTg8x5Mkoo0xwjKMqiEJmrR1tneq53oxS\nJ/4Ex8g4Y883QcH1U0PBWo6aZL7JU06jMjSB55StIJ6ffgqg0h2Tbvf6KpdzoDm+nBLBNrLm565k\nj04owQUvPGBMHtTmKE/PkGen3Bj2nCDODWPUT9mMnQFrnZfQJsFzX1z1fZ355PWkw9ytgVdtzZlA\ng2B5wUeBsZkaf3NHH9MzBeY5BOZPED2+6W+O6UxyJcjtxJl5JXNwmM9gklFBMCc1OEzkT39t6SjO\nF8eB02Se9DO39Jt2ZJaj4aIH0Tz1UjLHIfn+97+/8wIOa4SOswYEE/QF2yWV7w/P/ygDrzp4Ji57\ngzXGWSJr9DDetIfhnTYCG+bFfgdefF7xKocrHOqVGTd6yS79b63T0e2H2usXvfpFt3nHR5d1Bh5e\nogdd8QsOfEa/IIzLXGkDbjR7tucGX91MPc8+7tFKFtBDJ6FBOUdbeQEIdHomB+TBZdzkQ1v4Berw\nnN4ij+RUIt90irWuvZcFT7cTsV5WCYTgf+OIPs/uXRI+CBTCKXilj3l0GTcelbSlXwT5yKx+xqUd\nOo1Tm+YHz1wSfPFQvWttCzfbqSBsMjTtkMYDJhmJZ2QEPXStS1+yY7+wRgUoyIN5JrtOutL/7DBj\nVGdM7Lmr7aUeeOgjH+xM+wz5MJ94YP2bY+O2JgrcK7PX0AkCnNae+TV2PNU2+0VgShsX3ptnwUBz\nbH+iN5orOZ6RF3aRte2CB5z4Yj9zAlFAEc14qo0XlvSVvmSlPQhcNOnzze0wg6B9CczgVjbzaDtq\np06Chy0noEIX4Q16yT9eBh+d6MBrPDB2ZebUPJB5eo2MK6ff7HNgC/TRD+TQfshu0E4ffIfHmAV2\n6FnwzLs1gk9wmUe0shd/53d+Z983yAF+lxpTz/Lon2Wv8j6a5LfRoq62k+61rOfa45/LGiF/c87o\nevNlHeElm8deYL2aD3NnTeEpmyndZj3gKxxd8NIl5sFljj3Dmx7wDLYLLda/dUh3yc1fdK9zoPzS\nCc3hW+FXdxR4/cIXvrDrbLohPqCtPiudyqsn205/fvjhh7suY5c6+ekFHPm+La003tb2ResmjfBM\nvlRXmWdzzJezpzk4wL4nI35ZRl9b0+ROO/UCr/4xoHWNb77XzR63B5p7a1rSh2yEU9ljjhv8M50c\nODlwcgAH3onAK+XZxk8BO3kgmOHNIefCprYP9vmmOpXtXrH9oYQldZSzjc4GLWdESAwIRpsNHT5p\nbh5HcMFgnDMkbRg2f0Y34wA8Rh+DAU54wOVQCJjmqBqTMu0yKuDVZ9LqngECBoNEP+09Ryeao939\nXUk/Y2C8MJLww/jRgn54jNt1X7hgrumId2ub9ZlRbkPlJDDS8c8pHMEFGzQDPOMLH9po4XdvLH6C\nydlw0sXcCs4JpDCy27ht8k6N4EG0N2Y0TdmpfqX1fH44B5KRyWMyZ70zzKx1804uONAMeUY9R5XR\nb245s/qYS2vRiYv3t1MF3p4LiglcWWvmn2MrWMkBh4MMSekDcKw3CU0uTqs37Ay+mwKvxqGt3GkE\nTqyfmKFR4PXTn/707iwykK3p2sPjvufJB3VHCY3Gw1kVRIAHH/DFmDnlxs+ApZdK+kmNq/I3OY8v\n0ehZMgY8cBLiz//8z/efYKfDzaWXKk4uCZaTG7Ih1R8vtKfr6DyOI8dGgFSgVACAoa89XeACl07y\nUkcwQU4eyJc5lciOSzDG/AiaeelDJuBBh+AVOeaMFljUn67Shh6G19wJFgjM0NP6ogEt6qMNbPui\nX4Ggme6k2wSeBPX009aY5dHp2YVevLAW3INvf+hClzVmHDnaglL2M3udvi4JffrJoxGO+CN3wVEK\nHzqt84JbAibGzlnHC3BbH9GNZrjBoPsFLOXxSV17pr7qgoPXxmF/kefwowvtxm185tI9WJN/cOsT\nH/VDB/rRqxzuOafwNxZtjZdOECgkF+7JhHGYC3qOk0oeySZ4xmGOBV3tdWTSGNhHHFUvotAFvtQ8\n7A/jj3q0oJd8GZ+xZpOgX1/4zJl29GuB13iLJm1rVz7xQ6u9MWkrmSPjRIM6fBKgTLbwHI+1Dz56\nwCUbAm8FS+k+a9h686JVGzxVb8/3jEf2Evyk+80tGvDby3OnMvWx5uAVyMN3+gBfyA282qMZn6xx\ncIxZ35/92Z/d1x7bg+yi2zqxLukXQT9jQFMBWvoDPXS5AMPTLYCOD2Bqi/f4RJ/biwRa5J7Jkzb4\nKthKB9jj0E4uBCg/8YlP7HzwXHuw9fGiie741re+tY9zn5jtT3PX85rD6ZLAckmVe0ZzezEa8Bf/\n0KBeW/zBR+NHP/0igKxOW3LpvnVovuhz+p3u1UaZwLi5NR58ZidaA8ktmbW2rDdtyQB+y8kZWgXB\nP/e5z+38NT/oLKFhTY15LX9Vz5OmSQueqjOHlVeGtlkerdp3WYt4Zz3iu7VgfaWX9FdPpu0J1hx5\ns0fQV+QdPvxrbZkre5E1odycyc0POQwXfOQBfHjpFvPjUgauMZELMMmUvdQaUj55Eg8a4yVzsOPt\nTXCtYTLmxbh1bb8XeLUWWrvBmHSDN8vd44n18bWvfW3/dYsyut+nVPgy5Fta4SgLlvvHSOYvmYov\n5knZpKc68kGnevGBP3xielMwlU1lnYJpnbKjBZu9HNKOz+2XDF6q0/90NTzSEc7HHvtj8POEeXLg\n5MDbx4G3PvBKQVOiNl2buZ9OUbwCMRlKFGqbsClKwSt3eXZRyjZ4mz7DuLejNjLGGSONQc7YAE9a\nYeyF2x+wtGEsMLwZsuAxShgSNgvBAEbCpA1s5TYcdZ6jDWz34YajKzoYHLXTdqbGOsvuutcHDuNw\neYYf/a5ouQ8cfaX6eK4MrSu9d8FkGDOmGL4cbvSYJ84UQw//wER/fAkfx0jfz3zmM7vxzJHVj9Hj\n4+ze0CsTROuNqbmr/6QXfElZ9XfRfta/OAeSj5XH1j0njOHlFJM1w4i33swNA99JC44WGbEWOXkC\njwxS99qDD5ZAqyCuACUdwqjTL7xgNv/JcqPhvP76r//6fsLs6upqx6+uvrXTDwxyiu6/+7u/2/+5\ngnJ0+RljRnJ9bxp/MI9y8OhGeARbGPZyMAXcBHoFX9EqmFVqXNqFv7o3LceX6G0tojl+oZeT5jTE\nV77yld1Z1149PYAPAq9OvAqCcKwlMPQjP5xFzrpAFfkQmMdTeiXZAE8fssQ5uL6+3nnL+aerSvGT\nnneyjsyCLTDDYeBE2oc4jGTYxWkAA230sAQv/OYXbvuMPhxLQQa59ngSTvLt59OCLnScOdfWmqg9\nnsABJlpcdCmHF32CXdaEcvD1o3/h1kZgxHjgklov8dyz9gJdnCPOk/Eah73W/ogu+taY3SvTD105\n4nBrIzd2F9pdjbcx4JMLDcGY8OLp3G9rB5+E32g0RmMHC55wKC8YGS5t9MEvzrU2cDSGeK7fsy0o\nLngnDza84MPjMla8Iw/NNd6BCQdZtQfiY0lbvBaAhY/ckV+BEME9uNbUuOQl/Ii/aGqM+OJZ0h5f\n0UluBWDdw6E9vjUePABPvcs4XGDE62SbDICHfn3w0TitGbmxgz9pQQ8cXqj1glUQDj+sOYFntqK9\nAZ7whxud8Aq0wk1OO3HMNkCHeRPEFegW7LBfmAt1xq4fuGiDgzyDQSfYd9AGhzkxF+xLcuKy5vAS\nXu31wz/f7kU7G5fNIqFV26tNjwu02kN8o5WNY7zJt3ZoEQCzv1mn+K2fl9jkhFwpM2d4gYdy7X0/\n0WXMzaO2tyXtXNJsW5lyOJ5sQTGn2FxkFR3oxk/jzg43ZusEPejAPy+O0A+GfhK+0w/WC7x0OZ1N\nZuR4TZfhNf7DY37ImHnDN/3Mi5f5z7Z1qZ16Jwg/9alP7S/tvWBAf2mOq7I57speRZ4euS9+8yyR\npfqA4XmOyz1+4r890YWn1rG9j+xdbTKF/8kR+cdz+4K29gnrxT4kgG4uzKX9SG5Pso7AsJbk5EBf\n+3F6Dp34T1bU0w3myVjg5su9v71c9jKcfeZZn3U8xvgYCZ54eRN8Y/cSxKeg6CSBYieqHQoReMUH\nqbkIDtiVNSY8Becv/uIvdr1oTn75l395f6FPbsk13qzjvYvGcD4kDy+apfSS+zkfntFjLL5564UP\nXSUg7QV5BxvIiTm372njn2v5J2V0HF3vlx7sOnYG+SnBP8c772tz5icHTg6cHHgMDrwTgVdKljFl\nw/LGyxuyNUA6mUfJulL0NiZvVxlQNjnKnbHLYGOMMRQyDjjKDOI2juAGs+fyNl0bTMZMuNVFQ+3l\nYLuO6mpX3Yr3JrpuwhW8oxxsqXy2uQlebdW7X+mcBuo6ztpOPDfd4yVYBRjw17xwwDhD5i1eTJqC\nx3Hy0xsBLg4NWIw/gamvf/3ru7Fts/61X/u1/b/6+sarNhNW9GbANOZwnPllORC/5xy4tz59e04w\niaFm3smFN/uCMRwEbRho1jlHmtPrLTg5oD+sa84DOPSHe3Kkz/9j7152bUmKg4/zKPu8iLWF5BkD\nCxlLmHZjgcFgGxtk5JFHDGwG4AvICHyBBrdBniBLHnhipPMo51G++lX3Hwf51Vq9z9lrH5rTlVLt\nrMpLRGRkZGREVNba4TXPYMOprHKjVMYIZOT97u/+7m7o0ye1LdefrNaXM4Lmn//85x/7/ve/vzsT\n5MyJGkYjgxmts4++4LkekoyPYeqllH8Uw2FnADtFJfDqKgAQvLl2Hoqnvq8zj4/lrUU0VGas5vfH\nP/7xHuDmtKnjzNDznDEnIzj8ZEPivJkXPBNoLTDK6St4Bq4EDjkSHCmg0ukaQVgBACkZoKfQQN94\nGWBuyAHatRU44CTYl8iC8uabHMCnnXpJX3KqTj+BAfRYA57rb8yCCAKvHJROkOinjUuCM9zGiF4y\nRCY8wyUHD136u9wrnxd4zQO6rUnBbadVBIeebYESjiDc+tHbEhqMUZ9gK48P3VfXGJVLsx3885p1\ns20yP8vmfTC0cz/b9zzrlMElxzOBI3Pl2bjw2D39RNY43k72CIjiRUkb45NHu2eX8Uvq4HbNvp61\ng4s9Q0cp68VubZXNFN1yaeKe7ZS7pNq6h9McJr/K4Kp940AXmlyCXi590YNXBZCVC8TQ32AKrLDx\nCryS0bnnwyeBRQ9b205/CmRYG9acdUDvshvDE12NCX0CevYKcks/oAMN8AtgCrgK3lrTaNBXPflF\nt3tw0e4lMbtCYAVd4Av8GQeajMuc1gf9rua5IKDAsWCNdSmBLahi/xF4ZcOab/uf/s0N2vBW0Isu\nw2M00hXGhZ54oJ+2+hibfcNXA2TU2ONR7dExyzxLyi6Vq4dHoqsEXOnOeGzdoNFlju3j+IV2vCBT\n6Lfn2i/tm8YSzGx3gXF7Or4J2IGHbnKHT+YKj9HZWgDDOsVj66WXYuYNr/sSio5vfoyjsbovxf+e\nX2eOnhV/694Y1dWmPPo8V2Yu6Cp8Jw9kv9P1guF4YP6cMLTOyLi9TH8JTvKN92DFV7pPsMwacriF\nDY/X6HJZC+YYLPLZSxfyIKm3hwjOSuYKje0lxigI5xDF7/zO7+zruDHvHbY/5nzOYeW3yOPfJVjq\nyfPz7fQ6feTFOH3jxCs5sxaiTdvk0xiSc7DVkXdr1D/Q9GICb4zZnNhz+TrxddKj7HWkeCGX4E3H\nRJdcPflIRxsLu4Zc0eNeEGU3kANyY9x+bsyLKXJCDxq3l278erpwxd+YX9f4w3fmJwdODnx0OfAb\nH3g1dTZzjrHf8PN2jDPLQLApdWW4UeaULyXMCby7u9uDDhSzt9zKXTY6GwI4jApGBofIBknRt/nB\nnzJ3P1MbyKx3X2qj8ax81imrvrqe1YVfWUm7nicsZbNO+1lf/1fNwzn7g4/36MRLhpM3zRwPGybj\nibORofWy9MDpYjCHBy7GXbyZ9Mx7xrZPeP78z/98N2zMN0PNKRLBGacdGYZ+a8zpRW9Yn20BgnCC\nhd5ohr+yI17sleefR3Mgfsdjz+4Zmwx36986lRiYDH9Gq/lhhJNBa14d55shby0zdF2Crpwzjhk9\nscpRcsaYbc7JGzrIONlmFH7iE5/YjT76RIrOI/qVCfA6UeM3qZ1U4Bwa192mmxiaTtY4RYLexg7u\nvPd8KRk7R5nxKvBKzsl3gVfOOvm2LkqNHY6H4qnvtTweaHMLuBPeJZiCKk74CWx7sYIX5o/Dja9+\nCuD+/n532jn/AiCcQAEGMvFiO+nEmSMTeKkvvPSGAIeXMnjJGRCYIWN0nHqOu7bkxDyDzWm1R3mZ\nR3bBLGDKeXShTV+44tMcq7KcMXMpwUfmXALK8vSjev0Fa7ygIGfGRw+Dox0arBH3LvjhQR95kOcw\nu5esBe3kUs4wWsDiAIFvPNaiNelFguCK/aBx7p23P+CDbdxg6tv45S7jmLzQ13M04rV2+rviYf2C\nF86ZBzdca5366mo72wS7uvmMPrRJaHJpRwasTV9bOLVD3uqvLRieZ5lyKVpar7Nsba8tfmjrqj74\nO8DtT+U9H+X6HKXZN9qO2lWGB+YYXfRP8oo+643dhmdkSXCR802m1BVgYaORGbjDP+kjY4L8AnN0\ns5dMdACnvk9TrYuZgoMusioQImBKZtGZXSigZ89hF6Izvja/5Wi259AP9h9rwVjpBC+FXMYjGSNd\nb12BaY2yT7R1CUwZb7jwT2DZqX26zBpD4zqvc3xsZpc22sLlKoENR/QJZtgj/QyTPVLf0pxn/aTJ\n/3i5lu8N3/+jjXHQGwKnaFJGH5ABtLjoFzxxrx5/6Usv0AVfzRVZ0Ubwjl1gXcmdzjSe9CUa8ZoO\nZ//jOZj4bX6NET640OAiD+bPyzr7pt+QpWfRXgJjTZMfa93rekZXV/yUTx6bv+RYbszkzfpwWTcu\n8moPE8DHKzwn233pIRegNp9wwoH/bH44zDGe6wc+H0sAlh9nf9ROuXVunZgnAW5r2Zx0Stn8K7Pn\nFnhlv4FFTluX9mby4bJfS81TPJlzeMs5CU8ysD7jMz/Il09+f91awz+BV8FSek/f6Jy0BVMZuzGd\n5iey8JY92pjxiB7Cf2Nd6Zhwn+p+1Q8rDY3THJtDXyl5IamdL5N8nYU3eGItKrdOtRV4Zduwpdlf\ndKJ/mKh9L8C1j2fue67sqcZ9wj05cHLg5EAceGMCrzYdCtonxxyZTjC0mdrEGWIZtxxTRpo3oTZl\nBrVNiRK3qTPQ3OvDKBB0dTE6GCNtIDGSApdS4OVTude2dhnl2jKAwJxwVhj1k892niVls897pf/3\nt7ra/l/N4++MJZqCD58yBsCzLbDDeXEijIGEjwIP3pgzOoy99g+hprbwhm/m7htvdNUHLb/3e7/3\nsS9/+ct7sEw9B8om72cGGIjgOgUn8Cr4RT5WmMGdNIRzb3z+uSkH4vfKY8EsTqG33QJmkpMXAjyc\nKvLHSCN3nF9OryCTdcxgE4wUbM+hBD9ZORoAp5BDYd7B4BzQHfQIw9DllBTjcE3GQNbppalDOHtk\n8Hvf+95Oi/UhMZbfeuutj7399tu7459Dqm7lg7KjRLdw3AV3/LNBgVe4BQs5j+jlNIFdirZ4Uflj\n8uYvGA+lv/ZH+Qpztgk+Xe7U6ne+853dCfeM/2SBce73L52O4FBzEOl5siRIS/fjHzzhMu854Bwj\n+sGnlfoz+Atg1J5jZU/hpAoAu+xXnFf48J1sFjTlSJKngp/g5SiZl5zl7uHRhnNKXlz2N4GE+uGF\nduTKy0m/9esf86DNWsCLgrXoAU8fY61vjjinCN3KtUMnetGlTrLm4AcLr/CFI363vUywNjlC+krG\nAZ51pL8cbLRro797V+2bk73gfRizv7bWKPxo8wymhA9wypUZY/Bro928r199juqVXUr6SRNmsLJd\nzAvnu7W/tj2CfamN8uDrF35jNfaZglFe2/LZtnttw1HZtfa1ka/9PDcHU97QSebANT9kwZy61M3A\n2KUxwWf+2XlOKApOCkzaM8g/nts7BGjIK/x0Mdhk0rO9Xx8v1uh0ZYJQvUBhb7YejujQHg3WlzVQ\nYFEfdMDNzrSXGCM9gBb32qjTzn3w47/c+hVc8XUOPTT3naM50Qccl3u8LWmvzPqiJ9lC9iVfgfQl\niLGbl5n0kY7wHbWbZes9foEH1ry0C0990E7fseXw4Nlm29EX5rCXmQIyguNzjoJD1wqou9gF4OmL\n58bJbzAv9BKekL27TYfh88e3z9c7YbvyMPrKw9fz687NF/2IB11k3FjNs3G6GmdjVi+Qaa8ig3ii\nvXLw6FfybO9j/7B7XHjUeoJbH19YCCrCzw/wMoTdYY7hY6MIuNone9EAh3Vg/7BH2lfQKNirTkKD\ntWUuybT1ZL+3vr045Quizdp30QUSvMmZfnMO9wY3+gOPlAzMZ/fkih0qaEhWBZ/xRuBV0NDYpfq5\nBwvNleGHF6nsu07wmwfrwhdN1oh1pb3rqcaKtmsp/PHCGOZ615e82AONx5c5bDDrk516v70gp4et\n8dqSLbY7m83Y6SzyoC2db43SiY053PEOnMp2oOefkwMnB04OPCEH3ojAq43YZsth5sQwKChVylRu\nY7ORMxpsUDZyyttmzAlkWNvctKXwwWFoCNLqwxDwdpchpz94U2mbn/BdUuA2FxflL7dxMMblNh+G\nDOPDphOsNiT4tDlK8DXOlSbtj+g5ancJtvLZfoVXHVrdu6JHX+WcDQaEN5YMLsaTYKvPeDk9AhHG\nPfvp+zIpuiZ+ZStMRtr9tiH7mQGbsjngOHF4/XaZN8bmgRHnM2+GGiOIUS5NPHPs6sLt/ky350D8\nBrl5cM8hcKKlwCvD3ksVhqfTTda2eWZ8CTAJUIHVvP/0pz/d5dDanjjAnimcHA3ywAmDi+FHpzAO\nBeFcdAtHoT7BAT9jM1zWCPkXnGN4M569ROIwCGoxHL/whS/sjp5AsjJphR2OmcOR/hN4NVawJc6j\nwKvT3xwna6OUvoHjIXjqdylvrLP+sXCDWR5scJUFnw7n9P3DP/zDPs/4ar6ebU660+wMes4Y+aD/\nvbxzIvS///u/fxkEBJvu1s+82j+cnBGw9fuCYHE0M+7xD9/tIWBypuwhL7bTjPYTNEl4Dq9ApIts\n2hPQTy4Kajbn4OY4czzhME5w9CffnCz3+kxeuKd3jYuu84m0tYF2n1GTLXJNP2tLJtHQhSZl8IcX\nrV3RFd0CQupqiz8cIjRaO8rNhf3aGnK5z6HWF7+tXblL0s/VvKPVMzuggICx0+FogMszeLVtDNEK\nR3iUmUdtZ5r4tGnccs8z6duln6vn2plLYxXQclrfyx8vIu0/pUs0VC+vTfTNukv39VFfvzmGaD7q\nP/vO/rWtPriVy6tzP+uVd6mTJg3VzXnBP/I4273X81fxWBtsD/u9T0/vtqCQdehUmOCMn/wgD8rJ\niv3EWhUEUq6MDWPdu5cEqdiUdLY5REvjWceYrFjb1lt6Vr9s0uQ5HaONfspbE8HRJlzu2a/G5bfo\n6SRyrx4d8Sb+1W/SGM/k1VtLbGABLLqTXOKTPbP1OfsFr/6zbr2vrXL3+lSGjzNVHlw8cF8fa48+\n8Y+unGg2hxLavWC0n9LnHbhQh2etWbqS3rP/2dfpAGPX3kUnGS/boH3DSU32rH3T3kzXgleK1p7l\njWOWvY57tDQeweQC/PhsTORYmeAqeXdvvOTeeGcbcKw3/CPL+I5vLjz0coK9ZW+0VuIJfcY/s++Y\nEzwlp30ZpB3+wBk+Mk/20WnOrTtzA3d7UGs/etRrb10KtAtksusF7uxvPrm3Rgq8xv/kCZ6nSsnr\nCh+9+MPndDLbHoBXfmLgc5/73M4n+6Y0YUQzHuCZwCO70RcT5tGcOO0KBp8rvaWfhN+/Tpncidj+\nHI3JumObOAhD/7CPnDC33siNPb25Mn7zrR35otPJsoC+FyN+C5YvQF71mWOOF9Ey6yo785MDJwdO\nDtyaA29E4NUGzeGisBkHbdQctTYmmxOjQj3HkvHkysClhBkaHNPn22/tMDIpcIYxQ5whx4HOQG4i\n2jjgZABQ3soyGJShA064ujiCDIXwZugxhNAs6aseTmXuZ1o3CvW1qa5cv1k/4Vy6X/uu7aoHt43Q\nuJVHh3E6eehkmSAFw0xiaNgkBYEEXtd+K66HPId30uW+i4HHARNQZfQxEM2t+fbbSnL8N5ZnWzDC\nadfemJq34KBl8rKxKwv3Q+g927wcB5IpvfC5ObBOnWxguDqdY63fbQ4Yg4szINjD4eUguTeX1rJg\n7Y9+9KPdOKcXmrvgTnxRak1yMsixIJU+6R2OiBOQflOKsctADKb+wZtllVdGR5FFJ685vJwR/QRJ\nfU4pUMqoRsdDkr5g0GMcUHCtO+sSreD5PJUuzDgH13qU0BVte8Er/mnss/tj4QZTHiz31mN1xkF3\nOz3xd3/3d7te51gavxP4TklxUMyXfgIuTk04Ecr4p3fBxhvzy6DXlsNNr5EvcpWuNj44yRPdAoYX\nTAIXXgoK1IDJMSVH7UN0EcefzOSA2o/AAhu9crQo6zJOdeRbcEgQBhxl6aV4rq0TRz6v5qAJonhB\nQC+TLzLNydFXW3TAB05X+ONv5Y0bXRJa6Vsw4OFM4ru1JzAEDpnkJLo4T9Yt3qx4wbKHoks/bVyS\n8mjFc06sZ/stXsKHjniHXn3R4tIWDO04uPrl5MPlkhqve/C00R7f4UHbxBHN8JWCJwcPrwThBV19\nYmq9CzhI4a1P+OXdB7e8Pp7XNhOOuknXUfvKgrnCUz9T7ZR1r89Rv+pn/+6P2ld3RPO19uZAvXVB\nx9nL5fS2fUJgxsso68y68YKV/JNHutJn9V6YTBxo95yce248s100zzJyRnb0TcaT49qXG+vEoS9d\nYSzkTn/7Dnm3pzm1T4/Z88gwvNEVDvyQwF3prm396Ck2Gl1oX6XH2NiSNnNcymZ/zw9N+oVTnxVu\ncx7O+BL9+GLu7GPzqwVfvthH6V3rXHttrVv8on+tW/PtHs8K7LG38RWP8Qpu/KCvlFvz9g4899XI\nhznwagxOZgvMuegbZfQdntCZAqH2KgdL7JXGX9IGz+Vkl+7Gby+ZyZqDK/ZEcomX6rXTXsI7OKwj\nvzvq6yI47J2+4hEw16951k8ffA9vtAQv2D3LZ5nxGac93wtGsoBGNr8XFIJ3MyVbYEw4s81j7oPf\nGIPVOPHH+rLOBKb5IPylz372szuPyelMwVNmTQoy/+QnP9kDlexa+7+AI3uRLdq44A+nvkf8Vf7U\nCQ1SvG6NKbP/sVHICjuFXJkz4zFvZGXqL2ubbcGWdzrWQR76nH1GJ3ipzkYj7+k/eCR0RMO8f6/2\n/Hty4OTAyYGn4cAbEXilNF1TIWNX5ZSrewaonAJ2tSHV12bdj3kLvFLg+tjIbY42uXAEHwwGW5+J\nMuC0CReFr0zO8HPBHW02DoaPzdamWXBYvY0xWMFTLkX7/rD9Cd7c3CurTXzo+aH5xLXCDEZjij/R\naewMYk4NY43RyshjEHN6/NwAPsOh78skfSS4ohGMyQP1lXnT7a03g5nxyAB8vgVbOWDo4ciAZY60\n9XMENm5vy82fNHE2xvBFx97w/HNzDsRvgJsH99YNw9XatW4FcawXc8bJFuAie4xvwTNwBPudhvCW\nnOHG2TCP5h7s1r22c145FQJvHC8OnESeOWSMQoH9Aq+9WAF30qtP62SWJ//k0smHf//3f98dX+3B\ncIKXoyJYaBwPTfQXnjBKC+hyQNFJvvspDfKnDfkAAEAASURBVPSWogV9k8bqXzafc1ffx8INZvMj\nd6WLwDd2L9OcfPr2t7/9S8fSWK1xn+c6SUE2JJ+pCeJzgHz+pz8Z4ig62UoXCHw7QVGwTb90DJx0\nOOfBZ8wCnIK59Hw8xXtOhKCnYOez7SUPmPYQjqt9hkwKAJFtz+bfuFxklDOGBkGD9h73+qMLLrzQ\nL/qMhQwISPhHOeoEogogcNjI96ukxq8vvOVop1sFn+2v6tAo98JEUEBg1h6AbvtD4wTTutQWXfjW\n3FqfkjL1xlbAQFnBUG3AFtQ1B/rhn+S5fuaNvnCho+CBcle0NE5jwC8XvuunD9gu8pV86C8pR5s6\nvAdLgI/D7WUIPoRr73DhTzRVbfzhqKxcXfXXYNdf25nCtZZrE9zaH7WpDpxr9bUrP2qPZy5w5qXP\nSme4rBEBSS9b6TknHM07vgt4W6dsFLqAHqBXrT3zQWfMl1/RVj5pmTSY1/kcrWiUoq0xVl5d5Xvj\n7Q85oiP6vUJrgG4QSKOjtPd79D4pti+RR2VkPTmDU5m+Eho9u0rJtrbWC9j0l98eF6jOTtO+MdU3\nOI2t8ofm6JTiXXSv/eFpLO6tKfuw/Z0OtS7R6SWXOXavvTm2b9tD6fCpNwR72OB0FX0ArvVMdugj\n/KeH6a/WqGCOryXs9/aH+IreIx7En3U8T/mMDvNI59uLnm+2rjEIZpETNjB+SfjERmDL8EXoUjyy\ntxgfPrhn48itE/3JGn1mHsyZq/mJD2Dh27/927/t/0PhxXba3JwJqH3ta1/b90A8LunnClbl8bB6\n5coq95zdxoYSePUC1Ro3X9YPnPbdUjR6Dmd1t8rBbW1NWisnd2SVzWeu6Cf7sq/y8j20Xfviq4C2\n/fzv//7v9xcDeEYunXQVrDQ3+rWu3IPl0nbCvNV4r8EJtzZwR4+cDAqS+4mnf/mXf9mDsOwzfOi3\nbpOJ+vHLnWh2gAcf2BnWovbGT6d7qU2W9ZHiJZ4oC1b1e6Pzz8mBkwMnB56IA79xgddLfKBMpZTo\nbJeirUwbStcG5+IoC8TY9ARvOgVRPw4VA0UfhlmbGGXOKGEUZ/TZDBlyLm2lHDFwJOUCNXDbbBh9\nLnR0eo4BAX+5e1fJBiSt5XPzUOc5nsz+wXmZPDhrnyMctWXwMnS8GWewGa/ghmAEYwwf1g3wFnRO\nGtGC9xwvn58wwmzYHBdvSgV/GZ3mTlvzKsjihIzAFNoZ4pPnE757/c70NBw4kgdlzYeTKBxDJ5Ss\nY7Ild0rF2uNsM2DJISPMXDHMnejRzroz9+C5rEvOhzzZNLJwgsHRc9LF+tRfneCdYKYLPgYgeEey\ncTSm2sGLPsExJ3LpJHSQQSdsyKVAAjmW9HOBGYzo9kzfkG/wBF7JvMAU45SzzsjnSE3nR/8Je394\niT9ocTVHs+uk81J5/RvbbDfva1dZ7cNh7AKvHM9//Md/3I10ZcbKCfdTIk6XmDtOCkdV4EVAkK7C\nc/LDWRVk85wzE6/JDnnhtJI9gUZ7iZcBHHb16Mn59w9ZBAHIUU6tU2zg0lP2DvPPoRCctDeAgWbz\nxtnVj+Pb6S06S1804Tm57B5vzCdd+3xzvn3Cx9Gjj/2ONXm6u7v7/8YVT9fcWKTG7z5+d+/ZhYcC\n2fD2MtMYrI1eZqLLOuXc4zU+qTdma0Hu2RjjEdxdxma8LmPXHw7PnFrr02Vu0aReO3DhdqFFwkO0\nqA+uXL+S+9rJ43vttdMfffWVewbbPKpHn+AWmbE+yaWkXWniVd5zbXoGr6Sstt2rq637+ruXajfb\nvFdzu7/hDJdnvJPwx1WKv9aFuZTjW7rZurJO6mf8Lv3MrwCRE6J0Mee7T8LxHwx7hcCqtQo2XUgP\n6MMu8eLFiSuOPDmZfEE3OFLz2NxV1hjV66/PhLF3fr9/5fHHmPRT7rIunN766le/uut8uNgufiaB\nnvHs02S6nE6jp6Tg7g/jz8RTG2WVa0o2yST+CAjhl5N11lCpvj3rr2wtr37NwzfbR4f13j1e1Dbd\nSxZaS8rwyDwqA49s0J3WNX7QtXS83L5tHGxtNgIdYbz6JmtgkSPyRF5ebMFCa1XAG20Cl3SnLwV+\n3Sde4188is/Kjc/LZZ+hk2llaGfXyu0jeKkcr+w1dLbE51Hvcp/uxZP4jxfmRwo/+e1eOdh47LSr\n31knu+bLuvyTP/mTfY3aV9ekX2nCq6z66no2r2w7e75gnCC8F6deWAu+ZptdglP5rfLoQqf7Sa9n\nPGeTeREkl/gqAo5sPPteKRiejRMvjZOuMtfWv59ToC/IuvkpwdXVnKmLHvfVV65u6uXKZ+5+TeBI\nE7bnYCmvTlv37ASBcvYJW+r+/n7//wZ0G1snPaC9ezlZZd95eakvHWW945+fHmHbsnPI7JqisfLo\n6fnMTw6cHDg58BQceGMCr9eYk2KXU/wMVYaZjYsBz8nmJDvlYOOjzFPCFDwDrLfDGRqMEG/EOeSM\ndcpd2xw9jrh7iUHn0peBx9FTx/iT23gzBD0z9NCpLZq7oqnxgN19dfq5V15qk5pl1d0yj4ZokjPQ\n+kSOAYEvjNcczUkTOtuYb0kXuObLqdv+wyUjhdEi6FrgDb/hRzNHzUmZDFSG+BzfSl91a/n5/HgO\nJCPJFYjuzatk/hjaDDfOkXtvzpVrx+gS0HGqifNlfsmh4JY2rbnWJt2gnsPceoInnAJfjFoyod7a\nBZNxz5ng7DOYyUQ06r8m8GZKhpTTEcbit0YFDOFQThcJEDjRQDbpoIxr9WCscOk7683prXfffXcP\nunGk/G4WZ52RKoBnDKXWIXjRVd1D80v06B9MbaK3shX+pXLtZn/PK7+NnX4XPPinf/qn/XNKZfQB\nx1PQET/vtsAjXoLHAc355BAqL1gIB3qiOd4md/YRL+7IIBjxERzBVjpoftaPjkkzeOZa0IDzYd7I\nJ3xgkD2ybD8ig/Yd5WQgXsSvSac6sH067PNLgVcOis8vBZ/p6IIWR3xUJjXucLxX+t5fdZVHCzl2\n4kjgRuDVWIzZmow37vHXWMihezxBr73QugS3wCs61cNRUAwsz8rJsTb6W8vWOD6aV/U5sq13NDZX\n8GgjqQdfHuzGpww8FxzGZR/3XB9tutDnXn9z5dKODdJ+Dyc8knbu5eFUHs/WNvFj7a9dadYpm/Dd\nH9XX95Z5YzLv5kmCO77hjTUnoEVGBWnIhITP1oU1bU7xFE/MuXZeILnIkS8d6DjBCM/gSubbSygB\nKYFFsNkF9La+7BNBTYFZ9oEUf/AZHHpYrtz8m0PjQotceeNUdjQ/4NYnmQvPhMHG9KXOX//1X+9B\nMDKGboEaNiu+2XcEW/ocF2wJPAm8UmWrLM022sLjJTlePd9enNhfX2wBSGOVgjP7VbY32P40jp7X\nvL76uXeRC5d1uq75eI5fLvKjrfnQNl1ILswzuOTC/OOje/0Ea7xgYwdqWxsyoy14+EPetKO7XILy\ncJAXgVf6XGASDaWVB8obZ21umYdvxaGc7hOU+/GPf7zrYLQLRpEnPxVgjbXvx7NkGQ/wxZXOXXHM\ncUSHstpVZi6cnPZzP/ZHdAio/fEf//F+GII9ok/9wKjvhOe+pD4ZTi7059PZh61vP+FizrywFnh1\n4tVL87newAOrsuDfKge7ca33ntmaM/CqrTn69Kc/vdOKV6X6y80t/WR96m+/o+vYdMZLr4VXf33i\nl7GqUzbTUdms736FO5+1Ce61cm1qR4eSUwcN2Kns9D/8wz/c15j5MhZto697OsqpX8FngVf8YBv5\niodtQ8bY6eRjTeGufKW18jM/OXBy4OTALTnwRgdeKVYbjQ2JY+XiHDHYbcYCLwx4J4ucfHM5PScx\nRhgeDH+K3IlWBhmHgCK3EaiXU+oMCw6zzZAxZzMtWEKhp/gZyejgcNWOcdeFVjSjvY2h+zaGyntG\nr/vaeZ6pdvWbdbe8P8Jjg2c44Bnj1EY5g1q3xL/Cih7lDEfBBcEKRh4+kwU8QVe0kQ3l5tvmzZkR\nsCMHpSM+Tly1O/PbcCB+l+P15Ld15PfJBJMEvFx+bN8ay9A0/wJtAqLm3zo0z64CJ9arK0e6dWgU\nEzfdYN0LIHFWwCIfnHzywtjjwK10rtwIZuVzTODSJZyU733ve3sgAK0SfQSP3yD2ggBu46s/urvX\nnqyTa066wCsH2noUcGSko1cwLwdMn/j2QWPQ9oPSOk7twVVeXXgqm/TP+xVX7YO5tjU3AilODft8\nzT8y4lhy0p2A9jkaPjDu8REPjL3x46sr/R0+9eTL3iHIj6dk0OlF+OwH+ugrmAO+k64cInjtJeq0\nM69kuD3EXqBMjlZwyCwHWHCygJR74zhyGOND9HrGCwElwXwn5ciA+eeM3m2BZ89w6QOmvKT/hBW/\nq5fP9j3jk73WqSN8sbboWnyGw711ZBzWlP01OWwerAX409P6RU9t5JJyY5ArI/utb+PXV72EXmXa\n4D08jaGxqlcugRluc8NW8Omu4JSAlPHRH/pEl37BKg9Wz+DO1BjgkoI16VNev+hSFszu5SV19XEv\nNZ6elXVfruyWqfGZZzaUZzxrDpS1V9NLZMJasRboRGvOOvNyQj/9rQW6UODRFyrWnHXCgbfWyJdk\nTOyP51sgUeDS2kWHPvZ5uATlrA/6Er7mQX9t+9zaMx1ADtg1Eviu+Kys+yN+VhaOKcf6Sk7o/f7v\n//7H/vIv/3K3pdDkRYZ/Jim3bukxa5lu8TxTOJShpefyymcf93griEW3+ZTX/urLEroqOusz4c6y\n7ieuyuSTN3hgbZpr+s5LJvPh3vypswbwOlmhE+hFc2Lc5gcu9dYo+OxPcOgXz+af/Fi7YMFj/smP\nl6fkBS34bF17QW/c9Lu+6u2ZPukWePWMjtLRWBtnbW6Zh2/FoRy9go9+A9Q8Ptu+znMiUtCYLWyt\noT0Y6S6w8JtuxlPPK/zGUN/yo7bWrj34W9/61r6uwMY7gVe2jDnE84kjePBUPsuU96yve+3oBSfV\n/ean4Kt59LJT4NW4+1KovsEB46lTNIbTMx1C39BH5sgY7u/v98ArWtfAq77Wn32NDyvwSJb1Y3fS\nF2xE6yg8+832pzFr6/K8lq196nstB2umCXOWu1cXbuOw/7LL/LSWACp5dFr1U5/61K7PrE/yUh+5\nfnI8sC7Ns5Oy1qufbyJTXqr7KRAyrO1RukbnUfuz7OTAyYGTA4/lwBsXeE2pYwwjgiPEULQxuQRa\nOUptVt5ma8Ogy4hjpHHCGe8CcJwA996YM/AZeDY1yl8Q1QkMMOUMHcYcQ8NlUylHD4NQG8a6YIhN\nVxlY6qU2g+7bcDy7d6HVVRv0H/Wvfm/4xH/a3Cb9UDJoMmqM0yVdar9X3uBPvJoyYQN3mUNzy0jh\noKHPfJALc8kQdIrEqVcGorkvreNT3lhqc+a348AH8VuQivHlrb+TQBwljpV1Zl4YrtarOXRxNsC0\n7vR1Mc6tRYacteSacrPS0HwrJzucL7LiLbvfNKYvJO0mnJUrE24wtVFundATTms6CcDxpavg42gK\nmPW7f/BnaOsHVrjpIMEvnxr6qQHBXDLvVAVn3We2Tu3UH/65Ridd6l41NdbgrTiql9em/BJObWd7\n7WYf82jsAgfvvPPOnptjMuF0iFPDfh9x/ewSj+Mj+O7xkW4nVy66wpyAjafkSdv2ETJwtwU0OfUu\nDgGdY2/hDNgXyJw9yN4hUGB+4aDLwREsMFftPQUQBCKm/o8/xo6GNSmDTzDJyRKOnv4cE0EEtMGD\nL8o52+SBriwZP35KytXjU/yOT82rOu3keGOvBEP7YMOjjUu5XGoMM59rsvZga9MFhrJS5fL2R/Xa\nVQduV7TX33Nj1i/Y5orT6yUPJ5/D7LQN2YIHbDiOLrCVGwNeF1Sqj2fBJnoKPrwjJ/QUHppHOKI1\nHNEWn8IT3fJw4js86UZ0w0H+oh89T5HQ27jR4NlYjBPtHG0BU5fAK15oY/wCgdZdL8nRaExebDix\n6uXXDJ5NOYaD/Jk3utBl3wCD/oTPvcCueaU3JLTik7WHNuvX3OCXtgI9aAcfj41JOzl4xqRtewuY\nc+48S9pKxlqyTuinL37xi3vgCHwnLwVpBBvsdYIzfnqGLsMHtII14Xh26X8tRQOa8Ruv7Klk3MtM\nMk5XqZdqP2FOvJVfa6dOH5fx4pv9rYstlpzSje3X1oJywSaXdhLdTE7Qic/g0bfGbp7s9dne5MO8\n2wsE3n2VwDY0V3wFcuD0pMArubM24LJ3TtsQ3aVrY63NLfPwrXxXjl9Omtr3yYoXfz5hZ9taV3hy\n1G/Sp745muXulYe/XPmUM/2tO3uk31n3u8Ge0fKlL31pf2lg77GOS8HVN/qCL5/ls497cw+XwKtA\nnvmmFwTyBMvtwVLw9oftT3h6vnUevvB4dvFP7cvsPAFI+sb8OPFKNsn4TPqQa2vQXkBWyTWesxdc\nYMATztl/4p/l3c9++l9rP+e5/vLw1veoThvyyVb3YoCcGg+b9K233vrlqd1gwRU9wTW3vqhh05hr\n9rIXKAK3Xkax62o7aTjvTw6cHDg58OviwG984DWljIEUrA1J7uIcCbYyVBlPjCjGE2PZZpfxyEgW\nXL3bnORn2xthl2fGOCObIcbQbgNk8DH+GG+cZhuHyyYAb20ZEjYWdGjPINSGQchYn4b4NQGYm5t7\ndDAeBEvgAMeGE0xGTQl/2qwmr6q/RY6mHImXgYdX0lPRFS3wuKIRvebcCTSXYLp5IheMUzKijAFg\nAz8Dr3Hy15MfyUeygyLBAg4041VAyXpnwFmHDHrrmDFqvZtna9DapQP0bX3mPF8bJdlBTzShwxok\nLz7ZFggVzIK3pO2kt/LyYPUsrz2a0euUohMBHIrWN2fvD/7gD3aH3G8Sw1k/MMg72HhBtn1m7nfW\n/A6W0y7zRDf6p+PTWgFvwgT3ZRI48cx9z2AqL6FTXfjC+RDezTbugxtMepFccD79Iz16WBAFzzg4\n99vpEgY6xx1e/fAieskMWRGIyRn30wKCEOSO7tWPc0/m6GaOvFM2TqDZQzj/Esfd/LmSO7k9RR3a\n4Ta3ZFZfQdd+Z2/OEXiTZ54bs3uy47l74xYg7J8J2jecjBFI4ITDJ6cb4RM4xicw0GetuDxri1/2\nRk4eXGjRzti0Ua4dGPYsQY7mJj7vxI0/YIDV1RyQ4WCDi89odQ/mhAtc8tN9+Ga5OnS6lNdGuVTb\ntY06dJEJusapQ8F3DiCnn7w0fvSBYz5dZAQf4ovgknvt9DEObfDVmpTDla3hNOaL7VQPu4bcqIvO\n8sYD1sRlvsB0kSv6wlxrBx7ZEGRjq0jgzHx/eMU/cKBVQmcyjidS8+3evJJ5ehutZEc9+bXW6DJ2\nF5kAC7+8QLXmON3kGU/JN1mM92DQpU5f04HWMDi1IafmDh5laG4PEZCzVsCVzEcwyKWEFvVevNEn\naAdHW3KivXtlM8EjxW9w8Er53WaT+ief/qmilzf6Pt9O6/qs1olX4xEwtA+wV7Q33mRp4pn3yUh4\nZ3t8ojPpN3azU8F4hlfKycc6hgnbvTE0nrXu6Fl7l3VAV+Kj+UjHKFNvfuC3zsyv9WPOzb/2yrL5\nBefRqa86c5keAt9lHZCzXmypZweQM0Fnl5PsYLqn/8yrl5VsQ8F+cmGdlY7GjfanSuFbcSi3RgQ6\nyYu9yhpxehrd8XTt9zJ0hlvevf5gBldOpvhI/gmUE7jWgZ86cOKVzWQOzH1995vtzwqz8qM8XWju\n6LGjwKuTkPa1qYui8wjmLcsay8SHDvR6CSTw6uUGGWSbWfd0Gf0mHfWPPnUTbu2V0yP1Vb62C0Z9\nZpsJd8Ko/BKs2l6qh4Pe5Gv5Esk/1GL/OEwg6Gp9JZ/NVePw3D2bjG1Hvn3NI9G/DkDgIf5pe6aT\nAycHTg58WDjwGx94pYTbBChYzyl7jpFgq4CMN/YMSEaUNgwuwQeKmVHNQXbqhwGgLocJzOAx6jg+\nNgsXB4gxwRlnSOjDYQUXDA4Ew4chL9gKN+Mtw77NqTyhCN8sR4cN+dkWFGbUe1vsHk7GMKNK0NCF\nFnjjDTjxJhy3zMGGI3rRP+8nrsqVreO8NY3ghwMvwskxYSzjobmXzA/niLw4ncI4YwT4LSyBNAZ+\naY6hsvD0fOa340D8jseeu4dFAIKT+Itf/GJ3Sq1HL04E1f0WmznmZFl7DHK/IUUfcOA5BORODm64\noh6etay6cv05bv4DKyeCI8xhfJk0cTQ2ZekzesepgJ/+9Kf7Wq8Np9MJFp/QcczpA/RI+rsYuPQU\nw97nWO6djOKEuHyeiz/103eul3Apf2hqPPXFX06zC2x0CiqFU7va1heuyi7hbYy18xxM9/By0p2G\nZpz7Jwz2Bc6zwKgTMHhwtwUscnDAQiM9zbCnF5xEEYRwr4x+BbuxcPzxkTNpTuwnZJDzoI0+5pBs\n0tf4ICgABrwCYC4n/NBWoKBgAZoa1zVecF7Mt4AM+sODXvuXPUuAUG7dgKsOfZ4l82IPs27k9CVY\n1o89DN3k3X5pjGiEFy57D0cSDfoJ7jm1Y5/V1tgKUhh78+cefnOFP2CgF20u8NTDA599tr2a7OIz\nuOTKvTbKlQnywSOZC2Pu2gvHn9qpv5S0UY9mPMFP+sQeLDAjcGPs9n+XfRtdkr7oUWaO2QnoRFdz\n5Z5MGKPLWIyd/HDMyeK0ZchFdIcDffCQKbwnn2SSfJo3+1/rz3ooUGF9CDIFZ7/Z/kz4lT0mRx+6\nk2ljhsOlDv/wwFzinXJ8JQfkQXuptvbrTsdqT0bJrPbawiMHA5/VgUOeglMbuOAnq06T4lsvurUR\ngMQvDj95BQNOPHWq7n57kYPf5g1v2WRsUC++BAPR0PxM/Oho/HL42R9+UsapV7ywZ9FjXqCRBXNM\n7zs56ASmuUb7hLMPcPsD51HS1iVpY/2RMQE78uALIHTWn9xP/k+YwZllwV3Leo7WeGJMLmvXOkkG\nzFcvf8yvxC7zYlxA0Xpiu+G3LxHYdCUwzOGzzWa+23R9uk1/cweuceMv+TevcIBpfZIZ8FzGTi6c\nqDMv4KKzdMSDeFebW+bhW3Eox7P//d//3f+5lpe29n3yJEhP99RHfglObS7RXD/13c8+7vEM7777\n3e/u8iuQb70IvKIHD823/trXp/uJW5vwVG5dkkv51GeCr/Ykgbx54lW7YEycwbt1Hi5wjamEL2Tt\n+fYyxQtRJ6vJG5vETyPYf/FFAkN7a6OkrGuW1z5cE399L+X1CcZsN+sqR5PyWRe+WVZ78yRZZ3TZ\n3/7t3+57vVP7XjBZU8asnTGZq5mCTY/STX7Cgj4k33Tmx7d/oNxv99sTznRy4OTAyYEPEwfemMAr\npq4bjw1YIM1pFE4zx4hhxpiyoTGOOSGMMDklzdgHh3Kn8G0cNgAGvI2Ck8XpAYvS50hzEjO+OYOM\nCLDgUc4J5rBynNzbqFwztbnA62ojQwtDWiCH44pmASWGpmf1HAEbthMrxgsPxwLu8MwNsI1r4n/M\nPdjBXPH0XF67ia+yCWfWP+Z+zmE8zkkSeL3bjHBGN54Jqphj882B8VtYHB+BNE7qtTFU9xhaz77H\nHJjycdTC/DlN5PNLwUWGrOCXTy/7jNoasvY5wD7R5IyYa7CbO/fJCDytHfdHsqnMpY9AFAeCzFif\nAi5H6dJYKp+4og0OQSgnnH74wx/uY4w2uotD4Q0/vBzMYMjBwB+yjT8+yaKzfI7rxA4HjE7RD55S\n8Btj5Q/N4XXFT44rfcy5RQ89S1cylKMZbPj0636/ufInPDWZ9KqjAwUVBV6dqmCk08Ecbp8fOqXM\nUKevGfv6c7jp9BdbcJITb+8Q5MBDfekHsOle9OO7UxYCIBxbuoNTS+aM33i9qHPCTk5f4y986XaB\nI/q84CT5qT8Y8KHtKKkDj5NNxttvrANyo04b9cYluMAJtqc1VnTVln7k/NkTBU3RUeCV7ICDXnJj\nrHQjONqA2xzjDz4Yk/1WW+ukgF90GRMnSn+8sVeC4WQbuXHBiT7jsK+Cw3E3b/ZGgQ/4XORJwNHc\nqBMAc+G3evOHl8mm/BJvj/hdGVrQjJ/mlrygGXw0GKd5hJscor9AYIFXcmgtqAfL/GmHJkFr4zQW\n9fAI+AkqkcnkKPlAz0zK4RFsIqPkXZCKnKLJPEvwsh380zU6whyvsLQ7KlP+qumI52uZ5y74k5lo\nae6aZ7SQFXyW165c/RGciZecCHgXqLOm6So8A1fQSNCVo0829SXnfivayzcvdMgl2uieTpl7McjO\nMJeSfsnjSp++AhBOvQnCWIvGDqefnbGHgW1tCgL67/BeIrVedwTbn8YaPnAl5a54uxduf6xDskxP\nClrZL63tNdW3cs9rmjw9qtdem+qaSzxR3nNyija8w4fopqfYcXiF59ZfgW7rRbK+rKO7zdazFuT4\nSYfpb3z0jXk1dv3AMd90F1kgS+kmdNBlAt3siw9r4NXY8UrAn8yYUzqTTHlBbAz0wzqX+pWam57n\nnFb2kBwd9qUf/OAH+5cn/BT8d1LbCVxrDC0TPtzRVnn0lFeOhtqyM/hpPl1n75g39iAbic3j5VPj\npqslspa87QU3/hO9wE6a8cWeaY7YpGTX/mbNC0SaL/qoBM6ENeGBW1334ZrlwZJXPuFUX10wKn9I\nfq2vOi8SvdwRiDdP9ri/+Iu/2GWTPoMTb8yJpI9LefTYJx24sGf5Iszapf/Y/f0MCBug9g+h+2xz\ncuDkwMmBp+bAb3zgNYWMUSnpmEYxcyIEZThFjCvKnJJnUDHCGGueOUk5Zvoz8DjMHFUbNziCrWBx\nUp10scEzvHPEKXgOFyPc5R4+cODmVDHgZtKHoQk3J40jhibGHroYf+AwFNCYQ5DDCz4DHF0MfIa5\nDQhtDEr8kdbNp/JJy2PuwW9jDE441F3CX5v63DoPNz5FA0Menxl7nFtvxDn75tl8kiP8ZfgIpAly\nm4f6H9Fc3a3pP+H9qnGIH/E6eeMkMbT9F2pGmIATR8zcyTnN+ljTPunydlxbBm9yod68p0OsaXVH\ncz1pcK+PNcuBEMh7bOAV3uCiCw3K6B+f6aHfySnlPhl0Mtsn8wIqnMxJs34CKwx6Y+aw02lOgHC+\n7rfTWXQhB36maIDf9TIJ/mjAG7DoQI4tY1vwSJlgnACwKxqUrziv4Z+40Nj8RS99a237z78CSxwc\n8kImBJ05oXjI2ZHoaHQ6wUimOIhesNHfgi5kiL5m0Hshg49OVdMlYLSPcM7p4HR/L+kK3GpXYNBe\nITBQkI2uMR/ruD0bL9mk2+Ggr4wH3fQYHdYVLvAEGOg9Y1Cur2d7Cx4JNrisCbDhsufQj3jKUYID\nPjTox3Em9+DjS6dd0eMZDO3gxpvGqwzuZESuPdrIKr6BgS7lxutyL+GNQBu+2Q/xEjz1xoVeOLVR\n155qLMq01UZu30W/vdeVDaDetc7BpFkduvAGzfiDdxM2eJ7xnBzaq40RHHX2ePzAVzJmDuTGgmf4\ni25tzY3gP7l0ap19Aw740YU/8x6v9LeHCQz6bUpyC6d+8LKNvLCiO8k9/TBhgFm6VF79tXzy8gjO\ntfrq5PWVVx6f6Q+XeUmXoKm29e+5Ork6Ms8u5PwLqGWDqcNvc4D3XsSYU7Ll5ZdgK94KApozcmAd\n0h++sBCopYPJCr7TIdpI5LwxKacHwBJA8HMogi/a0ks+p/35z3++61Bl9L25/dznPvfLT2unLgcX\nHyRjgLsUTs9gkUt7jLHRlw4skEdp8m0veL/sqLz2tZt4tJ9prVPfpW7eG4eyWU6OvUyw7wqm4h++\nWydsds90gLVEJ2hvjsG1/sE0J3SXdWcdkx3tzC39Qj9Y23ghcE7HkBGBboFXe5d5KM0xVQbfU6Xw\nXcJB/t55553ddjBmJ3Xxi6waH3m5BuNa3TqmS23xmU4XAHbRYdaWQKiXFQKjniX8tRfIzV/7lzlB\nv5QstJbgNX7l5pEMe1HN5vGC3V5hru43e4f+a98Cswuup0rxJfjNFVmjU7yUERgXSLRHkS1zZI89\nWs/6B0Pe+C/hCa+8NvWrLnhrfbCrr33lPc98wpjl7u05/FV6zFdc9hsnVOkwLwet15L5hDdawTXn\n+Eb/mmc2bSebfXUkaO1nBtzjZbSAuY4hPGd+cuDkwMmB18WB3/jAK0alWFPOKVfOi82eYmdUMi7b\nyHMEGUzaU+TqbfYMbIYYI4shyohj9DLkbOLqwQ7vnCybAuOgSxttwYajPtpxFtDBsGa8CfYJRrgY\n3+oYBdoyzl0SmhmRNiX0Gh/6GDMcJ8a+8cJXWnkTHdU/No/n4IYLzMrLw6NdNMz21d8qD3Y5uPiJ\nhzZlc8CoLqiCJvUCMwKvLs4Pp7wU3T3L1/HNuvP+cRyI33J8jtc9k/UMMMED83m/GdgCr4xtzkVr\nReDNyUc/xG+NS2SAcRvcuV71u5RqLxdUEnh1+pRhn7xEYzAaS33XcvX1IYezPQfROJ2M8IKFThH0\nE1BhZJJZfcCuH/o5k07pO1nASKVHOPZk+7d+67f2dbA6HY0brJXWaL6UzzHoC5b1xdiG/2c/+9k+\nR5whQWqGsiCD0wrarjiv4Q+XXDvjn4l+5DALIjgV4QQXWgRWOKDmy/qmrwXsfTnwfPvsjxMkuM24\nx2dwyYkglpOegh2CrnIBGvNN3wq0cvzpY8FWThX+2zPA4FRw+uh488XZpOf1d8GxjsF48AUdaAeL\nzJNzMmxPgsvlhSCa0//ksv2EzqsfXlkXaBdgsE8KDIKFfrCjGW+tCRc5aW8DzwUWZyo92r4jb9/T\nV0rO1jHOedTPcwl8lwS3tYqPLvsgnpFpfLYXtk/CJciCv+YN38kcRx4M9fZXZRxc82EO9HFpUzv4\no0mODnhd2qg/WjPakkF8ZUuQC8FX86h9e5C1zb5ga5hD/ALbGLMDzAd5Mj9gtlbwZdI2n9EFDnnn\n1Frv5B1cOMByetYn5V6IoE158MBa07W6tW3PzV/Pj4HRXIAR3PLgz7moTK7d5JuyaCGT7C4/LWCN\nkxkyYk1bU9YHXWJ+zB+ZEXC1x/g5IgFYsmBNejnPHutnIcw/uSSvZIz8gEFmzb1knv2MFN0scACe\n9QUe2fFi3e8Ju6xXYwGL/u/nCNYTcuCuvJi8stboBOOaX02hH83WdfwBa/Icv1zBUweXvD7V1a7n\nYF3ro81M2oITfLCMH68+//nP7/OGv2jGV+Myfy50NY8Cc3SlnM4yL9rgNX1JL8rBgk8/vLB2yYA5\nNk/w2gOOgmOTbvdz3GvdY59XXq/wyOG7776777v2OHrAvne/2Uj2XDqwFJ0fBLP2M6/PlLcJj8yi\nw1c71gV+C7j6mST2Cz0smTcyL7dOrEPrUl7QnNzCo9485SdZU+aIvcPWe77t5dYrOu7u7nZ7if57\ntgXOrRVwzTU5IgPGEM1zbI+5B/MILjzGQeey6dBL/9uP2SbsV3uSMUqTv+SyBM4Kfz6v93BKc5x4\nSe9bC3NvgZu8u9zj0ey3wtkBb3+idW0LNv+UHcge8xLL4Qgnn8mjOZljQxcYwfGsHq3m2dcfgq7s\nfnVeojvtCiYdbq+PlmgLVs9nfnLg5MDJgdfJgTci8DoZlpJNuXpuU7FxUNrqlMttQhlkNnuGCWeE\n022DcL3YToTY0PXRX15/uRQ+99Upc9ms2rT0z8Cz6TN8bBBOTHljr8zGy8DQFn0MFk6ZjYYDwLA0\nJjS574094znnrjbwR0+0ovHWafJlwj7iy0pHbdbyCedV7ifc+ACO++rwsfuJA//9zIC38TZzRt9M\nK61HMGb78/7VORCv5XPueuZkCUg63eDkAOPOKRinBuQCLtaD9cMQd7qLwcbpYlAyvAUnrDXBDesp\n45N8rAkN0aSO7DPcP/vZz+4nKGfgVX/1pfqt8lJ57cqV1989Z8QLIafa0cpQpTcY6JwP+OibkjHR\nGRyd/vOresFOzhcnjD6affRt3OEO3qvk6AaPHhXg+dd//dc9CCsoB/f9ZnAzvDkbgg8rLddwgt2F\npyu9dCR+cWr8vq15Z7QLmMLnxI0Tt3iJRxwCFydborfpAs743ea4cRBnwJXTZ2wcFvKknwAGZ5dz\nT5aMkQzqT8/LBUPpFHOWLMi7hxtc84dP4JhHwQJ7lHv7FafNXsVhw9/2KfJMJji2xic4AJaACrrA\nRoexCDQZIxwCexxVcOExLvyV8NZYwEYnGDlr1pe2cJSim8wKiNrH0Nfa0heM4NfPc3yYdeYCz9Bt\n33SPJnDAhgPN9IHnaAIjusiWNW8MkvFY/wXCyd8M6uKLNvqhKXo6hSVwKngu11Y7uOINnqJH4IYc\n4q1ntKFbH+17eepUJFls/MYHZjxR7pncFXBQh6cuMCXt3IOtHo1OxNNN9IXxo4MeEXgls/BqH+4d\n0MGfeHBQ9SRF6AnnpE1Z6x2/S7WfeffB0c99z/riqzXzbAvKsMPwFw/xyXozR+bTnGnjpZHAK51g\nfeOfORbAxlM6wHpTTl4Elth21jy85ssalpNB8Hy54CUU/NaTtWpvo5vIhkAFWdLHerCuBV6dGBP8\n1S/ZNqbGOPlWORm03p2y82LKaVryQI/hpz7J8ezfPTx4YTx4h1fWt3XffOCz9ZbeiO/aGoMrvRGt\n6FtTOOW1c4+nAlR+aoF8o0eKv8ZoPPhs7eEdXYmP7GW2v73bfNIpcroezcZiztne2ppbegVOLzzv\nt31LEK/20Qz3mqJ/Lb/Fc/iOcKh7se0L9j6/D2/s5NXvh5Iz+xE5X/sGE33zXrvammN1dIYrfWNO\nlTfv5t68mwP/4NIpR2tEGdkh9/iOr+TIGtMW78mGteEFIVmnm/WDSzLf+rWXmjPzbJzWDf/Nnoke\n88TXsieSFS+j4LV244F2jW9HcKM/4K4JHnxDr9939bKXXBqLYLQvktBsnesfDDkelKJX+bw3P+YC\nT/BLvbWpTJ22ytCAz/SUvdp6sW7U01v2Dnye+6Ly5nXSgiYw16QMXuMji/2vAaeuvTT5+PZzT2xZ\nMqPtHEf3EyZ6rUcv0h0oYPfbu8EReGXX2NPpqJWeI3gT9nl/cuDkwMmBp+TAGxd4vcasFHCK17NN\nxkksvwFoo2ZgMa4YpC6bhaRPxuTE0aZTnXbB145DxphnPOTU2Vht+K5OI9n8GSHgocsFJqPfZ2ro\n42AzRmykks0nY0fOYOEw21xtptG0N/41/MGHeP5Q9A/tM3k8YU98tVnL5rO+6xxW5iSLU4z9dlrt\n1IMRnFmu7ilTOCeOxjnL3sT7xj7Hq8waYch76y2wZs0yrufvGXK4OMNOhFtH1gqjjMEtt5boAg62\n9WX9wAN+ePE03LPM/FvnDEjBTI7NdACDM+ckOLNsvQ+3trW3pq31DGWGKr1hDJyWNRkHPeaUlJMB\nTlYYc6c98QiM4Ovf2GbZCvchz+CAES/l9KtPzL7zne/sgXDjwSu/kfrVr351DyLkXMERDZdoike1\nrX30cSYY+xwbAVUBJuNl8HM87zfnmQMmQCIw7TS0QISEn5w9AQ0B6k61TUfbXNgvBPUFRvTl6HL2\njLegHgeX01fAkONySW80JnLMEaLT8U0Qhhy3B5AB9/AJDpDbeA6PF0aCMtYC+QRHgMUaIeecTw6e\nNvYk44XTOoC34KU5UscBTM7gSQ7nfmNM2poH/dRZn+hGIyezoK4gKVxwaqsPuO5L856jZyxOs5AX\nAUR81F8ABSy4yDtcXqAap3GoV8ehR7crnNFqfGTDBZd1Za3I1RlXl2CNduYXr51OlCuX6BdzQw5c\n5kZfso6H8WnyR9CLrBqHtnBmM4CJTv0F7wTY2BXmTTt9jJNMJD9kH97KwDSWeEFmyZW51gdN8nB1\nX75XLH/QVLrUrnmtnfyobNav99qHC55LuNZ+nme/tX6tMzd4TK7wS7KO8U3wx5rxoqKXGdYVOcJH\nNpq1RQ9Yk/rRZeaJHiErYJpzgQ3zIgkcsTXINfhwgUke2H72LbKsPfkl0+bMvN9tLyHoMgFbL5Pg\nIpclNEzeNV6yQVfZD+wLaNd2ptridffqPZMVARnjklsv+pN769EYtZnryL0yaw9+64MOcOk75xW+\nOceeK6scLOO15/onTfQBHOrhxzNj9DKM3oEH/1zmwWW9GsOzzRY3v+bT+qCvXmxzKNfPmIwNnQVe\nBXm8yEh3xrvo61k++TfLb3k/8U58xmD/s++SJV/WeeFIZvzeKX0izf49k8OpK/GM3El4Qo7xhe4h\nk3gn14/uoqd8zWcdmAenXZ10tN+WzCOZ5wOhxRxK5gnvwZfoYvOFBvMgB7eTq+ZBX3QlW2Boqy/4\ndDQ5sefzvezlYDSmybcd6Q3/4IkEhwu/lQkgeiH9fDsU4J48mh97M1lDW+0j5xqd4Jozc0GGXfjo\n2bozP+ZNG+sEvyq3j7g8g0MXWt/pMeuE7nPdbboHX81DqTE1xsZMd9Fn72w/ecHOoi/B8M+0/NzT\ntKnAAqfU2JWRFTDRTIb8dBi7zk+j4Jugq0MFXoyQPX3qH7zyazyszZmfHDg5cHLg1hz4yAReKes2\ngzYHZYwBp6EYoIwSThKlbrNWr62rFAzP6kurEvfMELA52extAowKxjdjkZEnt7HavBjLbRL62hRt\ngN7cOqHHYRYwYuCoswFNutzbRNGk3nP14HUfvS+bgzHhTHjKZ6rdbDPrH3q/4pz9rsFe6bnUFg8l\nhoM2eDfnlFEt8Oo0CYeo9vpoH9xZru51JjSs432d+H9duOa4OaJemrSGyb8gFwfZumP0cYZ9nm89\nCcAw0DlZ1p5kXTHWGaX6k4PkeI7xqMz8M0z/6I/+aDci18Cr/s1RMtPzhN19bXqW115dcionu/BP\nGUyG9aETOJ0ceA42454eYtj7qQFOezAmjolz0vGQ++gHLz7qp5wT5TNAgVfOBn5rx3l6++23d0Oc\nQ5Tzpd+kq3vlEpgT31oPH4Of4ykw7xSaOWeY+6RXsIMu7jfHGPGcHzDxqeCs9nebLqev47egFseO\nYysoKmgm4Ece9afrweasyDmgvWBDZ3Qbx6Tb3kNm6X/BA44TJwMOcwk+GdXHXmXPEkRzz0mDg+66\n34LKApTWgnLODj44HaI9p5sMaGct5HyGHw3kR2rM8midctg9WXJpowyd+IRm60tQFH8FXwuOKjdP\n8JbIhX6tReVoNF8cK4EqfLVvaoPWggDWN57ABXZXONUpw6/ksxyexmesjaVydYJy8OJXDqnAuuAr\nfaOf8ZANl3GQZ/aA+vZ8QT4Orjk2t+ZZjleCFpxRMpR9AA68+oNjnrXhHNNfcOJD9BsfPrpyqPHG\n3FsT+K9NclhurLdI0QHWCru6Wa5sPq80HPVZ28xn8wDehAmGy3yrl9TXtv6eXdqSAcEqL6m8zBDg\nvNt0gbnAdzakF3+cfz8HQM6sG/PC9svWEzQCr73GPfmxTwmCeamgDdq0EcR1kQtrgxyYx+QarXQK\neu63NSyQURAQDKkx7A/v/wFLQNLP7fhKxMtIa6c+mqFt5ZtyZeokARljI4PWhNQ6NH7rQ0CN7BfI\n1l+d8bVG8csalsJ5Df/ecPtjbGxoXyb5fUh8xCNjAZNOt9fQy2Qe74xdP+vKnuPCQ3Doe+vBfOqr\nHxrRZK3ij/7mCM/tDfYF65GMlBpDz/J4NstufT/xhk8ZeRGgsv+zA8ybn0kQOGarGLv2xm586Tx9\nlRWkU57eQ7vyZFlgj06la+TmnH4qyInfvsbztQs66B448dR8gE2/C54VQKUb7Vn2PHRoH236oY+M\n4T/9qy8Y4GmvP1lDi7k1TvLqYmPoZ/2pn7Tcel7AQ6sLHldlxkHn+z1athlbgjzyOQRe8a0x10ce\nDPdHyV6Bd37fl22M3+aqOcMbF5qsPeXmXr94C0e48Rlv8dkpfz9ZQx9a+9pIjRH/Z6ITrD/2ufln\ng9EL5I/NfL/pLnIVf9b+K2z0odMe5pSwE690GFlj17IPnKI2v8GUr+mDeLi2P59PDpwcODlwCw58\nZAKvk1mUsM2GU+Tzqt6Y2RyUp6TL9Z1K2r2NyIbtslFoa/PgMFH4rmebY8hBsjnZtBiFNnqbKUPA\nM4NOXwZChoJNBW02ZIa8DevFZnxnAM2xHN2DF+2T7sqO+jykDKwPghG+D2r3UHzaHcGCxxXvZ5t5\nf62/vowGlz7m3qXc5i4wIfDKsPebXhkYwQyP9md6eg7E72QsjAx9jq8XKAKs5o4Rdrc5x5xf65pT\n7MUK5wschp81au4YhhyG1pf+JbjCqyzcswwMeDh/fmtPMNPzUapfcB7SZu3TsxycCas6cJVngHtx\nk4HK8WDY+6dc5FoyhuAEo+e9wSv+ydENlme89unsO9vpB8FXus58oOVrX/va7tBy2tDhan25D07k\n1KZn9bON+fa5oYBjn/LR0Qxzp1h9ksbRoWvxiL7lqHJOORgCLU7HkBVzSgeAWRCPo+Se45nTIsjA\nCdSPHHIkldkr7BFzPPhB96f/6R9OY4E7dHFYvXTjSAkEqLdvCAAkZ+CAb7+x7wi44ic67DPqrRN7\nnRMnHDHBWafFOOHgTBmwBvAWPfE0uuN1uXZS8xP/W0dycKwztONTwVFz776gITrBsRcKQOKrev05\nzj7tNSfGZo5K0Rou/LSewQE7fOZLoBNsJ4DAhRNtntGjzhxX17iM30UGjKNytoD93LrCe3u9OjDl\n5sk83G36yCXYww4ARxv4BKMF18kS/mnfiSxrAy1gGZ+5MqdyuMmUenXaSHIXPkx7gtPr1Dd9SQbg\nb77iZf3n88vcJy/1QZeyaKt85vWpTfls87L35gqcYIVDebyadeB7bo7xla1mTVkr9AX5M4fqyBFe\n0hkCpHhLfiRzbv6sf/rFs0TWzAfZNHdkBkzyDI95tNYFS6x78q8dfeiy/nsJQwbBdhLfqXWB/9aE\nccRzuQSnIJbTrfQhusFKn6DVGjM268ZYjLF10jzuwLY/ZJgss2/JI3lGP5mTwwsWOXV5Nn50CAKR\ndfSA33wE2xwk22AXuG3dwgGeOuMXpGKv0e3Wu3HZYwSYjcF4wDOfdLmAuEtAHV/BxwdBVy9o2QrW\nB52KL+ZG/3hBtwuW2yPiWbQnUz3Lm4NZduv7iXfio/t88ULvm3drno1Cj9oH6Rr8xtv4ZN4kzy78\nNr/2HXwAHxzzSE7Ipf0F79GBz/jmZYKAOP2Ipz/4wQ/2gyT6gKedObA+zAs+kyc6j6yQETrbZV+G\nL9lCh/kHwzowDnstGUBn9JJTOlk79e7hM0ZtJq/m/S3nB09c4LuaK3JP5nopbj2QS/aZICKazU10\n1a/nIxrxjcybc1/wWAfmBt8k9e6jRxk64FnLtJXgU4+31psvpqw5+515kPR1aTfh0WHs73/+53/e\nA8FwC7r6GTcvL6y/OZ55vwN+H7Z7dXDYn+lbL9O9QPKShCz3j2bpAvPeeORrOsKztjmfTw6cHDg5\ncGsOfKQCr5SvixHByOg0qcAmJc4gPkoUtA3aRm2jt1HYwBkKNnHlNhvGgmeGg3rGhrpwZrww8jIM\nbFAMUQaLzURQAm0MGYYfGhngjJxLqU2lTWm2a3Opzaz7oPv6arf2v1a3wq3tCmNt5/mhbbXD8wwn\nsF0Mhe6P4Fc2+4NhHhgEcnVyG7nfnrSZe9MLX2nimOXVn/ntOWBOpJXfDHLG5fPtxAADjCHIoWXE\nSxxZQTfOmDWY3FibknlPbjyHx/2UR/fzmQxI4IH16U9/+mNvvfXWHszL0d4bjD/1Cc6o+uWtNmt9\ncqlRdcH6ZceDG3rF+Om4//mf//nYi+0FjpNRn/jEJ3aj99lmOEvBdB/cWab8ZRM48RKPwKuMA2W+\nOAacQTqPXvz617++v+xAl/Zdl3CDN+kNR+05eIIYAryMf44Ng5wz2Ak2TnRBCfX2AfPHcSxIBh6n\nmyPopIVLW/yF075gP6D7OeKcQLk9gK7XpuSevOnLKXEZP91Pz5NR9fBxoMitC25lEvrAthe54IXz\nbgsKuThvgjDhBtM6EXx3eRnB+faZnwCCvWuuq3gqj/byxlFeW8+zTX1nrg2ZME48F+xweTZmddqj\n11jjizbkw7jIhv01hw9MKTqiASwwrW/wzSsegyuYEE643JsP9fZh8qlNZe7bH9Bi7l3K4cA7e789\nI94LNpE1coFe8zODqdEMnnGaXw6ylBxxdO1Pxtbl2QWnssZbHh+Cjw/GJYjvBKDTfP0shoAG/BNO\n/YO3E/T+n+pm2Wzn3rzQh3Lt4xs6uuofPP26tFFenbYTxywPzlGuT23d45dAmnky5+ZYDp+EXvXW\nlbVj3swXeaMjzKs64/ESxF6Dj17s4KNy8yVY4oKHXsALMiK5h8N6IxsCRnBYz+ZBAF7gr33MHsb2\noIvAonec7pKT2bttrQtiOAmOPjIX7xq/dWbtC0IKxjhswN61DtAp6OvkI51ITvWzBoyxlz7oIpv4\nFXy6xRiNo8AqXraOjZecNmb91KHbuiHzrZ/JG+NMv1kH9Bsc+gpSGQf9BY45NVeCzvZ8fa1za0lb\ncq9N8OhkYza3+mlv3vGerrVXGrOxo9e8C1CaB/jhZZvbF/BdMN49XpT0WxOePnWaeCc+8yzY7nc1\nBfjsN+bZnBfw15c+M+/mjHzK8YUONHZ8NE4XnsFB5vFbGzk4ZMJcgE0fkl19yN53v/vd/YsL825u\nvfTz4sF86GdO0nlkSTuBY7KHNs9wwu1CB9kzj/q5zLU1pg5eY/HcpczYJr+am8m3ym6RG0uw5XC7\nlNvb/QyEdUkG6Ru/7yrwSt+gtRTNwap85tY7OfaS1QlTsmz+JP0nfnyjf1z2J/wzz9Y5vpMJug3v\nza85Yjf4+TUXWvE52ODrHx5zZR2yOdBiPTol7jCLoCs5WcdX32Cid45XvfXt9LYT++xH9DmFy1fz\nEoouNN/102dN1a3l5/PJgZMDJweekgMfqcCrzcTGzXCyMTFwGSQccxueepuAjcNmQnEz+Fw2c8ZB\nhqCcAadOW0rchs451NaGZlNl3DMaGDs2MpuiTdBlU8oItXEwRLWZzp977cCSrm0W6mqX0NT+aOOp\nzaW8vurX/uqqX3FOeLU5gjHbdV/7ia+y2gTLXDHqzZeEp+bwGj17w+0PmPq16evTpdy9DdwpRgYG\no2Qm9EVj+Gf9eX97DjSv5m7KBMPQOma4elnBEOcoWZ/WG8dYnSCcOSMzGehgFohpnc25hcdzOMNb\nm+rIAEOZvDAAGcxr0rYUnJ4/KD/qO8su9adXBAd8yuZEMAfJKU8nFjiNBafrP2G+LI3BKAerC3/A\n84znnulhAXEncfyTBHVf+tKX9lOYnDXzpM81OoI/2ymT5Ax0p9GciqDvyQDnzk+HOK10v33mxkGE\nK32MPjqdHNEp9gx8JGeCVi4OCfhkjJHvc35BFPsC+Dl/0TV1fvtQwQFBjZxe+wG48MvJpqAJXqED\nbfYYjjOH32mhuy34woGBX5ACTfai9JI+nCYOkAA0nsONB2TWZ/vWQ/tY8yevDKzmUHnjkqNTKlcm\nle8P4492s85zV8084xPH3xp2D7991RV/tAdrwguGHBypevOAH3J17l3NPTzmwAU3vuE/+4DsmA+X\nAAwbgr4xL2h6tjmh/Q6wAA/bIOcPfHsNmcpGICMcWXOFBnDgQwP6jNGYySb4YHmeqXEZi/vG25iN\nA//YFsbgcm8sHH4nNl3sDn3rD9aEPXHWJhzVaY9mtFoDxqrMeIwtnnoGozkIV2NTjl8rPeGZ+Cu7\nlgcfH60Z8wS+9WzdmWcJ3epd9KLcuhKUUKed9gJ/dKp760g5fX+3rUO6oPUX361dPIefDQm2yz0Z\nMF724YvtpRjYXraDaX06uU5PgY1v9jmfjVvL+CsI4nScl0h0AhnDH/IEBtvTPDttKFChP30DL50F\ntn1AgIyNI0ilb3KfneyE9Ax4xtNktLlrzuTaSOrczzr3khwM64DuxBf8o4+sH2NqLdm78N042Oxs\nYwlsMAqLlAjLAABAAElEQVSwhdc4lJkbcMCXm0t4jdG84JHcXJor86ZeWz9H48UUeqwZtgTeqxM4\nUk/vWsOlxtazPJpm2a3vJ97wKcM3wfr/+q//2gOvAnHk5G6TKQFr864dXWaM5ots0Td4aN3KJf2U\n46s28ikD+IDPYDt1KKcLyLjP3r/1rW/t+w98Aq4+NSfj2oDrsk4kbeAl92iQpzPUuSQ0oRkd+qJB\nGR4ke/FD3n39Lz3vwG/wJ1qPcBuPNVbglU6hn/zDOC/HZ+A1epEUzUfkkWsvZgRev//97+86v/mT\n1xePvGxhD5qLToyrx2u+K3rIhf2ObJgf9NE7LmsT3xvjpA0cOoj+8XN5bHDzzD72MoONp+9MwYlG\nz92XG4OXiM+3F/dkml0LjhO4AtbGQ3cnA+BP3oUveD2f+cmBkwMnB14HB96owOsHKVeGmk2E8cYZ\n54i/2IxdxpYNQmJM2OxcnFhGFcMko005gzDDhHJnxNtApZQ5WuBjUHPcCrzazDg5cs4II49hxLF3\noSPjArw2zAnb/dyQPEtw137S8V7t/9Hm+YhXtXtoHo6j9sGvTc9HbWeZ9mtbxtNM1StnaGWoZaBN\n46K2+q+wM8q06QqPtgyffoOI4T3TbL/SN9s9xf0cE/jx+ClwfZhgxnPjnWNm2PlMXPDOOuMMWLsC\nHBwqThrHkfEuMRYZnHebU2CtcbjoAQ6J9Uh+jngMp/Wurjbuo4VB6Z98/PZv//bumAVDvfvZtj4v\ny99gzn6VgRncyhq/ky5OnFgr/U6mkwcM4ZnqpyxYs/5l7ye8+oJbOYNeIMEnY2h1EgIfBTw4UNpd\nW1/qXevYPZtb+p5sGD+9T+9ymjmcDPT7LfDqBDDDPd0Jn3vyUsCVs81BcpEX7cmR4Ijf+xO8xUs0\np1eMNzkBq6AdmJwYgR9BkE5RGT+nSTJPZE1/Zfp7FjCxFwnwwM15ERhSZl/SL97GZ3pRcEFAx6lf\nTrgAHD4IFKLferFu9JFyiDhaxuQC26XOGNHT3MDZWPWv3n1pzlF4qlvzdQzV1y98yie/a1f/nuWz\nr/rayKMNrMprj1dOwdEzbAX7urni/Jk7c0MWOK+C2E7JCarhlT2eXtGfLJp7fNP+2ebA+hSXk8ie\nkOAmt+RNP7gEigTYO8VTu8YdvTuA92GgvXnnPJM1NJtHc02O2CH0ot/8pTsLOAWv8U+44a5stnEP\nPrlyobt1xcbBp2SZnYM+Y5XwRH+4qyv4uuKKvsqv5ZM+PBZgNE9g9DMeeEN2Bf3oHfPhYvsZh3VV\nMIPdKPCHl8HGS/rEzxGYJ2vGvJMNARBzb19SDq6Ap7mnL4yRTPVCh35CG9h32/4k6EdPoc0apssE\nMNyTMycG/Yd6Osz4jANP4TcuNu7zLUChH5lSb52Dqa/AId3Frm088RdtbFdjBkPQNh1K9iRta39t\nHmadvtaG/ZmMCLqysY0X/8gnOZLQiv9yawef7Be+cGkOoju4YLLXstH1Nz5rUg4WPltfgsn4Qubw\nJljoE4jCW2uafGrn5xnoUcFhvyXp1Cv9G71oPuJHcNU/VZp4w2dMZMFJd3usF2/oxxsySG7JFt6R\nw3ga74y7OQZLsqbxkNzjrbae8cA9HreO1OtvrVs33/zmN3dZMvf45x9qWjfxrzGs8mU8jWnyT/vK\n57028znagzthdB/u4FX+2BzcaJmwlVmr9IMAonVNV1sHn/zkJ38l8DphoGfCWemzbume59ua9dMO\n1grdXh+wJHNg/ZsHNpcT0Oa2dmhLZ9Ml5ANs68sabR/BU32iMXqU648WNrjcWoGHHrTG6hfO+q55\nNGuHLnaYYK6AtYA+mvxevcArmwZt2ga3/hNudbPsvD85cHLg5MBTc+AjE3i18VL83lgznlyMEU6V\nOkYEg4GhwPjL8LZRMMCnY0th69PGxKFmmNuUlLkYOxwbhgznST3jjsEHJ8dbP2U2ReWcEzDAbtNw\nL2UwKG+DO9o41FVeu4Socs9HG1HtjvKX7Vv7l8Wz4g6O8hWWOps3Y4GBiHf4OdvNe+3nM5j4qsyl\n3oXnYPp9V/91k5PCsFRXqk8wKn+qfKV74pl0zfI39T5eNFccCcEDzqU1ZA1zas2jNc9ZYziSD84v\nw88pH0EP8iMgwkF1Kqh2eBce93C5ckTAnjKgjVNHf/qnf7qfJqUv6q9fbd1L5fvDhT+z/2wSLGW1\ncQ9mesKzRP8Yl88MOdCcXEa20zqCEPQeGNGzwnsPyuP/gpsui07P9CKHFo0Me0azgGKBqw/CDG70\nN4b60MOCZX5mwX9S9vkuGRD0Eqhw0sapdg52ToA+nERyRG/T1eRDkIZTRK9ry2mxR/gMGL32jGBM\nmtzT8wIldL5cAMHeIBiTs+vZRX9JjQU9aKaPzBWHglMr6NKJIrwi11M28RYMubHAZQzk3GVMnBVB\nILSTCzjgkjjQ4BnnvNBAF6Zz4TDG8KHXs76caTyRPNdHfpQas/5SsN2DD8YsU34pBUt98MrBMsd4\nbbyeCxqgtz0h2ObdqVC2g3v8tGebL3NrPIKidIq9IocUPnwv+NVJaTgF9J5tgQ8njsk8WTI+dWgX\n4PKiRA4OnWXNameuJe3Qrh7N8UYZOGgl8y56UDm5IfvgeBYYdGKIE2utsEPwRt3kIXzxb96HU5l7\ntNF9xif4hTf64RcnXI7vLs/olNDvglcblzrPr5rAk+B3kWM62po339aAOTVuax3d+IL2gnStA3zh\n7AtUe1mCruBbOwJYAphgqLPGwQfbujMe82tfIitsSvTgAZ0gACjIic74jg4vx8yXQB9d7qUJeYKD\n3DjlJTjITiW7yo0FTvre3HrZYv4ltNL7ArpewEUz2iT4wSiBJeDqc14BDjKMF9dS9NcGzJI6dKbL\n8MMl8IovdBE7XB946BPt0Wf8+IQedNDF8Yvc6ecC27xJyRedBY95xXfyZ9/hA1gnK41gkBWniZ3s\nQ4cAGf5bT+bGl1D4+GEOvOIBPuGblysusmF8dAH9bz/EX7osnlofeGr9Np/pdnJvTvDYHlLQFQz9\nlLX+leGtiz77xje+sQfO4fcf6P/qr/5qfwmuX6k5JYdwh7/6Na+9XLrUfq3vubz1vMJ/7DP4rnUs\nypKr+Ruvd1vgtROv1v3kYWMrv0SbdevnRH70ox/tX/tM3YKvcJs3J08FXgVg6QVlwZZrpz39xVaz\nNygnG+aZHNQ+uGhCs2T9sXvozHSsNW5vwO/gT96HN7jgaOeqjt72FZPAK31obfvNWIFXgXzrvLbl\n4Mw04c/y8/7kwMmBkwNPyYE3LvBKOUsp1XIGBYODg8+AZEDZDGwgHFkGCEMkw5shmPFgM7KR2Bxs\nlGAxAjlVnWa1qeRIyBkxHDQGnsSAAcPm5cSUC4zpYIBrY4PDJlZqDI2tcnl1a1lty2vX82x/6V6f\nh7RvA51t9a3/LL+E66i8/rMuuJXhqTIJnozDI5yzXf2PcuNxCuAzn/nM/tmzE2HTMAxXOKbRcATv\nKcrCDXbjego8H0aYjd24zbe36X6/1EkYhp51yynguFnzggvWI+NM0NFn9gxODpN1yaFmxPkcf54O\nAB+uiS9ez/J4JJD3Z3/2Zzt8BvNMwagsOD2vefC1W9uqq6x29V/bc+oZpv/5n/+584l+Y2R30ikH\ntf6TznBU99A8GPWny6Ireq2ZDHVzRvfRlZxiOplB/5B1FbzgTxrpUkF5vwP2H//xH7u+p8udEhW0\nEHgQKKP/6RH46WRBCnsD3hVoIyecegGTZ1vAzPxyHjiQ6tDqaszGRP7AAE8Al873TOcbO3zGTTZ7\nMRdPjAMsdJkjuAV1cpbvNufMc44P3NYCOAKC9h77kIRHcKLBWhC0MD78Qb9xoGUGf+HEKy8x1AvY\nuKwhczTnB3x0t5ehWRuw5Z5d+oAJ9qS7euOd+lub6IjH+Gpc6NW29vrigT7kh76OLu3x2Xyg0YVP\ncjyA3zjJAb1vnMrUcxoFP+kYAZdOrIJvfObFmiITAvB0CvzoQaPgm6CmFx+CPPqjC63GRP7efvvt\n/fQh/MaDVrqIzAoygWOufYHhn6F5YYTGEnjw4Q07xMsjcq8ve+fFdpofTRxSwY777ZQ3ePAbI/mk\nI7y4Mk7BQnKKN5cSnGtCA76gzfrAH8/KwXKZCxdajYvcSNpIyo1fW/ez/gjn3ukBf8BHj0CmE4zm\nzbpz6pH+tzaSJXjDpcxcWU9kBl3KJDDJJ5lhLxq3OnNMbtiH+unTHOmD7+TLPXlNDsNZDi+aBcaC\njV7wPQsM+rqCXJBBuM21k4VON8qtafyGj9wITAjgk1cwzA88aDHu6DI+80OWyIUALnkCH73al7pH\nd7Srm+W1NV46hKzTpebB2iMv+Egu6QhybKzmBQ/RZv0qI9vuyQbate/0v3kwJ2gHgz43z9riO30k\nV0a3sw/cS2hHM557qeVlh0sQByzrn6xobw+xlrxs8aIFzNLkQWXxoudXySfcI3iX6vGCnyLQbLzk\nGN/xH7/Mh3lvzaHN85QF+PAwHnlW37g9d9U/ufIMtqDv3/zN3+x2mj3FSwMnXvE6nQmGFC734EjV\n7Q/Ln8a+tlG+1l1rA2z4FhSv/BgN8K64yfU88UreyZZ16qWcdYHPUuNwv8JRVtIO/6wbwVenaekD\neFZdRHZ9AcAepk+8QILTmsIHsOBqDNGgbM4v3LOuZ3QYI53hPttBf8/ShBOeyvcG7/9Rpx895wWY\nYLWx0Qf0n/+xQBf6mo1MR3f5hOVe+ZlODpwcODnwujnwkQm8UvyMSJsP55OzYUOgoBkg3sLJM0Zt\nPIxSSTvGK2NPP84Uo41zwiDLkaDIbZI2CMaNjU+dxEBRhw6nnDjhckaRfjYfeGwq+pfPTUN5aZZX\nVq6uVJ820Z6rf0gOXlfGVvwBlyGa0Rbd8Fyj8YPwNoZJL9wuRpp5g5OThqd4N3F2D8+EscLtedLD\nOXDKwacrTjUw6o13JjCDiwdnen0ciO/mjrw5vc4I4xyq47xxliRr1jq0/gTQOUqcKc4sOdJecMLv\njArQCbKQpUvrJXmJBjgqc5LqK1/5yu7Yks/SbFtZfXp+SD7hrP3VrWVgcrg44D/72c92p5Fh/fHt\n80iG9rPN+S4wEv5rOGrzkHzCqb0y11wvaFaWEe55Hcf6POG513/28yzRrebTqYgf/vCHu77l8DnZ\nIfhivgSjBOrpEbzi2NPvdDPZAldggLzYIziqnukIuqixoJ/O5+gLjNgXXGB6dqkHU5/a053kE63q\nyCldI3ggAMBBJs/wutChTF1OL3m1F9nfBFSjnQzqy9mxD839T0AGDo6Xkyv6c/rsb4JGYBp79MBn\n3GApR79Lu+7hoJPVg6m9PJ1tvelfWfOUXjdn+oOnTvvwum9NqscrV3xTBi/ewasfGGiiA4zJ3JiD\n4Dc+7fFV4AdvC4bhYzzFH/jApVs4enjnnqOqH9vB+NAJNtrs8/RLp/TYHmQMHdrhhc9KOdp+bxMs\nMuOfzgm8OmlrHHhk/jmWAhYCiObW/BijuRNYYd8IrHNMPRu38XqxzJEXuJ2BDrDxHG/6pNyLaXit\niaNkbGsCRzk66RR8Mhetk/CQF1fzJy/hh+fkaM4T2GC4XiXpjy6nKvttQmWtUUFSciJXhkYpfOHu\nWR16jdGcmXe0W+f4NteFcUjwldy7glu5XFl1yYi5hwds+gJf6SPBVPsZ2SOjgvvm0Ykw49Hfyxov\nme63gLvgCtm19tWFL5zRSCbIoUC8LwbIhFOT9FXj0bf2O6DxJ/pH0T4udGdzW3P4RoatA2Ogn7Wh\nnwQJ6WKyycYzdldrHmxjsH7pdC890nf4b41p696VbBkD2HQdeMZuHvVNx9sT0GSs2mtrjYGJ7oLe\nbAp0x0s0gbemS3xa2117nnCP4B3VKzMG/CMP6FdmbGSAXsV/9M95RUdzKO8++sJfPnHPvt1b0+wQ\n/1zLiyj8psu+/OUv7zKMjtqClV4Id3j2RuOPcu2rn3QoMyZlxlfb2ni+1G+gePQtfK6JL6Dkks5m\nfz7ffhrAmrNe7Qf0vH2FTl3p7Dk4a27cLvNtz8FzPzNBN5B5/dFk7q3Hu7u7/fS7oK81QP6Vtyaz\nOdAy+bfinWOtrjLP6zw0Dnlz3lqKxtroD5Y1TZbYdWx2ezQfzReK/DV7nf1HPzwAL5rBKE24lZ35\nyYGTAycHnpoDb1TgFbOmgk1xK6eAGdQ5xjYkCpnR1sUYsbEwOhm32jOkGYH6cZi89ebccmgYEzYu\nxqK+4DBmlNkc9AcHPJuK3KbHuOfUoUE5Otoc0I9WqbGUrxtF5dpWp8x9Y6/NrNdeulSGFnwwjhwn\nz8ZmM3YZr3qGA2PBhSfTKI6G97A97G80zdaNibHG0WUUyPEW3gzi2s2+7uPBWu55xefZpi1Ax1G9\n35wVnxMb+0wT5gpjtnvsfWMqf1V4j+3/qnifup/1I/DqzTfD0vryAoUh9mwLLAqOFOxhUHI6GZPk\nmaxyqPyzISdefZJpbU5euS+Z5/k8y9Uxlr/4xS/uAT3r46jt7NP9Q/PgJW+eu78EwwsiJ4Hffffd\n/WURh9Fv+/V5szUsBWfFcQnuQ8snje5d9MtMj8EZTPSvY6BfBaAEsX7yk5/sutzcO5lsXQs+C0Ip\no985+Yx4+p4Optc5HC76ht4rsIZ+smcPgEcfekh/OonuV85pRyN4eE2HBYP+aj/6f+zd244myVHA\n8X2Unjdp+Q6QfIM4r+U12AsYkLHkB7AtwQWSASOET9gsWoOMzBWWuMA38yjzKNSvPH8UTqoP0/3N\nTM+4UqquqqzMyIjIiMiIqKyvwcEXciPBQm7JqkNCwNjWF33JLpjk17jWEkk2AZaEAh2AL9qutoBK\nP3jYrWUHDDrBoA8+NZZIEJTThZLOcLdetXbBrXkriNfHWNYABY0O84DOia+kFxsKf8+iAR3aBxss\nYyrWHvyYffDQoY+28ISPPuqMYT6NDRf44ZG1Cb7aBdPZHOMtHgv+zSlemUu8oD/gmg9Ju6uNn/im\nvXGMV/LCHMIFTRXjGV9STBJWkC2ZJRmL38az48jnnl4EgE0uBOF28QswyZKCR8anv3bu29mDTs9L\nuEmY8lPgH0/0scvRZ9NeOKAZrPBEH9zt9pdkc/giCO+OSnNV/87h6LnDHIPtqA96FXMz+6nrXpv5\nXP/5fL95hT/1dzZfVxs/zKf5J0vGS5bYf/pLVtQ51hKe0UhOwdYWz5XazOvw2Btsf7pPZ9a24LM9\nkiF8EC8GyAY5ctB/vor5pF/swIttRyoa4IROCUkJfclmCQm+k3mZBa6OdBJe6Cer1lRroxdY5Kz5\nq380dL+eJx+0RVOJebLrWhv40iMHPOggOuhOPuVNfDKnEtBsJZjRoX26Dr75QRe9Qw8dgQ9ZkOzi\nL0jesjf0wfi9zMBvvMdvPLXblU7pZ4zJh5XmlScPvUePYqw5nrqbnoWL566d9cUjtPd8hQem4vlN\nz37R4hd/j+DMOnphV/0PfvCDXZ6sAX7P/aOPPvq/nxqovXN4gm58R88bd8XrqI22+gWj+5tgVH/J\ns/FXHIJPJu3Y5L+y+WxPiVfxh7XJXEVrPOg+OOtZOzzU1xppDDvX+zKMbQ8WOaAfbI3x6AMfxPrm\n3jWc2CE71fkWdO6mAm6wJ9+1Vx/uXXeGr1KfZKD2nqmzllqjfEXiJ8bQ5wX6hx9+uK+N1unwC7a+\nZzk5cHLg5MBT4MB7lXhlZJVpqKtTz2hzHKfzyPGrvbYFs4IXBydN8CUIE7gKbAXLYFiwLE7PXiZ4\nLFA58xw3SVvOKmeP0+bgUOovQJt4tNjAwdF9iw/8leqNrYAx29R3f7j9cT+L/tW5VurjXiBi0UKH\nMyfUouxwbdGNTjhYwPGGw++MPjg1RrAbZx/wlj8TJ82MgT4OBF5bVNv9wSmXBDe2cScf1iHCZ61f\n+WE8DojEFOfaJ9kCFvyoHMEK79q8ynnyaO3Xs2gL36Pxaht+s03PVvjv6n30kDXJNY6rXa8CJE5i\nOxoFZOS1oC6e0D+6bScaZ9SOHvJbsiJ+T17qq14JTnjQj8997nMffP7zn99lR2DRs9oHq3vnxxS4\nkNcJF7xwc82GcU5LPH5m2+0qYLRTZwbh9QHLAe67UKI9/OHc3LG3kvJ+ZsGOXzZCIGH3Fz74zFtC\nQ+KCLSEP7Wyk7xKSbAG71zoRfwRMHH72XcKDHcJriVf2nV3MNutL/gTtbFgJB22MZ50AjwzBTwKh\nJJ9rfQqU0QkuWiQG2D4vAyVdXYNH9vwupISeYIkdh6OkK34I7uiEZIzk89WWoCH36iUj4I82axge\nWhM9d9AbY4Nn/BJU1g18D89ohgtZQhseuPdMHVqav+7RZlz1YAVH/2DUX1v44SMcFbTisznDU8/x\n1wF/eJJ7c25uHeZDP7Q1l3hpPtFqfRfY4Zdkpxc72oOV3MEF7/EO/gp64ZFPAD4bIwHhZY8XPfhn\nrsmio68rfO5vd5LPc9k3fRVjau/lgTVKkGwewJKkJcPmIb7ihd+h9JuBZB7u8Vo7Bz6RY8lgXw08\n3xIAErnGDM4++Ms/0VzdTW3Wdt3X3rk6sNz3LNiPOYO9joF280LP+DLNf3NEjsiKRL257GVyvJo4\nBh9MpWfqe3YX/tqBrdSve3IpyWd3s5co5NZc23lKl/mjcNXe2OkA2dZeIt+ce7lCTtCtXWXFsXtn\nskxOf/KTn3zwX//1XzsvwisY2t1UajOf174z/XatbXXauzYWnVI8D168rl5bNgW9/EK2gf7Rdc/U\nseN4CSY7z4enX3SbbeUv4NHVZgfxjj1hxyWr6IQd5Ok0OF5eShpaR70oMf7EP1xn3U7IPf9E70pr\nNFffOJ09N2bjqu/6nkM/ulljdg4gG8Om+M1RuxTZRb9N/Lu/+7v7Gsy2R4dz1zfhf1N94910fmi/\nm+Ddpz56mrf6qCfj9JmO9c+1rDf9cy12Sr/w1qfr4MxzfJt1rtnyXqT0JQV9CFZw3TusM/STzaAj\n1iX+hHXHDnsvgTyrvzHmNXgTpudKdb+4+/9/61fbSbs6/LIu45fEqzUPnvDykz3iNWscOxCMidde\nef45OXBy4OTAW+TAe5N4zWAzskeG1nOlszauGXJBJmerIE2iVTD7Ygu+OGCSOQIaR8GIvmAIwHL6\nOGUZfO0EMyVeu1bPCXHkyDb/4eTetaPF0bUFhoPCOXRwLjnicM9JDdbRGYxKfLCwOcAVfFhkLfau\n1VuALbDo4mAK5DzLiee84pPFsN1WYDsm7tU1/n3PcNbX+AIPji5nWsAkODC2XQkC2MnPI1qPxgy+\nZ67RjD7OhU99ONeCbXQHEz5r6dlaf5978O7qHy+1de2Aq37zmLDC8y7Y98HxqbWJH/AShPpUiyNG\nHnxOb3eXz44kXs2nEu/oeQkQiQbBFT0XuOKVdto4x8PO4MT3YLonj/M3gdmF5qW+wdbvEnMC7m0w\n8Qg//L6XHa9sRDt1BJr0nE2ZBUwHml53mXx56FhHMKpjcyUa7XiVfGUj2BBJ+evrX3x2K/Fq7sy3\nRIsz2tnyEvZ4zF4X0Fsv2D1BvMSMZCX7p78x2GNt8duR7WSzs63sp/mxHmhrTDIjQcK+9Xuj2heU\ngkVG0WUtskY5yC4cjA1On8KyYXZwwZ9t9pLBPziRXATfrkmJGTYVLvo78ABOaC4BO+8le0q84kMJ\nTeOg1VHgRr7g5Nz6hR5t1Ve6NnfodNZGH7A8by3S3712eO3ARzTEa23ghRY0oUMfcyDhZp1rHdPH\nc/NHX6wn5hOftWdDBJ2SYFcvkzPwgmMH/liP8AYuzbtxyJy1E3745jNwCVU7kKzf5Kwx6CV5hLPk\nkBdCbJTkj/lQwCK3/ZMsMOxQhXfJN/RLboBrN611LFsIN/jiG/6gk/xI8Er22vnKPmpzW5lzhg9r\nMX+Vo+eeaXPTs/o+9DzHB8M4yREeNjd0js4I2M23Qq7pNj0jC3xC80umFLCC31ldtFS3N97+zHuy\nE+/Aq586h/kxf+ZX8lSCndyxGelxPwdh/hQw0eRFjRfFkrX0mzyRdzK+lsZ1hp+xw99LGGN8+umn\n+65XMl37CWfSVX0wuj8661ff2jtXP8da24FXHZzR58WIZJD6Eud02ryydXRKIet0kOyzt2ztsy3R\nxQaae/Nhrr3IsntcstC9OQGbrpoPvqHf19UPnFmiJxzns/tc689WoA2MI3jVOTvMv1J94zwUh/rf\n59yYnZOjOTbbZZcxP8QOarLsZZDkq8Q3eZ8Fv5UJY17Ptve9fmz/+45z1K75nM/wC50S/BKJz7cX\nXmSNPEq82vFKbptbffW5jY7mQFvtjNu19Y1t5w/xlXtp4/nst3fY/jSOMxm3fng56MUDu0J3xEVs\nSzZN22Ct18G966w/vPV3zEI/6SZ/30E/jc/W2fTAt4MXX+EsJwdODpwceIoceK8SrxicoWa4GfCM\ntwWOQ5BT4LnAgoPpTSAnSxArAHFwuDneHE5OQwvY6gxxdu0qElwx9toJfjh9HDxnhwUjOHBqcToS\ninD2rHHBtqBwxi3Mgkb4WbThLyiY7feb7c86lnsl3li0BB6CDvA5lmhCJzqmA8Q5godFFl6cV+MW\nqFrI0XnpAmdjh6fPPC34Ak5BkQOPJ0+jM1qPcKpNvKgN+iQsPvvZz+47GwQxgrTKHKe6YHX/Kud1\n/Poe1ZNZQSHemwtzxYltbsyLuVP0d3Qf3PfhnF7gu6SE3a6Sa3RY4vWj7RM2jivdjAfO5NWnvpx/\nzqdAVnKL8y9olawgx3b70K/KHI984Lezgv9XW2As2SvJwSmVuEsmjKu4n9d75SP/TLwaL5B0sd0U\nnG10CnQk2/CF7CizH/wcb0Jm4kX43nSe+K1tgrG2US8xKiH1n//5n/vvgZl7NkTgIKEhiCArbLdS\nYoteKWDiLzsoaLEmkBfrAxkBr2Qr+8OWpof668t+goufnrcDknyYD3bF4Zrt7XdGzU12Fi0OY9nl\nJoC1XkngqTMGe8h+ewnYbtd2pWjj5YLfebMzkv0go15MSB6Q+8k/Y3UPtvsKmdIfTPrhWp32cEBf\nuM9+XWuHF8541TjBr5050M49PlavLr2Dm/XZYY6aP20d8KpeH2smXjcH2sAfHZKc1lL2w7oNL/yz\nM1xSh32w7swkS2Owxea/9dI5nrAN+CGpAwdy82JL7rJZAkh89IwcSuw6C7bRKakmGSrAtPNQUG5M\nxXOw0VNi2TN4q6ffdjOTc0lju2ThDq/WbH4DHMg02e5Az7Qr4Abb2BOHrjt7flTgG8yj52+iDm/I\nVTrqmu4/2/wp+nC9vYzxkpUexn8v3e2q8tWAs3slfoA55ZFM6hs/OmvXnEkUluTrKwv94g94dNhv\nYJYwN89kx4sk/3jt5z//+S6r+oBrfv08kt38dmbnk3p2VOClr3EV7YwLTwWdEq+ffPLJ/lnv6l/t\nje75B8z4cNTlNhz10z+84lH3ZJ2OsmXmke6xkRIydJmu01v2lf1FIzuAX3RaH2uCQr/YALoJBr+S\nbaCj2XBt2QM/99FLq2kTwInWcFT3kLLSuvICTHXaJYP1uYmnN+ERzjc9V39Ej3717dzYtVcPLzaW\nj+YLI88kr+0c9hLJ3MxSH+2CM5+7vql+bfcU7tFzhC/9Y4f5r8+3xCsbTCYlpen/UeL1Ntqbg7WN\neocXD3wBv3nvc33xbzIz+8B1wuraPIkV2Rj2xtriRQ+bSRdXOawfeB3rfGjjiD+dtetZfaxN1kRf\nMPHhrV38Dvpvxyvfjk2Hxxy7/uf55MDJgZMDb5sD71XiNeM9DXcMtsBJWgnSBFsWHA4WR1Yi5sUW\nDAnUteNkWYxakKYB51Q4jMG4C6o4xRYd7Tio7RoCq77wCJ6+4aq+6+rnfYGCgIyDySHnNGrLaReE\nczI5jMZVrxgLnMZU17Ou0SEBcLUljSz2AneLmH7xiSPrXtHedck/Tiln1Vmdsdbx6rsDeMU/E198\ngJsFXtDCATBf5rHgf4Kv723j16aztg734HN+7GL0FrUdE8Y4ghmMicNjryc+4JMnNPusmcPhufmT\nIOAMCS6UcFn7Pxaft90/vq/0kX+Oq58b4Lja6WfuBEcCUHpKjjn+9F3QaseZBAuZ57T5HTwJKPrL\nHkjWSUpIVCjGFLAL5PBcsAWuOSGbdr74pFeiQ/LLXMB34jr5V/2s6zo6u7/pDAZ9C1bn2tOLEjec\nVIGmf0BgdwBa0+fZL5nx7HWXV6HzJlyCEQ3uuxYw2+FBLuwokTAVOLOjggYHWSnREu3sPwefzJAR\ndpbO2VkKpmeSYs4Oto8cWAvYKPaJfMTfbCN5YVfIkDG93CE3zpID+peM1NfcGoeNsz5Joku2us7m\nWnvov7m1Nkgg2eEluUAuwYGzBLR/RmHHK1zRTe69KNAfz+KbcbWZMoA3+IIncCrZV0LCWOhCAxrR\nqugXPG3BVbTT3rrZOHPuXCsrXmD1DDwHHQ02+HAsUQQPvKCPxjOWA1w0mFt6LhiVbNLX3FhvJeHw\ndSZt9IUDuORJX7IBBwk1dticmMd4EL+czYXEJztOLsgKXbza1mByYKz6eW6+ya5PdNl8Y8evnUEv\n/6gzB+yd5JuEnTkm7+jXz7jw5ffwG8gTm7gG38aHF1nGD7LGH8Db5gO8h5bkTP85590/FO5Rv/D1\nDH/QZX7QYj7In8QB2+03uvGvRJo2ZMQnwNYDO4/NOTj4ymeyFph7dkKyjj1ozORUezrZz1SQDfNv\nLnytgcfa4jvZk9Sgm87kwvxpY22za90XDJLAYBhfO7izZ9qjMR1EQ/KOB8YJr87q4TzlSpKXnEjy\nGo9/SafMu7azb/2db6r3TFmfG1OdM/od+GUMOm08BzqctfWswi/zgtzP/OCvPhJZ1ne7t/EN/+i+\nM/5a89nJucs1X5pelFwn/+wU2acDXvTDg556aUfH2AewJ07ROOvC966zvujEhwnHtQOfjubUWPop\nrhs7GHeNe5/nwZxtw6s693CfRR3cJLLpEZmiM176kdt+XiVZaBx9uu484b5L183DSoe5nIlX8dTV\npsP8VxsHyOvk501wjngR3+OrNuryC//93/99fxlr/Up2gqMPPWQf2St6ZT1yVtTRD76uF3wO/kfr\nTXR21sfYDnWz3rOjsrbHKzabDw93dgm/JFrJkViNb8e+B7/zEfyz7uTAyYGTA2+DA+984pVxVhjY\njLp7C7sFxhs+TiQnVdDj4CRbbOwa4ixzqAqOg+WsgGsBcnBoOVmulcbgmCkWqxZJdRYpRwvI3mj8\nATu8w53DLIDj3AmIW8icOYwcTYshuiQCXmxBOKcRXWhwcDbRLtASCMDTOJXGgi9nFFxjgW1B1Z6T\n7Sgo0FbxDG0CEjzVxoKogKu/hQ9cOJaYWBf2vcMtf8I3XN2DjT/O8Im2eBwvgZ39bxqmNp1XR+/X\nfu3XPvjCF77wwfW2E8acVOC0lmCs9Q+9n2MEG5/JrkSjRIr5JY99pnq1OWzJn3HBcDR3D8XlqfSL\nJ/EDXuZe0kRygiNG7gVVHEE7yMwbZ02CQRLSIQAQXGsnqS5glfzAO7r0fNt54DdRBZv0Cf/oPLmW\nIBPsausZXYCXlyESvRKvAgm2YuV9+MN70uD+oWXKbDDANpZgkZMqKe2zZokYiVe/h8WeaLPioc7x\nJmTGOLOsuMxnN10Ho77uu2afyIbflBPsmVvygA/mXQKao06HFDZN0E0+2Fb9rR3kx1zTv3iDP2SP\nDWp9cS9QF5CQEdfZKmOoc5AjwYIkHXlyz66BCXfj0G14SM5Ivlmn6D55A9f8Seaw3X0mTYbVez7n\nDywJG7tEJCPIss9lBb7Xm20rCY8H4GsvycN+s/cd+IBWaw26yR682Xr6FA1zbPzCl9Yl12iUYES7\nNUdffFKvL92Co2tj6AMHMNyr73DvUOIdGwA/MPHW2mY9NU7zhw58lcCSYNJekHu12VDBpGQcvqLN\nWGBXwHBI0kjG+ed15sp8Xm/8xNtnW1IOjdrhF3kSJLrGY2t4a685g2fzhk68Ng9eArFrZBiO4E1c\nXMcT+EsgtqudrOGBPhKGXkKYf3iTJWu3Z3hNPuEAZ7IJFn7Bw85BPOrlrj7h4XxUJo6e16767j1T\n51A36z27RGlMvECfAy/xV2GvJe983mv3HV6QN/ZTUgTv/ZMpuki37XhkPyTn4Wvurcd2xZKraDAe\nufNST3uwzbm50J5NNr98LLyfn/JebXJI7vCfHpJp9sg8sOnmBF362DnoJ2SsQXCf8sqWxN/beLny\nXz/0Wy/RbvcrfYHP1LebYMaD+Xzi4Rp/4Msmkzc8cK/e+HhpjuiMszlrbPDBYLv8Tig/jc6RZXhb\n782X9uSYvjnomLO+5N9LBy80zCH+smFg0n/6jJfmS4Kc3mhDXyVeJceTl0lntBvjPqX2s230BQMd\n2UHt8Aitns828/4I7hxjXgdj1q3XwVvbVl/7+bxn8MdjX97QJzJv/aFz9Mgc1a+zvl0H+109x4eV\nHnLOxng53G+8evkjkfiYxKvx0hUyPIt69sRXXb768lK+5Ku24Wod4Ct5uWCdJvv0QPxBF9FCX3qR\nIfFKH9z3goutdc3uaWts/SYf5jw3Nnyr19Y1XsGb7SRH7BLdpKfs92//9m/v9tC6t8KP/llf3Xk+\nOXBy4OTAm+TAe5V4ZdRbOBhoQbQFxcFACzYkWTlbgnDOmSCoktHn0DjAslhwcjhsHEOLiGccBwuR\nYCpnVD0HwiKjcBy1s2AEu7GcWxBbYDiEFi2BAGfkanO+LX5w6ECj8dBmbDShVYFjQZt6wZ52cFBa\ndBrP+MZsYcwhLdAu2K09GNU5cwQnXeiHPwcYH/AY3/FhbQvWqxS4z8O485i0gbveH41VG+dguXbg\ns91gX/ziF/dPyt5k4jWeOk8c4UR2BV4+E3qxJd3NuZ9CEHALCMlJJTjBqP59OpN3jtjPfvazD55v\nCVMyzXG1+0XCBQ/oQbvCySMnMp7ZHUZe8ZEe2QXGEfVbZOwGOU9PJGIcgkNzoT0b4NruGQGw5Cvd\nzQbg/ZzHS8+JsZtfsKdNoft2OAp0JFzQ/Hu/93t7IoA8T7ySCXUTTvVP9QxXZfKgawkLiQ1JV4f5\nRLdkhXmXJKcz7J7CZpp/yVpBu4Df/NMpCReHuWfb1LHrkrWtKeyyscHj/LOrzvpILAjYHWw6Gczu\nNmdwYCfhLbECd7gI+CVCJSQlKwVCXipIEJJHsMEyDrzAiy/O6JJg9Lm6YEsbn+Sxb3jAZteHrbYu\n0hdjokmCwtkz9kdig97RGeNaF8k7+49frQ3oUfDJOguOfsbCAzpDRwVnrT34h05rbjjpbw0DAz3G\nQUNt9CkRQR/gSjfNF37R76ttLU0nwZPI9g+uBG8C33ax4Qv5wBPzrMTL5EodGObGzwB4sUFu8MIu\nOHbAyxz0wZOMWAsdZMUckwt0ox+eaMU3dMJfO+u7l8Pmjo3zHC7h4ToewUniTQAqEWX8iiBZ0hS9\nEmgSTfAyB+SR/JBH5w732pBF/GFH2BB05jNNPBrLufpZN6/jZ3Wz/fqsNg85gxu/XJMRfDev6MIX\nz82TRIeEdbvvJPrQ7YWFLyTwX1t695ntp1rMM7kCh65Yj8mCuVaMRze9ACQP7A1ZJP8SmNpL1NJt\ncCUt6KKXQa7JCP1jB6xfdIfMWfPhRT7MlXm2O87LNLRFM7lQ5vrg3nPFmJXq3GtfIW/GlhCiJ3jh\nPl9u9qvPPM8x1GsPr/Qb/ngi0YlXZC47gl7rF50xpnXbnATTGRxrvZ1uft8RHHMMP/rP7inZa2N7\nZs7iI/0i02waPaT7kuTWSi+26CNb4Sda+F3waF4lu9ni7MQ+2PYnHO/iz9q+e/2at2CZ++wvW4l3\n5hsPGqc+7vWrPriPPYcLOHfBbvz6wA3P+2dtZAv/6Jx1bPLwLtiPpeNt9I8f69jmlT6zHfTM+vps\nsyvsEbthns2xEi9d38Uj/G7M2dZ1cMg835Cv6yVQazP4Crt4vb1IpA9w4utq50Ug/0hpDL4AfaGP\nEqF0RH916bf1kX4ms+ECRvYqmDvw7U+4o8fBZtNDX+9Yz9iIq21tJ0t4xu/PDgYjersPZvfn+eTA\nyYGTA2+SA+904jWjj2GuM+AWEAsYp5Vj6xDEcFwYboGDMwdMEWBYDBh/1xYRhwAPTPA4bBYNjqF2\nHDtGn3NcQOi54JcDqY2FzTg5qsZi9B3GCx6HT/AqELJQCaAc7jkkFucCMskA46KH8w0+WBYbB3zR\n5bkAi6MI/7WEBxrh6qjEy3nW3r3Sou4cHHhKOElkXG0LIXwlDuzQwCM41L9xXvU8cZh91VdeZYz6\nBVdf1w60Wcy/9KUv7UlNQXLtj8boWXg85gz+HCOc1Jl7jgeHScBn3uyo8XZccDcd2ODMuX0MXk+l\nb7zBF3KGHxKvkgP0s93i9IK++A1ijiIZpGecMwGrYNXOFrpOj+gKmeVYgldSFf8EO5IkEhWu6TzY\ndJx+09t2KdglQBeVcHUN3+4vIS9kNLjOYDfXrtEjaUNW7Hazu9OugH4Ha+/8sl/46Dfh1OapnuGq\nTPy7ZqPt0JBIxwNyIPGKD3RFQCGRwubrY80QiEswCIb0x8/sczbW/LPd5l2iRUIgWw8fz/SxDhhP\nckEgQn5ck0Ewsr3mkTxJuJE5yQaJMraT3MJLG/0FNhIz8LZGwMmaY8zodoaHs7WDHNANu1vIt/bt\neMUHuNXHmmJcCTr8spbQDYdrtMKRbgmkrFFsI7sDhnZ4Qi+bG3wqeeusHT7AX4KzxKv28A33ZNn8\nguHQ13wZDw9do50Ou9fH2PgJP7RdbeuRIBDdip1Xgly/NSihgiYJt9/6rd/aE2psgr5gRcPecfxR\nb27stPf5rIQ23NgBL1/s5pK8YS/Ukw+85YOgMT8DzpIQ5h5/neGuvUPyiDyYC7Yff9N7Z7AV8+H3\n9vxmot+atpvfM2NZfyUOn28vpqwZ6p5tgTQ68QWOZJLM4hEbmnyaL+OzHz7fJkdwgTP4K3/CZ7Dq\nly7xlNw74Ny8OkfXL3V4xE34OTcuvitkxJgKHfXist8Exx8vaeiKgx9pXvCK7ZRMpT9kEG+sPxKp\nEgHg4qHkg58A8F+22Rl6azy6aA7IHdjWEPKvrfVIEso8SDZK+JExcoMGcm4u+XXkwDonWWvd4XuZ\ns+Yj2Y0HO6HbH/dKvHZf3f5gPAOLDYQnGypRzDaQz/sWsM2zsznHGzaLbWQDHOTPHNA5NOA/vqAT\nD8wFus0BONGIH/T2ww8/3H9qAJzGQh8eaa+dPmSZToFrJ695EBvQK23orrkyZ+wrnOirNUHCyTzT\nR4kkCXI7Xtmw6XPhS/gZ+65S26N2+uMFWtgGawKc6aoEMZmiq2BMvgTrPuPX9r7nxrqrPZyNHw7o\nMJeSfNZiz9kpNjfZjYZ5vmucd+X5TXzDF/MqkWhNIp+S+XTaF3dsA5lWVlmJt0c80BaPswPaaF8f\nz9lwemC3rTXM/KjXR2HvvJz1Mo+80XtryE9/+tNdH/TPh4Ej3XZYi/kFV9u6S0YdbBWdT8fpeUdr\ngTHDb+KqPnr4Fl4AWnf5tnwRa5mXYe1AZz+jQb+j0jhHz866kwMnB04OvE4OvLOJ12lQM6ItNJwl\nwQGHUcAg+OYwacdR4bhYAFwXsDlbNBhtiwj4HDUOoMCXc+beM+MYo+SnxVN7zhsY3lIai8OsD4fb\nc3UWBGMJCAWdJVoF1frBC4wW24IysDjj6HJw4DmWFi/9OLAcWrjBGb7ws1AVYNwkSPGv55O31Tlr\nV9vosWjio0SWxU9AwmGFa866BV1AcskSHhPmTXjPNl3P/q71nf3VcQw//vjj3RFHY31muyN41T30\nPHHJgQDL3HLMBNEcNcEAGZA8kVDjJJGdivYKvMO9Z+/yOf6jiVxJlEmU4gvnTmAkwCb79IDuaEfH\nJK0EuZKjdA9/8VRwLai0i41jJ/GWXmtDzulZjrAgUD9nRT1H2TwIzDmeijmY/J+47w0O/tTm4NEv\nVR3Nb/MMBpuHFoGOs6AefgL8km0AThz1c0y5+6VBn9hNvIru0FPP9ppTCTaOOjvENkmISVgIssmB\nuVXYTW30EQxJ1LPDrRHsO3tbYVfJlXHooTG1EYiz48YiMwKYEoxgKWRLAcNaIrHArr/YdgVJDFhz\nBNuek2WBiwBDkCrZILHD3htzpd18Nn9oYIslzdgMck1HJJCut90szsmCfmQa/RKvcJF4Ue9AqwNO\naCTzYFkz4dhaRSfwQzt0qnevXvAGZ7jTETzSH9+0xUtjTN1rLcSv1ti5dpsTdg9OruMHuK2N1kc4\n4qndzz5VFOiiT73nX/nKV/YgU6CIf+DAtTKvPTNvEpGCVjuWyI8CluSrZB57Y+7JWPDAwRtjS9yV\nWBJE4hUatUE3epzxrxfJ1n48MicKXPFRsleQbD1g6/AQTP6P+eQPwVlgb50m+xJHBcM7sJfw4qE6\nY73YZAGtEozWHTigIRzqW7/Jq56hw5zghyRZ88FPIXdkY4VX38ec0wVnB74YB47whcfVliSQuCbT\n5pEu2vltjuDaS2U8o4fkz9xJyvExJcSsNXxLSTt65XN080/OyR3dy7bgHxzMmzmQKKfTcKL/EoLO\n+sGPvpCFEq/kBM6ShP4JTzKGT81BPJtz4dnR/eS7NvFMvfmx45WM+1kNOFXWsdQHHwxyT74c2Yvs\nIt3MftBdbdGF5+hkg/GMfrAd5g1M8B34Yk2TeHWUeA0H7cmuvuY0G2uHK50AFy1sB1/AHNMLc8He\nkldzKjnFxzB3YNEf+m3XM18jmx5Pov+IN7XpXNt5r87YCv4bUwKeP233NRnziT4c4Kms81rd/vAN\n/FnpaMh4wFbgn59wYn/NnZ3av/M7v7N/ns7mVfRBt3P9e/YunvHGkU5FgzoySh7z58mpz/XZcRs/\nzHWysPL4Lt5of8TH+nluveU3+83UTz/9dL9vHGsIGadbbCNcvTCy3nkJQ0/ZLDiy6/qx415smm/r\noOd0Cyw2TDsHvfecbWQX2DYywQaQBYdrBb5gsw18eeuPl1xsL5zwix207vG12JJpJ6I3vgdz3p/X\nJwdODpwceFMceOcTry0Sc1GzeHFUOFeMMwda4egJMjlLFgJGn8F3WAw4YIw9mDl/+loYBeQcUIEs\nZ47DZqdMgST4FosWlhYJCxB4jL/nnE7Ool1X3iJaNDhPcAALXPiDLUjq4KgLvNAFD3AVizLHD22C\nAQuRYAscOLTw7o3Hn/jWojYe7ZfVO3ddHw3w27iCVAknn8WgBx4Wc5/TWcw5WS+2oA0us/863tH9\nTWOrV26CF75HMKsLRm07g+maHHBu7XiVSDM/ydjRuMEL/l3nCWPt61mHZzkRYEomCsoEQRJKkioc\nDv9cwjyUeNXP3IMTjLtweurPj3hGZwRF7eqk0/SJrtFhh7mk83Z4Ca4EqWSXjgiY7WRxJrP4Sccb\nq7lxBgdcz+jf1G28k9DzW3N04WoLihX6aP6Cs8LdGz3wD9gV8DvMuzHZEEkBvOGswsmnfRKOHOIc\n+mA4w8+RrM9nl76OF+DGn1cdIxhH/ckG201PfA7OfnL4+41Gei1JYl7xgo2iX5KegnS2ly0Dp0Ob\nkoMlv/QVNIBNtkoskUUJB4FAvIZvuEqmSa5YowT37W4zr+xoL+UEE8+2ZA94xmidCg6Y5lwxzhyD\nLEsQSZj4jVc8kOjxokywIqACsz5oowMSHq7JAdrIvesO+mO9gYtnCt7gE74YFx0d7tELJr3Rh00F\nB3zFMzop0QAGnNI57dGmjzFLvHquv8MzZ3V44xrvnd0bXwL629/+9p5ENNf4pj1ef/nLX94DXnpi\nrOYsXXcfrTvC2x8vN55vu4D88yvJqebBmOyQrxHw2tlaaV7x0BpvLuAj8DVHimDUfNNPBxjmXR8B\n7f/8z//syRdyjafq4eRlivk0lsSRORWksmlsAP/F/Jh7CUFrNZuIP0cleTB/xjAfZFXy1e/aepEj\ncWW+o/kIzqwzFn/H2JJX5pAvQ9b4WXhgji5Z4D71BGy0RV9jkQH4oRdfzbk6uoxf+GvtwFc4SgpK\n3NNb82IMz+2alQj1VQXdB4eM4Bk7xCc1tnlge8D1IoXsagceuOYLPmQGXLKgn+SVNuQHjOvt5Yl1\n31ySuZU+czN5EL2dwUQz3UOXMemXPp45m2OJDi8r0ECuPJtl5bFn+vKH6Rb8yTH5xkNJGGPRf+OT\nTbov0cnXJWtkQiIHD8GPFmM70Cux7ac1/IQO3z791IcdIVteOOAbnoLLtksW0UV40Xd6Bjd4wRtO\nfAfyaa71Q7d5MmYvVowZ3+NHvIkn1R+dazuf6Ve9a/wgEz/4wQ8+eL7ZGnLJL/Vf3Pkc2sBZmf3i\n14T9Oq4bs3O4NJZ6OuWl9ieffLInkPHZS2CJVzKOJiWewd119/PZ3vAd+oN+xxFfyCn58jWKtYAO\nlHi1kYKc1i/+RvrkTXXzrL02eFlfa5hrR3DZEi/mvvWtb+1+Ipw8o5/iVF9R2KxgDvnJ1it6IZZl\nw+DL1rEhbDh66Jh7pXWUHakObP3zl+iRa2d2QnzOdijRwB+jw2xROGhjvbMD3RrbCz39oj/a1VXu\n4l3tzvPJgZMDJwcuzYF3NvEaIzKq05AKqCwMFgFBtHvOJGPO2HvDxunXl8NnoXFt8c8BYOQ5gRwu\nAbFAJ0ew3RmcM/2MzYG0+IBroQHXuM6NzcEQcHD24FGSVh/FwqSPsZ3d5xQLcgToHEgOYXRbII3v\nHO7GtNgqnfeb7Y+2Dv3DPVja9My50vPGsDDa+SFosLPDwqfOYlqAJtCXHPQ5CFoaL5hP8TxpJiOS\nmZx6Tof5rcSP7p1n31n/kOsVvjlsnsmEQM/OI2/JBe/wE3gI+gQG2irNPdwuid9DaHpMn/hxRANH\nVTAiuUhHOW9ebNB1+qAP/aNvnDLziod0WcJVsuTF9mIAHHbAMfkG7zl+OKirPtokTD766KP98znB\nmbZgOTvq03395lkbzytH954Fr3bOta0/vROk2+0p8Beoc6IlaASa2idX9XV2KMlRdd3vD5/In3Cd\n6KjDA/Ms8SRZgAfmnBxI/Ei6SkALHNIZcyX5YM2gY+wwWyuAV8+2kY/ssvZkTBBJtvBXksEYbKF1\noEAH7wrmrR/WFglOdt0hUPHCTOJA8CHZAk8vCyQE2B9jgYe2DnQ3P7MuflgLwGcvJF6ti2Da8esw\nhnWovmjSR4AEX2MmI8HUtrpVJvRvTuZZfYf+SjDca4u38dh1bcLBvWs8mnV7w+3P5I2xwHeAjed2\n6fzbv/3bHmTSd22MjX6JlH4rk25k7z2HC164bk71VZzNI/36zne+s+tbCVFtyQGZ8BmkBBl+C6ZL\nCtlBJIgkD/wHtsuuO8EsOSBbEjtogIOg1lhsHtk2V9qBq68EHHrQbd75QMbiY1xtCSaBNB8EDuBq\nV2m+mg9nJVrBoRd+VsH4/RyFOVO0d9R+r3z5xzjmzdhefEhMssvkHk0CavjSs0uV5j54k75oU+dw\nX3t4Wkfg+mx74QFXth2/2AT+IP9GEpV9sKYI+u1Qs+vYHKANLdriFRskAYhX/CW2Rx/zoT+4ElPW\nIy+r8VoyATw+lvWMfQDL2PhmHG3IFXlhx5TojK5Jq7khl4pr4+I7PMkSOA441Z/8G1NyCB3a96y5\nNkbjgN1z8k+fsotkHG/or/HQSRclNekoGuE0bWyw5lhoAIudxEuHuSL7eEyf+EZeOpAvOgouWvST\n7OaP88UlYNN3yW8+P58ADHYQjmRCG36uMdlOO9rde/bQgjalczzs7Jm59sLFC6MS9+TCS952RWqn\nBMc1fqXfE55nlyxzTNeN2RjqzKe5sOPVTzmZp9/8zd/c/9knPZs81J6tM8ePxXvidhOs2tz0PDoe\nczbGhN89eRTX0S0vtdgMsunljd2mZDW7VB94TFhHeEXT0bPqgoHX1gkvDVsjWgAAQABJREFUpyVf\n+Qjw8tw8iS/YQHWe8SvZHvJP70p20mdJXPLqoG/ocbi2EUB/OpaOswNsBHsDJjuRvXCPfrIBBhzF\nvxLU7BW86bCNJ/SBzw3f6JpyGD9ehYfx6TyfHDg5cHLgkhx4LxOvHK8cOAbbgsAge9MuAOGgMs6c\nZguAttoxyow8B9u9RYTzVfKVsed0ag9mRtzi0Rt0TiWHwTMLlUVF4GxBudoCHw69Np63s8K1YiHR\nx8FpAheu7o0r4JEs4qRW0OEwJrgWG/RPOLWZjqv+4d/46rStfrZRjy+SCwInu0AEBJxQfDUu50pg\nJoDoN88slngVrP3iCf+Jl+j0H+AlqizoBTU30aHfpcqcj8YD32FeJYYEvX5rSTAnkJN45awJDsIF\nHMd0QC6F45uEs/Jj0kdHBSUl1q42HbMLRBDWSxBySw/NIR3j/ElICiYlPugL3YjH8c39OvZtdNNz\n/+TDXAioswP6rLCiYYU3x16fTRj1135e10cd+4bO/vEYmfbbYYJ1Aac2jhVG9yvc7hvjKZzhOsuk\nR9DMUfeJpqDC58PmyEujEq+u6Ux2U3DA1rL5BQ7sF7lxGM9hbsmTdUXQIDEiOdMLKPC060y+JBgk\nAKwj7KSdTJINAhljkFNJW/PErgrABB/sOrom/8G+7T6egPtiSyIIdv1jE2sHeyH5LnkgoIr+aAvu\nOsasD35nz9b2PVN/VILnWWM741V9tFntl7rZt/7V11e9NZaNkKSUdCUH7s2l9uZQoslLq89sP5WD\nH2Qke69N67FruEx81NEzCZEf/vCHu012Hz3amldrpZ+uEaiaX/Xm3nrOhpsXciSBKiGnjaQrf8QY\n4DnDnU4L0u0+4otox68QAJPHZE2Aa/49Zw+tY+SqZBF4k3eTb/uD7c8cGx+ML5FlfZckhANfqYKu\n4HT2DBz+jKAaHnjOJtMBL0ToJl+LLb5UCfcJT50DnvhUCVf8pnOS2OkfeTCH9JdtIEuS5Xgvaefl\nDZsqEeFaW7YHTb7GkKz0xYEEHtjWJzuT8cE8syXWpF4E2tGFV9Zz/oe2xmEzrHUS7+wIWPRY8g0/\nk1k0RbvzLOh0qDef6LF7GT3mw8t0iRb2DI8U8szfYEfNuV2kwYhv2jVWY6vDC3KJh+TbGOilf+QG\nD9lZcuU+XZtwwYELnuhrjtBKruGJdnJtTWMrwcEfyXzJV7pFrvQpwUMO4QQGuHxXOOAH+syde3iw\nj9ryc52NZ06ur6//T5fg+JASnZ3BwD9H8snfM+cSr2REWz64jQG+YBFbKOodzYP+zWF1e8ML/5m4\nu27MhlGH/xKvPme3FpmnEq+SZ+Skoj35MNePxXviFvx5fiz8Ceu2a3gcjcU+l3hlK8guWbYeeRlY\n4hXsScsRrDn+bDvr5zUYtWPb2IF2vcJDoWvWi2fb+qE9u8avZsPYJuf8bHNmvaXP/Ch+Db1yuM7/\nYevEhZKz2oFJZuiXsbxIpJ/sWy+xtaHTvvYTB7OF9Jm9laDGL2v3kQ1Mj+Af36IbjbPe/VlODpwc\nODnwOjnwXiZeWwAsAowuI2tht5C7txBYBCwAHH8Ov8VCO44hZ8xCwAnkdAqQGHoBhyCBs+iZ9tpx\nzNrFyqGwWKm3IFlEeovHeYaDRQhMiw48OOTqOYDGFzxJ5Fp0LEaeWaQ4xxJFgjw0KOjKIQQffRxG\nzqbzDGTg2yLj3IKkfi2eRx964MLhtNDakSNokGjAK7zASzsOBYUcLM6E5IU5CH7ndayndG/eLN4S\nMpxaQY0AbC7oR3Tg16XKbfDJNpkRrPv0T0BnHiT77NgicxVwHGh6l8vKj3hNfumuwNY/CBAsceIl\n1cwZvUA7GUyPyal2dFkCjJ4o6xjr/X34J8D8aNvx6vO5Eq8TdjqlLhpWuMZ1eD7br+3qP/GsvTp0\ns1P0EX/YDjsdBfN9khWMCbvx3xWZmfSjY9LEWWcr7SBLPgTOgla7JPqpgXSbPWbfOfeCbzJDxtg/\ndp1usXcO9pl8CeSrFySBxV7HR/iw75Jg5I6NJHvkllyCDYZ1whoCPwGHhAJ7Dnbw5jxNOmf9em2d\nQJOkicQr20E2BSsSr2TCuqPAB8+y2dYWz8gCegSJ4GnD5iutW9rBacWrOs8d6NVntptzeNOz4Mx+\nxo/PcBYsOoc/PCUtzCX5l7zAC33AMX+S0JKiZMGaZh6sv/CozLW+8dMPsDw3js+BJRYkRa3xra/a\nmmNrpxeWft5BYs/47NGLLTHO/yBjfAU7wLSPp+FhbHOgDxnyUoFfoM5cGQftYAlSXZMjNEqmOaOP\njIY/2PGjcdxXjBkd6sEEmzz1T8Xw+agEx1iNwb8h5/AiC3ClC/whvor17VIF7uEAJjwc8dVYDm1q\nBy/zQ0cE/2Dwo/BcssBhzcATesqWtHPVOswGkAU2RCJDMsVajT7yBa4EAdjJGZ1ieyQJvbR2eGYX\nF3tt7siG5xKvz7ddr/AxHj3unzyRgUq0OyvR13Nzxqclq3aCs0vWTGOSUfjhk3ZkjE+HFjShLf1P\np80lXqqPr7Uhbw5zH46emW86S36TsebIGUz8dOAHWxg9jaGderaSXVbYW/zuxQNbTe69nHBI7tQO\n381XcYC5dc/2GyPfnl2GP1zoqDmXaLfmw/MxZcofOGhs/jyjI/j+3e9+d3+JCi848E//4A/+4P/5\nGvEIT/EnmPvFa/gzZct1+DeUOnaDL2LHK3/EnMHfF2XPtqQeHoa39nB3H/7Besx54glO4z0G5n36\nGtdxRAu+iJV8vXaUeCXTrUUT/0vhHky6yLb5SlFi3Msldo+e0nHrEd2lZ9YRLyklhtnAKf/g5Sfo\n6yCv6HTQKzqXPWVb6Btf1ZoJD7Sh25jWSLYPTLrpZQo/io7DyzrKZvlZOLaYjk7ewCdZmvVz3rTx\n7Kbns+15fXLg5MDJgcdy4J1PvE4GZECdHYrFzjXn1kLCyOdocTw5/Qw6B1NbBp9zxdhbUCwaFgvt\nOL6MvuDVgsJQ66O9hA+nvUBZvUWDo8eJ5fhx4iwsYFl4jAsnC46xjK0Px5Cjp49rCx4n0mJYUhMN\nxjcmB9w4Fh24CYzg+eJlQIcPFu+cZGeF09vCGL/2B9sf+GsHpkCJU243joSkwNACrA2+wk2w4BMQ\nb+Qt4BbKFrIVdmM8tTN8HZx8wbjdgZxr9AocbqOnZ5egafLLNT4r1eM5WfQbuj6xlxSXePUfYslP\npfaXxC3Yb/IcHcactNBNOsxRtJNNgoWuSXBIKOELp0sQRhfoj7M+HDdwHTn9YFcHtr6vUsiJz/8k\nwO1aWB3m4K90zDEa35kOlUzShh0gh/SSTCQX4HbUX3t6aXeAhBN7QHd9lirwJ+PoQ6e+YAVDX9dg\ndb1fPME/4Rhq8K7gncQrHZF4lXRjtyQy7FCTfLVjgo3DC8G3pAJbJrFFz/CcXWaH2VpHOzEEBvhI\nfvRvPvCUnbemkDPBhcQG2HAgjwpdFUCTVfJi95u1xGGeg4emKYvNUzKKB3P+em4MPKAXdoT7qQF4\n2dXmhZLEa7sv0WpNoRvWJvfWwOgzBljWK0FSARL+WNfwwBEezl3Dh8yWfCmBor5SG/Ban4zZ/NKl\nxvBce8/g6RDMWVed4UZ3yL+XfxKUglvtFDJgzRRASrJ5kXh1dbXXr3zXHp+V8J3n8DMe+ZGQ9Nmo\ndbDka7iizThkT0IN/43Hv4AbGvGGvLkOtv7m3xiCV3DJFJ02V+RMmbJG3vCJzhckJ+t74/HHOA7z\nVZljT/pdoxONksx4Cy+lPsFwhnu0JMPGgZszeHyQnh3BmPBe5Rr84MLDvTmg7wo5wU/4e2ZsuigJ\n309C8NHs6nXgt3kCQxLV/Dnwlb8GFpkz98+35Khdoi+29QZ9xmR76R77AS+yipeNbx75Tl4Ikgu7\nWSU34OK+xKsvNYzjRbjfgaTLfDT6sfIP3Yrx8BrN5Act/DVrg8Qw/Mgl2iUz6Ai8yJlkB7tF1ozL\nBihktc0B+oPPRrAP2pWkbn7Dxdn8o4msszEO8NgcsDwLPly004eusJ903Rh4hm79PDcWPUCjQ9L1\n2ZbYszY7s99g4zsdYRf4BfiRHuEheYATv/5q01k4mV9FspXdoFf8bvAeU5qzzvgTr8CFFxw/2X4f\n9Xvf+94+L/CRcLfrFR5whfMs5ry6CW+2ucR1eIPlOvyrd8Y76+qPf/zj3V+DrxfUfueVLTaHs4T7\npfEOp0vDnbiv18Z0NBfzOb7wUUq8muu547W1oD6Xxj94zmwbX8HLGDaBfrA5bKD54Jd44cDmXF9f\n73bCvDXfcIyvwe3es+qMQzfZEbDpMX0Ut7Ix9Fscqz0bYAx9tMkv8wxs9ocfJ/HKdvWCxJrjeWOG\nx033E3fXZzk5cHLg5MDr4sB7k3hlUDPGmDUNrUXDJ0QWOMGvYKzgUR8Oo/YcKA4co82J88zCaBEo\nKOXwcUjBVHLQBHEcCIuT/gqYgtKCac6GMYzHgeQgWmjBUm+RdUznUz142lqk4OFw7xnHjyOvH6ca\nnRz3nEnOvcJ5lTywkKHNQsapBlO/+KctvC122l9tTqdghANqLP0952CDbdF8sQUXFmjjogus4HS9\nVzzhP2gKZ7y0iBccC3A4upUjmupfm8ecJ3zXOWzVCy7MnU9nJVMEgnYO+GcLkvWz6AO3zvPZu3Id\n3SuP6RF592mmXRT0Gy84X4IjepTDRj45dul6PKFb6d3UTfaBnjf2fXglWe+fXhQI69M44T7hVXcE\nm07Sc44wZxTeEnUCR2f6SRfR60CHg6yAy27RS7soHJxZTrPgn53SDm/YEf3YpmxfspKNC8/OR/i+\nrbrJTzhMHNnWEq/9HrK5FjRLmHDY7UBTp585J0+SDBKQ6I/P7CeZol+cfbxPL41rftzrY70QJIBl\nDhxgspdsr/ljs9lUh+Qn2zrXDnCizfzMot5z88cOuwaX/DrgXBHgSI7ZyWLHq74SOn32LmGjjox5\nqScZY3eodY48wCm5MJ7dV2Aa0zhkz9hw7N6al0xqZx7YLPxhR/G79p3hrZ+x9DUf8HLWD2x9w0c9\nHbH+wNV8WdfpDDwVaxu51057MCRiJCqut8BR8kzi27wa2zjG7HCv6FsJJ3T1XJ2i7sU212yRn/fw\ndYr56bk2eCWw9lLPbjXzDy9FO3IEjjE71KOp9TY/IBuFJ14C4LN1385bcwkO2ui8l3LmHZ2zRJtx\nzcXEtXbVgUe22STrjh2v5Lzn2rsOb/DwyLlnbKqxtIt/k17XlyrgBy88yFb6bm7wDE5whhM+9hKE\nvJEf+jNfJuOhXaGSopKubAKarC+SS/hvdx/bGi/0kdjkS7imR3QO/8wfu66eLPNRFZ+z283FXsE5\n2SJX5sHLcDiYX3pMttAw5wD9cKMD9NaYcHy+JYYlcOkLnOiEF1Jsm/5kzZqZH8mvww9ray+frjbf\nUELTPXtoLDyVxJTQZEeMZUz6H4/NAZ7BX3/2r3UNnWyAAz+M6TB/cMADvJUIZ1/h6mWrNc3c4QFd\nMW/GhRP+oosNB9faqK+1wYEHeKTAkbzyffn01gf9zCV45s04dte10xie+j20oKEy5646uLFvvnD6\n67/+630ePfPCyM9hSTpZP5r/+qE9HXsMfsG76bzi35jRAg965iWwxKufKcFTmwXseiW72QhjwHXi\nftO470o9PsSLdR7IIlnmn/h/GPjkxYfYw252ftnkTbxe4TyEF2DhM1jmzD186D57J/nqxQy8rDlX\nm75/9rOf3XHzQo8uHeGjbtZPXNV3b2x2wZh0WyKW3lrT6RpeaOt5dpF/ol4By9ppDWcnr7c1nU3h\nW9HR1lVt0de44aa+0rPuz/PJgZMDJwdeFwfe+cQrI5oxd27RxzD3jDunibPms2wBCaMu0ONEOkpg\nWAQ4p9oz7g4OboEOp4uTPguDrT9HTBAlsFMH1gz4OI/adXDWLAycUIfFVZ1zfS04OSBgcsCM77mi\nvSCeY4luCxfH1JtKuxQsoPqjlSPpcA2GZxKlnGv0alcBC54SrhYyjjHHVT+8k0TQjzM4F8G5eDUv\nwXzq5yk3+Cro4fwIVvGBA1RB21om7euzV72f8F2HW/XkgEzacfSjH/1olwsO+Be/+MU9CDGethOn\n5OhVcXkK7aN70gMvekAG7SziIHLsk3ky7UhXJj/iBb3jtDnokTaSGZxOgVn6dx8ewM1OgI8//njf\nJQ1e44T/bXBW2jii3u7bzfvzn/98T7STwWfbrh2HQJU+C2DoZoElW4AudHDo7V7AF8GlncCCdPSi\nDa+040CTcQ4rO6XAefJM3Yqjurdd4u3ELbzZJkkTO17t0GMT0YoPEq9+b1NgzWYXtOKLfoJ38wcu\nfrKbDjZbXYE63Wxs/QQIbGM2mCyxy+TQHOGzwEpyx3pRgACG8WaQhbfR0rWzdgUq5g8u6ALL0Rxq\na80iB5JkEq9okayRePVyScCuSKaRMz/LILgBX8GXDvfhSBatEehHW+uSOjJYwIiPbJUDf9CpDT7C\n0wH3rp2Np2jrGt+d2WV9XYMlQJNspav4vuprsgEWPPFckuLXf/3X9zlo3Wz+tKtPdZP/aO/e89ro\np9SXnCVzdj/Cq6IPeu18zFbQYfOOh/yNaEEnPs0Es/WX3qLfc4nVEoXwM49eRJF37eAksWYXvh1m\nAmb9Ji3Gdo9HybV+s416soY29tYOcoG5+Y3uSSO8zRs5MKdK9EnOuX6TBd/RByf8V/DQ3JBfz6ID\nP/DIgW40Kp5rx2c0f5KGaPNc0lWSEv/Rpt+E11oDpnWJTdBPO7acTYcXmZZ4xXvJXXrqBRHbQdYl\n9fuHpWzJ9ZZs0EbyEc8rxkYXPSYHdIRNkgz1cwXWA23Ig2SKFwESYHgiafp8S8xKILMdeKStufSy\nQiJYUlJfOJDfxtYOnsaR2AUDX+BSsW55Ccj+opEdxFO8xN/K1C88lZThv5cM8vLZOgsf/lr+N3zZ\nXbJKlyS39eXb4zmbiCd4Ay84G8vZ/JgLttGLVGulejYdX4yJD8bkHyYD4fyQM/izwCV99My1+eIL\nfPOb39xlDd5474WKF+5oh/uEFQywJy/nWJe4nmO6Tpcak4zjvZ9LsFmAbPE1+Kx+51USns4Fp7mo\n/yVwDEZjdJ5jzOvaX+JsLMeU7eCS69ZnvhrbQLfotGSiFxH1C2d9L4VrMMEjL+5d0yH6Y67EzXSa\n7rMT9JbeKXAzv0o4OXe9P3j5B/z5bI7dtTZ4Qk8dijVRrAoXLx/odu3B4xewRfhGH33RJW6lu3y7\ntURj9e4d8bn683xy4OTAyYHXwYH3IvEaY1bj6Z4Rt5hx2CxsnFqOlwBO0Clwcc3gcw44aJwcbQQI\ngg3OMEdZAATmLIw14y7xKsDhIBfIaBdOHG+OJefa4bpAXvucfX2MwwF2Vgo8jQVPC52zPnD33L0F\nyqLESeQgguGZseBoXO04nGiS2NHWAqdesZAZB1z0cOg4Se7Bf7EldgUXAo0WRn1bUNE7edRittbv\ngz2hPxNPQURBj50gAlvOdmXSVx36L1VW+MGuHr8FDhKv3//+93c5sXtAIH+1vZVWtK3fXvEO/4lu\n9MxrwYfEqx2dAjy7ayR46A3+kM/4oC++uRegSFB5oYBfAkH6Sd8FaZxMLxemXtzFPvIjEJP8trMp\nh2/iG4zquneec+U53RUo+wkFSTP4GEOQwm45C1Ylj5wF7xxNB9rYL4EimyfgYRc4pOSZPuMRXrGN\ndgvZufVsCzjBW8vEd+K5tnsb9+EWXu4deGX+SrzaUcJ5p8d2dgmsBRDstiBCf0f9ZzAB1nzuvnGd\ntTVf1g6yI2BhVyXJSroa19yYA4lXAUIJt2Djn+tZ1nHIPLrMr/ljk5XkgCyz1RXj0wsy5LAWCOjI\nquSR9Q89cJbQ8M9zyIw1kL7QFbDhDzdtwVDnrM4aS560VydYhIP1Sb21RgIEzgI69dYlbcB1WJvY\nXUfjGMv4YNJPz9wnu5JJ9ALf8WUWuOhfoY/+GYhgX+Id/vAwVjyurbN6BRxl3utXSU6M1Zh8Bskx\nP++An9ZMYzQW2n0+/uGHH+6Jh3armVe80p79UtALLt6h00FnwUMDnQULDHXkzo6y//iP/9h5o6/5\n8KJBksPcsxXwje74pC3emiN0OfBVHTnjU0iiSSaTEfKt7QrHPVoFxPwheIIFDjpKeKFP2/q7f50F\nneaOHCloS27CIdzh35ziS8V80Fv2ku6QfXOFF2ysNUT72Qcs45oHfDDPc1zyL+npjM9kWn/JRHMm\n8Up+za2XI9Y7vqrEm5coXiSw6XBTjKc/m0SerJFsn80H5s0uT8/Jgf6SKeTDugEuX5ncOqwh2oJJ\nbvmEkqboZ8vYsZKm2pAH+INhZ66DvwhGxdrFv2J/JTfBNDb8kxN8NRf4Zh7IDp/TWsZOgc/+gQUf\nPwklMcSWo5sd5t/CBd/MTboDtnEqzT0bc7X5A9YE+EnmkF36bB2RIAPHXMDbS0z+MduF9seUcAgG\nfk29RCu6v/71r+80kR+4eqHiKxuyoH14gDdhVB/8S54n7q7DuzHwmlyTPYlXiTzyzhbb8UqPpk3V\nD5zXiXO4vYkzWo74YmzzSMckFL3QYhvFG3TSi3zyFz/BqFyCN8GbsKqjI3TIOma++MVeNsCJ7k+Z\nn7oEVviGazDdz7Hce9bz+YzsZjPovl30Xij6jWB6mP1kM/Cor4bYA3rBNjn4XPwH7eB1NBY8znJy\n4OTAyYE3xYF3PvEao1aD2r1FQaAisHQIABl0zpMgtaBAfW0KfDjRDk4D4w+WxSHYDDlnVPBjMeJA\ncmYLOjn42jD6rjl2ro1vYXNwVDni6jxTXDs4IxY4uBbkwoNzLKCGG5zgE0ywPAfXmPobF96e6SdI\n4IwLXDl08Igm48NZH7RwigQEnusrIHeGhzHjx1w0wVjv9Z9jaPOUysQX3wTnnFqBKkcIHytHdMz+\ntXvoeYUf7OrxnUz6bOuf/umf9muJ1z/90z/dAwHtta3fQ/F4Kv2ie+KDNnwgw4I7iVeJSvX0SIBP\np8k3XSDT5lCgKEhxlnAUDNMjASpYbAAnT5BHL4xxV2lM8vLRRx/tST06q6Qjcy5uomeOQ6/hYNeQ\nJAr64MkmsDlsjMQGPUWXBIcgUNDobb9xBZ0CVQ49J1pwyxl1Rht7gH5BpM/a9HM/cQ2ncD56Vpu3\ncV7xmvfoEzDbxelTewkAtNvlKqnh6FNS8jFpm3CiS51DW0WAT74EJewiGWJbyR0brOCnuZEYsyvN\nwabCg51pnGB2Hy7m0VzRdwe5lghwTR4UsiDgMAbY5KL+kg12PEu64oHEhE9k7ajxqWpJZ7hLVAgC\nJWkkk8AAy0Hm6BV5sxYZ0zV86ZeDzCaPaEMT3K0XDkFl66jnYAZfP7JtTDBdN17twEcPHZU8Mrf4\nIQiLbztDtj/uwXLgv8SM30Mk6/G+sbSFa32C1XMwjZ090NaBhoq25kq9tmRCoksS1MsT6y24DrSR\nA8lvOEnEW2PJKz2VKEcjGQIPb5zxIV7gP/8FHMGle7DJnx3Lfv9bogbOxiMX5luSTpLtagtOzaMS\nnfho3s2VM147yIakK3uEjmwjnNDMv6IL6AZL8YxdkpTDb0U7smvOyEv8cH4dJVwmbHVwc4avsV2j\nA58cinp10RSOZDJ90w/d9BBt0VT/YGungA1msNW7BtNc0AUyAJY6c2VHIztl3smTHa8S38a1w0si\nhO3mq+mjGMNz82YNkCyn09a3/F+yoz/YXkTpbww00Cv/cMsOS4kXsBRyyMb0Qt7cOtgQPMFX/cmK\nZKdxHcaMf2gucc3Hkiyln3Anq+wD+p0VMPHNM3DovaSrMcwN+5o9p0f8efOBVvaMT0CnyDT51kcJ\nH+OCIXFjbQSDf8CnpzP6gGV3d+OiVzLcTwpdDT3aAT/wT/hM3NDevXWGD/D1LfFqLvFZst1u5T/+\n4z/eX74ku8kVOQhGMvhA9G7ttuLemHXCc+sVX4TPig7rFZ/Vb7ySqXCvTzDvi3ft9b+tT+2O2tz2\nLLwecgbXsfIFLPJF33yhwG6zjfwwiVfrNHmevLkkjkewsnd0nh/Md6BHcGAn6Kz1Bi14WPsJK96q\n67rzbBcvq3O/tlNHjq1rEsD/+q//ussP+WcvJfCtgWwInNhPOPG/+cP8fHqSnVJvXWLLlHBs3L3y\n/HNy4OTAyYHXyIH3JvE6eTQNuWtOXEErg20RYbQ5u5xNzzgzHFpBD6fRAhgchp8x756BF3Qx4Dmi\nknMWJA6tIKqgzFiODLuFVgAqsCnIKXisLWfQwgA/C69FBUx4CMYE+ZxBwR2HEn1w0kYfB9w4w+hU\njMlxFTRZUDmjYHFo0RVt8REucHC4hrdxaq/d7BN99e9+tpnXtXsq5/CFj7njYHgbL7DhiMdHz4/o\nmP21eUxZ4Qe7enIgOPE7e//4j/+4y4PPSP/8z/98D4rIwvtUojua4of73oRLcNAJjpggiswK8sk8\nHXHPARPoCbC04YTRC7vgOb8OyTlBHd1I59fxw6MzfNgRc+B3GyV36K16MOZ8qLsJ3qRLGwEk+trB\nJvjjEGuHHnDJgoPNQJPdtnYyuqfrPvmUmBa4gUmO4eoQcHLy7XrygkFAzW5UwDVWeOnfdW3e9nny\nEm7du8Yrc1vilY1nS+k2HtkpZbdgTvsRbcFDp2sH557cCAYkNhxssbqSFOZfQIC/5M4Y5I2NzqaC\nhceV4DenbG2JGDa/w1zSf/hKalmDvEQw/wIM9iteSL5Y1yReff4uwSKhI/GKD9YKbdl2Mk9XrIfG\nVQ9WskbeyJU6h3s4k/F0pTbOClrAxhf0OLQF0wFe8I2ngKn/bKMdGBI5XkZIDNHX9Cve6a9vskue\nJRolsNBsHiqN575r8PgI0QMuPWRLHAV8+I7X5hNuFXDiiaQlHMmfXYrkBW/Bo4cSRnbh2l3HbsHZ\njjrBrl09ZEqdsfgWZEk7iR+yRH+NX9ILDnCUPBfI20Vl/tECL+3tWvJzC/SdvLAD8FXQJrHK5tAV\nvJYAhgfZ46eYP33gLLAFF870TF/4gkc+4Ch5RRfgQD/4POAYq7bGjv/hou4SJbjOYDuqA989OcPD\n9MdzuoBu6wea4aqQrWSfTzRpWOE3VuP1fAf0EtaEO+WWzfhoe4knsSYZCAdJ0P4JD1j0l3/CfvM7\nk0O8Jmfmw3pmbswRGOaCvbjaEobPtuQimvU1duObcy/rnm+f9vKHyRAdBt/co59esWOuW1PqzzaR\nQ/2SmejEC+3ZRvKDTnDApxcddD3YxnLtWb4r+4QHcJLEoxtsG1jGJ6/0zVquXzoAR7C0I5/ZTj4e\nGPnwnpELfMQPPKRX5IFMX19f7wlv+ognjy1oWYu6ZIfNf77Nxze+8Y3/S7yaN7bcC3cvVeBbe31n\n/+rXMS5xP3FvzDke3psTvogdr3Zts8P8Jf+bAA/NSSV4R7Bqs57rU/0cvzp4TDnQpkObYBz1DcZD\nzivcec+GsLNeikosWn8lCyVeJfaTw8adfat76Bksx+QBPcUj8iYOdtAfulWMax2pX/xccZg87Drc\ntVXXfc/VV7e2YUvYJPJj7Ycnn4c/Dy/yxCawedYuek8fvOQhX+wNW+dM54vT2SK2gF2YeBj/LCcH\nTg6cHHgdHHhvEq8tBCuT1DPSOYWMq+vZnnPIWHuj7Y06oy0w4PAJbDhWjHjFfUlRTh9j7myR1Icz\nCD7nnUPJ4XVYpNwLQDiGFjeBiHvtLQD6GsvhWp2FDlxttLUISZxaZDiXFhwLiEAQDgIzfdSh1ZgW\ndHTpwwkHB1/mYgP+bSUezjb17wzGXXBm/7d9jaboCm9OoKDG23hvnSWk1EUjnGsb/vNZdY85T/jB\nrs68mVOB9T/8wz/scyqYlnjliKCnUp/ug9X9u3CeNIS/OoegSGLD7hyBsnmzG4VO0h9y7jB/nDOB\nnsCJbggO7Yjh8AowvdmnI3iLx+B3nnyCQzi5pqt0zmehEjySG/TPPND5OR8T/wnTdc9cNy5c4PXD\nH/5w/3RZMpXtESCiBXx2hr2i/wIwn0jq/2L7ZFmwI+lT8pl94ETjgTPZloSUgFQ3A6Ccang50Dxx\nhOfbLs1DeEz8BO+CZQlHv0kpaMcj82Onl8SrpIbE1rTvweqcHJgLgbg5YEclXNlh9ph9ty5YL/BR\nUkFAgL94Pu0HeOZLQFMCynx14DvcPXeUyJDIa90g09YGQYVATdJAIgV95F4BT6JAwkbi1W87Cj4E\ndXZbkhNt4+Hknbp5Hy+c12frfW1nfdfO8AK7Q51y13gFX/TdZ9BetBz1A8cYaPMliuQm++iFS7po\nzHBqXHNhDDxjG8AQGLs2FttgXsgLucE/82x+o8U5epzppuSXRGry4kw3zTN77UUNeOCosz4nV+4F\nifTTbnbzJ3k2fZLGwwsySj7tdvViTtKd/NSGzEjW+V1In3qT1XAnw3C1s9LuNC9s6I96bYzJ5uCp\npACc8UhSSjBsTvBHnXHgzcawV2CwQb00KGm5T+D2Jxz0vWQx3x3BNQa+4olnbLXdXOaBLrEF5tua\nIAlOHrRXwtO1/u5nmfj3rHGcHcp8Vv9gw8cc/dEf/dGOk7WF3bEjztcP5gWObJjEm93c/WwJWHAt\n+YgOBx/XPJRodCZv5ilc9OVLWhMlOawdZIlMmT9zBg/8cFail66xcdlRuqRP9HbWB8/hwmdGm761\nN4ZrZz4ve0ZG6Rw82T/rvIM9NIZCNo3vHr76x2/jGcOY+EQm2U1H/gBeBANPWgfZWfyjj9YPfNXP\nb//TH/jVdkfkgX8mf9AZ7l2j2wvYv/qrv9rtCDqtNZLuf/Znf7a/cIW3MmFNdOY8z/rHXs/xXDdO\nZzJCrtgVO175al508JUkXtm0KYfR7mzugjNhu654Pu/V18c1WWCXyKz5I6N4x44aN5nVdo7h/hIl\n3MJp3sONvvFP+KHWnxKvfspi9U1m30vglv7icwWvrHUO8s9XJvP0ML9W2+gBw3X3RzxUV7120dG5\nvuHQPdja0Hc/VcH+sU102Y59vit/jh7TCfbKmmWTgqSxNUd/8kZXxQVowWNndWwQWWBvyEMyFw7h\ndJ+zsR7S7z6wzzYnB04OvB8ceG8Sr4+ZDsEtx0YwxMmy8HDULHocNYu0ewaZYe5gqB0WpmlwOb4M\nPniCKIspmBlkzzmH6nIcOW/tXOF4chAEbRxmi7PxWxQ4MWByPNtR4BlcOI+utc/hAcsCCifXxoTv\nY0q0gDGvJ9x5/Zixjvoac4V/U1312k9cXVvA8WwGF+ZCUO2NvMBGUgM/19L4E+ba5hL34d14YMKX\ns/Z3f/d3e/LRbi47HwSP4TPbq1sdpEvg9jphTPyN0z09dE0v7CjzKa/kGh2+3naiSCpJUnAU05k5\nf/TPCwsJSckCyQm6yg7gkXLEw/3BeOYeXDIkASMAJi+SvwWK2oQ3mK6D7ZnSc9frM7hK/HzyyScf\n/Mu//MvuTErWcMrtOsOL7AunWEKWPZLgsJNC8CyBwIn2TLIRfhxPts2RQz15NPFacfLsTZb4c4RH\nz8KnNurNJwecbPi9TbZYsN9vvJbw4nTXD5yu0xew2GL9JcG9oJOgwmPP2G1wr7ZdZHZhOAsmJTfI\nH3jadbDv5E8gLxg0x7Vhm9l39pqOK2Ao6CELxmXL9RFISPBKzEnymssCB/gLRCRq7IB8vu2Y0tYL\nJYkzMqCtEs2u4amvgNT1fOb5Wu5qs+oUeGgu4O15uIAPptLY2kjwmcuf/exn+xzgU22008cBjvYS\nf7/xG7+x0ytRQk+1C2btu2c/JLfwyQud8DIP9Acv2Rzy4jeCJbDtpjXn1ozwD/cdue2Pe7haq8mN\nHbuSx+yOZ/Cyxkho9lMgeBOP2BJjsDGu6Wn0GgOMxoYzWWUXf/rTn+47JMmtNrUjq3bme1Fk163x\n9UMbHgts4Uhu0K1YI+0KZOPaLY0P5FUfO7Z8BipABgc/jEM+yS8eStg58CLegh3/XcPxrlL7m9rO\n5/B28I3gpPC78qvQjudesHphRz/AZTsluuzO81IencF1zmfQtnrX3c86Y7r3bJbaqusZuBIKX/3q\nV/ddyfRZX/hKzEimS0CghQyaC7IteZA+gUd28JmdyEdEqzkDU0lmXIcfWfEpuN9TJENslQQFH9ic\nsT3slnbGUOBiHWHvrD34yzfVFg7RFk/g2VolYQK2+SEnnsGLjKtPhrw01Z+OssFwo0vsKFtpHPgY\nq/HAcQ0uOOyducZf84wPnukPjoN91Qev4GTMaDG2Qg8lXa0j+Lmum3ujV/gTvrMLXjef9Am/+Sp/\n8zd/s1+TR7hLPEm88nnwfha4p2fxvvNs99jrib/r+A6u8dSRI3NmxyLbh2d+mslaxPaRe0Xb8A5u\nctqz+dx199q5rl/1NreQWXrMVzKv1koyQK7wUamv8yULfBzRMWGbW3LMl/fyin0kp14UmlP2vn7h\np//rwDGY9JdO8DcUukofzFG4NBeeT367X0vP13r3nvXc+B09c0+3vfiwNnuBzKejdzYZWI/YQfNJ\nptJlyWwJWC85zb21mx0kh9qxB3w062q73d2zCewOmYhWuMADnp2ro1+1c61NeqvNWU4OnBw4ObBy\n4Fcy8ZoBjRk5qBwrQQvjaqHxFtyiw6FhXNU7M6w5iGDMhcM1eBwlxt9bN9cWMQ4qWAy/dgw1ZxFM\n9cZyLUixSHCaBTKSpfpa+Jz1VcexdXYfPq7B5JiBY1z4WOAdnjseUtB/VKpf4a73R30fWodPOZVg\n3ISD+hZC7eujjgPG8XLGI043foIt8eqNvAQXxxDf1xJ9jb0+v8T9HKNrcM2tZNLf/u3f7g6lhN+X\nv/zlfReM57Mt/KLb9evE19iXKpMGMOE968i4pKLPLyVkONXXW+LVDjfOmKDOvEWvvq6108/v5dkF\nKMkCVmM4a0sOnOPd3mD7oz59lHQjP8ayA8lOJQGZQHgdN7jVB2/S1LPqnDnCn2yJ1+9973u7IynQ\ntmPNzwqwJWSWPMAJPvSco2q3lsQrx558S0ZLLki2wBfebIrDuI0dXusZLne1Wftc4v6mceNRY6y4\n4YudhgI9yTp22A4HOyTwUOJ6Bn31B9ccZ5vxTlDOnku6cvzBIjMlxez+E9Bz3jn17SYzF2AlS+yx\nIECyqsQr/M2duWSXBAfGNL65aV3QV6JWIMlWkUvzKJkgGS+AQB8YaPAcniVeJdMkaL1Q8ruQz7Yd\nsvBSot21vvHA/Szq17bGURcs7bWrzD6z72xXvbbgrbDQLiEkgSwZVkJQ+wnftb5goJUN97m2a/xd\ni/aKeRKoCYDJisSbOcFfPoG1mI4p4EuS+o1C+k6GSnokM3vDl3/QZhxjmHsBpATaf//3f++wPNNf\nIqCEjiRWwW6+iLVKUBg84F3Hq2iBJ/6wiZ9sdmPuWtXeWIJ6vGEP7ABU0KmtHdJeStmhxlbimwBV\nkucz2z/nY+dKCOrHxzHWj370oz25gvcCV4lv/CO/YPOvwIOfNgp8lHDfb7Y/t9XPtto5gld/Z3yJ\nd/SUvdNXcA4XOoan7CJ74EXM1fbSBH6SRBIhZI2e0nXw0OUAl48WLZ45zH+408NwM/fh5DzxnfrK\nbkimfu1rX9vlyjhgSv4l/+YGDuaBf2JOJD6N39jgO+DnAIM8Jz/aTjzCAWzyL+ksaWF8do2M6GP+\n1DvYKbLE3pGPEq9slA0M2mSn9sG2P/DTR1sJTIl5uMPL2mU8uDjcG9cLQ/Nk7vjDbGdfp7Wbl03E\nY3Rqh3b4ohl+xmKj2Up20rjg4w1ZIMMSc+DAj+ySGXhYR/ja5sC9xJi1gw2QAFL3mDLluevmB1w4\nWs/5K3//93+/23R00ks4/Mmf/Mn+EigZCBc8SB7Wc20ucQ5nsFzD3bkxXdMfNpXdI194VuLVfJDn\n+usHdyUa4nH3E3ZjOSueOdzznfqakU7TfbLHB+Djky9rbCVY3V/iDKZjzmlwySz/jA/rZceaeOVH\n1i+a9I3+4DzkDKdZgkm26Dbc1JkbetTzlZ7g9HzCXK+1rV1wZn/Pel5f+sdH5794mWhdop/stfX3\nevP5n22+jH7kw5yzE/hK5vR9MTZBsdvGpLvsAPljFxz8N2sWvrNFyTJcws0Y0dHcRIt21bk+y8mB\nkwMnB1YO/EomXjEhQ+lsoeGE51wznAXBFnz3czHIAIPDCOvXwehz5DhKDL9PUjmr4OewO4MbHPAd\nHD5nix44DvC1FzRozwnjzAqsjGNRgr9+2uorSLVotkCEJ1pftUy679P3IWPcB+7aBl7rWGsdnphH\nh7bmKF4JcCy4Fln8tRibKwceC8YkKOwM8zaV47GWxn9VHq1wbrs3h+hQ5njmWbDLEedc+M0+/2RB\n4J6Tqk+4odt1h2dPvURveMJdncM1/egzarygF5KR5u16c8bMrXbxEB8lUCSi7NDyyZuACrx0xblx\nOje+szqOugQX549eki+BI0fep38SrwWK2s8S7mtd97XXTnGmy3a7fve7392TAILtv/iLv9iDB2On\n6+hzkA27gnwuLJFCtgWRdufBTbCRrYlG8qEEY7/Z/oSP+3nd87d5xpv4NPFAg3lkByVLJRHIB5ss\nYdROCYkkQb2CtuhjJ9hV8iWJwImXfOHAg0HOFAE9Z13wK/nGkcdXtsK8gAc/eFgD9JU0kAyGF9nT\nTsBsTsiUeZKoImOeBQeMkq7m05yzW/CHg6Sd5AccGlcb9sxOOQlF8iDgtJvGiwnyW1Kx9Q+++uOh\nc9dsigNtcHN2n7w0Zu3hHYzmqTbmRoGfAo72YNZHPZmEn7VOokVgSt8lk+sLZvD0cQ+W+bDblf32\nooG9BxtM482Ct+bET7dItpln8AVeAjE4kAE8ij7Jl48//ngfQ1IH7rNE65RP1+yPxL1A+9NPP93l\nTD/t2RD6KSHBjtlpCAcFPuQS79WhUdGvEp/dW8O8XPKyRoKXrGlb+2dboCphJ+EoscaOSSzxWSSh\n+BbsiHp4WAPxlLyRMeODZUy6wZaixy5ePPZc32ykhAfa6RQ6Jl/gG17qJ56zXW20Vz+fqVNmX/eS\na9aBgml1cEEr+gTYeBFt5oB+kQEBvmQNW4DnYNBR45JJdHtmbsgg+aL/eETe1JEdY4GJLxNvuLoP\nZ7bJ+vGHf/iH+5cJcPec3rMddrqyZeQHPhIP5Ns8shvGn6WxnBXj1Ma10jNzgt6f/OQne7IZ/erS\npastIY029EoOoZ8exTt6Agc8hauf7GLj0I7udJSe4GEvqpIn9JCXfGO4kXW2kZ0FGz5egFnTvFA0\nhsQrvQRXf7bTGa4O9+aYHIJFdo0BJ3wl53QbTeTTmNFkXCX7ry082VuJVy+7jBVP98YP+NMc1HWd\nGzy3nktYfv/7399xxk/tJI7sXnewQ2iufzwHt7rOjXWJ88Tf9coPdXQEDeTLhgFyxc55+cOWZj+1\nheOEOfE/wnft09xa+8gKuaar9J5+03UvLUq84tnrLPBzrHwxJr6wuV4o+nkYMiYu6eeAyO5cr+LL\nJeYxGZr87nrKDrwbL1rgHj2PwUnfxjJGB/iKZ2wnW4I/fmrANbnnw/hSwRrmXgk/toLeeJFCf9kN\nLz35DmzGiy0Ri9fWfrLHX7fOOei/o5dJ5oCesw230dzYzpNnO2Lnn5MDJwdODrzkwK9k4pVhrGT0\nM5oMZsbVIjDr6+MssOFUC8ItDBZ1RtzhXqDNmVOvrQUWXA6HhdQ12I0PJodQPcdBydnnnHIYBC05\ntXazcX45nRMGmMYK7xay2QZs9Yp2N5Xa3PS8+ttg1OZVzneNe5/xwMBLPBXA4CleCQzw3wIrIHcG\nzyIs4HRYtC3qfn9KUCOoAGvFKzzW+leh9a62xgj+HM8c28n37W9/ew8Or7dE45e+9KU98cpB0Kd+\nxmj+1/q7xn+bz6P3CAfPBE52j3kLbjcIR0vCwk40zpi5NdfxEM8kWHyuxNE11/hibhXtauus4FfX\n7rUVwF1tgWi70siLdhx6nz5JnhSgzznQP/iuKxP+bK8efmT3n//5n/ckigDCW/6vfOUru4zmlE8Y\n7A067V4SQCtkGG/gyJY0Dn3gnLJZaBPgOgqE9K2t66dU0Bzd4egeHc7mxRxz2CWf2E5OtIBLElrw\njC/1xQs2XZJK0ObMhksekC1zwX5LqkiSsMv6S5qqA6eDrFkbOPt23Ag6230BNn5ro5/AU+KUvJIp\nsNWzXcYk5wIH+EgOlGgQLAjS9IXLnDd4aIdmOiLxLInkpybsdrQDFGyJYAfY1q5oRKeClw5y5rAm\nSWZIYLCr5MRz/eK9durrAxfXYGqrqEN/9WyWQxAMjnlgkwVJAi3y3I4086oNGIprxb0x8MVn9HYO\nsvGSLsZRwtHZfFunJXAkNSR26Rc4AjnJIck2dcbHI8W80PPPf/7zu701Z9G1N9j+gEFvrdl8ALQq\nxhQISiRLVpobtMIHjmBJRsBfYgef8RYMc48+/Md77VceGKOx7Tj0skaSlxxUjIUGiRq2iiygk90g\ns+TGXLBhZNEzeNEd9Qp6wSGbkhtokdwnS+rhAFdyYCywzRueoGct2h/Rol31rsGuNM5aP9uT12cv\ng2h2W6HL+Akv/KVrbKKinkyYo5mcFYTTdW3prqS2BKj28AALn8iMdsY1r+SX7rMDk3Y4hr9r8L08\nlXDx8tQckxVjZUPwFq/ZdPDNnT5kER3mBKxJ/07Uyz/Gc0xZJZfkmjyyEemA+uCwSw5zSTbMObqN\niV5Hz8koPZXsklCKP8ZVyA9a9ZHAxDN1ZBleyVUy4pm5QS8ZYgfRDzaZJq/akFMyCg/2mC1kS+JJ\ncPHUekc32GHzDEdtwYCTl+7sKh0Dn32g//xtcNlQ/gUajA32Y0q8AcN1fA8mHIzfyxoyEX/ItBex\nbBF5mIk6sIIdzM7BvsS5McAK/zmOOvJED+x4JWdkiY3zD2yvNl/K/W2lMcB1Pcfpmn1pbvGLfpKR\n5te6YJ00t3wAdgG/GnuOcRsur/osfI/kBF/Isrl9vv3EDdsDP19p+IptzqdxzXu87TzxiRez7qbr\nm+gNX/Abo7YTVs9m3ateN5Zz4wVXHZvJDvNdvHTycpTe0j3+rPhMEt1atfJXfzLBZvFt2GP2CY8l\nYMkGWHw8NpCeKfSeXrFNbDn5JDd8AgcbYG1TjLEWc7TisrZxH51Hz866kwMnB95fDvxKJV4ZyQxl\nRr66aQRdq6+OIbVAcvw4boy4BV5gyBHkCDHqHPp2dGifAQ6ee4f7YBMt1wUpHFDOHAef4ReUO3MO\njGVHic/fLNIcYPAmDY01RVaddo01n8WPWTevJ56zvuu7+tfuvue7xgvOnB91R3jESwup5+bN/FkU\nLaQcbE66hTmHXqDkOWfWzklBkDbwWnFrzLU+HC9xnnTO8Tgkko1+akAwJhCwU4YzIohAu1Kfro/o\n2Bs+wT8T94keGsgzHfT5JWeMTphbQeiHH364J9bsWJl8oC94ZmcWJ64EDtjTUTKuY85r9/SU7Ehg\nkgv34ILFYTa+XYUcwfuWSacxu3dtntFl55rkq0QimfS7bhxzAX996kfO2Yl2BwpcOar6wZ18KHBm\nwyQEBffe6kvGsDmcS2XyYK94Qn/QG83wjA+h6BnH2o5PidcX2y4HthV9gtRevJh7fGbDOfmCcUE2\nJ51tB1cAxOkW3Jt3jrkDb8kYeWT/HRx49sRc4a3EoeQdmNYH8CQSwLranHo8dxb4g2msdlKxTXAy\nP4ID/a0Fgkj4CB4lGyRBCiDRbwxtjSu5R+4lROzylayxgxGeEi0S04IQuOMZehxgKF27xz/2FI7W\nqPAkS47a0wuy2YFebcleyQrwPHffWT94SIwISOHPJtP14BujeXdt/roHS8LyL//yL3ebiMdgKtqY\nJ/pEZ82RBJFdrg78NZ92gNoVDY6+fvPUczzCC/z+whe+sAfHdB5daAkHYxkH/8EU5BkTjdqCKRkg\nkSZZCX5BH/y99Pv93//9PaCkr+ZVezxAK76bb/DWcaOT/wH+d77znT3RQabDr7M5IT/oRIc5Rb+z\nZDX7SR61S0fQQSbBZ2fQJglJxuyopjMVuHXE+8aebbp2jp7auV/ra1O982xfH3OAn+ZLso9NI0Pm\nxTM6hD5t9DdXZA1N5APd+IBH9AU/wMZLL77JJz6AcbXpL7mxLuhHhsmLOZC4o7/GNE74wdsc6ksn\n2XNyZw7YHbZZUkBfsmrcF5sNc4az5JGfDLH2kwlwO8CuxBv3rtMXOKLXvEmG+RIED8inxC864Ezf\nweX/4p2zeny1rrBfeIC38JVgc8A/nQ0HeOfX6mcOFPAmf9hjcpas4bNx2UI4OsNfMUfmJzvKPtMP\nhU2nO/AGy7yywxI5eAom3NFhPbAumEN1+pg/PobEtHHp4/X2kttOY+3MH37OOd0HfoU/8UaXric8\nfDRH/BwvjeFcO/PkJeLnPve5/+fzHMGbcF8BxVubhkvjNUZnz9kNvLTj1UsasuXLC4lXupmNPhpI\n/8ZIdt2D74wf7Ke1wnpLN9kkeswPIxd02DjWTHLrzM6RRzAV8gdmeB/h8pC68G+cCYNcsyPWgf65\nFln2clQMwmZZcyrh2P3ENR55Nutru57j4VrvPlgTzlHdUd9XrUNTxXiNaTzPJEol0cmNHa/WQS/N\nJV2vN13sJz/Sw4ln/AoWe8QOTF+PHWAHX2y2lf1yWMfIVWsA2bFG8u3ZeX4FGxOuE//GrO6289r/\ntrbns5MDJwfeDw78yideTWOGP6Of4e4Zp4EjzPGywLcjgkNkEWCgtckp5TRyyDjQDHdOBaOfIyqY\n0sbCr43DvbPFlnPK2HMitQGbs+g3KTnJHEGLdgXOqxF3r75n83k0dg7OUzhPPO+LzxEdFuL4WwLL\nPKnnkFlAOf6cccGMQMn8mjdOoZ1HdjdoGw8nPo35EHwnnNuuj8bVHj2SKd/61rf23RASrv4LMkek\nZEj4aQ/H/2XvXnYkO6oFDPMo2W9SOm8BGGyDAYMwAwRmwAgJITFC4BvGwjfAEhMY8AL9KP0oZ3/b\n/aN14mT1rTK7qrszpN37FrFi3WOttSOrCwjOia+5TtUm/sEMd/SzR0mRHa8Kr5qfHtnxKhmRPGnG\ngEXGX3311f4/6yq49NyZTjj0A9vZ8/p0T58ExnYZ0gt9+QDBnAKGn4r6z6skg7MZr4G3tt6tz/UF\nH+wPPvhg/3MDdvtIEP3M2YcBuiowB6ODPiuE2PHKR9Fxu9oU3SQdil90QUIqUcFDhS78ou9+wsr/\n6IMnx3Becb2N++g1Nxwd6zNJtsKWwqvCo/eCZsVXuxkkX54VjOOJa3xHOz+NL3yxBA7/JLv5dDxq\nfVAgebAF7+3QlCwo/IIXL/l48MwvYWinq8IJ31+R0/z8O7/PJzlch48CgOQRLPY+kzP8iCb4zMKr\nhIWNmF/xwnqCN+SPjsbGz+4nXz1Dh4IMXpgbjQohrUn4w1bqQwfx2toW/1rv9HNtTAUr65v1Ds3m\nhg8ehtfEh5w07/FC4fI3v/nNzt+KRvrDDXx0S9J9nOg/kZKIgYM/El4wrL30x3/e59cFeElGbOSX\nv/zl/iEDPXCaDR7mkryRv8Qab9FPf+gfPL2XcPsQpDgXffjjP51RVPNxkC8xHo7mkvA5+oASf5zB\nqC+79tNk+h8f0Rjv8J0O0UP+gX5XnODb8I5cKgLyt3B278y3+LigoMK28Nb8tSkr180733cdDe5d\nP6oF61ifdME7uNBNNuKjBnrwQcGYHNHKjvhQc1of2IGCjT5skh+8txVt8MkYNHqPbtf4pACnCMr/\n0wf6Rebs3847/gDPJv1ogBu49M3uP0m9OST++El3xJrmEWPyTQoE+E52ZKZga+2nD6sPiD/xc/JN\nHGot8QHSbjtFVz4H3MNWCOYb8YVdW9/68AMP8NiqPtZCPKKL8QZcxQx6aE4tHIzDIzbgMAc5sRd9\n+TeH/sVlYOEf/IqfvdeffoJjpyqfBqFp7doAAEAASURBVBdy04yviJIPhj9fStbgkR8frODKDtgA\nXur3YLP3+9sGB/+pFV8EhphRgdyORMVauNK56Nwnfsp/4o1hXafH7vkgRTn/MZXiE7xr/Igdf3a8\nKsDzWXhcC174de79Kc7NAZbr5ujsGd6xBztefcTi49rxygYmzitO9KM54gvY+XMyBpu/87GZvXnH\n115t8TDZHjadxhvrEP3gC8w5Zdcc4b3i8az34DrCfcKBJ19hjWGDbI2/8WdyrNNsZdr16l8nLNfm\ngf+T0FDfFcbzvo+mcO4c3/g7xXR5r48PdEmc7eOHzQT8b2thuAcDbNfd994Z7/l5foLPNk8xHB/G\nx1sPyITsrCFsjU45N2/yge/TtGM4Pc34S98LBy4ceDE58MoUXnOKx5zd+i6HL8AR7Ap+BcEODlrS\nIQmyAHDenLuzYM0z4y0EgkIBhmDavAJR78EVMFlUBQISAwGoYEB/CZrn3gvswLYoKKRYfCTLAkfz\nRE80tLh33/uCDM/hCwfX9VvV17jr3q197+q9BRH/nNGCjw604bWAjxzImFwL7gXjgkJ/g0riSz7x\ncdIaf469m/1ucn1d4IAOCYEdr4ISAYgdrwISOpQeNDccr4NVn7t2jr/hNflMfyu89vexyFmw6j/X\n8p/GsCMNL9Aukfr73/++B28KjuCD2Tz6NYf+vQfDtffsWrLpYJ/kwB+wbYmzRFhhtLmN1Zoj+F8/\n/frf3vVs9oGH4PD999//xufbf5QjIZfg23FnV5yiTIGf8fgisZSE8Bd8F/2Fk6KSQgMa6mdniGTO\nDiU+RxJPhw5boqLPxMX1vA/f2zrjW7ybuHnmHv4+puAFW8E78iIbQTR6+WjP+G68zmfjmQRNH4m9\nhN6ON34abH3B5zv4YsmT5LzdXuaiF5r+ZMTXKPZI2MlQ4YQ8zEO34GFdcVQgUswgf37M3PDin+BC\n9vBtDvPMVvFA0q5wSOclDH6Cb364e2fXK7zpTXwASxEGL+GC1mzCs+ixtmnwZAMKI/oZb83hZ+EJ\nX7yEf+saPTQHGvRFv8RHEq0QySeDpYFnXnzSXDtqPQdTAeJ3v/vdvkPFvbHwl0C1swV8u8gUX0us\n4Mfvxx9j2Idk7/7Dn4EqyvAx/vMjRRgyDZf444wP+Gk+RV600aHDZlfO+IZf9NJudjqK98FS+L3a\nEjxnhSHzgAEnNPHxnkW3OR10BT3mBFthV/JoLNh4YQz5sQGwKxoqOsGPrMhNfzD5TbojEVUE4nfN\nQb/RR/8n7ubQjF9b7+Z7z3oejr1fYcDds/X5Ok/34MYveoY/YjC2xA7RryCjD33jLxRW2aD+9DW7\nxwsxgljMe/qiWCdG6GfzbIUf8DdI6Q6+4Vn8CS/6brx1yq4/HwrNg6c+CvoVS/FIvDEnGeA/u6F/\nfLVfWdCH1oHJn/QjfqKBLihm0jlFV8VXPIETXUAPP8XnsEf48A/hAwa41sDDpi94BEf6Lkamb+Dp\np3nngJcz3PkAfi/79By/i4Hhgl7zk4nr2qTJGAU2uDiDiw8VXekmPwc+2Oy3mJBfEgMq2NrNppDs\nPRmal4+4v9k9/+heoy8Kr/wE2aMF7Ju0VZdXeMnqyy+/3GP/+OiMJrrz1ltv7b4dTfgTj6YM4LjC\nvgnejZ34uzZ3OOoDB3YnTlV4xVM6g4c2N/CHZBZuc2ywvXMNljP/mp/zccOvNtgbW9P33la8FO+I\nZxTIrJlsxJHMwIFr80bPqc/maa4VNlus8OoDGfuHu48x/qSUWCW7NjZ5uj6Gt3k8P/bOmOuacdo6\nrufrO8+fZq7r4IA7YTVPsN2zPX/f2lrmsO4pTIu1fQRlt/yAFizX2UDPnbVo1Nd6Spf4KzEMH8a/\nWtf4brrFFyvuk5V4Ta5lt60NCnyOtSQ9ehbef43V5d8LBy4ceFU48MoUXi1YT+IUc8YCPYu4gFPg\n6ZDMCOIs3IJGQV6BHgcukXKYpyBPIKe/Jvh2cNKCbgm9oE9g4L7gIzw5eovAgy3xEVTYuWRxhtdc\nmMCeC7J7cwhe4QFXCxPcBEBog4c2F6r9wcN/4ODdXW5wrE1cJ+7xsmfRiz8OzTvy805QLghXdBX8\nSKgqjDRX5+Y0/lztujnohgD2vffe27/yS8IU4hQF5q6H6I/u7s+F7ynhRnsw4d4zZ0VFyaPdAgIz\n7yWydqMIihQW6D3bEFAJ/PWVSEkO2UNt8mW1JX16Tz8kCg5BvL6CNvMI8gXLilqCMThOnF0fa9HU\nu/p57hAQ+luN/tdwX+IlxwqvdsVJtArM9aUX+IJGPFEkkHQoCiviHA6HvehD3wX5dlkoLOENPYe/\nQoBC7Wzhks3Md+e+Nnc8mXN5vjbP4EgufKfCmp3hbEUwjW4y5Bcl/cEgL0F0SbhEXvGhXVnGwCH6\nJed21tA/O3gUWsiJX82XpEfmkqTTSYkCW01/+Gj9W28k2YoX5Gat0SRfEv6KC3CFS/g4R4frGr2k\nL2hXeLWW0VEJ79xd5zne0JuKrOBkO+iS5FZso2N4Z21TQDQ3/OkTnMHQ2Id1jT9qt5H1skSF3mY/\nijoSLOus3a7BiJZ42X3n+Nc92Hzgr3/9651n8MMHa6bdrT5GOKyp6EKLBk87yPGG7qNf4uWnvQ7F\nOE2SZ3eZv6fNvzS/Qo8CEZituXTFeosveKSwVhEvmSnQf/LJJ7sNkrvnaMUb+tfOHru28I5+oQds\n/GWzxlT0UphT+MNDO1HhrX/8Mw4O1jV+hC7SeQklXccv8LR8BN/An4g/8AQ8DUx0OYIfXXuH7R/3\naInP2U/j9Gu+roPlXvO+PnPc12+/jnU8r6+ze2Pmc3OHM3tGu18niL8UguiuQh095DvoILzBod+e\n4TOZ+5MAZHO1FceNJxvrCf3lb/BL4Y4+TJzhYLwitwK/X9YoACsmSO7xGp/hwLfzExU24eajBD2D\nP59C1+FQjBLN5lx5TZ5ohKMP+AqufJjCA5z4JmsKnoDHHyho8R360b3g0j0fjvp4jU76y674rilD\neGTr8T95OjvQg4d0ky3iB36ChV581w8NNXCNo7fGwcn7drDhF/npx1bJicz50XZ380vxzljz8Jn5\nITJko+wYHPZ/tfHbx13rqTnRdpOWjgYDnfHJnD4IWMfseLVWo8kY/hkddv75lQ/a+D/N++C4dz3P\n+82J/pn4u4Zz85sCX+mHNVLh1ZpJxoquYg3rrjHhOOFFQ3DdsxP5EH8OFll5T1/IWWHMrwXIh1+T\nf9ETYx3m0iaO+4Mz/WOe8F+nIEuF13adWwfJdBZe2WaNXqBhNvfgz7b2me+OXYejd5M/2TF4E2bz\n1fc6mD2vv/tjsLwPfmd96Y41TQyDR+TNBtmf4qs1rDVQf+06Wr5++/X78A4v52zONV1id/IE66md\n1GyQj9OPz1HYZ3vpmZio+YPfnJfzhQMXDlw4EAdemcIrgnOyEd8zAbbAQHDN2QqwFVkFXA6OXwIj\nQAWDgxUUK2gIijXvOGRBmOBHYCEI0E9A2VdW7yvcSqiNF7yBK2AU+ElwnSVsrgXA8JH0WAhm0XSf\nfPvHYiW4kPS1o0tQaW4LN9iST8GoA72aeY/xZS5+e8eHfbue59n3GKzZ9xTX0Rosc1qgm7tz752N\n8dw5fGdQ0TuyEcAqvPqiKlgvMJ/wXDdP8Nb357hvTrgrwvu7n3atSTwkcoIROBcEwAF+k9bnie9N\neBCtwYB3z9BTYmjHpoTVO8ng1ZYYKX6yPwEQO5IQ6iN4Ekix83gSj5yD35y9i4fgKU6wsYoU3gkG\n6YuAXyKN/+Dr76yP41hb56yf5w7JMjl/9tlne5Au4ba7WZGIn5mJHzuQmPjTC/RCIY8fUPRTlL63\n7aaAt8bflQxJsPkJhVdJnKByDR7hEm7H6DjXs/hzbO7emdt79JOt5FlyxkYKmAXTNfKhHwobkjNn\nCaBCgqCab6+wGFwFJ4kRX6yoBa5CCL86i1v8MJ5L8B0+5LBJvK9AQGbG0E3FBTKz7rQOWZP0Id+K\nwfBddzny6/qSlXf8v3HpjTVDgcWfE4A3/fSfBtIHfg1P4EHHHNYW+mo8fZAY6gMva5I+eGw+70to\nKwgqULjGM+sgO0GDdcg6x7+CD2/2i3eKvuxTAdgOE/iYH4wp32R33VkhAr8lQxIzcoSrIhbYdN3u\nFQeeRSNZ+Zt6/mMjBW60WfMV1P1NQsmW9R18f67jpz/96b7rjR2BQX4KND50gCtx5oeyNfTAA/1k\nlHzQR+b+l29/LoW94p/mnX70RoFPgQ28eGceDT+jUWygQCaRF6/AF//pOjmZ2z0a+Ud4kg0Y3jvA\nSpZkTi/pDT3HP/IpdjA/Xolx4Ebe4hXzx199anilv3nwgv7RV8/oGNrpl7H5TDqGjqmL8KOX6Sn4\nYKADXHiYQz/4gKe/lj7pS0Y+QLAvvKEn5I5edBuHH8aSvzM82DM/6SMGX0y36TO6/RpJQYjdocV8\njnTZeGuFXdl0TtJuvJiMv/JRgBz5HnKCGz7x1WJRsMmY7hlrvYdHdr8T+ZBOc+IR3rLdB5uNKSDw\n9YpVaISPORT22Y3iKx2hl3BR6NM/meAzHqPbzlhyp19s2boKrnnwKrrN4YBLcXLvwheu6YX50Uwm\n+E/f8BdMBzh0hV25px900Dh8AMs8+U/8pus+ZLB1Bx2hA/AAh1/HD3aDFvf0x/zm9s5hPrCs9fgF\nFrxv0uBQiy/pi+d4j6dkr2BuTU+PyI1PUoBCP/loxmt4pXXfeX94on9W/MMh8HjIFvgPf+rp/lZE\ns74q8rfjdY6JB85kQNbkQS5slA8CyxrMbsC3dvtgoOjqTKfzbY+i+VHvwv+mZ3Q4Jo3BpE/8Bv/v\ngwtdg7vCK58vPyTrGjjaKfAGa8I5BvvYs3DpTMfAOQZLn2B0rm/9ex68+Zz8yVmMr/BqnaXz9Kb8\njP+Z8wQHXLA6d+0+WTR3cwbHc3rF9ugev8C/+ZWMj5o+BvExYn0+0zriY6ZYkh3CacIMp8v5woEL\nBy4ceCULr5wqpykYbYeR5MqiXoBlQZdQSeI5fwskRyrIsqALuCqaggWmBVJALGiUJHPCzvqXxAsG\nHRrHLuiDhwRU0A8P81qAOf3mLTERhHhmsbN4gKGZ2xwSe8WD5oavwBVcC7w50Am21sKz3zznf1oI\nr5u2hat+zhY0NArc8EGC4MBHtDj0a0z36xzXvQdf4dVOFMmVJEui0UIdnPgGzjlb86xzkLsAQCAr\nYZd8SObs9oQ/nOlZ9Dt3fW6cV1yf9f462uGPfnosKVRkFIxrBUKCV8kVe9FP8KZ4IHllb9msMeA5\n4pFns01+6YOv+M3WJYfmUfARKCuSmNv7Ff8JZ8Kf/erTM2f+x88M/SQZHYK8N954Yy8u8UHpprH4\nwof5mbFdV/yKApQk3U8S4QZvjc2A199dwxNJvIRIMicxDZ/wDa/1ee/PfX7U/GhXoFD0YBMVGPhw\n70pCyUahVaDsOBwOuz8p2fdey+eCSWcqFOan+dSKUPyGNQEsxTJFEwk6X1whAVw8ppMSUXJqnamw\noI9CjELCPPh28iBrMOAEH4Vb9+ydX3S0vnjHLhSD6ANdkNDZGU+HjCFHB96AE4/w2VzuHXxt6+CU\nQbqnDx53gGlNwhd4o8u9sdaefsonkXJYmyQ3eBNMfZvrOr3qPfhsUEFZYkbn4YSv+ITPDvPS+eSG\nxz5ItNMVnXCxE1yhA25oQg/4Crp2m1sX4EmOik1+Anl/KyjAAzy+AB5kGW+sxcaAVWOD/LjEkowU\n38ynoQ3/6CiY4PE36aW56QGeWQPRKUkkR/qSHvIRdMK88BOT4E+FGjwyHjywHGBoxsFHnESXFO74\nULoAF0mnYodCLvnqY8cnG9RHQ7+50dP897aCHduAm3f4QF/JyJmOgJePxTs4wZE9s0fwwdb0JUsF\nGLGB/sVV4ik01Vd/PhvuijTwIHd6QRYKn+bXP/1yhife0TF+no3jM/7RmQqnimToiW7zNR49imT8\nMb7hA/6mlxJ6fQ+bHwFfHIcWtou3PiThLdvlzxVv6UYFbHOZF2/wymH9g58Pj8aTH9kpSCqg4oEz\nnSYP+PhQ8Z///Gf/+8P4Ee/wme7EO2PYNx7Dr4KYeaPfGDRoZIjXvaNfbKJDXzpCPnhNluJnvhmN\ncKPjPqz5gELnyYXs2Yn1zRhySc/5ZXYIT7wFg/072A99gr+D3MxtDDrxQz/ztdsYHB8m+QLyaz3d\nCXz4T/Kezx53bUwNTTX40jH+kVzYB7/A19N3axl6jWlc5+tgBvsU5zmHa7KcDf70YRZeyUuc4YB/\nY+ANhgPf+R36h25H+Qt+4AEZ8ctz9z65028w4wN8wJz3E8dzXkePuef8nuMNv+MDh5gFXfy2P2dh\nDcEnNvG4Fm3OWvM87vnj4D7J+3XObBsOvQMnXI7B7F141x8/6A1f5AMlX8Z32hzwP9vP/Q+bnyze\nOQY3OCvcea/PvA+X4JERv2A9ebD5dv63uIXfNj89JDfrIF0U+7FPOqqBmY4H17Njz+d71xO33l3O\nFw5cOPDicuCVKrwSU05UsCWYEixa+CzqnKqgRtA6g0PjcpACQM5eYFYw2DsBI0frOafLGQsCBI4C\nZcGnRakEwm4MgYVgQjDsi5ogw3N4ctTGVLgV8Lnn6DvrZ36Ls+BLECNYdxZAStLMAb4FA80Sfs9v\ns83FBP61nnvWtTP6BM92LQh2BSQWQvxCm2Acb4M1F7memaPrYLvXt+d4LID3EyiBT4XX+k8Yrudz\n96du4QWu6+Yjd4mHv2/qS7l7xRS7XiVRkmp60hjnroNxalxvAi/cJgzPanDu3jV6BT2KawpLeIFe\nu5gkkpJKOsPO6YekuESNbWvBS1fc96x55zkc9Gfn7K1DoCUZV/x2zT418B7H7zlnfecz/kJx9MMP\nP9z9laT3u9/97r5DT2IY/vFFAqmQY6ejZI0fkpwrqkpSShT5OfZjV5++7v0NUB8dFF7RGOz4EF7h\n2fPncW7u5lpxIFe+U6Du57EKWXx6iUBn/lRwrJClUC9Rb6cUGIou/AlYfKWih4CfH3VI1uGCN+RM\nB/glQbddYGArAPBREkB44i1/RR8VC5zBVvBSFNJHX7gdtvWlwN26kR2jG37gwMfOPMkpn2W94Rcl\n4vpr8K+o5+OEuRRqFF7Rbn1Y5bsPfMw/Uw7JYD5bh+vjPdzRin42qRAEPwUNeuo9fNit/uTVscKc\n84GPb3RWMcrajEfsQOIWXHLFN74Ab8zFv9u5ZucgGHyKgit+iQuMNRde2S2Md4rX2ZD+9OyLL77Y\n6QHDztn+nINYwDzp3sovsMFQ6JVc2plMpp479DeXpE7Bz7ouzqBPaFCopI/Wc3yjx/SOLpAx+qyb\n4OhTQRFM/cGhFwp+FW498w4t9Ant4iL+U+GO3PDVBz7FJ3zhV/DKezvz/SQUXuZFh+ZMx9kGWzEG\nrhqazU8P2JtCDTrpP5roOLzYZR8sjLEOmIMdinvQTf7wJ//gwZcfrVkfJfD+ZACe0ksFdL6DPPAJ\nPVr4m4Od85EKb/ijn5iKThmPBrJujPHxgB7QBz7Hn7MgU3iYm18x1px8Ot6YyxzwhlP4sXsyhb8C\nDb/OV7N7c8cnfCRXcmNnxnuGl2IE6wha+puu+A1XRQaxqI8JPuz6wITPaNIHv/DNOPrlGR1iL3TD\nmf0lG7LAO+PR53CNH8bSRWf9NPjrbx7FZ/wyj3UML9hwO3fF7XC23uMHnPhOOmA8/oFvTjqQT3em\nS/TaNXzJga4bL44gA+PpokKLOMsZDuTHxuEHvgYPLdl3vz98in+Mb2zXeEnX2BT+kDdcnePb6mOe\nYsobdY1eQFyT62xwx0O/EGnHK7760y52LvIxxqDZAQZa2C9d6m9x02P6y4ewdbznR8jK2RroXfPH\nw4nLbVyjxxF9cHCv4Q2d+uc//7kXXvGJvluP+NU+Iu2dl3+C64zmYK7zuF91Q99z8cdcE5+JdnOG\n+7zvuv7u+RUFab7I2siGFVwVXq+2X7b5aNY453gQjKc5B+dRY/hG648PWXyq9Y6vpKv8ANm1PvCx\n/BAbBTueTN67Tl/DPTzW+0fhdXl34cCFAy8OB16ZwisnJnARZLX704LnZ1vtYPI+Z9eZU8xpcqyC\nssOWGCuoCn4l3RyrQFHgK4AUEHknyJY4CHQtRgI7C4fgqSBQIPFgKw7AybWEXGBlfvDMafEFR1Dh\ncO0wV07a/PUVzOtnUbdwCdQlB84SEXgIRG+zhTcc4rXruQi5RhceS9YkKniPH4JNNFn8BGToBGeF\nZR580Fz33jX4eOyZPmSEpxJKX+LteDUnXs8WjGDOd+e6bs74Bl+66yuwpJ1MBZ8CNgm3wBaPjIvu\nroNxLlyfBW64zbHR7NmKM/1lMwqGCh90QIIuIVSAkbRqkjR27meT+rC7glBnDezJo57tL7d/VjzY\nuyBfgmxOOiMAVPRpFxOb15prxX9/+fCfFb7H8xlZ2xHxwQcf7Am+5PI73/nOXiAlZzocfH0FgXii\nIM3eJaCS0qstUJVM8hP683d8n6Df7liFGfhLKCXl0QCf4IdX9949z9b85lxxQDvfSs5ov7/tQBQU\nS2ZK9vkTCZvCiYRNYIx/fK5CjvGScP5EUl7h1Rl/zEn+fBI/yxdJAq0LDvxtJx/7k6SzTePpItnw\n8eYKp9YM6wV8JKLO/E7+Cd2CfsUZeq9gDhYfBgf+0fyujdHQoCCkCE++5lWo4dt8pDFfDfyVn9c9\nmzo9x8zn4BpPJhUM8BUfrHfwl1QrnCgqoQ3e1i38AItMPMdDsGbrHv35bAUodMHJ2lARDJ1kRbb0\nnb9U6KILiuT+cyK2a344Kbw6yB986zm4eKfo6sMc/MiVX/Hxy9+ORhv5sx8FbokXesCYvHQ98TdO\nwcrHgn//+997MbX3aAmHigxs3vwKR2SKR3SFzvBLzgpRdEJfdgwefMUYfAK5gIu37IOuiI3Iit4a\nx4f2AQsvfbitsAamBNMa2Yc+sBTEPvroo93+8A/+Dvhq/KXk1Bi84kPZAVroM9wqJmcXFZjYH//t\nPfnNwit8KrxmA+CxOX3Bhx9c8II+8In8wGGLKTwXH9FF/c1hrPnw1xj6gbeKbnSAH0UjXeNn8BZf\n1wa2ht98B56aE6ziNLLBB3JUYMR7RWk8QCe+sBVrGbrwDe4+GtBd/cDHI3JEi48bfCG5uWd/6OYn\n6D066BR88DidAEPBlg34GMCH0A/2aA6xLfod6Jh8gB/bxjMyRzt9cqAvn+c5nPlRtICBv/kL/MIH\neFrT+Wr3cHuw+Q9/BsTP7hWTjRPz+OjJTu89/DAPT/jChZ2Qaz4YLfQBjh3Rhj90FF/gRQfwQOHV\nRyI2gnf+HJVYkU4nY3hnu67nc/dP0ow3bsIxDp7oTxfxFO3a7Pssc+5AnvGfObdrfJyNTPkYHzX8\n56bWIjaq8GqDA7s1Bt7RbYx1TnzPp9ggQ37snG0oxFvHycp4+Vg6BIcVj3B83ryJD9nCnB9O6KRT\nPn4r4tFLdmWdsS7xAdapmjHxCMzWyGDhAR9DN+rXGYw5fzDPdYafNufsepVH/NG/azpB5vTFnxnw\nMZTN4o0/l2QzAR8K5goXnKdpjX+SMezfmm2t4PfJT9zAt6CLn+KH+C3+QTwoBuHvZkvn48V85/pp\ncFrHXu4vHLhw4O5y4JUpvFqgBKCSrvtbQm6REyhP5zYdoOcOgQ2HaWG32DsUMiyIAkaHYNZiVxBk\nHKcKnqDNPIJFAWk7SwTTAkIBt2v4mQccwUVnC6lgXIAuOHbNiTs7Kvw0n0Ua3ArMkgIBuMDdgmGh\nh1eL4m2p5nV8h098F5RLziRIkjwBCTnAX1AmMVB4k/xKgDR80PRxzAauZ84CE4G5RJWMJBb4hn8W\nSwt7f2oAj2ebcCcds88pr5tvzkWOkikFJjpN3octCYKzohk+0afode56wjklnjeBFW4Thme1FWf0\nsyU/a3X4Ai2Yl3wJWAU7bAqPFAvarSIBT/eDD7bDfc/So+YvGKQ3CmP3tuTOfPTFGLYpEaan3rFh\nMBu34h9c5+Z0HR6zv/cCT/+Rmt0fkuVvf/vbewGtwLz++KJooNhGNwSDEhPJuZ0CJZPm4nckNP3M\njf9SvFI4EjTmz8LLGS7N5f42WvyaeHjWwZYFxHjlkJzzF95L2uwcdJCT5h0/SVf4arbkkOTmL8md\nrz9sNsY/8EsO8OiBd3MNANd4RRIfSBRAwAeXTvA9ZEFPrSdgkKXndCd/Hq18t/HkpbhBruwbDPg4\nyHkWARQb9FekkLwonrEPBQP0mw8P4xu8XMdX5/W6vj1Hp9Z9+DqjHw7WH8kJHuCzhIUdVhA3Hu/g\n40C/sQql+MU/S7iCPedjf9ZkeuujAX5K1vCIP1dAJDN+3hph3VfgfLCtx8ZW2NEHThJ9h8TKfPBS\nRPUnXCR6+K3BRz8Js2Kp9VVfxVm7QK1ZcDHHbNGAX64daKSj8FLEBUuLp12jhdzQKwZQxMJDMYIi\nhOd8E10UL7Df5uAL8cVa6W/R8hF029iSQvPxY/Qx/aaX5ED36DFZ8hvmww/FXTDMQ2Z2tdmZz/dU\neIW/9xr9NJa+4rn54Ib3bAWO9NQceKe/g67TT/GSfvq4RoPmvTUv+j3DV77AMfuCI3aSHPPXPmSR\nVXqnLxnQWbziS4qdihsk/PjbxwTva1Nu0e2Zwxh0matrPBBDwh1P4EKG+uE9XUQzevpIwU78ssPf\nOURDPgM+CrTWOwUrNIDBrygmig0qTuIXPsBDS1fgiQfmUnDEA35U/EwufBPc6Ak+0Pt8Hf+pDx5r\n0W1M/sU85kQ3ewKHjPWhC3SaXCtgsCWFV300cbTdbz4Y0je67tcmV9uHRQVY8MAHCz76012+h96D\nj3b9+G80sIE+prEz/PUMrnyYGAI/+TBwfTjgFxRg8RbutclHz/DgSVtjJ7wnGWvcOg9+Py2cJ5lr\n7WPumut1TrLEc4VX/0GYmB2P7XZ10Hn6pAWLPpEbv8iXs3fyp8M2Q9x7WFzne9hkzXhHetfz9HHF\nrffnPkfXKqPWETEY/vDp4jt2LWbDp+gzNpniKT3EF76KnnvPd+DnOi6exJ9z8mHOha/w8izc43W8\nCCf39fUMjnRALCv+tXbTE3bn47F4mx03LrjOxmvNsd+c+B8yEJuIxfhcPkIuxleaV75qEwg8+Qu+\nhg6T58QZX7oPX/h3fWK0L+AuHLhw4JY58EoUXjkxAb3dgZIkzlGgzLFxejl59645RkGhpEMya6G3\n4FvsBVmcp2DTIuDQV/BnoQBXgGwhlNArCAkc2hEhoDCnlsM1H5iC7Q5BnwNswYXAWp9577n5LdaC\nXYuAhRitdvY4LApwQtc8blnv/s+iAq8aGeCHwFdQq5AoAPFlW5KgodMi1642CUGJTzIMJpkIwgU4\nNUkaeBJ1yY7ARRJt8bSYSmBfe+21/cuqa7KdLdieme/cLX0xV/N5RraKzwISukZfFR3RJamgM7Vk\nP2H07i6c4Rdt4bPyed6jX1Bm14vdnWR42AJOAevVloCxnQpwZEtf2IPEtCJOPDHfsUB0zudaH/bH\nH9AfvsBzukdnFUUUIxQt+Af0eL/SFX2d5zzX9eW3/vjHP+7JnyTUjldJC5nzARo4+EIXFHEU3CSa\niiN+tqboRi/oPz3nKxRi/K/tgn70sDeFV4FiMJ2vw2vvdAf+QXu8xgOFAz5Y4cDPntHJR7J3RWVF\nC4m94hDarQmSavqhkSf/WjEHD60BCkZkzz95z7c4NPrBv4PBB9NPfp/euVcI5MPJgF/BY3DN4blm\nXnTQUf3hrCjV7go+ikzJPBjwUsCg8+ECFv1HE/odbITukDFdxQu6gFeKC9Yt85mfz7MW0Qm6rB/Y\n3tEdzbWDbngHdwfc6ZZdIObFWzxQADJ2HW8M+slDEcTc8IA/ONNm94m3f5rTmqzo6pCwgqNQ5QCX\nnPCb3Von/Ccm7U6Fs3fkSZbGwBO/0YXHilT+My3w4UfG1lsF7b/85S/7Rx/ygLOi1uuvv777X335\n3+wGvJprOipxxhMfkOinBPP+9lGY3I1rDDzwpQSOn7MWgoHXisqKmeSvLxznvOZQOLVO2MFoLjIH\n3xh8A1vSjh90SdwjedenDwf0B8/wnB7RH7qhkZdYhz/mq/Aabho8wwdP8EYSSjZkhA8KM+RMB63v\n7Mhc6DEm/fNcX8eMpdAMFzpLlnSMX64fmaV3cEr26PZBqiIyfNCMP/yoP2WDZwp8+KihpUPfDu9c\nr+8a07vu4dAzhVe+xYcAfKVP9MCcDvxFL5zgRjZ8GL/On6EdD+guu4M3eYsR8ERBUhGAzyHb9AQu\nmrHalJX5yISuW08UzMgYLzV04peGDmOdHbOt9941Fi7WS7qABrDJn6z4xT6MKGLQef7Aet6HRfZK\n3orPZMkn0mm48x/4Rfcd1gPP8Za9WMfNjd+Krp7jS4180IT/eMqX+vBALmzGzjvzWoP1rU0epAu9\ne9y5sclj7Q8f7+K1a3PMNvm9vpv9TnU953O94g5XOmudteNVXGJdEWfY9XrY/NnkOxh8B39DbtZo\n9s8/0Re+3P3K2/CYzz1zP9+diu4nhdPc+q/yoI/44oObWMV7usUn+eDAdtOtxuKna7bJz/rI4uf4\neMZexMDWIj5Fiwf7zZH7nt/0vM4TnuC61tJXfePL1Jeeo88Y8ZM1hQ/mh/DDr/p8POb/+I34sk9w\ng3/C51Eg5lz6w9FhDRMHyPXJgq8U/9FTvku85QOfeM9azt/wW96ny+ad9M+5HoXT5d2FAxcOvFgc\neGUKrxJXO+MU6wRQAnJBo2CLA5SwOSzqHKPkQEDmcM/h62uMhUJgKJiwE0GAZxEU9EpgOWDJlMBB\nIuGZ+QSVxgswBR4zgJBcgA8HAaZFU3BtYXEvmHTWz0JskRUQmuvBtnvHXILScDGv9/q16HHkT7K4\nPA8VnovKxMlzi5LETuBxtRXRJCToF/Ci02LcLgyBNzmgEZxonPBde+8swBN0+/utAmeyF/BY3BUx\n8evellj6G5r+XmpFNDwJ5orvuflF18zdYT44KBTYhSHBspsDLQoEiq8CVPc1/eNPdPTuLpzDbeLi\nWQ3O8x5PFKEEZPe3YgXdJyuJqKCTvdktgTeCIXaaHZCxgBcM18298mXOBw+2ywb5BHbJDumeBF/B\ngq6an36xcW2FuT9c/pnzrP3Ta4H5+++/vxeQFYPWv/GafjuzCcUlRS98EIwLVgV//I454MwnSoL8\n/SxjDlsCZDeBv1GJl9rEzfUMkhcybuV24gcBtMUzNCoUKEIIhPkOSTJ+CIIVf/TPh7InepF/5nPy\nweTt4JfZ1Zoo8rv8MJ7y/Qoeniki4Bm+W0fYpQTSYY0xB1jWBsUVSSZdbodb60p+HX5gKTCgoSKw\ntYQ+ThmBIzFTaOMn4Gc+hVrytaaxAXPN9YpNWIsUPhz6tfbgMVzN48A/8+JZ/obO4bViBdvDX3gn\nq85gaezKWLxGh3t2hXcOSQ2Zao01r36KTvw0n6eQAg/9HZo+aCRbOqDwahfgfB/ensEzW/LcTtd3\n3nln1xm4WYPw0d90ZTeSK7hIlhVd9Sdn67TnWmfw8YaM8dwhNqAr+CQBpz/ND4YiqAST7Sqe0Rkx\nAphwwSd44R2ZeU5+ntMZBf8HG770AHy7ceBQI1cFOf7BOks/2QhY8FX4oD/oxEt6Q+/4OPjRT/Al\nxfwNPaNL8Ze8kpk52QIZ0cP4juf6owfu6RdaOozL95CnPtl5tMDPoZ93Dn2b370WzGIBHyL85Bld\naNJfX/GTWONvf/vb/nFPEQ+8YAS3e3Dns649n+3Yc/NaV9g1mfMPCup4hCf0hCyteWzCO+vc1bbm\n0A82qOEluSsQ0iWyZr8V0/kwc4UTXBzxFozwwwNz0Rnrj5/6gtkYc+I3WPomtwnD9eTLnMc7usx2\n0E6P0WpO8NDYpgf8MK+PANZ0B99Ob8CcNPLRcCMrZ4UNska3ORx00DO4ZS9sBjxze8/Pts6TPRui\nD/h7b4sRxY90x3W6jKb44zo+d/bsSVty0H8d37v5fJ13vnvSOZ+lX7gY63qVMX6ybQVzO17FHOy/\nwiufQ49mM0Y+RX/JhwzJA5/BR1vzTjp75uzwbsVnzvM8rsNpzhXO7JVf9rHKGgBXfvhqs2t+mS6H\nf2OCZ01jB3Z+y23xjC35tZ7C5GGL57T6dx28/eUJ/2keeLA7967JEK58GDlaq1pjmj7awtEZb+iM\njz4+tLB365/13jorjsOfU7XwfxS8iWf9WhP4P76Ln4a3HNW6iHZ08yX8WP6d3otB5Q78F3+kNcfE\np2fNeTlfOHDhwIvLgVem8CoZsEiV3EjKLQ6coSBAAqLgxwFKNgV93lnsBYcFmC0mgnJf0AXCEkyJ\nScm2xEpwJtgo8LfYCfxK5M0pAORs9fGec+WgPQ8PThkOFhjJEJw5eIVVNAkEFZIV3jxDF3jNOx22\nRfCutInXXGDgZ1FWXFJ4FXxYrPDHgoZWiaAdKOi3ODe+8zHYPSNnP0uzW9AZT+zI8p8XWdzBsxi+\n8cYb/y1ACcIbD7/mcT2fuz9HS27mcpjfQd79vIUOana7SgbaxRU+jQlGz+/KGX4rLz2rzXeeswG6\noPBKfgIeSdrVFrD6wkxXFNz8xFoSqrE5Nm58hZ0SreZxnjxuXme2WtHAWUIgqARDwqx4oXDpo4H3\nwdovHvHPdXQaQvbg+6nVJ598svsaCXc7sukz2wADjvgigFcU4u+MV7QRqNpBLnHRD78EsnTewZcJ\n+BVdJZSCwtnAd5jrLrV4l5zgNnnBLysI+bDimm9FpyKLAiR/rH9yNJ7s6Al/6+D/PSN/9McDvOUv\nFJ+sA9YWZ+uA9QFOxvFf7a7CV2sLf2490OiiNUOBUsFSkg+Gwim8+HRrCTyMVfRSbAl/c6QDO8CH\n/yjsKVTAi5/gL60fkhcHXQBfcU0/NkPX4h+4fHFroHs0tbbUz9oIlsMztKNFkQZv8GnKJxz11eCE\nF62z4KMXLvTZ+PrqD5bDvHacKZrZIWQ3CTj6a8awUbhIhPycU9LPbwYvvBoTbOP5C/+Jxw9/+MNd\nfmCTE7/ypz/9aecp2dAhH1z0s17FJ3M4yAZNeAEX8n2wFSvJGC4SUjLgp9pta36ytgbawWRHJj3C\nY3TD19z6a57TT8/TJzEBGzeXw7159Il+sgW7wiP9pPvwhat11gdJuKKT3tlZaH0hHzalMHd/+/hl\n5xV6jD3GV3jGDzTgS3x3Dq9w07825eKZPg7P6z/79Mx52qux3btWJPcR9s0339wLmWRnjIMOWlcV\ni/xaCg/hGG3NAY7W/I3/+un//3cd7x5O5sZ/vgKf7U5lp+bkF/h1HxPJXD+64ddA1hvjzasvn6RP\nu2T5MDIt3oSRfrXwdh9NnoFDB6yhCkPJN/zpHP0Rs9I5cxqzwtkfPITdXOZxjWb4p3fwAss7+n/Y\nikcKFWyR/fQLBgUNvit8+RB0it3zWdZG14q64mjvwGHHdJeu8rHWPr4PrdZFsMTfcLq3FVXxjS/F\nf36ELMjFnxWxXlpP8CG+wCm80N7zzvHjcedjMI6Nmf16/7RzNe5ZznN+19nXfI7fdNd/rkWfyMZ/\n4mnHK9ngeS3c+X6H5j2fUauPObrunWcdcFnf1+95nScf5pzwYi/WZx/KxbOeVXjlZ+lV/PSOfWTr\n1hG/9vr444/3tQhsOvu9731v/1NUYlItHmXzwdtfnuifaJw4Am397QOwDxd8hY93Yhi+Fy7RZGwN\nPP4Xb8RuNkxZa9DnT/mIs/GJX1vbxGV9d4p78DvoJfzhHu103XrJV4nBxV7Wdr6FL0EDH69IrniM\nDj6KXwoOPCfcU+B9gXHhwIUDd4MDr0zh1VcnSYhkkAPkOAV9FrY1yS7ZdrbY51AtBMYK2ARq4AkA\nJduCMcVWyZBgAXxjOWbOVqItmDMfuBVxOFvXmnncw0fRV+DpKCEFV1IrUZNEV/S1W83cBSktsNOJ\ng58jdw2/22xwq01cPMcrC5IdPoJywbIgG52CE8VmcrSoH6OpwGTCBxefLXYKZL6amkOyIJH2t/ok\n5RZNCW47Ci2Q+P8ofJvnXOdohEO8coa7xV3hsV1ckjEJgaCLntX0d4Axaen9bZ/DbeLhWS2co6NA\nXkKsEM82C1gFdYJSO3QcbJOtkyvbUhhgQxItcNzPuZpznulUxYICV3LJ5iRiihcOems+MOs7Ya3X\nc+4pY9fmoPsKqXSU3tvl58PB1VZklvxO3ki2FUIEq3TCe4UVhVc6wQb0l8SyI0VXhRX8kOgLaBWx\n+B1twn5Selb6znl/He/MiXcPtmKJohA94a/JUMESDxVfJdb8ixZ9eCRBIDvXzg7wJEp0TXGAL+Z3\nyYRfUthyT5/4fEk/P24OyYaA2xqQPzHeWkIP6ShcwbJWKfDRTQ0OfCI4/BE9J0syCj/9VlnBRUFV\n4O+QDFhfwBHo01Hz4AtdgYM50amhuTXMubm8R6NmfcMr7/TxHH/oLF5N2wq/feDDf+L5TKyD7xwu\ncww4DmP4cDbnYxO58nnBdMZftNkRJLm1blo3vAtOc3RvLrQo+EhiwSc7Y/DKblcFBAmlfj5s6CMh\nVETwTF/ziAfwgV2SMxnwTeIHNqiPA7/gSieSwWErOvHnV5ud01W0TRzxGUxyjmeegQE2fTIfeHAg\na8/M3xxgSvC/9a1v7XP56OgZOHgl4bU+umYn1mP+DZ3moPMKKtYhc6HbkX50T5e6xt9Jh+ezrff1\nd57vwHiSZ+aun/Hde2ZNEA8ovPJ/9Fjj1xXbFBvt9uRDrLdshm2bG0/5AWf9o8kcE88d4PaP956H\n9/qcPvMPfJNiO9nDj37gMxzYMV2xxtELH1rpprFgp8vpgzN6s11zmr9+Ky69Jz9rgmKjtURsRPfp\njQam4pm58cNzfotO4AX48WCl2Vj4Wpv4ML6RPlUUhRM+85/e86GeKZBa2+xcVxCno1r9FXIcPhCA\nBT/XYFufFV75Xg2e+V1+jz2SNzrov7nRxgcYQ7fzo8aJI8RZdm2yf7DTK/RGu7nicWfPnqQFYx3X\n8xXGsX7rs3XMKe4nPq4nH4JPh+VK/CZdqvDqb3WSGX3Qwhcc18Gez9d++8CH/zSmcXDpeo6bY859\nvc7fPVz5DsXFfkoPFxsH/ILDR7xjhddoVMj0Cw5/8ob+em4sXyY+pLuzmdeRfOa7m15HEzjwqPEF\ncLP70xpMD/hZH0zlYuxU/xUn8KydYnv+Rxxv7bq3xS7WWj5bLMT3zHYdHrPPTa/Nkf+ceCcX7/gR\ndIu/rI90H/7WEDQftrXdWmozxKXwelOJXMZfOPBiceCVKLwSiSBNsCVo5RgliwIswZ+g1MFxduRc\nLRSSJkmRwK+dKb5gCYYFo4JvzViNMwZP0CdwFMA5m08rGZOgCUAE2/CQFFtIjBNsSrYFoJy4JE9S\nbl5zwkMhUnAMx+aeC88+2fJPC0ULx/L6ud2GrwknzvBDs8KARVZQpi/6ffHEA/wzxvPGTngR0bP6\ngqmo5H8CltzgtYBacmlxt5tBoCBQt6PQ4m5RLDgIbnO6b47enfpsrvCP3u4l2BZ0hTNJAT0U0Cgq\nVzCuL7zIHIxz4/wsPJh4Nt6z2qTdc/bcTyAFZ2hTEJCwKlKQq4KBv7ckAGJnbJDdC34kW2uhqbmO\nnSff4qN+4U2XFC/8p1d0iz2H/+P4XT/worNrCTDfQz8VSeGOToVUu6LQ0xhBvOSRPtzfknSBHl0W\nxNuRJ/ksQQeT7th9IvBnUwLiEn6+Z9IMR0f+A353oYVXPJ68dK1gZMerwrVEhewULe0altgo3PEx\nfHF8DFb0GcMv4BG+0Rtw8ZdP4ov5Yf6d7+bv+a7DFlyDLYmXQPFrcGKn+htvDeHHwePbwDeXZN8Y\n8Pgt9qywCHfFGD6JLOGmTVm5pzfWOx/n2An/oGAAH/oJFp31IREekgP8YTfwAzfegtURf81H9+aH\nQ3hbK9mma33jaddw0+bz7ucz17Wuw2f2Z9N2TvF5fiWBXzXrJpr8VNFuV8Wa8K9P985Tt/Hen215\n++2398KKQovCkqLBH/7wh70ghSeSW8UX6wX70cBKV/gea5eiJ5mTLx4ZS+fAddANDc5iFGu65/RI\nkc08+lSgMAc44gGFZXCN86zx5iAfMscXMqVj/IOEUD/w6KlE3XoncadbZEgvFav5HbwDDyz6yJ8a\nT3/gTEb4B28+SjHYc3gmV+djstwJ3/6Z77ruXWfwtPm+Z1N++njeu7W/e/prraA/CkDstoafiskK\nG3aV8at8IvtDP76hMbsl77WZ2zyOrvWZeE2c6QMc+Gv6rKDHd5Cpj2R2nbJj8Frr+DF6Aibeszsw\n0SYGnfNm080JTvh453m4kiEdIXtFoQqdjXHmo+ilWBU/6AOfQ+58SD4gnMDXjx7TMbTRJwcY4mAH\n20NTZ/3pIz/rI7P/WAsf8AVMdPLj7M+Hg8kP8/HLcHV2b51ky+ySTcI5fK3b5oUfXOCFh/yo4pFC\ntL746xdTftbtb6fzyfEvnk7eexbvXD+qGacd6+8dWc13XXcO9jp/z099Dl9wXeND187wogPiDb8s\nE3OQEbtTRFO0JpfZ+Bpwgg3GMfp639j6eV7/+nRf3+d5njjMa7pIl9mYNZhsrc3yFB9e+Jz4CX9j\nHXSQH+9P3uAvnyy3sYv4avsoQ49Xmufcp6Y/3MwZruawBiq6WjfZHZ/rowX7sbZZo9aGD2j0p2vw\nRo7mgyHeoM+HVr64nNr4aAvWSnvPb3o2T7AfNScarI/oFydaT9UQNHLlO/1Kh8/na6pBhF923lw9\nv5wvHLhw4MXmwCtTeF2d2DHn2WLhnYVfIClZFfT2kwFJqoBtJhU5RmfBc07VIsGpOiS5xgj0JGEC\ndQuqAETgIQgV7FksOWHPBSP6ctqKggpMFmkLkIYmuLYwuz/W4BVtvV8XjJ4/r3M8M9/EpWDL2YKM\nn4ITgUX0Guu6vmAELx503zvBu0TG7j9BOh4rXCZbxSeyMd+9Ldn1E1NFqBJR8II58e2Zec7Rohmt\n5jK3w7XARCKgsEQ30CNYU5QT0Eg2tHAEy3X358D3WWFG0xx/HZ/RgXZFVTso7EpCk6Kz4oHCkqRM\nQUIwK/BhzyVdbFrCLJn2XMNfLTyau7N35ug+HtZfIqboaqe0ZLiA8HE8Dx742jqHZFqwJvAUhMJX\ngcnPY+0UCm/PyV9yquDMXwj6FOwEuPRCYA4+nPgwusOvsQGNXSg2Ser5n9ng6Wi++e42r8MrHMLP\nc3QqNLEPBST64L1gl4zsFkMr30s39J80BlvSr8iCtwoQChKCaLDpEN/Eh+O15B9M9qfQjY/ekwWe\n893G9uEOTPpoPWjtUNhRQHActqIYfwRneLJp/dI/dHcNfy0eKCjAl4wVXxWT4Ed3FO0VFeDGVuCl\nCGx94wfpXYUctqYPPljDzKdAgTbrGt9qTn3oKtrQaFz44KVmrL7xtnPv6te9/iXlyacx3pmfv1P8\nZP+KON7rW8LHRyjYoFVyY13xHn3WFnAcmrFos1ZYAyR55tBPIc7f+/z000/3sfCSIPuP7vgda7fx\n+O7jKLtyVsz2nP21vuO9YqjCscPz8GLH1n1JKr2BM12iB+Qf/+ikdYt+o1VffoDvAVvc4U8C0Esf\nYOBLPgrR/i6gojSemJfPtLsXPfQPb+iEoqP+1hfwtfhF7nbt0Cn6iU90x+7v4hTw0W4MOuDgHp4O\n146bNjwBe8oR/Gxi4u0ZG8JT9Pp7iIqdeGs8PeYbFV39x4PkQHZ2BjsOm03qg398CnrJqwaXeOS6\nwzM44a1zuDrDB1w6DCf49KEQbP6cHisA8gP8V7EMO6QLiqX8CLnoQ6fMXUsO7uNLOHhXXzYu5rSz\nVKGMjsG598a6NobM6RZ9o0eeg0nuaEwG+rpmW+Jc+i9Ohru1E+/hSyb0z3s89w48dNHdCjF0nj/1\nnn77yb8CqGIG/NicNZ7PM5b9OlyzL3rKTtGFX/BAQ3yDj+fkgq+KhnwIvqCDLpMR27dmwjna8Re9\na4vX6/MnuQ8eGK6Pwbru+ZPAv0mfcAPDdXrSc7jSBzZFn8QnZO1jB7nhO9udzVjHpHNe974+6WN9\neh5Ozr2b8zyP63A1v8O95rp1RXxifaGP8kYxm/hEnjJ5Q7eNs67w4dYjMQTbw0uFbGsXO2q+5GHO\ncJnPPL9pg1d0hS87gYP4xofvd999d7c/tuLPWcGXv6MLawOPnYpdFF598ARHjGpdxp/D5i/5k1q0\ndR/93Z/iHJ3xz5zN0/y9az5jyLUPlfiCR2TGf6JhxnTBbPzlfOHAhQMvFwdemsIrZ1XjCI+1FoIc\nI4fYtXeco8BMgiFokzhZDB0SScG2fsYJ+CTbgk6LI8cpuADDO8Glr+DeSwYFkcaBX/IqeBPg6Ws8\nXMJDH45aACl5VkCy2JZcoTFHP2mNnvnsWL/5/ravp7yiC049T7bOnjnwcvZxXb/9xfZPfd1b3BQb\n/LxFcE1OZCx5EkyTrfH1k0hLgHxVFZRPvs55wrE5z3FGa7SY2+GeLtFLwYlERGJiF5+fvCoYw1vT\n93njfAo+hPPkMV44BGUSQ/9LrmSM/SgeSIYUJvVRSBLss6HsuoKGpIutxU82i18OsCq2sUOwavQg\nvDp7x5b95zoSMXhI2ibezXOdHgV/ysoY8yvw2SUiyY/Oq21Hg8Jc8Oiz5FsRwM4cvgJOCiMSQ8UR\nwZ5DX7s2FUck9OBLghUMJfR0nh3gD/iTjvC8K+f4OnHsmj9+sBUS2YbAnz/3Dn0KKBIbuy8k+Y1x\nRjf50xWFVUUtOoRnrj3nL/AxH24NqNCl2OWaLoElcTeWPpIPnitOKgqAgcfWEnhJuhQSFBAkKHwV\n2ZAH2a3yoJtwDn/88Exf+kBn7IxReEUL21CkJGc41x+vJIH0DU5gOODv3nM25NDYiwIfPTeXvmwS\njYp0PoYoVhinmSddTWaew9v9bJ5Fq+d0Hnz4zb764ZvdmpJ4+otPGnlJ8CW0zmRAVvqTC/kp3KAH\nbA1+6OH3wfPhjW54bg3uz31YMzT8s8PIzi0JJLj0g55lW9YWc5AtXfMLCkVKibGYwPqPl/FmB7z9\n00c1vl2hH63pBr0whv7QJ7GBa7yBg5jDfA56qLCBLg1cH3H8PNWHK3pubjomobXTkq8gW35Bsclu\nJTqLX/rSyXRUks/HKBLSIYVBxVpzWJvwlizxHc3w08QxcFbUhENydUaro9a7nrnvmT71h5ujfvR2\n9nPdOzxhC4qXPkqhmX6wETy9v/1igN7gAXv2ns2gmz6Sq/fsShxBN2t4TcYOshLfec8e8YTtu4aP\nOfEu+ObATzEjvsFXX3qgCMyfgeknqooQrtko/yJeTMf5D7J3H83hRyaexRvX854Ok7s/sWB3abGR\n8Y1xjdcaetlJsTC9xiN9i4nZH19AbxVa2I6ig3nJXz+2gG5xM3juwTEPWYpvyIY/41vANDfb+/73\nv7/Lkh6ToXWfHcLdHGCY37rvPX7x4+SCR/SSHOgo/Nw7+BMwrKf8mjNczcM/sBlrCZuIh/HI2bOO\nnVkv4T/Ri7RJc6Tmu8lMsdDawP4UCX00w0u63vhgNH494+eL1CZ/4D7XG7pEV/0pJHEsv8jHKEyK\n2/CJfmrgOBRa+WQfhvwNbnpLF+2+5hPwMz94Cl6F/3WwwguO+YTGhK8C8W9/+9uddvblY5ePmmJl\n+E7YxuCR9Yat+/DnzL9Zb6zN/rY136d4WWvO7p0n3Pn8lNdPMm80zb5wm8cpcbrAup4Dqwyu73l5\nc+HAeTjw0hRej7GHgTlybhlcz1skBH6cukBOkCvAk+xIWgULAmtBm8XAGAvHYfvaJiAvsDaHxBMM\niZbF0qIpkCzZ88x4waeAziFwFFxKiCQivsTDwaLjEASbX8BtUYZD+HdGezSufJg0r+/uyj3cZwvn\n+cx28sapAABAAElEQVT17Df79Hw+a2x8wWsBjaBeUkne7fJKtvpKCAQDBT5kLEFIV8Cd8zR3853j\n3Hzmcu2AD7zRICnzN5AkgwIThQjJW0nubeB8Cj5MuoPnGRuQQEkK/d1TRQG2hWb0S2Ilo+xGIUDy\nnG2xUXYkkYsvgjd2zFYlyZIAfQS4CgOCYw3/9U0OngeHHdvtqvCqwO9ey2c0xrkWfd07z/fG8iXw\nkORLOvkONCoOSRLTS7rAV/hIJBhXeKK3eCExxRtNf/4OTImk/hJRRVxw4c5G8NP88Al34yd+7m+7\n4aHjGJ7kw28qvPqZLl9OtgpYeKLgIlGpuBadknH6RW/wSZLOF0vU+Q18AWcm54oEEgg+XxLOj9CV\nCi5sU8FOkgUPuzfSK+sJ+Sgckte9bWcj2YJhDjKPPvyeNLtfZZJekSv50h2FFPcKNpIeRWdyLuGd\ncIM/z2iuCKsvPaIjxsc3axh+m0vxTbLE3npvXLiGo2fzGtz1sD7io6O+zvopML311lt7wdAuYzjh\nKxvwH9JJUPkADS8VhxSG+IM+yOwvH/5DBgqpPrz5SIc+dNEhu7UkyHyDudmMnzxKevuP6xTWFF35\nZH4Jz82roGZHHvjWFHpiTQJntnhlznb34aPiD72Ak53uxqOTzeO5/vhE9xT88AJv6BD9aR4y9MHq\no48+2ncRGafhmyKIn4AqSBrH98HB/ArP+rIV88NjFnfpP9tAez8NxQvN/PoaZzzZiXHgzS7QRr80\n7/AgPenZ/nL7p+f6OWro866z5/gT3MbVBy/R6UCLIqX+PhwopvKNrvlQfpH8FM3xhfzFhnRLXzGf\necB2sOF8CxsDQx/2Tycc1m26hR/g8kcOH0wVUrIr8MhYkZzu8Rvei2XQwOfgH1mxD+sXvaQDzlP2\neBLPwO2+a/f0Q3GR/SrskH9jvK9v9HoGV3jQN37LdeskePRGXMsXkA9dYYP6eO+5PnCl1+gDA9/C\n3zrLByta430xuT7s70c/+tH+YUN/euXjo/WSTfCvbA0Mdo+HfDu+mhst4JAF+8FD83ePZv35Ur6b\n/MUL/h66j9xsWv/aqpvGx7f6vEznqR+uV3rxV3xCbnSKbyRnHwB96ME7OlSb8Ho2zy8aL+MJPtD/\n6EMHnyPXtFbRWbbMV/rTUDYR0MF4Yzzd45sUsH3cotPWcrtH7QIVw/Llc47Ju2e5Dv9jY5vHO9fd\n54fd83sffvjhN/785z/vtsa+5Sj+NJd1U6w8ZWoMWuXhYheFVzrjmQ9l9IZP5mv4kFpzd+884c7n\np7y+rXlPScMF1oUDFw48Pw68tIXX1Rm654QdHLgFS1GjIEwg7FpgxuFLygR3EicBrQBOAVVCI1m3\nOHL8kipBhXESdOMk6OYRXFpkHAJ2AadDkOcQDOpnsRUE+kJvETavIFOw7p3gUEBprEUV/p5JdNAh\neI2+VGfSP697fxfPeFFbce7d+rz+3q/vPGuc4EVAje+CgorteGicg4wFLhIghVfJk4QsOTXXnCf4\nvTvXec7pGg3kTj/9FFAQJqGTRPqSrIAm4Zj4BWM+Oxe+p4C74ts9/Ze4C8jsypFgsQuJvQLW4XDY\nbVICpmCgeKaQxt7xLHuhE2zKOIkseyZr9s4HsEdj3YNPd0oS2Lxkkq3Dq8Kr4qtknr16Dlf87ph8\niZ75bMoGnuxfcUKxBJ3ws6u5v9lKDzS0SQ4F5ZJDvkPQrgjgQwJ/pcEHTHy5v+3qAtM8AmB6X3EB\nXPjBZ+I58dsB3vI/cAvPiatrSQ2eKBwpvLIPNo5Gto2P9EUSSBcaT970iy/GJ36dv8UnfOFHHHy6\ns+Dfc7ydh/nxurUBLmBZZyo0WFPoHv6TlYKJ5J9e0il6F17OWvJYnycK7+FhTZPMKaIoHFpTFEck\ndGjvoxL8zeWDlGtzplfOjuZe5/cuGZiT3Ziz4ps5J55dg+N63oc/WXSQl8ZfW+uayzi4+gCh8Ep3\n8U3Dcx+i+lkrG0UTX85+wYAX38mOwTKPHamK0mCSCdnqSwckxnQoezGG37jadp7bfUOn4OO9wrNd\nXRJO49megqa+Cmtkri8aNX1q8YOekJt5wUI7/yOWUFBTdFPUE3/QM7oJJtiHzf/pA/9kGVx9/WzT\njlc+hV5r5CiZhWO7wPFREU7hmv+0nqAFrfHS/Oawjj7Y/K0CIfj96R5w4ZEPgh8cxEn4A3aFS3jg\nBVwdtZU/9ZvnOSZaG+ceb/CPXdFzBXg08Pn0xjN6AieHa/4zv4huffDBe/akKEnfyYYswUEn+8LD\niq7e4aWiNF/kzL/wOz4CKdw52D6f0toRHWJDOsWm6AVbpQd4if98P58FPwVBcBxiGbAmb9goXUGf\ncWQHhnUFnnwV/KytPmwqdGrBIE9j8BZsLb2jc/hJT+AIXj6QveEdO9bSS3jDhQ7oO/2Qa3YJDrz5\nTAVm/GC3mvkUQP2ZH/PrY/3zCxF2ix/8HNnAXeGK3aOLvroOJ7qBF+ROP9iYeB+fk7viIb9Kdgpd\n/mxLf45qR2j7B2/SPc/iXe9ftvOk1fVKL30jLzvz7dpmN3jsAxfZ8clkY5w24R3jVf2OvbuLz+IJ\nHZ64u8YbH6j8DX++U0zJdq0X/Ei84WPYkBjGBx8FSTbDbyj+60vX2eI6xzl5kqzM6Toaw4HdWL/8\nfVc+k5ytM3bn+rgpHkn2wYIvetmZNQpv6A7/zeb6VQYd4kdqc3zPwqP7c5xva95z0HKBeeHAhQPn\n58BLV3idTjCnazEQ1Dlz6AJOC4KiigRBgOZaMOyd4E3A57CQSRwEeAIsgbVgTFArMJRwGGvxtENC\nUi3IEMQZJ0AW9AlGBcYFnPCEj7kEf4qtAl64CCzhaX7FW7DMP4s+xpjL4it4tYBr0ZzqTH707K6e\nr8N9fQ7/lS59jj3ruXcW+MZ6XlJCDg7PBC8SaT8hlczjOx2Ybc5jzPNoc07zRZfEWYFI4VWQIkkQ\n1Cis0D1JSy0Yzwvn5n3W84pv93SdrUoM/ZSY3bEVQRwbJTN27LldKmyKjRiPdjYoiCu5UmSZRQwB\nrsRMEYWdGSPRkhRLzMzPfzzYEjeJN90B058aeOONN/5beEW3d82b/sWP6OneecrGPOxb8YN8JX18\niJ+g0U/4J19+iA+yM0BhwFg0KeY5FBnM55BcC+Al13hET662ggudkbzya7NNPCd+s89tXUcTvBzd\n4zUeKPDgiaKZhM9zOmLnhJ0iCq9885QNmUnQ8ZHuKJhWoFKgoAt8MV3gm+meeRVXFBHopgOf3dMV\nh/dg8zvWBPJTFLCepIPg8jfwiZbJ83mN52jUdz43jr7zC3yCgo1iqDUwO1E05OusUWjAA3Nbb9AI\nR7oFF7rt3mEucLzTjx05g6tVeKVbdJYt1eAYnuCAkf7iy7QVz/VxoNGcDrRpcKLTdpj76SE+wi/Z\ntRteMkt2+rMHuk225MFHgO0dPQDL7jmw9PPOGmunYQUDRRo0wMMYCS97pFPmt4abW+GH7uGN92Bb\nT8gcT6MDrEm352yZrZMbWOSoNQZuip/0lx6z3/hJjtaAVafDmV7A7ZNPPvlv4bV3cPNRmW7QTzIQ\ny4hFwFMQUCg8bIVdOoN//JN4pZ2IdhqzGfpPXvBiL3aM4isdgwObQhf/k11EI3y08Iru9Xn96+u8\nNnqJFjTRF3ijCQ7oImPw3St6SPbhDVcfZ/yMnGzJ0TvyZUuKCfqjjw2xX/JVtCcbMiEnsgUbP/gh\nY8WLeIuPPpDyz67ZkhadruFmDeK7/KkLRUX8okN4qfjAZp3ptzXw3lYwRCu84OeooZdN0i8xZ/7A\nGDSSCxne3z7KwdfcaND0BZN+mdO1Z+iEi+dkjceeoRH++M3e+EO2yIbiOxnQd8/RJR52plfeaWDB\nDc3GOvDUPZ30kdxhfWavPj7ye35dgC46KyZgn+YiC2sl+zQP/ODqPTr0JX/jFN6tiXChq8Xo8FJA\nUgiiW/hRQ7OjRp5Tpj1/Wc6TVtdT39BI1niseGbHK/mwDwVDRbT0NB4Fz7lnk1fHns33d+06OrIj\n+EcD3tBDH6vYHPvjCxSl/UKCLRlPr9mljQb8Nz3mU/Wj+/T8WGueY+9O8SxZNc+klY3yM/5jyy+/\n/HK3f7T5ExPk7uNUPg8uwXKmL2zUf+6n0Gx94dMUa/3KhN2Lv9htrfHdO4fXfHaO63Xu5zXvOWi5\nwLxw4MKB83LgpSq8cn6OnJ6FTsBkARDQCe4kwhYxQZSfiTksfIJtQaQAT0IqmFJcFdA6WzDsehDc\nCtD0F0gqigjGJBHgmlMAaJEQsBkvaZHcwaP5zSkAdviK77mkVR+LiQXJXOYVzMJLk+wIHPV1CGjR\naN7V+Z9Xdc4DPdk54wOZODRBigPvndfW2GN8mO8EhoJ5ssFni3wBuORBQuuLs0JUAfuca8IP7nx/\njus5J/jNS/YSQoGbnx/hlcBGsr8W0YLR2HPgeUqYK77dk72kV0CmMCFAI0/2KVEShOpjp6hgVaDP\nZtgIO2TPil0KJ/pKtjTBLFuUGNvtyr7oisSdHrBDtq9ww375EH3A1c9/TvPmm2/+n8IruHDB8zUh\niR59alM29Jx92xWmkIUW+qrY42fBfEyBJ5wEp3YV8En0QPKIH3ZBo7kGdwUpOwngLwAW0No9wXdp\ncIPLxHHiFqzbPsMvXMMveXhOnooWimd4w78qjPi4wkbwR9Lc2OglM7vLyFgyRN8k/PhdEYAu5ZvM\n6b01Rl9rAd4qXHhGlsbRpcPm0xW46J9rspF80q2JR7ThsXnDzb35HODCw3tjG8OnKa4r1vRxQp90\nUd/GoEGCR7ecFfcVNeDrmm313lxge8YmFHroIduAj2IOe5McKjIpooSXs4MdgAM+OBo/Zo12ng09\n4Ea7Mxj0VGHsje1DhwSVDUc7GSv6KrbDQ2HQnGhCP5459McD6+wPfvCD/aePrvX13poMjr8jjRb+\nQTO/Zp2QQCq2KdIYR9ckmRJGuocv/DG/QO/wODzBACv60I5fD7YPOooU+Ci2YM/W/ZrxYhQJt49s\n4JobHHxFJ7rI1RG+xqEfT/7617/uu4L5l3Cgf+34w9+KUIdNR/lL/tW84NNp646PU/TMGZ78bDpm\nPrDJWGGSntMndoI3xhe/6DvbxLnnPet+Pa8wvGfbitN0BA1wg6uCAH8JD3rnOf6RD1wVNRRdrQ/o\n1U8h0jqr+IkGz71vl6siHP2BJ3jkSW58gPmMtyaRiX50hh9wDU/PyQ+PtOjFU76fHtrpxr+g1Rg0\nwVXxlr9nk8kOrNngRG501Lop9mXLCstoFQ+Zy3pj/YOre/aksdcKkuyeL5v+AT5kTffSP2fN3HTb\n/Pid/XmXvXmHNvZqjaroyzcq1ImjyYjO6AemjwXsEP76GeNjq/WNXvJb9I5ea+Zg1+kd/Nko2vEN\nTWDS84rYzYsfdh7jn3iR7PzyhAzAT17mIZ/00fP5zvuXqUUnmlyT52xkxl7IRRGOX6OnfjIu7sA7\nY+JR8Jx7Frz1vud3+Rwd9BX+HXDGGzmg2MRueOsn/VNQFZ/wyfJM9u8XHNZyNsve/bJNHMgvgwn+\nyvtz8is5Td6jh83DBS0K7Z999tkeR7E1f17AeuhXYcXd8Sc4YPARPnz3AVc8JY71ixR8oT/80aT3\nGD7npD98j52P4XKs323hdwyXy7MLBy4ceD4ceOELrzk4DozDzhELeiVKFTZLgjlwibRijZ0Z+oAh\niBZoWRAE6oKpdo4IKC0a5hCECtzAsDBYEAXVAnNN4AaOw4JYcU/gYYygXX8JveBPAApuDljwLRAU\n/EuoDlvSI4AWMAoqBaQSFsGpBRk+6DY+Xjwf1TnfLGRYYu/LJp5ayCUBeOjAz7XFw8mHY8/I2sIt\nabL4K1rRC8G8xEsQ7ydQ7XhdE5hj8FdcTnVvrinb6Am+9/RCMv3FF1/siZ6/96QYQP8kHlo64nqF\n4dldbPF5xZfNkJXihuIhWxK8KxxKsNkw/aEvEkiJkmRSMCe5aueWwrTgjR092Iod4PALCgh0TKMn\nbNkZL+O3oNLBLjU68uMf/3jf2SYhY8f60uXr6Oj5DuDhP1PWZAa+AoHdb5JJQa3Cq8Ccj8rf0WEf\nfxQGnOm4j0d4ocDHl4ENpvd2BN3fdlgoDFxtu119aNAfP8Krs3Hh5XyXGhwd4Qi37l3z/4pXCq94\nQwf4Vsm6AF7RmU4kJ/yhX4oExiq+8rl8Pl+rXwVSaww/JBHCR++7JjeH92DRD36MzBR7yYRelbDD\nmWzN79o8K68918wBprPGZ1mfjI92uFibJD4KkNaMaIRL8jRfc+7Atn965z4cwA22M1jmrRDD18DB\nOsh+6Bje4VHwGm8s/UQ7ffMen6zFzny9pj/casHBf/MqPPpbcewNLpoxYJC1pE0yy67h0fzBcU8m\nfP2vfvWrXR7JlrwVWfxtOjDoTc14+NuxJfmlS+CYg035Gb8/dYAeNuXvTyoy8CHrWoLW6Lem4x17\njxd8GF76ZY5n+mriiqvNbiWy1iu+iczhUCMPz+mFFj8V3KwV+CMu8txRMwc8FbLYinWQvvKXYPK9\neKKQqIipCKXxeRXUjsEDEy76wNX5ugaHCUO/aL9uTM8bp3/y9QsBOgp3ayX/B/fkqi/ZS+7pk6Ko\ngih8+QFFPPRaHzTy5z/I39nHB+PTV3Dx1q5L48R8CndsVl9z4K0CX/Khw3gMT7zKXtkUfn/88ce7\nTuKdd3y6D0iKV+uvFeJVvHDmj6yHdNoHBbyAb2vFYYs1wRWXiimsi2SbnKyp+sDdWqsYSkfoBDsG\nx7x0GlzXdMI4h0Y/py16T0fNiy76zlc92NZjflfDI3ZE5+HivfXce/PAiV9VIOWHrcticwc/CTac\n8jHmhy+4is6KWMXa1gL4xH80RBPZ0x22jXfWVnplDYGbfjX8jvfB6N3Ldo5OdLnG764747112OYA\nH7Hw3kcjcUeF133Q9k/wyBasydf6vEhn9KRD6UI0oZGN4Yn4zkd/+Z9fXtjZ6T2++cXFV199tcch\n1pGf/OQn+5rCV2j5kHgXf5qn+1Od13mCaz7v+D8fij7//PM9DuEbfKT42c9+ttsNW621BsYb93jC\nZ4rvfWwS39phrmjL17FT/jZdA+sYTueiP9yvOx/D5Vjf28LvGC539dnKywvP7qqkLng9KQde+MLr\nJNQixSgFtwJHCZfAV7ApoPNcHwGeAE0AZkEQwCrGCLodhy2QK2EBT9Ag+JVISo4E0IIwwaHgWtNf\n4CygK9AUkLoGQ9ArUDQOLAGkxdIYwSvczGMxsfAK+gUnghL4SgTNJehUJDTeEc1wWB2UZ3ep4cPj\ncBSISz4E9g4BscI3+QmkfTW3G4gsJiywHRqePKqROd5K3hVeJbR4ag5ytLBLxiW0dkvAyVzBX+d9\n1FyneNd8zQ/mxEcScH9L+AU59Ewwq/AqscO7xh2Dcwr8zgXjOnzpPVkpvPrplQ8oAjEJsB0Afr7J\nDgVwEi99Jc+ujS2pKknjHyRydIpt6mesoI59skU26Z7P4FvYovF0zXPvBZV+9iwYxvNkdB0dPZ/8\nM27qL7+gCGyng2SZj0CngpOEsYBbYIoGBQUBKxolo3RYP4khPOGsiIN3CnP4ZNeeQL9CA7z0Db/0\nZ+J5V67h6IBjeHYPR7bBXyhco9k9u8BDRXo+RnEGz/GQrjj4A8G/4gP/QB/wir+oYEiXvFOo4J/B\nds0G6QkZ6GuMOfoYd9jWF4kHP4TP8I6OY3xPH/ST0FiDFBfgxr75MbtkrDfxwRjFIkVXu14V7zyD\nD5oVMvSHP7rh7ww+HXGgg74ZBz8NfuHjmm9EJ/13xicw2BDdxSMtGrs2rnXSO/wyp3Pw94EP/2l+\nffGNDBWc7IBRPOG3NXOyYTv62AIdb70Mhn5w5zOutuKlvw/pbzWWyMGDT/A/MX/66ac7XuFkfjaH\n54qePnKZ3zN+wX8gYleXGAGN1pJ33313/5gLx/gAnjH4Rd8UW/kx6zs86AqdgbNkXCHZDn+xgLF4\nLWbh7yS0+oOPLjDxHX/FFuDlJ7wTF9mVO/UCTzT41YyhX+izJoNPJ+gefMmYvDRz0QE6lT6Fq/fw\nmg1dUx7eNff6fL7r+lgf72q9h4/ipN3R/BteKzzbdZdeNC8aiv/YJ5zR8uDhRzn+QN/DZr/kzm/y\n9eybPMiF7ovxfGDndxxsz1i8Mh6f7m0ffRUuycY7dkje9AVsss2ewCOr9957b7d987AB6xz9h4di\nrmfRAnc86J59K+DYNQeWOcHR9DEX30DG5MbuHexJP7DAtB7SfWuL2IgN5RONpTN0L9ln5/QIfulh\n83rvOd5r9Euc3FrsOVtX7DUf/tJfH1MVq1zDnf5b41yzX+s9e4Q3GA66gEY402djHMXZcIEffnSk\nR/jlQ4x4w99exhOFMR9fyIwsG4MO4xo7n3v3srXoRJfrbL3nznwFX+w/QyU3/Oc/547X+DLHvUy8\nm/aGLs0zuiWv8YGGX2UP1mg72a3xiv0+kvkoR8/8TXN2z/foq4EX3/YHD/9pnvnsptfrPHMO79Dk\nQ/f777+//0kWNunj5M9//vOdJmtSY+iKNcm5Z/ykWIq+KLz6sy58Chg+YPqFQT63MWha8fJsvnd/\naS8WBy4yfbHkdcH2yTjwUhVeGSlHayGTrAh6BdnOFn7Bl+CwQxBmERB4CXQtZIJzCbaFADyBtyKL\nAM+huNGOOEG8RcJiKPBtQRGsFrTCRx8Bpf7gWZjMIdAWLMLDwiI4hqeFSuBvcRGYCzaNM15SKbDU\n5kKeuI85qt7d9nkugtfhiS8SCkURO20kfQJiwbhkRtBWwD1hgB18zx3dT7o9x1MyO2wJlIQAfwXq\n9IYszGs3lS+sFV4nrHXeCf8c1803cZjz0Atfhe1iksApvNoVKWFBT+MeB2fCvAvX1+HLVtAsGLUT\ngF74eKIAITCzA6WAFAxJIBk7sx1yJm/FEcmooFcxwXOwmxcP+Ay2KOHU2LagkH0LGPGWfuK1XQh4\nL5nTHsf3Oc8+4OGY+Zzv4H8EoOiFowBUgZedlMjyL/yS4qyA1XO2o+CAH/jDp8FdICt5VFxiB4L4\nq60AVZ9wh0c0hN9dO8MxfsHVMe/5VPqBdwpXeKnoqBjDxwji0U2uCpoPtiKLQreiDJ2hL3SCz+CP\n7Tbht+kD+eeXjTUmHw8HvkVB1JqiWOEwnj7x8SUbkwbP1hY95gOf3pI1WZKfosS9rZBjPi2ZKbAr\n2EuCyFqDA1lL7NBNv9BArzrokmd4Zz7FZPd0vgZP6w/eaGwgPKPHWZ/w0a8+xhvj0PRDn0Or334z\n7o0jC+s1W/MBgp6TBxjWT4Uq9nJ/+xjlI4TkNXhw0Y99KLLZOW7nlbVf894aa4ehv4PKr+rf+Oan\nO8bxs+RrXnr2+9//ft+5hIfkrKD7i1/8Yv+AmE8yB3jOeEuWPhAr0OEz/2HtUZzQh7zproIuv4VH\nnpM3PfbRhC+AB39FJnydOKfCq/4OY/HHbiRFeR8z43n0O4cf+YBRUYuO0HN6o+GHQha9ootoVDRT\nQMB3vKuZf23xdX3Xc/171zkYs0/POoc/O7N71ccn+k6nxYPiuKnP9EFhDs+tme7xEA1smy8AE40+\n2tjpivd8gr74QZbWEWsKH0z38IEuGOtIf4wzT+PgAj965e8BK+aRJb8Ejt1uPgLoB47irfWODhpD\nF8Cu4RXee4YO9PKBn28fZ+GksSN2I+YyDzomj42j1/QpHSFfPBDvwtdBN9BT4VVf8JzBo0PmwV9z\n5vvgYE4w0QpX/rYPm3hP99g3H2de+PhAwbZ9WLF24yE/K1bLB5KXw1xgwFMf8nUW8+Ohd+GNr5N+\n+HmGj2zQxzuFV34V3oqG9MAaCzf4N371GT0H82VreFRzPfXQc3rAr8nFKrxarxRebXDI3vQ13hG/\nOnv3orfJp+iiJ3wq/48/7JS9iVF83JD30HXrkef/s22oeOedd3Z/T3dr4IEV3Pm861OcJw3gNV/P\nydoa5T/TsrvZWkDW3/zmN7/x9ttv73bIdtaxU2f4HWuwPI/NOXvP31qv7TS3tvIlc1w47MAf/hN+\n89nl+sXhwDGZ3gT7iz7chHuXsafiwEtXeMUYjl9CUVFFYsNBC74EXAKvEmiLl6BR8sCZC0I5fouh\nxFYSbjGUFAlY+xJfQs6QwZO4CSAExhITwaNrC1GBq2t4mE8AKFEStFpABOcKuxZaxTNwBY0WKePB\ncggywanlmHIo3ff+Lp3DEU7X4UlGFlgBhuRTEopeCY2EyVdhOw8EwhMG2MH3vHeedR0vJAKCbTqA\n9/gqMCR3z8wvYfbFGT76B3vFfT4P/qnPBVTXzSUx9PM3u5jQYheUvzenGCjh0SYfroNzarxvCi+5\nhW/39IF9KSopRvjJKLkplitIStLItWacMWyHb1B4kMza9STgZePsWR9953xk7yjAIwtwnDV9+QzJ\nuL/jSHckYeA0JryDO/HqurM+9ffMPIoFkmb0CkjppYSPfRTE8hn8lF2d7AMcPw+Gj+IinDR2YweF\nHXR8GR1RePWxQSKqhYO5o6Hne4c79A9eTX7Bt3t0KIZI1O2AxEM0H7YPLpJlBQtBPBvn7/GGn+eH\n8Zzc6RH58u0KrvQMnxQK6IF+7I/fdtBLsvDeWoO/Cj8KFcYrPkx9WlkJ51p0uG8u+PuoqIDM1s2h\nqIQmRQdjwIAD/VawU2S3HpqXzvh5LL2wBmmKJHyfQ2HDWqRowSdaAxVfnfESHhVJFEbgwjdbo8K3\nM9iTHvezeddhTMd8pn+25to7Om/tVHiVvKMf7ewXntZ9dEtkyR49je1s3ZX0K9zSffLVyNNOYbam\nyMLemp9u8af8C1/Dx5ItfOiNMXbJko0mcfbTSDuU2B/+w18Dk/z4Loklf8Q30UV6WTFHX7tgyVCx\nVAGdnDTw6KO+dt/5ExatV96TE3zzEZ6Rn3VUIU9xmvySl3P23jNjjM+fkrPDvXgJjT7s+GWKezqD\n/woF4i59a8HuPnm7X2U+549nnRvvPPvNa++CSTfYiTO9pq/sQ3+04SMbFwuKucjFAXfrAp6Rl/EK\n3HhN/oojaEIz26dr5EimfAk9YFvGmssRTuY0F9itOwqQPoi89tpre/xjPvpod6eClY8A4ayfnbEO\nPga8mjnMSU/YA90UN/H5fII5D5u/6M8p0BM0OCqYNh79nnWYA6/oVf7QmezBMTd6Gpf8jXHoQ3fS\nBXij2zPX+vPFfAv86bPCKz1jo2yZ/ubX2IP5xO/icP2LeczB38KPr/NxQDzJFsV/5iV//dBrbrDm\nGR1wUeC1hvhbnHgKVzGi3fI+hLJDcNCvJXPXnkWv+5et0cma60mrezwlU37OjmsfJe49LLzarc3u\n8lH6rzCC/TKc0ZaORCveWJ8V9PkO+kVnHWIL7/grHwrF9tYH69e0+XgzYXvWfe9vcobvbCtsfsV6\n6YOIP4vCTtmjddY6zXeyucY5B7Nn7vle/tQGAYVX/s84dItVxWxisOlH4BWsR+E4312u7z4Hjsn0\nplinazeFcxl/4cCzcuClK7wKeCquKEQIsiWOAjDBtwDMWfBlwS8QFGxZ3AS6CqcSEsGzQyLuXlI9\nAypMF2SAI5AQzAkMLRoWUwuj4NoCwdjdCwoFaRJxOMBLUCtIt8CaDwzBSk7HuAJEcODggLM+9XtW\nJXhe46bDO4az9/hit4efSAu2FaklSwoOEhsBsJ1FZLzCKODreeeVvmRB9lrBNh4LzCXUknoJpeAH\n/6/DfT5f5znVPVmb59hc3tFxBbd//OMfO0/s+rQbRmIo2VnbMThrn7twn/zCt3t6LyD917/+tRde\nJZb0RkGpn+CzOY1sBYQKSgJaH08UVgRzCjOSKnAdzdMZb2ejX7OvfubhT/Db3IJLSag24bjufsKM\npp7p0xw9E4gqvCgEKRIrsJhLwYXOGsNn8B+Ki4oecNVPsMqW+Bq8UBSxKxb9kko6LvmRyIe3edEO\nj2lTXYfXXTjHK2d8SEZwiy/0A/8UmvAvH1NRmo/h9xXk+7iG54J79u+9pF8hpCQRf1orrAsO6ww9\nIxPj2J+igbUBDGtB+Cbn8OzeWdPPHHRXAcJ6UoGXznpn7bDL67AVUcwHvr4OxTqJ3P1tt4wExprE\nj9EZxUDFI/g17z7p9g/bCoZ1CT0KMoqudEz//CaY9MhHH+uWFv/h3z1co2t/uP3T++476+dI14x1\naJ4b551Ci52er7/++q7f5FLip8gk+aPrYgDrh2ZcfLNT1ccLdss2vLP+8wntLlc4rHlPH3zEUHCx\nRuEf+6c3/K+iq/nMITH28dAc/FIJJxq8x1cxBb1UUDMX+4OPj0eKYnw3eumVv//nPylxhmc8gZc1\nq4TcOLpWXEMnoptO84H0ge9URKLDcNKc4ekAn/zpQrIqflHgotMO/k7hWyHcXHRCUYyv4mfJxPzG\nwgls8MjEu+KccIjfzdl9+M372Wde1wdMz53hwC7dFzeRHbsmKzyDI/6wHfLR8KHx+OzDBdm3y1o/\n/RUAxSZ8MHmZQzM2PCaOPQ++vnC0lthJyW/zN/wKneSz6YummEGn+g940NAc4JEzHyEuECv5EKfg\nKoZCs0Lt1bbrnS6bD1/YONqNzefkB9BCF6wX6YP56CubSN/IUj8w8MXh2nhzmNuBz2h1uE/n0lVz\nGOcdXYMvn62/uE8BzzrH70RTRVX0wMsc4IrJ4cc/VpjFL7DwCq10Ef3syrwOz+GNBnPQZXKg3+QI\nNz5UQUnhFWwwk4M+ydsz7560GWfMi9Kis/Ok1TN85GfIzS5I6xJbsgvShwPyWse4D96LxItjMkOH\nIxqjS1/X9I7/xxdFaWspe6GnGrvga+mZw1oXrL3D9g84+BSvmqP7+t3kDOYKN/hsia+ytnzwwQd7\nXGCNti6JN+DNZla84RPuXbM/vs66qPCKJ/Jma7Y/7cFvsWfwmr+xzrPN9/P55fr5cmDK+GlmTt+M\nCcY8PwpWsq//sb71OfbuWZ49aq5HvXuWuS5jXlwOvFSFV2IQ/EkQJYoOQRWFF/QLwBycuMDMYlFQ\n6UudpEnwLIhWbJXoChgEk/rOxmAdnltMJElgCtjM514QKCAznz7e6S9htqjqL5g1tyBZ8dUiDKfg\nW4AttBYxgST6jIGXoFDfFbeJ54twnfNzlgQJoiVy6EYbGUoKFMTxiHzxUn+81iaMnnnuunfzuXdr\nE+AI8CXWAkJfmCU5FvjaMRjBr8+pz3hgDkfzNyc+KBZJ/O24QoPEXZDiI0PBCRjHgp5T43pKeCut\nwZaYsU3/cZACAtuhLwppvq4rOLJ3tsFG2Bd7tpvAYZfrg+0n5eDMFk971vzuXcd/Zwf7/V/27i1H\nk6N4+DBLeWcnLS59ixBnY2ywwUJGYDbAlYUwApsztrHBnCQQF6xg2Mks5aunxj+++Cf1dveMx4fu\n6ZRqsioPkRGRccqoenscPL0gkNByYO7Lr2Co089H4f9cGx2SJL7utdeSK5Lr/hPADqsOjmjz82EB\nK5sjKeIlgsQrPAW0EjcO8cayJ4JYh3h4m1MJ52it/dNW49Pk1Yqv/bf3EnGCeAE9HfeVI/7hEZvD\n7jo4ONibw+5qd+UvrIOHJVklXBzKJTnYZXMcIsE/bclQNfuPz/oqE+fwrY2M4D29LiHA1sOLDdQG\nHrvk8AE3sm5+dlLiB82SQBIGXljB21r2WbKSnviVBry0m6+4n0U72uDjPntinHX6isnfjTQuWGgw\nPrjo6rk1PHdvTc9HOpIsBsMcdPvy+8UXX9wTnOQbjnDy1aH99gIC7fyl0nxfgr/wwgv7V4t8jXa2\nQJKqv4HJPlTwSNzAvvRrAryn/w7JbK+vUSVmFPtDtiTG6JY14oP+DpYSlPRVzKHf4fT555/f7YiE\nUbyh28ZIWqCL3GW7jLEncKPr9Jndhy+8wcU/PEgu2AA2gi3BM8U4a7KjZB5P2E2JJvvq2QtjX/tK\nPnpR4889kG+xjjHWoA9o8idg2Flw4ZcuiH3Qz37z5eawb0r07g/LP+DU7951VYFzsjPnmqcPnXQA\nHe7FefZT/Ae38DKejp02nTaWrCnooJNotieeW28f8ME/4QGHFQ906K8Gm03CZ3y19xL74WRs/6mT\nOMWLs2wLfMW8bJxkBbmUcGWfrBtsfsovNCS/7Ie1szfkyl6iAzyXZ7U+NVjmkHPz6YE+65Ax9kqM\nxo6ySfjaPPgrar6LbKDTBR5YijUknskcmRT/wlGCSnLH17v0DX/IO5nkh41lG+IzWGhxWdMa9lIN\nXvv3YNN3Nha+aDEfbS7j9OOrF2Bo1063+WH+lR5kS63VfrZ+uug5/rlXJq7mubTN9ocj//dfY2dZ\n5wRrjpn3zV/nzTHXuY9mYyetnvGPbNgvX25LMNonL48l5ext61ebB6bn2qr1wTvaZru+c+WI1trm\nnOvCM2fOPzcPHa7koznGa6dfbDFfSrbZTTzDI76qi+0pGTvxDV5t5/Co/1Fr8MFUw1dBi/tooBf2\n9+23397/hjRb4xxif/kkvmXCmTis+PIJ7DD/6CUo3yeu4t98JNCvlOjwnPtR82HifHd/fQ5cZ1+S\nDVDnfc/aXGx4NflrbHLgWZnPc0zt+6DH+GeFD0Tw1d2v61zWdxka5lVWmLXf1TePA7cu8WoLChwJ\nLUXlJJSUwr3gSpAqUJS4cUDty4CCK+OUhD/BD2599XsWSDoUc5IzEORMHGQc2gV3gnTBiDYXfCoF\niA5PAk8BcklIQa1DAccET7TCK9xyjMG6CXW4q/EP/Ypg3TX5Gz3amqet++jvec7VVrs5wWgOORFA\nC6i9WZXA681qYyc8MJQJ82HLk/0XfhP3cLEKuXEwc5CWaBDgOFj1lWPB3pPF6OOBFq9X/jrISQhI\nujpc0h+Bnq+QHFodxBzk6Jfkk4CQfs+/TRhMsua+tVDmGc+TC23xXO1wSE4d8Hwtd2/7GsEB2EFY\nsp6uzvHdtyZ4lxXjlTmebZJ4EZSftgQA+fTFjeATDewCGo1xKCW3kjFkWaAqYGcv7m9fQOqXmIMn\nOQGHvcKzSrTDYeJR/6elxqv4G04TX7aWfkhY+UrKF68ONBKv+NNX7eaUYHCPp/bZPfhkjr9gex2S\nHMQlXBzczWOr2XuHJF9o+RK1g0H6C7/wnT5J+8SZr5AEkJxy2Td6zhaCmV+wx9bOJ/Bj9AKeEh/0\ngp+As3FogqOvtBxg6EuJjhUHeM42NGiD96QHD8iTvy/txSW/Fh+n/Q7eDnT7J75Ouo2pvbXrTx6b\njw+SyN/5znf2JHJfreKd/fESyuUFg71T0M8+vvrqq/uXqL5YRY9DLj75j7Ek5+1tuFiXPXHok3SV\nsJIoUCR9/Pz4nXfe2eVLG3zJgK+5jPeSxLrBM4Yd8rXeG2+8seNnfYlJOu3PlZgPjnlqNNFXazmM\nOoh6URBMOIoTJHsloCQTyZ9+OLKD5JQ8kA97Jonk3n4Z5xK3WLuXBRJncCV7EpNsG1vSF672wF6D\nYR1wfQFN10r44Td94EtLTsFDIlFS3Lzp49tvfDpXwvdc/2Xt4LvgThf4C7jhPzz4CwkQySF8ay3J\nOvbRXPTaEyV8Gxf8nucY+0nfyFw6oq7wKfiMX2STfktO4hHdZrvAtw+S9GwYGsAkA/gqceMlCL/I\nDsDDuqfNZ/iamox5Sch3wSM81VO3j+gKT3XzjCMf4lr4qeFh7eJc/SVf8RjNcEIvvkpiqj2jF0z9\nEq/8ust+4YNfL5AtX7OTX/LFDpBLPozcg2U9ewQPthRedIBM45XLPor/ye2M+fHTRxN0Aa/ZW3D4\nEbYFfXDDTxcZItvmwR3s+IdXtc12bV3x0lgF7Yr2WSbM2te5tTe2unHBrH0d3/Os5xzzguU+ONrQ\npyZHSn0lXtkGMRvdIufso8Q1f4x3lQkLL1pT/+SNcZeV1q8O7rk5xoF/Fdw5v7GtUT3HxJf61N2b\n75499nKdXxDjsTWf3X4xITYjh3xO+trc1lhxqP1J1GDDvz09gkkf/MpEUt1LN/ry0ksv/fdvp9tb\ncObeTTgrPfk7NkzM5oUomPjhhTF9YxvZhDk3PgR79tV2V3+yHMjfpdewsW8u++XqntxNmWl/57io\naa8bo70297M9+LPfmOsUc7vC4wjOOuY6sM+NAasy77WFQ/139c3gwK1MvGJ9zi4FTxH0CcoEYwJF\nF6fnIMDAC6wEirNM4QbHM0c0Fa52Ae29LREjcPali6DRWAdhgWLBqUBOsNfXm9aDq7ECR45WECnp\nWmAi8HSIdghzUBQ4ovOml/iozkkz0BmZ6kehEy/Nm3PBb621D2xrO4AJdgSFJWUcBow3d8ILn2D2\n/CTr1ptrTFwEteTXYUTARv4cwB2OSxCYmwN7krh91LBW2numnw5Lgnhfb9IleuawJAHhno77Csnh\n3mHNAStdCU76ptaXzUCXMY1f6ezAKHFpLfrp8C7J6aDm7bz5c8/m/QpvfQ4/7c0T2PrC19d86CSf\nEr322xj0STD78k4Cnt3wU2xjfJ0mSJVI8PddJekd5OHu8C6gNf6mJ17j1eSngzZ7KTkoiEc3WumI\nJBodF9Sbi+9z38gFOwQG/rK97PeDLTEnIYWf+ukZmy8BUNJLQuBI51qjvp7D3aHDWn0RaA123nj2\niezZcwd/fsJ4SQW+BX7Gk31+hH9hG9AcDIcWf0PS36iUqDDuqISXddMDOMYnc9xbr7+5iC/8GX10\nGEMDXMAAr+I+uNFd/4TfePXazibzr9/97nf3v/tG78FgG/DCl6sOgfx6/hzv7NGPfvSjPXFl38CV\nIPIVqP8QROLKczji8cXFxX9//i0plj+QiPEVur+Xys7gpXn07tlnn91/dSAhPGlkr8UYforvJ5mS\nQfjLbvizBPaGfEazPnvH3rEB/qM0uJIRcOMtmaDn7JDYw7rotj/kQy1+aD88k2Vw4US2HGbJhCQS\n+SXbxuMbePrQLxHtRQ4+SQCX1BWT+NKSjSIL1sdjP833BSc7qZBJtkoCmfyisf2P7n3gmX+MnePP\nDNt5U19zkiM08ZESmL7Iorf6JF6zkfyHNhf+qOFabBIO2pX6u6/fs30iS/bJ2vaUfuJ9xRr4RRbY\nJXLAx7A/eObFBp6etiSqvabL9rqkpGSk5Lw/X0Hn4Wld++lPF/AF9oLeTJzdT1zr09Z9OM4aLxT6\nbr/ZWbpH3uBMdtAHZ1fP5sUPuOMLnqBfqZ8M8qVkjc7hFxkTp1uL7OEnuaTX5FJCz1j8hYOXUnSF\nvSandCCes1UueFXQzLbiP99INuyJtcUR1kar4ot7vtNesD9oMH/yLd7Gq/ip7n4HtvwTHLXS2Oo5\nvLGzrfvGzzqYR/OMaywY7hsfDfau9iMYsx8Mcoj3Eq9eCrAReCqJ5kXAaZNnezaLtVZcrAW2sq47\ncZ5wwl1bOLvXbo10WR/YbPgKq+cJCwzj1zbtlbUvmiYNxnpmi8Vlko30nDz5e6ZiFGcSOjJLOM22\nj+oeHdZTR1Pr0zEv/MVWvk6lG15SSrzSDzFmfFrpDt9g9VziFUwvGtlkvsmv+HxUQt/ID5mZc8Mt\nOLOvtrv6ehxYeWnW4/IzuQkmOMnEbJuYrWs17rp4NP4cnLV9rn10n+4ezWstdf3VK6w5Zu079zzh\nGxPsYPV8bv5d+6ePA7c28YrVCWaCq00A6FDooCSI4vAEjhyI4KrgzMHEwcIbeiXhBovRECQKGiUr\n1Po5R0EiJ+HqQA+2wM8hx9qCPXhw+hRaKcgUaLoE3GoOxr1A0twCcPgVNJhvfVfwtN2kEn+rp6E7\nR1Njo9Oz/Wnftc+997zOqV87R+5QIvEqKHQAEsgLqCuN71m9wpx9T+J+0jPhaSefXiJIAjgokkdf\nwTiEkKnKR41j6zzJOl6vuDsooVUQL1ilT+mMvaJbDlt02ziBHF0Bp8BaTYfJlqsvccK/tasnDtag\n8/jr4EdGBINkxkGN7ptnTvPBnTBa56huzhwvse5rVodrX6ZZS/KVvUELu6XPGAcbwbpA1cGQHJNt\nB2Jfo/myQpJOcO/rJ8G9pMgM7tM5OEw8jvD9JNvwKl6veGp3OPfzVAl6QbzEgISGr13RLVHFTuNh\nsKrZWOMfbIcJdpf9dpDHG+PNw+fTdnB02Xe2mg7qnwXMWcKVXJJXvsd65Nbe2KuSBGDZGxe582we\n2ui+OXwMmOSRTEgegNdXWsbou9iSiH4C70tncsSXndtrOIM5+2sLf7hbB4/U5NCaZNFB27rGRn/z\nJtwjvjRe39F8untvS3ZLvPo5I1oU+Eg6vfnmm/th0P7B33jJNV+UGi8ZRSf4VYnQ97b/7d3P4/Ee\nb/HYoRGfHPboyWnbY1/n6UevQzIbRDfZGLzkP6xBPyUp7VcFTfgjgeorWfLI7niRIhHuoE0u7ZNi\nvEuiSPzghQocJYfJoRJv4Mvm+8IWDmwSnIwjW2CQH+1e6Bqvj420X5Lk1iK/LvIDDzXe4pd5eAIO\n2WRb8ctcuuEenuKp1iu5iRfk0jxfIaNBjX7rriU5Wds9x5ejvtkWjHg01yEPvvhmI+kEG8muS67Z\nVwlMcqHY10prg9mFl2TJfPTwT9FljH7+yT6ryQ/9xj9jySe4YEhwS/pJlEqsstFkVDKGPpljX9hr\n+2y8tSQn9HsJIk4Ez55JHpJh/sl48eR8wYYuOCrx5+h57YMzuSoR6gUHGaDv/DEaFePoJFlEB7kA\nC//xa9bWNc8YRT8fS97sAV6Bjz7wwMZb/MAnsk0/wbGm8ewiO0nuwsv6rWU9z9lB7ZK4kke+ZsU3\n64MVj73g9uxlgn0iO2w/XJTg7w8fPMMVbKV6fzjzjzHgrEVb7SuctX32z/tgNr7n6nVs46pXfTCv\nPnPdzzF4jP/spJdh4hO+k12VeOVDyX7FfPyaMOq7CrfZHy7NrQbfBa/2X5/1XPbxaO3mH9XgKXP9\nddykaY4n7+yOWJZdZD/JHT8tlmc34XNEz2Xrres/znO8sn44g4NvfBkbzo95WcWf+MWFP2UkrqKP\ndDi8w3XCAat29wrdFrN5ycgWe8nCltFHftUXwHwU2zHLVXDn2Lv7yznQvs+9mfeXz/7f3nN7U/s5\n2Ff1t1Ljelafg9mYqY+1navBX+HNttavrbG1g1vbuTXW9mBpdx+sFc76vMK5e/70ceDWJV6PhHMK\nMKMueJV0FSw6uCoFd4I0hwcHKwe4GawFh6Az+hwiByDYEzg4ZIGj1s85Cfw4KOt0AAKHc+eUzBcM\nO9BMOOAFEyxzHWzg5DDJWcMDrIkXY3ITS8YDLZXaPK/t+goG4kHz1vGz3b15LnsADp6BYT8EOhy8\nrxcdzOyN9srEo7aJZ20fV03GyLRgjYyQGbJENt2H7yeJ4+Py4hzuDj0OeX5KLFilswJ5F10pGSQQ\nxBtt9hCvXB3I9NNPuqRdiU/p0REO4BWcu8drh2UJHQd5B4ngmO/yXNvj8MOhxU+5HFoctv1U3N8h\nLih3sPEySaAqiHfId+CWCJZotDb74WsoiVcHWIkaiR5ffzq4ziRR9H9YvB+H1keZcxl/9eGLAzO6\nJVPY4dOWQJNI87WbQza5YQ+SDS/cyAYfIOEhMYV3ZIV9Nx/v2ApfW9kPCRUyBk6l/Q5H7fo9k7n0\nViKBTSfT7iVlyLQCpjUlF1ztkSRGiVqwSj7Yawky8yTEHIxcYMLxs1si3oGXbStJYa/DdV90+2c+\nw1fR1lj3tWujc3DCXz8l9ZNJSX58a9yECV4y5n4WPDKWjtEv9/ZGgskc8NAn4eFPDdAFiQ8FDnz7\na6+99pn725/V4L/BIN/+B/Lnnntu3zt8xH8JdXi+9dZb+wEPHdbjl/182Us4OuLLQgkr8iRZSYfI\nk6997JU1yIHkqb9tJylDN+GaTFjPXrBb/jSDPWej4c92WAee1neZ6zKPLNJtiVf0aasYix9k8t6W\njKb78McvsgEGGcIjtknSDm54Sd58oepPmbAb6FPIBnkxlpyrPcOX/RRD4YP5bAn5clkPXOPgIvHn\nyyfz9aEDzyQJxTLJABoUuEb/3nDwT3MOug6bghc/DbIn+MUOSJ5JFNAhyVayi9eSikq4qc0jB/bJ\nfuMz3ir2BP/sK3+sgCmGsCcSEeazLWiXUDAHPWTdWPoLFzjhXXyDl+QG+w82eZMUhwu7pB++9hxe\nkhOSIGy7Fw6S5+EJr2jCEyW+7w/jn8bB0b3aevZdkpfcqNFDD9hOuhqvwDVHmzo4+tfLso1xH4zG\ngYU+9cRXP36QOXy0VuuC5771wVUmzJ6NtT/4L/6j++7xDV1015+hUINJri+2pD3b0EtucFvfPXyU\n6N4ftn/0rQXMyuyf7fN+jmle9WV9jbkuLOOvM9YYl7Xn+mhnM+g9+6WmE77A9vKYvDanefGr53A+\nV18Hv0kH+Oa0V/rsfVf4HK3XWuHWs7G1Na++2W5tRR++8JH0mmyJNeh1SUY2I1zgFrzgqyfs2f4k\n7q3nsnYF/uycFxDsJLvEJnlRJFksxkBDsm8eHMGpDlZ985l9EbP1iza+5t7mS8iLxKuXi/Rt4mT+\nypuPki8T39t4376jLT5Wf1h626dz8JIT66xjey6umTKgjz5Xgq+9y/j8hLY5v3nXqc1V5hpz3lF7\nbXPcufsj+Gtbcx8FbnPu6k+WA7cq8ZpgYukURu09c3QOrAJFB1MHNYro4lAcIgTEkrIOIpyiOWC4\nKKpaoOdwIoDgBBx86uttO+fk4Gd+BoEzMlZyTFAt+HdQBovD4cBcgli4WcdcsCRwBe3awwWt8Eaf\nK6eu/SaV9gdda6lPjR+uDhF4i98F5OY23n3wtHVvvoO34MBeOPyAo00Q7WsHQbcDZ8m8YAYD7Ep9\nPX+cNXzsOUdETqZjmXh8kjhOPB7lPl6vuNtvh1sJjP7UgIOwQ6sDJp1U8MNc+2qfzZMckDAQ2Ek4\n0E+yE9+yA2TC+q65vmdjtYUfeSI3fl7sIOHrroJOY6Z+TljX5QUYgnKJ1/mnBiTQSp6RXwGqpJcE\nHn5I/tzbAtaSLOj28y0/VWYDfQF1sR0cJR+Mx6NKdgS+j4NzcC6r49+HgQ/GCmfCY0slpCXJfJmB\nbjyRlHZwdi95QX/YXPaVjOAl2+8lXMk7ciVxJeFnv8kbO45vrakOp/wBHtRGBq3Dz4BfAkZtXXbe\nGDDtLdzYOrbKPvI1ZNQ62Tx99g9uvgxhs8CQVPTlqYMuOuAvocO+2fv2215PmYZruEdXNETf3Nc5\nRmLt/pbw9LNDyUn8XvcnWLV7nnCtjW66LNnn2R7w1yV28EZSyX9GhR4HVPDsty9KX3/99Z1uPMIX\nSU1JWl8SGcfXSlTRBT/7l0BiL/Thr2QVuPhln+EDB3Mckv3pin76Tf8lD+gSG+AAGt7gwR8e9sML\nAHpMn/WdtiT+yy+/vNsNSXx2w37ogw87RFbIMJ76G7SSXvrjm32FI1hiCclASTxyk8x4hpPkK/nw\nDG98EO9INvrCyGEaj+GsX4yCZ2qwFDiRJ+OiT0yijV0mw+SU/ZE8lAQko+QdfDZK8ooeRMcO+IN/\nyMKUqdln/NGcOab7ZAotlWyxZzzg4yXX4OiZjYSfPRZvKdFIBvDYwd949/Qfn7z0NNce02U8wH/8\nJhtkWbGXxpEjulL8aQ+NMdZe4rnEKb7D2Xiy4yWB5Iz14IXG4kH4w83LNjadHIov+b9zZfIzPllP\n8RwP4zkdQKMv8/gSvErHjZ38BaN5+nruvue9Y/xz1F9b8AyvrameJz3rmDlX30pv8OiQP8mAh17M\nkV00ihnILzm275KzEmSS6mQAfDprb+g7eaEH+q5bJo7hc9QWvPoaW7u6Pvdr/+zTX1nH1d74+o+e\na8PX7tXmkAtnKolXiXo2SIJOIo1dUoxrT1r3qA52fea1Tm3n6jnXfc/NB6vrHAztzTP2srKO85x+\n0VtxBl9An8gX+SFzXqr7kzX8nDkuviF4c82rcJhjH+cevnNfxBZ8rFuJrAAAQABJREFUMVsk/ha3\nsKPw9Ssitsx4eIW7dePrSsOKPxsjzvVnfCR1+Tsvip955pldXsRebNo67yq4j0P70zqnfZs8nveP\ny5e5R0fwLluXHIrTxSz8q7FgkDV9nvWnX1Nm6ZWx5EYcw6YXRz8OLdERDa2vdlm7qzHWad5117zO\n3DnmunDvxn2yHLgVideE+ZwA6tfXOIrB6c2DA2ciuHqwBcO+KBFQqiUxJDXWQqkobodi9xkFhkHg\nZR3rhpcATHAsUHPIurcd+h2ABXpwE1w7zLkE5/CpgM14GBc90RRdjb2pdfTAP55NWvGaU3cxnPYQ\njzh+h0H8nnP3h+2fYFTbK8EeOGCaa8+sedoOUw7bEq+cvQCxgGfiF+yj9Wbfk7pvj+PLCjfa1vae\nr+pv3KepXmnumS4I/PxsTSLCYdZh1YHTYdO+0bMSrnTVHpIXP2GSbBEwSgzZezwlBxIWAl3wfblH\n71e+zWf3LvCt9+1vf3v/DwUcysmYQiabY51z+7fy3ZwKGHB1aGEbJHb7+1/Wsb4xdMGhXPKJTcET\ncm5NtoNtwy9BvgQj2+MLXckRCbt5QJ+6dF2cw/e69aTRnMdZB4wJB4wJBy8c+Eq8SqawvWRFYgif\n2H7tDtQOQgJ9wb9CLiT1JO/wS9AvmaEtflnvHL+0tz9sDLn1dZpEmst+8jH2Dh7GsksSMGyP9bU5\nwNvLLrKqXwIADSUpS6aSXbLuy0K+TFJMEkiy2Ze+aAGbXPBV5IiOKPFw8nXe74M+GAe3CliSvBJ4\nkoT4DvacG+z4ZW771Tg0kN17m3/EZ7jBH7/sDT6h30Hvm9/85p6gwgvrswX0+9133911Ad8kaH1R\nqrYuO4DvDnXwlKg11/ouc9iRiy2RKgFmn/kY60tkiwvsVzRYW2LX32eVrOWb8HLSKhnj6/y//OUv\n+wuA7I6veF555ZVdBx0IzAFXbEJerEtv8RK+cDU3vrE7EnS+uCej1hZn2FsyJHFHZvAUTurwCgZ4\nDrr+/IFkWolde4vP7JnEPvzAsKd4aC0y5bIm2cYbNsieOYz3nx5ZAw1k0VrsK54fleShujHJR3Xt\n5+opm43BW3DBQIu9Tb89Zwfof/trLHr82QT7Sy7YDvtuPl5IOKMdbWTQHHyfekxmxHj0Uu25fcJf\n8OyPy16SPTU+mcOG8VvW4qPmPpIDSQ/JQPrNxtkfJTomP7StfAxeuoAf5hinTzv7eH97seJvifMj\ndLH++Oq5teK3PkWf6zqlOdXRcZ25jWluz3NtffN50ippygax9WICfoQu0g3yL8Z4bvt6ng0q8Yo/\n5IZtIRPsMr9qb+JHeKjn2iuec1z3xjeuudXa6wv2ub7gPWo94V0190i++D0xGz2hG8XZbEz4q61T\nbZ0jumab++Rs4jXHzPaj+9Y86jvX1prrOiufgl27mt7waf58jD8PxS6SMbYIX/xqQp1PWNeYOF3W\nN8c97n34m++eLffyxdeuZJ2PyQeR+TneHHxysSdw1T/Lij9fiR9eUPKZYlX21i9DJOrFLvzNOu8q\nuHPNu/vLObDy0uiV35dD+P+9wWrvj+A0plnzuXnsLtnwQRwfy94mU+71i3vTSzbX3Obzq2Jr9ppd\n5h+P7HI4rHVwV/zhan02n264J5/iSGvCcZZJ22w/d7+ud27cXfvN4cCtSLzG7iOBnkJbf4pIkSoC\nJgEtR+I/fXDA8gbSYZyTPCrguATfFI3CGcsAzELxjHFIdkB2UKH4py3JJ0BmCMyxnrfBgneBtrc6\nlegI92ipX13fbLup92hxZewEwg4hrpIeAmEJaocBX880dvImnszaIUpA46Dj3iHGfGME2g7RDsQO\nnNYqIK9eeWrep6WstMNLG9nMSX1acL0Kj2hZ+cu5zsSr+9OmSxIrvkBxQHagVcBwoR0POO3+oyUJ\nGvpqLHkoacF5luAxJzzO4Qs/8inx6ufMgkRypZBJ843pOgen9nBuPBiSLhKvvqYC30+6JDUKQNHh\nIC+YhzP74nDD7ija2DeJV8G+xIfElsSrgzobFM+Mt6YSDvvDE/5n5au1HrXEq+at+M7Eqy/G0C1w\nx7v+zAB5st8SoPhnDptAHthsSRFzJLzV+JouWa/9DYejmn0BX/JOcpKNd18SxRxw7EF2ztrkit0R\nwLm3Nh/igAMvvkQw6XCfzLW+rwrtta/3BKrG+rpP0tlhCUy0CxitK1BUg4M+PglOqwyDT+6SvXgg\naeWg5O+e0jG8Nl9pbxu7thujDa347su906bTcIYLPvHJanihWRLMf+IhSerwbn6HNkkq60t8+XKN\nbWDLFQkAX+uQB4npEmXZdzwgG/wAfqHfHIdBe+cgiA7t5sCVPn7+85/fEzLxxVpwopsSbb6s9R/k\n+WpOQdcLL7yw/01YNsv+0lN+n18jh9YqWU9mxCZoVOwXW0B/+zuT9hQMOLAB9tk4eK7FOAUd5N4X\nRvCzBh6zHWwEuSdzElAKeTGH/wSf7bCG/ccfCVZyxZfCSwILzvr8p1psMBsLxlqSk7U9eVnbr3pu\nTxsHTjKoTb99SHfwpKs19fkCmq3kX7y8oH/mgiVBnm6LH/uSF0/IKd+CVrGkpDRZwG82hj7bJ3JK\nh62ZfJN/65gLrkSHr+OsB8dogYekq6SEZA1crTmLsfEbvYq2rniiBttY41zaFHIs4eLraInX5ESf\nMY0zF9zKvK/tqtq66FKiNTjW6X6FM/Ew5mhcY+qf8KypXRsc6BF7QF7tC9rIA7348pe/vOu9GN4Y\nemGP2VsycNr2jx2xt+DGf7CV6pUGz3PsOi6aag/fFc6kb47VHm9bJ7rBCL775lVrW0vjG2O/wOvZ\neLxjF/zqhF8in174klfyj89rAXfC0H/dthVWz+Ha84Svb4U/+5sTDHV8rK+6MfEXnMbqE6tJQIvH\nvKh0hqFf+MKeS7xK6rO75M0csILROuojHGf/h7239lzDS0F2QPyMDvaGn2Tn+Z/GznlwJwPZ2YlT\n42vj//h6LynFE/wgP+cXXn5RRvfAWedZb5a1f/bd3X/8HCAD9mi1Dcl1+9e+TfkhO8VFfKC4iAwU\nH7PP5JJPBV8f+w1Ga4pf2Br2mm0WMx7p0znOwBNuEz9t1rQ+XSg248vFm2IAuDzKOnP9c2uGR7jM\nOXf3n34O3IrE66qw2F7b3AJCmiJqJ9QSrpTYgc5P7iQ/HbIebF+ZCKIoO4dYMUeZAj/v9QkiGAQH\nSArogOK+Qy0l5GAdnBkBBxTKKSAXlHDIasF5+LZGdHmebbVb/yYXvInm6GC8fNEjWeIQyGDaN8lp\nwb+AjtGzN803d/IEr3pmkB0qO0g6JNpj+yax4sDtPzvxxYnAp6Bwwgg3dfsw2z7q+2g5t/7a7/mT\nwPPD8CEaJt7a7JVkhCSBZIag1ZeI9kwCpMDMOIdUByJ7TEbIisO/JAp9p5MORvSTXBgrEQNmCYZ4\nHA/Dq3YyR8d9fffFL35xT9iDpUx7MenYOy/5Z64h6PClkz+tADc/k//c5z6302kd/dola9gy+uFr\nMzYmPByGvKgAQ9KJvWN3fNnt0C7ZhxeVx8W7+depJ42NfxQemQOGy7yjufjBljrw9bO4mXiV2MMb\nARP5cGDGTweIkiKCNbZaEoVdx1NrhX/rzucCRcko+8JW9UUc32I9Y1x4zf6TIftg7xxmJLTsJVzY\nIBebZV/hAj92TPuk3z3ZZxt9leZlnvX4Irpx2oJOMCUm4YJudEn0gsvekumSDR2krQNPY8HKv2mn\nX/RJolcyk/6Yd8Sb9q2++QwvdOMB+bQG/njh4O8c84ng4oMD6ve+9739AI9PyYKDGlk3znx98IaT\npIjDnBrt8DauAgZ62H3238s3YyS+JEzZHfgYh0dsh5d0X/jCF3a/gTfshvXFD/RSLWnqa1VyYG+M\nk3iQvFHbe7GGxJz4A73Gwdsetx/GkBn045PEphjC3uGnw4cx6pLz1orHauOS1b1j+8fhAT8ceNFq\n7+EELrtA5s3JPpId+OGTAze50WcufSNvdAtu4LA3eODykmPyHD4rTit+4fmoNb7NEtzq1l7HaCfj\n9p999EWXBDueaicj6LW35Ap9bA264pV9wiN7QSbxTK3NGHylw2SUTttrfXin2Df4m0O32A995M/6\nDnYSe+QHjnQGz+kQ+MaZj1YXmirzPl7o09745oABFtrINbtCzyVftKMD/vhiXXSj2UWu4EqGXeCj\nkZ1FC/9snDnWs5ZxYBlLlum8C7+tV9E/8a29Wl9l0libtZT64K4NnbVF+xwHLpr9OQIxhz1gM9Hz\nYNMhdoL+8DMSUmITNsh+2mP8UIPtQrs11S72Bq0uz8bTd2vgS/sLR/wwpv1xHyy1NeGKp+iLjpIF\n8GwdffCJr8bHE232LdzU1tQOD/C0GaMtXMk2Wq3jbCVZx75po094yH6gz1ponTgHH10u60RDdEaz\nsea78MgaLs/BMacSrdXoaN+NMWfW9TUuXIzRBrY2tUsb2PgPH3jgDzuBF+Iw8ZhzHxqMN4bf86cG\n/KqJTrOf2vUflfA86ntSbdZ2WQttaOCj7BkfCEc0nuOlubNv4rXizzawde+///7+wQEf6gtzL5Z8\n9UqfrLXOW/mz9s817+4/Pg7YF/LNlrMD9o59oBfkp5I9WffNHD6W35F0JRvgkTv+GBx+RE6AbOZr\nyFtyp42/FP+SpdMWA7NNc/3wuKq2BpzIpVgGbi6xPhrEQvIU7JtzQ7btKrhH/ck0nri3dnZHG/v2\nODQcrXXX9vFx4FYlXglmSltNEQoWBHgcH+HVLuAQ1AqeBQMORZyJrxcEUQUklFwBfyqCNutwit1T\nMgouAOaMBKSCa4aGIYALI+Fen0O9wIPxgAsn7EsohxeHMDifK9EYTufG3aR2NE16POPnxcXFftBm\n0BhRBwBf0DiMC3Q7kMQTNE84kwd432UMWVDbR/vhEOPNal+2cBSVI5hzzcZ9HDVcPqm1P2r6Vj5H\np3Y6REf9RMtXWg+2ww4nJyjz1ZnDPufEGQpw9dNl8zjLDsDaBPkuMiDgE1CSLQ6V3ms/KuGjJjcO\nX/43V2/lrU++FPi2T81Z4U1a1zH64OELPkE6OXfQ9r8BO9jpRw+bQQ/gL7jwlZ+v0dCmsHlsnK9m\nJSDRR5f6O3WC/caCGU7wWXFa8T/3DMY6N9jxZ86d4+f6c8x6HzztR7jiB774CXWJV4E73faVYV/r\n5RPAEciwxw65LrYbbwQ51ljxrM0+sdcSmb3I83Ufvku+logrcCI34LNvAsi+dCU/9lZbScP4BTd4\nsEnq2ie/3AtyJVwlXiW7yA1Y1hAYChwlc9hQ8g4W3+UCG1z6EX/RaG3tAlYJOX4t/Pg08CTeyCMa\nje0CJzsbrtVz7/BdsHraAmM+FI/gATb/HE5w9BXMD3/4w/0rRDQFT20vXPx9ftVXuPe3n0nzq+Si\nfWh989BpTWuTDwdfcNgRAT/7UcEryVlf3vp7hWwQGPbfnnvJY54aT/DZmuZJ5Dlck0NxgP1Bo7Fi\nEM/4Kzagz+Q0GvGUPNoHMQb5tH9kGF2SVPYfDWyA9cyZJV6ht8I+mu8AY6+SMTzXBif0w4+9YVet\nTV7JFflgV+wTOPo6GJF9fHexs63f2uGxtq/9ns+NaawaPONWuvVpnzAaqy/e2vcSmpLb6Oighk/2\nEv3iNbTRJ3tiz9T2gtxJ1Os3nm2wT/ZMwlotliFvxuvHG1cJLHDjHR2Dt/FsmK8FyR05BS/80KEY\nO2nrXr2WdezsNz7dJQu9TCIT+uisvVbjH1rg7XKPZjyBt3XQhhYy4gJTMddYcmccWaMT7Jd4GLzk\nMpmnm/bDOnQrPCf+6/3kQ/jjHx2ji+DRV7JsL7IlYBuvqNk+PpSOmmd98+gHXCUGvEDjW+01W48P\ncLfv9AWdrmyV9YpR6Ju+7DY4p80usgP4hG/GdJkLd3PAtha5tTb87A8a2AbxE7lCo2fFmPYR/C6w\nzEOTtdo39KZf+j3bW+vAGZ5q+26utdhDtXn4gx7+D67Way6czSULeANHFxrtNf5rB5ccots64LB3\n6HB5dqHBeDiaj/9d5inJEVoUa9uz7Kd2OooHrQlnsME0H37GxBv00EuXsfDFdzItCe1Fl7EVdLEh\nziBervMTbCsaZrHHa0k21/Yn9WxNa6jxEp1oR6NaCYer8Jv9zQlPcMUR4nsxGxtKj8Sqkq+dAee8\nCS84s7+2u/r/ciC+XcUr4+YYz670H9RzsOiGmEgszF/SS/5LjEsvFLDXNbSba4441i+UJF75H+d0\nCVSxBztB9/hb4+kt3YZbOFqTLTxt9ubeFk+ZT6cm/tYLhyNawGaD8sdiGWdM8ok+OKAHTj4SExuy\n2WyIddiPuZ41Wu+It9qyq2yOGKI4QvzNX4nx0GEs/Cb8CRNtl5WV3p7NASc8Vxja62uc54nHnNNY\nbe6VR8Fzn3AL/rkViVf7YBPnpmrj0CiKgwhlobCUQyEYOQ/9lNuBgSJRYAIfzGrzCImLE6VkBQie\nW58jomyUXT8lUTMG1ocT3MABQ4BSn4DIoU2AohagPk1lVUI8FRD6uskh9bQZTmMKXgQwkhr4as8U\n/ebNEly1IMH+uzeHHBivTQDuQONQ7G28JABD3vwVbuvNte7uPxwHruKxA4c9/+tf/7oHZ+45YXvm\nbzly6oI3iRLBrQSUOR0s2k86SG44NY7T5dBD/42Hx4oLOXDRdwF7wTkn29/l4hCNMVfNIaovc0Zx\nzLhZcrx+kubvo7FhflotwSsYFcgLaAQkkmhoEZj6mVp/KoO8axe8+Bm4LxLhJDjwgkHiSHDPbimT\nbvisOE38zt0HI5rjYzw5gtkYffP+3BrajZtjV7j2lBz4W56CePwjH3TbocY9nYcnPrnsq8seaw9m\ntfW6ZzvYaOvwI/wHuy1hwKd41k7WwGLn8wnWFQAKCB1C2RqBlHY+g7wWQFovOic/wmPi5B6d5IH8\ns5EOig64gkLJOPPoja+/4YgGshb9+ukA+rKP2vTzbfDjuxxKFQkHgSg4yTv+ocH44JFDMgvH6NGn\nqOkT/rgKKOlyODbH/pw2X/CDH/xg/0838BH+7QV63VtPElxC05euEjhKcLq3tjZw7YMv1SS07A3a\n8NJXsu6bC0d67083ePFC7+HPv0u+WMscc4NPBuitL/PZC76f7JAVMpOsgEMWHE5c6MNLcMCAp9oV\nPvbJvvON6DefXotDzKvMezyzX+aCZX/VxmiXSHCwwH98VMO1BLE9pkNoIg/2ihzEJ2uDiSfaJG0k\nZ8J5xWm2Tzwbp27MZf36Goee5tVeHz6SM3tJP/BMIk1Sn52VgJUIQQO5xd9eqtAfNPEh+OAAaKx7\n+s6POChJNPEr6KYLZIqsWA9cY8HFZ/DoXTEkPMkEG493ij31Jw/4gP6EBrrO8WOftP0Dlit+1K6O\nH7WtsJqrn1zgxdRzfERL/M1uZFPwRJ9nF5rJSnZHn/kuBQ/Q7Mtaf2aHvIFJnvg1LznYIDiQLfJO\n192DCT+yC479gb91q/EArF7ygHdvO5CTYevQSfumBts+urenanAV+JIf++reWnCwFprJEx3Xj0cu\nup1dj4fwwhM4kwV77V6Bo/gG3ewMuo0lKyVQyQjctMPDmmw9WXZvTX1oocNsDXkjl/hF3tgZvoGd\nMb69gBs88cWeWQeOeIDG6DEe3Qr+JhPm4ov5as/G8h34kFyo4WEP6CNd0m8v0WoP4G9usQp82vdg\nmt8Vn9EOXzgYp5++quGpz77RUfihSx9ew0XBJ/zCN/QrxpAj9IIBP3Csh2/Wtw4Y6EW/+b0oN964\nClzYBWcdsZkYJblsjLo51Xjnukll4j7xtt98jF+z+fMqfCkelHilq8lN84LVs/qm8WPi/nHdxze8\nch/P0vd0Nfs9+TrHa/dcW3C0k3l76OMRZxD20hnbL0vtK9hrCR/66NeJZMGHJ35lQdfoBd/HT9MX\nes0uqbOxYMAfTtZkB8XZxtNJ42ZpzerZBy6/74WA84RcUbEafNDAxoN92uJSL2udw6yXrWIb2R74\nVPJJ6CT3LjatSzu62HlxFRzQJO682D5G4w/YSTiDBRelvdDmUtTsEpjoUdhu+GXvwVEmjnvD9s/a\n15rG1tdcdHav1h9O4Vj/nKvtaSi3IvGakMwNJGQCFwpPURyCOE2CR0k4QbW5HGVvMR5sXzEYk7AS\ngoSme/MoGKMhsHHPERBosFyMjaLPoUnwNAN4Ttx46xNElzZ4cDoO75SMM3+aSkrZnqIdvx3uBJKS\nEvoYPXtlf/Go/ZrzJt/soQt8RkawxPDaa8GPWj/4nIKgp8TrdPJH8M27K0+OA1fx2H7bd38Dyltx\nTsmhxJ5JvDpAcGD03sFN7ZkTdOClh+TFAcohhK7RO8E0veWUVhw8T/nhuEsqCb4Fg3526M8AOFgr\nwWjuOTlpnDlzjHYXu+DvgEm+opVDJ6P0Ac4CE/8rOxvHYZ82xy+ZKrHqjSs5Z0skH33150AJf4GL\nL4R9XcE+0Quldd3DZ+Kk7TolGEf6HDxjlPms7VHWbJ1gVIcj/kg8+uLV3yYUxOCbFzno72sxeK5z\ng7Hi2DMZYuvZITLmp1DWkjBwUCRH0Y+3Aj/+gt/oUMw3aCdL5MglELJnzW29I37Vp1Yag26/BiD/\ncCIX5N+fbIlmB1Z9DuEOtfyRgAmueDETF4I9BV58Jzyzi3QLDwSj9AcOcDcGregzrwCS/IGHf/Hc\nHPfmBTf62eZ8ZfTBk632d5XpPTk3jn74wpl9sB7bLomRXxUDKMGxZvdquPpa3N/zFNTjBXj3ty9l\n6RjcK/ZMQoRvkrDg681XrC1Qtgf00zoue+vA8Y1vfGPHGx/wzlj2yBj2KVmQuAFXUH9VYRftu720\n3/jD3tmvWayhoBdf2Rd84mcdUOBojH1lH9kViQJyItmIx9bAb3tEhtkkSQoyjx72BlxwXNqNX20r\nHMJn4uj+XHv7pb/7Obe2+oNTO5zda8dn+8d+S7KW6D5tNhT/OkDYJ3uPD3QdX4rx8MuFf+TcWBfe\n2hN7wU54Jtv4RBclY4zXh6cOlcV81ifT8CO/9NQLRHizW14y+jMxDl7oiEZ8iM7ZdtS+jqOP6dwc\n7/6opL+tE097nnNaa7YZh09zTf3gkkcvE70olHzBb7yikxIw/aLDePzDIzpH/l2eyah7ds4e4H8X\nfZLApr/sofiBrtgfuNpb9s8FFrm3P8XmxZ3wh6+CnmhSZ0vJhnuyUHzR+H3imAtW8PSZxwaQT4d5\nsgoe2tiMPhZJH80hh2gjJ3STTidjdBPu7CBdVOAqHsYH65SUoK/hbI/wBj54iJ/6rEVG2UIw8M5a\n2aH4r10/HoM/eWKvzQEX7Wwum2UM3PSJ9/Op7CMYxhlvj9DDXuWbrAUv69o/ttU4xd7ry/eiTR8e\n2h8wwaGn1kIbXsCBnqrZNrTTUbpsPH5mS+ECFthwtYdq8oKOXrKte20tsYHYTYxH3rMDeFFBl1Kt\nb/Y37tNcT9wnnnhHRiXbfOVIzsVN9J6vJ6PFCM0LVs/qm8aPiftHfY9fkz+eXeSVTJJd9tRelLRk\nf6ecuZ9w3M8SfDC8OPv973+/J0/tnZeGXj47L9HFtQTbXH7ARzY+PGHL6Z1f/D3zzDP7Cwr6R6/o\nHhvCRsEVPtpd2tBBT11gtEY09Bze2l34wX7Ao3iaTWFHxH3Ffr1kYzecp8Rt7BCegqPEX2uAy66w\nPeyk+IJt8WKGLWLT9Hnmf9T4AXf8+9rXvrb/KkecEuzWQTP77GKXrGcttrZ9hQv7Ft74Y370gxk8\n99qPnrXNeXO+ebM07rIxc/xtvb81idd1Qz1TUodgb1kEzBwe4UsJOW73gghCTrhd0xkSzoQETM+c\n473tQCkIOm0BMkUjtIQcHMpDUQk/waaEnDxFNC5lYygYOM8uAYYDogCvg+N6ULmtgnhEF7677BEj\n51BbcJexYojw2d64lOa5n+2eGWSGvr3Af3tFVuw7I/bZ7ed7HHxJtIx08NSzJB+z7e7+8TnQPk4I\neFw7PaMfnLHgjENycOKM+gk+mXBIclj19TjdEvhKitJB8uOQK6kgKKCzBf7WpeeV1tUmaKDT5EfN\niZNJgaGvkHwlRYamTDR/tgVbXb/7OUY7Ojjl/kapwJ+jRK912LSSfvrIMLx8MeFQWRKYXfH1I16g\n0wFIclaiWpCPHrqhTHw8T5w8X1XMD8YRH8GrP1hzjcv6Gl/dWuZPuMGj25IW3rZLOuNliWsHG182\nsi3wDBbYnvFyxcV+aHfxG3gusearLPVMyMABTwvQfBXocrBymLI3ki/kkS9yZWuiJzrVExf94ed+\n4u9ZYOhvivrKE/3spADRz6dd1udz4MvnCfTQo8AZjPwTG0lm0A4/8g5n4/gnPPYlgMQz/6fNODIl\nWYBGNpysllyyNvytM+myPlpcijGKcY013j19Jr8CcPTAHx5+vvlgSzAIMuESLDYevdrnmu6NgaOv\nVx3wJC0kL+DZz9zUaLC2IjEgBrCf+ff0CL/h4OtyXxWDbR3j/FzSnyWho+2BoBuPxRb0l50JJ3LR\nQRMcl774EX3oJ98uewYXsYe9amx046u1BeFsg/XBbX37x2ZKEKCBjUGP/bWOuRVzJCzFQWSEPGVP\njbF2cUy8C4/6g7XWjZ/tc+68b0xz1MmYvsaiUzu+3tviOH7eixj20p6LM/CscWgiM/wJXWJD7a/5\nZMBlD7S50GptPNRu3XQITPpDdvFNP56SSz4t+ZIEgw9ZsJ90i/0Gx0sBideL7YsXfJ/FWtEJh3gx\n6U+nmmdMeB6Nn23NOapbG6yKtnX+Oi58a6cHZNIvFLwwY8foLr45rIvNfPHDD1oLT/CdvSLPxrrY\nNHKIf56NIbfoz2fjsYT7aYvj2Sl7phjnsvfgg8N2SXR6UUsX0jU1nJM1c+yz2IBOlHAzDn7gzT3A\nH5c56Gkv2Ffz2Tb48dmezSeL4hb2Dm2tDQ65FI/w62IE+Ih1nIXMM18x1hp4wTd0niH74OGXOIm+\n82H4o4YnmPhjPvrgBQ7Zx3fr0BP4sS1gogO/rUX27Td+uFoHH8FQ8EGsx7/gHbytTyfym2B0FmCv\n4GCM9dhM89GefQUX/gr/63IeQA89pOdosnfawbMGHMCBK7rbs3w5nBS48L14Z2004A9ZVaMNLmSI\nTCXzxrE74gM+U3yHV/YxHI2pmLcWON2kEg0r3nhHv8T2bECJVx82+Lu34jd6OucFa9I/+2f73f3D\nuCp5mrzDM3LLD4lt2Ra6QA7ZEjqlmJMeXcZP4+iEc9jPfvaz/RxjXS8N/V18ZxC6cVTMhYtfDf3t\nb3/b5YEdYN/8bXyxn/OWOAdMOpztQIf5rooxdFtfslFtTOMnX9hBOs923t9evovl2Ld4wmamo/SX\nzch2qIM14YMJT/4qu0Le+X81P8M2sLvoL46NFjD9vwLPP//8HrfYFzDth5oNzQ6xRdbCM/YzWwq2\nuIUtPm2+RVyarZv8Ce/4BP7ab8x1SzQE77rzbtu4W5F4tSnrhhKQFMaBiaOjtJwzoSOEOVD3hNt4\ngp4CEg7CzMgTUoLpEmRwhgIhF8PB0YNnDQ6a4QKP8hlPOdTgpEyUwxVOjBynzOCZC97TVvC8vZy0\np+xTYe3x0dhp7IypaLdPjA1jKVhipBhSxo6RYjwdbAT3EhT2OWMNztF6E6fWuqsfnwNX8Zj+cFB/\n//vf9y9B6ZxAVQJG8tX+0lsBnGCaTtlb8+w33ZJQkKCZPxmZGNvTnIx28Oiyt6t0mZx04CYfbICf\n93fYMT86qrUdyUr91pn91kcDe+A/YuD02Rb2SBCv3wGHbWNHwhdebA0cjdXHHrEv1iLTvhiC78V2\neD9tjpdjrkx8Vpwac90arHjR/aRxruWejs62OfZoTWNdc9y8t++S676aEsR79pWYJDnaHXLmmubO\n+XjKP5AdgZL9AAM/HQj8jNxXjeTJ2Ap5ISsSu75akSCR5HH4FCiSpfXw0LrtY3Ys+uKLceHFR4Bj\n/6xZgaMvNMmNoBcNgkQBry8u6Qj4gtUCPDQK0sDXB7Z+OtO9NaxlTfiQLfKJD9aSoMMj/eSMXjpk\nm0dPyasAE8yVLrhbe9JpnmBfYMh2g02fravP/kmc0cnsgpesbLrxEmlsPZ6bQ1fgih94OPeM7joM\nSLw63OljH3x1J3GPNvPCz/rwkrjBW0lOdoD+kRVJh764R5s9Z6P8B3yf3V7ulXiDF/6Ch7cufEjG\nJOXsQwkOa9BvQX57BT6eimPsPT514IcPWtrD9k1wLzmCH+i052wGXkpegMHOSjbaN/yN9mrr2mu0\nwYf8WN9ajVGD3bM53cO/Pa9N/1qMqRg3n7XPucGzZvvbeOPwWTv5zNdfbLYA7fqMdeE5HpRwo+9k\nD5/Jk/iB7ScTZJseSDpbt72SIMIbbemROfkOfLLPdMILROv6osuBlO7Yh16a0S+xop9Zsl9+kcOe\ngB0PotezdvDijT442Ed99g0uaI4nxlfmfW3q4HXfuGr98944a1ujEoxq493zUfQXrV5m9dKILWW3\nHLb5rg7bE16w1PhKr/h6h016QSftqWJPyDkZsEdsjHnwCPdgx1OyIJ6wH/YbrvRDApRt4APwF2/t\ni32USGMX0M4msQl0jh+Hi3ZrwwVN9JrszLMGfU/WrG8tth0c68E7GbCfbJK12SR9ZBJP2RF8aSx5\nlzh0FQ8XE+MbGtXoxic+jN+IX/gEd3rPluEp+JIUkuVedPKNZNZa9s+LLfYSTQoeshedgdgPfEGX\n/bNvLntAF9In/EErWTbfxY+xnca56Jh+touNQz/4Cr6AcdpiHz4C3GQQTXTDM5jo8asHc81zWdt+\nOSPgc/PhDBfrGg8GXPDPvmqn62LP/BB8yIgXceCJGcIJT13oUsBT4LCW+tb2T+tzNKx44zl/5Nds\nbIB9w2MvLPuwAv/Xcg7eOu5pf8anaY8n39yLC8i7l30PNvvGRomZ6S57Ro7tmbHZkmxk7fV5pr9k\n/fXXX99jcHrBd4mD7Olp08FVBtojcNlVL+DIg48b4GOu/8wYTuI86xkLn4nLhDvvg19tfjh3r87e\nOjuwofSXrvLNYk9yWSyWzbBOa8EFHDSLE9hS/ohMo4sNdz4h72wh+xn+4QFH9wra2U5+EA+cLYoD\nzQNDjAtXtXjFfrHPcGBn7Qd4fI59BcPZxDj80wf/1rSu53znpK8+dcU8uMA1WPWpJ1zP8cr901Ju\nVeK1DU0wBFoEnBAKdAQSglyBE2espggEklClJOZTIs5UYpUTJOzaKA/lM9YzoSfAAguOXsAwg4nG\n5czrN4aTtj5HU60d3hQQPRk299H3tAjndehsr409x5/aGYKCLUGkwMnekxFGimwwog49/qMmzkHA\nP518sCZuT6PhmPQ/6fureEwHHSb8x1p+Pi/Q5UC8BfRWnM7aE3DotfH0SsArCSUIcHgRVGgnA7Os\n69NBgS95IQ9sgWDYOLDV1hREJDPagjPlY963ZuM864dzNdoc6OHNZnGcbIhaIoDjZi/AYI84T4c+\n843Th0Y2hvPlYAUrDq++GhJEOBhkZ8LpSdUrbewafBzo0CloctiD2yzNO+LXOs7YxlU331p4JPHq\n4gMcSiW+XIIOdmEW8mCegzIfgf8uPkRypAOpAMY4PDanoAh8QRmZlMDr0MX2oJc9gWeXtcO3uj7P\nrvaHP+F/8I9seOZ7XGAHS5+kn8MvWcdrOEkqOtyRY8U6+hSwXIp263oOh9qrjYELPtEpf4PLeoJV\nffAhb/wo/AWc+Idn5CA4amsoxoWDe/5VcAt3+ofXDsIOBfwnmWez8TgfDA49kExg5yUi6C8bL4B3\nmONvK/pOW/Dv5//sh8MFuOiQcPUnTRyUC1jNg695HUgE4q0DtgSLn6ZJQJiHlg4b9gBe2ib/wfXs\nout4CVdBufXw077hqUO6hDM4SvtEz/EZj8kZO6XAiczo1wcnMi3ox0v3Chm1X3jNLpjTS0lyQsbh\nrbZmF/zWtmhpb6uto6+69uq9Y/mn8Uvzf+WmdvvmMh48cgbvZMq48JLg8OWol6zsgIIG/ejGd3Lt\nEEoW8IZtJY/spuJgI77EQ3IphmDPxIzkwX34gGtPWoN9pqf0p6RrOuqLa37GeH6L7fJTS3vrKx+2\nix6fNrklh2jt2hHb/rFOBQ/4DLDEO4p9pjfWYX/jWXPU2tbSPh31rWN7nriZt84ln/CiL+yIZCbb\ni0f00R7xr+wpvJs/aZxrubfn7HIXHrgUfLUveNf+wBHciStZN6d292QKXsbxBV6IikPYCjw2h4/1\nkkWykR2yhj402QPJDbbTuQA9bBhZyUfQPbjpV1ufTPr6y1r/+c9/dtlDoz7w/RkZPp1NMJ+u46k4\nwSHfmorzCp6yWZKgZNX+o8s+kEcXWWNj0YMGsgk2O4vv6Ffrx081Xour/vWvf+37KG4xxssCMbX6\ntMls/h4PxFD4aa4CDtjaagcDL/KfxsGVXsIVb/HOxWeg33kMTDwnV/7UEP6h0xpiNn9miV1GH5zA\nt5Z5dJMN8OGOxAubqYCP13SQDZGMti6c8RxO+AYGeGxpMSOc2Qmy4otO9sLe0Wm+x4sge2KNeGp/\nkz9435aCXwraZsFnfun999/ff7FDx9hnNsDFBtujtZyDt4572p/xid2Ih/FNTRfFLve3rzvFj3yb\nNjor3mDP2A1xCP2qBCM5zS6RV7rADvziF7/YbQL9A8ufOfOhTC+5p5wHVxvdNt+fWqMz7KdfqLzy\nyiu7DrJHChxaf86ffbUbG47mNCb9YufhTVfpPl7QSfruBT37aV12hv6aFxywuqfvdJxNBEssJbYT\nb2lnY6yDJ+EDHluUT8Dn7B87Ym02i04YY212lM6IOfkje8jes0FsNvvGj1gHbewVu8Wmi2HpFPrC\nPV56hhcZ6KWzuXwV22bt8I5mc5KHam36G7O263+ayo1PvLaBNnTe20RCT1gEHgJbDpET9iywowQE\nk/Bw6hRJENQbArU2jjPlFvxQGM6AwlAIgYwAljB6djhModzDg8BTDvPN5VwIMyUguPDo3rNLORLU\nveMp/OccL2b7eu85XrbPDkSCTUZLnyQeWbCf+hyMOQQGtsNP7E7Gela35my7u398Dpzjce10ieP6\n5z//uQew9Emyy9d8gleH4vbEHLrGWQu6BRTzJ+F0jlzM8WG+yg1ZYAc4HnPoNZmxBuflDaTApEO5\n+eAGO7hrHV3ajW2eQ4fDj4MFJyqo18eOoN/XJH4GzB7Bh4OVUIWLMfiijw0Cl6PV57q3JW/IP2c8\n6V9x+zDPcAVbcY/X6BEgsL/pmwDCz+oEGPErnlyHd3PsOt7eC0IcdARudB3tDlwXFxd7IFUS3Vj4\n8RV8hEOrgInP4Duy6QUvaOM32H+8BdehiSwKdMgLn2AMvxBtE8d5Hx34Vftssy4cyQPc+DY8s++n\nLTDmu+Bkjn13OJe8Q78gyeHOSyXBo7Gt0xqtqb22fdAH/+jX7nLvsqdwktSUMPF1qHu4wgVv6Yv9\npy/kMj8HbGu2Xmvoc/DEW/j66bVgn8xIJAuE0aiY4xAt6YBGX3DRwfgPB2vjxa9+9at9Pn9rTUGu\nwJ/uSgyYa7zkpGTrb37zm/3rMvtvjrXgJSYQAPf3IQWugnDyg37BL/2kp9Yx/ktf+tL+P1XDMxuy\nE7D9E/1iArYKL/19OwcOBw/9ZAi+9FbSzc+u2TvrVvDHmvwZGtK7bBXeo4Nt8SJBUtFXhfYlXbWO\nIJwvtF72w7ra7Al5AsNa5MthAu6KOWBZOz5Hn348nPus7api/FGxRoUtw+cSIfBmA+0d24l2xRxj\n2UoHeV+PskHayS39kkiV9LaPaESveOBisxmSLg5G9E9i9v7mU4yz9+il7+JBfCJLSvvnuQOrPQEb\nHPwnT5J1vmah08aZZy/ZLl/8oIfMSdA4fLI3cGuN+ByP947tH3vD9rEJ/KA9lkBGC39At+JxMKpr\nr9bu6tka895zY9wnVxOee/xGt/2hM3wZXsLP3sERfmTcS1UHfvwDr/Wtmwy0jjWPSjg11xjzJ+5k\nxNou8k1O7PX0TY0Hh276ExB+Csv2oUeROH/uuef2X5XgLdzIFjkE2zh4a6cv4JMbtiU9jx7znBv4\nJEkAstDXruaSd/aATNhLegq+ZCv7gbdkjAywO+yivXeJg8U01mbH+Tjybz0w0MpXsIv3Nv9Gv/Ck\nEo5owS/yiR9iMzU45vmPBP1MnF+EQ0lF8/Cxuv3wbH2040c+1Hqe0YKmfDP+ge3MFi+NBZue4YOk\njT9PBSeFr/CTZT4xWxdt1mUfJWzZYXJp7+h1X5z3Swv0wMla4YWP1rcX+A0nz+SL75Y8f+edd/Y4\nyB6KXem9P39kT4zFA/WUt+7j/02u8UtZaeK37Ndbb721+3n64kWjr12dy+wVfq/lHLx13NP+jE8u\nsqXEN/ImfnA+IvP+TJXEK72mf/wTmSf/bDEfNWNOcOwluMEEn96I93/3u9/tdpKOgPO5z31u93di\n/8YnCz2bDy8xuRcgf/rTn/aXkNb19/3FQOJt+NEta9FdcxR2hk7rz+bMNaaOWdOV7jlz8UleIklo\n8rvkj20vkZneW2vCdQ8WW1M8yPeKK8StbJtYwfqNhSe4+IGm0xbTs2dwh5N+5wlxBbtS0hfNbD3/\n4+WS9axrDhh4zaaY33riOzEz25wP0A/n6ECTAk/wxIpq/tAcegiHYD4c/fDfaKoNXEX7Cr8xT1N9\nqxKv68ZxuB2iC3A5U0Lq7QOnrRAkQkToBTFTqCkrx+ii2JyCwITTJ4SEjiI46GWEGC/BpCCEAxac\nUY4O9hxJB5IV5yn4Ces65jY/p5Qr7bWjvb7ZtvLkHB/tI2Nmzxgf48gBY+ieDPiywgGIcxFokoFK\na/esvgyPOe7u/nocOMfj2guKBdK+YKNnkicCaIc0Oswh0jE6J9CVrHEQ8BM9BxjO3765OCiXYo0u\nuu1eX3JTwgQOdNpFPgQjvpi72A7mbMkswWu92edef8WYngU8bAwa4Isma2l3iPZzTM7cVxkCe4kE\ngYgAge0TOJR0ME9yCJ8cHqKj9dRPsqAB//CuNeAkQSMJKnHGNgrmvOiQ/Ojl1sRl3h/hF2/1GbuO\nZ4vZegcdAZS9dxAWjEhc0HF2AH/xCy8das2Jf/rQUhGg4Dd82X0HWIGSy73951PwPHzaU3Vt1cE9\nV5tjz/ke/kwi5sGWELa3cLDfgjX72oEE7hJHLjzn07wl92JAsoYNDJdwm/hEb3oBt8ateNIFePk7\nxJJDklD2WgHT1Vx19/XvA7d/Zrs2OmevJF4lxthi+iaIp8d8egVN5Mifz+hLAAErfqAFP/785z9/\n5uc///nOt+jDP4fe73//+/vbf0ksfeIEgexrr7222xc0ws+ewsOhXQLVnpMBCaGSHRKuAnVxBhuk\nSCB99atf3e2TJEZ8gV90iy/YMsGzQ/nkY3Q2lh77swgvvPDCf+2dPsk/sishyEaQ/2i1FlkXvNtX\nfs9BQKIL7u01OPG+5KE6OT9twTz7YS+8RKHLEhR4jC5r4Ae9EfvEu3CPds+untHYGPfaj0rj0RVt\nxlkTX+wJubE2209f0AofxRxj6YK9d5Dy5Qf+s0losgfslLna+RT+xVdubAYc7C/7yw6zGxV8BJ+O\nsRXmkwOygzd4Z769ocf4aG/YJIkgXwL1Eh+u1pGIl9wjH/T9YvMz8JZoA7MSP3tWg5HegOFQDQfr\noUlSwyGs/TenvQlePNenzH162PLwX+OU9qV5wVHrY8/EweIu8kp+yJGXAOQFr+yllyFiMTRPOlvn\naK0dgfFPuDZn4lJbw/lauu9ybx/oK3miE8GKV+yeZCi+koNgs7UvvfTSjjvbW7s6GNa0fn3hUE1m\n7Bs7Tw7xxhpsi3Y+6LTpotiD7VPzAXhH9smxxAH771m7gzI+oscFt+SRDTBuxhvGd0A3Nh7AGQ/s\nJTzZ+2yPL7PxhM6Rf3HJyy+/vPt4aynRHB8nT+w/PMgGnTWHnaZTaLCeMxhfTn/gK7ZBvyQnHNd9\nJWP+NJXkj7ObIpn/4osv7glr+xxOaCpuYAe8sONz+BM2n83gZySe6G1r0XO4eHGGF3yJBEV+WT96\n4c62/PrXv95f7sFXUtHLPzEJWwuHeJyMwLm13N/00p6vNIl5+aTf/va3e7LNftMniXu2gNzi+1Fp\nD4/67toecgCP4lOypSafYkw2g/7ybWJhOkhuyTNbKL7yRT99E7/nq+JvOu3ZOmwDOG+//fZn/vjH\nP+7w+J5eHPNhlxW48RWS8e+9995n/vCHP+zDJUH5SrDYKT6FbpdfMYjOysvQKf6YzZw00zPPtXkm\nW/Cmx3jg3MA/ieHoqZcjdL/4Ml6qFbAUz2wYOwzO/e3ljUS2Yh321mWcy5mB/l9svp1Ptgbbl41R\ns6euCjj8A/z852XOuPjNTt7bkqpextEddtG+sK0KWyqOxRf7h5bwrm4Nc9ABtngKr8WC/HNxA/zJ\nT/zMT4Dlisaeg/201rcu8WqDFTUFpDwCFocQSsnpOSAQJAJKsB2cCLmrpAQYghuOVBDAEXMAhEu7\nZ7V1KDYhBssYwbGAzJqcCDwoGAPmMkZJGPeH8U/Cea5/DL11t2ifBQ/OldXAN+6qOQwXJ8LYKPbX\nvjBsjImvYARlDvMCPkakcgR7xbmxd/XjceAqHnOwDkYlXunaaTuAOEjbN05BoYcOLByfxCs74G0g\nfcxBkCFXe2htl/7w0GcMuSEj+tiBHA058gWlxKuaDZklWMGZfe5bx314tAYbRTYVcsihcoRsmGSi\nQwFnznk6EDi4s2NsDNuTbMM/R8vpto72J13iIbjWaS1JDQmhd999d0+ceaZjgidJJIcUdDe++Zfh\nt661zhFIOjRJojl4kRW6L3iUPBOc2FfBi0SeJIcDHT+Bh/Bp7wUcbL1gQ3LVAWC+sLPv7AU/YJ8U\n+E169sbxz1F/bda212SALJN58synwY8e8F0Og5KT8CooIx9kw1cLD7bDqcBLAObLKMGyIG8WaypX\n4WpMY90r+OSgaS06WVL9Ye/Df81J1qJvwrGu59o80zX8lhST7MJbNKNHEG6f6CBeC1gdzByI7ak2\n6+EhHRD4O3T78yR4ah1BuMODr7EcevHEunw+mZGolQA1XoEPHRIUszXw8gwW+kuOwM18+2YOvWWX\n+BVz7Zl1XHQxm0JW2SpJHF+1kUlz0U1m4UVn4JO+++rD3qNFO/m2vq9DyLI4hUxImpBVtkESkc2S\nGJHE8TN28+AT//HPQcV4SQ20Sn7RV3JuPvp8BSEZJEFhP9CCPjpgbTKL/+DaC8U6SmvFi9m2D/jg\nn8bX1rP5wVBLKNEFPPYCFT/hhKe+ysW/irHGSQo5UNEd9IjZ+Al8wUdxG/6h2wEPD9DPh5ApXwfx\nLfQTXtkL+2aetvyEe3yxl4r4kY3Wbzxc/E/F7KFx5FefpK5kFrkw3n47UB0lXqOvGj4usoQmh1Yv\nY+yRpKuEHbrQlH6aO3nrGe6uWYzR1hpwtf/gNLbaGP34hgb8YqMkBe0Pntsre8Cu0mE6zZ+SvQ6O\n4aJu/VnP/saolXB5+PR/58PPXrOtZJpPJS+nLa6Ah/23J9Yyls0j3/beCyeJNPKgH/3slb9B6E9Z\n8GvhGA7BmbzS5gLb2mw8/cEX8it5SCaty+6IVck7G0YuyTA7gM/4Czf+ll8DU59LIYMuNNHl9j48\njaMj1iEbDujGwT/6xSV021pwxTsvcth/cRZ7xHZIkEhCeyGSX4SDtVo3mGgjF2hFtz2xNnlgv+DM\nBuonNw82X2AuXy6RQ+/zgXC1BjzhRX8kfvCWvtG157avkiWR0GYs3um3thdo97dkibnWYAvJI92j\ng9OH8kvkWmICbmDgXS9j4zu6nUPFbn59Qe6tTU7EQGSNrFeiAW5K/Kr/JtfRlE5Ei/2VSJJ4lQRU\n+oUHe4U/7MxdeTwO4LsL3yfvyT6fSe57mcqm8VPZCzW5p9f8Jt2ROLUn2ZFktpoO0wmJ1/e2xCkb\nz2bRV/vJvk883De3djoMhi/W33jjjd22sH9ehNJ9sUrxBj20psK+nTYbzj46F4qDyE700+vWiJut\nLT7CC7GYxCka6ac42triMmcCNo09KeacOiouxEMvEsSE7II5eC3m0scesJXg44eXC3wyewfuih+c\nFe3u2Xfxlz/lgEdg8TnOg+yKeF+ciWZ+wBy44s20//rDPf5Yh22Do2Q8GvCPLbTv+MC2gUtOrA02\nGSErbDGY8TS81cpc52HL0/HvjU+8EqIEJgH1rJ0BF0DJ1DsUMSoEnjATOMrKORJwyqkmKJSc0gkk\nOohzqOA6CBKq6dwZHPCsbw3BkgDefAbAmrMYlyCCqRBOOB+Vxh713ba2q2jVr7Tn3cfHvXP7Bz+1\nueYc/Z5r89w4+8gJcAiMlrd7ZCRjZM66TvDUd+XJcOAqHtNPOiaZxikKku0TBywh4us/BzwHKAkI\nztOLFno4YdtPe9v+wl5/NiVqmpPM9KzfXI6UvAjkBYgcqDFTXpobzFlPeI2rLRi1m8e5Oej4Cgr9\nDuYcoZ+qSSIls8FQu46CVe0T9sTrce/j3wxwrMOmChB+8pOf7AdJ++FQ5yfYvjxxSKmEM9wuw28d\nN+lxL/BxcJJw87c6BX3wsi79Zs+NEbDwFwKI1ks2BBAOfmyDYFPAIXk136KjOVybP2lZ2/RNXHtW\ng+UiwxImfIk9drl30DWXH4KXn0CTfTJQgIXXgmcXP0QmHNKNza6BQZZaG46CpgLI8MATY/HDngnE\nFM94qQ2ekgK+puNvrW9+49Txp3vzGlOfZ/fB5lcFjviO33CzT/yyoBUvBNMSmxKv9I8+Bof/NRZe\nDrp4AWe2XnBLZ3zFQB7MEbyLGSRTyIwEgnb4WEfQbY6DA3wEm+xPX4lIxIHR+tYR9H92OyDgvzkC\nVTFIcohGcCRKrOkLC4cH7ZKD8JSMIqN9sY8uSQa6w/aIY8g2+si7ce7hXeLU+skJvMiSJJyEhD2z\nx674b30JBjz1lYd7fIK3Yv8khMDAX0k0+yPoN5de6XcwAPeoWEs519+cxvVcHb6e8Ugy8mL7YsSB\noPiv/8jGQad17AG5ogsdxiR80jH8bSyawcNvOofP9tx+kHt7rVTvD8s/9iGZ0BXe1eJJiddnn312\nl69ejsHDOhKvXmpYmy6gka9jM9ESf8LZGtaj3/wlXZHssdf2g0zSGb80sK/sYLiEn1o5gq0NfDIA\nPrzYCXItYaeOZuOMwSv6xC/DB6/JPH0Bj26gDV320UEZXmDBDZxkz324HeG3dw7ce1ZHZzDh7UBM\nX3xlTpfZAPizl34SS3fsvUJX2Tdy5UAuviAPaMQPcOmjvaSfaIJ364bvDmz7JzzU9luswpZKlNNl\nOsTfoxlO5FbyTxIQXmTYuvGb7cBneDn38CN8mH2hn/BEc7V1tZM5L3Q6D5F3sQx7qljDFY4PtqQn\nPjmM20s86JyERmvCEx+8dCLj8QA89MQvNbrB8gLPIR8N4GS/yAOY1sUX/XBpnVdffXXfL/haJ36y\nc+yTP39gb/EJbZLBbD+/CRf84E/68yFiR7qHVxJMfk3lZUW/kjEHfnSMPJBrCRayTWbZDIkaNpcc\ntz/079///vf+IhC9xvqVndiN7LM3xlbQoaxyU/9NrY/o0sZviFt8wcefkk220V5JTEl4xZ/bxpOP\nay+PeE8HvUgh/xLfanJNv/Acr0tukmH6LDbxqwQ1nWJjknPj3dNRuuqDC3+3l19mEyUF6ZSPIMAy\nPrzwIXvXPVsmNvrxj3+851mMZa/E4nSe3eNj1HQSPLjDrS9V2U5tivnGWEdx76qgFd7s0f3tBQxe\niGu84GKTrMtWih/wh47Dgz6TWbDAEFeYy2+Iw8Up8GM7vbRm6/ATHHjyN8WxYIRnuPUMb5e5fvn5\n05/+dLe/8Bdv+jWUXAZczFGCsUuvWxkAAEAASURBVD9s/wRrPmtLv9yzi2gQg/BJ9JN/w0vxB7qN\nkfsSB+CvfudwNb/C/7V29TmcwuU21zc+8bpuHkG0sWpOtOBOxp4wURwCTvgpC0VgLAgGJektBIVz\nOUxw3JTGmHvbQZfSgVPwkpITFEaGADIu1tcHRxe8ws3YBNC9Ei3u9c1nbU9jiUfX5UXj41Xz4icZ\ncFBhINWMdIcGh1FBFcPnUGKvcyTBBc/Vs3Xmfeve1R+eA3PvJjQ65pDEEUiQcGCCBl/x0E01B0z3\njZMoas/m/tm3nFIHAOu07lyze3NcweFkrScg9MWCgIIjSiaC1XNwztXGG8t+uWdz3OcIzXNIFOT7\n+5OSHuyMZKAvpXx16wAbnNatnus+Km5z7mX3K9xoYUftF7wdTvBcksbXhs9tX56gQQl3tWvSvq7b\nmOhbxwsYJJV86SLpyx4L8gSJDkYCNwc+hzljyRZY9lWAVXDR213z7G+BItxae8WtZzgZE67aJ021\nq9ki+8sPCTTJsMShe7aKH4IbHAQ1p+2FocSJywFScgC/0ST5JjEAhvXgjt9o9ixYcllXcMSnCZro\nhL1xYHe5J4dotja/h4/aowUMAaBEikuioH60m9sa4KNRkA+WufEQ7ooxaBHc2gN61X7hEVlyaJWU\noN/oF8Q7uKLP2miEhwOErzoFp/iCDw7EEpa9KLG+4Fhg6ZDel8JwgVMBvK+3JCHFD9olGxzQfV0s\naTP9fTLk0CjRJd7AB36G73GhEf32WBDOppFBsB3Gv/71r+/rmdfBQwKO/uCRwJ9sskFwNI+M4JE9\nI8MSFngnQWMcWuMN3Pu7aXCfBX4SDvwhXpEvuFfYVokMvEI7mSWTEgfwFQPBuaRRe2w+mteiP1mo\nX1vz0NaYORctxqMVnnw3mvkAdtKeSkJ5WRdcc+DowicylEwb01r67BGbqrY35IQuGmOsKzy1hc9s\nb9zE231j4SHZ6M9ROHwVd1jPl33/+Mc/9kOn8ZL+vuw2XoyiTQlna9Fr+kUn6YhEFb2Eu2SawyjZ\npzf4BkZwggUO+ntWR6d7MkZuxcj0GX9Omz2CE103X7s16aCklFpcDTf9eM5nS07RE7T5upQOWxtO\n7b81o3HKQfeNM8YV7vVbT4lOPEpG8YesoAVuZJ/tIf/0HY7gkGXj6Ls56KOHCpngQ9Bkvi+XJF4l\n69CjhEP3cHHucIFtr8irxAcdt//oIA9st/iUjfNCBq/ZbMUYsPHaPoMhMQwndoH8slnZm2Ii81xo\n4FPoLrqtRU7oe3wFiz5LCtMnX2uyAdrRjOeK2prkS8JVbMSGx3dj8Y0tdtHTB5v/Zc/Jh3gOfpV8\ngXMbmTMnv4VmuoMn/lyMNdFhHNmHJxuljp94aW++8pWv7Hrgme0qkY53fKY1wCKPaPCSAh3pJvyM\noQPWcJEfe0ZeyA582Gf7D1e8lJxmw3/5y1/u4/kJCWpxkDXwf5bpR+Ph7L9J9/Fg4jzb0EoP6Jdf\nm0h8452XDHyvevI/OMloz3f1eQ7gNz7T+8k3beSZXosb2SC6ye+Lv+if2IJu8Pd0FSyxBb8r2cef\niDEmbPpOv32t+uabb+72gk6wDZK25rCXcAGvMm043MDwwsKHG848YscKvTDfuGCo4XHa7KSzkbXY\nz2xgc6vn+u7BZ6fEDWh1sc94AjacySZ5BFPsg3Z2Vi23xDaBxY4aa07+gh1wfvOCgS8xjq8QA7A3\nbA8eaK/M++jkw/rTHJK47I/98DELHuOBsXMueLVVt4Y18VO7Cx/opI8CfOjDv1iDT+Hr0Y0msqPd\nOnjCVvJTErD4ISYIh0mXeyXbFj6N9az0vD/c8H9ufOIV/+fGzA1lJDhUDpgjFwwQCApAUSiF8TL4\njAnHSwEEhpSL0hGmggoOUkAvOCEE5gkCJFrBIXxgEnRCZE04EFxXeFaD0VWbWtu55xsub4+MPl4o\n8eMqAI1fx5lvTxxUOQqHb8ZQoCrgYwT1cwK+aHKwOW0GW4LWflbAcc115n3j7uoPz4H2fPJXWwe+\n/gMajkCb/aOjDHxOYOodjILpHtxgz/Y57qhfm/FqMiShIWAmN97esi3Bb9zecI1/wkPd3NYzXWDh\nsCMA8TfCyC0a2SSJmm9961u7DOfcw/8aSz+xIdHQ2jlWh1LJQF9d+ZLBHvmK1JeKLgeOOTce2Ndz\npTH6rdeanq3L9ksMSbz6isJ4gZGDvmBS0oF9F7xIMuKlPRVkdggVNPAZDrn6Jm/Bsw4c59raK9rn\nc7iFrzUd9vkqCUUHuV76aeNfzLe2YE4Cz6E4HAU4ghuHZTga60WjA6Skc8lJgRwY1uPbHJjtAfsm\neAKP7qCngzG8PJvHFupHKznML0YH/tljNlUiwbx4Qi/hDgf8A5eP5SONUxpbogDf2Wu2ml55uy7Y\nM0fCU/BPnvDM4UDi1eUeTeDZV75d0Ozgrc1XYuTutNl3uooH+iRnJSL5A7jhE16iGX99/WauQ7WC\nVkkYcYPDCp7Ngg6+xuEbTvgGHtwE4GIFz/a4ZAbeKQ4mAmcJAngqeCbwdYAhy4JcsOwNHNVkVpJX\nwItf5ATPe9FYzGOuJAHd8Cc4JA3mfsHLWDC8zJHMDA+HHgdi/BcvSQzaA/yyTgcMsY+AXV1pj3te\na+sa0zjPrrU0pvFqsZmvaNhBNhlODiT2FH3xFqzmTbjob49mPx7jhbLKfePgs8rxhG2cEl3um6u2\nf5IKvnqDPx23Lt0nXxKvfs6Otw5n5KIv6SZcfpDs2lsJLHvDX9BNMsfGOny68Igt1A6HaA/H8Ftx\nxQP6TfYd0Oki/MVOdITewl1sTK7vb18L2QeywObQX/aAPElOSbbSRzpCXumN+RV4TPx6BoccK9YH\nUwnvI3r0kVN40Hl2AY50nn7RFXJE7iXc8IhNNZ4dFWt0WRv+cCf39JhOsDdkQUzgxQmbBK61lWSl\nZz6cPsGl5LQ9pM94Aj5c2HnPbCJbqh+frAUXcOCWXtoXa5ElNhS/+Ts2D6/wGd/Q50KDPrW+/Jz9\nJkv2kU+BK10iU/YAHdFiPb6EvfbrAAl+tgwO7CwZ4JPzceDwVdrZanIFpmJ99KntJTr18Tuthw60\nSTSk93AAl3yyb2yUZ3P1kbH+LI25eIdvXgrbA3JrTTLg5Qa9pC8zeWB9ulainI6yN/Dkh8mF+CKZ\nTp7N49vps4RL5w6JV4lguk1H4VlBt3lgz/b6b1KNjpWG2UbWJLq8/PRnUR5syTbyjj8Sr17OsMVg\nmFdZYdZ+V/8vB/CNTK3ylH7Rbx8pSOKxaWRfIpA+sA/0g5708olt5EfYfi+02XP6z7ZYw3rgiDP8\nmQC6yK5KhHrJaB5bNvew/a2NzaYrdPT111/fbUjxGRvA5pATekYv4cSegyt2s5bEsHiMrZslOWot\nfOiePIpfwBPjsSV0Hg3iPf3Wy7bgDxt7b0tIqsWKp83usjNis+w1+Gye+Nx/Ise2oocP9QLGy248\nmiU8tYWfe2uzqRKjbAo7ZE1JV2dScMxl59hs9LDFLvyBM5vIRuMl2C58UMxlm70s8qvBzm5oMd58\ntKnNww82mp6inyywh2izT+aRi7WYu9LYs77bVG5F4tWG2KB14wgkQetAVKBB2Gw8wSug6usgQZhg\nlxLMAjbB5EgFUYSLsHMS1rE+mBw2+JSbUBJ2gk4QMxRTmMA1j5DX3ro9r3TV/zTX53iifS3a8Jch\nKCBkgO3Vg82xextu3+2RYMmXiwIgRsM+MhQVe+Ka68z7xt3VH54DU/5Bi/d0SvDqTw1w/g6XOcG5\nN923/+ragqdu/+o3plJfz+r69dF1BzWJek7OIYkDqhzNr++oBnvCNwaMnCDaHSh8DeBLNTKrzwul\ni4uL/eclvtDxvMrtXO9R8Zpzr7qPBmu4PMPRiyp7JagTwLCbgiIHVIcbSYXmWCM4R046HBrjec71\nLCgSrDl8vbf9bSk2Hh4OsHglIXbaAhR2AF9d4AkYJSHhw9Z7NkbRP9dp/eicffuED/6Z44xpP/GA\nD+JLBHQSAPZX4kRiD072sS+WBDjuBUqCGPg5qKFDHx+nOMz6YkHSCVxwCjj5RMkzh3v3/JTAGTzy\nzC/q49v4Lrii34GcXBmvjezhcYV/Q0+H52jUjwbr46k1rEsejG8cvoRL9MAJXey1fSvxKrmBNgc0\nh3g8kIyigwL5ZIafFvRLQgh06aYDRIdo6wtUJTT9FJV8mtM+w82aklx0u+Q2e+PrL/slgQM2XljX\nXAW/JB0kHxwK4pkx6ESvWIMt43/AA0OfoFniVfICz5vrq13Br69jHSzA0pfc3dsCfokeiQUJWDjw\ne/EDbtbAE8kG9hNM/FTAqdhz+yDxyr7hMdkgm/e3g4JkpoQM2ouXzHElI8YX9wQfLq7sE5zQ4HIf\n/4x3D6fmuG8MOqJdm6R4iUv7JOFIRug/XUBz9JkXDvBwHzx16wZ/rus+OPEqXM2rNCZYtVfrDw96\nIakgceyQW/KSnuKzQytZR5fDqiQT2aJL4Lvwmt6TJ/ZVXEOeyTg9IvcdgE7bvpbkRHt4wyl47sMR\nzvXRXbIKH1/ssBUOd/wOeaVj7I0DPPlyWKZjrUEeyRJc0CrmQpdkItlZ129efFOjifyznfrF5tY1\nX0GT0v65D6659JYMu/AKn63fl7dsCL8OJjvcV2B4+mCLGdHHR5A3dEhe4ztdyrfxa88999x/E69w\nwEMlXNTmSWDTaT6KPpFJsaokBlzstcM7e2/P2wuyaj/giN/sCFzps33huyQA0MI24DNekTcX+tjl\nfBz+4V38o7v0hn10Seriu3WjRZ3Og2MdyRoHbQlj9tMYPGaH+SMXuy2BkY3AF3Dwkt2Cn2f7ZZ/N\nT0fBgyNavGQqqcJW8lnkjezjp7WsgdfmgUt/7Js9BFfi1N7xSdZ0zhOTkM++otVuPjh4QAfsNf1E\nCzzZefJMl+kbvTPPHPjC3x7RZy+D7ZF2542+jqYbirUUc8O9tr3jBv+DHiV+dk/exGz2wk/TxUXk\nCX8kXvnS6Td2IB/A6f6uvpwDeM8u4uO6D/hPd7zk8+sbcl0ykJ7RZfERneJb2U9JWDaILrKfkuT0\nhg6JR+0x++Q/XvXFK/jO1nSQL2PjGgfzVcbhSG/YIev5D1Lza2igw+yNGJHtgIvksGSh/nSZvrOh\nbNQskwfa8xnJpmcXfbeuSwxkDbEu+2GtzqD8CDtgLTjhn9hE/ErX/x9797aiSVItcNxH+fo9vCjm\nzgdQBEHaUdA56SiCiKIg4lkvBBFHkb7wDQSv61HqUXb8cvq/99rBV91V3dXOVHUFZGdmZMSKFeu8\nVuZXbT2wzWefFF77NR5ZF8P66pX9n7iZAw8tGoUj+8h//OpXvzpiMvGX/YoFrY2vxrBvbBf/xSay\n/eJr/puPKCZorc7msP/PVh7F3pGBcOCP7JNvif7oYX8a+rOHFyvnYhv5nOYeA9Y/191PXjT2IZwf\nXOE1pqQsBC7meUbgCBEBpMgMewELhaJEhN1BSThNglWCy5HqJ1QUUaBbENIcQk8ACZg+OBByx56s\nwonQtabz3nq+97/N91NRJ83qnzRzTQY4BsEwJy4owje8l5hxIpJgzsV/UMRIMJ4cQo4eveNT6+ib\n1+4f291QIL5G3+4ZfYmFv/fjjaFgnj7TLbrWOOd9LsxmX9d02rU5HcYGy7PGkqWaJPK0klhfXHCY\nih0C+9ZuzoTT3HPnxnkWPq71O9gnjs+bTQlt/ewNBwsHAU1OcK4/7aD+noF/ly2cwGwda0uIJFp0\nDs/onyRDQYvTZ2fxoRac2dezzo1x31qu9VtT8VBSq0jtrF8iKzBUKBAUWJfcODQ8FZDoZ8tb31yt\ndea9a0fPjOu+cfrgxA+ghUCND+JHJN9k2rXAVPDI7vAh7BY6KcYokAqUBEh8Ejw9dwj4KnjxS4I6\nh+CZboDFn/GBgjCHwBFOEtaKtvokhI70CQ3MBR9dNPwDt723T/2O7qNJvtR8SSo9jub2qt/e+jqg\nIq89CvjZY3uEP/lRBGG36QS/jKeSVwkzHoaj/QgE0RwN6Kd9WJ//9wbf1wJohe7hbc/woksFlnCB\nsxgCnxT3KpCjoznm2zP8FUzIG755bt8Oe4AP/l+tQo4DPmiE1wJvP4/jp+KpfUiIFIj5LDbPeuBq\n1oSnef6uIjqCp1/DKz6ObKCfAoAv2Bz2ozXWtb2TM7jQFTRGa/MU3BRd3YOr7XP1kQNt0hSf8bEi\nkudg0Av0t89g2h+5RMsSJvTDT3sxzroOX6f5akyyAe9eukhq8BatG+tcgiRxw1fr4qVxeJEMx9P4\niqbwURyCCzzg7vncp31p+NO6noNHPh3unckH3+En0w7FMvSHD9x9IXe5kk5JHN72BXJw6TIZUnST\nCItl2RN7YOPMA5+tPS1/Ze98hjWCEe5wdl1/PLRHMmcdhWz4kH+4K7j62gl8sq2fXJETxTo0wO/0\nm5xKliWH9oqecKm1vnt47LiFBx6jp6SW3uCj++ZMOGQlOklS2Q700se2KhooAvCjElE0Imf8rX3g\ng4QbPexFgYGuKS6SF/bI3zD0QsNaYgIvLZzZnHBqj93zh36948A7tGJz/H0+dAUffmxXdg18OkuX\n8YONRwv+VeGWHtEzc8BiC5zxirzrR3O6BSbaWzdZhxt+g4nPXnL7Gpe+T3kmQ2DSt17y4IF7OPNL\nYKIxXwwem0uu9aFbeILDxpMR+MGNTprj5RbfiJ8ONtE4ibzCqEKOsXwqu+rAO3bOXL4sW2G/dAFN\n4GwOGpJZfMJ7MiAXAB9se8B3NGcf6Jaiq7N7zX7JNBmq4Iw+GprxG/AgR2y44iI82RMywneRKTTQ\n8EBrz+7rOx7c03/sp2Y/3btmT/GCvClMy7PZCi/++Hf2Ai/29hDosu/pTd0nT+m6daIfOSWjXph5\nOcCGs63+/wpxFZ0xzxi6JXaSg/lYgN2ht3yAPJsf43voGD6Sef9hmriJjOOnwiv9NW/nKzyTD3ix\n+WwQGH7xw3awL3RZYU+sBQ67xbbQVTpLp+3hySpqGs/ezDbpUX8y2T08wKTr7ARbBh/621r273n2\nl49gcytGowf8orX5fIaPaNgCeJvj5eu777577Mn60SFa6AtGZ7Tgy37xi18cfo0PBos9su9sVzaX\nLdTHPonr2Ct4oiV7J9bCD/DR3j75SzpJNvA/PMiEvYlV0Rou2chyD3LgpYnai7XgxoZr7a9rZ+u2\ndtf6H0p7sIXXlMmZABE0QQpB8LZb0sBwUCJCQlgIogCEI+ScKYkAomBFIAYeI8J4CMII4BQcQmI9\n8xkcSk7AjKFYggNnaxHomue1eQ2eNvsa9zafp5HeaRPNolvPGWaBssSMIRZwCZ4YPT+rYJQYcImm\nJE6yj3/WAgNc566j/1yvvsfz61Mgvu30lVQIpv30oZ8wCtjoOIfToU+w2/zg4aeDrpfslXgYTy/p\nZ7xuJxOOawdbIYjgUHwpzXlx7jVjJpwpt42Z53Dc57m3L8mHoMPeBUU5UHLKuXGAghmJtgQLfpo9\nTdjgOd5ky761ZzRl++idAz6SNHbVebZw1fciPI1zzP3UZ64gSHDjzxv4z2U0AWQ/PUKzaNSa4Wvs\nhDXX8GzfX3h4pnVv3/jExyjS8DcCN7yUuJFlvkggBqaEs2RZUaKEFD8FSc7RjG/BewcZtiYYklWB\nkqIBH2dP7JmAynO48EUO1/DDGwEW/YKn6/bYXtBKsMa/xU9ySW+0xh83z/+ZdINHOgemBqb9SFxP\nqyjkDD648ICfefrMhSdfjnZ8MTzMl7R68SBJQ6O5jrWMQy9ntBYLKApdrsKCs31bxx7sx5yKCIoU\nJdFkFw4S+/w5+pmXrIIDJ35GIiKOgI+9KF5UfMAbsMw1R+AqEaHDCllsSzgrVigY+dKQ7ruvRWP2\nR7HHT5zhqx9stBSr2LPCENlT7BcHkcV40Tl4YhgFAQUgcmm+RMsBpmZO8yY+PZt99oIu5FqhzH71\nwZG8oQ2eorFGXgXpFXasI6Ei3/A3R0O7i/WyVOFVUdKcq5XAK1BLFBQKo5ex9oJWCitkTqzHVigq\nK36Bz38E25mcGqfgY04JJTwUvMgV/NDOGs7u7c2Z/FqXHtqP6/iOJng9vzzxDB7sl/gEr9iub33r\nW8de4aGRKXjbJ1mWgJFLMMUzfILivwSM/SDTyYX58RqOe9NHPvFDzKugS1fIH16xn3BySLzonXGe\nw0VibhydhgNdoBPsGzrwlegarayPdtrEx3MNjekp3QfbGU8uFu8ljfYc7dGvOcm/2N8LS8V4Okj2\n/OrCiwUxn2u40lXyIL7wUoYc2QfY8EZTPwmlq/ZMj/35H3+/nG5Z2xd6dFERgv0IF+f2aF++HvvX\nv/51FNfth96a688GkU80gk/0wG/2j9zhu8P6mv3Dh89AY9f5DHDoG/6TxegEbrTSF8/tA52era+c\nyB4bB1+4wJEMK4rhJ5p4ln9DbzaU7Iir2Rh6DQYeWgcMOJ2WLnnxSvZdk+vsvxzL16j8GDpp5MU4\nBc54Bj75N8Zcss7GoBUe0ml42Bs8wbAPeKCHNeUHigJiJ9fsE/sDX/uBP19NttkTBXPw4aJQqyjo\nTIbYButYz56NY3/70ANdwUJ3Mige8fU0PYKLeRoYxoQ3fO97a2/tr3t7RSdy7etIOsGO4YfCtMP1\nORqY+9huRoFJ73ndbDygc2JmBXB+SlzFJinksTHm0W1+z1jxAL0g3+Sd7siz6afCHP9B5tlS8S/b\nIV5TZOylLn2s7fZIP7vPDsELLL6f7WGL5V/sR3YWbnQ2m0XH6TLbUEtm7MXhfvY1zrNkDlwyaT/l\nnOhlLfGFAjRaiL3ZP7rNL9JvsQl7mS0Hgz/1p6PsiX1il9DFf4zlV0/wtb4Gt3kdrp5Zi0/wH4/5\nUpk99NxaztkQY8HocG9NsYdYwa/GijvlFK1pvtjPC2Dw7bP9KaD70wh8lbhLP1qQBbkq+eA7+aGL\n5afFZ8byGdaebeIVzfXNvc7x9/X6wRReMQCDtJ1JhIZQetPoixHJi4BWw1wHAaCYDILAiyAyGAwI\nZeZ8OU7zJMmCEteUR7OmI1gUzjWFZ7jAhwfjYQ4FJqD6zrXgeXbdmHPz3oa+6By/7blrz2aLdvol\nj4qqFB9f8ZOz8KWBLxrwhhF/un4exggJChk+c1N+565bZ1+z/sfz61HgOp5yfBwWJyDJpEcMvoOz\nkJhLRAS2iiNaPHLGU2M5AomIdThxgbVki27qo7/O4dFuwChot54ER9AtcPaVBBtijHmdgwHmdW1f\ny1wHGXawYfbEkQlArlZhQRDDntgTuyWBUXjiPCUes/gSDsF1ftMN3pOOcJgBVjh1biy8boKfeY72\nFJz2JZiRmPo62iFYotsKW++sv/nExr9Ks6/WND8cguXeGLIpMMM7STV5hY/il8SfrEUjPkIwIrlQ\nFBKwScL4H3LqkNDhdTQ0V9txIScCQAmnIIicgqVIoaEDvOgSfaEnaOVesFrjx9zbB96QJ/jwlfok\n2nTGfD5Si2/zDF+HPYLpDJbDnugin+tsf+AJHvlYR3hF5+jbGnCig5IzhQ4JdLLfGLjZA11nPypM\nKxRFY2vbb/viIwTV+AQOmOEOB2PpH1pWqDPOXvl9tuG0EnP7wgNrS1Ykl/iCf+A4jJe0+zIA7xW1\n6DSeeU7XFeEUIRSdyI/+Gp7Y/9Plv3z1XoEDf9kKexa7kEV91nePzslR8OwBrRRwJAzsmkZuJT2K\nGZrxc44+c2f/1Gm0I8foQvfYSnQxB40VxOEnUNfsHQ5TduGuIGM/0dB8hT1/YkESRo/QWIFE3EcP\nwNaMLTG8WIkAOsNB0UZs6Mt48R362UdyL2lSWFGUwU84KuThhbXyG+3fWuamq/kJsim2SH/IVzLl\nHO3IFVpIeOgzmSQbYhhxij3gG7x9aSm2JVv0y1cr7JtkGc7wBRtuDs06XR8dz/+xb3Cd7ankmr4o\nupIX/FBElViLqyTA9Ng8+ore6OJaoq4oqlB2WrpA16KJNTR0mnQLLzjWjGWj0AN8B9sj4fZC3U8z\nwdbMg4uYDt/JOZlVwGYXrUdGyLV4kM3gL8kBvsDbODEGec/+mWOsgqqiK3sBL4mor4H8bBQ/8UAy\n6gUIXtHt2cIPHfDPL1j4J7YIvT788MPjKzM6Yg3jHexMMmc/dICMsEvkmO9Aa/wgA+Kc+G59+9bQ\nRgNznu0T/ujlBY9fipBtDa72hQZobf9kgH6yg2iGDper4G4+G65fa118BYc8whUMsMhF8bb18Yxu\now2fye7YJ1rgNx9O9uyT3VV09dN09PCc3Ctiwhf/FNv5X7yyd3jACS7opnhAhthd9PcMbYzne+gf\n2+Agd3AEg04rMJnPZ6ONNc21jrnwxlc2C13Mtyf2Awx7srYvnNEDjPjiOTjuw/kg6D3+Z+5t3wZ6\nkW9/TsfB/rB5CkLiWvKGZ1pwXKPNY7sZBZIlo6PhpB954/98oaooKAaSTyiS0jt2kow3h02mH15O\n8UHsEr0n13Sbv2SfFOJ86MSGsUtgKi7iK3/CToUTHDS8Dl/zrlYc42/xW0u/QrDCLRkRV8CpPZkf\njq41zzro+BzfPH37PPhkw87po7niErE9P0B22VL94jJ7fP/99w9cox27xS6ws/4EA5qbY098vF+2\niI9aN5wmnl0783W+Bva3kdlNfeZk//kgPLEu++V5hzqVYihbJoaUR+qrgUM3xVL25s8OiE/4y+98\n5zuHr2I7i7nRiG8Wr6qtKMCyffguLiFL4ga2Duxw7dp81+09PB7K+cEUXjEOs2opVY6T4xbYcMAC\nN+ONodgctWCFURfoEAZKTGHApFAUhOHocM8QFFgkJISccDtb23UH3DgS8Jw918zVwt89vFJQYz2D\n80Nv0cI+z+3X8+jjecccP2GgW3MkIIJhhlqwKLBjEBhyxSxNkOyLEg7G1wLx4Hi4/mm9uca8btzj\n+fUpEP93+nIA9NkbcY6csZfMcvACYbrnuWCc4Vfs0MARZEvQOTcBBEcnIKfXggfFDI7J2NadeLAZ\n4LMNDs6JvZCUky3FH0mFucme+RPedZRJtho/nY5EhN1yCOQ5TgdaeMbJcbwST4kh53layUwJX7Cj\nwzxfh8+r9merCpCDA4e91Tfp0/6Nndf73J4Hw/2EAw/FCnz1tatAUrIjuZHkCADQKD6ZC1Zruq9d\n17/v1X0+R8GCbJFRCaFgSNGCPec3WhedBCR8kGCEfJJTQRf5EtxESzjl25q/4wlnyYvCAbumYGeO\nxJbskhs64eDDBFBkSAANd3LN9klArU+/knu+zHNwyBvYAqqKd3BxwNdYe2BrnR0KaeaiAT1DBwf4\nbC19FOiDR87xD75aPDhunv9jHvyscVq8fLK+dOLD+XJ+XeESbeFivv3xv2SCjVAsQF9BJ9uBpvok\nxgqckmR0MVdMUDHDOLjBteKsPvgYiwb2iYb2TS/hgOZe8NgbGmjmaPYPd8UERWh2hY1yjR/orbDh\nZaECGPmyZs069N4LILKNrvaCP5J+sg8H8OBmvv0pNOK/Bm/4w4nt4A8VmdCHrJAnuiTBwr/2ap7m\n3rG3CRe98cT+yKR17D29QU80J0PkBQ/xt4IIm8dO0y37IzOa5/CU7KGFPRnjSO+Mgx+YitNiAXwH\nA10V5uirNTR4o5dxaKq4UuygsFjx/molhOhRa7/oDJeLVeBll8kl/SE7ZAD+9M94B/mgUw42fcoX\n2Kcl42wEf0c3Z9JrLplX4DTGYW8VOsHXyAwa4HF46kNv/fZufQU3doTM8Y/wxDN+1j6c6Zs+e0r2\nyYnYCgyw4KlIbNy0ZQcy6x98Dxd9cIBPNHFvb3juhSMZxFN2gb6w53iDzugNHlzJPdzpCjm3Hzpk\nn4rzCnNiwvRNvzXF9pereOhXJWIIeqowwD4r9pEF89gdjZyRAwm3r17hS659EetrcTEB2PaoxQfj\nXLMz/od7ySx6sTMls/htnewWPohp2Ceyo8Gt+Mde3GdvouEx8Pk/c300JEPJmTNfpXiiiEAG4wW4\nZArdyBie4ieaojX9QTf7QbP4aFlr4o3kXJEEHDQknwr2Gvuk+MBPinPwgZ7gPRqghTirl1Lkid6y\n5f1Hq3DhP9lBump/vtrDFzBr7I217cMXZuJ9tINjfCJDcJEzKh6gPV7jBXm3ji/Z2EiFCrYqets/\n/TafDpFdzTx8I8PwRiP2RDyiCAVn8WOyYY7r7uOd/vvYXrQXz8giXX22vrL2dSR+sJ1og0/4P2FE\ng/tOl/bx3zgnS9aa13NtL034eIVXsYN4VPGQ7eNj2HQ2jS5ofB97zyf6IlIxUZyFL3SNTtFVMYk1\n2Tg65wMILy3oAF7Hx3N48StwUceRt1ufr2eP2JPyLviYr70InudzHdcd0x/t49zvzTy2kw0ku2x5\nftbexBr+Zj+bB6cO9p69/eUvf3nEYeyXeENh0nh2ne1rH9YNR9fBsRab48tZhVf2G73RlK9GI/aN\nrUVHsZ+jl2PiMTZM/MTPsfVse2s5W4tNtsZ8Icd2+ULXS0x8zX5aH3x2Ti7CN/DbcKLLdFrxXWzb\nOu2ne7Bct9fj4gH8c+8LrzFoCuZkUswniJyvt5+CZOM5QYacwHCihJySEM4SAcZD0M6BlkAL4AgU\no5NQWJMhMI/ANj9cEkaGh4I4p5jhHixzKRs8rMEZ2YfxD71FC/uMHnPPnjsob/RLBhq/w+gef73R\nYaQF6RJgX8RwEgw6vjEEFV4ZcryYcFsrmHCb1xPXx+vXo8Cke5D0CYglBb7ycRbwchiCaPpMdyQm\ngnFfKFRUwEv8ZfTpu+Sbo+MsHYIGAXJ6Nvnqmn47yIkkn34qGpAT63IkHCtHosHVvHP7aD/zbFxj\n9c/1BfGcFvwkE+TfwTYI5CUsxsBHEiqYESC5ny2cZt9dX7eH8J/0rK81z401Zh/X+P1s/oQx5+mv\nyObPiQjYJJISv76Mk7hr+7x5v6857+fa9imowRN8kvRLQiVeElP9BarRhKyWOJNfBztFpgS3eJzv\nsNbEy72j5+GlT4FCoEOmBcTkVjHAWPogSEQbsiSxpVN8knGCJzixkeaQcwU7uDhnE80ne3wj+9ne\n4GiM+QJ2AZ8k1574XHtHC0m1dekgHNAObvwtPrk/5/fAd8DHOoJG+sgOOKxxWkm6ANILFtfG2Dva\nwBvOdMb++Xzj7FUCQc8UI/kF/DMGLwSm9oM+cMdjuKIlnx5P8QF+1kMvRRA46QMruhsPH/2a/aCZ\nr14VFeCMbtYVjFtDkH65+MpvzaIIOOawbb4OYt/Qz17InniFrD1ZhTK2il2owMRO2osWLs7gKeL6\n+gIP7VnRx3gH+O25efAIzuyb/dOGxi90MoYsoA/YxnlObthU1/htDFuHf+hvnrXQD85ohnZkiuw7\nXBev4QuYFyuhF/vxA2QfTSV04JID48i+woov6BTd2FQNXRXbFGTQRKGxBh9HOmcNCab5Cun4CG/r\nXK1YlA6gI1mXiHlGr+xRjEJmPE837Q894KdYZbyzfomxJIs/JKslyPDRJk/Cd57hRha8lEAPRUsF\nK7Q7LT1SGFJI7CUnneEP4RJs+0in0RXP8I782UMtOpnn2jkY9ts1nNBCAkcf6QBZREu0Zc8ll/Aw\nB6/R1VhfRily9Sc9yD274CWpgi0a2QMc4WBdtrMXdewE+0CfjLeWvbMBxto3+ZJX+OJSggkOmfLF\nkj8/pDgQfczR3KOpfTSXzUE7BU0vOxRu+Sf7MpYO44dYhfyhMTlQiMRvek3+7REd0HrS0brRVD+5\ngztaoQ++x3s2gyw23wsnvBc/iZ/ZA/ykp+RPsYxdoj/uzUMHDR7sM79mLjqiiX2GK1zkVeCI6eBU\nkdNcfDIH7dnD5J9+GK9Ajs/4CE96wI7aj+KR4qm92j+80YyvhYuYjV2k6zX7ggP58bcurYHeGpzJ\nmxhLPmFf5HvymD4q1NqPMxnmU/GHrWAzyCf9IMd4zW6TTbZrNnR0wD3+zefnrqP9uWf13RRW4+/i\nPPGyfvsCm8zwaWgjtpev85sKfn3BjE9zTjh9Fntp7ft2Pke/9tAzui93UmQjv3SVX3HQHfavlo3I\nd/CLPooRe4ITTONdO/CV7RaHKzLSAbpbm3Pqo39shD9Dwe/SHfYATuwS3zxhJF/pZXDAhnNtPvfs\nXEu+zj33DC78OVvui1AybCx86LQ9+qqd/IpTzGkee+k/DOvPMIgX2S8v38QM7uEY3uHSOZzQ38cl\niqJ8N5/Bf/QVKxuK7nBlnyq8msfHiImMEWuyZ+x2sJ3hwAd5keXv0rJf+tHe36SVd4pB4JVMWIu9\nE0/wb76YtV90YO8c7CeaaK0Hhuv26Nm8dn+f270vvCL+ZNZ+L5DpLa6ARdDGoXOejAnFFbCcVlDJ\nmUsABN0CAckhZ02hJM8KryXQ4E7ltS7BNN9R0GMc/BrrTCH0hbe5hMocikroGTZBswBAUOQcDOMf\napvKNenTfj13UFT0iI6dGzfPxnsu8ClpEMzhr2ANXyV7AjKBmL+t5W2cgDuDEF6t07115vVc9/H6\n9SiA1lr07Z4zZ8h9YYJ/eCmI5qw4OQE0PeeEOAkFBnPpFUfvKwXBeTKgwCLI4Kw4idaZ2NNtB3mg\n3+ZyiOyIYonCDQcnAZLIzUZO7aF9zGfz2rodc7w+AalkXKLGTlgbLpynRJEMS8b0+drDW8gKLHON\neQ3uy3Ca429zDbYG/r7/+WxeG9+9a+1l+BnfnGg27+l1ibQ38XyB5E8h5GIVXiSU6HmTFtzwci+w\nEBCyJZJAQQU+KVZYV6AoyKl4wr6THbaFv6lQJJGVKD5ZAQn5qUhhT9ZxRAvXZFGb/UfH8z7BsmRU\ncAQvvoS/I7twJU9kSdBlD/mp/E/FLmeJoIDNs/waf4SWklMFEUc+yhp04rR8qn3xsehML/k+69Mz\nsgsP/lgffFw7w4ncOGrx197hAh6dhptmL3y3vfCfdFLRjC1PF8CAp3XJBljG4gWY1mZTJH3sAt+P\nHwovbAsfgt/4KxlXcHY/8Ywn4Yse9NLeO9qbMfHTGLiwIdZxoJ/A1HW4+YWG5IZctZYzm6A4wbYJ\nuBWg0NmZzOGDIgNe2Ct74YWEwoJ9wimc7VmRSUFAMRd9xEIKS74EZC+T6fjjjJ5wqbW/zvpdG0eW\n0Ca58gx98BEPjSG35A/+yaB1yR58xGng1SQQaEh/jMNjMgEuvKIXu40eDvCt6UVJBS37l8iRIfKD\nJ5IKPLKuF3uKTOiR7MMBLg5yiXd4QQYr8JpP1sV0ZIj+4CsewZNswlmCg7/0wT19sAfz7RHNNP3o\nRDYritkTu0I/PINPPHGNz/rrA0eftcizYpEEiXwreNqLQpM9oIPCF/uFhvjXGuBo4MI1m+I5vJ1v\n0uBiX+hh72QYrfh8/EErtoxOwoms4zl+02tj6TAdwVN9ZO207BH9kMyiFX7SmWgJN3Ig1pdAm+8e\nPcUXaEB3yKK9pC9yAvbi2frSyVwN7/2ZAX8b0TW6a2jjAJf9Q+N+OstvgC0G5b99lUvv4Y6W5Ibc\noQMZ1I8O8GLfyGz8OBZ7/g884wf5Ilfm56fgDxd+whqea3QejfCbLrBDEnO2Hc2S43IjMQj5wTt7\nhAs5NI/dcYCjyBKu6EDG6AF/SZfggu/WIMPG2x84/CN9RU9j+FvFcfPEhehFZ/GM3CqAKBLQVc/Z\nEPRVNJULkB37zIegDzrw24rcl6uY7KzffsgQXWMbK/ZYBy/Q2Tjyhg54ZU/wJDdsAfzQnf1U3IcT\nmvoPfeEkBiADteTFvT0nRz2/7mzey9pNYb0Mzm2eh1dru++ajOI92/Ns6ZL4Bb38KRAFGjpIFuac\n1g5G94/n21EgmmbT6CU+KAaWY4mbFTn9iRB80cxzdG0e2yLuxD85ldiCLY9HxtMleioO93KXDmSH\ng2e86850hZ4rynuRwl8pEoJDJ+kOe2G8fbDRfCVfJY4VS1gj2w3ncOp8bGT9Ew7dO5NP+2Df2ON8\nFH/EZoq5xQN+NcMGsClw4v/92oW/Yves33rwZB/8SRu/emBLPVfc9vJNvuolHnppkx7B0A8OfOS8\nCtN8OFqIXfgStpeda+/Gwpu9si/91uAP4c1f7816xvONbCr7BR821H++hpd8UbgaDy9+mQ9nD73I\nUofDS7EEm8cf4yNezT3N9a/rn2Pu0/WDKLzuBE9pMItQCc4ZdE6ashIGQimAINQcJ0FjNAQTHKPD\nHG9MBckCAwaE4AW/s3VcE14O2KHpc1jPMftcN97aEgWBLMEXRMKPkRCAz2LvAeSB/xM922ZK1xnd\nHHgbjZ331nj9nlNsCs4QozfDI0BCY/xBfwGVwitjYFzOAIzwAivYnT1/bHdLgXgajbvHN4VVX5j4\nkp3+CqYlKhVUJV++cPTGVvKlcb5++udrF+Pwlp5zIJIfwYIkuPXMaU19jnSW/HDk9JVMWd9beQE/\n/Z2NbDV/9u/XreU8x5NzztnB4bc2XMivBNEbYG+YNW9XfW0DFzhe11rPWm+itY8d9lx3Xs9x1/XP\nMa6Nm2PtpXvP0azCqyI8+y8Y8XWyQr2ECB2bs9NCf32NAVcAxm7wEXyD5E+Bn7/gZ5w9xy8NzwSr\nEkcJpGRWUioQc/BFAiOyDJ/WNNe64REO4TzHGasZAx8yLcgpQK1wSJ4KuuyDfOrrMJ8P44PgJtEl\n5/yUZ3wgP1nCTNf4SOsI6NhRflVAJqC2X7YUrgpm/Gg+VYAKFj7xv+a3x/ZiniPf6iw4hB+80MJ+\nrA+WfRiPnmyC4FXxkP7rL2gG31x2wJrmC+zpEtopcHgm8fPVjaBSY3sEkBITSUY8jidghbMzv4N2\nAlBje15MAKa5AlaJJVsi8FakIC/6yIWCgHW9QBDgi2s0a2jWkLRXdEMHdCLjigzg4gVY6KxQoogq\nUCez8EFbPJckoB26WZ+ckCnrK9ZKMnZewWGngT771d91+3cf7l27h0dj7AkPyJSze+sqdpc0mNN4\n8mD/1iNbAvz40/rOnhtLTtlrMI21Ri/kJZj4cFrFFmP5BvaWPSEbkhvX+uEMDzys4KooWLEJX7Lh\nFb7YDXZCUqKP/JMV/LFP+9NvDDnz3D7Dn03BW3r9zvraBM/Ii/3Eh+h+THr+D1x73r7Jlj3xgRJt\n+4QDeQHfPtBCIQ5+6BTNJ+x5Ha764vN1ffHdHtGJbUEX/pm9QCs48mdsir1WDEczeq9YRqb5QQVN\nMuoZGvGF/f1TesweeRZenck520THrU3u2GoHG43mWvx2Fl/QI195XS08wRJf+ArIT0ytXzOevIjp\n2WZJLFz1sU/m4aUiEzli48Cjy+QTTmSB/MPNPvCEzsZraxhvLw5yZC7baz66sNnkyj09QXdzrEf+\n2R78VjiAB1tKrvAPb8gHe0D+FcPxCA/oGhvCZyiI2I8DzdGB7GjwAQcdzAcLv+FgnewYmtBnhz72\nDK58q/2w2emfMfBGD+vbuy/z/d1DcqGRZ0VORQL+CT/tCY3YQLjYE54oFKCT/YCbDJEjdGEX6Tt6\nWwseaEp27AdN7FN8qGDFBtubPZMXHw6YgzbiNcUZtLbHGtzA1/A3Oe15Z+N65vombR/f/U3mvsoY\neE08rTdxJTt0T8FObE+P8UvRVYGGvpNzc7Jf4fGmcW+dh3iOB5MfeCG3kkPJL4yhxxfrYwW2iS7T\nC/3mTRmlw2wBHfKCQcxAl+htzRw2lR4q2nmxUsFu4gNuvGXz6Ce9UWBkL+DALoit4cQmko3msWfs\nGN2zBhvB7mvh3rX7bGg4eGY/7AObw9442x/dhRMfzZaJ/9lFdoT9YS/6wt81W8Zvth+wNbaD3/3d\n73530Mpa7K180q9v+V/xh9bc9tc9HMFRKGdb0ElsI4aT74oL2Drz7A3dtO71udbA3I/6reNlFh48\nWy9HxA/oqbjLrsqt2LjwMg9ssS+/5QWYl5Rkg53z8opuoxP/KuaYtDdfm/A+7bnf/z7IwutkSUzE\neEJCuAh/QZe+CrOURvAm+eI0JdWCEkkdQwRWAtC5teaz+qzVuPDwTJ+DoRGIUEiKRunDzZkiUWp4\nzSQ++Pf5HF3sYdLGfc/0owlldDAWnlF+fMOTjIV5ezPWAU5rBM/ZXHB6xmhzKgqvAiVBLR71HKzW\nC/a+5uP93VFg0n1C5ey8GfzHP/5xJL+cEsPNyUjI6JQA2FtRhdcCB86QgxDICZ7JADiKLJfrywa6\nLziYvIXDxMO152SRTHLsHLqvTAURrsmR1tg5f+7jptfkPfsDZ2vnOCUG/haTAEkiBzeFpvfee+8I\nVEt0brrWfRuHttEX7jvvBEgSKcV1BSv2lG6j0cUKIiVP5mSrXU94Ez4+OErSJFi+hlGoEEjoB8cc\nfGLDHYoF5ELgKgAUhAmKyI7n2bV4ehMehJd19gZHuJELXxzAS3KniCYZtq559kqujGcHyT56CSIV\nOTyHu8CWHMG1pFcAKvE1tgRYkuk53OhASTMa01F6qzChUCH5xIvsr7U69j3p1zf9gHu2mR9Hc+sK\nhO012qCLffuJl68q8ACNJ6/tXWxgPxI9SR9bAD90UqwUUAoQBe2CR3RVZMFzc60X7mBr4YtuFUXs\nF472XJtzjVOsU+Tlh56sYJnNskfj8IQM+0JV8GvP1g1GZ31ohf6SVS8YyLyv/QS7cMQ3BWZfWvhC\nAyz8tUcyar/k1T2+ogf6kCdJVHxrH86tf92151q0cl/f8WD7x7jZum/eDoeskm/FC/uHpwJIPAKr\n9fDHYQ4/j08KJBJ9NOMf0F+yYr4kz/4lDoo4/Au5jw7kCixz+JeLZVvQG0/Fj3jPVosnyYB4Dj8l\naWhLrjTFIEVOxS+wraMg6hAP4h286aS99jWNQpC18HC2aKYvupF5eg+ePVSwJPt00xqSYrJPdtgr\nckAfbmOjWtM5POCwX4cPOqEJntEtvlkyKz7Hh9MqgMOJfOIT3UAjhVo2GP5eSCgsWgeNvEj3Ep0s\nK57ZB32aOLlOLlyzIWA6G2sdtgbdJ+7RE64KAfRS4cgYfPHFkpc2igLGoiveo7GCq78DyE6zlYoD\n9maeGIZM6o/e5uMZGiXPcDMm3MBvjHXYNHJH1sgdOaMT8LU/DXzz8VYOwl6SfQca81NsBjqzA2TF\nCye2g0zSC2vac3DMYcfshR3DN3JpHF7DDS5sGDhoBo6EnUzHX4UUfeCaB2fySifoDV+FJ+ycYjwd\nsBY9RC/8UyDwJZlCBHkQI/p7hBdLP8FNfuCDJ34Oiz9ga3QKTczDH3qBThUx6BC/xp6CIdYgf/lP\ne0ADeqQgjN7GwOsvf/nLsb79KrA0Bq2SMzjgq/3YqzafHR3rH/QB27iace47g2OcZqz+YE34zTFu\nXrt/1QaOozbXhpd7ck336QX/KgenC36hhv7sEFmEuxbM9tC5NR7PL6fAzpNm0FUvFhXJ6Cid7QWf\n4ho9oD/RHA81MhpM/KR39Ep+wvboq/HT8jEvHegveHtLNvSLUei9DyjYWnUafcakG66tH1762X2/\nPOCX6TI7EI7gGuve3Clbnumj3+wT2VSLcVytOFZ9iD12pFf2wHZbh70QS5yWTbJmtGk98DVr8HN/\n/OMfDzqJBcAh7x9//PHhQxQlzZv7dO/Qso/iOYdYgx3GKy//8IvuaPZqvHWd2UCHa/CtbayDjxFL\naa3FvinweqGFLhpb7xceiqjWbaxn0Zb/ED/ylewsv4ROCszyMbGP9Yx3aPCB59zr8eCe//PWFF4T\nBEyMqZwmpy+QVrTwhoehYGSMqzXePUEAa571J8RTaPQbW1/CQ7kJNQWVlDo4cgGmg3GiCAWAjI3r\niRPY97nFD3uY9HVfUGC/jICAheERZKKNIJKhQqNJ2x0OWFpreR4PnN1bo+fWEqALgi5WYMaA4EvP\nwYoHwdH32N4MBeJn9O+eo5OwKLxKhiXNCq++GBDESiIEvt62ctASMrpOfiQEgjlGXhMs03vBMMdQ\ni8/dO8MjHOJ/yb4AQoDYVxTGN7a5zq/aOEUtuxMcAYCvOny1JpGhO4osP/jBDw6aSBqjX3Me0hmN\nHe2xsz3ql0BJpNCIw2dfBfECMYkOu1KwZQ6+myfw1I/uDgGeuRI/CacAgs+oWG8u3mjmSRjJAtsl\ngJJQOp+eJ4bG7bzUtze4aO1r3ruuv3nwhyvcfJmoIGGdAjAJNT0w1+GZOc72KZBS8LBHASddIkPk\n3Bh9EvoKE9YqoTafTaZHezCKJvwqeWW7jdXA7BDgWU+Rlt3V2iP9Bdf6M9g2jt0219rwMhZdHPiA\n3750V9AEv2bfxuMh+ZBglBwolihUf+1rXztoJ3C2rrH+htez9bafjWkfwXS2rgAS7yUU6Ad3++4r\nKOPsOz7gCd74cyW+WBco64u/1pHcS0i9TMKfaGMfxsVPa0v42bqL5cec4WHvxtAJ8gGOxIpco58x\nxitUSYrAIQ/9XUlr2jM67/hbv6M9OWvhdtw8/+dc33Vjb9KPlopXeM2+g8/u97M/NNKMS97JhuKS\nAqm59q94owBb8Ua8wdf4sxN9uSNhsDcFEvIHjlgOzfghcnZaek4uyasETSIkcVMIE8vRD7ZEEUwh\niQ5NGYAXPaOLeGUcvB38HdtFTuyXnYme8HLdvXONDJFhMo+PFXV9bcN3kC97V3TnS8mBpLXEKzgT\nZn03OcM9/PChll3li/lzL0rtW5yHxuwmnByK0hVP0ZFOsXF8vaK4WBlPeuGAPnirWGYf1ofHtPnh\nkS7DLfoZP3FtrP4O8sG3+Nt6kmZz2Q5/Gxkd2RJrojsc2RpySbfIGX/txa1EHb3Zv/CzhrbTHDxt\n4kZWwVQYIGvo6Z4MojG9R1MyqJFbtGSn0IiPUlwhA+wd+bWutciLPEkRBe72XIMDWGCwYfaD/uDK\nc9gLOmP/ZB5uYi4+lL21R/s1XvyGDhJyeOBl88krPWJDyap+uoBm5llbLkWPNPvGkz/84Q/HHHoi\nyfciTZxvb3ST/OOJgh8a2o8DPvjnhbr9kCHyCF80MZb8KUQoAqE3+nquGMwGk1eH63hlvb///e9f\neLZ8iH0rWsg56JucI30DJ/rbj2uH5pk2713Xfzxc/7Ar4MGXDPBD1sQXtLWf8GqOsXOt+l/nDK/2\nE87Baz3yyc7hheIRmWHn8MyZfU0mzW2vwesc3MfzyykQDY2c9GMLxc0+WKDv9MSLa3btYsUI9HPG\nJ3iokSUw3bt2prd85yeffHLYanprrphUHO7lFL0li5r5jubDywEnNoSukRE+i87p85ysdwRDP9vk\nxbu1xAZsG7zogXHGND5dcK+JJdk+/ohssnvWtCf+mW6xC+woO9+vBdgi9GIHxFFaa3Xdmu75Mi+I\nvJBhT+DBN3z44YeHvRIPggNXbdLbPZqyrf4Mg7gOnuhJZ7Kn6GB+sbQYxFE8gr7GiIOsx16Ka4qZ\no4lfSZAJNkxsCKZ4xYtGX9eyx1o4eu4afgquPh64XB83yAfEXvLm+VXuMfn5/PhR30M5vzWF14Q+\nwSWogjTOnzA4c+qEMoVorHsCQMn0ue6ecOsT0DrAnQKXoBhjvoPDo6gCC8pK2DVBm0CJIeHU4QIm\nh+kc3GDe53O0tYcUuv30DG0rWDBgxjGCDBNDiNaTVzucCQ/Mxta/nzl1AdY31xvxd9bPvSqIN9c5\nHrh2PLY3R4H4GZ27FzxyggqvkgFfJXAugmRfF3BYAnNJgoKkpIwugSOY5hA5FI6mRKVAvjWc93Xb\naf3OkiRBv/9EQ8JdADHhmGds84LzsvPE4dxYsiggUjxRDBLQs0uc2U9+8pMjAVJYfMgNjXY6TToL\n3iV3nL1gns2g276CFEQKmoKRvRWIZH+dJXDg8BeCLoGfQ/DlufnoLkBhpyRPp9PpCF4kXIIxcqG/\nN994t8uEe7D2NvfT873PPZj2wH9I8Mm9AIy/UbTwxp89lXTVzKMH8DffnhQ/yJJEyFjJLZ0yVqBF\nTvF4AABAAElEQVQmYMofCV7ZaWfzHWglARVo8V36NHQE01yw2Fvw0cRhHfcOz8zDC/PAYvvNt8do\nbhz/SQ/1eW6sudbgb+mDwJuOzgQYHl68opMEXaKBn2yDZNiXAmwKHQLHvtBG8dNXF+yQNa2jtU/3\neG1dQaz9sC8V3/YXu2gvFpBc+hMY5FOxFk01a0goKvpKOhQv8M2z2dDjtGQPv+2BbRJA41+N75RQ\ngeOrFjCsZ337VShwD2fPxUYKJeQfHtrcq/3ag0MzBswdt+Ph9k+0q3vO8Ww+D+beDxdJiaInGbdn\nMkLnFVPsI7jO8EQnuuCLSMmY4h4dZQ/AMo6sK/Io4JIRvJ+yRebEb3gt2UA3sMCVWJJ9MR0Zo1cK\nXhU/yICiDdtEX/GS/YCPrz/YDHhLbHzFiffR3DrGKNKXAKNfe+y6vUZbNCHDcCmGIvMOftDeyQC5\n4UclbfYYvYM/eRLs687mGD/PwXGGk7UV9cmYZNqZbtEJhXBJrJcHzvw3/qCFeeTzciVxvsJET3Tn\n341XAMRX8QF+4ztczE1WX4Q3/IyL7tFhzjGGLvItElG0pbcKqV72XKwiBfuB73wGefRLHPyEF1ml\n7/SVDLGBbI12bt2J+6QjPNk+NgZNyKqXyWSObLHRaJBNwVe28Mn6QpuNckZbuPIX0Ye/VGAgI/Ik\nBRTw2U5j4CCXsQ+FQ7JJbthQfDKOL+A36QEbnvzxTXiowc365JndlPijD1zICH0BB4/ZoXwQfrNv\n5BXP7YO9hRf9ZeN+85vfHLSnU77I8sKCnuIJWRMn2hfY6AsXe6AH7CG7kg84kF3/wMl4cSjaKHaj\nkyYGgD/Z7WVrxQu8qAjlJ8HJiv/B3DrmRld7mLp2nR5Z09h4233zzSMbYkU2RatQRA7KYY8H65/k\nLhmo/3XOcOkAZ+pSe4QbX4MuYlq08uJE4RUv6AeZ0nZY+oLj+rHdjALoWJv0Q3t2TYHNC3x2hW6x\nqfIctjiZNn+XmQmXfxNzyMW8wKQndFHhlZ2ku/SL/E6+pgfgh1v+gt7xGfSOT/OcraLzxYpshMbO\neXkiNmBbqrccD9c/rQmGw15aT/zJ3vDT1kQT92yHxkbZi4P9EkOwfe7pMvsFljWCf0wc/3jGTsrh\nZjGTXvIh3/72t48XYmBpUy/N1eBs38/WyxzxKdtvPXP4UbiJsfWV09gbeqKbaw3uaiDyaWe2lY2Y\n/KWnfIEir19/afarbuKlFttp/MQTX/gAsRT/x8/bH5snjnGgHdtbiy8TTs/u+/mtKbxiFKHTCBoh\nxXwGnrEXFBBCzE7hjSccnDvhExQRKIkFw5QwgkmYBYvOJR76warYSvDBERhQWIc+BifBFOgzTCU4\nYAQvJdN331u8sI99X56hEcX3NkwwhkYUXpCjKMDooks8MGeHE408c8yxPZtz8MmbG2+fOQTGCh54\naL42YdQXrMfz3VIg3ux05lDprsIrhy6IFPQLkgXfgrOr9WUdp8DZ+2II38Chz5yRA3wOL50N+8lj\nY8ieeQ4wHMY4FCgkG4o6CnkcVwFE48BtXmu87DxxaCwYNXg5JDIcGad9uRJQTSL1s5/97KAHfB5y\niw6TNvNaUKY476dODnwXgPlCWZGDfmvsr4CK/SU7kkNy5mCPwRFAVoR1Zn8ECgovgg2JlqRfoEcm\nKwiSR4exbAz84K1NXN1Pvs9nc3x7tj6fRYY7Cwj5Nj6NjtgHGRXkCpgFnvwYGdUmXPtTEDBXIcOe\n0cd4PtBY+3bAEy0V9IyxLwc6KjYJiPlUutU65ltXQCoYjE75wWytcebBh3xLGAVt3rTzsfaNNvRR\nwC7oK6jEL2MVHOBonASBL8FzNuK0CpN4YX+CaUUT//M1OvpqS3KOVgpo+Gi9ikOSZnaFnIAf/Y5N\nrn/AlWwrRJAFeOGJQpfgXfHFHjR+BQzFO/aLXCrCkCe0rBlDBhXgfMEv6MXjubZ94ocv1uwR/uwA\n3pE9ezAH3uD4ulcBBW5wVojga+GNN3DsS0J4873iJuskw85gZ+88R0PnaGO8w739avAOd8+69sz9\ni1rwrN1BfvDqYhW5FLDgT1YkIJJ4MlSzFnxPSwaik6/fFB3RD0z4swWKnooyilhkOZ23D2PRl94r\nCNB9uuXeGuaTw6tlS+CCLnRI3AgOHeG7PLOedcFT+ORH0JXM4LV4B5/AFZP4D88U6K1HttvT3KO+\naBUv6BOcyLw9sYuKR/ZjD2RQYk1u6WgvW4IDPrjay/h0DFr/hAcctObZM5lGV/7ZiyIxHZ0058lK\n8vGTPIrJ6AR7Slbxzzi6RB/NJ594iCZkGT+K39iJZO9A4vk/4eI2Gu3PzWvPnaNH93RKgU88IuG1\nnmICfWJ38B2dfcmr0EcPJZloTefRHu7G2duEP3GEW2u69mzeFx9n+7M17CobSb4ckmnrs23sk+fk\n2WG/bLhCnUInOeYT6ELyKkmHJ/qSV8kzm0fv+Br7QAM8St74Itf0gPzjvYPfQnvw2Cow+QX8ptdw\nskf+gE0yB/3gR57JEdpZnz6TYXulT+bQ31//+teHLYMXXTfGGvhGB8gdmJq57YktRS80Infobe/G\nVnRVPKbD9oSO4FpDzmIv7cFctIW3P23lb5jCDZ3o89OnT484sqKQPTt2/sNx57u+68ay+3All4pG\neAInesLX0fNsODja1NVz63866nb/tp/wDG5n/fjhBZeYna7Aiw7REXadTUCvWjCD0bnnj+eXUwAN\na5N+ZIDc8D/9GTNxCt0QH4mdyVHzzZ3zu/acDJI7usI2idHEbew6GaQzeD3nmEdf9M01XLMhdJ8u\nOdgQY9kC+in2EzPysWyAtegkG8Hu0VMNLPB3eXev3wEeG6juwA6CS9fJof3DnT3tAzqwPWO3nNm1\nuVZ70Qd+TVzAB/oq2Et9e7Qn/u+73/3uERe+KJeDM1qID8U9Yjv0sAZbCJdsGH444NLeXTvYSEXX\nXnZ4gSQOmHjbv1+GK8j/7W9/O3wv/ilu+4UYXWXL2x9/crXiID5E4ZXN5Vvos1hHrUUObY4918y3\nbnDqfwjnt6bwGvMwklALUgiCNzCElHIRVArD0RJWwiSwJRCEjxIJgAk4xSdQFBtMc92DTYk0QkTg\nwSsJL7jS30H4wZOsSvDAmIL+EARt30P80L/vlfFiJL3lFJwKENFcIClwdQjY0W2fu6+z31t3rg2G\ne3DwS9Lh7TOHLwiL78HJUO1wev54vjsKxNvJL9A5ccUDiY5gsiRGsYGDpbeMu4KKoMHb2nhsPrjz\nXl/8bM10UyJBf8lBwbwEgB2g+16kSPS8mSSrnDw5mmskY9OpWPNFzfxgnMM1PNFCEcXPSzhCDhU9\nfv7zn5/9ezsvWvM+Ppt0Cn/00jyTqCk0kAMFavzxtZjAQnJeYERGBIUOCabAAJ/xmF1n3zX2mzwI\nutglgddpFXHYDecKBMaRl+Afk9c/8c05meuZc889Izf4yR9Yn19x6BNswqsAVIBonINsSnIVbiSJ\nZNgLCUU9CZdkC27WcpBL++R72Fj+UJAMDrkn44I2OAiaBV7w4ys9d9bghm6Kvewzm20P6QOdIpuK\nZOilSCVgLVkHE2x74p/BkdRKyBzws2+NjtuH4A1M9LZ3QbegUNKATpr14YgGkjh6ik9gCaYleeyF\nfRojcJQQgEl+0JHPUawiSxP2scD6x9768kqxRcKONvSTPKEp2grc4anBy575OUGrwoFkBG/yM3BE\nU8VPsYrEFC30m+vAQ+srFPBbvh7wRQo/ip5kQHwjvlBkUFSXiJNvc42TUEmmyDOZRXsFLUU/NDAO\nXmQfvRU7yASeWwOv0d5+yYnxDns0Dy3FUSUm8LaOZ87ua11HA/3G4SG+O4vLHHhGhtCbPOGreej1\nbH394cteONXARit6wF8I/MUaYNkL2cNfRWdFPfufRXzz7cleyAgbYt3T0n2FJ/tDazwnh/iNNnBG\nM3tFd2PoKL0FkyxLssgemGREsQq/yZ89oQEZebqKNGRGIobGGhiTXu47jPHM3sh7+m19cqRARGbx\n317EqtYKdvCPhdY/+sF+WTPOgV5dkw14kC82Jr26WokZ3p4WHekAGqRHFYes2dozHkRnzxQw6QDb\nws6juX1fh2v9xqBDNhS+5BUvXdesrZnn6J6NUkzztRIbYQ6ZhAv7RE/YLrEKm4TGipV4TQ7ZiblO\nazhHN9eNiQY9bx/0lB8je2wNGTMWP0+Lrvko9KTH9kge4YQn9kFezXO41uc6m8fvkReyL9aSMIPN\nhtsnWsLDyw48JbuKFuwOeNZyoHd2Ih6ROXiJu9ENDeml5/gND7aQPtMhdgcs8+iWnxL7ZQPbZ290\niG1XeGXz6Df4bJx9hCca0SX0sR/xHFni38HxnH+0J/SgQ+hsP+jGnoAHb7zl38CDO9ziE/6Z78Wd\nF31iWDLvizZfiinWkoXGO8dbOMz7aLY/N8ZYe+dD4ckWwpnvzm7hXV8V4xs5qLWW++D37FXPYAYX\nTIf74OMje+AFhuIRvNHUr074bH6Z30kHmj9hBOtVcXwb58UTe9/pJ25gz/wZFb8eIav8jp+GixfI\nu/kOfIknyaa+4NM9OiwuZGfpBjtU7DfHwsU88IJZX/y3hoPcNNYa7sGnl/y2a36APpIn8cLUyQnf\nGt07a/SInWDLwGNzNHaBzWEjnOktPWreMWj8Ex2cw7ex3aONoqlfX9FXz+H7wQcfHHaNfWBrghV4\n49ACrmyKPJDdK75AM/ia69pYLVq61ocueCIOUAwVj4inzAtXY9GZbIiRFIov1wc/chF+W0zlK3X2\nEz3YeXaI7xN38AN4g25eTpInfh5/4os1tLnmpz0P59+3pvAaIwkt5cR8gk4QCIW3I5SUgBYIEUzC\nw+BwTJ5z/AUADInkFDyCC3bn5nL0FJ7DKxCkIASVMyfE5rgnzAQ1xer8cMTt/3YylWruk/IJ7Dha\nwSkFRiNJI8V1CALRDt3ONbAnzDnGs7k2GN3jsSTs/fffPxIcRgfPdgMF3g5nrvF4fTcUiIfxB1R9\nHKE3sf/85z+PwF4gLYGWlAqc6awCmq9AFdwEzGDgNV46wHG/r2EcRyNx4wwk0/RXHz3nROi/RIoT\npt8ciL/nxolwXMEHq3VcTzm6LYWSdXAcNXaMk1V4tVd6Ae+f/vSnR9BKl+b45j2UM/qe46H96Scr\nimV+2XC5AgTBu8KrAEGhTGPDvYlFP2P4gmQDz9gFMmWu5EyRB10d5APPyUvBl/ETJ9eTB+7r09+9\ns2ZtsoaX+FuiyW/or0gAb3LIJ/FNbCf/xWaRTXbSM0GuBF+wLCklH/bTutY0jo0V8CnsoYHE2J7A\nRAfrwwdsc6ON+XDKp0pI+TO4ask9XVFQgUN0FIAJLukXGPlXiZfAUcBrH4LebD7cBbv492Ql6OiP\nZnitoGMPdD4ewgGdFVLoqqCSnVeQqBBkb2CeVhGB3cdDuCg++jJJAQ59jItP7Q297eudVdgmVwoG\n9s5OKDrQT2c47f6dbfGfEvgbVwJQOGpwNxYMPk/RFRz0qGDR+vBBC19BOiTVEhow7EFCq7Cs2Ora\nGS3jIb7gCXkW6yhqoKPiDZpq+smNdRQXyD2+kkH8JjP4RVb5a7DRHB3FPviErvjtPjl1duC/sRq4\n5hYbufbcOHg0x5lsz5fa6A4fhZZnq/CKb2RRA8eBX4ojEgvJjL2AW3FHPKhYgVb4nRw1H35klgwr\nXvA/cLBnciquRAt4oKX5xtMlOgqfKc/2DY54B+/QCF0VXn0FA5a18ckLPr+uUNQDU4OPtXc8PQtn\nz/GcvZhFI7Rg1/DHudjXXM18cx2u6zsuXvJP8+CnsVFoojDoowdFV/E3uJI28p9tICtkmD7g/Y7H\njMXJqDH0Di/Nc2/9vQWnvZAxdMF7+sm2kSs8YFfIxd6Cod81fnup50WwZFRfcm8fdBxMexHPKuzZ\nK7lBb3wL1nGx/dM+wHXU6ndGY7JK/8gWmpA98mZd/slB9+KH8YpxZELxGk+cFQfFOZ7RJ/PRlYzQ\nfbaT/rgmk/ZqnPXAojfBYX/g4iD3DvTGP/ZNs384wZUNBp8esDXogzdsEV1mZ8zPxpgfXfzv6O++\n++5BX/RmJxWOFF69RLFmtEIHvLEG3VNIJoMVXOmFBkc4s4fklu2EA9rYOxin5TPAoT9sJLmxFy1+\n2SMa8U1epog1+Bay+r3vfe948SaugLcGz+Z2X5/+XWYaiy7oxWbYO5/Bl8OHfc//2mcFo3C1TnBa\nc97re9UGd4e2w3SPN3THf9rjgwlyg6b+LITCq7gevho45CWYwet8DHr850YUiCcGT/rpxxN6LHb2\nooBPwgeFV7kWGdKmLE6egBdM/dlaZ/ZZHEf2PGvcAXD9s8NxXzPWmhO+Z/W5tgbdzcZYy8FWmRe8\nfV1zZwOHnRTbsjvmgcEvsBFs49QfcyfM1gmme8fE3T155nvYBn/n1Qtj9sI4Pl+MKD4Q70z4wXUG\nh+2W7/Ct7BU7Dkc2iS1t/8a7tq5DwxPj2HVxUfGAZ/uaaCEeJhfPVpxlHXR4snwE2y0+EROhnWfs\nJ9/vnp/m/xR42Xpr5q+tYx/n1jw6H8g/b03hdQq76xRTsZNjEhgwNPoJPGcrkCBgHLg+zpYQSYbM\nEeAwRuYQGALsTAAdFJPwca6E3jNwC47AB1cDI8NhnJZBO24e2D/t0bZSNNeMBGWkmBIb93gj8OKY\nKXs0M/5cA3vCNGau15x9DMMsGfvoo4+OIgVHzyAEzzmeuD4HM9iP59enQPyZdNZH7y5XgYzBJxcC\nNG/ZFFQkbhyKJIJT8FNTuko38S5n75pTnvw0xnN8F1ScVkDNKQiG6SfnK+gWPLMB5JB+c4gVXiU3\n1ocnvJ2t4ToH9yqUASOYEw57IoC3V18KsFfw//GPf3wUGNFm0u9V1v48z0ETR81e537ZWkUvb4EV\nMvCHnFxcXBxBAtsuuFSk9xMfRQkNDDRnxyVpErNeBrmWiEq8yIux5/i84wXu7HNvDQdZggs5I5d8\nEdwlsgIW14KW5MBY/kNRUlBjDj9zWjIrwdL0k1P4SSq9GBA4SxZnggcWmaZL5JtPBFtjfys+GCc4\nhAd8O8gc3ZAsmQ93eE4+0AnFDHhIMAV1DvqlgITO4NorXHwp5Wx/1gSvBh9zBYi+urAX+Nov/yD4\nREctesPFPIkx3yIBpePgCATBwU94mCN5VaxkYwTD9hasCZd/UITwZY4DXLhI0OmlLxDInTjBHqbu\ngkOmJN7sF/poxjnsxwsksuurdrEHHKJr12CSaYUHL6DsR0MD/JeAK0QKyOkC+1mzX4UheoE+7IkC\nVEUXaxjjOXorUrAp7jVyKckHV6Bvfg2e9KOEH73NxQO0dtCtipLGkhPzHNEBDvaI1nDpuXVce64Z\nX6zgb9NJ4BXF6Ea0Ap9Mn57rCVupD97kjfzhfbpoXXNbo7XRSuHMfsDQyIii7XyB3rrhbRy+wLU9\n2hfaSFjID50gQ2CJeZzBsZ4Cva/1xUjoB0YNTC0c571+93QMf+movaEFOOJT941zDk66pK8xc139\nL2pwtza9JM+KlF50kWfr9vNVfw7lyUrcyEPrRD/rdW0tODnwiR0yHh0d+GnsHL/jBx6c0AE96An8\n2DL07+XauUQXXHOt44w/fIeE2XW44znZAIuN8PKL/aVHdM789gKf5tXnrO8crdufMVpz6w/H5gej\nfnQTF7FTFfjJWrbbPPiLbyTRXliRT76PzUz27B9MOsN34u/lis34ATqFH+wzeMbyE/rZdLTGO7jR\nJzQR8/upK1k4LR31jF6SFwUg/gCcmufoSI7ee++946eucLQe2Ar7v/3tb4+/VckGa+bgsV8+sLvi\nN3LHFnmmWQN+dJkNYdvYz6v14os9wVe+DD+d0SQ/lr6AhTbuzbE+GvELXqQpjljXf6CjkAUGejUv\nXOADjkOzt1r90dca9kzHfIUttiFv8FTw7yts+KcrrQNW18G/q3N4grev4Z48KKz7MwO+sCQn8Pbn\ngRRe6Q+ZiwbmBDN4ne8K57cBTvTc+UL+HeJPH7nIo9jI09JJOiPOwJ94YL5rPLiOD56T0+Y01jpd\nT5rTG+PPwZvPWnfO3a+N0cBybc3s7z723H308AxOjlqwX4ZH+4B7+63PXIe418sHv57gH9lgOuCL\n+H7CD+/WctaCw86I79hfcZl4iA8Tr7Fv5SvmgOOe7XUNhpqV8eICa7dPz9BAc822ik99Ce0/L4Sr\n58az9+KYXmhn/zwT+/Ej/aqATscH89tH6xwLPsB/3prCawzdBVUAwshzWAIC1wRXMMbpSiw4BQLt\nWcmwZ4INgUrBA/kgRASWQHPEBFhQQLiNA4MyWM/aCVt4me+6A0wCO+/13fcWP+yjvbtGM8GXYEaB\nwDgJjQBRUItu+uYc82a77vnL+vFKwCcRFvwVSGV8rDGND3iP7c1RIB5POqM/eRCI++PeikUSG393\nyM9sJTd0SJDsZxsCOQ4i3tNLASfYdJpTcI3Hngn+JbgS4QpUxkiE2QWBt+JOxQsBrDd3vkKSQCqe\npMOtCb7ruY+bUK15xtp391MeJdICVnv11St7RG5/9KMfHf+BlH3cdt2b4PZ5GYMmjtpOZzZa0iQR\n8eUg2kgi6Tm5Ydt9VSawVJwyvgaWwIBMmSNBU/AQPAhi2Pl40px5Drf45T77YRz7j38OfCNjznBi\n5/gafsYhCYQP2QLPtXESK/LouYKbN9WCHjKerJJzBTOJpqBHgic4Ch9w+kmoYM26cLM/gVgBGNzh\n6pkDXPf8JnwF5pJ5uGjhaR26JYmnL5JeeoKOzgWEYNFteLP3cIEb/YuG4PKldJOegoEW/KqimYBT\n0bBmHlqYY50ONOBnJHTo1c+4wIIv/3+5CghsjJc45CJbAbYxGjzeWV+6+lMBZErQipYVXekmvIwP\ntnmu0cSXDA7FYDypSXh8damAKIEGE/3tp7WDaX9f//rXj8OLw3jrefJPtn39pLhib5458JaM0ws0\nEpuYg7dwBBs8dFZAPa3Ey54rHJFNhRE6hl/xHmwNTMVJCX+FVzy3psPLAjzhe9HDmpr5yU99+tHA\nffi77p4MKpIomCuW+8oNfmTVeOPoj3Xwv+IDGSN3xorRgp2uRnP9GjhgmE/n0M4aeKZ4N+NB44Nj\nnhac42b9A5bCv5iHnsLNHLDEPFfPiz3or0CjyE5e6ZNx8NNcz30enc//6Zkz3jqn1+bjsxZu4aov\nuTeutfTfpFkHbcgUPWKHyTQ9ZVvYVX6bbaKH5EEzT4OHA176rD9xm/jCc44P19nveffoQN4V8+DD\ndqEJOveCgWxq1g4Pa4YH2fFiQwLKhxRrgIM/ZF8hUKJJN+mAPeJ5+B0LrH/AdVjHel231nzeHGNn\nM0ar317nfPdwhqeXJYquDraGHTfPAT86/mQVBiX8fB+Zk0zLZ4JvPbzlh8BhZxT+JOLWYg8d5Ite\nWMPZM2cNrfgE9pyvFXs7W4s/BM/LJy9S8Go2eICtsOj/ZhAH0iWN3PEjv//97w+549eMRw/wFTT8\nQgF/8Lk9mWtde2DT6CAfa202xv7hKhbAUzw2n23R4ps95hvZRT6Kj7QfttiXwadlT32lq5jFloAx\n8QjWhHss8vwfzx32JH5g/7yk80Wtwi5bi3/ow9eRa32ThxPem7qeeJ5bg88mO4pOXmKgG5+BR+wd\nHsFZQ5/gdT/Prh/bzSiAjrUpd/rYIPaRbRCDkH9xAP10kF0yPu3L5Ev9YOkHf7drnmkTzqc9531R\nzzqDC6aW/nVv/dnqh8e+1znuptftdV/HfPtpnblWdPBci0bdi0PELfI5foWv8OLBV8Zi93x+cMzv\nGjw2lV9jk8Uz7JUx+CZOYWuNDz+2k62Pds6OCRNczZzwFauLS+Scf/3rX4+1oq812BiFeTES+y+G\nZCPZSnZI7M3mG4s+zZ20cn0Oj0+xud//vlWFV0zUYm6ChOmElWPmuCQSHK5rjlK/55wnh8wpuCbk\nBQ+JAaElTAm0tdzrN5YimJugmRdeFEAwao6gwZpw7HlrPIRzPJj7d40GjIs3NJQVzRgjDgA90MJh\nfufoEZ16Vv88e9bzxnvOoEgEJTYff/zxYeQkjcZqrRXfgnM8fPznjVAg/sQDi5AHhQzJm7+FIygW\nlPkKSNAtOaBrnIJAnQMT4MY3PPWcXjn0W4e+ck4SI8Gpa310n/wpVgjEJWeCRHM9lyQLvhVeFF7N\nA3/Ki+sc1m0IFQxzXGuTFuEuYFUgqvBqjz/84Q+PYjDawOehNnSJTjtt3AtA+gJEMZ79ZV8kZ854\nKbCUoElcwMJXzyWbiupkSjLOJgn+0XPys/XR2HUtfPThFdnlO6zJnjkER+4dZA1+EmO2TrMOfgqa\nBC6CGDYSLMV/e+OrrCFJJouSLPMU6+zZGp5dXFwcX1jam0KXRo7BUazqp6YSRHu0Djiu0YQfs44j\n/wRPPtEc+Dvbo7kSdzbVPOOtQ5cEbeDCoT3xe5q5CljoYE7rHQ/XP+aBZzz+oUd0tT5c0Dq86aMA\nEP/sgT9nM/Aafnh7sejiz0+ku+DRdXrlCy5j7Qet4Ha1bIsGJhmR2LIZnivuK7YqvLI7eKlfg5P9\noKfipYLTN77xjSOBRwfyYs/kQvKs2AAOnPV7Punh3p4U7PwHDBJU9kizhmZttouc9DdivayyRw0M\n9CRjzmjX4V7DJwmAINqB7ugBJ7KliKNIiP7t1TywjSNv5C8dIst8O9mwb9fWNx5eDjgkg/boGmxH\n8Zf1w9UcuIjZFIH6enXiAyc8AM+a5hZjBQd9a/DRr8W7nns28bM+uQ6O57M1rz7P9TUOrdGWvVak\nQyu4kUO0dSbz7NE7q9AveSG/WrCC3bk1PW9Mfa3d+s5oZZ+1xjZGf31zXOP3M3qQPfJGjySU7Kxm\nn3THV/h0kG0lZ8Hd10RXzzrP5+CFl2vN8/b4ac+nY+pjX8gtG+mAJ1lV7GMvHOS2eNy6c01wwPDC\nQVGCrvIj+umHPdljh7hCYc0eyQ1YjvaD9vWFb/uY9+Hv3PP63J/rtwZc2V76wRawUXghlmKjjIGb\ngqLkOBqcVnEF7myj5+QUH+DLZ/mC074VXdk+9/Ibz+2TrvGZzvSVTMOR7FrHy090to5Dn6TdePyg\n64qU4huF7XwHGHgDT/ZXAZXeoLF5nlsPb//0pz994d///vdhn8Bli/w6QMxob/EE/eCdzPKd+Cvm\nA4+9gqs51mV36SyYaBL/wIA3+VLQR3f0RTu0xgM6od9+/Yc0dAFN0Gw262pg1/Y+64HLf/sbqXiL\nB3ySl4HoYs/gz71OmHMN8D3b12n9VzmDFdw5v3XEafjsa1c/s7YfuH/5y18+itLwRz8wshE7zH0/\nc53H6/MUQMPaOfqRI76HHpBX/prO4gd90OKDa7xxn12bMM+tpS8Z6Kxv8rh+8F0H21lr7HGz/TPh\nexSs+huuv+aZVp97x77OhNEc8+qfawUvmI2r31lDbzZZjKrQLS6ix6dlGxUq2TytvQevNT1z7Tm7\n0Di453eMmQ2McO3a87mn+RxcsRZ7359FYO/CAY5wZtOcxTL8B/vTi2pjoifYc73W9Rz+E6dj4AP4\n50EUXmNUDHwRX6YgmidgFkBIbubbTdcUQLJIqMxrrrO5rWs9ayfYE4/GNJ7Qat0bS8AkkJIxZ8EJ\n529t17MF2znYntdfX+c59z5cZyDQMsXDI3S76Z52WrTvYEe7yQtjGAVvlvyNV2+zBVTWdJjTvOB1\nbr3uH8+vT4F4PWmrT+B9tQoffnbma1aFEH9eQBAt+BYQmyPgFYQa481/vE5H0+V4KxF/soIJh+Ba\ngFrwzDZwNO6t79A4RTrr6wl/i8rPb9xbI7jO1oIT+XvVBo426ZEdktRygAqvHLcA1csDAb0EED57\nC94Ocx/3eb2f+E8c0cczhyIcO44+CvUSRDZVw1/6jV6SUvIhYZYoK1x6u0yWJOL6yQe6gj950NrW\nww/JnoPNcpZAkBuHa74GDmRKIDuLheCSEXjxAwpUDomrM3lrDbDMtz/wjGGzBDveJpNRb8x9zSsB\nlOApzCncCITsR7NvhT5fP0k06U30SG7tzd4ltHBLvvXXjC2pNhY+JXpoAUdfDQngnY211/2AD7qB\nPeEb1308gEf9nllHs761TytYxU97x0NFYXv083/XmnHsB/3FdwVG8PFLwm2cPvP1SxDZHGvoV6hQ\nKEBv8uVLS3QXOBsLp+hovmTFlzyKZ/NrK7jgKdiS8sv1tS27peiGHuiiAGyd6EAeJP9e+igcC3Lj\nq7UaBy6Y/latAgQaoD+8NDQ0Hjxy56xZk35Y037BFjCTAXPgBSeHa3ttTfPBTJYV1tCwIoz5YNFD\ncmWs9eAFTryMx+Dpsw7ewMt4e3B26Ce7eAaOsRrYjnBrv+3fmMkj4xzmaF03f/aD5TA/eHO95hyA\n1j/Gaq3Xc3PQnQ77O72+BLUn/KczClrGKKJcrBcFZAhNJy7hOfusFW3YHgeasieKRngaDhOvYOhz\nPcfo0xrTs+7bWy+9FPz9XJU+kX/65ospNlYST+aSqfbw6QrXJ3/7mvN+XgfHmTyQDbE1/VSgVwQj\nNwoK7KKi2pMVA3iBQV7Rqn2Ba2/8ityATtkXe6KISSbx0AvgvuAFB5/AJ+fJHljRdeJbX+fGhUP7\n0d+8ZMr+yH0660wf+Bh2hSyx7/C2d/wBlx2zZzLlcC0Wzn6TkXTU+vQQDRX6/PLIV/RXKyazDluh\nwQ1e5plP79FOnwICu8wXsbnlPcaxB2hoPvzwSWHbF8W9QDem+Yqu5EliT7bYqRpcFPP+/Oc/H0V/\n9GEjxYp+ocS/w0sjA/ZEHtDIuvZEXsgAHOmmFx78iT2Q2ykf6MIW8nV8Lj/njCf5bzgoZFnD/uAD\nF7oAf/yI1+il1RfPu/fMmmJTMuhLUT4DnC9+8YvHSw38pOf2iTbJClitA85dNXC1CTu8nVt/jtFP\ndvpJu1gN73wF7D9Msxd6tM9trQnL9WO7OwrwHXjBb7B7ZKjYlM2uxYv47r7rxjg3bvbt466b25z8\nS/c3Pc91WqPzhHHTvjlnXu/z3dcmDvXNs72xF2jtIPPs4oy7jJ8w5/zr4O84zTnz+iZw4cVOyqu8\nDGNj+Rp49ksAv+BiK+kt+5P94w+mzTyHVzjYy7nnE9/7ev1gCq8x6Jzg7Yx0z6AwJgIoyavg1sEh\ncsCcGYNDETpaYzK79ZwpSffGcIpa63c2xnXJDCcuwRfsEEqJsLcdhBsOwTQn59P5WGD8A1fjWms8\nemsuo1cbjhbRmxFwLQhyCE7xSnDl7/T5X0b97I2RqAUzWPU792z2PV6/OgUmjXfaCmwFxX5K5c04\nJyB4V1SSzOEhnaHLftboSxRJxoQJs3lvDU6DkzBfkqSxD4Joa9K3igaC8WRGkKu46c28Yor5ZAv8\ncGdrXF+ns8diL/mHXoMRTMOtod9XcQqv/s4rB2h9hVd/d1aywKbMNveuf8Kc4z7P13MP8J/3dBl/\n2HW08aWVYphCpWeNNU+Sx/YqVuKjRAXNFN/xVnAZfZy7DsYsakgeHOTG+hVaJXUOsupMfhzklExI\nJCW5/IAinkBFMkwOyRz+GQu2PfBPkjaHtfBbMih5k4SCIdFWdJUY8yUKCn6yJNklo+RdIz9kRlLO\n34ANT8GfNT13wBMt0ItddG9dB/ySMfee2xM7aw5Y8CwZtZa9lOzCj55ZR4u20frofP7PfOb5vLe2\nYgk9Rg9HfGTnJcKKBQoF9qyZg16SO4GiBF5iIdBFI3wJRnyAt2t7s08yIG64XMVSRU2xgz6Hfdov\nmvLv5MuXPAoGiqb2jDbojrcK8r3wRTe0hCN5UXxj+yTu9m6+F4UKdQoR8NbvANee4UoWFNYltr6k\nRQfPZkNHa4GBx3BHI+McngfbvNaIZxOW650v9uCwhrnBQ0O0dB/N6Kij1vh01zjrmtM6+7m5zuHd\n+ODNZ66TaePAt47m2hytdY6b9U/9+7PZ3/WL4JhP5y9WUdWfjaDLbAi+sWG+UoQf/VWQIEcKenPd\ncLOewz0Y9M4XwFerkOTePLJDZlyDW5sw9IV7/bPvujnGmkem6YOXEXww3WSHvKgUX7G79Kc1XgS7\ntV52Dlb4uie/bCU6KDoq4DnrY6MUf+k+3Oh6hSqyGW3Ac4gF6I+kkx3xpSc/w1YaD5afvOOjQi59\nSofDfeKmr/ueO5MVa/fMPhzdz7Gu2Qr0tkcFbtf2h98dcGeH4AqWveMJGXiyiq3kQeJMDvGFXhpX\na222yEsmPwtXJOM30NhYeNeyj+xeCTjaogv+87PJQHSm4/DkE8g8v43GCtv0EX5eSjjEfXjGb0Yb\n8+0RjugAPy/fyX8FScU88aJ749lTdpWsGif/Qk/2nz+AL74qktoHmtmbhiZgsOHWY+vpGZvL9rJ5\n6AmOPeKJvZEhfEHzr371q4ffJitaNI/e815ftEJz/kLR1d/3J9N8GdnzUk88g7fmdxwLrH/ACW59\nd3kmB63ROnM/9bUmeb1c/lMhR7xG9uzBC0Uvk9GvOcFprnPPZt/j9d1QIF7mD8lfx21XwLvJP3y7\nLe/m/Nusf9t1JuybrPk68Odan+X1uX3u+2Jb2Tj20tf17D8fx5azx15o8Se9nBJLs4MaWQLP0Vo7\n/M9y//+ttR9M4RXBMHIyMebuzOZUJUScX1/6ECI/S5Esc6QMC2FxNn8G+60xBae+ec5gTby6Bldw\nQ1hP68scybBACG4cONwcnLexcy33jtZq785wN7bx+t62Nuli79GCcRD4CUYEOXgqyENvfNfP2Quc\nJTb4g86zBWv27evNZ4/Xt6fApPGkrX4BrqKqt/uKCIJPxSaFE4Emvip8+Om0QE7SKtgFx/xgB7d7\nsmGuYpegD1xrea5P4EdHFSUUiRRHBIvuyYr/edIXr/RZUG5ea5Az17ss3YYy04bNeWBzfs/WfwLk\nP4gqAfz+979//EH2t6XwGk3Qg82UDCs8+trKT8bxUsMHBx7TbwGCBE5w7yzBkljFL3xEe23yTx8Z\nkTxlrwUgEl9Jl+TNs4qYyRm4mqRO4sfmkBnJnUPiL2DhC8gWPNl08qbw5rAOGcRrPsocMgh/+zFP\nAukLR4VX+Eh0fenjP3OSnBmjwcuBZgIqZ/vqQM9wh4v1KiSQc32O/JHn7j0zTj/8wWNr+V0H2uCJ\n/SiG+lJH4TF8nONVfe7DZT6zD+viG/4J/PoqCZ2tD7ZEXrEEv/AvnVdcxQO8AIOPoO/6wKvw2n6i\nWziwLwoD3vzbGxh4iA7kQeGArZBkkzN/DgJc8oc3eCXxN5a84D1ZYG/wyrr4D74kW8xivxcrwX76\n9OlhdxTo4WNfeKZoir4Sc3GN+MZPwxSd9BsX/vbjPr7hHRh4pt+x0x1f9dfif7CM77l13M/1Jrxg\ndPbsuufB6XlzOluj1pj6uj+HOxrTCfICb/RzoIP7YLSn1tAf3HN9njd3juu6+WhPR/3nWXhK5sgM\n20WP8Q9+fpqvaETfFXTAgZP5roMLF/aBfvGB5IYckBtfo4DDFihkTVtgXvi63hv455637nxGF8g1\neaXvZJp9sje4o7l5kx+u9bVO8II/8fHsXH9jgiMesHd+kg4p5rHP9NvLWn8iqL/VSffQaMozeGhM\nHxTW8MQvbui8Iho58Zw+i0P8Z0kK5OyIBg/w2tvR+fyf6/YHnvFae2y+e/Pav3s6bY90nJ2TO7BL\n4OAv3MQxxb9sCxvnvpd+bJax59Z5ju4Bj/3kVz/55JOjAEvOJk7hTpdOK7fxUpPtk5Tn46zPTmr2\nYY7cB85k1ksiBTiyQ47YJDB8SezPgSnew58MmavxX+QMb9lS9AADLHaVT/By3McV7LCCANjWMI6v\nJCtkk30WO1kH/vCGb/Sxnj1bG+3FGxX00Z6skC/FWjLPt/BDfDe5oRd8rZhV7FjsCqZ2Ti7id/Sy\nTy8Anq3YzwcGcObjfXFNx/G1sXgaTPDjl+s30djN2i7H8HBMHPhB9Fd4ZavoITvn1xx0k2zWolH3\nznNvs//x+u4osNP9VWgejMn728IJxm13dtt1JvxszOzbr8F/nTV2eJ/F/U7bc/thY8WjPjZgz/g/\nNpONdNBVubS55+yOfXnWWufW+Cz2/t9c894XXifzduXAUId+4zh2zo5zJTQcLufs6E1n8ArECY55\nHCln4vlcpzUwrblTkPY+8AQRHAvHKADhoDl1wbPggRMS0F2ttwoCBjBax/yO1vG8g3Pv+r8pSJ+n\ntaLLzhNBE6PgDTx646NAD72dFUIEdt/85jePL07iydwb2u5trrc/e7y/PQUmjSdt9eOTwut//vOf\no7BGnwW3ElFG3xjJEd2WgHAM9FdLb8F0GNtadK+ES5+x9F2foLkCDBmSEIMrASmR/cpXvvKFi1UI\n8UVECWW4g+Oa3r5qg094Txj0XULpi1eFV04Qjr549SWF5IG9ma091xee3d+H89zDxB+tfcEiISEj\nl6v4zpainznGogebq9BBbiRXEh+JWYV3YzuSBbDzA2SKrVbYknT52uRq2WsyIZnzIif5cVYYY/Md\nrtn+invkltywSwIYz8mV9a0Hlj1YR1JHvq1hL2QT7n2xVbIlsfNFuJcTdMbLCUmZJEayDb750QSO\nZMnZfjXX0cC98Q664sgP9cxY/cbU55zsOkvSyajmbF+KSpItcox+4ISDc3hYb+JzAFn/6Jfko+Fp\nJfp0FX/pAfpVgGQT0NA+8dkYhyARP9EE/u7RCD/IREUCc/APXGPDRzyB/+B7Bgdz0eFqyYTCGXsB\nLwmxRB6f7EvcIREXj+Az/4SfDriRB2uRM8m1n9362kyf4pn/7Vaxh0yDh6YK3BUfFDF8bWgduLBd\ns1ASDdEVvuCChQ5orx8Ne66ffTMWzYxx7XktnjnfddvXehl845sTjvgW3q7tlx7hr2v7ojMO9Lxu\nH+DO1lpolMy2ZudkZt6Dge8Xy3/wI75MR2MvCxSE2DE+j+x5uedvA7Pr4hVwHOBqcCXf/KLkSNEV\nDMV/8MiUQiM4bIEiqAJULbzct7/6Wqtn7dd9z2Yf+0if4eE5e2ef8KYnE/68DpY96e/eOtpcw7Pm\neua+M7mlmwpi/AH7Qke9tMJr+0cLX6D7Ahhu8WdfA13BYqsUHb3UIx+SUPpmLfzx4v6DDz44/Ao7\nQg4cZMIR3HM419ceptzFX2P0z7HG25OiKzvq5ZLCIzmGExtib+iP309WIZDPYePgyHYqzJL9Gpgd\n8O6aXPEtfnHk767yteTNc+OyDdYla4qlfA97Zk0vkuJ/fIInWQGLvfISTnFb/GY9eOEP/VB05bPp\nK1tlbjaPjSVr+AQW38JWsq9snrX90oDss8NkkHziKflAP/jD2RfnXmSGN3mJf/aKB3jOZvPH1iBn\n7Lj1jRdXWIfdR2eyYpyPAtAQTvw2G25NPIjOk7/o1H38B8t6/pyWYiU6KbiyHeQa7e2P7GlTl4J1\nPLjDf+Cu7fD3PbWkfmMd+EavfEWNF/xn/6lQReTmObdWffua9T+e3xwF4t9tVtj5Zu6b4t2+1uus\nM23xdfsF/3XWuA7uXfTvtLgJzOv2oibFxokl+T52mL0X0/I1/Mmc29qz7ybrP+QxD67wWoCSw+Es\nKY1ElVOUIAliOT5JrARFYsaBExBCJBAVHBAgjaAZw7mVnE5h6vo6QSFw8OAIBT8SRGdCytHDlROH\nI4F2hBfnrOU4wZqHtTMKzg59L8PpOlwfQv9U8EkHARy+SqQFou4FfAI09O6LBYVXX4PMAkUwJ7xo\n1bPuH8+vR4FJ4522+EV3/YRMkiGZZPTjpwREAK5QUdIMxoR5U+zMc3AoinS+pGMTBPVsh6CdDEkE\n/CRK0b5E1nqtSyddZ5tuuv4cFwxwatZgjyTXkiB/aoCtYlM++uij//2Sgt2ZbafFhDnHfZ6v5x6i\nM3zZ0RJDf89Soq3PGDTEL8mUn+v6+kVQXxLneQ1888gQmWObyRbb7CzpJmPkwMGG8CFglIB6ccPW\nsDklvyXAs9jKzpR0WT++8jfWkpSAT+7cl4yCRSbth9wp2JoLB/uWlNERePnbkAqvkkl45U/mflvb\necpqdEHDF8mKcefG8G9zHtjhqd9+FAb9JLlCMZwFdejN94IRTuY6whNP0VeyKWGTYNNTusA+oJ9C\nBD5qCp90lk6bAy5eojE+47u+YgH6IyawhkKsIgC+Sq75Z3wx33qSbDxhkzwjG/1dVXKAT+hPruBk\n3xJ3tIMXmXQojhTA2ju8FF795yO+ELZ/ib1ChCKctdCJXJIRsK0NNt9mT+DEo+h3EGT8Y89kkc1T\nLDCulwjkCw3sW4OT9dDVmOTfGo7r1hjL/b9LsmBOMuT6HIyemzyfz+sAG1vzvHvX5KYCEblxzZ6i\no5ex8TSaTThddyYv5AQMskKmyW80Mc4Y64aHs4bWikH+bISzr1A948cU7f3JHMVzduJLX/rScZCV\n4tMDyPoHf/EB7mLc9Ikc4D/cFGXYPl9kKvawfegw6RJ+9YEPNpkFh30jJ/yMPTWueca7Nsf+Hcai\nT+M9d7g3Dozo47rnroODD8aABYda4zvrpw/ifT8zV9BRxKOf9kp/FUh99cgOsMVwMx/8WjjoI+cK\nmr50FXughS84zcs3oC/a+hM/XgbD097xBO7WplNop1lvb9Y01p7ha5/kyVn/3Le5xuMJO9fP8skK\n+aOv8gwHe+WQe7BBZG6HBb4Grx23eKAwSiYVyBRIzTHWntg19s9BVtkwNop9ol/oaCycNXPRxocv\nim18FdvGXhtjrD34KpnvwjNyD449s2vsm/n8HX4rBqC5+XgE1v+wd2erliRVA8d9lF1vcvDeqZ2H\nxkZR20YU8VIEX8BLpVUUcbgQRfDSC6EepR7ly19W/e31Bbn3GepUd3X1DsjKzMiIFWuKNWWeXcbB\nn6zgcTqddtzA9oytdEYD3O0Na/IP+KSlF+CCZW+b10stePBVZMZ+miseRD8Y5hiPPkVlMQr6+GW/\n8Upf2s/Rbt157V4jW7zyn8vy8ejykl0Mmn8HO5yfz/rgRar+9VljHuN8hPMK15ipb2SXf1MAJwc/\nocPeiW/o1oTrejb0Xtvjc4CM4jWdeVk+B2ti+rIwJ6x5Pdd6VWvM9T7q6+jt/BB84lPnIxhsGdvK\nx/Ih7Kjz0Ry4ODzreTpVX/1Ha72pfR/7wmvGO0eSoCkFJ8ygc8wKrr52kVzp57g5SAadw+N0zaVU\ngm8N7AInyQWnOguvxl9qKRbHKNgRNEjKrAk2B1piDSeHdawZXeBfWid6Ozf+0pxLOL8Jz9rIneMN\nHREM47/kkcwFUGRAXxgQX0D4qQEJyrXw+tFow9TdZAgTe4K87GlfnPgTMgmmpKh9S472qCM4nck/\nXQCv/el69rufjX2QRAimFbsk5ootzvRJAiZh9uWZpNl48MCHs+uXDVrAmfiGHzsmaVF49Z9rlVy+\n++67+3+u5WsT9mc2+Mw2eTz7X+frScPEn+18tn3ZJzn2daBEx/5OHuyvgF4iJ+mWLJMNfZFAS8DI\nlW3GS8mUpEoRROIkwfXcM8GHgwzoX4kdW1+CSzfoTDaH3ZFI8z3sDf2xvgZ3sOFRMm99hy9c4Ei3\nJNKnLXlUBFQ4mYEPWPCRFCsSOOOPF0m+iJGYoXnyLF7Ovq57Br/6XNfOPa9/nXPUj3f8nqTeF0oK\nRQ77nL9GP9prwQTLtaAP7xU2FTbwVD8ZkucsfOCZL0XxgWzMwXeyVQS1pmtrmgsGfmpkxieQr7kK\nNuZbH9/J4bTJRb+xaEKPn0Vxhi/cnNkx/h5udMM+ZUMUFxSGpl7AAV6Krv6TGck+nlnbWhJ7cNhB\nZzaQXqIL37JBaMAX97Ppc2h0U4FGQZreoouup99wxWOw2UCFDWe8sqaWjDuD0bV1XHe/T3jJf8J9\ngjkHHy7ZUrQqxOAhmskMreihd2iLpmAHF5yaOIIMFPwdeMNOeDFHdmTQvHB1tr6iFDukuOCsGErH\nrCtu9afx/VSFfe9rV4V5ONM7DSz2wp5RgFK48BXf/GJQIcNLJr+NqdjDPrEd7Ik28QvH+vFEMbd9\nSAfwjS0LB2PXeWCucOcYc7TGdG2MQz/+sYn0Gp8V/umfdRtDnsmD7uM7u2+v8I1kYT/htb1fUY2s\nssGtCYe5X9zTbXZUIdtLTrzmR3wVCSe8oSuuxY3+oz52hk2CD9zBpF/4Ha5ga+mjfrzmb+Qr5pIz\n2bUX8WTi6t7eTP7shGu4kBO9bs/SN+vDw/MV1nNsPoiFrKPRXz6U3cFPfFA8hJ9GHuypr0npF5xb\nE3/xwXrBQyOZsPeK2WCJ4/SBaT3yFW+xifQdfPIiR/tTkZmMfUGabzZXcZuO2I+u6YK9bE9aH4/B\n8NwegKeDPpOZ/ce222twh7eGx+TEbpN3vgIudBRscNFq/4JF3/ACz9EEDzGroumzLUaBg+K/Fy7F\njftiL/4hHw1s12BY34uEf/zjHzscsPl1hVf2I3/0AsSOM5rND97cs4172TPeaOl2ayVzzxqjL5qM\n41/pOz9pz9ILtso+8mLRXqNj2pzX/Ty7vraX50Dym5CmLPUbs/bN8dfrD5cDyazzQ1Ynz9tkCn6H\nNdrzrptrr89+z+acxjbe/SepfewLrykZAbou6FVklexw0P4kg1MXwDHyxnLOnJ0kKmdlrgTXwcFx\nqIImhz7POeDW7Dwdm2vOmtMXmFqHU7eOIMhaHKhgjgP3VYVAC35wo7DgwhGsCbv1Ok+l1Vf/vP4k\nKXO0Tr7ow4/6nJOPAIRMyQPfBWC+WFB4FeiRXUFK8+Nxazn3bPZdrx/OgcnjyVv99qEEU/AqKZVg\nKpQIupvn7Ghu/e7X/sbAtmeNa56A2h4WDAoC6Qo82BP2QAKrsCWhO22FF4lNsIzVwJxr7Z33+Aec\nIxj0V+Ly17/+df8PFiQ19Pv73//+p95+++29oCPhmi266nsZvILxYZ8nDRN/8iAXCRm+0BN+gL2V\nFN1sf6741ltv/e/r5OyrIhi9EvSzxxJNCSz77Kj4CT6etz77IEGTHEvYyF/SxbdI7CSL1uUPHMaT\nj3U1fsZa7D8cKp5ll/gERRjrmicB93WM4pzkEEz0h49re0GC7AsSRRhrKQgo2igW8EHRvc6FE1iT\np/pqR8/0dRjHnsLbWb8GXjTTZfQ0xjg44wO/TXaKRgpPEmfPtNYIt2CDO4998PZP67gnA/JBv2TX\nPpYga+RsXV8hkT89sC49gptmLeuSAVgSQf6BPMjYQR5kDq6x6EGDl0SKFtkosOCGfrDg1BfY5ESf\namIQ+EjYfd2kUMH2ZA/gQ6fcw9U5vsDBdfdg6qvffc/0aehSLBCvRAcc4MqOiGngRyfxyF6JV3R2\nttZa+9y3bs9WPOvvPHGuz/loDf3B79zYntEX9JCZuMzZvVivwqs9j+5aPOoe3/EDr8hdIYU8zXu2\nFVYc9vekDQx7lj/xZZ2Cu2uwPAOPP3GtiFZhyX6xjq/oFLeMAZcuKOj482UHW6coxI6ghx3ywl9h\n19d3CkvWU7DJHsUT52ikS14ciFEVthx4Q+fZHzDpPv2Lx83tfsKLB8YcjTO21tjsAXnAFY/tYf6V\n/MCh7/TO3mJDK+bZL32RCV/+2b7Hbzyhw/w6vmvWnHi5Ry/eKgrxI3IJ8gRPkRFP+Vu2wx7FM33+\nRJqs6ALc7B/w8NyacK+1j81FJ7sHdzkLHBUdbzafxV7hNT2IdjA1MOxHMocfWGRvPhwc5jav9Vea\np2zgDRa/Kb5iv9DPn7jGG7aCPinkp8tsB/mQV+vZQ2Dxb3wpnrK1dNtZ0RqP0AFXvtTPP3iRrZhI\nXnwW/OwthUc/owMX9/lHL4vsZfsQDnSiAil6Jn1kQRfEdPYFfc7moQv+c7x9BneyBtN+0FcBl27C\nEa3wwX9xAJj6rY9WRWtxK16gy4ceiovwNme2dAMeaLEXzfUfUzrHNAAAQABJREFUafnZDOPN9Z+F\niT29UCVn4zXyBSN5B9vzo/6eP+ScLs61W8czR/qgv/HWwi+2S9HVy2J8tlf9vivdf7J99ECeWnOb\n33qd90HXf16aAyt/XxrgFcCHxoFk95AF77KPgt9YPsl1h3Wn7QqP5rlvbs8+aeePfeF1CoywBWve\n+nszzUlJVDhnQhdkceycJYfI8fXW31zBhCRMsOHMsQoYHJwDpzqVx9pTgVxzhgJScAXzztbLKYID\ntiCLg3Fwwhwz2Cs8jlSDn2M2Yzv0m2+M84rnnPemX08eTlrxhPOnBw68EqTGL7Lypy0Kr4IxMisw\nD84RX8+t15zr+X4cmDxeeSu5EMBKhBSXJJoCd/unljybu8Kb/Z65b4zreQ+mPSgwllzQC0F5SYnE\nS6AuiPdckOg+uO3Z4Ibjfc/gHMFgT3wR5WcG/FmlZBl+P/jBD/73xesa0EdrOID7cWuThom/foHA\nTGLpiiIGufii0BevfdGObuMlgxJBX95IrJ5tRRN6JenkF2ZwQRbsCF/C1p+2YqsETtIt8ZQAsv1e\n5BijhSP8zAWPrNh/azlc0ytj4aoII0HU2Cm2CEyJqa9prA1evDDPtSQWzb749WLCegoPFV7Bza4Z\nP3GzVveu5/PuO+MDOpzh17W9aF9IFitcWQ8emj7P+Ffj3IOhDw8UHeBNDp7Hb7iEDxz11ybOsy85\nkYnf01PkJCfyUQTBK2uyKYqkEmr3fDJ8Wg/Mrq3Vdf5e4k32CrBkhyZxBHj0SgyCP1rzwSBD/4kI\nv6OYw35okx8KHhJSv9UJTnQ7Bwud4Gmdj3gS3kfjwIC7wlz6aw36T77siud0Em8UuhQD7DX3xtSs\nDR65h+N8Vh/4+DJx7rrxneufdHXd2VjjGtu55/Pe3rSfyEBBEX3sKR4rJqM7XoMbDNeaYoCCjUIc\nnoGHD+yG4pRiHP2qWRtP8Jav8DWfQqI12BnzrEGXwBLL6hcvwo1uKLrSX3s43e13XBWijLcOmtgI\nhTF670WN+dams9Flvegyz4EGLx0U1dlDB36QO1rZTgUxcS35mqOBM6+ju/OlZ41xhpv9ww4ontIz\n+9fLcDThTWvB1T6Dn/H2Cn9oz2nwVMSzt/hucBQkrRHdxs3r1qcHCkIKoc50Hf8UBBXAFdbovnXZ\nDroDP39NQYZkxhbqB5++zMKYdek+nUCjXIXN9pu+5ChH8R8v+RPy4g48nLi6h6+953ANnrUdjZ9z\nrKslj66N0QdncRb5s8HkL6dy0FFr2Df0UMEPf+EnRiKbGtrYb3rMDuIRWM4K5GDhjcYWK1DS0XzV\n/MoVXvRdvPf73/9+5xPea/Cm73wwnuEzGvBUIRsv3RvnwB8+lE7AXexmXetnr4zT0ErH8AL9+SW+\ny5pwxAe6QK/sVbEG2yGfsL/pAtmgXdHYfjVfMV3h1VfYK++snezwkTzMF+f5TVdxguKk34T2n4VZ\noxbuybf7nnc+19/zlznjmwPd6XgvOuAVbtZAi32u8Er36Que0HsywttiWDjPueH4KmlpjU/SGY/j\n6crv+j9J/LjS+gEH6IODHdXs86kTXU8dMu7ofsIx5pPS3ojCK+E5BGsSqP4MWRAmIBPsCBIlRZyh\nLzkcHGXzGH9OUxDH8LvWV2JYUEOpzEm5UhROBXwO3CEQF8xbG15ggS1YENDNdQQFYK7NGpTbwXkZ\n07j5bM6D5xw3n33U1yvPjvCJvqNnd+1b13HPOJCFoEzS4lrhQwAUzwQ/gubvfe97ewBtbMaltY/w\nW9dr7PX8MA5MHk/e6rc3BcBPt/80SYIluS2xsY/ItGDP6u0f1+avR06jNY1PX8zRBOMCekG6rzsE\ngdZRnHGmJxIPCYOAXsEePHDsW+eO5xDv/294gjMb2iVsfnPNn5+xL/B777339t8Ok3QXtDYvWrtf\nYdb/Op8nDeFfnzO+SPYkOb4ykYApHEiaFbkU4CROxrLPkjPFEl838SESd0knffNcoxvshuITP8LO\nK0RIriRRdITNJ386wSeA74CjMx11SMysKUmDp6S+L6jN7wtKyaB1jZcAguOZP8OUbMEn+ltDgqrw\nGt3GKPT4k0SFCPDBhI/mTL8cWnvAdc8aa4z9BRe+sQOP6LoD7zvQav+U0ILjGVr5wQpTigTw16eQ\nQQ58JHhatHW9d27/hFf3xlkL79l5/OPrFVwUyRxkZz08xfe+WFMMsCbc0IXOtYFf6zqdIBcFCWub\nm8+fL1bxdjZyJBdFOAm8+XgZbooUvm7yEpk+povotr4juYXPfGYta7auZ/Gs+Z3xzR7pUEQBm4zI\nAZ1siXH6+U4FAfJEb3CdrWe+8XhtfLh7BoZ7ekRHmgsX150nr9ZrY2pdB2ee12fm6AtHcSA80Zfc\n8B9+xsVf88xJ3goCCpr2PZ7RmQov9rXYE2+ahw9iDD6ELyF7PFKAYp+ebS9fjKGj9ADf6Q4eW1Nh\n3xxn9wpL9gndUBACBx1wUkxi+0+n5z99oWDINnmuxR/0OdxHewU3sB1eRBiDXnZT4RVsdlC/1pme\nkG0N3J7VN8/rc/f4jhY/F+PPyfFfgYvtVkjGM2P4Xrix1Q642iNsCBvH1vHJzuxzRWe8s85scKwv\n3fYyzvp+dzq/ao8qBuEv29L+ZLPIWv8Xv/jFXSesg6cO8PGe/rSO9T1jgxSenm4xDbsNln44+71Y\nf3Jt3RXvcAYvHY3X1ul60una+Ob2TJ818RStbKFCH76yj3jBNrJtfB46yYQe8H9sKvrAsZ/ZBnLg\n48Ro+VP7gszotrF0hR8mVwfdpeMO8sp2gAcHv3es+MhHWwed7Dw54xEbTAftPbKxr/IjxtIdfpu9\nVbg0x/6131oLb/ATfL4AvmCJO/ECLmSPfi9CxHx8jDl8ubyT/qKL7qEFb/DTX6HQKbqC3pvti06+\nWb5YvEAmUz5skT3JD4jzvGBhA7xIla/Ag/3BT0fzndf7/eH2zznd6PlDz3jPptMjZ+ujSzxU3AE2\nXkUjPfERhb/o+O9//7vzBl/oPRmJc9BXi6bunV8VPXONT+p1/O6M11d+f1K14f/bFPuYXdXoh6N9\nnY50jmPpUefm9/yTcH4jCq+Ez+BziJyaH39XlOEwGX1ftnJOfZkg0OZUBRiCXU6SUzeekxboCuzA\n1FIo15Qk5RI0OASggg/BCEfrmmPmMMEWDErqC2A4c0FOcCkmuClsCmk9rX7Xra3P2s6OnsE7uHvn\na/RPeEJpXofiY+E9YU9eCoQkNZJwY8ibbCRL5KHf13AKr4KiAmX4xfcJL7znevVdzw/nwOTx5K39\nWJIiKfMVCrkJQgX+7EB72d4zlwxL1BRC7D3P7H/P17X0Odr7qLDPBPS+7hDgCyDBEDCCJyiUgBwV\nXuGkBXe/ecA/4QnObIJbX4EIWn0JIclhe374wx/uf1KfHs85roPneoWp73Vv5/DXXzBA3goSvqLw\n1ZLElY32Z90SJkUQ49lMNkByIzFkE+iWuRI48CRl5C5BKkFk68md3ZBY1MKhe/AddEZCopiraGI9\n+sxv0Tdr0Fd2ij57Wci3eKYAQ9/4JuMUQfgZSSf95D/083d0mx/0haRiBNwUCxT4JLb0FU3g2j+S\nYLjBkS7gU0mgMfrzV+7xFb96QYkmRScN3A5jwQMLbnAEx3z7FE3G8sd4Cy+wJLn4Ijn1HD/NCwf3\ns1mjA+54wufjD9uAn/YE2eEpevh+ybtk2mG9aIgOZ3BbrzXmc9e1YgPjjdVc60fHbJ7jyc2WYCoo\nKQBI3tEoBpHAk53CgTMZ1VZ83Ldm+DrjRQcZuNY/5awv/YGjdfCBXWncXK+1Jq3wAre1jbEenuM3\nuYJFnnSi8daocHvEn33g+Ad8LRx6BJfW7nnPjJ3z9M+xjdPXOH3wmX3WcPAl7Abdsgf5BbTaP3SI\n/a34R5Y1slZI86UkP6JYo4k/2W/FGjqpyMA2PdmKQ2QBpn7X9FqBiI2wh9gqdgoM8PFbEcefHyvs\n2gP4T75adKMNLZpreLIZ9h5dU8h1KBSREVsEd18U9rWrYpU14+8KO156ftR6Hp+NMdZ66BXD+81y\nhTv21l8qoMm6ZGCPKObB01eEbAaY7IjxN9u+Yu/grQ+u0Wwteug+vFtfn2dsG/vgxR3YdJjMFM3Z\nfUVs4/ycjf88T1FM8wXjt7/97V034Ik+dDmSQ332Gf/SfyrkBSo52JN06tPbzwz4M3Iw2bGJ677Y\n9s+kqb7O1myOcy2e63NtbxbPKLjSKfkT/0cW8MY/9knhXdHSF4n2QDEyOHC3x/k1sqHTDvaVvDRr\nwhmN7D552hNo5ZvtLbyGe7ixEfInOuHlMr3XwOEf+TR7Co/4OmuRGR9oXvuQPOiG31T1Z+y9JAfH\nWvHSeD5ZfmAPkMuzbY/RCXwon6SPeGBNusCfGSs2tW+Nwyf7mQ+yt/71r3/teKEPvei2p+xrfNYf\nba7B5ffxk66JY9ABbi/rrA93Y53PyXoH/Ar/wUN2ig7hu2s2CR/IGQ/icTjSGb7u6fbSwc9H2Ed0\nX4wmF7Pf+G001+JR987Bm33X61fLAXK48v3V8vgu0Od+OCePOeYSzHPz55wJy57Pr639YHU03xjH\n2t/zT8r5jSi8EiRnKRgV9HpjzJgLKBh7QaxgSeCQkxTwCDA4MoEBR81xgjWdcIqSQnAc+gQcHD2n\n358vWkdwzOFw1OByQgI4RVcBBOdofgruTHEdOSXPjYOHYx2fc2083Ixx4IPzbOv9fPaqrqNvha8f\nTQIYB7rRCm/ygmt0GXfUwDhHU+s2Zo7jxAV55MThkwlHTz4CRgUUQdl3v/vd/72lnvDgAp6jfn3z\n2v21vRoO0BPBMJn5IX77154WhEo4Ja10SOBfMYsOsQterAhe7XOBrHHa1A9yTJbJ2Rj6KEk4nU57\noC2YTG+NhwP7ovAqyGRjgmM+HCZsfZfaql+NPepHB/2VlPhTLcG5goDCK12WGNhn51r0T3zPjX0d\n+5NT+DvHJ4mtwpWA3pcyGlstqPclBVkZT6/YA3pCN9huPgRfFQgliRKHii3shENBQpJYy251Dy49\n5GvoJFgKltahE+byI3RLAklvXOvT4K+wr0jLn4GhOCIJsbbk33iJCr/jC6G+DkF3P7FAP29eFCIU\niuiDAgd/x18q/MBRH1rhAR844osz2hx4y79JbtGCPnjSQ7wE21y4ORQ90ANHewYs482znn7j+Gnr\nKgCgF92eg2tsSbB+MKzlrLkGR5GJTL1g9YINL+xVz/AMXq4l0BJqibkvzdgGsNoLwZxn1zVj48U6\np3s4ad03t7P5xigM+Vqe7IytIE/e8OQXtaM1wcBT8yYv6qdf9APtDmM1Z3Ku33W6an16MYuk+6Rb\n/kGLIzzIUsKMLtf0iBzpTjTpo0PWal78Amteu9f0zX7XnsUH98EyvnnN7T4Y+muezf5khIf2u33k\nQBNdo+v0VXGKftrf5IaXcAALb+m3F/98lK/f6KQ9YI5ijD0IhnEKSL5kU4AiC/tYEcwZr/BMMx/f\n4KxoA65CEF+ooANHDQ216IOXfrDsJ0UisZCiEf8hbiUrtCoaebnUl/3sINuDJ2ubvJt8Th7x0zxj\nJz6u0cPmeonoq0b8Eat5MYF3/BoY9JN9FgfYw2iga/aRIhY/7Pq0+WtwW6d140ky8lxfOOlno/Ff\n4ZetYzvAowdoby6/4vfVFX/tJ4VSf22iqDd9g7XNsZYzP4Pf/lNMMKxnffpiLh+lKKfYTRfYUPPa\nw5PX0RWt7muN80xzb/9ZRx858yv0SxGb7BXN2B5j+DzFSvLHU7pADuw6ntF1jV+iQ3T16VZE81Wm\n/ZC+Rrs1+SDxknicftHXimuTBvz3IoON9tWxv2S0B9gTuZc5/Ia9yK6jyzpwebb5cDRlW+Bqj/iK\n0p/n8w/52Z2A7R9z8cdcBWP+05m+2Qv4AGd7Wd6HDviyaXyIQjWd5FvsZboo38AzugEfv88KJh0S\ng5Cxl27uyRY8rTP+4QP4bIu9iv/wxwN+31h4z/MO5JH+wZf2zAQ519TPX8t333///V0P6K19y6aV\nf08cwWU/7WVfuvqZDdf46neSHc2bMax1Wzs+Tbyu11cOXDnw6jhg792lXffmeS69EYVX5DHiHK8g\nSSDGYTHWHFrJn3sORLAhuODI+3JOoJHjPWIXJRKICJo5PQ6BAxaMcIQcv8KqQKE3xoJqAZagSgJ5\nBB8+nDLYDk0wUxBhjvuU3fgOY3NCrhvruta87j/qc46XLHKm6Is/bVZ4u3ag666t+c7RXp8vB3w5\nIYikH30xIQCWyAiq/V6SL17786Dmtn78nv3zunHX88txYJUdaPRAgchXKL4yEcgK7iSqAlhJgiYA\nFAwLwCW0EgKJgMO+1z/31D7pxT+rLOe9Pc6WONgBwbUgUaIkeVDUq/AVTHSkv/bthNeY9WzO0bij\nfrAFu75uVGCU+ODDO++8s+s621Sytq7j/ojPR+Ne1z74x5d4Fk2CesmQRB5v8EoyxAZI5smNTILh\nOTvAh0hwJDvskqRLkucs6WOv2S72uvn40/psd8VJ+gqWMx8jETRPsQRM+iNxlECBC57kUjKsCKEo\nioaKcHTPnAqV8JBA6iN3hzF9ISNZU4TxdQy66Szbp9jjz/sktMaiGd5wA6+kFD70B25o128+n+Zw\nPWk3zhpsqaMiDTzTQzCtU4EWXyuQ2rvgasZoeAlfOi6x9cWT/auRHZwkoYqYDsUaPLUO/MjQ2taD\nRwUtCb1CQ+ulNzvgF/8k08666Yn7dfxRX7CaP+fogw/ZowFcOktH0Hdko4JzBBdsz+MvWaBZAcg1\nHrQmW1bhH5/xSPzCXjrsA/jcp4EdfXSFbaaX1kEXPjunM85isXx/a4ETrOC516KxseeeTxgrHfiD\nH3QO7XDiE6ZczScTuiTeU3Ck1/rIxR61p+0ve9X+REcyI1f7ToGmwpX1NHPZBIfiovXJSUzJjymg\nWkfhyv785z//+amnWzEr/JzRDZ4io2KrIo69T+/NRRc60dE81+bZY9a2j7yI5EftA7ErHUBnRUyF\nJnDtYzimR+1l8DpaL9k4ezbPyWX2ubaugpQvAv2esWKXtdHVV6t4C2e4Km6JrfFA4QoP+N/2vrif\njpsTXuECB/3h4rzig2f0017U8BM8cgXPfPzqNzfF+mzyl7/85U/95Cc/2fXFeLCty7Y603d23Qcf\nfBJayN84/uhme0Hmi2U02T94nizND17XcAt/17X5XF86A/fu7fP8BHz4GraW/6CzfKWiGR2mV/a0\nvYwuDU3khB6xlSI4GPSWjuFReOAbOdJtMvVbuGIl9JEVGtHB7pgPjqMXoPaY9eAFhtyL/yQjcrA+\nPOCDRnpqP9prcOEf+D9fuprvuXHwc8AVP6wpL+xLZ/DRTyY3m2zYArzAA/Pt376KpQNkyZ+Rn6Kj\nuew7PLwcp9to8YIQPH7Z/kqv8DWcXJNbsayzceRARu1F47UjPdgfvOQ/4MNj8sv1XA//+GiF5V//\n+te7nqNf8RSN8ik4g9U8c/BF/uXFheLrs63oLWb1c1C+WMdH/KYftfgDTrB6dj1fOXDlwKvlQPbm\ntlWue/M8h96YwmvOgZPloDkGxtpRkEgRPBN0MvZPt2DWIfg0T1uVKjgCjr56EpRy/JwCh84ZFoCA\nq/jhLICwHqelWX/Cdw83TpwTzbkYI2gwl3OaMIyHkyOa53nCt+Z6r++jbuhONnBBH3r118J79nlW\nf+PWc+OdjXW4xi+FVwGUAFBAJWAif4UNAZ9ATuH13Xff3QO8grNgtn4wW3s+r+96fjgHVhnHX/2S\nXcUXf54nKJfc+s9pkmt73csXgXSJmqROUC1RttfnGsGHsf6jZ/rad/ar4FpiJIAWjEtSfJ1ChyS+\nE6Y97N78uzRrzfnNWfvZFeMUln2d4csZdEo+33777T3gZbPiSXDmOVqP1pvjXtdr+MeXSYM+SRCZ\nK7wq1JN7hVdfongBk0yaS1aSbYUUxUi2XSFCoXTag3N8Y1cUccxX4FMcAEdhoWIWXyJJpz/0F3zJ\nFFzYQl9Z0W1+RHGUfyrxUciSmNAzCSu8zVXkpIcVXs2XQCoeWwu9vqKSxMCnPeTFo31i3WiiL+jW\nwHffC0xnPMJLtHpurD3RfAkW2vhG9JljDPrAwkcJN7rtIzhVYAATbGPwyRx9dFwRSoFAgq2AYT14\nW68vXdFvbeuRo3H4rlnD+uiVJCs4sQ/Ws05+eh+8/JN+6LZu99F8dK8vmOvzwFtX67nxYMJTn+vW\n8Kxx5uh3X1/jJp/xkD3CTzB7Rl70xhmv8JjNFMfQWbwLd2vdt6Xj5Gt9RQP70ZmvB9sZ76fuRUO0\nWzf6XJ97Xr8xGjod1lnpEHvQObqJB3Tk2Zbwozk4+EKnfK1Gpyogw9n+UTxR8KGX+KVfMx98um0/\nmq/4QieNMVaxhh9jE6ytKUIpVChSiC/RbO/yc76otF+jxxrwVpi0p8U11qmQvAPc/gEj2s0hYzKA\nv9ingqu9gA5yIC9+THHM14gKJviUTwMzuPDRwHbUPJ+t+8Y562u+ddkrf8XiP4j0cpS99Rcb8MB7\neIvbK3Lhv4KWYjXbpkAoriNX+qyFU+t0H/7hFa7uGzPnNx4c1+yflwhk8uc//3kvqLH3bLLfZP3R\nj360y9v44NH79IZN93Wfr4vJhL6w6V4GimOc6QsdXHGceIV356OxcI3+5loTvvgsXvClq0Ij/NhI\nuoSf8JDnKLqzH+DTYfsEPeyFPeAFlvmKn/SbzkW7OXSHr73ZCo1k5SU1fQ9m+IPL9/lw5ekWlzt7\nqWwdcMwR6ymykzu87B8+3j4RA5kfP/k9cjLf+op5CoH0pEY+1uWrrQdGP7OBVj4M3n5L1UsOMkYb\nHqJV4Rzdzu7pn/3rJQAcyZH/UeBWaOeT4WxfKQT3MxLZ+2QUfngJj2wknlnfkbw7z7mzL1gPPeNR\nMj0HA4/ps6KrIiqZs2X4RuZsqL7Zsof2kf1A5uwi+cjDfFDBdrIF+DMbfND4mHRO+NfrKweuHLhy\n4FVx4I0pvGJQDiInwTnVPBO8SbokbpJaAQOnLQjh2GqMOQfH4HOcAnCB0ZOtoMERS3IFoxI+TlUx\np0SOgxXEChI5Z7isbToMOAqwrDcDRvhyTA7JiXvzptMFW7/gSnM923o/n31Y19Mxhk90FGzoj/+u\nGxeORzB6dnQ+Go9vgkhvu8kSXwWeAkbBo3uBHIcvcBYYFfiCB6fOXbf2XK++6/lhHFhlD0r89cz+\ntW8Fdwrm9qCEVZIgYLOPyNL+I1f70p50lqwJxMGZuue+feraMde1fvtOv7mSXEE42+AFjARRwsou\n0Js5H2wwomN/eOEf669jV5xMD2f2RkAveJU84IPCq6CerVphzaWP4M7nr/s1/Ce/Jq3sveKChMeX\nJgqiEqK+XvH1DLlqzQMLX9l1CZkkThGJbTZmjot3zmw0+ApXdE8iR9fYZnPoTAf9UIykQ4oH7o2T\nzJpHngoRfBNfBRfrK4pIYCq89qVkusg3KVKAZ28oVEpcJdOSQLbPfnm2FZkkmP3nWyV1+IAf1lLY\niRf68AAc/RoeoUcypc+hD8/QCyd7QSJqrrHBjnb08LHgWhMefKamD64la/a9l5kONElyJbDGm2sd\n+5ENh4t+z8kETvgLD/KUJHopqrCl+GVduLWfdgQu/LPqQUPTB/eNCSb41nbAFz/y7fE/PYEnvhgH\nb/jTZefGtmbruG99fa0HhsO61tQ8pyMdxlrHGnjjbJ1w3yed+Qes2cIBbHImQ2uTB/22T6xlnGNe\nH8HRN9cI/hw7n+s3Rp91J3x9aKWbvi60j+iZfWrPKcLba8Yo8vgqj42gp/wKvtjbdEfxlP4oVpFj\neFmDzWWDHfyD+XipqGAuG2GddIG8xZniEwUvexzeioy+dnXQeY0MwVQEsp8VX0+n077v4W19RzwA\nh97YL/AFB51iH3aAvSETfAAHzQ5FY/dwJ8dgwsE1epxrPW/d+p31wU0zrzHm4B06/Q63g91j1/pN\nagUzughXL6B8VYePcFKUwTOFQrJU7KZ3l3CBw8QbLrM1d/a5Dme4yBfgrNjnK0a8xGf4+GspxVe4\nRJ+v+vCdPReHKNKhk21ir9hm8vRSUCyxFiXDKRzCLTqiofue609O8KNzFX/FRPhJ7/GTDtBB/CZ/\n8S89ZFPZD3PZYHpPh13THXPJxEHHrGNd8maT7QHycYiPTptOoTm7Dufwggv7rhCHP70kZ8/h40WA\nYh78+Bb95prn5SpZ0G26YV1r0S80o+1mK6CKifhIjU1CA/mJm8SV+GJdemRN+1Hh0Jp4Yf+RGx6Q\nJZkab4+hl72ITmviP97wxeIz/pxNBFch2Bkt7d1k17n9kuzbRz1fZW68to5r/EPO1m791nNf4zPE\nWWIs//kXfpOVl0JsFD6Sef6nefjPFnoR4aMBL1XpkD3gy2Tz2Wn2IHrW9bsP5vV85cCVA1cOvO4c\neGMKrzkChnheEwBnJAlTiOEoveUV/CjE6GfUBcEOAYGD0+S4OfC+JOJ4BcngFYRz2BwHuAIATqjk\nKKfQGS45MNeatUuOChqfP3n+kwMcOgdlTXAcOSF9DjAnzV0H58M+T3q7Difn+iQzJdd4VmImWEKX\nNsd3vz+48E/w1/HkJzASBAgQBZECLeu6FzgJhn7605/ub63JY8IAFz4rTnO9C2hdH93CAXw91+Kx\nwExRSRCraG5/nLZ9KrhzFozrk2QKqB2u7cvgCwDtITDJne6t+wgenjvYBbrq0Ix1LbmSBPvCQUDf\n1yH2czri3HU07EDu+U+4Txj64C8B8GfYvl6UTMFH4VXyKqi/1I7gXhr/uj2DvyNZTfwkZSXIvqaS\nLEpyfTUjqBfgk20tXsz7I1uL53SAnaJrCjcSOHr2bCsQSMr4FXpAR8jA1zdsXTYlfXMGQ7Liax36\nyk/1kgAMRTg2S1IsEfEVs+SxoqU11iIuf6Swys/xH2yfPYJP9EWSKbll+zR04gX/BpZ9FI7mwINf\ndNbsIQmusdaXHOEfXuA7eGA45n5zrU9Bx1wwwYejuXhqDbYYXGPh5ZkEV2LNbuO3pA2fzQEXLPx1\nr1+CjD6wycwzsOx3hQbjpq9e5b8TevAPfNE3x7ue96YZBy8H/qDZUSKJpgoWcAFTAUzBg3zDFS1o\ndZgTztYwR1vXr9/a8NA6G+u5I1rIGo863N+lme8As3Pw4d/67Rlnz7XGu5599dfn+Wyeaz2P1tln\njLXRMfWYDijSKY5UVLX/7NuKPeadNl/iuSIY+OI9+kdezhX0wbZWONFBfoAN9iKEPOka+GINuuue\n7oNtX7IL9P3J9mJf8U6/PSSu9B8mKki0T+EkRvn09pME1mBbojX68SXdBoctURix5xW10IBmdNEz\ndkEBF0/EunCio3wc2MbFa2tEqz6H+/o8n81zPAJjjqEHaBIz+/NkhTP2k21TjPICXDESHnimIMfv\nK2LqgzP67RV2glytUZv4dh2e89747psbnvod4KIBvgqNbKsiMfvq3jNyhrfCqy/12C00slN4b7wv\nKdl39ghv4e6F8c1WEFSYRDtd0MDUwtk9XLrfH7543rVzODsX19CBioXWpwe+0lRAZu97eazwy794\ncUA/7YP8G7srbyID+sPHmY8WuhZ+eGXf00tFN7SB2wuIeGkevNgzftneEM/5ahKO8OcH2EtyFsuA\nx3+HG3rxWExIFg57Ew9n4ZX+kEc/B2U++NbFC0VRL675X/jZiwqHXtAqutI1vICvOXSWDsj98MCe\nt958CaDPeLwC28tfa6Ebj/0ZPR33IpgfB1+DV42su08ne9a55+7vMr559z2Tb7pnTYd7ewIf/P8C\naPRiykcIviwms9NmR+3X4obwdKY39geZe4lhf/B1ZPyFL3xh1x02tBc/rW9udOu7tisHrhy4cuDj\nxIE3ovCaI3DmOLUMsj7OTrLJsPvSRyAkEBEscewCXYkth81Bc7z6Coz7+kTArIDDWQikwQFPMCKA\nmOsKCLSSD9dw0e9c43A5Jfgaq0WDa7gLoOY8Y8GYh7GvU4v/E6dJN1qfvEg0BPocO6ct+JEokM9K\nH5gOYy+1de3m4DP5kjMYnDy5eW4tzyQ0Cq+CB8FTsDxvXNfh0Jjur+eHcQBfz7V4r0BlvwnUJDN0\nxR6yRyVgEgl7RUDYn3ebS7Z0jtwFfBIKgXHJydSp5OlMZyowTdhsgeSJjZC0KuZJFNkR66Qjzl0H\n9xyN5/pXvkw4aBD4+trj6fanWpIMeHzzm9/cvwRm3y61YE+Yl8a/bs8u8ZeMfWGiSO+3A9lshQuJ\nscRHsithryUn9/TBfYkiebMX9EoRhl3mCyTeFWQko5JA4zS8P22JBx2RiJYwmsvumO+g0+b6Kkpi\nRxZslJd/knOHpNy9Qgm49F1Cw0bR0Zm4wV0Bnk74yw44ogMOcJc4SqTxJxrBAddhr+i3TypW0un2\njz0DHv+poBxOnoOPR/agMQ7XcGqPwRV99o9n+IUHklhrWp8PLmGDCz3HK3uab8A/RRjzzMdT47T2\n9H6z/YOf6bcxjev5fc9omvCaH32ea/hBTvij8EAXyJGdgkNf+yiCoANfKpDjqzXoHZ6im26Yk90C\n4wiP8HlV59YEf167X/nruT48iT/GaZ4135hafd3Ps2eT/z0zH/zgBKP7zvaKFxgKKv5S4rTJBDx7\nhB31ooZesfW9LAFXbGLfKA7Sb/CDmbz12aOKp4orZG8Mm6CwJAYlS3oBNjwUuegDH0Pf7T/X5Cy2\nVCg13xx74p3tt7v950DsWPGJNcLHPrAGfYIz26RIpHCpsEyP4As3BWhFDrFOvEB3vMPbruOt++j1\nPB64rjWne2PMb55re5ht9qf6isv2M775M3KFZTixEWChQ6zNprEZ8FYgZlfhC55mrMN68aT7njtn\nmzxbG1gTjuf62B74yiF8nacozlYZWxEV7v7zJkU7e5nc6JSCVDTiATkquPFDaFVcIsv4E07RED36\nGxPN3Xumj+1jM9iIfAzd5l/6CyCFTbizRYrt4gVnfoaegcM3wJ+foDeKruwUGPkNa2rxEZ72F/mg\ny5+ZoxO9eA423OggmfLHeGpf2Hdg0128sI/YTD6ajvri9LTtVbBmgyt4ipp+Y5be80t0w15CgzXw\nA0wFUn7YPhFH2mPoQhM52pMK6Iqu9oT9aQ0+Bn7GWgtM/DVeYZi+OvdRBzzsO0VXhUUvQMHAH7SA\nT/6KwfBJjnhoPU1fvJ00d51eOGu3jW/efc/wcdBp+HRPh8jNHvbiBK/Fwt/5znc+dbMV3PEbvRrc\nogsMh/nmeLFkj5Af/VCot4/sJ/6QXCYfwiE496XnOv7KgSsHrhz4KDnwsS+85nQyzOt9iR1nKREV\nQAisBZ7za1ZOvuSYs+BkOAsOWzFD4MeRChgUXiVBghnXHMhcN8cARgchw0XLAYHvOGprv4DK/NYJ\nxpxr3Z7P/tfhOnrgB09Bn2LVzeagBS/okdiQj+CWQxcMmRetrs2Nj5foMq7mesKo31l/uAkMBaE/\n/vGP98RM4KZvwoJ/NARnPq/ven4YB470N/6Slf0mQJPI+IpR8Js8GueefklOJRMCQMms5EmwL/Gg\na4JjMI1PB8BwuHcI4iXE5uunk+ZJHN1bR9D92c9+dv8igw1hP8LJuWvj79vM1TqDMeFIOvDDTy8I\n8N370uAb3/jGnvRI6i+1CffSuNf1Gfwdky/dS64UM9l9+iJZYmskhBLD+cXrOp9esN1gsfWSQ4ka\n3aGDdEBxRLGwwl+6hFfshoRKAkh3JA+e8yeSS/pDVhKN5plz2pJLCZxEGH6SWAUIBYbg5JvCeeoD\nfMHj73zJo/DqZZZ+CS1c0WMv8Ft0XKFTcdBhLX3w5HPMgbtDvznwt4Z5Ek37S4IEP/0OY+MfGu0b\nB5mA67lreMBHcQAvNXyznnGe6zd32n1reI6uDnPxwrNaPOreuefrswlnjl+v13k9N98ztOEFnpA/\nGYo1KqDjMZ54aSTx96UW3YzfbEovkfBQ84zO0Dm6hx/R0frWvkuD52zn5q3jzDk3NnhHc3p2dA6e\neemMfdDR82RvH9A7OsIuuzcXb+iR+GzyxnxHeLmm54oe4o8KQ/yI+I4Ntc/Jxl7RzKHz7YlzfIc/\nvMSW6TAdJy+4kXl4oI8eoEExyRld9N4eY2fsW7RocPYVmf+8SYxiDS39cG2swrAij/2v6MPP2UPW\n5csULPlFxSxnuslngQd/Db0189DrWXzU55hr1xcM8/VpwQPHNfupcPm3v/1tf3kKL0WWmy0WVOyC\nI36ABQa+oQEf2SO4moOHwbaOsfNeX23FZfZ7Ft7JNjjkxzYptnrZW3HPHDjY4/ineKpwzL8oqiso\nKXYrKpFHsbuvIsnRX1woKk6+w6n14+05vBsX3ubSUbmKryzZE2c6JN8xzks0Osdekz+b5AUB/Omd\ntcAFQ8GYbSInsTheG+fMbznoKbrMwS970dehaBMPKTDaB/HSWHsLT7wkVsS0x8hXo+N4iC/Fbr0I\nTBfa/xX0zKfzXmzgOZw8Qyt6+H85BZrc22N0iJ3wAgXuaJL/+c1VL2TIKJ6wu4rP7AJekCV/RD/F\nWeYYTw+saX2xgr8+sq4cEX3WocN48GT74IS+4xM/TyZafIKnoz795uvDB/euG2+c++QwdWIH8hL/\nBLd1raHRNXvB70/7T7H4JXL72te+th9kmYxaHiwtvPGWzNip9hb4Cq9f+tKX9gI4+a9wwIjWYOm7\ntg+fA8l0rnyVyeTGh399JJMjLK5yOuLKh9P3xhVesW0qHgM9g2oBrQCVYxAY9OZcAimQ4mAEPWAY\nJ+gSIEjeC7o4e8842RyR8a1LoR3gdJ04wTensfWvfTm65nveMddq/ut2hvdRg7tnnLQ/J5EASUg5\nYW/WBTiCMkGrwEgz3jw80fDhvi0Y67yJpwBMseP73//+npRJmgVpySoY0RCsCaO+6/nhHIjfIEze\nkrtEQkLgt6TsyZLZZGK8IFhCLagVyNvr5j7biq6Sa0mF4Ng+nvPSLzBcC6QVUCp4CZol+ALo1pU0\nSxYlxP2makE/ONada0x67sIhcx018ycMSYA9U6APLwnBV7/61T25kvhcasGeMC+Nf92exZ/JFzx3\nL2lWeFCA9MUrmbP3/sTPF6+SRHt+bZMn5G0eHjsktJIMPoXNcqzNfOuDXWINJ2P5Ddd0yWEsXSMn\nuson0VuJ8ZMtQVOAA4cvMW7S6Xo2cNEsKZIkOkpIrUMv6QeaJOPsq0RWciPRhIO1+LWSUgm5ZNU4\n64Nv36CFbTS3wiv/KUnqyI8aq2gFpqO9gxeKKZJi+9q1uXjmjMcSZAfaZkM7mjrmM9eexy9ndMED\nz8EyrxYfZ1/P5nmO63o+N7+10MB/OMiRbE+n0/4FFXuCdjTPnwjBdzwzF8/xE48dZIf39jt+kHH6\nAxfHOV5MHBu39nV/Vx7cZ3xr3gYb78i94gjdc5/u44Fn9oTiFn01Bl/syWebffdVmmQ+3oCpxRu4\n4Kuiqxcwvk6k+3gv/lAU8pWpfYPX4IDhHJz94sU/kyaw4UjX7BdnuGUrjDWm5jnY8EGLAoz59oqi\nmbmacQqkfAzbJUapWON5/OWXfCCgkM8f8HXBsIZ5fAPfqLBFN8GJx+EWTev9XMu1Fk3hMOe67jk6\nXdv/ild+D1LRRkHan5D7AtCf3bPJbAp4zbFfHeyGBt94t3ds/7R+5/AAoxY+3Ru7tvqMpRNsErvv\nd3YViBSNrS1fUKwTW6SveEw34Vrxku+w18E1VkFJUbIvHVc6wic63E+cwEbT7ItWuMpvyN3hC2H5\nS2vDV6G14qYXPGwRfoIJtn0k32GXHPYEPtAV88Q79Nle8zU1XTUXD8Dz0pBv/fT2l2O+FrV3wWV7\nvcwA00tivgkv4e45fuKJImZ5mfn2ER1GG5+FFjjrN1cB2J5X4NTw0xjrGa/4Sd9cW8cz+NrP7o0/\nbXb5Ziv6swfWh0v2lo32IQic8YVNoJ98tAI63UV3eOK3eENsqugLPlvFhrNL8BWfmlfhlQ2bMkVH\nuMK3hl73zg7NfWNmX3Me4wwXrXXw1r5F45/+9Ke9mM5nKVq/9dZbezEaPxqPtiPc6BV9Y3P956dy\nPg1vvvjFL+4fNNhPdGhtR/xZx1zvH5cDyfC+UNOD+867jn8YB+4qp6tcHsbfx5j1sS+8YkKK5pyR\nd02xnDlugRAHzXEy5Jyht9QlOTk/DlkAy+Ea720vh6tYI+HJYYPr0Fqna+ecxarc8MuRGadxZNqE\nt3ds/xjv0Dy3/rm190Ef8T/onTR3Defo1idwUXj1Y/mCOgEcPveWvcTDvGQaafru28LDvKP5njsk\nOH4fU4Lji4D55YXn5jomvHl9X7yu4+/OAbpvT0os/e/HfhPM3hHcCoZPWwBtT0veJJZPtoKHfnpn\n//sKSFJtL7s31z619yUO5KivBA9czxyeSRolHQLGdNk8b+j9+afkUXJjvGaOcVM/5vVdKE/fGmt+\nMMAWAAtcBcGSbvQoAAuAJTCSwcYHY57bC5fGzPGv23X8mXyJJrL0tYqE2Z/CKZra0/Y2WXnhk23F\nSwfZSpSd+QF2yFej9KYEzjNNwuqwNr7TG74GHDjop0Oa+/r1SR4VfCRhCpeSN/jQWTZI8ldSHG3B\nDJ7+GpwkdZJbe4QtlXjrk/RJ+isSwBGN6b8kSQGG3tpjdNw81/o8d8Yrcz3vmYIROvhTtrJCIb7k\nA401z/5h5/EpPisCS0gl1p5JeNFtrnX44X6CwXPNc36bbmtgO6Zc4IHPeGY9hUo0KRobq1/rvN/c\n8s/kd0PX+XhkXbyI5+R72myTQoLCBX7CSbGAnOgWuZEHeHgHBtuCv3hLPp6JX/CEbhqv6T/CrWf7\noBf/NG7Fu/7Grs/rv+u4Ob45E+a8bizeoR2tDnJ24AOeucYPNh1P6AA+0Qv2nL7bo8+2ohBdsAaY\nzq0HF2v4KwWFD38aS07koWjVn+TTOXqZTpkXDPh2ry/66remQ8uuhMM61hi6Dif6jG5NUcoetXf0\n8zEKr76UYyPwRAsnOm3fP91eWvt6jM2j6/aBrzAVmL0g9MKbj8RHMNqjE68J13W0XhpDF+0xONvD\ncEZTsPCRr1LQhptilnv4oAl98LQ/mtd68S5awcTfnu+LbP/M5/V1buwcU58x+runCwp1+GlvKqQp\nZOoTq3opxlZXhCQrBTfPs0Wu9aObTPkddPI75rPv6Yj1rT11hdzJxjHHTTzDV5+58hP8dfB79Nd8\n68Mbzn3hbA+RP1rZFHPZFV+P9rUs+ZjPbimoKtryA/p9uWqcOeDTSXGXor4/1adj5MiG440CbnvL\n/mSL6Qk7aaz5fYFrPf32O35m86xrr8eX5ITP6LePyQRcuk9+vsbMtuKz5jl+OOgcecDb+hXO2WY4\n+9iGrlZENYau2ktymIq06DFGbEm/8REsdPVih41SrLY37EfFaYVe+CTjI/281Dd14Dl1z3Wp68c4\n4y0c2nP2OPr8hJNYnEzwBU/YVTyNHuuHo2twuidbfCYj8RmdopP2idwQPHaqdZsHDpzczz791/Z4\nHJh6F9Sjvp45n5PHuf4593r9OBy4TUatcpVJnPjwz29E4RXbKJuDMjmm8jHSnAVnLBASEHDqHGDK\nZ4zEkCNQbBUkCOIF45yM+YIOgSzHz2noE3BOJwBejiJxeh4+4Rauxszn7nNaxgZPv2DMvGDp07oP\n9vPej+5f+OORpAhOGj5NXvn6osCDc5V4C1q8oZZACdjQhTfgHdF9HwrDY50zeeeZIEmC4zeGJAUC\nVHTUGt/9Obg9v54fjwMCbV+QeDvuCxR7U6B22ooaZOUQ9LmvcEXn7GlBna8sFGsFyGDZy4J1ATId\ns6fpHTshmCRr8vXM3nOwH3RS8wwMgbs39L70kNwoEvQ8vTX2vrrS3GDtQLd/ggMPgfzTLdmWHCoS\nWvtm+3rDVzWCYXau8c2f5/T50pg5/nW7Dv8jvPBH0iVx8nvA9OXJlgj5yh6PyArdYLD9kidJHluk\nIJgvkHTjrcICnyHRpDPsFv7mDyS65kgQ6Zf1wac/fAdbIqlUZJUAS/zc01XPggk+mJcanJMZP+TL\nEXrNZ0mI2VDJNH2QMLO39FQRkD0z3wHHaavpeC8Y7B1jJYbZcn3RZh79h69E2V7kWx1odmjWae+Y\n32Ev2WcONMDFXOuhTV9Jt+Td3tTIAL/w3zj71gGedTTX9rECSEUFZ7K1Ppy0zvvNwT9ogFctnrs/\nmmu8MWjAe7jijUIh+cYj+MGlZJxuWcdhvoPOmEdmioye4QedpqtoDYeJV7ge4di45jW2/u5vez7H\nNbc57l07d934zo3t3hnv6Bm+kW16hX8OfQoreOLsOX2hF/jIN4gh7FW6o03cwkc/P6Ho6is+vMV/\nMOxfPKY35ONM3zU4T7rSi9ZoTPfRuN7vwLZ/Jj7oQJMXMWilH/a09fUr1HhhBGd2A49q1mGv0K4Q\n8nTzB4pO9McLSF+QKYi4xjt71trhB044TphdHz3Tl67SQ7bv2VZQg7MYio3DV80+tH/5YC8/2SZr\n89c3mx2GFx1HN5sSXnPdtW+9D9dk0r5tjxiffrkG2xEc89uTfCpdEosqorGr9rHiI14qvCkWgo3n\nYgr5Ap7Tldain6ctFkGfIp25fDJ5ZoPDIXt1lKOwJdMfRGP8cdanAEkGdJg+m2PP4Cvbw2aSCb1g\nA+mWAq18p1yHXQEL7vSMj/RXIvYLvO0rdOINPyM3skY08jH8Dfj2Ed4pXno5TO4an+cFNfj4aDy9\nhxu9Rg/87Wt7kO5Yh27hEzniPZ3XZx30KWLCFe5eTKGJ32f30UTvrUvvwpN84FABFSx00VPxIrma\nD0eFQF+Mk6V58QN+YgR6oFgLZzTSE8VoMQLbEo/J08+F+OoeHvnWqYvJFr9u6zd2jjFHmzCe93zw\nr/GXnn8w8nl+6h7fNTqAZnKlP/YG/aDb5MjH3QU2OPaanwzzsgjf2SdfzvZbydkE606Y98Hf3Gu7\nPwfSqXjdfXKof0I+6mv8pXFH8+b4S9crXi87lq1I1+8C+y5jLuH0Kp6FE9iuj2TgWf2N796za3t1\nHHhjCq9YdE552kjOxnDaju4FCZI/ztEXKN7ACSwEMMYJYAQEijSCA8opKOCkOVnBgKbfYdM6W8sa\nHfugF+O6njhzwAJwjlqQoMFLImyNcNZvjea611rzqP/5iA941P1jnVsbPLgJLjhk9MBdICU5RoOx\ngi5f5DnjL977s2CO2LjZVnrms/teW9tRAzv4+gUO/hzsM5/5zB5oCwQKkpszzxPW7L9e348DUwbn\nZgqmBcL+B9V+ZuDJVkgTcPszNcEfedE98CRBBf/2tS9BBHf2ruDcfhYg29v6BPGSF3MqLsElO0HW\nrp3pLD23TxW1/GaoQyIP9qQnnTf+rq351juaBwdj0COpkSRIuuy5my2ZVVzED0HwR9Hg9qr3RjxC\nX/yY67pmw3215OsMSSD9UISQQOGPvc0+kbvkjv2RVNABh4IC3SBviaskjd6AQ850jXz5AfMll5J2\nMDTwJXUSWEkYXZGgKExUiDOGjK2Rfl3iHbqiU/IiMaTbEjuJEFyc0cSXsLOSfnqBZjpiveDsiG7/\ndJ+fSW/hkg4ao19zHd74MMftA16McT3pMU9DqwO8+vDA4Z5fznf0MsQ8ew5d9q1xYDg3x97lT8hB\nIuzMt5CJZzXjtYmb+/pdH/FJ/7nWeM+D60zG6HKuoa+jNTubUzGOviluoFOxBG10MjnMtYI94ax9\n3d/nHC0rXP3pQM/Q1LXn8F7nH60dHHxitxzkTF8l4PabvaTg4d5zeidG8rJDQcg+YAennFsLDuEB\nlpcfeAuG+AQc8qFXcKBzeE1vpo6CN+lb73um33ruO+tDp2Pue7aAbTltBR0+yXgFdjbF2F5UK7x6\nXnwInsZWVdis8IxXCjy+5kPrOV8w8QUrXMNb37xuTPpHJ+0xhRi2SPHLwUbav+jw1xh8N9skxlKU\nYofZpoor1r2thYdz1+HbGQzPyFNxji7gIV2yj4zroJtwtJ/4CniiA678hbliVDz89PaFogI4XtIR\n9tV/CuRnE/hffLAOPp82OVbgQ6PCHbnRu2wAHI13Jj96S950kV7SBwXp5kQvnDU0dI5eMRK6PUOv\ng65Yxzz0FOskM0VGLyXNgyNc+Sr4O8MDDvY1f8i38HO+dkUzXiho8i38GrtlP4LP9ypIGov34Clc\nKmI/2WI3sPlVPINfRfp8sbM9CJ5ndEUOhh5rN06fFxN0in7JmRSUyUeMpJEDGfrSXZxGP9tHYFvD\nHpL/wVks4Lmisi+VxQz2oX2lkZMxxnrxzdewG2gz1l5FH74q0D/dXojgM5h+VsNPFeBHukiGtWTb\nfed0wLnxjcU/B97oS7d6Hgznxs2+c9et2XN6YF+xi2ijG/SVbKzVep2bt57JCD/+8pe/7D+NQs72\n2s0Wp3z+85/f+Qc2ns624jOfXa8flwPpGVlOfXNPh5LxfA6D9T6s1v557/oubZW/e7ikJ+F5G6yj\ntYNl72jBMvYIP88dR8/Mrz84+mbrub45ZvbP8V3Psfrm+PlMf3KqP9r472yFZ46etc71/Go48MYU\nXinN3HxH7DJG4MFpeLMrAOFEnAWMAlbJK+frXuNMBAYCY9feFoPBUQsiBSJgCd60FDllL2C3di3l\n1le/PgGDpFzwYy24CVoVgeEcrNZxtrEcE9a8Dp82oDnzufuXbWBr0cIA4pNAS5CJN/iFb9HgORoF\nbejEQ0WEYEycjvrm8/tcx6/mTF7glQDyW9/61v+KaAV5xkVnc52P+ubz6/XdOJCML/HTnvT1ot/r\nlCBJSnwxINAlN0kGHbInBdH2DL1zL/C3z61D7+y1AmjjJF0Sd4G0Ofbv3KeoSAd6OVIid9qSLImk\nLxgE93Rmjqfz6Are/vCWf6zlaA58ZgNPn6TCz3NIcCQhaPNTA76+LUGc896ka/yppTcr3yq8+s1D\n9p09whfJFLmxP/TCODpCxySvbFU2jJ4ZKyGVSJGveeycxEMCLhmlPxJSCbukUEGH76CfkjC6Sk8l\nXuEb/s4r7tHnnB4YR+49I3P+gd+i53ACG04SQboNdzohMZVMS3Jby/iuwV7xcp/uuW4sfLo/mqdP\nC88V7vOn5/81rzmtabS++sNr7bffyKHfKcQfcl1f6DUv3obrXK8x1pz93Xs+G1hzXM9m/zkajA2u\nc35U7KH4qNFNvpJ+Wse4o3aEQ2M9u60Z64jH69x4BkfJMRz12UtwZIfPzb20duumx87srb1o37Bv\nDmvSY/3kTc/J2B7Gn9Ze1wpvZ7YA/PjBntufkn/XCiv2tKPYZOV5fLFOcOaYro3rOv8hPrIOOtB0\n2vapQowzmtgrfk5Rju3xH/nwM+wRulsTbDSzBQ78Z5/YOfPARue5Ft6eRw/+6Y9f7j1zHx3Gs3++\n9lN4UlxCGxuJBjh6mWkvooPOsoHoUJiCn/Hgti6Ys624HflSY+AHt+BYSyHH2viBB0+2Qp8Db9IP\nNoHewF3BTXHMSxpNHE4eimS+wnPN9ltDzMrm+08bFV7NF+fap2hTqFNgxAty5gvoLznAMz5aBy5k\n7Sdt5B4KUgrX/mTfub0V360fX6IXHE1/z573PO/DN3sTTxREFZatFX/giDfkk29Ev4IafuEhn0IX\n6ZoYCb3R4oy2+MIHWgePrA02evhCOY49hi76bx+aTxbg47+iqZcoYNBpa6IrHL18sec95/usrVhH\ntxSA8cW+JRv6aS0xkZ9gQqPx6QDY9NOXl75wJgv7XXzIb4LrxaUvuclRYxvM8aUmvcFHNknh10cb\nCvRsiT2gQNlv28JJwVfxV+EVL9LdKbdVrlOWXacH0YEfrulZutbYFbb7c2s0x9m48HM/18yf4gn5\n1e4C11j4ilH++Mc/7r+hKyWAcnwAAEAASURBVJ+m72ToL7Z8ULHSYV603HUdc67tfhw4x+PZ79pB\n9l1bZeqCvV9fepTczs3ZJ9zyj7lasOZwz9oTPZ84Gdt858Z09tz8ns25zTNmjr80J1jGrA0MxwpX\nX/xa57ifMMMjPHumv77gNzYY7mff0VrXvsfnwMe+8ErJtBQsFlE0R0rlLKARCEqyHRJVAZrgUaIs\nKBEocP4cM6NfkJ8DEGxwupyGw1hBif7Wsxa8MjpwSvE765u4CW4E1ZxNBRNwBR8KKxKKHJ15zYWn\na3CtFz/A1xo719W/3ut7aMN78BzWgxNnXOEVjwV9zvHEHAGXBufwPsLrqO+huMa3zuHc+ckWIL77\n7rv7F4OC5vnG9QiP4DwUn+u85xyIt5f4ac/6U8p//OMfezDuqwWBvGBNgUvQb58I3CUJ9rt9aX/T\nOwmuAFzg65Ak0UvBsH0m4LafwUkfsyvu4SaQloz0tQQdZiME85It+EgKzDOns7mXaFv1YOWHe0cw\nXIMNZ/bBfwDybPtiBk1+N7nCK7vVnHWNj8v9pHvF2TMtGt3Hd31eXCnWK7xKjiRU5MPGKmBI/CRe\n7D97Tl/MI2c65QsexQvjFesl3vQI761ljsSK3yALCadEnr5ZxxrsOh11zSaaW1vx1x8Nro2Fjz5H\ndKKRXkuefW1lfWMlh2hCt2K8FwkSSIUDv5vmy63bCjHWfdUteloHXdFW323n5GycazDxwLWEzp+Z\n+t/IFRnwKv5Nfhqv+ONMZva+cZpx+h3akV3YH7z4J/jN79naH63w1MA3Zp3HtsCNLxUfaGwaHQ7P\ndY4xwXddO4Lfs9vOE144N4eOn7YiG3to7/TyAp742dxz63t+RAP4nnVODnjCplWwjC9iI8Ug9ht/\nwrN51tDXWuEVfDELWp5s/l/ByRr2NptqD0WP8cFwrYXn2t8zz8OHXeGDennDlqCFrVGE8WJEUYq+\nKhj5GlHMygZ5sWf/hl80wR3tChdsGV7An59CEx7AwfkuLVzn+GibtLrGG0Wlp1vBkh2EGzuJHjzj\nWxWonBUu0aDoxE9WxDyHU2t6Pq+t69DXEY3G0juyU7zz0oWPZ8etCQc81+gJW61wp3AstmDDwcJv\nhVOHmNyXjnhpP2rWIB+xiMKbeWTrxav/pKnCsvjR/oUnOTkm7u7J2l/kwAG++G9d8QR41jXutmYN\nsNcGfvkNH6hI7BAnecYn+YsMdOIPGerDJ7izNV5kk6+cBH70C05o9pysPeurUfLOD/JJCpL91AL9\nKK6Gb3YCXHjSKbzFEzIUy7EtcMEPvKHb8jDPfaEMhmKdv/QRF7ITfKC/jOIL7CmFTvqHPrzS4Ez+\n/iLGT1iRo/1jTyoUB1MuYH2N3sgV6YvCuz2KB3hHtxVqXYvF0KRwzBeJQfAQLvAUo50229k+C6d9\nke2fI1n2LJ6Zaw04sb1gkB0bQzZaehH8S3CDf+4MRocx4X5XmOFiLt6LX95///298EoX/eUavihe\n23N4PmF3PeGAdW2PywH8rblOzrM/WRhXf332Q7YuOHNc18Y3Z46777X17QMtmBPufZ5na1eawql+\n5/jSs3luzcaH1xzjen0e3uiZ8Oc48zyfY13P8cacayvsc+Ou/a+GAx/7wutkS4pIATkmzohxF4wK\nXgUFz7ZAWlDAGQpUbbIZHJnHaQsOOC8OWOPkBQAcJ3juFRIZGEGBQM965tsgHeEHJ8fsdy+AEewL\nJrwl9baW4yyJ6c9YJNaz8ApOMNtswXauGaPhzatq1m9t67nHQ4Eb/sLbgSb80cLddXPrd65NWup7\n2fNce/IFzgpoP/vZz/YAivz7IuMcHvH3ZXH6pM+Pv5f4ae/60zG/72pfk5XDlwVkZ38K5CQvXqrY\nuwJm+0siJeAWsOu3bxVyJSACdwlJRdf0MT1xb58Kpu3RgnB2gE0RMOq7ubnZA0eFLnqfbpkPVvv0\nSNaN8cy1Zk7XbItDIAqXYAm2FRYVXyVSgn14SDAUC419nVr0RN9dcLttjueNyRbhPflI+iXGigOK\nouw2XWHz2VlJLT4r4Njv7D5ZOugVfcFTSQzel3grdIBP5ySYfEnFW7goKphP70o0wYBfeoX28J6y\nntfxR59Gb61N79AjqbS+54pfirvw9CXQ060YIjFlh/2HFV/72tf25Nc4+hnfzA3+UV84dA7n7p2b\n77rns2/2u+7ZbWPnOGPdz75gBcc9HkncJbuSYwm8PYpm+4Fs2IBeqtIFcqUz9EMRgW9vvdYgO/PN\ndbjn18xhj8QA5jn0wwNMfq9YwX00uA62czR47hr8nndtjmfh1px94AJj7QvWOqdx6xke1g3P5uOj\nYoov4xQL7Rv0KkbQR3Z6FipXebXO2t+95+Goz3rR39zOsx+e4ovwjUfBdT/hBsNzcOwLBbqKlfaz\n4o3YkSznXOPpjLP51sUDa+trLddsC1uc7/GMPhhrrvUUGbygUViil+wKm05/4YDPvtYzZn55B1br\nF1/pCz+2rmbcfRo44TjnutYvJvXFH9tK9xW8xK94YT8ooPlTYvaJDfTFvZeCxtEZco1fE/7EEQ61\naHXu2jzX6NX4SPLiz/tdUWspWPPd1mYfxf/GKLqxFc5iezqg+G2sv1JQkCQf+x2+1kOfWIFsFOzQ\nScb2AztbYZCtMEcjG3PJA67BURS2Z/CQH+fP+R4FPIVX/oP/iT6wVvrro3/0ij0iD/7JuaIo+sgM\n7frhR5esQb+c9eEhGGwmvXdvPJmiA60K6/yZe+vAW/zB71jHHDijRUFXIbpiu32Dh3A131h6gBf8\nmuInnngZjs/oAqsCruIcmXpGdl4w4gn/pugt3oM73fMVsVhQny+X4UKWYJK/PcZPFjPiJfndbDGU\nl5XiS/KHszlog5uXneRlDTKFE932haw4sdwHbf4qyde0Cut8N14rApOvmJQuONAwm761GTPH4iFb\nge/4YV1ydLieerPCus9965oTnkf43QZzzqVP4m+FV/uILthzeEOO9tO0X2C35sTntjWvzx/OAXx2\nrHpUv7O9az+71pzd2zMONlBfsjvCxnhrXBrTvHVssFt/wuhZeAVjjtGHhuZns93P+cY1bz6bfcbc\n1hpvXGs2p2frunNcY5oTnPpX3JqbnPDPtb01/dGEd71+tRx4YwqvU9koVsEAp+cQvEqOOWEBNScq\ncFAk4dAFu4xEysvZCngEaRyCeRIKB0cnmNHMYTAEDZyqsZRaXwpvXHCdzRE4CPIE5IJuTkaQYiNw\n1tZTIFYUEjzAHV1rAy/YPZu8mH1dP/a59a0bPs5t6ja88+QJPOb9hPPYOE544agPTjVy8ZtoP//5\nz/cASuByG049D8b1/DAOpAeX+Ckg96djCq/2m2DXf3ggOZIwCDwFxb5AcC3Zk3CRqUDUHpc0CFbB\nEnBLeMwpqQgPVLSHwRaACwYlRPat/S/oVuhlW6wl6RI4ui7YAM+Rzh3RN9f0vHvXEh+2QGIoKWE3\nBPbsBvzYuV7OSCToLDz8uZYx6H2dWrTB6YgX53Bt3tEcz/CJTSdbSRcbL8mkC5IrBVj2mQ0Fg+33\n5YkkyFkCxP46XEss6Qv7nyzBJgtJZi/u9IGH72A6Z9vpCT+in6zOtWhCh8P97DMP3pJfLwvQpejK\nP0iQrWktfozP4j/oRF9B0wEJ4TvvvLMnk/ADv7XAX9erz5haY9yv/e6z79OmNm72mY8evtJBdskF\nnyavrOnQRw4O93M9z8gpfwOWvSkhJ38FAXwyV9HV/uT38Qwv8Izth4d9zbY4ky2dwk9rKNCmJ5J3\neFjLc/Cdo8m85tJFRUnyYivYJs+M1dASn9xbC7/A1zyL5r1j+6dn55437mXO1pjr0qO+jKsoRffY\nIEUSsYoit/gILydN4TnxiYY5rvWSKfm0F5MRXrPXDrLCSy14XbdvwW+N9LCx9VuPnbcW2Wp0gOys\nlzzMo2fGOextcsQDdNMBYxz2vkIq38FmgwtnekAnxXTms0Fsdi/10Elf/vOf/+wvGhX2FAO//vWv\n74VXeguHGhomPet9+DT+0nnONW7S7d5zNKKh31pHPx+LBraUbeSvxN103b7xnO/05b89iN/BC3f3\n83ofMP6x9rkGB/y3Jlvv4Net1deWZGCvG8fvsw1wpatkQ14Kx2SmQOvFmfGT1/BD/7MtD/C1o9jc\n2sYr1PlKknyyU9GTfXPvoLPwgCM591NB5t5sRT9FOXuMnaIPGvon39x32AdwQj/dEivQW+OLe+CU\n/tM7sLOF6A8nPkbxGp1oJz98ZGPRgV5js2uKkfQ122acfUsXnmwFT7yR33jxEF/QE2/gxDeTBbn1\n+7r5a3bHHrEHxHzgsM38oPF8oReO3/zmN3fewZWPVkzFX/DJVeHXixVz8YgO8JOKlmiyRnqs+Ho6\nnfaXs3hsr+IteZOVgi/60SjGpPteioi58DLa+Gw4/Pvf/97jEOugw/8HQM5kkE5YZ23BqR8tZGos\n+bANisAKmOwXOuGD5/DA78do1pu4uA/fdPIu60w4bGGFV18D0yk8FGc70BD+rTVxuMt61zEP40B2\nIl3D92ROTvYm/Wff19iHjhtPt9lQNoYdJcvkOLEKtr7b5BsO6Vzw5jx9wex6PrdO85y7NqajPmPX\nFqzmhss6bt5fgte44HZ/dA6Oc7g2LnwmHH3Jq/oXX8GnsKNk4wOUfNycG9zr+fE58MYUXrEmZRQw\nCwI4ZY6ScReIeC4o4Jg5akZBol0AzSELOCTXwbKpKK7AWmDA0XmDz9hoFNZhLoPjMHduRs85Res6\nGCQOW6IskRMMSGDAEIzBXeBgLQGC9QSHtTacs7U6um+cc3Q4v6rWus6zuceH8HN2rz/D3tm8OXbC\neexr6zvCK/iMkeTnl7/85f6Gnsw0Y7UjHvZsH3D958EciLeX+KmYIoCV8NiPfZkgGLeX7D37XFKo\n+Cb4VyhQdHUNtkBYAP10K7r6WodtsJet73kHvQwnzkkhU2AvwJa0CDgE34p64Bkj8RI42tszyJiw\njxjUOp5N+iU5nCQ7ptissMpuwUXgjiY2Q6LiawoBPh2WaEpyT1vi8KYVXlce4Z1DEkIn2G8HGyqh\nwhsyFuSTKf6ywZJw+uNgf8kPPwUhFeLApVNg0xswfUEKrmtN8CLZkiTQQTDAB4OeHCUO4ZyugaPP\nfTjq0+gA/bQe/SdjesAXwYv/sL6zwgEYkmD67aUA/ZE40823335711/+Lv9kXWu6n7ZZH5+TT8uv\nheeKu/Fwdbg2Tgu+ftfdg22PooEO87Ge4VeHNTRnPhQ/+e/8ROsZ4xldZ7M9F2Q+2woRkvP8Nfjk\nglfkzQ8rSvC95qARHvDCN8kFuUswNLJWQPCitDlojfZ5HW5oA4c/V5ykO3Di58GFp3hl+vfo2xcd\n/8C/Fm/qc991Y5wbN/uOxs3nXTfXmU4rIPpyTRFf8UCffcU+SZwddDRdaX7rdV7hu++ZOa7Jm3ye\nbIWb02bH8J5swa7IWcGHLcY/8xxgOOhR8PQnH+vVP6/x3brpmrNxZOhIRnQNXuw8nfOMzVGwgls6\nhl8KcQohdI6cvfBTnFaYNIe9wMu+rrM36aC4z89k4CldAcMXfc7mwA1NNXhqaNSPFq0xnjdmf3Dm\nH+Mb1zWY+pzRx9/BjS+m5zdbAYk/4oftC8/RKH6Fp2KQIiKe4U24gWmNiSO0Wn9FsXGNgQ99oIP2\nOjsv3qeP9hVe8oN4a8+mr8Z5gcuW0imFVrjLBfgCusYPzPgvXsCNHO3jv/3tb3txj00iZzwgH/dr\nozsd5Eum8PCn8GIIcUsxhKITfvEndC1+oDd/Aj6c9NE/9kUBzl93KDjaE3TztO0d/I8uPiI/hx+K\ncxoe2rv0k6/hc8hSjqQgycewlewiXtNfB18Ed/1wMcaaxpfjKCZbC+7G0Anr0gVraPYyX60YqrDJ\nBqOdDSAffpqPBQf/2VBrwwUf8MsX4cbiBx3oi2fyoHtosR7eK7o76Al526vsmsIrevOR1jKGrvSf\nmNqbdNhadEvOwC+Qn7Xg47m9IZc0V3HdevrEHv6c3lzy0NoLrs3X9CX7vWP7xzN9dMj+ojviWPzD\nI7EfHRTzkv+cP+EG7yHn4HQ+wjO4c0x9nemcGOV3v/vdvg/EAnD3xaufGvCSZtX3SU9wrufH54B9\nquG3a7ZLLFSMzdexOWIrffZrcRM52rtsgH3lKAeb9izdyB90f07G87lrx6Wxnttv7E1rxKlgBSda\nO6+wrdOcxjjPPvfaEU5H456P/uDf1jya/8Go52sejdXXQV5sF9mwQVNe7CP7xn7xi3LK6evmWtfr\nV8OBN6rwGosYdMUXwZ+vMCTLjIFginNkBDhKDpbSCQAorECYw5YguTYnRRaI6JPUMjaMjE2ttVEa\n69xG54gFOoKQ0xaQcP7WpPgSYoUShk0SJpgo+OFUJWw2kBZMjoghcWgFc+ECFnxWnPbB2z+zv77H\nOgcbPPhq9bl3De/64Ky/scbPa/evolnf0dpdk4XA65db4dWfJU0n0ZgVH/3X9vIcSO6X+Glv+B0u\nv6tmLwq2BbBkxcnbaxIxexOc9omz/cjh2NsCVUmjwqnxxtpX5gvM3QsyPNOebEG7YFDiq7BqLBsg\ncfLnZr64YFcE7r7ArfBq7kqX+5XGqYfzmfUlNYqqv/3tb3d7xpZ87nOf23+HWMKulWQI8DXBqz97\nO232RvD9OrX4AadJ6204znlzrn42T+JHJuymxJH9l0SSt0SJLdfscX9u6IuiT2//w7HAg18ge3JN\nFsYWbIILliRB8sQHeCaZFVSCRxfpAF8SHDCiEY7z3jqeOVqz+8Y68wH0S0JK1/gyQRTdoAu+4pGg\nwEXSKyEzPr10r19CJjH1O3v8D9sGvucFp/EAbfiFp/yeveDa/jEWffjogLM+cOAUXTux2z/uPQMz\ne29d9+B1mNtzc9uz5tu71hIcOloXHHiaCyc0ldDDyzOxAN+Kj9YyVzLvkPSSl7W0cIAbehUv2BmJ\nOjwUzxRoJLgKAGDBwWE9DR4anOsz1/p0k2wqbtArRSp9bFbNXHPmfM/0afW7Xvu6b9wc2/g5Rt+l\nZj6eo1sRy76h73QK3faa5N+f0iouCPbBR4Pm+tx6Ezdj3DvApYtsuiJFcRpblkzJpJfT+Gpd81or\nOKsceg631nM955IhP6BgJEYDQ/FFAkNH4AYnhTo40W8JDl0jR/ElHRFLONub8UrBjp0W66FF0Udh\njC03j/7SPb7Fnhe/0ls23f4lB3qbnkXHpKs+Z61n6L1rM8eBdvvSXHZAsU3R8q9//etON7+YXbGn\n0EkefLV9x0aJtfEKLEf4hEv34de5584Tn67JoqIY3Xu6vWzCX/iSj9hAMVSCSZb2NdvJNvpPlOxt\nOqZomv3Gf7xNHyafw4euKfr94Q9/2Itx9sfNVnz2e6Digwpe4QkfMsWPkmHzFdX9ibU+eqAQ5+cY\n+CU2Gh/iTTyIf/EIbDaaTfHTB2CSkX5xiP1Dr/gmNstBTvhBx8EnVz6NXvKV+MImPtniHjpM5+Cn\nD/8URuFt39uD2V+2VHHUmtaW4+izX8yFk/XYaT7Xc/jQb36a/Og8e2gMvMkFT8ElG/sejnA1ztzT\nFueIvfAPPDj6klVRm79kp8OHDihSWs+1vSlWUuzmG/ElHpMZ+2YtRVcw0Ysm+9ULcHPhiZc1sqE/\ncBO/WUtRXLzJVvDX5nqJb3/gyZR1MteXnIPdmW+iwz5CIA8yVaz0Ygyv8BbdWvA6o+8+LfwmrPDy\nbD4/B7fx8zm9wxP7iN7aB+ylPet3ctnFuf/C/wjWhHu9fnkO4DUdtmfpMX0TU7PrDi/+2V4yY3/Y\ngGwbHbd/2TC2gO9iR+h9sWcytE77bWLd8/qSffdw08w1tvuu4cC/6meP7QW6lO7rN7Z1wO+YfY0z\nr7nh0ri5Npz0G9NzfVrwm9+9+Y7msJVwNf8crOcQ//+/5oMjBuFr2HQ2ktzYLfELnohpfJDEtspf\n2EA8urYPjwNvROE1BcY2m0OS82x7E8rpCkIEuRSYMxIA9hWcIqgEgpIzMJyk5Npbc3MYFP1g2sgc\nsWSJ46bcBRLWnZvMtWDDwdCctsBAgMf5C2CsaXNpjBWjZu0Mm7P+NmKwwbNpHOaHE7xcZwDAbc56\n7X7yy/1jtbmmNTR98xovc6bhkdFp3GPhcwlOuM418VcQ/otf/GIPwhijnk86JtzgzL7r9f05MPl8\nbrbkQuH173//++5IFFwlKgJuezlZ0KfkFVyBgYBccvKvf/1rD1rtYePIXTKrsCIQNlZwwVFp9u/N\ni8RKYdXe48h6scMe2OeCfwUu+5yeh084hFP9YPfMWf98JjFgFySVv/nNb3ZbZu+g97333tuDdzAE\n9oJv9s4czlSBhM35qBxqdMFPm3Q977n/vxNm8LIdgni2WbBBzuy/Q2GLLAWJmoQPbyTJ+EhWeDph\ng8messvkLNGrQOZeICrR6ksuhShBJbucbbNWOLoO/tpX/xxDhnQQTfyQQkEJtYDKc/olAVTUUFig\n/5JO8xQ+fPVEH/gROkAnJHuCLXouMDaW74CDMWiCP9oVkfAMDtbsqwZzzJUEm2Mv8IP2kqAOffaT\nYoRnYPcMXPfGxAdzwexAW2PQ6ADHYV0H+CWVYKMx/wd/ckCLOdEoJgg/z/GKH45meAQDDvhi/9OB\ndMcXaBJuXzjhIf7TFfpgvrXxBe1wdB+dxoBHR+knPZK8iE/6Qm3SnV7Ti9mCp8/4Gj4dtXht7DmY\nR/P0mYvPijaSJ/aNzaVv+sVHihJeDLFR6MDv6Ji4Wntt8/mkxTj8O212VxHhyVYAEjfRN3ykm3jJ\n7iqM4CU9JQMtmq3pesJuTbKxBn1K9ukn2vgDCYkzfbAeuVnHHDEknPAdTsbQN/L3MkexCJ/4BfoA\nZ0kQWwIO/bI+nTKmIhW8rMGme8njrOE/m6UIxkcZp0UPGqK7Ps/jgb4jPhiztjnOMzDsHbj7otJf\nX5A7W+IloEIhW0g+5tovbJC9iS62yT4LRzwzDlx0hGN4TPzr62xe8mKT2HYFNnEB/npGbmy7orCE\nH3/JDA32H78Nf3KjY3jKjrILK5+st+4t9kaBt/8UiHzxgHwU0+hANKDNeDpK7sX6Cq8Kl2w0vsHT\n77LzTWxMvLT+hJXc60cvPj/bfJ28RYGPz6BbfJuDrYMjOObzgfSO/dJnH5d/wBM8c+w9eucMH3Tw\ng0+3AimeWy//Ab7cyliFSHLPvtpP8IkO93hkDXqhmKqoqbipEIcmBRtyoWNgwpm8yQ7PxIL0TL+X\nj+wSH4zf6BcPwZFOaGSLXrI0Biz7SLGVnrBt7By+ek5XxBJegIBFX/AI/8RV9jdZwQ0dUy7Nxxv6\nBgcvx8EA1xy+2NrwR+/UMTjU8Cy+6Qs/eu+nPrwEYVvwqS+lK6Q0z5wJc67VOufOrYe+CScYaA12\nfUewJi5d88n48vvf/36XFd4ovJKHIjIbG1+Daa3m13c9Pz4H6CR/SLfoMHtFf+kdn0t29rR9z+dn\nh+g8u0pGnvGRfIM9mi3xkoA9SaeSZ/rVfef0C5WNce15R3pR7FbMChf7nh9nj6xLT4Pj+mgdusgO\noou9Qgt6m9v6zsZo6X+ww80eccANT52Ld9271mc8/LJV1gVzwrWOcdYAswYHMMQOXpyx43wCWyhO\nIkfPwWT7vZhkX9ki9+i7tg+PA29M4bXNg3U2DMfKMduAjASFs/kcnB3HL1Buc1B+gZFg15tEAQYY\n+htDucGk2DZ0G6zN6N7mlJRRaIZGMNKXUDaKDVDSwJE7BB4CMgbOhrcOWDXrgwEWo8WQ2ERoM9e8\nNpY5Ey8BpwDDZjZHkGUsHj1Wg1/4uta6X9eIl7N/jp3Xc8xjXx/hSXYKa37jVQG2wNTak8aJS3Bm\n3/X6/hxI7pf4yfn7UlXh1B6UXPmqhawEm1qBWs6wpEeSINFxSArtBY3DAUfi82RL8M1nB4wTcAsk\nBA8CB8UrQYQ9xcFxbF6S2E/2u68fFF7tf3RESw6y+87WR3e0u8+WGGMeGyTZ/dWvfvW/LyYkU74I\n+MpXvrI7agmCpNjZHAm/RAJP0DfXs8aH0SZN1nsMHCbM4KFXP7tJDuwze8/G0hHyEdxL1siSnAT2\n9IZM0xc40hlwmmcuvgpc2E3+gi1lixUT6IskTOBCJ44CJHDDG86uHetYdIQ3OQpwvQT055f0nr1O\nZ8GEt4RPsimIohP0lJ1HJ3rNVSBAE58nmT1thQZJMVyMo1+u2TqHhlb8c+CpcQ5wNLB8GWR9fhVe\n9hm6JNIC3Hys8eaizXxjBJfWgiu+aQJQz/lV8PBnHtYxlj4757vJjB8kI8EmXxgefDw+GQM+2BpY\nbH1wrLf6Q7jY4+aIAcgHPPzDx4rXnhsLV/wgBzGGa/SFL5zg0Rk/4Pz0xVdedM06ntfSkfTGuT7j\n4KTFJzxBG/52mAM/65FlPGiNc2fzwEKHPYNmdoX9E4PgF34rTIiZFJDpkjZpOAdfvzVqzakPLdbB\nZ2e8hA9a6BPZRJN19ZNjcIIL3uyLLsUhBS57mVyyoWjSyNH+pud4xiZIYjwHjx2g6/SqvYg3ivL4\n1YsYe4k/qUBsLfSwG9a2V8AgfwUa+oseh7XQyL7wK4p7ZEC/8EeLPjjFO9fpCR3R37h90ot5XZ87\nmws3OImJ/byAL3DB+j/27m03k6Na4Hge5fM78AAWN9xyFGdCCAQiEAgJ7hCCK4RAnBJIEJBMDhzE\nFRc8wDyKH2X3r8b/zdq9P3s89mSGmXwltbu7umrVOq9Vq9u2AmMvGuWl9FzDC3JAt/nsDJ/Mmbi0\nZrLx/LrWOHK+2OJueufMT9JHeMi5ycCBV/hLb8DHe3jJmfkMffS7IiHcNXhqeBhfJ+5kYt3f/va3\n60UuuHghHiu+8n1gm2ssvTGejfDlXrjAwTx6dr691PWlohd4aMCzcFmIXP4ALz6A3xr8Bpuwh+Cz\n2QYZgINeeww5j8Nz/JAbKEjTb77YemDDia15ZoyYAg7+9ps1CqRii1ibj0AHnYZ/tsFfkr3DNR2J\nNmuVQ3mxqPCKJ+xdDq6oSefpvsY+jZP74SW64NeX5WQNNvoUZRVo6aw1kiebYTviZS/QFB/E8ulf\n6Je4Sa/EUbavsVcFenLqSzEwk4V14MWv4zmeiYvkQuZyCfrLryRzvEq31iLbj2TsPtg9M5YO+eLY\nyy48qwjcSwZ8Nk8DKz0JRveNqf+mZzDDMT+zn9vz+vdreS4e4bE/NSDH1YcW+ZmvXg9brAV/PzeY\np/MHxwF+SzzyIsdX6OydzxQL2RmbkRP0Uovs+CHxgo7SfXGDfurjY9ko2/GSQFGdn9TI12FerT73\n6VLn/HJjndMR9s/fsls1HLbH94jN1heX+ZTiJ5jmBhssNir/ZrP8qPHwZav8Xa01+cyr9BQf8IBP\nCSbezhwGf+RrfCee8jGHTff5Qv0TdniWd7IhNPI51nDIG8iKPOS4YIhzYiE5gMtXy4HkIp7n/6Mp\nGk/nD4YDz03hlUJSUI0hMJjOrikUh8FwKFmJjXkMXoDmaCQA/imJLw0YMQX33FzGCpY+Sh18sDyT\nxDBsG3pnxl4SBr4EXPBlgJwDx8RAGF6w4BMtYDIWhsLwnSUInpsHngMcSRA46IQvOhkyZ8NJujfH\nuhITzsA4sLQMbt53vQY85h/79a4Db+wel+Y3b/+8/qvOc35zydib8x//+MerEMch1RpvrMN9fY05\nnW/HgXhq9lV8ZR/euPqyxX8rF9AkmjYsvjASQAQZPkCyS78l64JvCbQ+NmANtiQJAEMicNgCHVtj\np5J2v8J1fyuKGE8v2LZNiOBrHfgIehJtgZ3NSxht+ATqfFG6FW3HODTHzHH6JQHsVeHVxreNE99i\nc2IzwCcJ5OwfLjYVNi0lRWCChe65Vvrbs2O4HesLxk3nG98azck/u+c/Z3LRmvt16p/nYJMHn5xf\nxjcJjuTJhtFmjZ8kZwUMeiP5qNEnyQv/eLElLzapZE+X4CdhMRff8VUig9d8RMlYtIE5cY/2cOV3\n4SuOgG8dGzW4ikE2VuKEBEoBBq/y6eIJmaeL8KJvfL2NqHuwwelXal1r8LXxFEPEFvpiffjrq/BK\nl8QTZ41swhcu4FgHLmxBH1j4BA5b8dyGW7MGO8FjdOjHP7hYE/xwwRPwNP0OcNlgegJf69pgooPN\n8g1iN3u3hrHkkUzifXDXAtsPzz0zp7Ge6UNz1+7hAo+KCcYbYy48+Aaxln6gjT8xFp70xLU+/DOX\nfipa+gqfz8Gn1rNWzdhoTt/0wckZL8AsuXZtnGdg0q2LTaf5Q3w272HN+uCSY7pF58gLvSX76Sm5\nxa+Hwb7Jc/KLLrTgL7ytg4b0RJ91k0OwJ3/0RTO62I8vqviBs60IApZCiw2ml21sTjzxjEzBVnzh\nE/gI64PjANda5C0O+ZLNxsk9+1FQpZPmsg35mMISH00fyJXdi2n+BI6x9B+9mjE2SBVe+R+wzdOs\nraW/0R1e6+H2o3GN7Xk06DcmOHAgYxtY+qnYhna+Bv7+7ITik3s2Ac5s4NQ8a/3W7dlVZ/ODif94\niYe+qlb85dPpNP0mIxtWcVzhxjUZswOt9a0NLvmhD074jJf0TTOm1nW463fNX3sx+7Of/WzFFf2+\nXvSniBSMrG0dPlSuz8a9+GXj4re1jVEk9tLXXIVL/pSvqLXuxKNrZ88d1nKA6xADnfnbCpD4xlbz\n6dbvZTJ+iR34mK9ic67xpZxIIVNM6SWLZ3y9ufyeM7j0nO1mv+jKN8ET/+CCL/ZaruVSdF1B/9Of\n/vTSL74HDHHw/paL/fOf/1zFVDJHtzXlW2TORsixmO/LWbjyefEMfexIcRzv4Qsv+ksnvByhV4pM\n9J6+o1GuCL4iLfvlD4t9ZEU/4W++/ME8vIc7HoIt90CnfnkHudtr4J+WPPHHdbrvWTJGt/2ePJD+\n8VN8DVvEA7CsaW40m/tBtIfB73n4h4P+cKIHbPn3v//9kiud8xGF32LzYrw8uvFzbvBO59tz4Dp+\nkg3f4YtqX1bLIfgUc+h/fktdIv+fD80e2BAbBIcPMc/HKfM3r8xJvnR/tvS459au1dd9Z7ZnXTac\nHfN5/BL75V/428OWy1t78sA1HMRguYCcAG1e7vAb7La4m30ewymY4lW+X37Kj/ET+efikPHiED8s\ntlqLb+bfyo+jF37mgcXXOPgEsZqM8NneB578Z7ko+vkHh9xGDsFPJ7vgx8fT+YPlwHNTeMWmlGca\nw2TffJ4CU1TGIEBLkiQVgq/NKufDSDSGRpkZgoROkiBQuKfEgjqFFqQFDP3WYwQSsAwFXIk2Q5Hw\nwyN8SwLBZxSSApsdCYKzTRuYAm5fUFR05VzA04yBg6SEEUsaOM2LLVFFG0doQ8BB5iTMcR0u3S+A\nT/kHXGY7hlt4N+7YmJ45T5jmki952oz95Cc/WQmWJGaOMy95Gb9/5vmpPToH0rv42XlCoqt01+bU\n23FysNGl22xFE5Akp+yDXQhIbM3BDiXBfbGg6NpLCcGIvbIRdiXJ//vf/7424RJl+LBNgZoPcLa+\nQz/7ZGe+QpUA8wPRkF4666t/0tZ1Y9137cw//eMf/3jhnXfeWcmEPnjYrFmrzRIfIRFSTLaxQFfJ\nhTl0NrjWgAsaHoaXsdc1MKNrfz3nWYs/5XNtkPCbjdnE4D+aHrVZL5o6g+GaPkjE+HQbX4mQZIRf\ndEhsNPylI/w//6zIAk9+GE/xmYzjt3644mc08b3muK9NnuiHjwKkuGIDLgZYC47iD52VPDmDhTdi\nAP3Go3ARY8i9zbHnYhDaxAhN0uhXLX0Vo+iM12BJxNJ3ugtHZ/wHj75YG66uxTnJmXH6HfqLgfiA\nNvbZePg4zNPMwR8wycUccOFKd/HR/Ma4tl4HuOEKnnuwzQWHzXu5glZFIrzVzK9Z1zrmOoLtefDx\nG134AEdj0MYHOPAQjPkMrtEkByj+Tx0xB776yBFvrIUfdE6xj47SB+tZZ+Lu2prmkSE4yQRs9/rL\nQ+I9+Hhhw6+YT//11cCF+7HmGZ7jBbjJSj9eyGnYTXw5BuMufdZBm8O1Blf8cQ5vz/b3+uCukU9z\n3Otn+y+99NLaPLJpNNhs8bHiC1tEt80KvuIZu8VLviuZg6dZjzwP22ZOXAHTOuRpYySmgKGo4OWc\njZ9NKNrAUkR577331iYXX/XT7WQqxtmQ9fck6Rl9aG3neACXeOJci1/Wkys6w9kRr4zVX35Z8crm\nEf5iJxrwz1eDfFB4mLtftzXnM33hqF9rXPh2zw74Rzz0IYS8FU4XWx5rDPn4wEEc95UxPuErfUXX\nMdj66IMWHmA5Wn89HD/0hxP+kKe/M++LVy9z2SKeKBbJA9iK+AZPOQv/K67gO/9gg61obUMvh0EH\nfFuntcIvVCZ+jfEMPXyYczDI0Lr+9rLipvXpMN2iP/IUuCpGKObbL/AjdMEYPpW+o9VegX9VPOBL\n0Gx9NoKes+0FhaPiK/7T3/QLf+DHztiW2ESWDrKlW8bgi/wbH/HFGnI4xbmK/3yOfnpH3njoJQb5\nwwXuYii+K56I+3I/8c3LVkVXhR9j4QcWm+sFgwI1eukeXUpOeKTwUtxNNvTBevQTj8xFJx4fNn8g\n1op/fK8xdEC/YqnCK3hw0JJd8qzfMzySF+DF/S0/JRs5CXsky3wOGFpzu1+dT/DHVevrDyf+kW6+\n9tprS05io8KYwisZyWfIszbn1nc6354D1/GzmCiHFBfZE72UWyi69jeR+Q0+g0zJyhlcuRz/o2jr\nRQG7ZxNkywb5S36PX9DMmc39lP185vqq8XJrfpet8VfwZpf8Ib9kX8THnJ+fr9hRnAAzW+5vb8OZ\nTzPWnMNmt/BFYzoMj66DYS1re1HlYwD+jo/AE35OfOCP+Ejw+DLXYip/48gnFxfA1vgS/pef4tvk\nLdYzH33ye3bjcC+H4KedyY6PNzafDGb472nx7NQ+GA48F4XXq1izVyT3nAflbQOsICq5EBhtvgV6\n14yu4gDF5AQoLWfB2dgEU3IBvM2swMEJMTAOAFzwwXO4F2ysD5ca+OaVaDMYB3icleBsbePgDUcB\nHmxJAycJZgdDVoDpraprY2zypsFyNPEIbNfh1X04PsmztbWJy1w/3Ho+n7luvuubjGkOZ/ixj33s\nhZ/+9KeLf5zThAEu/Wn8XGd1nn7cmgNTTvG1PvcSYUG0f+rgGb0WVAQexSvBjT2wWwmuZJW82K5g\nI6CRr18LlNgLTgV+8M0VsBVwbFjYGBg1eDjCSz8dsemwKVZ4reDZnMZ2vmky0fhoV5x54403Xvj3\nv/+9aAsPfgMNfERfusLFG1P+owZec5y7xp940NjbnifOrluztaZfbPNGBnwon0qW2oTzMFz268zx\naLNBkQRJ8CUpEhkbPAUSGzfy4EfJvd8E4Efx7rAlWvSkJKiNaTgaZ4NK1xyu6cuebn4W7fQS3WIB\n3RJj6Kzigvn5Y/4bP+h3mz1xR5wp1kiiyB7+dBBddFyfxlYkvOxF4qnZnPZnCUrIrGUO3juaD66i\nZokaGbIRh2ZNc+lOMnBt/nxmLLoc+U6wzW1++uE5+PHPXM1zc5w119Yy31rkoCBgk6AgIiEFq/Hg\nmYMWdPPz5oExcZYQi7fOeGEOedrsk50NvD58Bjt+gA8XOkOfkw0czCd7Y/DGXHw13ny6Ry/pg431\n1KH4YC14mge+deAHBpjwRRfcwx99dEquIO5L/q2192f4aZ1jrXWtgW7NWLJMTlfNPQbvUfqSXXOu\nWse4+cw9XNmDQ96D5vQBzxR2Xn311bX5wzfyIQO/8trXPeDgIT6bbw0007XWC0f35EO2/LCzPjoj\nNplPRn4V/TOf+cyKEe41tu+3K9599931dYx5+K1gQ5bWt/nzMo1f54vI3xgtHFyHl2vNs+h2T25w\nomca2h3ps7HyS7bEhhSubBw1hd/zbQOqWMcvsSU0W6N1Jy7m7PvdO4xr7Owzp6afr1Scg4dNrJcT\nbJAMxXL5LbwUX/lHdoeWdLU1JkzXYGvhMXFwPee57rmzwrvir79L6dfeyRYvxFu8gQs9kY+IJ+zu\nYisEaGSn6K7gpmCoWMYX1ciHfjnjbQccoqmxneFEbsaaZ2z67OUxf8ju4WSMfQVdkgeJgWdb7sKn\nsBVzweLvxCj8tl9wFkfpBnrBMhbuYrcCJTgVvslixg02aD/ExnyFpngIpnU0sMQ7xRj8kceQpTnW\n97W14j84xqKZbYhnDmvjv4Nd2WOJeYq14h8b9NLA3yP+xCc+sQr1eJE8xUr5Hl6Rm/6KwHSerpWf\nJAdj4EIf0HJ/K4bK0dgzm5I3yAXFa2MUdq2DZvj6bSV5KH+B5+CC6dDc649evlyMYAv4iD+K5oqu\nhy1PofezBcf8p9GuWl9/NOEVu/bFK/naU+O3oh5fh4+T39HR/KdFW3g8z2e+hM3zv/6mt/+rwTfx\nb77qVzz1Gwb5jWSCJ67pLltnU2yLP+Er2KDfNuH/+KLGpxfur9KdNfjyB/haOuCeTfNP9nFinJc6\n7I7N0C82xGfxf/ZqDr5q7wv++te/Lr0UY9mXlwD0kX4aO9fd4y2+8vk+kuF/0I1vYLFR+bx4jvbi\nlX7XXqR4hk/iP18WbmvR7Ud1HMVhf1sffWgnF/GHD+Vf+HQ+WKzEI+u7Dp45bCv+3YTn4XA6350D\nz3zhda8w0xCwxz0lY5CU1sZG8LPhrYCpICrJEyAZpzGCvnvzKSwj6IsjCVObYIbLiBg0RTbHhlry\nasMjWCroWk/SGL7OxoPN6MBheBIKsDi0jCXYEipJBPicCphwBcvheUYuGWKI3ohKiKwtEZSQcKbw\nwhdHxhe/nPWFq/un2cLvYfg0buJ6kznRSg6Cyo9+9KOV0JGNhkcaeXXdWp3XgNOPW3Ngyime1uee\nXktwFVf83SH37NCZLdBtCbdNQc08diRplqCfb0mdzZoknD17bg2+gV2BI0D7otavyGT/xjiMd2jO\n9MHG2IbKm3oJhc0Mf9D4cHHfvPr252Nj9Dn4EAmBX7cTbNtkeQYXeLRZkFC0eQnf4DQe7pp7rXHr\n5hY/gttU99kKXPkmPtUmEJ8lRwobfB7+8VcKS1o4Bes63Ixt7f04/dZReLUxsvERA6xFByRB9EOC\nib82Avwkv0uG8PI1lXGKHeDRLzDQA7a5ki2bUnM9o5NoN96ZfvHTdMwavegzv02shMi6fL3Eiyxt\n3vhuSRR84EBvS6iSofOedrT6sxx0Gb8lchJOMMUusCR8JWNk4YBHB940xhpoIUt0GTPXtX7H7E+e\n5miNmfjO68atwZc/9M0xulsDTp7hrYKIFxMKzuI5vsMTHeg9bBtUtOMhusBw4Lsx+h3iAHvSyLS8\ngMw1PDMPL8gafsXxiqrGpSt0o3HhbS7YchD60EtfNmKsBm60oxGeZI8W68DZQWdsUvU74E+Wcpk2\nIPIR+cL0j2uR3TrWmw2+tfBxDx/H7GvcXc5gzrbHZz6b1+GiD5/wB0/YHflFN77Y2L/yyitr42iM\n53THiy0v3dwHD/3hsKd1j6t7+pbtT/zIxa9QK/womJAjX8GX29j6UwN8I3nSURswjS6w/zaANlh0\n1DraHodw1O+gZ85wolv0jL7REX6Nr8Er84yBgzjrRZWiK/20pi/0KnLKUa0fX8LhYfcL4fEjXLMl\n9srGHHjDb9s0O2xm4ccuz7aNpXjbC0a+DT3Z1oQbTsnEvXGNhY4+NDQvFKPLXHy0b5BnKBYpKOCT\nfjrFT4sV8ni+KLtmc+DAGf8+un05pSAn7pE12HDhC8AXS+DBpukIP0Wfj+Ebnp3pODjkC8d79+6t\nXB+O4Bw2/6c42d/mJXt6CX944Lscyr7FHkHhBI0Xl4XjcIJ39gWGAz0OuRZ9LW6AKeb54lZhEkxy\n5ZvQpLHB/u6qmGs+Xtij+GqOjbDJZAd28TEdlt+JbfRATDaP3tzf4j69Yj+KRRX0wMJrvwmgiOHl\nB1rxmgzxSHGazOQLaDZHc8ZTfl1hBV3WQZdncPN1rcIU2uiAFxl8DN2gKwqvclF7yqln4Lt3kEln\n8/hwcgEPjmSJbvaoxU/X4RpsfU+yXbW+fjjhn9ikeOSf1NmX0h/24bcC2DfdDH/zmouOrnv+JGn7\nMKxF9/gSuSP7+POf/7zsio/z1SoZ0XONLGrk0Vzxw//kEFPprLjHBsmYnfNv5hbLgtEZnAlbv3v9\nGn3vcN+z8m2+jM14cQMHLyw8Yy/n217w5ZdfXjZEz8RZdRX6KB6za3bKRvkCtsz/TVytN/WPrzNP\nLKfTeMefiNdesPBV/Bx/Age+ii9ziGv6jOVb9fE56ENv6/A5cnt5Lpp8MGKMl0NkIk6L1/yOtff8\ni0/O5s22p2c+O10/Xg4884XXaYRYk6JRVNeSEcoqGRH8K4S65ww4f4Ga4dk8UXwGQPklJM4Ms6Kr\nJEPQY4TGW6c1JBiMjTFIFPv1HkEmvOBojoPj4YB6a8sgGSADFmg5DmfwOQyO0L11HJIRrcTJGHPB\nRgcjZ4Rw9kwyyBHBERw4OYyvhae+rnv2tM57BwGP6YzC8644k7O3W/5jvKI15xfscHDviGednxZv\nnpd14zN64unso79txHwxwabZDxuWPLPhfIH55MWObXIk25Jo9sCePTfWYQNgswm25NghAbdhDw84\nJXPBTPBlp9ZnZxJGbxr9V2LJv3XDPRj7ezD3rTH1u3dYjw9AtzfPiq/8Vq01BHKB9xvf+MZ64SL4\n7htfpOFP8/TN+/2cY/fhFiz3wYu3ZObga/geSYmDrNBkg+XrKUXQw7YpxM/ZWiPbm8+6bkz3xurT\n4MGHkqe3zxJB/h+eNus2iXw5eSVXvhQeeClZUgTxnK+nEwp6fOjFthkVQxRP0QgmPioY0E1j+WLP\nyE6/szHwMt5hPfDh0QsCOuSo6IpXxk4eo0/fvhljDboi6aXPcLBJ49sU5PEdjdYOxl7+cNTmuo3d\nr9l9fL9unDGT/ubOc2vOPtcT7lyra3wnX3K28bZ5Z6f4qpDlRY04zgdIaic8vCjZJWs818hM3E2O\n1nKEI167pz8lyubpl1OYR/Z0oT4+hx6xYTrk4IOcFcfiz1zLevXDjbys6eCDOuQl5SZwV1wAU77A\nDuGkTfyNS97r4ZEf8aoz3LTOR6bcuSscJ6DW19fa+hrrTA7syYHveIsH+E8fxILPfvazqxiDb75y\nsznzYsumhryDF1/ca/W7PrY+2VhHa45xcFKM8bWjzSv7a6OnSEY+dJAv9IKEntIPY8jYF0JeCtvs\nkm8+sTXSjfCrHx6eiZNo82KRz7KOmCX/BM8YvBIH2Y4zHeUnFZ+MlZ+yHfSAP9d0rX/6kckf182D\nkxaO5rJdcuBbxXObZIUqZ8/ISR5rA4w/zuK5GGd+9voA8n/idbrtnD9m5+jA1/g18dMXbvrBp0P8\nipc6Nufimf7oIF8vx8AmN3YPJzjzvfinmOS6uAy2xibl5PYMeACWvF1s5Kvdh19yb27r0zn+TpFS\nocTfZrQPMU5eK5/l/8+3ggO+sQOw0IA39hJ4bzNvvkIYvteMRRubUkDgS+mD3EeMzK+CJ/aZy8+J\n9RdbrKR7YhEc4xv+iLG9BMUX+NI7+kf2eKMvmcBBEdUHJWIkPPAdHHEUH9iMmK/IKx6I5V6IZ3vG\noBc+Cq5kCk80ihNezLA1OiZ2tD5emMs/sFe8toZYqyDvGVr6x2BsC97o8MEA28MXY+SK9AHuU6at\nZR4+dcY3Ooc2Y+J/PDMWHOM9r7l/Gi0c9utHH/uQC9K1v/zlL6vYT9/paH+yg49svnnNjZ6edX86\n354DyQuE+KpPzqDY76UkPT7bXiD1pyBc1+b8ZOvFB71ny2LM+eZ72BUfyK+x/71Mg5edgaXByVj+\ngF8p76EjrrVpA+Ybr4/v8dsJFSrFAbFWEZgd8od8oHH8Jpvmf+UJisTslX8rXlgLbMe0XTHWPuMX\nv/jF8r3W8AW/g6+qdsRm+V/wJkxwNbRGr3N+wDO5pPjoo4p8vH6248MfXxTDV7zU4FhsDOfgex7s\nuZ7+U/tgOfDMF15TJmxKofS5ZnwCrA2NpMlXbIxLEkWBGQ2lpPwMWOCWRAi2ArmkU6LBYPTrk7Ax\nXMmrICjgSpgkLeBKGgRJhuyg2PAJP2uBAR6Dl0gL0NZijJyKxM2XCX2dwPlJZjghjgddnTMYfZ5H\nu36Gz+GVLEsYBH7j4OX4b2vwrsW37h/lHJybwGisDTeHK/HixGyQOLAcV+vvYTa/56fzo3Mgve0M\nwuQzm/Mlhg2yg62xL/bmYA/NYccSc0FVsq2A1UYLTD5BkATDpsAGBWwvSvgKdrK3Db6CftjEsFW+\nQELPZgVSgU8izZ6tH+50Y14vJK/40Thrm2dNfa71KaJI8v0Kob+7hGb94cre6e8XvvCF9WXV4XBY\nm7YJLx61ljV6/qh6DIYjGM75XBsTGwV85r/gzodV1MC7NnHwdG1TFbyJJ7hXtXDoORqiwzMbKptI\nb4j92qFkn96ASZ7W9eILDpJB8iwhdHYY3yaSz6c3Nsj68A4sm+M29vqs7TybPk0MsHFSBHXQGfoj\nuaNfYJGlA2zz9jzQF51TfviPzxJAiZlkmb56c++NuE0zPu/5BK/Z514LZ9et57o2aZw4Nm8/Z+Id\njHluXn37+fXPsznhQVZiXBt88/FTfMdP8pz8AscYuLeWc9dgd7TGsef6Jv3gznnNFXsrgtFLSTSd\n4sPoqrwkXwZGDXzwtHALD/SJU2gkW3Tq6zAOTPrpjEfO9IQvdMzcwTrBjoa5rutwcf2kW/SH58QF\nzWxLTiVvowdyMwfesm92YIPP7vGKr1KoscFkL+SDN2TGnsB3ToboJevu45V71+E18TTH2vwNOeE/\n/4H31mKjYpYYwoeTh8KjfNVzX7TYVNm0yumCDS7c6HV91oeLPs8Un8RMPoFP5m+soxin0MQPGs9H\nGyvvdB0vjYGfe3RHn7U19/VF/4Mn//kJPpo0/g9u8VB8QKcCtL93Kx7rM+aw+WVfSimc4UtfVYq5\n4dMqcJgNj/lptkX21u2FGnsx3xpa+CfD6MB7hWi+VMFVrj/zg2zefNeO8Iaz4h2ZwR0Piy/WjCfk\nbLNP96xnb6BQKzYUF42vkWnr6mPPF1seo4jlbxQrKMIRHDJW8PcC+mwrlIgv8Is+LyQUfem+woSv\nN/tNDDRFF97ZF9mzsBv0uCYPPIUDPtMfhRZ+TawFC03wiW/WhgMZgMMe8MJz9goO/SM//Ro7Zc9e\nQIhliu9iGVvAC77NOl60Whcv2bw+uoJ2eaBr9o7n7IE8zQWfrPwpELZB79AFz/iARj7aHPJytlZr\nKHiwYS8qxHL6xcYVaP26NR5raOB/jMODKUtraXhUI284imv4YYx8li6Ryxwbv+rrHKwndT5GR2t7\nRr50hL564UXm+CJnV7jm79AX/uY4uu8czNP55hyYfGyWvlq81cdv2hv5O7zshf+wN/7kJz+5ZCR2\n0E9z6LHx4od4o+Yi3tBVPoNdkTE/yN5q5k69BU9c5JfYKjysw/7c8zHGHDYbFcvYNZjWD3ewzQNX\n3OnjC3sAeyh9ciV4eYEEPlzZNNv1mynyBL6bjeYHwG8N8LuGjzXo8u9+97tFGhu3F+MT4GcNOIKl\nTViuJw+CuwZe/rAeP8BW/NYnf+0sf/QCh0+034VzMZtv5YfAnusFt373x9Zs3On8eDnwzBdesSMD\nozgziFFShiqRo6D9nT/BnTNQPJGcMDRJhbND4USA5vgZi4OjyFmYz7kIqP4GkaRRsi5xYIAZENzg\nRPkZXnCtax1rW5czswa4FYPAZ1Dw54SCm7E7B9+556vz8keGFk/Mad7Ecc75b7oOfziFtz5y4Aw5\nYjznRNG/Hzfv18MrfoCpOXPGZ1uS5tcLBJgCBWfZOGPjpb7Z79mpPToH8HPPx9lHzhI1b1G1SgEj\nAABAAElEQVQlAGy6jSs9aGMgkfeWUlJrY8DW2DF9twlTXJWQC97u2ZaD7UmqBbUSXHaT3oHPTm2E\n2KxzG2D6yJZtcBTrBcFJSzBm3zEONa5njS84Onsp4wXSve3XCPGB3scn+AqyAv2LL774wvn2htlm\nRX8wwHSY48g3tOajnMMXvODjHd9FVnyZDTTfxt864MfGbGoUOsmHX3Qfns43xTE6jNfcuw4n/tMm\nyd9u9NY7Xxrt8CE7Nk+ufLVGpySRzsGujy6KLWgGx9k9fUKvcTVz0UNXrKMoZMNITySNkj48QD89\ninbzyBY/wbQGXOHnmP4o3jfHZlqC6a34xbYhl4T5EloiCYf9Zg0Nmvldd78eXPNjjm8YODdpc+7D\n5jS2cd2jHc9qnusrHujX5yjhbW5zup9wejbPjQuHntXfvef17a/pFB/EjymU2NTwPWRCRxz0wJGM\n0eMAE7ypI+6nPI3TzKcn6ZVxChnFS2dFkb6qVDwIfnQ4R8fs6xpM7boxjb3p+SqY1/VbH0/4FfbE\nrvh+OYLNlPxMMchmH39tqvqSxRgy4fvxgizc4wc74stsAMWL4kLrxWu4ObqHy54n4e9Zz9NRzxST\n/A1YeIkzCjr3t19fVoyEhzzEnypQQCPT4M11rek++O7h7os+L57omhc8ikuKTDas6G98mzo+0ly8\n4punv2ld8uy6dZOx+xqeiNP469DA5PPQCQYey88VNm3W3fN1aPa1EFzFdf6ZjPOTreEcDuDhK1l7\niUr28mjPzVeQxwOxJ7uJjuDBmfzNEzvwzmbdPRvSjJnzwLJnOBweFAMUi22A3VsLD8VBeOAzPbNn\nIGf7CHIiZ7IVG2yiFQXMNW829FkbLuKbWCsn8EUlmsVZdFrf16GuwcE7PgXudF28Mr5iKRmIF+DC\n07poEq/wrK8sFVvtX+gHWPwIOwNLzGdrfNw+Fk6e0TkyJhO04Df7whvx0/qafZOCZr8FUsykt5rc\nny8rF5S/0R80OXuGDny1Hvj4jk5nOImJChbyfYVqtBmbfOGCz2hCG53ywU3y4mt6iUpP6bY10agQ\nrODqt0/ImWzoMztny3ho3GzR3vpw1Efu2WpzjKnPdXODF4zun9Q5PI6tjw6+QPEbX+Rm5CRn97Xr\n+Za30n0y0KILzEnrk6LleVsHH/dy0Vd/z9yzLz7KPxL051XYpq9Wv/jFLy45TTvhc9kdP6LwSsZs\ngR/3Iokds2f+uzbXoucaWwanwi3fCQ4fy27FRf6Lb+IP+Eq6w0ex85nnBZN/CTd/CkD+Jc7DxQEP\ntFmLbYrFcLbPC15+19iJt2s+E93+JIMPYzR5xte+9rXlU+BqXDx21pwd1qhvPbj80TqNRQ+Z8EVq\nT+KTa37GPnf+BgKe8WUO/WIAeVkHnOhybZ251sThdP34OfBcFV6xJ2VyzZkzUAFPUiIASg4YmOTP\nhvRs23BLLBgYp6BowvgYI0NjsJIkyShDdbgX1L0d8TZc0lRCZl2KnSJLLq1x2BIwBuCeETpbJ8cF\nbgkD5yLJk0Ton4kI+GBnpBmL+/oa4xl+OKMlJ+T5HOv+v7HBe9In6OIXByJZkqhJiCR48T+6Skz2\nfDlGpzWa51rSJFm10fHrBhLhNgnNn3Bbq2en86NxIF7u+ag/+bNlGwzFRhshQWcW3Nmtt+SCpsSg\nIAwT9sNm2b9grmjLvti2QC1gsQ9j2JxDgj71gj9gvzb2dE9Qs5ExT7O+N7pw4Efm3ALbnr41cfyY\nOjh5Yr65+tBsA/3++++/8Prrry8f1zygrKvY6ldpBX748DPh49y1ea6bty5u8GPO6xqOrm1GyMnm\nxMYOf/hWPGO3+Tw8t+lwbzOCv+YHLxwfhtt+TnjEL7L0BZCksQTfnAm3gk0bezg78Jr/hCM9ceYb\nHJJAzTi6SXckQJJUCSidgwN/RVdsyGwm6OVhiwVigo2sDWSbtOCh3Vy+v00ifeSD8BI8PEt2kx7r\nSsIklwqv8LGWL0l8yY/GcLfenOteq891a7jWelb/vE/PezbHu579+2fHns8xc641k7NrMsKv2TzX\nmmfcfkzjo8HZ+Ob0/GHn5jeu+cGr35l9+DKCD7PplI8YT66HTS/kIvwHvUjfwCF/uqaFo7Nn9JSu\ndIiFU29Ltukpn2eczQ3bUCihI+4nvq5r0dN9z/DTdfc9v8s5mh4VBp3GQ5s78VpRUZ+XbDYnNvny\nBbmXL0fFdcUxPgn+eOM5Hncvd1Ro4T/A4M/KxcLTOf5M/Z98aczkU/PRybd8/vOfX1/H2ECSnXW9\nPPE3mumMYo3NoHObS/Dm2t0Hm86YL1Y487loFxvkN3LgNp3mop3vMo9P4mPoTnJOJsGf557Fg+7p\nGj6Sg5hrjk2g9cUptHomLheb4cDHKboqhJGp2MtPa2Bok5+rY/vhGVmSlRwBTD4Uz/hgxS5FPPEa\nXRMWePrYiFxcsZUf9euy+jyDA71iL9bR8FB8498VO33pqiCATj4bL8HGGzrGP8PPvoEv4APsL/Ca\n/SuWitv2J3xA/A8/Z7JCl/mKHL4Uxjd4WJtuKwaebb4fDviswaEYje/sHxyFU3mFfLqXk+SPZwon\n8BGvxA82gw9oaR8k5rtWbHFGI1vR4FvDb/fOcMIb13xWttdz+ske+mJX7EQfPuG/NRR94eue3rqn\nZxfbHgp/PeMfNc/FaTpZfJbPeVEtPno5yYeQbzjjF7728Q6dUHTVx0eTtQINHvE5cE6v0AUXOsiW\nzSMLNPnzV+VmcDNWs25rg1Pfurj8Mcfqch/PGheMxtb/pM7XrU8e9A0v5WS+3CNTclZ47bfU6IYW\nfWBmC0+LrifFvw9ynWO6MuUVv+HATviIX/3qVy/87W9/W3ZGd7/0pS+tPznABoznC/kxMvUCTbzk\nu/jb862QzkbYLttKduHR2s7sTbxQr+F37e35HH6MP+Kz5PJ8jCZXsgb79fLSOPsKvgW8YNMb/krN\nxgtvf8dVXah4bhx94w8+97nPrb0/fy5mhi//pLnvMM8138IH+wedPvBAhz/J4AMYes1nWovuh1dn\nY+m/9fEH7q25Fhw/9JvH99lvoMfB3/G9YJkPHl+D53giHoi5+GWdxgHtWsvfrJvTjw+UA8984ZUS\nap2n8jAGCtqfA/DGQ+ClmAyBQjI0SZ6AyWAZGsU0V4IicDJ2cyUlEjBBF1wOgrNp02JtsB3gSBYl\nCw7rSPYkaeHLkCUc5oMt8WFAEiFrM9KZjJg3DX4B2n6gvX5n66OB4ytZ5cA4HkYWr5r/33TOscDJ\ndQ1NnLxkVsIukZZkccACA8c/6ZpzgzGf1+c8x8ZL8pP0K1Yo5uWEm2dc8MyfMBpzOt+MA/Fy2u5+\nJvlK7v1qUv9gqnlkZXOm8EleNi5sWaCj9/SDbfk1OhsV9mUtPoA+2YyzwwoRbNC84BsrkBnLZ5hn\njlYSLzmQkNgYu6YP6QebS0eu05PGgzuDoX449Jyv8Mb2D3/4w/o1ev6j8eCzecl9/0zC5knSYr4j\nHIIXbta9SYuexpqvDzw8lAiQFR9GDjYk/B8fC7d8JF8o0SjZCN6jnKPJnElX1za4ftPBW2hffpX4\nRDM/yZfk/+ESL/GMrMmTL+e/+SD9cLe2OCEeSHrECbqDB/rRjm78d9hUB0dSxD/jhRYdJYL0Ckyb\nR7FHv40v/SuWrInbj2gFQ7wQm9iJwh58rGtD44setMwYFK3Buu4Mfs2a4awvHHoOLlzg7azRYUc0\nu9bAMX6PS/DBNqc1wGOvxhtDhg7wjJlwwb/q3jOtdZybHyx9Wmuvm92PxtQ9xwbTM3i3qVAUV3xl\nu5JhxRIFoVmwoR/Jij7Fo9ZzD6acRIFBbuMszuvnFx14R+/paWOMy9+JofQtXIM/6ejas8bp6z7a\nH8cZ3NYDb7/G/pn7YoDCly/QFFDwjB9SOFXIpDPsjh0oQPLV7JGs06nWNhd/vKzzss8XhWwJDGPw\n1Lx8l/kO+p5ehrvzxHne61e8+cpXvrJi12Ervptv48qGFUzJTS5S4ZUPsj6+BCuZOMPDHL9uLVYq\nbJA3GF4mK2jSObo19dy69ETTz6bCu3NrznXntbWNdRaz5Wj8IjngJznZACoK8kvWwFdxWYw2Hk/J\nzxixg4zE33DobN3odm1N+PN/aFcA8GEEWSpikrciGxsDDw81MNDuwDf4Ktr267LgwbVCqnW8rOCb\n8Yk/VniTd4DtHn/Zr+fgslHxsCKnfQO7sxbbwxfz6K9NckW8KedotT4/grb729dfihTsWg4EB34E\nveJFRfpkQg/g7cWovAi96Sx5wVHccc1W2JLChvzXPonuwVWTh8CBfXmxUaETrQ54Tn2Z1/Bx6EOj\nse7J3rp4jRZ5TLqin87il8KdA65ogq/mWswXM+mA5+QPvoMsNHyhh4oiCn14fthsDy7JLP0FS0EJ\nnWDy2fICMje3InlFV2tYix8mX3kn/0Fm4i87lKt6QRQv0a7hR8fUz/Xw8sccqys+7vt7djntiZ6S\ndTjNxcmP/cjLFMAUrORWfstQnsJG2Rs5ND+eJBv9PZuwT9cP5wBeTt7F22bicfKjy2ogvnh99913\nl3+mvwqvPuzgm43h14qVfkvDHPZ1vhVd/ekIPsSeab+2NVsfTvwGGxOzxF32IXfmA+gIv+nPrFmL\nXbMRvhZ861iP72Tfkw6w2SRfLtZ4oebPf4Anpmt8Cx/qK1V7J/4Y/Hhlfk1fuugMFzbu7xX7Pxx4\nAie5Bh+DT2jjO/hba4IXTL7Dwa+g0x7D2pM31rauPuvx1fjMPynCOvN9aOR7jOOv0SHHcPDjvbwC\nz5hadHZ/On9wHHjmC68UXJtG4J5CUXCKzilIEiQn+ik15ZbcFczNMd4heWvTy0glYRIMiYrn1nSA\nRVklCxI5xg4uRyDAchicgGvPNMYHtoPhKPDATRKhYMFocgRrwvYjg5hG0jNntMNBUQMejI0BW1Ni\na00Oxhpom3AeBnuu8ySuJz6uHWiS9FXEdi0pQo9kXXJDzmTS/KtwnbQ3Bv+a5zk4+jg+iZUvRHxF\nKZmtGdcx5/f8w3yOh85acux8jDfGJoNjz8nb30SUqPk7OpJYfDePHUsGProVyCW0CvMCkyDkraYv\nDvwaiI0BmUrqK3S4ti4f4Tl9sklkh/RAM4dNnW1FLwkh/2EOnTOOTYHnDaekUWDzPJqCo89xVYtf\nnjcHjdqcZz20KdzYWNukS2abY7wkAk8+/vGPL93lh/iCcDKm9VpD302adSY+rsHSz5ddbBtptsmP\nSTjwzZl/SmbNsd6ENfG7CS7GR4fxkxb48NmK1O+9994L97dNarjzl3w1eZKXefAFC5/wj16xeTri\n2njF1PgoaaJn4oqCAZnw6zZ/4PFTNq4SUNf0Jvyi33piCjh03EbYfHyEu805+OIU/wfWYdsggqeB\nE//AQp+Yomjj7xJ66Qh/XwQoNs2ky7rWdKAlPu7hgemoRUNzzNPHTjRj8VLccdBXfeDiKz1wxsfG\nw8WhGRctwTaezDSwO6zpABM818Y5wJt4wxdsz6LRc0fP0CHegOdobDgtBMYP+Dk0Y4LbuaHGkDGZ\n8mOKOvIK+B42eVZwmYkxGHBDB/zwsWvnrvGY3sgnHK7JNN6YKxGnF/TU4Z7v4vd6URANk555PWnp\nen+OB9aOB50b25jO+tMp19kfvNGBb2idsjROCwb7VADhh9ksO2VD/L+iCd9uvo2cl3N+3Z5/NA+u\nwUIv3eLb2bMNnuKn+GGTQx/4AfkVmxQX4I6f+GjzY276BG48XItc/oC3deWK/l6eHENhEH5oVpTg\n3+9vPgv94lp/IsC68NDABqsz3MkV3WKDzSX8vBQUC8Dhi6098cKb+FA/uPE8PnvWc3A9d+8Mb3yA\nA52ki+K03LPcGd9sbhWdbAjJmpzwmt9zb4NunI0oW5y6ccm+/z2FSzKznhguXyczus5XKpIpOPu1\nVD6wefAWO8mM3SjQKwQpHsjH+QBFOV9s2fyTNx8v5nqOZ2ArGikU4i3YyQRPyEOhSUEBH+hJ+b/1\n0Ss+019+4LD5AzIOBmK7Zgf4hTYvEhX19Nnc+5uC8JT/8Jd7ecIFf+Q3cInf+EwP8RwP4GYsG1K8\nFcPQRRY1eItL8dlZHs7HkAXZT78f/s13n1ydwYaHWEU32CZZnW25g7iJp+DSL7kFncJH+OqHj4O8\nPRP3fKVKtpr18IN9sXl8Pt+KNPiGPkXycIQ3/MFhRwrbeMZXwoP+kDmbUsygX/TW+ubSfXzgc/DZ\nXLzhE8gWXeQklsNnNvAdWvypD36OWv3GWdu5uY2Z4+t7EueJx8RBPxkqFPFtvl5kS3hKfxVeFdvd\nRz98J62uJ8wnQc/ztMaef/G2/vjunl7xN3/6059eePPNN5efZjv+dqmYJdbSd3biq27/rE7NBAx+\nU95pX2YOP8cGxa50dcqRfbBtvk3cYnfiOV/AXsQLdsnveXHNxvkpOIJpDQVheiRX5rvBzzaSIb8l\n9/Ibg17O8SEaG+bjv/Wtb60cgQ7WggOWawcauueDwLTPeOutt5YfsD5fBiYfIcbwC3wEv+QwD+7W\n4of4FS/O+EH+dzby0JKTa7kBf32x7bnYFJ6INXIVvh6t6OLHxSf+js/Cy/x59IB3ak+GA8984XWy\naSqkawdjdjBQ9xISBsEBNF7iUpIoAWzDW/CWyGXgrZeygidpUmSVJDB4m/k26pSbcUm+wM04GIYk\ngdELRAzSNVzgdV1r7cYJ3gzLmgxYAqMvuqzFMBkiozevudet87ifwfsm6+b4jZcQcUiSUmebHs6G\ng5bUcPL4Gl1wNr+1rOc65ztpbx2Ojz40DnzNvWDh7Ze3YIqw+mpggmeulhOeYxr7LJ3j2TGcPat1\njd5JM1tJl/WzATbXZuA6+MF2Ns5BTmSigOqtq8Irm2pNQcrbRUGOHVjPBlhCZ+MsMGlswuZLIqBA\nKvE11tcaNls26BIIusVn1IxpA+IlCvrAlJizLU1y8PWvf31twNgh3MKdXmj6wnl13PAHONqcCz84\neLvqDTBa2UDrGg9veEmQFIVtyDRj0n334E/Y+m7T4MTn8GcOa+B5xcrHscYeL7hP/rQGnsNH4VLh\n5J133lny1ScR4a8lIfSGTPkAuJvnuZdWfGnFVrprrs1qvjodtD7eR6+NIr/Fdzgfa+FsTXFAsiTO\n0NeLzVfTd3MlbJIkujrjCr5aD5xotg4c2Z4kWPLKR9Jdf9+VDrSBRida8McGMZqiH8z4gbaurZG/\ns5ZDwz/61jM2IulzgE0fPMNXxQs6YTxep4ue43N0wcWhH70zblvXM+saP3mAJ57BGR/h4uw+WM6a\nseRojGs4KUDgGb/i2trWCZ/muTcXXHPDPz83cTKuOC8XkG9IxMFWZFH4cOANOs2Nh/TD5oe/IdvW\ndMYHtNn84DWY5OWAX/QZ45lx8PAcfOfgLIZc/rC+AwxncLT63Tvc11yTBRnTfXZAvng656cr6Iy3\n6QAY+s2BK/2Uh8ld8NnzYIWPNchLHkZm+EkW/Li5ci60a+D2ksyfG7DJoYvpHF5YS1HNF242U+Yr\nupCP8Q7FE/ZIXngo3ijW+ZLGmvitwRcPtdbomn2zS1/FiEdwR5uCkq9n/EqkzafmuQKtzZP8Lv1d\nD7cf9MBadIS/u3fv3oKBl75MslGWv6DV3Ck713AMZvyN157BvXvPk5f16RH9xCc+DK/4FvPYAj2g\nD2xJbCQrZ7wD0wY02dKNfIBntT1OPdNvrrxd0RS/vNjgTzU5o0IOefH5/N9sbIus8VsMJXP4w53/\nV1DFd5t6c+kHOr3MU1Djn+UU5EJ+5sHNgQcKbnCq+I9Wz/BE3KFDcPTC5XB48Pdg6Wgtut2TMV9K\nvory8hbyhCM9UtCmG+lZ8jQXHHJCL7vgf4yDB7k4yMMaxqFTI4uKwKtj/EArfwQeXviKFk6KsPqC\nYQqajU9v4Mb2Wxv9ZISP6NAfL8Hh28iYnbEPfNTwChx4p4PwoAv8R7ygV+SjgCP/cz7b9mt8lYY/\nxtIlMusrVfTQBzzgX+SYcgYHeUWP+XCSD9IndnCxxXE4w13DX3RaW4GlFw/r4fZjylofnt2mBWfO\nP9YH9rF+fXPubXAgOw2cPSy6h0eKXhXq8MILMYVXOsA/1MKx+z28+k/nm3HgmHz1dUy/QY58Djn5\np1HySf7qU5/61PqVfPpsH8JevOgX/9gLGSnK0nMHu1EbKadmt63HhqwjRst/fe1qPyZPkaP7EyCK\nhfYv4PItdEd+y2/DL1hehvjtEXPYu/F8Q3aKQ/wbH+7PAvitMDZrvrH86fe///1FG/8w81M4GqeB\nZ7xWPx/oRcIf//jHxYNggsH/8GNwCUZnMMDCS/ovL+mFjnWMa2x0RFP0yUH4Gf6dz8EjuQB/ydb4\nIjgoAp9vL5wc8phyzXBwtla0HbvXd2p348BzUXhNKbFirzCeMYz6nR3N8YyCShYkXd6SUlxBnEEz\nUsHYuJpkRCLJEXAuEgVGI6EsgWFsjEMCzjHZ3JaccF7gMxZ4MCZGmQG3TueJu7EO8CVZEj9BqkSW\n49DgDX+bCJsXhicRgdPTapPv4RBtySPHghdoxF9Jr6S5AomNKx6iiWMRyMmoFozuncHTb53WsrZD\nccWmqg2bAKCYK3E2h/N/6aWX1hcnAsbEGdwC1YQ7136erqMRTa7joXu8oO90TgFTACYzAYx+SnI5\nfy1ZxEt9wXNdqw/c+9sb8rfffnslAfTYXM/JhAwdNhLkx75sCjT9gr5g5osfiQBbNZecbWQcNkhs\nny61rjUEp8OWZINBR9hVLzMEOzRJ5hXnwUdzuDnji7PjNg0u2pyvD1yFAb9G729lsXNt6j9c4NZ/\n15T801dzo9Gcm+LXnHBqrrNGLp45rGEtB/hXzXkw83Y/W6vZ0W5tB/kqiPj7VL4y1Cexl+RLzvgV\nfiZ84RkMfj5e0SX8FR9s6sm9OCAW0Asbc/wWA/hhcNNz+FmbbvHD5jvo0YwLNn0STjorSVI4V3SB\nJ7h0EU7hCO/0Il6wFUmwv5FFn20Y+/Kg+cZaHz303kbRhlZMQle4h3dxw1r03Rg4uJ99bNEaGjok\ngvyAtTR8yteyVbCixRltYiE8HPgFvs01noZ/a8cLc9g92yQr8Q+fO+BiY4zuaGuuvta0FhwrdvNd\nYqy14RqP8aM5ruGDdjQ5pzueoYFMXMer+AResOAHT3TAGy1yB3IhR2cxqZzEXM1Y8PNb9a+H249w\n7qzfNX3sujnwc8z+Y32e4x+e4JdciI93TVbgkV8043l6FZ/wVPERHLjgp/FgWlNcZw9iiY1S8lvI\nXf4wznx+jf2xRfCtH+/wDGx95CQOKcbxA/2aMJzxUC6ocMOvKt6AkQ6yI77Ub78ottFFuMLdRuf+\n5RdcbMo8/dbTkrFrc9iAvKaCYLkjPMjfC2WbWRtR6yvW2OyKYWhEs4YmPAAfvuzehhQO1veVu78f\ny49YM956llzBCNfgeabp1xq7brYfxlkTnWSk2AlXmzz95GHje9jiJr55cWTTnX7Qh+QOJnha6ziD\n071nxsRPeLEVuQbfxYc5+FL2wX7xTDz25RXdzN+AZS5cfVlMbuTNR9ExuOPz+bY5FSPk9uRCf+FE\n1hVq6bCxCnHWhB/YYgX4dIks5P/BzrcoRuAL3Mg0W4jmKSP6y48qOCjiwkGM6M8nyE3QZ33z42dn\nfeCxSXg40wU6nCzIw/h5mGdcfeGGhxp+0E9+ns7SPQdf5dm+kT9c0e2gG+75D/TgAT5bhz2SCbrR\nK1byg/iLTvSyZTJAjz0BHeQv+M5wNoYu9KvIyRO94DjgGg2+uMNjPocu0Vv+Qhy218vPFUfYKxz5\nDrkBPOWf4LEPNFjDPLrI5snePd7W4DsbHjzutl/Dfes497y+265/ld8Ab1945be8gPBimG9lT/MF\nSTiFy11xC86H9TxlHg/0dRRbeka/+Ui/Ri+HZm+Kg/4Wqhia7RnjhZQ9ORmxT2Od24N56SmvZfN8\nnpY8vbDkV+Xr7Mje39er7EUs4avgyN/Iedi5DwzEPDrkmZqIP8njT+rwjdYAP1/qrH4gVigmK/KK\nITVjrffqq68uf8FGwQ1HZ4c+rX7XF1s9QuHZn4Dj+7MBsQMtdJy98wlsoHhjHLzFEPmFegMfxW/V\n9utNnFx34A1fxm/xP3Dy8og/E6PlQvYS7MyewDX5REe0dW/9uVb4nM5348AzX3ilFLWpLPU5zzHu\nUy7XDFiwZjC+MOhrBcqbsQqaDIbzkDQxojYaDFOQkKwZJ1ngqBiV4F/ioAAgMDszCAYSXvCxlvn6\nHPrC05kRnm2bQA7IRtB6DJqTzFG2NqNm3Bk4R4NONIGl5RTWzVP6MWmEQnR3LQHjrBw2DeiVgKJP\nciPZwUuOP16aG42ur2qthXdkibfOAgU+cuSSeLBtzvwKw1e/+tX/lbM1wMDH+H/VWs9Tf3zuTGe1\n9IlMbBgFREmyP3heIJF0Nz7+xZvu97JLTgKJwH5v+5LHHy9nP3MOGbgHn56zS0FFoHdI8G1u2Y6E\nWQCSINgYCUpevAj2ZA9O9IAn4Eu+2T79MBed6LOJKRGhIxJ8a2jxCKxwi95HOQcHjNnAtSHx5xf6\nu0dob7yxgqpNt/9CKonhq9jVHAMOOvfw51r76zl/zqtf3/7avaPxzl3v4d/0PpiNT7/wQeP7JByS\nM19Mk5W34pIOhQ/3E1dz3JvPd+Ov5EVckEzZ3NlUWldSx2cUE/hm93jMX8OF3vIhYgJc+C0xgP7w\nz2B10CvrKrB6G02XFHj4HzpFbtEHTy3+xQdncMQzSbIipE1eCWy+qnHokehKzuBGn42xAWav+DPX\ntT578LxihPHio/sOc9gouvloZ81zc+mlOXSPTzfWmf3BGe8roOKJNfHUXNeKa+zYAYaYIL7aLKND\nvMN7MPHfGIc2eRj/eoYv6EE3WTr4ErKGs/U0+DrMAw+9npsXbuB4Dn+Ha/PRIH6jRx9a6QC86Rvd\nIEM8c5ZHuEZLcOBpXfiHx0Ls8kd0Gae5n32z/3LK/zk1Fn5a9874T8fpva9fzi7zEvqikQVfWq5D\npukHHtEB5+RpDbIis8aijfzJVGFNIcuYfYOPsfga3/XhSfIHPzrMJxc2Bn8xwcsSc43P3uHPFvAp\nXhvrq1G2xC7lJNaFt8KaLyZt6GzkwCIreHiOFmd6BI540teJ+EEf6JlnrsEAS1wyjw/oi1f6g0YH\nutiXsX790sYXz6xjc9zfskUjGZijwU3DOw2NPes+uteAyx/Wwxc6quAKPzGUj0QjfvCDNo7ir9wN\nTWjLflpzwnVt/fg9cdmPYwtiL99lfbTnl+mUjb2vQB10Ey/YJ9jsiWx9ZCEemA93PJbf47MNsOIP\nv3k4HJa9wgHe6OfHFWrvb/kIXeeb0YpuuqXoJnfEH/pEp/WTOXgVHMtr4UY24MeDaLYe36B4K47J\nWfTRXXTKbfCX/sazzsaBie5a/O2Z541p3hzreuLUNTiuHXQJnQqWftXWS2w0a2DDDe14K67hFT7Q\nSf6yeGC8oir+io35P/6R3MiI7jnD39r0DW+N4Sfk7fiVfntOll60sls8Y2/w0tinuXSAHise0w9y\n5efojxf1cgXyYrPkZW1z0S03YP/sEF/A9xye9JQ9WoPPEdPlY+RG3ybvp5zgBsZdWvD2cJJdPNw/\nv8uazQVbA3sPHy/kUvRE8YvM8NlvFvrij7zwphYd3e/h1X86354DeNzBnqb85E/k5QMPeTSd5iP9\nJp0v7dkEW+WbFEPpO9uQr7Bl48ULcPgqhU0vQbyEMFczlh+Xi4LBbr3sEG/VW4p5U3fFG35WruuD\nHLaofXQrXsLNGmyWvqTr5oDvNwbESngVF+kl38HuxU5/mkcM4WvTuc7gwQWvamDJud94441VQDaG\nfffC1ks8Po8v418c8DFO3EInO7CemDVhW0trfdezb16HGxmQi7xSbiJeiXt8KN76TRv08c14AMb0\nR9bQ9M91H/Seft6FA8984fVRiJ/K2TzK7y2Lv4fl7+K5T8koviBrQ+FgGDYavaEVSPVzEhINhsvJ\n2HBQdsmzYFwiweCMYxi1cHJP+TMa9+EBB4FaAuCNq82ghMVchmtd6zB8a8OhtRmfo3XAdN29dZ5G\ng0f0WT+cws8ZXzkqfMYbjfNGM57a3KBt8tOY4Hb2nENxri/6weXsJIPkS56CgIS8N0R4rnDlV8lz\niOCEM9gflhbf0Ns1XsRbgVBhVCFQ8isASqboL97uWzxMLvHVuPpcCxZ+/cSfGpCskX1BwvMaeQrm\nElxfKHgjS7YV7umPAC34CkYSbUl3yTF9mvS4pocSwTaPcMnm2LMiBBr9DT5JY8kEnNAXb26rJ5PP\n0Rlsdm/Djd+CPnzmeJtdfKC/An+F13gbfnCrb65x2+uJQ7h27tnjWDNYeKwFM57zuTblvhSS2LHf\n8/Pz9SUUe58yMYfO4iG+2oDZFPADNmWKeuRuDF7R53yH5EoCw1+Rv+SNLkl8zOGPwbMZp28SPJtM\n+hju4g2YNqf0lg5LTuEJ3mzRHc3uHeCB7cWHwgJabHhtOiXL8G49ftSGXvxDo9gBJ3iIL2hhN5JC\nNmAufsEFnvptMsUnz/VLkCs+Gm9967AZ+BVTnfEHvp7ZpLLpNt6KFyWmYFhDQcoBPr22oWfvYIh5\nfA95oQPsyaOu4eRw73Ct7a/RCTZ6FFbEILrTpp0OmGMc3IzrgBd+oDHY6Yx++KPDeLJAq8KizTvd\ngD+dQUOHceG+gA6c97j3vLW7b77xDi36GzPPnqUrzYU/X6iwRk9nTkL+9J2d0Cc+lq8lf/PIDO3o\n7myOeGseW6UL+OagD3jDN9Np42aLBjKAn7MWffM857kmW0c4pUf4Dgd81yZ/yJ8tKZzYuBy24hHZ\n8xVkh26ygye6NHR5rpAEHzHEZhAPjSN3+o0ffIjCkDPd56/kIfgiB7ER9BUPnNFKNtmwP79jA2p9\nugVHX7qeb76OHeO/9aPHXPda/Fs3lz/iXeN162OfZMrOfC3Kx/Bp9FteqqioSMVvoUO8gQ+cwepo\nbfddz/Vdt/Z8Tifk1vSr9cVw/XiOP16siXX8XbyCH1mQkzzCxtsHF15qaGSrIGDTbp4cH+7JcQ3a\nfuAbeVrffkFBQuP7HcbLw/l6Omu8eMCHy0PYDb7gFR9Kf4yJLwvY5Q/95IvXfnvBC222Q0fEBvYH\nDhh4FJ+CFdwJ0/Xk+Z7H81lj9/Nbq7n0k63724v2Ueyghh/o7stcuCtQFyMbByY4ZEtG+Q22wU48\nT+f18fnzMJct4TuZ5m/FKC9Z/bkNXz8r/OBLvoK9Kxj10oSvsR59oAN0QU6Hz2jhl9DNP7DR/rQC\nvOEoTrSP4EfgJP9ADztQSOo3WKyhmbfnu/746/o2DVztKjjpx1XPb7Nmc8DWwN7DJyux2j9Psleg\n3/bVXhLJo+lIvAEjOlxre3gPek8/78IBPO6g413jNXsQV/xavj9txt/Scb+B4WMT8Ux8IVd5Lv/H\nH8vp6D0fydfymXwVP2suuxQvrCWu8G/3t+KgHEjMUvw0lt2EExrhlH7JDxRQf/nLX65YqV9s9tWr\nly18j/HRw04VdxWR0cFez7b9vzghh/RCjc/l+xUm4enDIfF52kvw8knWQL/5/h5uHwfhCxrgwwfJ\nJfkOvEGzM1/Ft6CTv8rPWAPcq9p87lqL1ubot0Z7IPsCtnfYchdfmHvZIR5Zc86f6851gns6340D\nz23hdSpiLKqve2dOwqbcV2M+Oy+BkxQxkg6JgsTK2wjnNqNgMlSFQE6m4M9RSbwkexSf82JgOYxp\nIF1Tfoaa0nM2NnqCvgRAMstJwM26EsAKvdaWNEg84MIJMPA9zfv7yYsneY3G6LQuvBz1ObfxbdOA\nf2jCS8lXcybezfes5Mr1hNE8Y42RYHHQggnnB75kwKZHYiYREGC+/OUvr4SAXCbOYIDZ2hOf5+0a\nnRpaJx9dS3gV/wQ1X4/j64svvrg2M5w7Xa5NXgVzwu268ZJYmzywHYJWMPBfsUOyRoaKAQ4bE+sq\nHpEZO2Qnik0CpKTZvX42TNb0io3OIEsP4W6z7Ew/4MNXaDYS3q4KrNZkn7XJo/Dt2U3P8efYfImH\nLwf4L4ksOmqSHEmRDQfcJCQlMcEC23X3zX2UczCaE77u93B7hr/ktn8ejJueJ7zWC6Yz2SoM2GyT\nOR9r04oXfDm9IEt+2kGHZyHMVzQOvpW8wbQm3MnZRlpRBJ/d2xh7Zl1+mE4puogzJaXWoEOa9emu\nRE9R5rAlRL60okd8ko0ime15BYdohxN+okNMsPGlExJdPtNLD8UIdJdg2bQayxbYgbOklF1ZS3wT\n58Qeeg/H+Eqv2JqYaByb0GeMBLU+cKzfRjmc4YqXYpQD30tCi6X4RQ54hZf8Nz5YNz5bzxrmireS\nS7IyXrNeOHe/Hmw/6ncOr/ms5/qsg1Z8QJ8101/PJO3RTf54jB9wNtYRLvo8N94Zf9AojvNFDnkD\nnnlGTummNekL3FyLhcV4a2h7Wlbn7ke0GXuszeddG2dtsqYTimuKkA6bZj5Wo+t0yW8ReFnBbsjU\nXHyiG84dfCta0UgX8uv4hH59YOpHszZxmjTUH697pr/rnoHjGt/goIHv0D/HeQYGnNCefbpGVz7D\nmbzoKF0xHu10ma25Z+PFI/pNX9mtGCLHY6NilqKOeOcLFX6EDStMyAHpGLmDybcpytno+fIOf8Gw\nqRWTzrZ8MZtHhxafohUP6vMc7Vp846sc6JNf2rDCi3/hM9gAX8oP8ltwRQOfRs74O23g2FpzzdZt\nXD6ELvCh9Mv6Dtd8CZ5a1ybZIWfjv6ybHino4akCNf1EDzs9bD6XHvvtHAVCtFQYTBfA0fABDr7u\n9AIYD+gm36RYQO5kQ6bO6CdbvBEryIMOkFN6B79jMiB39MmpFBfsLcTyvgoUG+hCOMYv910vpLcf\n+/v6neO9a+Omnbmf8OZYvKCn4o2Xd3I+xRO0o01RgxwUGtNrNsP3sRsNDPyjy3z4xVZ04QvJplwM\nDsY7slE8Y2tk7wwv6+IZH8q2wMZ7/FJEYV/kY2y4sx8y7Dc+rEWOCkLsnE7RB3rSPGuK69bphSwa\nyILOyXvFKD5NUZcM0UanzrcXIXhBD+jAbJO3+uFylxa8ZOjedXDxct73/C5rNnevQ/U784mKcfJV\nxTxFe3rCv/FbbAUva9HRffh3fzrfnQN43DF9kT5+TE6iPuJPdvGh9JtN+ZV8fk2MMY5t0PtyPvYo\nL1Ps9IEIu+YDzLUn8Zsj4od+PtU4MYV9KAyKdzN+TdnDDV58469//euV3+vzcsOfQfDr9OCk5/JC\n+3pf7Sog00P+Hg5sXJ6hFsSXoYMe8h3w8PJF7jN5g+tgW1M/PySe24spvvJB8GXv9sE+QuL79Jnn\nwDPz9XW479AHNt8319avGdc5OMbVbxxfCRd0sTd8Zl/4oyBMfu4nzK6DPe/Xgqcfd+LAc1l4Teni\nDKXRV3+KSSEZCmPztlYyxngETkYn+DJISZ0gyWgkWJIKhslQOQnJqA2Ga2eHwDzXDBfn8OnaPZgC\nvmTVWgK9w/1hSwwZhyRCIifBkJxIeBzWF9gdnF7rznVaKx64f5oNbo5aOLvvmTNZkdMe7/1985zn\nM/NtePBRk+DhH6fnmUOxzkZBQMBfSZmETMBwrUjjb2RywHTAnNZw7n7Ssxb7EP1gDxy6oqiNjUDh\n6xF8s6mRhLfRwLNkHIvip/553XOJrUK4gOnrHoE6/ZDQ2vwL0t4utnkiS7AkAeZL6iXY3r6SLV0g\nO3ZGzmBKFNBSQLV+YyQIdMlYz63PH/AXNm30Q6LOfqPRuWvjb9PM1/bz9dsE2pj1hSOfpKGdPitA\nS0R8AUXP0QpOeBnrfg9b/6O0q3AEI165vss6rbGHoz+4ky7jJFt95eQLMrI925IxOnnY/Cp+8NfG\n8KM2Sg7FEj68xAgsjS7QbbpsPnnTPXHCM3omDogrNhf0CQ58WA2OYFjbRk2BVSGLj1fABcsLP76G\nvuGfdkxOntFHRYliggKzL3jgYF14ShzZhc06PG2Yi1lodU13ih/WFm/wCi50H97god0GVlxke3St\n4mtxUrJsHUeygStbZHcSZvGqopQkmGwcaPHcM/yDE35J9hW1HNbUp5ETnqO/oqt1py7AwX24xMvG\n9CycwY3v1kGf9fElP0Y2+KLPwRegP354RsYOMFrTvObqJz94o5P+4AF88Iqc8EnRxTX8zKWX6DZ+\n6ha89y3a648H1ti3ntXfXGPhKkHnR+i9Q55UXoIGxQh6z1f7soJM0AOO+XgRf9ChX84lJke7tZMD\n2tAajcZ75px84LanxXN9jQXTfXPca55r+puzOrYf+3v98BfLimfwKh6QN9tlwxWY0Mau6DeboCfg\nVrAiWzD55/4cCLsy5/729Y8XKGyBf7BRxXN8s5ESy2yGFQDZCdl8dIu5vow93wo8bF2z3r5Nnnk+\nx8Rrc7JX9mXTKkfmR8VPdiD2wc2h6MqH8Rfshbxrwbdu1561Vjj0LHngH39gfQUsRbKKXfwIHNAp\n7uOh4ppcji0Gg/7BV55v0+0lnHnGKK4p1OKbmMCfeQaPqS/0xD058qtt3sUMOHpOtuRjffpB3vwB\n/PDFfgJ88o5OPAjP+tyzBUUIsiVjOkCvvv3tb6+iBT0DR0uW6Xp4g9exBo4fxszW2sGa8/T1nLzY\nI5rZNjvHTwd7ZwvGo9PGXoFF4ZXPCI4zGsmF3uKnYv7Flp+RNTroODkYa82OeGWM52wOj9kM/Scf\nsbyv7fGebH0BTTZkBEexhS7jMZ3ie40Vy+mQeCn2GW9NNJMJu2Oz9BHu7JTvggea7TP4Q/jTTy9D\n6J71yA8eYIv7s6BEFmidLZ7PvtteoyH+492x1vqPY13raVOP3FuDjMhH4dVX4/ItuTv/RlbsJ91u\njnPtceAXrNP5AQfIpSP9iM9sj12Sl8KrmGSMIvkPfvCD5ffTZf3NA5mtsRX+4a233lp7RLqhGKkQ\n6YtLdseOjLGHZFdyYn/GgH9mW1M3XYPBB6l/qN2Abc/OJ/A5fsPvfIuBcsV0X44rBtijKtbySWKl\nfZvYBZ69lL9lK4eWz3hJBp7CKVz4muIaPPDGPZrds3l+xW9mehFlT8mnoNU//QIv/hofDP6FP+zI\nj/Ij+TjxyrW1Wi87AxMu+pMB2O41cRxe/heIF7XuFZV9UJZfbOycZ+7+Xt+p3Y0Dz3zhlVJoKY3r\n+vb9GaCxxti4SF69pRV8BUfBW4LkDRyDkUDrM6eEwzwbIYlGSaDESEARhBlwBjFxCMf5jNEK7hKp\nw7ZBFrQFb4kEpyGJtck1DnxBXwIqUeF0JD/WhFtwrdOBztk/eQO3p9XCr/Xh5eA0uu5ZY4/169Ou\nGmOTZ1PAuZCLTSG54Zm1BHjOUCLEsYEjwcJnTlNQsCHy99Uk98cSgnAOj4XQc/Ij/kYO/mjpFNo5\nfProvzl6o0YX8cw/JGNHNiECyFWtNYJ97J5M2KjA4T9H0nvrsBXJrCRAMBewC4SSBXKU+No0knsJ\nM7zJnG1Zl22BaSNlU4w+h3Ed8Ldm+AnybFRAVngVoBUi2LMxk57uwXrU1nrBm/P5IcmEDYRrvgq/\n+RP+y4bvsPmVfMicG07kB69j8Od411fhMvtdB3teg3+TNfZrdt8a7h8Gh+wkF3w63cQjfp6fZsP8\nqkIaedr40QvJjtY6neMNvcJfPhp/z7aNGd6KEfhr8ya5ExOsBW46FCxnegNGX2fZdIAFp3TXPG3P\nM7LSjAOLH4O7WGA9ui6mOTxrPbTCWYIMNl/o8Bw/jGUDaMATdKZDYhH7NZ4dwgE8emazKRk1Hpyu\n+V1JYgVZa1pDgm1jDF+bLzorWQXbfD4YvyW9+h2SUU0//MGGD3nBNzqMSS8m//Sj03yH5rk+h6Yf\nTPDh3Dh8ri+a8mXOaJzP8cF8Z4dnDjJPlq7NQ+/kkX7rOawvz7ApJUu+z8aCT4Mz3Ua7M1rAjpbo\ncZ40utei7cHdg59z7ryeY+IR2dPV8hT+zjP4kC+bo5P0ia5MePEgOYXfHNOajXE/n8/+xs7n9Tm3\nXtfXrZdNBcvcroPZ2vF89pOn4gq/a1PHbvTRX7pvLnnxQWSJR9b0cqyiA38CtgIPn6Xohp98hC/C\nwJeXKHjZ2PmKiJ6IQ34t0j8Vkae4nzRHS/RPvD3rubP12ZY4qHCk0GpD7IUlXMjbRtUBL/kyf5ZP\nBZvcJ9x0zvr6a8Z5Vl/4ueeHxGPr2pT7YoePY+9yNmsrYskxxH040M3sMxnht02nF8J4JicQFxV5\nfEGq4IqvbLGW3MNLP/1mj/CQg/hTB/DX2K6CkVxEHiK30Kexf7yRS7YG+GSvhadr/XTl/lZ0/81v\nfrP4zheKLwoR3/3udxff+aLGwzEYruNhPF8Db/gDHG3OBS+4eE835VM28AoV5dOtaz5cv/nNb668\niEzAjV48U1yRi/t6ji6TkTXEFLIVV/CPvfAjdJGe442GfnGXrVX4F3s8FwPhRU5gsAdHBT12R6cU\nbMRpa9ABhYjzrVhjr4Df5qKJHorr/DDYcC1GsjOHtXvZgFY2ag59cdYHB8Vo+oq++DH5u4i7/IEf\nt23JIjnu5bpfs7Wa576+2+DQens44OONnIwt8m90AW8UweTR7GQ2c2a7C14Tzun6PxxI7s57f0yW\nbI+s3n///eWb2IY93g9/+MNlf3zcsbn62Be7efPNN9ffgBYP2a14JmbZP7GpfsODf+GP7en4dzkh\nW+E3xCXz+WK5oznsWHzgm8QAv5nqS05x1fr0hf9g8+KlPaoYwFcrPLJ5OodO4/ydaoVTPs6a7NrH\nK2j18cKx2Jq+Ww/+PoR5/fXXl57jsviEXn4RPfyHXJpvc8jr5LryJ/aBRrmDHNIHefaV+CSvgE+t\n+BN/kh18ol0ffvkNEX9ih2/EK7j4MApuxRNwm9ca+/v6T+fbc+C5KbxiwXUOmaJTQEpEyRktZ2AD\nyNgoKiUXcBmh4M/ACv7GMAwOiNEKqBIOCfTcYIDv0FLY8Mo43VN0zsUXA5yQRE0fY3MWyCW47jku\nX5LAV/AXtDgqTigDm+tauzVda+73Yx48eXI/w6EVJ47xzLP6G98z9z1Dd9fzeddkLYkT0CXY+Ozr\nQG/tOB4OzhhJoQ1kxTLyJWeOynzJmIRAgm4sB9cazg5wwiXanpdztEZPdNZPN9nCa6+9toIN3uG3\nv4criaroMOcnu2D1rHOwe248eUjQfQHi75mSn3G+RvZrJYI0Gdt0sW8vJ2y2vLmsYAEeG2fXEl9n\ntiZZt6G82L64QEvFjdbvbD2H+/pspKwrCZFE2IzSE60xrpvn+lGbudqE517Q5b9sKG0gjJNs+GLj\nbCvk0V/04gkd1ZyNCx8wu14DHvJjP/chw//f47vMN3e2Y/ywSSVLxT2yJHt+0yaP3y5RMbeNT37U\nPX3lC5zxTpJk02yTJy44K6jQHzDMZQOSKD7ZutaStNlwaeCKJ/y9IoWNXZt98Sa/n4yiM7/ing1Y\nSxyTlPFTbMCmxeEa3TaV1ncYZ258EstcT/hoRSP4YBcn4cUvotcYfBPnrINec+gXPrg2ps1n+oZu\n19Y1H48kpWJvhWL+Ak7g4I/NMfvRR5Zske1bU594CC54nvdMPxhkhZ94ZS6czdXg6MBXNu85nNAM\nR/4ALejIb8Uv63XgleaZefBxgOvewS+AIUl2xgfjHcY1h47Bydkcc42xFl4rNPl6WeELz8hUI0Nj\nwmV1jh9gaMm6R/r3fT2b5zl/fx3+ztFsbvg442nrzPn7PvPqc60dw3HCeDDqPz97NueBOe8b06y5\nZuMa01z38Xc+C4az/p65J1f6Qw97eU6uNjr0jY2yAXpnHfrRn6mxueNjjJVb8uu+LmIjijXiKj2h\nEzZRNpKe0VsbSH/TThGK7cIjOpwd2rx2H/6dPSc/vkyuqbjmpR7dY2P8l82wGMOP2QiyVzRaU6MT\nWnxpzfrXw+1H/Y01nt6wWXxK98U2Lx74PLZtA4pXfkXUNV7DLVu0DtjB5ffNlwso5MLTSy90eLnE\n/sy3fvPW5O2HPjqg34tZOYXN67/+9a+Fj2fsm3zkADazeERO/BOc+R/8gae1rA9usMMT7XBVcPer\nqmIIP0W+51txQJ5DB/ioeA2vYDlr+uCFD/r2NK1Blz+aU19j5zzXdFJs8VKRL1LoEFf532zdOHT6\nszb0kYzED3jQKfwjV2dxUmymZ3hkXXbTy5yKC3TBGLm7cRq7ondkT98V0c2NFuP5TPYjB8B3eOAb\nXNkffYAD3tJlfKUT9mHkCWe0ieHwJBc48L98ufUc6Q55oNFzNolX5ppHhgpCvu5j667pWw3tU2fr\nj57ub3oGL78FrqYPPIdrfOCD4Ax3/Ca7OdY47TZ4tH5rLkCXP8Q1tqhg5stD9mF/ZZ8lnyev2cKj\nvtvg09zT+TgH8LiDzqQnRtMR9Qc+z9eibIve83ff+9731gsw/k5LVlNGFT35NDDIW/5rv0Tmiops\npq/n5a70h09l3+wdTmyLD5Dvsi/+xz6PT6fP9MbfhVV0pUfl6PASv8RMsYTds3Hxwz+XUn9hy3BH\nK7i+7PWRjxikGe/L/b7gPxwOaw67iWbjXKNPjutDJPTCT2ySL/Nb2T6c+VV08RHO7h3g4KF1z7a9\nHDzxW+EXXbMZi1/OxZZw0e9Ak1gutvC/YhRawFXYhZ+W3Kf8wmUNOP14LBx45guvN+ECxekQyBmC\npEYBUxCm3G0yGa8jRyJ5EigEUIdrTohhOcADu9b1sUBqDAW3HsPlWDggjkcCwPgEQ4ZinMO1NyAc\nh6RHMmx9DmLfGIvxzhmQMfO6OeHZ/ZM4H8PjqnWN1fZ46g9OY9A8m34OCG85F0U58uXQOVMBXwKI\nv5w6h8gZkrV+MsVfzsmvLPgaRUGtgBSPrem6/onD83J9jP+TNgFTgvvzn/98BSkJrl+rePnll1dA\na2xwyAZv8ayWHLufY/XhsSTYlze+NPEPHARz8xR3/QqHoGTTKnj5SkeBvb9zaa7ACjcFMPKWOGRf\ngrlAzp6d6YEWXp3h5Qh315Jwmzc6JuD7CoctzzldL6C3+LHnRyDwhR/zFlcyJAmw2XEcNv/Ch8E1\nvK/C46r+1tmfJ7yHzT2Gezazh/uw+2A1bq7tGbmRHx9pg8zeyZSPp6eKcZqx/APZObN9xQNyU7SQ\n2Nik6XPQGTKmX8a02aJrMzaID2LLxVbAhwe9omO9sZZEKlbwK71og8PUp/CLNrYC7xI0uiweoMka\n6MJPNEn44KNow1aM9UyzBn2AD3jgWhttbEMDwzM8YSPshd90LzZZS9ImRuFPvDLfAX5rgCWxjOfw\nwC+487F4ZSMLj2wTX8RC/IcbmtFAriWj+jX3/HTxEgy0iN2KM3hhbvOtAzc2ghfhQkau8dtzsnUY\nRy+MRQM41sMHdE2+move2QdPBxhdJ2f4G++wDnzlBMaCBR8083H0yZfBimx43xrBCObs9+y6Fr7X\njfGscc4afLX6u3beP5tz5rWxs01Y9aMp/tQ3YXTdM2NnX7h4Pvvdz2fuNWOC0XN9Dny9Csa+/wG0\nB/DIkh6xE/IFh/3Qf7rrHp107nwrqolfNouKMnRXYcgXYYqe9IBdeIlsjs2mTSr7oTfmvfLKK2sj\nydew13CLns76XXcfzs7m6W/j6ItOvwrMl9JJX8YoUnm5p+jlhSP/SL+DG10Tbs/CqWcTB8/YKBuT\n3/LdNsrWlqfrt5acGb3+rID8jk++qmBkHXAV4uTPDvwnEzScbRtafiMbmvi4dvQMbvy6ryj9mQF8\n4ReM4XMU7uSJio4VvuHMHyu40we5Jhqyc/i1Jr7BTUHq3r17K08FH/7iht+48sWU+DHlC4YGzp6/\n3beGe9cd5qFvP07/7DNevBFTbNzvb1/j8kn0eDZ04amvhJ34vgAAQABJREFUqBRUFDTop3GKJfSW\nDBQ+yJjvRTcfmO/FHzLRzGMz1mYD9NJYa/TFtZghRk06zGEfvmzjNz1jg/hGj8mD7eijB2Sm6Eq/\n0aCRXftERQuy0eBWflCMoBvgihFoMpbOic9inaY47Gv0883W6Quc0J7NJZs1+PJHMph9N71OxtbR\n3NesK76IJ3iKD2jCe/jU9jDqv8nZGhoa9nTgiS8VvcDg3+Do60M6o7DEfmabuAdzPj9d350Dydo5\nnQkqP+QFhqKrvZdiJBnZ83znO99Z/kms04IDhmtz5Xo+dnrnnXeW3NkLe7NP9KJKMZK92ct4ocMH\nsk92IsakD+yLH6G3YHqxwd7As77fNJi/OZKfhQe/I6byW+yTz2D7fKuYKYaEO1zUCNBrHynn09j7\n+Wa/fL214FZ+PO2X7oNhr/r2228vvylnxJNjvhv+rb0WuvyR3aBffiAG2O9ac9+ab471na0HNlv3\nsoy92SeK14rIeI9+8dDY1gOra+vs7/drn+4fnQPPfOGVUmgU5ZiCUELKx0A5fA5EUtem3FwbTEGX\nITFCyYJAKoBLEATgkgVB2wGeoMWgtBxNONjghptnDobLmUiuJa6SSAHZ+ppAbS2JBsOVeFiDowgH\nDgluWsbRmu4zujVg/AiXOWc8fqYuoyGeo1nTj068x1dfgDgkq5ILBRl/H9RbKM67okiFMjKVMOG7\nZxyTN/feCkmaa/HSvWt4PE8NTfE4WuMtOnuGXxLcN954Yzl1/b4Q9t+UBQoOvRYc9xO++2AHV99s\n5KvAInj42lVAEwzBEQAFJIHEeuzDOBskib5x7O1sS9YVZsiabEvAJfRk7uAfBKkCYThM+e7tSxAT\nCNHtixRf0UhiNfRM3axvPXyEH5N3k0f65wZD4iwwO3w9yN/UJs+DF9+NmXCbc915wrhu3ON8Zs25\n7sSZzZI9ftgcKhrwmZI1PppMteQl2aMX7JreVHR1zVc48E9CZrOl3+bQfZul/HLxhP+20aZDcCMP\n8cQG1EEmdEV/SWE0oCs9ozMSVjoKFhocbMCa1qCvzvBRxFUoRZu44QUdHkiQwZK4iW38IFqs1abe\nPXvAI4fx7uFIj8EXg9oAW5NNGYMfeBSv2jx7Zk6xEg3JgJzQgR4yMYcMFLZ97cpO4SsG4415cHXW\n4lH94GnGS74dxqDDM4ex0UV2nuvDX7QY03Ny6UBHOPB1fIXzpMfz+AkemsDe62njrBM+xsDb4Rpf\n8Nnmwhrui0ltko0DS+vsGlxt9s2xnrmfzVgHnqA1ut2DR4YO/NnPxcPZN9dv3XBpXOdjOOg79ry+\nCavrY3N6tp/XmvV337l5weze+K47R2s8MMb1vAfHPb7mL+ixucHUz87knvIV+s9fGCPfVHRky2xF\n3ug5HNg+OzfXxknRwhdjbChdsna0rIvLH+ZPHszr6KPHXlgpfNoI82tsUrFLzspG+TE+k89p3rH1\n9M01G2tdx8STLVoLzdZW6IMHvVRgs74CNF+a7+Z7gnlJ4jpNutDDdvlO+szn4Ge+r3nJNXzDzz27\nFl8UBRRdvcBnq+hXjPaCX74orydXdFlTTsGG+SWyFUfQo4UjnBQS0O1lsRep7o2lF/JPX3JZh8zj\nWXhPWLNv8qW1og2trjs871nX/FQxTu4spqLfF6D8Uw0+9INuKKjIhfABn43ju8RIm/6LrXjNv7EF\nskOPua7FGvZifb5v7rPwTJzot0boYPmceRr8NXJS2JMr+sKN/MnEQV70lv7C9yMf+cg6sx385uvI\njd4puMKbDM2zPhmKi2jTwGaf+MQm6TBdcW0eW3VPjvJDX9mVH6JzytK9Fh3r5hY/roKjn9zh5uME\ne2H8lj/gK37iUfNb+jb4TFvaz1cwU4jrH/2QR38P2IcLdGLOmfjM/vA7ne/OATyOz/HYWR8d55v8\n0ygf2cirD9uHHQqvdJo/Zp/8mLHlls5qGWxIHPHFJZvwsoyv9CLJSzTyNpdv4CP4/v58CTuTY/JF\n/Gj+lL3RMc/ERXHQyzjw+Aa2nG2xPz4IfL4BLP7fHqAPIOi9hl5w2b6iqz8ZAB8+QeMD+IzzrQAr\n5pZT7+3GGuK3vaoirrX5lngLN3PYH98HX2dr8ydoxcv/Ye9eVixLqgaO16OcBJ/AkYhi2oKjBu3W\nsr3jFQTbmTjyGRRUHLS2eFcaFRQVWh3URAc+RT7Kt3+781+9CE5WZ9bt60xPQGTEjlix7hGxIs4+\nJ/GOV+dpe4yXasxTabWXNuO1RwcOl87mmrfLzX0fWLJdP4nT+ml849RP6dlp4E5dvHK6Odk4XQcX\nm4yLGJ942HRMRP2cWlAnULCAOMBaMPRzWLACDc821TXl/Ojm8BYhE4lDd7AyqWy4Jo0Jj6bNDn2T\nTzDioNynwuiZJAIQwQs5LE5oRGflxXP8HOu7S20WCDpfFxoy0vP9+/cffuWADSxyLmV86uY/AAts\njbfos5VkcbXo0aHF21skNge2amEGt+r4ri1W5JPzaXUyytX5pGDcP7v66U9/um9mNj4bscD7sG3M\nYK9KU2fgZPSOJTY29wT+fn/Hzw2YC9ptujZbF0vGm+cuXR2K2LULJ/Y0L22I+vpARekyyTwz7+GM\nt/hPdrzpL2kXkDs4+BqZNxocjgqs8YNeOCeeWYcvWuqzL91oq2+vbH/0CVQcAvk2Ps63gEBwT15+\nP8esNCae8Nf2PMvJV3RXftKDMv0Eo40/Cm5cugvwBEuCNDZtDPvzB4GTC3IXHgIvB3DrsyDPmm2u\nTxrRYUe4+KK1whpijxAkytZwsPzOxQBaaMg+XOuwBo+ASq6ulODHc2u+dV92CNVmT1BXgkXD3gU/\ne/Njh2OHd4Gf5JN9flGQS778Uh0eQSG6kv0oPaBjftClEg/GBh/fxtCjzO+to8bMceiAk80berLf\nOswKxu2NXU64qCAPm4HHZ+sDHXuWs9PO+OUfdKTs5nnW175soR0NGbzSWDKKFeiCLejYMz3oN94z\n3ViX+Idn+tQHLhraZOPgT05jXbaZx4J++k23eCErnVWnE+PBwFWK757XUn82oFt+z2YOv7I6vcPL\nx62PfJxvk8F446xx6mQjD5mVUjT4UHwmTzKRR9IPXtKXb6UzsulPfu2S9nLPe8dlH1zZL/zpK3gw\nU3fag13rno0vqeOpTGd0qX0enODXxnYOiexNfyXyxwN9WSP08wcHXAdMMuNLO3piRgc+65gPHNtz\n0HinBE/0wE55a2dHF0biUdmz9cxeqxQz4ftYCsfEC6529al38sSTuSXedmlm7bK+0odDNTnJTHY+\nGv2JF+7oapc9y9HUhuaE3R+2P3NMbbPk4+aoSwQf3tt78eJi1P7vA0/rGVpoFmdYL+zN85CPFjhr\nufOF2Malq31Lm4tB67WDtjed7SFwlKac2tbn4CrRk/Jhz8bUrq9naxgfNvdduODNJbgLFOtaib+S\n397jEtNFhNjDnkTHXdp6k82eZLw1lJ/yITLSl3lT4utozD3OWnO2xTPs7wKzPSJ/TxY42Mj62Rtr\n9uXWLXPPGc+88WalSz4+jRcwZLbOiSH7eQE+SS9d1uKFT5LPHF0vXPmltYCcLnl8kECf+PZCgriD\nztL7MbvVlk6uU4ZvwoYn/ZCRXs0xlzDmuH3XRQzdsqMx+W+4wtPzdUo4JGPneO32E2/zm0PeSGZb\n88dlHD7od46Zss326/BxgrmeBqaO1xHWr15o8NaoOeEOw4cs1iZzwrzj7y5awUvKiy0md+diHloP\nzV3rRN/w8IGHuYS+uWTu+YaDMdZ//spnxA/wwWF9MPfRtdaYx+Y033Exal2afsfvzUe4jDVHzUHZ\nnppPKZsr5MGL9dhcsR+JZc1lPHtL3ocFzrzWMDKEh+zq5pdxD7ZvCFj/6Md4vFuLxL/FwO1r1j96\nMJYuyW2dtMfbA+2FZJRWm6HZ3G09s4Z7CcOluboPL/H9wvbWbt8WsSeEa8qwEzn9eSYauPUXr1Mr\nTRrOa5L51NJCIZCzGXM8G6tJxTE5nGBGMHnYLopsPIIAG7AFQ9AJB/gcE73pnLVrg894ARacSouD\nCa5dNuFsLDZnkxUfFjJ0LE5t+A498yCDLlrlAijtUu1vPd39v9mA3LNOL4Kbr3zlK/sCw6766dki\n6EezbfgW0cZZCI3jNzLbuHD9+te/vgdoFkcpeDRnqn223eY6+ejBBkU2zxZ0/irZDHxAYDH33yRd\nyAgs/byARd1maGybwKqLVV/pc21vnH4bprcX/PaOr4CYk/DbZM1hNjLe3LU5uyy3GXcpZYO1kQk6\nZfNbUAyeb0jxsdaPPWuTyGndcNHPZ2xsgnS8yOYwfUWDDvlaObi3sL31V5+En3gCJ63wfNoHCQ5I\nAoDzy4vXw+b3/LhxxtIXfOGYfdEB96g0xzwK7jp90aw0ZuKfdTBl7VNH5HIIMqcF9XQhUGRnb1cI\nuthfoCHoc1B28BJAuQyR8tVJM32hhbagyVptjXaIVMIvoLKvsC0b9MEaH+xTdWs+POYV35UFkvwa\nHe18hZ+gQx6+qeQ/9eEDnvzegdxhskM53zdPuni13wgSHWwEyeSDQ1JHe+py79j+gKE388Te1KVr\n/Xgjs32KHHCh1aWMsfZbl0c+RKQ3tKy1XfIJIOW5R/JZshWYwifbO801vMIBjk7BaksufNOlpH2d\nb/GvNGaO61kpwSWnH/zL2aJ5zWZosqVMH2wITjs4ZWOVaJCH3chCX/Z/lzo+PKBXeMGR16U0/7XO\n8VltcilYvKaPZFBqQ48+6Mx8oD+6xQO/ZRe20I5H80nchCcHIb5lrEMCXuAgI1/Av5jLs3Z8Fveg\nSS/pAz94kcHijZ71g3PwQIvP0COa+IIzm4BNx9pK2ulbH7ySkq7QAzttBY7uSlNPtdFF7emOzWZM\nR4/0Rx7+LnZ0cDN/tZ1tlwv2RQdP9kOzi21w1hB85xf6kzU+lHA58Pomjzdd7bvpML8NPr49hwvM\nChf8LK1PbMAWZOYj7JnPpfOrcB3r18Y+dELvxtJFfsl/Li4P6vZmcrkYs6cetv0MH8fwklPK3mDK\n2tBpHLjJc+2zDcxsh1+/TC8uX70N5XJPn4O/3+50COejwXeA5tPmjLUu/WV/F5rWaodjayW/coFg\nj3I54aDdwR7eZMRjCa8r//qSQT2e1vHaJePV2Yb/mu8uHLzdS164zOPWD77ONvwPjy7v7EW9jWVN\nsBc7f9mP2dW6aM40V6zx8GoHT09S6wJduXSwv4njzCH6vUpW89pccoEtJvIBvDkFn/UDj/QqBsBz\nuNi0C1frHfnx07jVbujwY2senvllMpkjdGTvE3/QHV93Me2r9OSwvkrTbtNWx+TbBzziz1Xjo8G2\nZLIu8VtxI58UE8jWJjqayVjjyHOTZFx0V1nowkU8v/KTHXTkvOYr4vydT9HnHAdXabbXdiqfXANT\nx7DNZ/ODnWQXgpI5kc+YB/ycXfmXWJHfmNfOXNZ167z5a+/yYZJ5wP/YWgIvwSXusP6bh/Ygc1g/\nnvgPP7Z2WGsO274gq5tX/AOsMl8xTps1V2kNbC1LTrDBtWeY2/ZosomBXJ7iy3rsbEkWLzU0b6IJ\nDxzo4d8ZAY7iaGuEMWWy4N3aL9E3GdEmu3UQTedM6yFdJhv4dEMmdeuTvediW3PtL+YZ21irfbhh\nntlj4J144Dql56OBW3/x2sShLk7E8QSxPknzdQa/IWPz54ySYG4e4myuHJDzy545PBwCfxtsE8p4\n+Euz3UQzIQ7bIsCpObmFxuJig9dvITIhwm+B8amOgEsdPXxGwxg8maDa9VsMkoXs8aBs4Yi/u1qS\nlW7oaeqAvBYfG7k3L309q7dVLYAWT29oeiOODeBpDFwy/7ApfOtb39oXKfYLRjn9be/Y/oSn57tU\nTnnph95dEPjvli5AbUSHzeddugos1c0nKZ+c+niUrqJ1DMYGZE6zH9o2d7xMGuj6sENQ7RNCgbaD\nrs3aHDPe2xuC64J8Mpm3srlvboE37zv84h9vMpolz2jyF/9J88UXX9zfYu+AmBw2UnMfbjT4KDwz\nw9lz46KpzxgJTP2efajkgwQbK1m9deOTUR/8kAm8BBdZJePLnrVPnNquSteFQ++d0jFcx8aBm/xP\nHeBdH3vSMz9xeHTwcTHq03PBIJu6LHLh6is2DokOj8amo/jVFs1KgZCD5IPt02uHZBev1hA25Sf2\nlIIjl61oCU473IHDVxdUglEZXxL78o10ggcJb9YkPqUfHXyzNRvbYwRkgjb4zUcXdw6e5Ha57GtF\nPhBxgZEf7cgv/2T/aGsmk4DRBTa57Vt4sR/xK7zTMXr2JUmfwBCP5LKH2t+U4MlkvtCTTDf4hrd5\np/QsENUvSFXHtz440jVaBdzGsD39slVwXSzaQ9FOfqVnelVO2Y1trgSvraQPvVJ9s6weTCW9hhsO\ntCX+S5/81T5F761x7GuNccHjsEN3bGAsHGjJ4eUn+QvcZAMXz3igKyVYNuBjJfAyG7rIEEPhxyEK\nTTrn38alcz7AxtZN9nFRR+d8Al22I2PxFP7IAEd+rw+Oi+3A4KDCb9gSb/l7l5t4x59MbvwqPZsH\naKGpHc9woENP6MDLV6zL1g2wxoNNr55r5wd4lckn8838C3/sYizefRvEPmmNoAt7EfvRG1zmk/nl\ngovNyYxnib6SyTMZJG105pLC74l7u7D4RB/ZwGbnnvfB44/2MvjyAHnYH45jMOD1l8CUaq/MB8S5\n9mK2ZQfy0Btdgs0edEQ2vk/HV8kU/kk7HiqD8QyOrqrPkk9JaIXP2OqN4y/WVmuswzTb23Nlc6PE\nl9kZDjB8EG7P5rq3/vynbz4AJz28sL2J5KeTsm1zI/nxEI7oxF/P8JfB02XjtUtK4xpLdpePPrTz\nDRqXl2wkwSGbz842fFmMZS2yB1mHrdV8X4Kz/bLLGPNAspazNbn4O5r8ocsaeOC0V6HRtxD5SXIr\n45sc8WcO2ZtdZFuz+JI+MaHLBt/EcjkOP/rWLucCe1QXI3gx561bfM9ebs0hDxmsgXi2duDBeoBX\nc9s3GPEGzvynS5dV7C7usAe7WCSLsdmAXrKLerKpXzet4z3L+KED/LoA9zuP/M6c8oHs+fn5zj/f\nQ5cfTP1el35w0YVrlUMfPboM8tVnl68u8vBhTXMpLl5hm5mMK604az+VT6aBqWOY0rN263Q+z5f4\nszks22vNGS/iOF+5a/EMjh+ZH9YHPxEj7vYWv3liDpSi5Rk9Y81Ba6L9PN7yS+uMNY2fyOrhqAzX\nfI5efcq1P/rRMh/wYi0xl63b+LMW2sutLcWnK364wwcHPXqGOxnmmHhpjD600iVZ42uOAx9e8wuP\nYg/fyPABi3OQ84657nwolrS+GTNphmPiPtWfjQZu/cXrqhbO7WLlwXZAtsHY/GzqEmfncDIn5tAm\nVpsNpzZBBEsdTDhjiZM2mWr3DJdA3ETk4BxbwGATsThZGAoy+jRHkCBbpHyygy6cZTiNhdMmSS6b\nvmAILnTxLzUZja0tnu9qmR3IXiK/dp8uC3Js6BZ8i7zgyif4frPFYiQQAW+8UjKWb/hE3MWrjULQ\nVZ8y2L3x8o9xdymlx2RNPs/80Cfmr7/++r0333xz160LVxePLrzpK502rxpfeZWujtEDaxxcAkc/\nM+CtV4Fytm8cO5t7DkA+iSzINecEBezuU0vBtjEy3GyOb0ECOoIJFwlknfNJ3yoDmg5J/sEXf3Pw\nMnfhNla2lrSekAff8JQ9y9YJWTJu8qg9OOP04cdFsoOGNc9acb5trvwWH+QxJl4qo6ss1dbz8ygn\n/UkPnzOB01b75DU90YUsaXPodSnoUoPtrZ0CQGsDP/WBjOAJzslH+LTTuXXZWuGADQ+f9yaNPUWf\nZLxglA85YAvG0BKQ6WN7OPCkFBypCyrxjI7x9ifwbKasnY/xUSUacLO1Q6EgFk1j4LSnuIz34ZIL\nU3uQQ6c3Xh3+4HxUIj+/5/8uF8yX3txzWWYvsteZI+ZVl2P4JS9e7FvwmGf66V7gSqdkgMNBDx58\n04EgG0yBNt+V0QRDh/QGb3T4OF2gBwZPaNq/yQAOHRc4bA0f+fFK312egYsOPPrRwVelNuPBwgHu\nWCLj6lPgtM1SfeJAB//2KTrna/QrkdG65iLicDg8vORofPSigddybWDV6QUdlwN8UXLZwSZ0wAet\nX+Dp3Dr7YIulHJbFKWDonf/xSfjybf5nTmindxeO6nBFV+yCD3j0yXyCTo11wHNQcGFzsfkynPrR\n5O90EU7weKQ78rIX/+FL6GknD1vLaKCdL+Fbpo/mItnBSeFXkgEffI0PqNMbv+Jf+FJHx3xx8WJN\nNo+6eLUnWRvwSk7ysTNYdsezPgnvM2VPdO23/iO0fceHO8nVGDKWjVNXkkGOhvaZtNNhsPoaG1xj\nwlH7VSV4GV26ZluHdDoyn+nLmkEO8wscm9EtXekzT8ODbrRXXtZnPNGJrC+50NAWrsYlg/baqivT\nLzu5NLfv8lNzx1uDXSrAbzzftaaxDx/RDg+52dz/G5A9g+cfLtRdvJ5tH6gVR+ArnMYfS8bL+uVj\nz8YdG8/meHAB7FtM4jv24fcSPlxW4k920Si2al01l0tkpSfz3AUAPPzcfklvzUe4rdPanYFcwJEx\nOi5IrXf8Av50l4zKEnr475sezn38DAx63kzz+4gvbJfaXoiBzxjrK97QFyuYk+yFln3WmsP/zDm2\ntI8ZA84aA481ie3phD7IpV+s6fIXH+a/M8X5Fpv1IWl2mHIkT309X7cMV+M9VyenmMCLC/YXurCO\n0LMYgYxSY5Tho493SsG/0xg2F7N6WUAsZe31goxvi4nb7SvZOprh9Jw89Z3Kp6eBVc+ezRPrg7lr\n35Saw9YF/i5GsKZb08Tb5hN4PiUOsJb5YMI8sW7YP6dPsSlasnrPaK88oa/d+HAEr0/9qhQN/Y1V\nX9vjQ5/kGU2+aw1o7hfj0EN059jqjVdGF3xj3qLy9t/gj8GEM76U4LSLYaxP1hwX4NYgdqFv649s\n/bYG4Xkm46WreJqwp/qTa+DWX7xymOk0bcA2Xwu8RUHAJ8CzEAjaBXKShcTCb1MVKFhg4CrgADNx\nN8EEF7JAUYAo6LZ52YSVNmyTEj0LkODbAdTh3aIkIJEFG/gFg05Ob2FrwYIPv3g0ViBjAYi3xjX5\n4ncH+B/4Q+5kJ66Fje4EQj6dZxP6syAJLF3ezUMOfaUzPiIw8w+1fHWcHQv6UmWwPSuz22y7bfUp\n19Snuk1H5qc+RfOfGgVx5olP0Fy6utSh9+ZIek03lY/SSzwEO5/NTZ/i+ZTcD5azI560S+aMoM2l\nmgOpQxtfMFesAeB9YinANu/DDcb87cIILuuF+WreBounaMWfko/4+oaLV2+CWF+0B5Pu6Kr1Zfaj\n1zPd4QdvjVPXn171e9YuAPB2nB+8J+Nhu5Tx9VMXr4J9/hwsfJMHdOGC11oG7mmm6+DLBpPuo8Yd\ng28s+Waia3Z0+eF3mvgOOa0H1gYfyLAd+fm1fcBaLKvTLX2pWzv4jkO2wNLBSt/kB99w2RO6nPTM\nf8DaX+T8qfFwGMsW+Ftxhtc6BDf/csEjeOLvMnrGkdflmGBL4OUSkh8IePmF0li00KczPMqSNvK6\nlLM/eavX5at9ij5dOjmQ2vOMTU/6+Jo+B2X8mI8CQQdZGTwYQSAZuizVTid0k87JAqc2+57DOR4E\nvdrsq+jI1hx6026us40xbIoHtPBrzFzL9dkX8CPrk6cu8C/RF36tKWfbIcJlN5zg2WfaDLw2SXuZ\nPOrklaVsi6Y6GLp3YS6zH5uQQRzgw4IuHvMVcuJTmU/tyLc/8NGtPrq1ntGPSyPrW/jJT5d8ReYj\nxS78wOWgvZP+0aVz/sfO+M5+bOCZruDQz2fJzVeaW/ikf3TRA4eeRH5z1kUvHRhH//TtYoO/GwOv\nBLeELwluWeJvdIuWDA94/fTBL80ZfNEhfeE/GG35JPz5S76Ef7yTVfYsifPMG3o2HowP5GV6lvhq\nc5W87MJO6M8UP3jCPzms794Os9fxB+3gmkvwkEVW104P/AiPSrqRgjOejDLdklWJnrFoSPgoe462\nuqRPim91bXR+sV3+uByTrVH80Xi2zf/i0VrSxR5e8LBmMuAXjvhmGxksv+TnfJh+6QFe85gP04Wx\n6QmvYPBbqU0y19EDz2/E4t4KJQdZvf3potDakG/yH3J7RhePZOYbXgLw1h8fh9N4Px/RT8KQGQ8S\n/BK+wGrXVnt9ytnmWZo26Rkcua2V4mH7hW8IOjOxEzouQfFlr/TBz9m29tEdX8+H6ASuSSP9mVfW\nbvjpyxpuPrOLeWHumQfWDX7Gl8Xf9Khko3Q+5YoWWeiCDPYqX6kVl7IJ3cOJbxfZPnzsJYxiQvMO\nX/jMRumH/6CtlPCIX6XEPuIH9naZhHc4zDc4vXnrA1DrGR2+sF10+nqytQtfybPaGO761G+apm7C\nw54Ptg/P6Melq3nlG2ouYvBvHoAtTxzoh+dRvGTz4I0JT3j1iaX4mbeqlfTrTWS+Tz90ap7MFB5t\n1+Fljj3Vn0wDdF/mq+rWBjbKxtZWdrXf2fusueaBOWIO27MPh8Mew0xfu4qz8KI17V0dH3iYacLO\nOaVdamxjolH7Cuc5nMFaL81/spG/PSH8jZk0rsIfTOUx+uF9JxjyWsOcAe0t1j9rm/WWDXwgKHsZ\nsHUKzqnDeJ9t0T2VT18Dd+biNce1CfuqpcBGMGFRsNHbRE2WFnWTRxAAXjBko27CUnOTLZXbIAQb\nDhUC6UqbmGDEgd7ljSASjYIai5CNT25RKtgQlKE5aRkLx9kW5Niw4dRGDhu6CSWYkZos8fi/VE6d\nzXqbguBbkMNObC9YpneZP0y9Gy8JnAQj3/72t/dPyTtY6w8mP5u6rm+23ab6KhN5ZlsLu0Xdm64u\nP8G4dPWp+fn2Sb5gnJ/OcenguvppbPCeq5tP6Htj2VsZvvo67WhOmi8+WRW0m1sCfpuR0iHXfIdH\nJhNf4RvmroDP/JasB+aaiwbrQnzkM8klgEaLDvxjLRcjfEjCd7wbb6xc315Z/oDHE/iZw6UvnHA5\nCDy4fLNf0IO+INbBnN+v8HQik1+yppUXVp7oMR7fCQkZZ7rOuKvGzPbwkJMdO+y7aOKn1lZBiICQ\nvQQtbC14lK21snbZ4Yn/CGQEXuGPd8/RV5ezIzvpq9+Ydby+xk248NcPp8zv2oPsFdYpMHw1WfgG\nW4PtQOsQak00T/NF8vMBujI/+D49uawgs2d4zBO0ysbBrV1wV5DtgqE1F//4ghusoNt4/Z6149le\njAae6MEYdPHg03uHahffbAMWv/DAR3bjWt/ZB95ow0feytrpER5ykEEdT2AlONAyTh+eXUT4cMWb\nOep4kCbvcCQDvvQlI3zwyslKb+iTA0/WNP7G/8iUvOwtFlCCxyc8YNic3MaiR3/wG+uCg13Z1IdO\nYhAf3noW+4Cng+zioOQSzDO54WYHGV9o0juf6mKEvDLZyWGsDA4OY+CR0cQrHu3RcMjkAstvL7ZY\nycWrD0vwDxZ+cvMvPmwsenRGF8Yqy57BzP7sQubskv480x9eZTyinT/BS0/RjR97hqwPTbYWn5k7\nYg24jKEv9mNvCW664NPgjWOzEvxSPKcD8pDfGsYHu9DTbjwZ5Gl/dbriw8bSN34lcus3Hgz+wLFf\nuvYMHgw+yGQMnRiTHeIVXrD6tdGhtdMbOC5blPZlfErZih75DH3hwzN/ktGorgSDJ+2StuZIh0v6\n9YGrD8z4Pp7F6/Z7b/6wh/H4MEfMF3XykVNSZnu8qfMZ+60PJC42XwVPr+zhLACO/BLZ8CnDb/55\nM4x/W9MkvLuY8y0tHxr7kMX49INmujQHJHqVZ92zcbPUnyzqeOV7ZHA2EVORg03wZY7So2+G+KDO\n5X4fUrb2RAO+NaElg6Fv85nMbOCSmU3Ild8Zz5bswqd9OHHYLmnQggOuZK0Ob23mDTn4lW9D+TaK\ndUo/vH5mp396yqete85Q9E92+4z5gK74ie3g57N0oZ++8gHxA/8SL+K5/S4/5EfOnd6G9iEtHvrg\n04sgnuEqoZW+asP7kyT4JLY278Tr8cNPvf37yiuv7H7WemRMfDX+JnwYs46bz3B5Fo+5HPehg5c4\n8OPFBW+99oZzfKSD8Hi+CU+NP5VPTwNz7rELe1jXzBdrShmcOdE63h7ZmDjqOf+ofS1XuAmfT4Ap\nBV9bMJXag6mtscrGqesPtr45pj5lWb/1K3hlY8CUavM822f/sfb6ldZT89x8spaLma2L1ilzqnjV\nmmo/kuBEu3Jv3P5Mfmo7lU9fA7f+4pVKOI+JLpn4Nnkbq41PAGwz5FBg5iIhKJA5qUBgdXBjTJ42\nXQGRNz1sujZgAamNt4OGoAgNOG3wAg4bjYBDoIYPm2EpevGmHQ6bkeBQIGeyGOMgBgd88De20lh4\n5rO2u5rIKj1K3mCCmwvhHFeAZ5MQqH33u9/d34oryN0JbX/Sr7ET96wHe1vKqYeV5/psqg4JLjx/\n+MMf7huqN+i8SXC+Xbo6qNPB1E86vYluoteYqWfz1kHc251vvPHGwzdezTebifnozQPZJu+iALw5\nY2OCE1wBMlnVzS+HJaVn64DA3YHKwRnd+DIGnvgTpLuI8TaFH4y3PlgLOmjBVxC54oBrpvrDrU+b\nXFulPnI7FDhwePOGvC6eHd58fQwPE94Y64hsLLx4K+u/TWnV13yuTh7rv73A1/7Y1JwWkLh0VbKR\ntdrlPF9xQHeQk/l9B0S6lOGuzp8cmlsn0m8w+tgBDTB0PW3CDpJx0TFWu/kTbPgKmvikA6x9YO5b\nE775Z6w6HvLN+NCGR+PMEXsnvPZDz/gAQwbzw7xycPTc5Yx5Z7/Sby/Uj080pWihYzw48wZN+kWL\n/J7jxzO7OSDbw72lI5gEn27yW7CSUl+6SheV2iVl9fq0qxtfXQkuPeonsw92zHVzzTNb2Nfpi9x0\ngzdj2UZ7F3hg8aldCQYOOpPpKHr6kin70R8/oieJ7vgA+nSTv+ozVr82/dY0OuXjrWtgZor/7IQ3\nfOAbLnKok48vsSW+8YR38OV8BU448JF/4dkzueDo4pVc2s1HlyLiJgcK/KNPbxJ68LIJHHJ6wUd1\nfGZT48DjRdJOFvZBky6yV/J6zqeiowyPEh/o1ZaOGouWvmCD056NlfGlfU3GSJXV8ZIewhsuz2Qi\nizaw9CHGMV/xLKUf/fRvbsrZxeVSF/H64YLXOM/0zefxAYd+tNFKL9YUl/3eAHQ4tNbiS4o3pVxa\nZfUsoymTA3508IMPPmldl/kln3fxypf4ngTOmtXP8cDRPGq+wBc9PJENTXIq+Qvc9lx7MBh405s6\nuHxDXQIrfpf5tIQOXv1MkW8NHS4vHfWhA7fx+FTCTWa6LqmXV16Dg4fO0XXR72ziLXYfYFtjzTmJ\nbzis+3q+A7tvh9gn4cWrxPbNC8/aV560m1s+0LSOu9i19pCVb1kn2JBMcJHPmccHos5Y8R1+/Mvx\nUDubWdd880cc5NstZEMbLXEq3YrN2BUPfCKZ2YzOfSjp4tVaRBa6sk7RCzvg17kPHhkcnief8PML\nvHijk8+Ddakue7t06pEMZCL/xDNlBPM4ifw+1PECkn8o7MNL50mxqt9TZWO6RytbknvV8U1pz/Hq\nEhrJSe9envBzFuYl3XvLm428xCCGWOUPT7h2pKc/z1QD044Irc/a+A1brfbSdyzlZ/l6dm18z8ZO\nvNrrCxbM2jafJxxYqf61Hq3ZP8fXfqwNrtke7tqMbXxy00MpOGX6qS/4xgdbv1KfNdA6a12zpluD\nrE8+6LGuWYOOrTvxBi9ano/RmPRO9aejgVt/8TqdUl3AayPmgD55dPkiQLKRcuyCD8EgBxUoHwuS\nOaKNtUBUsNbXSgQGgjzODGefjNqoBVcuSQU3DvEmhGAHDWk6do6uTV2GU8Ag2BWg4AHPeIU3ficu\n407pehpoMWvxa8Ex2mHRxet3vvOdPTARaJeyW3bqWf+sB39bymO+Qx5BJN3wW2+nCJZee+21exfb\n5VWXrv0YvoCNPo1LP9pukoxrfPqsDR7Brw9UfF3K71QJ2vCHrpKtvMFinrYGdMEAHxil+eTwYo6B\nbX6jZW41l81fwWvyTFngEbSaow4K3ghxQDVfHVJsdIctoBSoo3cTXUyZJ821Tm7riiD/wfbWq7XG\n+tR/V6aP9LiOnTKBuQpuHfe0n5uDk/6so/cofehbk/Hw1ufw4VNg34Jw4OUb7MReDlOCFrrr0pXd\n+Q1f4DPpCl45fujXAd9eYN3QB3c+w8cEP/yBn6HJ5/hCPFrXzTNj0OPjtYEJVt2+wJfIZh/g/+Sy\nv6TH9LXqpGd40ot68OSsnnzB4cFex9fpi99rc2gmk4O6PjLiDy4y0Cu50NGmj/z0Fj0weAcDr37z\nkR6sM74y5aBmD4dzTfG4yuWZvmR28IwWXcPTuEp4waxJf+14JqfDoflObn32fLEEntu7tTcOTX4h\na4NTHR9KMvOfeaGSHrTBSd+tI+p4oTc0rVdkC1/6RKe2fMzlkzGNtX6kF/jZuYw2OsbiWz3+leyV\nTcGqk0Nmw8rkQhOtYiQl/vgDWP5ENnzjk4+buy5e1cU/xsBBBrybMzIe8Yen+EYPDFh6hreUHGBm\nu35tsqQP7Eza5pjZP9sbU//sW9t6bsyErQ2MrK+y+nwO/lFl8BNGmyzxOXaRq7MpG6OZPvNLegcn\n0R08+vJV8OxnjRUfs1cJPNvBK5cmj5M3/StsYyrz1eh4lsLvObpwqx/DGV39UniDVYZ7BxgwxpJf\nCQ4vcrhq10fPh8Nh3yvoGBxft37CwafTcTqN7rRFsK3NXW6i1dxzkeg81DfnzEEJDBv2j7Mc2K11\nYhlru3VBwhua5hX+8IFnMqBr7ZL021edw1yG+vAMfl959Qbo2fZ2K58ipzXeB/vWVJfP/WTTjujy\nTzpPbs9SvmU/dKmPlguIi23/wGsfxtMFWP5HB+iiTy6XffZqe7m4QJs+MiVbMHhkD/TJT6ZsAr/4\nwYe84lQ8kNNlp4tXH/CDXROfoP/SrNd2kxJv1k2x4fe///39HOwSxgWnt0tdprdOpsdo0hkde177\nbsID2DmejHyCfbyB66cYrO9s7Rtj3vTOJ+IleuHxvPYFcyqfrgbofOqa/Zp7UQIjr+31K6ft4Mj/\na8/Pwh9N/dXDp61xtYGZOLTXVl3Z2MYH09gJ0zhyzXFXzYuJMzzhqK9npTTxxstsAzP1Goz2NbVf\nWNdk61BnUeuWtOLSFr2pgwkH5pSejQZu/cVrasnBOZGDs7clXLz6+oxPHgXhkkBDYM9BbZI2A5Ne\nMtZGKngoiFA6GAg+BCEuNxymbco5fAd3G4lDggx/B5+JPz53gpd/5qRSF2ThAQ3wNnh8mlBowrfi\nCUe0Jv67WrdI0IM85VeXZnvPa1v6gktQ5eLqm9/85h4cCrpmgnfS0xetCXeb6uQ5lshFNy4VzCGf\n4PttVfNAoCSA86m5gHbFkZ6Mb6M9RqO2dJo9a1eGywFbQO1H+V28CmrrUwok8WbumOv4Nl8k+MGY\n2+DMLXPapoR/bdYEh0NrQgf8fAMO4+VkQssbBK0FcOvnQ2dbsO3gIth1+SqIp4f4UMITTuVM+ktr\nX+1gHKZ8jd7X67xF5OLZzz843JCRPo2PbmPfLSX+6QGf8Vp5ldwr78Ynn7ElbdZKenFBKeD3Fit4\nQUm+wub2B2/J6Hcws94am+7gnHU+xncc6tia3vmT1BrNp/iGw5x+fmE9j0dw9gf8qHeJVNs80MHL\nf7ThzcGZTA4vDrbayCvhEw14Z9KuTVlqjGdjPMtg5Or4JkuHTvJrI6NDqkMrfWg3hixd8sGLbxk8\nmHghtzrZ9JknsrEuaVy4+rCFDSWwEhpSuvQse7Zm46kDNLwSvZrX1oV4Q984eJMpu7R3xz8Z2bo3\nstDhv/DBS2aw+Ier+c6P4KT7+M3m2uExV+knuVqfxB4yGPjiN9zsjq72fDZ+yZReyO9ZH97QIp+Y\novhHO1r4j57x+M9+8EgTD15k4/Edz9WzuXHRzA54N5YvoaEu4YmN6Nb8FM9lN+2eu4w1X+GRkk0d\nDmt5+km3+tKNuuS5MjgyynhSSnRBhuZWsHvn+BM+/cfq0W98z6FojOcJoz0/0l5f4/AZruDCscI2\nZi3hCBaucE6ejo2p31hj6C1e6I1/4incldHreeI2PrzpXH9t6o2beBrXmOCDnTi0rfBwSY0PfuJR\nNzac4dgHbn/C63nCeZ54PJtv5ol5IIlf0JbDn057nvTDtw/e/tC9/cg6aD7qNx/MIdm6Nf3YOPiN\n8dMCZ9s650NFF4XWfXslHlsXWtPCYe5aN+wP9lY8mpcuU33bxJvO9inx0osvvrhfQrrUJbN1Xvzi\ng1F8+raOD/ads0rJSh/q2Uc/Xsh0scWDLnBdvooTnf/MfzzbC6xHUnr1jFf7ljrdk99e3QeJ1nxj\nZX3g0KY/8ll3yd0aDbf1yreQXLySjS5f2C5dvdEJd2vczsz2h66Si2xS5f7wGH+sefZN/4TW/2Mg\np8tfv6PqLWZ8SOigLZELL2Rq7mq/KS9wNEa9BK8PCV1K+9Yam/Nzv+vqQljMyj/YwfhwGD/xzPZw\nn8pnpwG6z6Z03zOKzcP61z7P0hxnTD6nXfac/+0DljHBhb9nsLUp17kVLn3GrKl2pRTMOh8bt/K9\njguusn7PcHuWqwc3n9VlqfGV2ma/Z6m4xBwz98GbR9YlOvG86vetkW/L3POpfD4auDMXr6mLkwny\nHKJt/G3CBX42TYG7w5w3+QTyxgjabVACDpclghYBhT4OzeFtxDZlm7BnGwk6DohwwSsYMRFkY+VS\nk2aWJoTJYVJP+OvUw1sJ76RX++OW8EnHcNYX7mBme23BXKdsfGM9V2+8tuC06V9htD8KbsXLDr7q\n5I3XL33pS/tXSgsCwqW8io6+d3s6xvsxntMtXzaHfIXLV4McdulHEOdiUUB+1WYHL3rhOkanNnAy\nG0jxmY2UDusum/yO1+9///s9qAYnGDZfzU3jXUr5tN+cnXjgFegXKJvrDgrmfWuCtwcFzuRGs402\nnuA3zgcw6AnqHWjopUM+fuB14eZw4aJGoGs9QVvpspdvWV/QgVcpd3kwLyLIMeHwY30RuDpsWON8\n6AO3Nwi80dBFGNzGT1lan+ioOjgZfTaVJ1/ol1qrlK1zYNUnnbWOD7oWHHT5Qn8SedknHdCP3GHP\nWPjxbC0vs5U+sPQLHg7rOru4VLU+O5ihC45uBCVw2Af0+/AMbyvPyZz8aKHBB1yss7FDosMZ3dGD\nBMb84JtKdOuDQ5olumV96E2a2QIMXh3ufAjhwNoeNuHDHS5lbcHVFi39x2D4Atvweb7dQZPN+Du/\nk+FhT/uikr2MpQsZjnSEDpnoBT57anj1sZ257ELcATYZ9aEDD3g4jTWn2J9t7dHsoQ0MOvzEfLFH\nK9m6mCDdxlt+ppTQgDf50WEH/kRWJVzwgCVrOsYv2PjWrg63ds/gteXT4UEnGbXxfXJIniXPxsEH\nBxnoNF17hr9Snd2k+IAXL8Hpg09ufqEHh7GNDwc85JD1sfmE1V4KJ52xgbFwt97Ury8bka95z6/Y\nsLc7XICwp3ElsPzFPtCleP3oSdHDm7ba9Wmjv/RPJvpha34JL7rpJhyNhcsY+jQv2IM+4otc8Mlk\nN14ugZW14TP8ZCAX3V1FOzx4aNyULRqVYB4FF77glbVNvLVNuLUePNip/+Bmf/7GDulgwsFBx3Qr\ngzE+P1FK5q01y1oAhi+xobjdXs+fJl30SpMu3cMZXn14ZAe5dmPxBqecfdVrB2M8G/MxcuBj2hXM\n5MvzTVI6VkaXv5Ej3iY+/NinDofDvs5Zd/CXH3vGa76cXHCAsQaLjewH8NOty0+xiRjFs0s2vy/q\nm1Jn24UkXuy9f/rTn/YY0/zyxqsLQhew9k7JXDOP6Vlio/xCm357xcW2x3vzFU602RgN/El4xj+f\nEJPNDxPpCBw/sXfoR18cZz8hF98RI9p/xVuenRfFAODp0CXwg+0bSN7qxI8PZ73M4eJ1jZenHbLT\nzujln+zvUb9U23xmV7QlMvuQ+a9//eu9N998c7eZn59ymS02JBM5G78PGn/gv6oPHX2zn37p1Th1\nOpHyb30SO7GRnz6gGxfybEgvH/vYx3be6N2aOfEnLxyz3fMpPV8NTFvclPLj2u5R/jh5uC7cHHOT\n+nVkf1wZr8NH9I/R0DczfODmGn0dGieY56eBO3HxmtO1yAuCBOY2SJufTdKmYOOwgTts+xqjT2HB\ncVLBmUuS3lITaNgsbKQF+fDmzOoCBUG4nzZYg388gUVTUrfRCFBs/mjqk8GiZdNSwh2/4PRLs743\nXLapB1P70yiP0Zt466/Upy49Lj/vNF5/MNGZtNb+nsHMbGx9AhFBpR/YPz8/v3f//v29zgeyN3hp\n0nqr5W2Ze363lsd4P8YrvfA/Aa2g2afTAlpBm4tXF3uC0QLaYzhu0pZdssccG88O276u5uLVm7ee\nzSOBun8EgR/z0du53gJ1kGnuhVdQJ7AWAMvmIhnMXQG1dQIO88+YaOPHIcQFm7d8fTIPN3gXey6n\nHZoaJ+iEFw3BPd8y97uk0o4PbfCCR08dT9Yih5gOOujrh9MYcvBLvFrLXEyxFX04CPgAAR74jMMr\ne6pL1hgHeOOVBcvg4ZDxGi38oSfBI5MVHpcIniV4Ws+UMzeGXbp0VRovkUk2Bp/q+FDiC332QBMO\nNmvN1dfBkI7YonVZsM+2eCPTPISnPz9B0GUI2nI+ibf0pq4dnrPt4Giv6J+BsDN+4xVP9NfBny3J\nQpfhoUPyzmQcGZTRRVOdDsnsa6J++sOB1T5GtmDCNcdGrz5l/bMNjvr0x5s6vsltnvHfbEMmcnom\nD93TJVz5qz7ZePqBS59nfmouKMNJdrTZmY0c2vl3l05wg3WphRcHNnala7iab9HCvzH0R1fpHY1y\n9ic/+njMlur5Ib5l4+Cb+3V6Ah/NSvTVe0YHDu3g1cOlDQ/pVr+kvTHwpCfy4EVfOlcalyzqPcfH\njnTgBVuCS4YbXxJ9hBe9+uKpMeFY6WgPJn61Tb7gZAu2Rze9oYs/48wBfmH9AAdncqIJh/Yu1jxL\ncMhg4I3/fAI9uCSy5rNwg7Xn9IG93xzmk+EOp7HqfNt+6UKGX1qf4r11Dy2w8a7EX3ZX0g1e6cTc\nwoN4k2zN+3QULnjUZTSnruPPmOp7ZfsDvnZtsx7MsdI4aYWf7eoy+ejVfDdP80t96SHdtza0D1pn\npn7otPluDBx0Qlfs4rn1lz08s7GLV795ebGdDdTB64M/njzLeJKM41P5Zf3WJJdd/EKdrvVJ5PRh\nDR7ghgMtemLbeAfLJ5wz8IMGOVtXySaRafVV9KT0otQGB1rT9vhCl16LbfXDK6NXO9/Ep5KN8EoW\nJV2CxVdzF13ZGNkcJY8PpM1V8PZKH9gfDoddz+aPbyX6YF+cSTZzxlu3fktbvAW/MxgcU0600SEn\nPPQmo6c0P4whV7IYj4/iMvsGmdicXuT2lXSU78FDHmdKGX66EAO4SHZ2pJcuXr3xyifILGb2TST7\nFXlK6Spfqr1S/0z5VW2NV9KdC+d///vfD/+xNH68YewfV+HTHpnerqIZ7lnCD56vKJsTYNIt3fRh\nBj2KkcUK9Gk8XxQne4FD7GL+6ffPYH2Dzs/3mCdTP/AbW1rlr/1UPh8NTFvclOJtt911ZL/tMt7U\npif4x9fAnbh4tfhLNgQTxLMgyAbscsQmaeGXbcz9DIGLVzAWe28w+USw/+Bp8xAM2Uy8dXOxBWkO\n8ILfghWBlBx9tE2+ghB4PStt4DZ8Wb+NHD/wCR5kwYpsE0UDvmQiH1za5J73yuWf2mfb06pH+xi+\nR/WB1y89KX/h2ZEd+QM/mAnXcwFCfNTOFmwjCBM8+acCvkbvk2pBaIFAuI/JMOkdYetd1XSM/8kg\nWcDwweaKQya/PNsum/w3YAGT+fG05EYvvmZQl63YztzzlTWXTf5Dq/mCF5/m+0cZgkpz1dev/SyC\nujkGb3w2D/Ev4BZcC8TNtQ606JiXcxw4l7u+puWtDckb7v4xhbdwXdxNGXaA7U++A7+ED210x7cE\npfyPzLL2DmvWCZevHYTg148XAbx28lmjOmAIqgWvcmsQuujL6MvGWR8dEoxnazrGAxx4MCdkwbs2\n+CRjrXnGtG61BmrDp1TZvFPiAaxxdKwOLrpKONIXXaEtq+sHb5x1kwzg9XUQhNea7zKa/+pHGwy5\n6BSs1EWGcqZ4r43OtCnxwDYOFi64ZV/JtH5k0/gkhzp7dZCLNr7QTVZweCx7zl74oHd6I5PLVl/Z\nk9k+fiuNlXquDt+sg8tP+BbaEjh80SXdyWD5Q28KqTcmvOxiDF616ec/9F6ZnZTaZjs4Y9hbO97w\nQU/2cJfpDnjw6zeHu9yif3qGF694Jn8lubTjK36V+tmieYQeuuzlYI2nxoUvXFNf+sKb3qPVeOO0\nTdjalOFXyvAbW6pdKYXfM91nJ/prnD7tdEY22bOk7BkcGFk93J7DTS/NReOaw/CEK3zwwzNTvISb\nfPkffuOBnxcHGZ+vZAv9fILdjMm/8hm85Itg1PGFBv+SweAfHbiU8IIHi8fkVYeji1cftvkg0h4T\nD1NO8PzHGiHzTb6EJhrmbHNfG75k+sDblBcP8Wpclz8+UGrdjza67AOHuoxe9ptw+iT6kyU8SPrU\ng1EGg5fq2sva6E2qf3+4/AMOb/RgDW4Pi998gez4t76Asa9bb9WNZWN91lo6Vmd/epLy4WwIHiz8\nknb7hti/bzrQET7ggVO9pE4XdJifsLk2crr0EwvAp9QnoedDUOcJZwv8o5OfGR9v4LXDxcfQoQf8\nyHChBbc+ZXLiSx+d0Q99wA3Omim3x+vzAaH9ytpJZ8ajTSeyOdEaji948cBm7ICGNvzJU+/GoQun\nhG8w6BovLok3+9jFdqYSP/WPE8kBH3vZZ+KRz8EDB9rw4xXf6MnJCBYM3RrD7+JLiT78eOFbsvr0\nI2PSC5vJ8NOl86K4CR22/eAHP7hfrKqjJ/ZwsejiFZxLZOcJv2GabXblbH/IKzeHaq/UNxO44LWr\n82d0xATiYjGBeJTvufBF26Ur3eVH4YDvOoms9KaU4qM252N2NAfYxYW5WPlsOy/wF/Bs5O3nP//5\nz/f++c9/7mdqcC6G/dSAf1Zp7sEZf2ipl67Lb/Cn8ulqYNriJpjvgt2uI/tdkPMmdj3BPr4Gbv3F\naxOC06vL6gITG5LDmiygsWn6tNJGb5PwCZwN1WZ/OBz2yxUXbjZ8G4CN1gHeRa1AW2AUvUq02iyY\nAS6bHBw2f30CF4GXdps+3gTNZTzYsPBb8NMmZ/yaJm19PVeu8E/jOf0ew/WoPvD6pSfhLxw7ooFL\ne/TD33N90a7fsz62EqQJKAWkNn+XeAIWQcMM2I0Nr/Ezab9Lie8JNvm7AJl/ktElh6C9gPZpyUy3\nZf6+6lNw6S2fB9tXuLzx+o9//GMPYn1S/slPfvLee9/73j3AM1cFvD/72c/2OeuAMu0GL3ubhw7D\n87KGvGg4VJv3JQcvF7w+mfd1LW9sWD/6L7oug83bmdDhW4J6dQcEgbx536EkePxJzfPmvSAZr3K6\noXfrSAcg6wv8coccPlt7uqQ/WcKXhBcHETpCMxilceSGS0a3A6h+Y2Tj6Y1M2uGU8CLDEw/V9avX\nr8STUoI3fOQGSwdgZM/4Rdv6qZSMx4N13sHDYQCuUnpOX8r0CsZzSXvPcxzadOFQw3f4kezgJncR\ngE+66HCIN3sAXerDvz4ZHFr0O+cVWfIFPHS49MGAA779iN/hSUoWuOT1GQzY+tT5iX3KBxH8ip61\nG4s+/ugYbe0OUQ7E1vYt574AAEAASURBVAGHSDxL+Mxu7CHDob8MN/noQdauDT8S/HSjD1wHYX18\nzDrErvZy+OPdxXeHdPqFB+/4oVv1dKEvf0sP+slHly61zFW8tSco8QSenHAqk0uJ7/x30kwm/XKy\nkqlkvLH6wMvBRbO1A2/Jo69MvuaMtniCK9uQUc5OtacnfNOzZwlPjdeHhme2kSXtMlz4kquDjz/j\nsoE2z/TB/pNXOMnBvq2Z2vKHfI4c9cPDd80//jlthWa25ctwg+c7eCCr9uIu9dYzcsQ/PGQzF8y/\nvknFF+EMFq8SeHyIKawV5lcXEODTM/rwluicToyV8ekZr8bhb1682pfpH594AAeevtS1kT8bpXt0\nZCmb4bl+Nmndp6/gmtvwSXDoj798CS60S/CCg7N10lqZfHiW0dWGfyW79iFpF2RwGKuMR3ygkQzo\nqsuSPlnSRg7fGnAG8FYivsPFx5IZLJ7wJhmXPoNhD+uxNzdltjXOGN+O8Y0ccSX+0eFr/ChfJCve\n6BR+MMbDL2dH8Ok/GG3GsSE81nJ0yKJP/EY+a6cx9MYfXQTzTTyCww9Y2bwKP9npwx7Hf403Jn2j\nCSad8kfy4VN7cRa+2BKcueM85Q1Xv8fqzUe+ok/KTuq18QXxeC9DkMn+R/dgjIFDiT97sz0KXW1i\nApmc9AUGP+3dyaedLumgl3bEhOik6+iZnx/4wAf2tzX76QQ88Kvf/e53++Ur2n5m4KWXXto/sDdG\nWwmu8M322V+9Eg0+Ad5YMqHp/x784Q9/2PVLV37SQWzshQH+YIwUvfCE96oSPNjWC3Cew4O+i2Yv\nO7AnvYqTXaZ24YtX88Y31rw40T/W8jYwPv20BJ7ZGZ/hRku9dExH9Z3KZ6+BaYuonWySJt495clO\n7x5bXMXJrb94tQlIbSyeLQZKm0JvPzmI2/Bt2jZ/lzQdzm2I3kx4z3ves5c2KsGHzRe8Ax88Nl8b\nUI5diZ7cpl+wLVCRtKMh49PGLsgpUHHR49kGj27BsLHJpV6Kbs+VV7XX/zhlC+vEXVv4Zl9tYGqf\n9fofVYZ/jgff8xwb7OxPZ+CPjQELpsCyixOfwPqPq96i5AszYInmMXyTh+Buc2nuCFAdIjrg0hd/\nlmcQ9rTkpFd00Umf2tTNB/PQ71r6mQFfTXPZ8uUvf3kP3Pqal4OwrzL96Ec/2g9V5pIER3bDO7s7\noAj2/IYX+6PhLSJBLFqe8eLQ5CKeT3jb1Tif3Hu7wG9oOWzRkQRegp8v+bqcoN46JIC35rSOxA+Z\nq68lXJN3z2h0KOuQiJ5DkKwtv50Ht3CBlekhPetD2/rG5g5O+uCDS2ntgg8c3dAteLAdSrSHC/74\ntP7FX2X48AKucfxOhjN/iL6S/PoF8vSOJlrajXHwu9jepHEwo2t8Th2jk9zp27McHrjIDTf5wOGT\n77M/n6Fn8Mnp2eFUxqex7G5dTw400rM+Fyng0Msm6uDJp7/5Rw5t5JM9J0elsZLxElra4pFMbCGR\nxeHUvjd/xy4dwIGOPQkPcBlrrriMzPfQBktPZMKjnN6TGV4yZkvP0mprfgEOr0r99ODtQnZlUz4K\nDi94d4nALtroMx9WGi/RA17igTxg+Qw4MtqHyYA3h3YXFD5ompdm5JLCE7/hh2/6Lp11mTT9HA78\nNEfQBFumJ/3xZW2jA/xJ4NGk++aDEj48GQ8XOdmGTYwlKxnAxis9yNrgNM54MqYnJZpkaU3An4QH\nuIwPl3a4kg+srK2sD045XOjgDz64JHyQCW1jyEAecsHFPnzSWhuMsfCIsVw89QEiXuFCDw2+xc/p\nGc7o4gMs/JI6euZzlzL0qT3ZwKlryw744qfmGzmkqXt18BJayUr/ZEkeMPjjo/yAP+CZnGjiV2k8\n2iU8h187XaUn7XQkq8OBXmuZOnx0Aoa89EX/Uj6mnq7pG0/R1IcvtPkN3PSvDr86f0tftSU//ZmL\nSnmOBSNrwyc/krId3cpg4McHPq1p3tDzliA9gqeXdK8MD5zhT19KPLOXCz37un9m5OKJTeAjp3hB\ndmEIv3F0KLMLfvKv6CnzAyX+W5+UbAGPrI889E1GF47WQ3oyFp1+asdYurVWtt6zAV7xwq75vzZy\nw8lv+Us6wLN+mU7pQRv8bC/jSTu/xxN+4ELDB9suvOn/v//97/7WcbLDWcJ/dOhSLOUfMOHFBZ6x\n5nSJPvBMJucvGV2ysbGMN/qLN7hcFMKvTWodgJvu2r+TWwkW/vPz8/2NTS9r0Ku56Weufv7zn+8x\nKvqf+MQn7n3mM5/Z+aevmaa88K5p9usDQ07t9EMWvicu/sUvfrH/bqp2/4PhlVde2Uv74oo7vGv7\nSt8zWP5Ft8Frk+nWBbr/ueA3ZX0Awd6f/vSn9+zild9LbE83LmgfbC9QsId+F69i68PhsNsuGvug\n7U+8el77gjmVJw2cNPC2BuacqW5dOKV3jwZu/cUrVXIuOefqWeDh7TQbtd++sUnYTAXaNhMblw3F\nhigoEWTI2owVYAsoBDjhzHRoFezZ7H0ybzN24SKwsanboG04cjiUcHfZKnDrYCDwwdcxWtHVdyxd\n1X4M9rptc6ML/7E2+LQHc+z5ujQbqwzfijtc7JbNtdGdPNM6Nv6NYx/2FnzJLiEEyr7+4jJPQBZ+\nvKy4ohPOnm9zSU7BXXIX6JFR29TB05ab7aJBh+kcD+atN11/85vf7L85K1B79dVX90/LzTtz0bz2\ne7Tf+9739n8wIIguTV7VHSSMcyg62y5gjXcgs164fDUXBYZ++N/brt505S/mLz68XeCTewGkhEcJ\nbuME3C+//PIekFtDXLx6w96FoDp5zHuBPT4FsdYjJT2k93A2F3qeZXXzoQOtukwufOMrfYLh7w5G\nHTjRtS45nNAj+SXjHZrgkK2TbCTDh1d8l+lHXQKPFjoOz9GDI3zxlXye4ZaqW4/Bk0d99iUfHvXT\ntcs5h2oHPPp2OCEXncLZeHVjrAHW776Cae0298nSmoxuewQ5jLOu0xWacPMp4/ACnh7YtsMxXcHp\n2Vg6V88uStk4/Noj+CS7GJdPpKv0gS88K8HhiV9JeCWXzN/Zmy6Vnq1z+hwStUvxgTc80oE6+uQi\nn8xO2vALDm3yxre9DS/6wMJPR1M39AC/sdlDv+yZzsCYLz449SEofeBRPz7Yj5+hwRYyfuFMluDj\nw1ht2USpjTwSnPYDmQ6NgxNu48gio88O+rWThbzwkYFN6Bq+9KsPHVkbH4ZDnX7Asyd8YpB+WsIH\nxfSrHa8SujJc8Er6tCWjPmMkZfX6e+a7LhDMVXU8ldS1tVeSB99wRDt9GzPloSNwsgQ+nrThtYQX\nfTOBaZ6r029+A5aO8aUEBwdbsUUX9i58fOBuXDrDbzZVL6UPz/Fcn1L/lDUY7dkCnHaZLviCUsaz\n8UrZuGCNJ4NMHv6grt0YspvbrQnGyqXwRB9+iW+Z796AM+f5F1j+3Pwzj82j6dPG67cemc8yHYKF\nU0YfDL7MffXmX/LhgQzpgVzJl4zhI29wfI6vNYe0y3Dhf+orn9OOPl2hjw6Z1PHID3x46gNWcHD7\nILd1Ha/mErngxJ+sHs1w0p99nH95e9Mb0ejYT8SS3ngVY4CnF3ZrT0An+ynhRgOvdCClV+uocXDH\nA9614QF+b//7R0/WLM/a2csaAo7eyGqusD+9JhN60c8O+ADDJ/Shx+50I8OXrTzTN5pg9BkXDXLQ\nk/jKTzzQv3+wpD7nEpnpQmJbqQs6F4ps5Ov0PmB3rmNPOgHLV5y9yO8CEG/sgSZb461EP31Ypw3P\nbCNne3izDxg0rI1+VsBPCJyfn+/ftvIBJtldvvtG1q9//etd79pdun7+85/f/y8CHc6UnNrWPm2z\nf8JoB8+PH2yXmL/97W/3mNQe7m1Tb7r6TVm8gsV3Y4xTrx3emyZ6sQaIrcTaxcH07S1v8oqb2YIv\ngbd++KdfXljwD7bEaNnVG6+Hw2H32VUP+CytfbWfypMGThp4WwNzzlRvLX0b6lT7/9TAnbl4TYkt\nzjZ6hzQXMRZ7n7Da+G2wOWMbtrEcM+dU6psBQWNsJA4nZ9tljezQKpARZNjMZcGMIAU9FzNKG482\nOAVBbfI2MMGDtjb8ZKmMLzzER33Pukyf0fU863gTZNVOPrp7khTNcIQbXXUbfDYQiKEvMO2QVcAd\nPDzxHE58s5OAWsAmaPGGk2DZ7yIJrtgVTOPjIxyVK7+139YyXU39JQvbkrdc+9MoJ274Jn229dtQ\nLl4FboK6b3zjG/sFpwMHnzCHvIH64x//+N6//vWvfd7li81pePHu2cFCkO6tVvZna76DLvx+wkCA\n7cMU814QL+j3O1XeuBD4Wk+yv3F80VfQvvrVr+68deCD11w3761N1TtQdYiyTlgzOuCC1We89cH8\nUjpE6NOuDe/WHvOBT+MLXO30QxfBdoliDF1ojyfrkTq6cJAPHjjgdpgyXp285EYPfLIpjYPfXLVO\nOtw68BWMk6F1kO3g0UdncCvhl/AeL9Zahwr4ujRMDjjw4bDJZxy42IntyAQPnPB3MDTP2R9O+iMb\necHCRTeScXjCo0T3+IeXLPQIhp6U5Icj2+Ffhg9eOtOP53xIm36lcfAqa/eMHn1JfeBHx3jT32Eb\nXrLRk0OgTGZ84pHO0rNn7SVj401ZXT/ZwOI5OHJJSjzwa5fG+bHx9IYe3YLh6/RHPnjg1SelD7rg\nS+znAv1ie+tVybbaJbzEe7zuHdsfeKV4rb43Xv4BI4OhTxclLqn4xPSrcIfT8MaSm43IhS/PeDLe\nfJHpGA62B6eUkpms+sGBh4PcDrgy/PFpHFgJnZWn2T77tKeLdKwfDv7h65/mlHkav8awnXmh3eUN\nudjLWHzK+PcMrz7j8y/PEp6DD06pXU4HO/Dln+DoCR7j6Y6elcaByVfMD74l7uIn/MUaUIwFVsar\nLIVjbe8ZTOOCVyZn/hd8uCvxHLw29KJdaWxJHe5ozj5ywreOg1OasGDMeRdy3hqUfZunuMmYeIM3\nvzQn6VemT3uC+exilW7B8Qk2gcM8tubSOXh2gfcYn3ikr3SW/095k01b+4F6Y9CUwU0dtWfoa83k\nh9HQZm0ig7pkjRT7Wf+NhzMd53NKeNBHj1/LYMlON+Yq/YCx5p5t5wOxiQs+ic7Q5YfRhguvJXRa\nc+iQ3um0C23w+JDYiK7hNcaFunjFhZZ1DF704GBHvJKP3ZTwwIdf9eaqPhlOsPSO33wDHslYfbK6\n9nL9xqHfh83mYXUfJPXtosbhBW22sP6Kzd73vvftv6VKLn3GuMTzBqWLW7qhU/KSg7/LfI9PuuSj\nh/SsRCe+8Rp9ZXDJQC/WRXMID+r4Yl9rIV/Bh29A+Sq9S2U49H/uc5/bszFrQqtEf2ua/frSsZLM\nLnq97UoX5BOv+s1ZpbiWfPgId2VtPa90jz3TJZ0ZY00VB//qV7/abYAXc8iHDC+88ML+ogJ582Nj\n+al/fOss7htrbEiHfpKgnxooNpn0pw5uwu/EcaqfNPC/pIE5Z5L7NHfSxLujvPUXr6uTcTABiUtX\nv7/497//fb+EcQCUwDcGbHV90znXdgGRYMBm4b+6u5g7bJ/SCbAEAwWtgjAbkeDi4vKQ6G0dbQIp\nuaBOiU7Pk6a6jKf4nP34fV4p+uhVV9rYba6CD3XBnQCAjE/CK9xSOGz46rK6Q4OvHflnaA6J2gUD\n3gzyKbhAdQa2E9eOePuDBlzsKguOBcl+akAgwMbaBJ5T5ngKjzJ+Z9ttryfnKtvjBG3X0UX0wK40\ntQmgBWzeJnAByzZ+asAbBeak4Fjw7a32n/zkJ/u8F3DHL/9Eowwn+wsYXayyvcsWAatngWOXL9YT\nb6u68PW2qzcpHbT4GHzxq46Og8LXvva1e/fv398PALMfP+DMeRmO5r+6uSNIlcljTmlz6KlfXb8D\njbL5xlcLdo3FNxk7QAmAweIBnx2q6EI7eDla6uj3DA4uhzr6dzlk7SMfGcDjx1qHNzjRAGuddDno\n4gZt/HU5an102Qy+A6AgnE09pyd80J0+F+Ns5Pd3HTjxhBfygoHfWmzdx4+MN7K3ZuGF/T2jJeMX\nTQme7KVOTvhliT6TW6k/mOpzPBzhnO07sss/2mdfNGrjA9ZY/kceMtCFvQn/8cMWxpCFfC7NlHQP\nJz4k8NGMllJbPmJ9VCeTvnI49LWOqhub7um/Qz/dpmNy5Nvg6RQOyTO+4ocs8LnY4Cv2VW8xectM\nO/hSPOH1WNI+Yaqjbx3xppADpPWAP+nnd/EITpvn5iO/xe+cQ56l/JncdEMm+Niu+Q0fePrQBiba\nLom6qDAuvMaAIw+e4kG/dikdgJ1p1YFnviGmcbFA9nkJZTzbgLHXm3/kigc0ZTrRJuOJvGxOFvDo\ngAELRps+7Xhm52QEpz086IOH01g4wLK/+WC96fKLn6h3EcgHmw9TD8fqaEpoSJ6r97x3bH/wY/61\nFub7eMsXlOyKT/4SLmX18K0l2aUJFz/a0MMDOM/o0mPwldZdPi22Ede4ZOyDAPjhlPGXPvkdnSpr\n80zX9I4Om+BBHYy4i975MH2TXd+0eTyhW0K7VB1csOSb7cFOGG1g1kwn9e2V7U++Bda89IGDfZ8d\nyaQ/3uOhMfGiNBYONPJdtl79Ak4668I3/dGdjEa2gw88/ODav4xln/rnGHXw4hb7IRvbE+CGw1qD\nP0kb2MbDSTY88wlznFyyuYseWHjgYE84wCsl48GA1Z4O0eUTzmK+rdAFKB211sFrbOOtLfjnqy46\nD4fDww/CzDVwbOPS1gWnbC/w4Yp5z0fTE1i+6Bnf0cDvVSndkMM5w1qIDxfa1kdzx9u0dEVO88FX\n7P3mv7dwXQajKYlPvvCFL+xfu/dhR/T1qZfo7ViaMPqzBf5dYDvveMvanMMTHu1hrd3hBD9pwEvO\nmyRj6PFi23td9rpgVvJb+vFPif1DLTycbRfO7IgGunRPT2Jo53HxO53RrbOWbxj6sFOMkk/F29TB\nlKH+U3nSwEkDJw3cNg3cmYvXuSnZgF3AWeRthjYLqc2mjciY6jvA9ic8yoIUAYjNzAbjss/XtWyk\nLhNsFjYfgVEXCYIAh0IbjaDDYVGggZaNZG58eCrQwoM+GxWcc9OZ9Xh9XmU6mfTwLTijA7qRbK4u\nQJVkfdyEnpTM0VcKiFyI+V0gn+w6VAjE2Nh/mfeTEoISQUJpxae9NnKwMzsKXAV8fnfImyGCGQfD\n/Ma4eFIvhavnU3lzDaTXq3Tp4sxXmly8+jF/hySXrp/97Gf3gFigJ9D3qfprr722z3vrgAQnv5HM\nreZh7eayCwfzmt2VDmLmvcOGt80Ei/5pgotdOKR43h8u/8Dp4OA3tvDnUFcwGTxewJXn+NYjNPhw\nhwY+bk1wUBHYm2PWHDJr0wcfWupgjPHcxQectSdDugCLVjziybMDNTrGeTbnyWTOu7T0bH7Ahw98\nsZXDgDVPMre6oFCCB+dCqXWyOatPpnvrIpngJpMSv9pdtDoIebvYOiDYh5u8YNhNxlMHPXXJ4dKh\nyhs1LpLoxzh0s4mSLno2rrZs5LmkbvyawGpPr+HwHHx9jZ149U166mzBt2W6YAvykCuclXDCQX8y\nO6ebfIpd1WU6UqLDtg6Y5lbrYHbWry7RHVgwMnp45DfsDD+Z+H0wczxe2wONjR98otFzlzsO3eak\n/fViW/f1Gyelu2PP+mR9E06dnL7pYO23B/BxfCWvMfkIOpMv+sJDfNJzPBlDNlk9fPRCR2RK7+p8\nFUx80gFYFwrm+pwH0QNjHH138QDHmqbMs89cI6+LAh9iOBDb+9jdGLZSguNj+VlyxhMdgU33aLC5\ncUryJ5c+7dGAgwx0kN3zi8bDoS06fJW8PrQRY8m94S4WgwsM3JOnyQM+jiUw8prCo4/P0JV4xPzj\n22ySHNkXH/jxvPKy4p/P0Y/m7KMH9KxhaINlf3TIzA7pSozmmzwy+4qZ6DR7GMs/8da87cMqOPmd\nTK5s0xg2yXYuCdkDjDY8KNPJlH+VKVkr9c+8yk42CfzE5XnOOTRXnwQPDu904zKN/9unpPjGu2wu\nkalx0Ux/xugzDixdWg+VkrF8wCUkPdKHxAZgjGsuG082bdYF/Cu1R38fPP5ol/AvdvGzSF5IgDve\nySHhWYITL/CjTRf2TzjMyfb1yVs48G0NgN9YWR++tevXJgZw/vE2qIvXdLgzMP7Ev/Hm04c//OE9\nvi8GN8/wJ+GH/vm59d/Fq285icvsC3SMTinclcZK87k27XjAP/2JL1xk40PdZTZeJHOBr4tbnDu8\nFOAi0rwJt/NiF68uRLVHS73n2nbE4094agqOTa1zYqdiAGcXl5diMjYOf77U2HBqv0kyztnOW73+\nkZdYnM27PPUzEHRlHlmXshO6+OX/+BW7e3nBZbl1057bxSvd4ite8Re/6rPd8ymdNHDSwEkDt1ED\nt/7iNaVboC3wAkWfBHo7zWWJ3xESiEpz4a5ug7DYCyLKAg8bmI1A2Rtbh8Nbn77alAW8Nhg0BZyC\nf5/odgC42A6ENhfP6INDU24zUUdTwOMCwIbfJkUOwZHNLfhkfZ5lelp5wKsDv41X8IpvwZDgRzAg\n8JKuGv9OMqx6Qp+d0HVR5oAswKQ3AZDAzqWbr4Cjj5/oxwNbl2pTygVbDt1+I8kbIuRi4xkMrHqI\nRnjvSpmc6annZyUv/NFKh9HULqA1n3/5y1/uJdt86lOf2i84+YE5a86wv3+u9WD77SsXFsYKRAXu\nSkG5OdW8d8Bgc29Qs7lLU0EsfILr3mbwzwME1tomX3j1LPMTSfDpv9l+/OMfv3e2XQjyLQlNPHRJ\npn4saYerEgz8+Ma/9QQfDk2e5Q4//N6ztYPs1pdk77BlLHgZvNw6gyZ+ZW0CZvNLNg4u8rn47NIS\nr2Dx5TAH1ppoLBr4gM+hzhg8wSWQd3hyMJtvJ4Mvpet0oEwu609v+FgT8AS3tMrXM3wOh9b1Dpp8\nAH/GNtezpTY6keOLfoOrj170B4MHtGSwM9c3YbVNGp75S2tWuNiKjttr8GKfkskVP8liHNmNMR+U\nxrBV+0u2YxNZvwSnvU9WJyNY+PIZJTmsk+gr0YQHPWV+jyc4lOkqvSQ7fPDjDy3PxieHOU72i21/\ndZCzx+JXvwSv+nzW7nnVd21s79LRG+o+0HPIJm/9eJDmeH0yHvEXr5XG6E++SrD0PnVNVnO5S5Cd\n2OUf+NK3cdHVZo758EKmFxcdzTs4g0U7P8YXnPrU9VnrzGkXULILht5ONw48vsHSlSzhBx/Z55Ll\nh/pAg13hMIbt4aBH7fmMZ7jy0Ww/YRqPBnp4Z3fyirF82C27kOAf1h4wMngJHTyVpj1rq3/qTJ/2\n5FQnk8tpFypioN64xxO/x5c9i13UXQhpT/doy/EW/XiKj9muTb+SPtjJuocHcw8dv09uPUU3HPYb\nLwz4/UWXHdbgaCvJwhbq+Kc742U+yVezSfDol7U1Z5vvaNMhG0r62Vc/GuwCRjZeBqvURk9gjJO1\nSWDI2pqNBh3yH/B8TD/ewNI53vWna6Vx/J7d+Lr9QBu6JXB4RZ8e4JfwqE+Or/gOJhnIS4/4WC/F\n8YpPY9FFC87wwyVrKyWvUkJHNoa8PjDmE+Yz/MbiX2mMNrB0El/oarfOzw8j4U//jUcDz/QfHjLi\nP9vABb95KH6yx/PNdAWvZHxJH7x89KWXXtrfhOTXYoZkBQuOLa15/NxPyMkuX8UT6GYD8NGINlz8\nHa9KvCpl9K375pUPKMSCPpAXD9KNOUJWdkTfpat9qH+s5gwy/cee4vdO/bMp+PCw8jN5VJeCi+e3\nWt+WhS2sJ61z/LgzKTnQMBYcOUvaZDpQxsvsX9vg4AP2Fm/zetPVxakYz7rnwtXPC4jDrC2tI+FU\nwkFv/MDFrUxXXbw6y/XGK94mD/iUZtvecPpz0sBJAycN3FIN3ImLV4uzzcHm7vLNwu7i1QWsjbhF\nu3LaSpvNQgBmw53ZZiYLzAQkNji04LTxuGztk0ef7KrbEAXcNirBmtTm0aZiI0LXJikoRhMdm7sE\nd5u6Ovj/jzT1NWVQF3gJSAQU+Be8CUZsqA5AgiPjJ46byNHYdIWmNkG1izYbvkOidgGXA4evgNvc\nBT+NMybeK+kyvmpjG0GeCzi/y/T+979/lws9sPqlZNAWjr3j9OeJNTB1G7J07HAt4PMbr35fStDm\njVJvlvJBc9jc85a7H/znB/mggJod2drhj3+wpzEuWT70oQ/d++hHP/rwLWc0Be/emvdfWP/2t7/t\nQb7xAll8Gu85/8FvdXgP24c03pQQnKKvD14+5nDk4hhP8OlLdmPNLX3lDgbgrHMdxhrj2fyz3lib\nktuhooMFGH0OgODAwwVWXwcna1wfBKFHX9YzH2Yo0cS/9ZIseJPgk+HrsGntMt5BvnWYfPRBf9br\ni+3gYu6yb3qFD205+1fqKwVPXw6aLkLoLNso42/i0mYM/skr40s7e6AFHp8uKcDRo0RP9CaBleGS\nwcPR+GDrn7KDwT86cDRWKemjy3I2pkcHP/uND7nsM/hJVuNlz5Jx7E3XYNkjvYHBhxIdfV22aLeu\n81/2tjfRrQSWbNkcDfpJB2TCJ1x8AS56mfTSnXLyatyU2ViJjciljz/xReu+PQcf6XIHHn8ar0kd\nLfwF75m/20984Gbd50vxBNY4ZTj2yvgz+6I32wboXtVXf3OPXOSgV7T5Ct3EM/0Zow3v9Ep+a5Qs\n9uAXdAMXmPwPLraBQx+a4Nhbolv9SnNItj41x60ZxkjJx+fYCh1t+IrH1hX0JX144CPBgdUmk8sY\nPPEZfOFTH9vI+V76ir4xLiDIbz50+bITPvIHr8mQDYBp61kdf3Ri7uODnNkID9rEbC5XXBD1Fine\n2UG2ZooRy2w2abBzeo3V2T/r8WgM/vio/6Zu7/LBIVuZ31408PvmLknwANZlkljNfG4dYzv+JpEl\nOT3nO/kPXePTWD7iktK6CK9x9JRtjZXYmc30g0MDDjThg9tzMjYmnYCT6Qw8OLLACR8e8JJPg2Mf\nz3iR4YKDTayB+iUw2RgM3PjRnz30a0d7jtdPRlmfMcaClbWjac4Y14Ur2zQOHLoyPbVeGwcnOCmc\neJGCn/3q+vWps0VzF25t8Kjroz91tOwJfIRu9FnjxVVdMhoHTqYz+pbZEk2yGyvzJzzAA3aeYfg/\nHSXHLsz2xzP+jEOLT/nA2lui1mO86iuBAW/Nd9npQ3bZG6fmvb5JQ102ToKLrs0dclrn0MQzmcim\nzyWgmBKM/uiaz+iaY96w9a0La4/2aTe00HUBLj518eoStxQ/ntVXGWvja/GvDI4u0aufPfN3cDdJ\nkxf6g2u2sb3YzP818E+8yI2GuNk5yduq1ha2uirBxz98SOps7luo4nP69UGnf8R1tvw8wVW4Tu0n\nDZw0cNLAbdfArb94tVkIvi+2A7xN2MKutBHPgMjGZNO1QQgMZHUBs03W10IE0IJTl6GC/YJRsDYb\nwZ0LURuuywLZb+y4aBRYoYcfG428BgLa2vwFNzZ5GQ/o2fxtdAIV8vi0WGBkgw3n83S4uYmjL2mT\n6cbGadMV9AvC8O1CQGDkWWrc/nCDP9FpfCUboum3hATfbI/ePHRNvtlAKmiBJ1yTHWP4g6/jffGL\nX9y/wswXBGPGhjN88TdxnOqPp4Fpk1Wv+swrc8EF6BtvvLG/4WC++h1Vn5a7GJLMQz8H8IMf/GC/\nhNVm7gqs2VHil3zI25Lmu4t2wb5g2xxka4d/l7t+1uA///nPHljjAW8CcXMWvnzeha8+vCo76Lq0\nUjd/u6Qwb8x9ePAmwV0grc0YuUOrkm/iW2CcjtRlyXjrk4xea511DzxeHQTNF7x0UACLPrnBksv6\nhz/jHKpccpnb1jjwrVfgpWwEJzoyPrrknXTNHzzjz3i6tqZaN/A2fQFP9CGzDXg08A8/OuCbn+kl\nnjw/KuGDbq0j9AtPsijRQ1c/H9If/fxBO1vRl7ox6OrHI9nJnCzRgAcMOvggo7FKfY01Xj2+6F+b\nfUE73PqSVRkNdX3BqJeDQxPvUzY09Jsj1kAXTH3DQzu947FDtz2LDHDJxuvL/vrgl/BiPBi8SMr0\nChcYGQwdSR32tUnGgNE/ceFPDiYano/14Yvtz8/P9689usyynvALskxe4AI/8ajXpqwejDJequ8N\nl3/gLM/2CVsdL/BL5DYnXQL4B6JiEj5Bt/lTcMaYb/DoN+fAKtHObvA3/9neOsWnzUv2SRfGwMMP\nJeOjyRbmpwwmntlPxoeMp8aAAcv2srHwxIv1iI0k7Xghv/HJZI1yQSDuMy9K+uVjOg6mMp7gxSP6\n6OIbXbwlE72YFy4MrPP0ZbwLJxcxM1s36RDPeEluNODLh9GQ8VqCszWQns1Dlx4+IJB9CE0/+Spa\n4lJ+4ULe5Rr+zXEl3ZqXbC+TSdInt9a1luGVffIT7fQCTkbb+kdP5JHIQE5tYNCWszsYOJObDpLb\nuPQADn2y4Y0u1MMDVlptW7tSH1rhB69d1oY2P6YLNvIsoWWsZ2sZn6IruCQlP8xf9dNtz+r5qTrc\nSviMbb0nS3oDDw9+2M0YfNA5HZuPYm3w6LCjrE4eumIbmZ7QIoNEf+1T9ZEZHTSNZSuxjT1v7kPw\n4IGtrYsSnfA1/m483vGKDvnIYC76QKQPbNGFV6J79p+283bpyy+/vH/zwE8mSNkqO5LXyzW+2i9G\n86arNilZ8YEOXmR1/ItbzFexoznkgppfkj3/8AyOrrRL+HTGQA9d/ztErEnOZMBnPgOXhI6fwvLN\nLPTAgyklU3RqrwxPuGtPZ8m79gd33TJ8U9fq/NW3Sv74xz/usbAYDf/2SC89uDDlk+wK/qpE7nB1\n8eoS1rrZxaszHRvFw1W4Tu0nDZw0cNLAbdfArb94tenbEFyQ+I+JyrnRCyZspA6QNglBRYdtG69D\nlmBDn83WRi2wsVkLOAQmAggXe+iUbbwCfcGHoMPmYgObG0cbIyfRDq9PWTvMquMPTUmwImB3EdFF\noqCqjXEHeo5/2kyVkwfPNlv6EggqyU9X+GcTz0+S0Ij+pM0u7Md29Ck4ZQMbuyAI3QKgY/SnTdYg\nCD4Xul/d/iO9f7LCTg4PweEnuSZ/x+ic2q6vATah13Sa3WHQzrYOk3/5y1/2INAlg682vfrqq/c+\n8pGP7POb7QWJ/rHW66+//jAYZzu+ao6xpfnProJiOGR1Pmwem9P+S6w3a32A01rCNw6Hw37YdWEr\nWHbx4a16gTg/xKv57DDsDQd0jIPXQYUcZMWP8er41m+taR3Rh+/Je5cA8OWP5kKwgnTzDh36M0dk\n/dHv8AcWDn1g8ZHutaHVWHw5XPUmPziHf/pCHy5rFBr6slcHWf1yPMCHNhpkkY3Tbv1LR+i7zLA2\nW6PRFJijhR9zHk/WG+sO/HDhC240tNGJTEbj8awuJasxfEPCBx6SR7vMZpK+LizC6bDG7uDwIMED\nDq8OhmST8wM8oUFf8GQTY7V5bj1TpyMJrP4yObXJYDzj1d7iYogOu/TQjia8En4dpumLLvAso5du\nzJfk0oYOHGDCFT599Cvpo6tw4U2d/ZIdjDFzDoSDrdTpz5z0wQv/hWMmeMHRR2nqaraBq692Jb34\nnWBvDnpLie7oxJpBH+Sm10r8hqt2OMg+S3X9srTCgoefnuDUz3/4Pp2jN1M06Y1eLrYPZ609Mv3w\nLTjoDg4pG6jTkWfxDNjkQAcvsrEy+ZtLdKYvfvDs4raLXrj1g4OTjcOtLb2RjU7B4jNbkEc2jozo\n89n0YAxdluKXjsDoIw+5xGcue8gJlxSdnsOjxEdyd4kIP12RUwlGmb+Cpx+xj9iyDyX4Jh+1LlmT\nzH9znlxwkMM4awX5tJkLYOmSTelNn2zuiUtl8Y4Pus1ppTURbfJnF/LgAU346AIv5JDwrw9f6MrZ\nio7okY3on27JKcEp09/UF/8oG2M8GHToC1/a8UhmdW3pE1/o0xleyD7p4IEO2IU+8IZP49GRPcuN\nU18T+GMpHP/H3p3s2nFVDRz3oxzPGGWCkEAIdOkJoNCE0EMcmrRAQht6hAQBFECEvscBQqPQjZBg\nAIaIIROe4D7KV78if7QorhPbSYztr7ZUt6p27b36vfZa69Q5F97sL7ttPLjodKT/cBob/XSHD3Zo\nTjZF58abyyY9d86uohcs/WDQXR90eo5/RSrFO8VJ9gYHWMabh45ojC4y1Yd/dkeW5Ig2z8Q2DjYB\nHv15jmb0BR88OszO4UKjHMj+G89ohQssc+x76CPn1gv4xnmmmAmO8WIlv9fum0fOfZuNHpKRcda4\n/+OggKcQysbRagy+2KN1Yb04Z3fot46sHfGbs2dsiozao+FDq0NDv7da/ZyBN8l9oIEG+oQTbxq+\nu48ecaC3Qn2Twss96G+cOeZmB93ra0ywJ9yeNd65565r+h6vBd+48Do3l2384x//WP9ngp/a0u8N\n+xtvvHF9I5nOrOfgoK3rYICNRzbab7z2f1cOSzztjdlenuAf9rZLYJfALoFrXQJXfeFVwKMoc+7c\nufVrwT4N5fxtwALjEneBqoRKIiqQcRQ4G1tQR+Hm24gFPzZ2vyXkKybwSAJtSDZkG3YbTWcbTpuO\nvu4FNQIXAZSgQmCABkGOTVzwY0NXdIXDdQHN/9IIJy/Roc8ma9MV7BSkoBcvgq5acun+Qs/JzXgw\nghNeuI2BS0Bjc68VACT/+oPR/RYHHSm83n777WuAQUeCAeM05/DMucHbz5cmgfR7kkzJ29qw/nzd\nyWFNKpLcc889639TtaatRQVZhVe/A2t9amCyFYd1bu0ptPoZAMWWEhl2JMD2BoV/APDwww+vyQn8\nYAjS/efWl7zkJetbE2Cjw1c6/fasBNdYiTHavDltrRfY48H6kLRoYLJbB9wOawcfXRtLNuxSEloy\nrM+Y7NwZbuMd8Wq8sZIs+Pm0EgYw0Wb9JncwJj7P9Znb2y3GSp4kMvCiF18amOaTvfHwuecf4AFL\nAI4Gfs/a4gP5RbrR8AWHJJEs+W06My5Z8vl8sKSNzsge32DSk7lkAA8a0AMu+oyJXzShIf+PVvyQ\nlwO95jjA81w//Phw7xn+wADLPfjogRd+9KFXgcVhPplOXaMvP5YeyAOszuStwVvTh4/oqFBxWJIa\nb5FIMCWcaDM2m8MPWUR3z8gMfvdgGuNaQwvcns+jPmPANc5zuDxLdnjEM9nFe+Pg1WcunA5zyc3P\n13ir00/JmDtbNBnretv0a42bzxtPfnyCt6zEBPRJXuwND+SABwdZTN7B02+M8Q738QC2ew0+z1vL\nrtlJ6xJs64oOjTEvGcJZIwPry1tDPiSav2+IjmCAR67pnHzZnTVDF8kMjewAXnTHDxrQCJ7DtQaO\ngov1x8bhwBs84YN72o/n4OqHz+EaHQ48OZuTDdMDnOkpXZobXRWKzEWP5F68Jn5qfPOTn3PP0ASP\nvV4hATzPyKl1mvycjSej5FUMByZdKmo6yCWe0AsHvszjo8gTXXwnWaKXTjUxq8PardDKB/btIrDo\nhqziY524/AGTrdAReVQYoxf0wceHkRd+jHO4NzedpZ9sPb26N44c0IAfZzIxBz3Ggudan7WULt2b\nG41TZvlEdKGDbBXPrMlsk83EIxhwOJuTLDw3rgMsOLsPBpmZY3zXYGn1BRv88DU/+dE1W+HbXZuL\nX7bkjGdjyR2PzmQeLmf3dAMOndkz6E8T3yjciU35KPajkXP66zodg8X+PEcvHbA59KAPHXyrA83m\nkUVr3L0xntGlefDiRR97tdYUT/kv/IHreTLFl4N92IPo0l5vHLwKt2Io48Vhz3rWs9ZvIPnQWq6G\nbs80c/BovJdrFF0VQ33IYgz94g8O61jcYO3Ap9/BVsnSs/ZEsPFJ3tYfHOzFgW86hfORRx5ZC77w\n4VWLNrZPPhqZJ8tt4ZUs8OForrP7Wved63eub46vv2fut8/1ndTMqblO3s0nE/GteNqHe9ajN5L9\nBq/f4iVz88JtXjC7dsY3ubAXRVcHmfqW2Q033LAWX/m6bC+a9vMugV0CuwSuRQlc9YVXGyOH7mtV\n/vmNzdymaYO1CRfE2shttgI4AZFgwGHDtOHYTAs2wARHYqOY43CtIFowzRjaZDIMmwzcNhCbsXOH\nwAdudAkG4PUMDEGSTV/RVSAj8BIwocmm9b9q+NFO4rNnngu2NLQ65vh5vQ56nD8Tbtdgdg1e184T\nftcFEN03vvvzkUAfinF33nnnWnhlM/TYfOf04br+88Hb+y9cAulmK1PyFuj7QMXvrXrr1RrxVsTd\nd9996pnPfOYaEFpDirOCRL9FJRnIbsBkE3R5evmqmYBY4CjAVxw1TpApYedHFDP4lJr5/IjfHTs6\nOloDe3P4BAmA//Bq/eoT7KPJ17G8WcHHCOD5FgmXNS1gtWa2vHpm3TfWeIkA2tkm32KOPmOcwdbI\nz3z3xvI38LiXWHSE33PjHMZpxoIJFlzGwK2PfMEwXwJjHn7R61xSB4aEUYLi7Dm/x/caAzYf6gy+\n/nw0uBrZ5Csl3fxldMKVfNDENmbhil8lczyhlQxLdOEMDhzGuHe49zwZoNF88u7wHCz40OA+GHgh\ns/QKTnRKMu0pbMS15DrdwkFGZAynOc74hDeY7Sfg0wm82UVJpcRYckR27LA9j1yjC1x0mxvs+cxz\nLZ7hMd4x27x3jQ8wHebqiwf3mjEd5BMtzvr1mQ8nmvSzOfuir3hK2BRhySoc4EZLNDuDEd6eG1uL\nNnjITOGVbyBn482NF7oNnj7P6cyBbi26jXOQLVgO18bBCV/6Yqf0nT2Z5xl8xrGD1i2ewwGO4p54\nxE8dedvVvX5jwGAL4pzsHc1wsUP+Mxl6ruioGGGtoTe5odvBnlrz4KALvmgjB/30h0984MFaTHae\nTzmBi1Y0m4821+GjE7RoPU/exsHhOfjmgI8mtsJG+O9k0nhztOjUD0ZFTnsBPj0nJ3GYM9omffRG\ntukKH9FIl3xSa5geyYEMzUm3ZAwPGfKTiuGujVFks3ccDodVLwpJaLSe6YuM8Yt+MJw78Oc5etGS\nr3FvLL17ji7ySG/6XevDj0ML7pxrnPl4IQPycI0nz/CervSBmY8FN/tCh3H45hsdrQXj2SOeyY4M\n4QwHeh3ocoDlWbQbyy7C67rDmGwGve6NN9bROH2e1cjC+PDoRwN9V3jFizlkkv27Nzc7wrMDLM0z\nMrOf4Z8cwGO/mpyBf/LtHHYRXeZHk7ODLILvrA+9ycNZgwuO8Lg3F0w8oRVf2XJrzVx08SHWmPVm\nTzMXbOPw7kyO5Jn9l38Fg//yzT5j/FayuKx/DGYdxhv5OehYwVec50M4fg9u/GWDbKXcj+24bp2y\nQzTxjfrcw0EG1h9Y+E5GdGL9o9Gbn/j1PBtg8/ymfYO/sqcfL99CEEeSoX4/NeBr+XhrnvNJDR+a\n53Os/vlsXgen8T2r/0LO0WNucMwjD7L2pi8Z2CeOlvjXSwXWptbc9Wb8mbDImCzJz/9gcCi80rXC\nqzde+Th2sLddArsEdglc6xK46guvAgZvptrwHO5twjZCCbuzzdhG6xAQ2HA1G4INUrBjk7GpCyQU\nVGyeAvg2d+O2m1qblH6bNfiCC5sSnA74bChwGi94sHnbiGzUzoK1An2BTgEQGsN5vg3OmKeqCXY0\nctrSsb1/smiYcE+6hie5J5Po7N48140LDj4aG5zmuKcrQcUdd9yxFl5nIhosMDQwg7t27H+esATS\nRXJ177A+/QMFvzXlK08SVb/Letddd636kqwqnHoDwpuqv//979f1lK4izBqlUwGxQF+iLSmw9q15\n/zjgePEhEhYtWxGsH5Yk2G/qeePEGjfGPwhQpBWUW8toBd/btE9/+tPXBBpt4Fj3Dn4ATsG/wB1s\ndDmbz8+UPPET7vWDQS6uwdHP1/Ucvcktf2Mc/wIO+tBsPnzGsHcH3GTlOZjGa8Z4Bm44nUuyXZsH\nBr75P3j4UB9W8Z10RQbeaFA8MMY8uPDEP/eGChj60EdGDvIKN5rQkszy49Hhubn6kwX6yAi+cMY/\nOFOu5pOPwzx6mM19/jq5w9URPDDNR5eDTPLxkrz0ZsykzzjHhB2tycM5u4GX7PWRa2M8twfSX/xN\nPlzHJzk5uvesPtc1z2dzP8f1PFjG1oeGbeuZ8Vr3rmcf+ZCXN24efPDB9Z9mKojVjDXGmaza+9mV\nazLKPtILOyBj47O/fuMZrNYMfZufvcOBTuujNQWOcealb7SBTTfm0oMxrSv99OUZWio2wWUsPHhW\n3JCgWk9o8gxP+RRjxA1ihuSXHMQeFezwyDbZVkUGc9GoOIH3w+Lf+DU0oSN+4OSrzNeHB7TAZ348\nu3fAn02yR9fpgFzowL254UmGYHkOXx8WeIa/CkRwo508tXA6o408xINkx06MRTd8eNCMc8CHxt52\n5aPoBU5w+K5gkB0c6cC4dAUOPaLNGU5n/IFPX8kQXvzQuQKWA2/60GdP6s1Gb7iijS7phWzQAT4a\nHclCf3bojBaHa+Oc0Q9G9hcP+jzDh7M2z+QHBp5cp2M0gZGewYGHr3OYA6Y54AXTfLJxNh7tdKb4\nReZ4Igv2mB2AARaY+EqH0QX2tCs80o8DLM+cHWzBc3PA9My6oiOypq94Mh9faJ08mKMfXeilPzyj\nzVg4svHkqb9jFfL4Qw7pDLyu4bFGFVwV76zpYDjXJm319dwzrTOayY8Nsj0H2tFAHp7BP9edueB5\nbqziML/Um9r0QLZkR2/kR6bknPzd6wcHfGvMYQy+8Gk+ucHXmiNnMOgCbb2din40G++Zc+Pyk2gB\nE05zrTf040MjC3yCCR4bNxZ+PNEFH8wPNAc9bOW6665bf5LMB/jslA37ZoYXBPAF90033XTq5ptv\nXr8FZZ6WHuCZ9+vNCX/muHkdHFP09+wEEOft2sJooP7WpTiO7MRv/JP9ZOIjl3kPxqSFjOlb4dX/\naXAcL3G2D5jmG6/sYM6Llv28S2CXwC6Ba0kCV33hldO3WXLszjYMGzAn7hC4tLnY+Dh29zYDG7BP\nXRVZvVHn0z2bg2BCMcbGa5zxbQjOwahfAGpT6vApq81eECcQ0NAHpoRAwOIsyLShCR7g2bZwRv/2\n+eW4j19yROOUR3KIjieDzi3MYCeLeT/xRaczPUfrlKtn9ME+NPol++DQozcVb7311lPPec5z1kCQ\nDRUwmRO88Onb2xOXAB2QbWsURH0OiYGi6m9/+9v103LB80tf+tJTt91225qkCroFx76C5mcCfPVf\n4Jte6cp1OqPTkjr91qIAO93GDTth94JqbxBKhM1jMxIPbwE4BKgF5RILhQxvqHgbokQCX2B5DkYJ\ntcQVPewyuw0vemvR7pnD+PhqTLLzHF/5L3y5jsZoCU4+0hj+qHnBAwuMKcMpK/LHB5rM5d+8kfLP\nf/5zLcAayzdWSGgcueG9N1TIylj0GKMV/POd/LuEygdqjmQbfegFryTMvQYmvsCiO7BLCucY4xwa\nmJqxxrgnv+A0jg7IEc2d14nLH7jyL8Zv5RfdYDrsEc7BTL9ggE3GFaXw6bmGvq7dh6freW6cMVr3\n68340/PJp7GN7/n2foD4j7HR1Pg5bsLqeX3G0Tt78o/1zi0/KWTN1ezh5pCLwpm1500attab0sbS\nnYMsydiZ3MjUelT0J1N400frwHzjHWjhK5wdE6775oBDZ9mZfrQ6o9czZ30Sf3KGn72BIzbwYZA3\nWhWktGBKfNHMlxjPrtGczPRZU+QguVXUwCfccPGf8KENLGtT0QM8dGVP4LFrfPN3CgvWoX6+zWFO\n6wONrV1rEB3pc2tH5tSiuzHh97w1Zw9QHHFGPx3guzVtbrrAp+do9lw/vsgXfZ5ba87u+Xf6JwNy\nQo95cNlHyMx4/fgSJ5AdmPqyC2f3dAE2/sF2mAeWb1L5QP94KTyA2xy8gqnA5ls3ijn2HPTgDS/i\nUnYBDv7MjWfzjYM3evThjzzRgn84xKUdaNOvJf90hpf64fHcMzCTJ/2jkUz0w52NOZMjWpM3mGhB\nR3gVvNi4WFyByxxj+Hf4zMUz2/PM+kALWJ5HZ3Sj2XV2NPvrQ38wjIcPL+jCi+eNNT8Y4Zr2jW9t\n6sJcrbnGkBMcZA4PnPqdG+887cq1NWqtWcunlw+Nwaht6Qqnc7TSCbuYtkGm5J59e6ahh1zYsHVG\nL8VH5K5FK37pmA9zjQ+88U3goA3ufJxr/JBdz9FoHv+tHxy0Ges6uuiE/MgNfkey7Rp95qI9XNY1\n+cFjDSki+l1+66gxnrErfMMJLvqyAXIw1ji4fJPSt5pe/vKXr3mCfUe/fcmLAf65K5mZ7zdMb7nl\nllPPe97zVntPX6sgH/0Dr/nga8a4jne0xKPn024bnyzcX0zb4ow+/fBMPbA7ugo/ulxr4Z/wosMY\nepFb+z8sZMT/sed+49VPqdAxPve2S2CXwC6Ba1kCV33hlXLaJLp2biNoI6nP2UZgo7UR+A0bb60p\n7AiIbRDgBbONxDzNZtOmbCOS3Ak0nPu0fAaiNhKbl83b12/htEHDY5MPPpqitb54gFdf/e4vRxMI\nCaQcggg8FIS04T4VdGzlMHHMZwVxggGHJvjqmPKiM0GYAFaQJziTBAmQCqoEdf7L/TuWf66l8Ko4\nVnIQ3vieupn07deXJgG6ItsCzHTnLEGwPv2+q68bs0G/tSqg9ZMB1pG1659heePAWZIqcDU/XbEX\nOIIdrvTPRqxdNtJvv5ojcZT0gykxrAgIVms4PHzC4XBYf5dU8YP9wNNzNsYOFTv4DPiyXbCMFYBa\nc55lf+bHD5rgaV2iWzPG4T7e6l8HjD/Zc+ceBcO5th1z0hoIn3n0w8/RA72RF14UgBzoBqOEDY+e\nk00ytT4ldRIka1TRh8+UjJMdOBIgc9FnXrIDyzEThYoBZDzlZ4z5ZAs+32GMPrDhcwbbM7aAbvjI\nma7QbQy4+sigsWyXffGl7KECFxwauHCjL7sqyUQDXGwPbfCAwX7IML2np85Th+gEv2Q0W4c3etlf\ndCcH+6PCE7rQQU5k4ShBAhs8c7pOLmAaB64x+rXwopEMHJ7pJyNz0AWnfnQoyPhg1FuvfmcdTcah\nyTzXbEGxta9ok5HnyQg8DcxocW++MY7GTPkZ0z0+6JUu4sn8Gjk4PAMLHw6ywCfbMb8xdKLw4dDI\nlk8wh934MMlb9c54zh7xppiQj4AL/OjEi1hEQcDBZsgI3+E2hrzTffxPGXTtgxQfovhgWiEGbP9k\nRYEQzdtmXnM9Q1f3zu61+tabzR9j8JQfICO+gBysCQfbIFPyNp7cyAhf7smQvPHtGRk4tHTVPGuL\nvZiLLriNSV+uwfGMzskNzG3zPBmDBSbY4NGjb1X4Bz2+EWBczTy0eaPM3sOOxSn0gmc+ULyCJ/4V\nXfCTf3YOXrjjwfzGgI8W+mM/zpNnspgNv44amB3GZkNg4tU9PtHHl9kr+S56U/SybtDMN4cbbLq1\nxnvhAU4w0Q0eWPTsetvQEd1o69o497N1b0zXPe/+pPOEOcc3Vt9JYxrrnJ9gN9Yt3sgheyU/+kk2\n+sF3eMYW7Hmnl8Kr9W+c1p5FZuTfemYH1gfZWyv5LHPQYjwbMsYa08i8Aqjx9MH/+NCL/YGJbnQc\nlhjHBwPmRCfdhr8PSuj1eCmyOYOJL7ZnH+SzHWwQTflXNLmmb7DJxRi40efa0fozNl+KX/ZinZjL\n/6HTtbzL2hOTgL3VGXhgbZtx+ILbB3u+Fff85z9/fdtVH7lrZORtzvvuu2+9htPPU4lTr7/++lVW\n2UE46EHfpEWfNcTfkjlZ4cPeAKY2x9cXzIs5BweMSYv7nunv3tmhdZ74mjOf6aN7MaEYvsKrDwYV\nrx2HxZ6yA+Pn/Al/v94lsEtgl8DVLoFrovCaEjjsnDbH7VrrOmdu07Wx+eTzL3/5y5prbZRcAABA\nAElEQVTQ+SqzpMKYNiAbcZticAUOAgDBk023AMpZEFIwAAY8DpsOfIoHiq+CUBt89KEx+K61nkVz\n9/96enn+4k/QIlBCB/kIxgQ5bcZbSrZ0Xgr9zZmwg+tZzwWf5E4n5EymgjaHgMWc5tGLr5d7k0Sw\nJxgVUErojcWPjd8P/AuUKrwKemvwGqdNOnq+ny9dAvREttYb2aY3Z7ryD2QEbd5oFdS/4AUvWL/C\nJUm1vhReBdR+o5VOJans1HwwBc70S9fGs5XwGOPamvamqq96evNZwcJYsPgKPykwE+Y5H+cCcEGy\n5KgCvzH5ALiNEUD7sMa6klRo2a3n6Cwx5lM0c7Nrtszu0ed5Npode64fbGujZEh/SQJZo8scstBv\nnMM4Mts2vGjpZj5PFmBKtsmpn2HIr5KNDzPQDj/ZSv7MhRcf+vVJtBUcJOUKP5IpsPkkMMCK/3Cj\nGQzyM85BBvrJrkIMuvWXAMPNVtgZnGQCDjoluc5goJcfZ39oaYwiAljgGIcHsMiBz3dNHwqDvQlN\n3snTc35Vcorv6AcL3wo2zmDwx94OqZiGF/jSiTldO6MZzGSNz2yfDOBy0Hn+k5zIXeHEgU42SxZ8\nJ3ng1XjwgulMLmgAG73GZWNode8wDk1zDn/O7p3RYww6vPmp8OftT/L0DC0OOIxnE+TicD31Ae9s\nyae+7Kfz7HdNvp45O/CdzOkRv43DK7qN98yBXuPZtecOvJMzG2FPxtEp+ZIduXjGJpzZCDzZHP6y\nX/DxFF/GkQtZ0hUfoG/LH5r1dTS//ngid3GSD7XEL3zb61//+lNHR0crDvO3bcKa8GZ/88iLTJ2T\nD/4d1q01SVbWXv2dK8iBRW5swRmenrkmo2mT9AGXs7nkT07GudffkRzcR396jQdnh+fNY+fooQu4\nvG1nj/IBgtgDD8Zq4BlLtoqv1rl7LV/CFqwHsIy3buk3numYDB3ocB/PaMCfw3g+y1z9bCr7QE/8\nB8szB5j1oUEjr+CiiR7Ft9YpetmLghT/5hma7X0OuMFTLOPj2bkx0c2+3dM9O9CSd9dw1pfc01Hn\ndeJmbvJJZ8aki+34CSdcjXGez+uf4zzv3hl/ZI4/unBNFmRDL9atZ8ncfLZUPM7v0atGD2SU3sAn\nUzbDVvIdxtEVfPCAbY65xrv3rD3V2qE7HxTIjejIeDQ87WlPW2MksRc9on/yR1903wdHYgExAFxo\ngEMB0xuPCop4Nt9zdDrw7J5+yYatOsgFDPSaY1wFZDSyuwqvntkP4DD+eCkA//3vf18/ECa7ZAYe\nebJjvgY8z2rmwoteRVc/OeUFDYXD+IZLnPirX/3q1Be/+MXVp5unQCuf8Dum+NCnGd+Bx/qc4bce\nvB1qn5C3+Pkq8UNj53jXWrT86+7i/+IZfejSguc+WXe9hT7HzrmuzcGHwqufAavwyga88arwenqJ\nmdlf+IO3xbPf7xLYJbBL4GqXwDVTeG2zSCFtFO67zpkLNAQlijl+ONybWT5dFKS00Vf4EFRobcY2\naJtwhyDGHPgFDAJECYJD8CN4KIHwTEBTYBHN0QVPtLruueunok1cE75+wYgkQOBCFjZlnxhLHvBV\n0GLeY9EZb43Z4uz548Hx3Nj0I/gUsNEHWtBE5gInMiZ3/c0TuPq6j3/KJBCTHPhquq+lm2MsXfoK\nUYVXyY95wXCeMCft66D9zyVLgH04yNSRvTjTrQRAwEZfChX0+LrXvW59M8hzhVdjFAm8FdfbQfQl\noGYrAjtrsbdvEOs5fNa5ovzRUkzwNpffUxMosylJssKDf/DjDRBzBIjRmU0oTgmQ/Q4sG7OGzJcI\nwIluPsBcsNkW/vThgd2yb/R6zh5dG8//OPgOzXM8GVMShjcBbklaxceSc7DARzcfCF5rxRywyAg8\n98Y58OEgo+nrwocmzzV9inWKZeSmYF1CDT6/iQ7NPLJL72C4LwELvvU5aUBfsolO/DjAAt8BF96N\n1082YBlHpo1xRgtdOeJHAa83k/EtoUyPxqBBocwYyaR78oJHokkG7JCM0XlY3urwlqDkTRJFnvQu\nQbX/sGH00S260Qjf8ZIw2q+Mh6+3ffGHL7TEkzHpSR8Zsi80uXaQMXnSNZsFx73x8JfAKpjQnWYP\ngNfh2nh6mnYZDnDICx3kkd0mc/3JG23Jmz3zuZJ58gJPwcae4yALsPtww95E7h368YM2eMEgSwec\nZKWhhwzQaKyz8Q5jGodezb3xmjMZoXvaT8+aD5bmDE4wzCc3elckIGM2h1a6tefiwXi6YjvkYE7w\nwACTXWcnnpnTGHwlQzDIjQzo2jzN+Ph2bwy40e4ebb5l4J8aipPogI5e+cpXnnrDG96wFh/YvYYu\nR7yunY/2Zyd4ct0ad02WaCST/KA+1874R4uWXTnDox9O/KJj8gdm9p68PGf3ZDHpTU/gavFgTPpr\njLNx+qe8ooc9u4YDTfQADl1b5z4YtI+QZQ0c9sRWndHoOtz4TE5gZ3v46dCXPTvDT9do3dJuDtuB\nA30OcxzGwkdH5JcsskdydeAzHHDDg0Z8KtpZs2JGfOoHBx7+ssIy3XrusK4aAy4aHGRgXrqDy6EP\nTnSyU2fjwUhH+rqvzxx9Gr3gI5tMHz13b3zydPbMHPaZbRqDHvKGR4PbuGwQbZqx5N7eZB5+zGUv\n9m28wtX6cNaMJRswNLRkI8a0hsjSgT6Hxm+LS8ge/njxLJrYHXjkebzsO3Kk/lkUXHyUwqNYWqzD\n56IpecCvaGguWxeTKbglA3wqWPpHYeafXgpu/B384HeggRydzUFvNgEH+uzH4JIz3u2ReG7dg9kH\ntGRvf+0bUfBkD3yu2E9OwW7FLHyzOekSrT7s90KG2FBsQH+NEdv50P/s2bOnfv3rX680oddPYr3t\nbW9bz9M24pPs059r+PDmQ+sHHnhg1Sd5K076vwFkUQNjtmidfRdznUw6nzQ3nHDNa2O7b1706GeD\n5O/liX7jVUFZQRpv9nK2TxZ72yWwS2CXwLUsgau28JqTn879JEVtNwjzbNSSS187UVDxNo0k2WZr\ncxSclGDaDLQSABuDgEWw4XBfwGPjV2SRrDoXbMAZveejUX+8uG58Z31PdkO7wFMLN3z6ycEnkmQh\nCMSjAgE5kYV5U7YXQpvxcw5c277gbPkWRAk6JNkCRxs1OgV85E7mjgJwOo63+PFD977y440Suv7T\nn/60/m6oQpGxgjufZJ85c2YNsOCBE421YEZ3/fv50iVA19MWJiTyFmgL4Onr3PIbj9aWIPRlL3vZ\nap+CbUGdBEGip9gl+JfMCYzZskCZfsGi7xLBcLFxxVwFBT9jwEY0b254Q0nxga9gN3xCQTc/AiYb\nk1BISBTvzYfbmjlekpDe/GGjEgZ88Q+uBaXsWF+21pndOzzXpqz054c8MwZM/XiVwKGzAixb9kwr\nKUwOfBq+KkpIGtBgvGvwHGDwBWgm9+g333g0WINkrPjovOUtXa+EPPqnPjAmj+BKGOkPfWQKP1m5\nJvf8ALx0Dh8YZEP3dOtsjgSJjMyFCz/GuccT2OEnN4mmgiA68Ao+fZMfmHzEYSmo8pPG6YeDHfZh\nXrg8l7R5q17xlW7YA9uWtB0vdgI2etCMPjyxMTxFLzgO+sATnOFAUzokWrw0Bm/GkhedGifpBQtO\njU7R1Ntq7uE1liwcrsEItjP84PPFbAoeTT/a3bMl9DnrIydn9MFBHuQIB3rgRoe1TDfGoJvMvX1k\nvblmG3hgH+jiH8w1Fn8SarpEJ92TKZx0jxfzyNtczTNj3aPVOA1/aOZf4ABTEQm9dGE8fh3pxDW6\nwXPoJx808AkKy+yKfaGT3yADsgATD+nGPHyxB8WF1gba0Ui2+tABD1oVPeAxF73iGvJKD3ilA/I1\npvUODhjs+KGHHlp9L13gAT0KFW95y1tWP6xQDg7ZZmP41pz1sWvw0d31vCcDvHnmAAtNDjjRQ1f0\nTN7xjF7Nc/KiS7Igg2DCr+k3nz8ByxwN/Fq6wo8D/c5assG/a/PDbxx5kSX6nY1Dk7Ox+tmOPYEs\n0YdO+NGIV33WkGaOuXhFd3ZoDrsA27P4ptNsGX/6wUALWTvgQKdxbMw4OMAz3xw84cd4dpoe6Meh\nn37IJfxoIzs2d7z4Mfuxwqv5+HMYk79kh+aGB43oApeNkIH9Q7PGxKKHxc+yXXQnC7RZD8aSIdng\ng63jpabfoaGFnDvgwwtZkQfY6RVPyadnxppTvIlm46b84MFbenXGowaesQ440WW+Fr6egR2dZIlX\n92gwtvHm6rff5leDR7fW6GGRn2KX2JkM4ZgyIRc0slNw+A5FSP4XnWzQuvfBtDgHLDrU4DRHfETv\nPliwr/nwVT86yc9PaCi6it/6Z2H6yTt+wHNfnzM6yZCe0WUduWaPnpGpM16bi2YHvuzb4kM/LYc2\nfcbzBc997nNPvfjFL159L7hexvFmbHQb96Y3vWn9R1nPeMYz1hwEjfrpmC3g1YsBv/zlL9f1TT9k\n/qpXvWqdq2CLtqk3NGj47ho8/voXv/jFqfvvv3+FrTj51re+df2Hstat1vjOU3brgCfxTzgmSPi2\n7bHGsWPy9wHeH/7wh3Vf8eY0+Yjj+QP2eBLcLZ79fpfALoFdAlezBK76wivhT2e93djaDBrjuY3S\n5uZTxRJen9ILOAQSPiUV3Beg22ALQgteO4NlngBA4OPeJmMDNQ/+aMhQ0HJSX887b8fU/2Sd0Uce\ns6FNv03QZijYErzgSaBTESA5XwyNYKcHOOdc1/O5+57rF0QflsDRm2I+oZakCkTRJFhyCK4EZ8Ge\nMPHj65G+2iKIFyAqpvmHLWDgBw6B1ZlHC68nBQPJa9K6Itz/XLIE0vVJMiVva0sRyxun3ligZ0G7\ngFkhXpIm2PehgHUsYHaWDFiHgnJBsKDVWjWePWtwwsE+vI3o03dvKSjqsCUfypxbir3wSpgldKeX\ntzTgZX/oElAK9gWSAvijo6M1wYDDG7ie9/YjW+MnSnDgQKOWva83409+BK3WYvcS1WRneLx4Xgum\nZxo64cuOje2Zc9fB9dwhGSU/cqIPcgQnWMZv508a5jO4wYw241zr69p4vJKz3/G1FuE3t0KAa8mM\ngywkwt52VixyrwVHcqehl8yTHRiTjpPoRJf+xs7xbAuNh8U32S/AZl8KK3Q9x8IfTxJYRUEFPImg\n5BZ8LVnA6Vp/1861rrc49MPDn1UsaD6+yYAd0KUEnE27xgu7RJM1xtfb58ylf4cxNf3gkI8D3OYk\nX7QZV4vW2edZ49Bt/4UL7tbqnIdWewA/3h5lPDlZk2TJB6CNbhRurH/3bITvN5Y90YExihF405/t\nsCvyU+zxLPviE/gWzxQS+KLDov/WBho8t074AHjxiwfrhnzBYh/GiRk0sUdFJj7GdUVjz+1xig58\nHTmTuTiFrzLWtf1aPx/DN3lLlX3B65mCtSOe4KZrBWBntBrHltFsrm8ZHC/FNLYRH/TkzX68k6Fn\n9IVn6zM5kiUZ6Gcfxrm3TuDOHj0zxxEOPNf04QttdE9n9EdHnqEbTe5dg8N2yAFd7umHHTisDeOy\nK7DdOzTjo3XaQ2vAOPDgNBY/DnKG0wE2GtHMVtCJ52wDXPSaRz7kz2+wjRr47IIdxC8a9LPJ+HdG\nT+u5whoc8LEXcMlEHxjWvXHggpWvwBuaiq+yUXqlJ3PJzzy6T5bgtkbYab4jHvoZH2f2ah5YZA8u\n+GTgq+kKfvy4uWzs2c9+9vr1dh9KmKeRGbu1t5IbPeBHcdcHGORufnqFh07JAGzriK+gE7zzJfwA\n24KDvjrIN/nTK96sX/SiW4PLOLKEy5EdJbtpq8a5N8ZzdLAf143LpvgMPu14WYd4tobAn3ZoHnpa\na2jBh5hZkdS651f4Cf3oBYPewKNn8/ElfnKQD1u2Zvjb6667bi2a+pkB8jWXnRRz0YOD/uVY6DaG\n7Pip/nEcWGyA/snTgWfNtebeNdrQgG8FTm/hgg8nfbJj+qY7us8m2RRfT9diMDaVXYKPd0XgG2+8\ncX3z0nz8Kwx6a1V+SDfs4d577z11ww03rDjMQxu+6EvM4Sew/PNX9EU3eK997WtPvfGNb1z5Ng9N\nGr3Ft34NLrbphSBvu/75z39e+xUnvTV7tMSV5Kglo85wOp6KFo4J+yRc8TOfdU2H5OSnBsiKXVnX\nr371q9d4237EXhs/ce3XuwR2CewSuJYkcNUXXtsU5ubFeddPWW14zoITAYWve/nNRsGBwMEGbiN1\n2MgFFc4FeQU1NmYBgEDWJmnjNadNJ+PY0jD7z/ds0tz4p/JMHjb72dAmKCi4di9YsHEmoznH84tp\n8WheR31buJ57hk7JeMGjTRqNAkSBlEOwR0daNE34gkyfrCqMCT4FhN5g9NUXuoRb4uJNtJtvvnl9\n41WCVwAej9EY7Pr386VLgI4dJ8mUvAXdFV69fWoNCty9NSEpdS+4VhgVaAvI6ZTNpi/2Irlyny1n\nJ+G25n2lzBsd7EAi4jf5BPquBfUVWQSJ7E5BVoAuQWKX3gTxdoOCDDwCfm//SJgEm+yOLUq6PHfP\nbtGFnuhl81r3nrFFNikJMgc8vFufxjcfbdYvvzRlgM/ZjDfPfNfzuXtt9jV3O1Y/ONHauPrB2MIx\nfvbNa/OsRYmwpPFwOKxJmqQDDjzhTcMnfvWX9Et+6J+/AtfzCjVkaKzEmU75cPd4ii9ncMl4S5dn\n9OdMbs1Fr4Q2udOrY843x6FViEEHOmvJZc7zrH7XYLBnOMnBfHSYM+cp1khuFSP0s1FrCd94w0fF\nF/SQjXHRBDa45uFVc9bv3HW6QI/x9OMwT0O7NmmLH33bfnp3gG+vtp7haBy6FQbZBr3SL1z2ZcUU\nezI6aukfffaMud7Aal2xL7JxGCtxtldY92QOtqT4eFnLNTKWvCtC8kUl+nwD2tEFPxz8C7rYRXYX\nnM7kYhzcDnLAK1koSPGD9jpwjQUbbv6Gb1B00MiMb1JsoE/NWHuo8caRk2JuBaj0yIbhVuSyphS2\nph8hC7rIlsHuesq9fnTqT3/6Z2uuvuA21lwtuHggcwebdd96NAad9Is3h7WhT6OfPlQ3lg7wRz50\nTyYV3ch7wqgwCSf5eJ4OrMXGsy/2Y65x8NkXrEENbebhmU1USEEDevh0+sW/53QPtzn0g1e2iRe0\nJB/w4APPPDTBhZ7jxV6dyQHcZGtsRWxyBM8z9ikuZsvwwpn82SZbOyw+2fx4R7+9iD3B13pFO1uy\nJz5/+b3LPkTjd/BRgwde68Ya87ui5EAfiq4vfOELV9vNVsib7nww4K1Kc+lPcVFh15qddpecyABc\n64hd8xl4Jge/7W592F/RPVv812dOvsIzsid38xzoJBuHa/QGIx460xNeyJue8EIecDjz2fYz/sRa\nRTN5w0Mf1kJ+EB4HnbERssebcx/M0LWGHmPJpA8E6BAdznAYY7z52bIz3aFP7kSe7AV9+EBza844\n9FW0RQu66CP+0aDNvrVj+WMdie3Yw9/+9rf1bVS44NDYoA8xfVNNPKi4y7bAJDNvripgshHri13C\ni3b24mUMP5liPlrNe+SRR9Y3Tv3Gqjm+wfTxj398jQnJ21xwwDcWfL6Wf9ZPZnjBqzdl3/zmN68f\nytOJufHturGuyYy/9juxCq98l3jTT2op+vLbYGjGb1twt/1P9P5CcRnnQMekRR99Wau/+93v1sIr\nG6a317zmNWvhlY3E2xOld5+/S2CXwC6BK1kCV33hlXCnk0/YbRbzmeCCw1cMUUxREBH0tPk52yBs\nmjZhh81Av7kCIgGJ4MjZ3Jk0t/FEw0nn7aY0x1zI/Dn+iV6jJTmBlazwL9jquWAk2sii63iZMB6L\nJuPmnHk/5wW/PjoQNAqqJdsCY2PoUiDqoBtBz7bFkyBV4O8tSUGkgNFvvPr6Ol3iS/DsE/m3v/3t\n/y68sgHyqBmnxUf9+/nSJZC+01VnEMmbrhTTFMq9wSUY9oaDoFTgTX+SPUeFGklDAX3w2BF9SjAl\nROzFuvaGCDxsRJIsAVOAFQizLYG+8ZIy/Yoh4HvzTdDtQxzzwfXGtH/MxVbNMV8yGRy4ogFd7vGT\nH9KHTjJp3bE/9+yWfUp8NT5MQiHZwYtxbPj0UiySsIMpKZJIZbfGgO8MfjjA1/STg/XvGX/orKEN\nHGe8GTubcfoaF2z34Dt7Dja/OZ+DY4zn6EO/oqGjhDG5RIPxaCVPjSwVLiTVbAEOY4JHb5JGdBjL\nj0vqwDNOQ5vEkF2xO4lfzyYseCXEnmtw0L/EDAxyU/xiX5q58SZB58PYV7oPB9o0esQXvUZDY8xn\nC5IVNOAZreRpPn7QZ404FH30gYNnfhNdxnrG5uNZH5zpx9nc+tzjQ7MG4GVn7AHfklm0e8buSsDR\nDjY5wYU+hYt0tAJc/niucCJRd81+vSlDTvEPD5qtg/YCcjDWOkMPXDXj2RG6reWJM5rAcy2ZRjMe\nyE6yq6iBH4mjte7aWPTQhbe/JJH44n8k4MeL/RlXg5vtGY8X+xUYZFszxgE3eti9g47wRA4VQZsD\nxmEpgqEVj2wQf+hQrIAnHOTJZzqM4zfR6ijuMZZuwLLX4sFb+86ewedAp3t6Jwe2p3mmpav1ZvkD\nd+tdX+NcG+sA0zgH+ugB32gLrzXB7umdLM3RwDYWneZ1kAU6yZAe+RWFGWuBLVgLxoCvn9wrduoH\nD3546RdOY+mQzdEVX4GOYkS+xXoxns7hNQYc6wVMPMLncG08eHQCtgaXA/18PFrBAQ//6CQnrfXH\n1jX8sQEfRjrDDU4NvWzLXqFIiT+8wM3GHOjU0g/fZj30T5XygWhmZ9YOGskVP2jhp+yHPsy0N7Ip\nPKM3G0BXPCo82ePF6GhBX3Ebfo0zj4yPlzXG1+NRP9jWoTlwZFPxQAZ8Dp9v7zaPzMnU3o6+w7KW\nyKEGV3TWl63l38mBbNAXX+ZEK1mjRes8YbIbOiI3vpzfJHtjyRGv9N8YcsYL+6JDa9Xexi7YA7nj\nYdpftsLWgguGNWOtuIaTPPrgwLjsm18Hm53gF2/mGI9esmADeDHPOOPNY1/8eXtRMkqexk95kG/0\nkAmfq4AqXuerPHeQK9h+uscH3or67vFPZsb6avu55RtL4FjP6cBcsZyv8PuWU/sNuMb/5je/WXMD\n/Piq/7vf/e61qIsvOqEPP1sgJvWtSXZrbWt4wRN7VNRVfGWX0w4at0549A+9wv3DH/5w/ZYBGeML\nDB88gJecwN+2nm37L9c9mtLlpEUfffIpCq9+45WfoC9vG/uGGdtlF3vbJbBLYJfAtS6Bq77wunXw\n7tuUuub0JWWCLW+w2SQFX/oFLIJtgbl5Ns+CYxu1Q3BiA7aZC0oEKDZfG2O4MpR5H/6eOeubR8/M\nm0f9l+uMppprAVr8TZ6icY6dz+t/rDP42znh79l8bkMWSAuqJF2CH8GigF8hQYBOT80JFhrmtUBL\n4Qoc+hTQeYOSfs0VZPrU/B3veMdaoGUbcEWTM5kEd8JeO/c/lyQBsnckz86Akbc1p/AqKPWWunvJ\nhgSLnQpYK3BKTuhTAJ09RJSAXNFB4iiIlXBJGLxho4BpfYMnYREIGs+u+AbFIG9FCKDBVYzwtoND\nEIlmgbVEuzeCJDtgog9dbFVCzM7YcT4HDRIuNi1RkQSA1Ry+Bl0SUEkAG3YvOfU1YG9beNPIHAmk\nr6ahAe3k5ica8Oc5+iXP1hO81oAEFA7rTHIkkfGzCfyjYo8C7/GS5BqDdwkVeZB/AXMJHBwaH2qO\n+ejQ0KyQYE5+FkxNMkceFZroBj35ILIxll41dDisT/NKLMlXoZuPb12jCbx+V06SzIdLBCR0/AdY\n9MIuyBCN9Mre6M9zNCokKMzDV5HX3uI5/ujOgU/Jnv0GzZ7ZZ8jMmzD0rF8CN4tf4LA/Nsr/oNO+\nxXbIAr904y0cOkY7HdMRezEGXHJUSKBvtkYWFRzYDbskX7LzIQGZuCYDjc6MAd9c9+RoHBvHD7mQ\nNTnAab34Kira2Qj5WSfkzJbg43uNcTbfh59g0Bv4ePdPTKw1xSV845+e+gCBbujAOiBTsMHCHzvH\nH3rS2WEppsBJduy9QiM+w2lvYJNoxTc50CMZWitka67n4NbIFmw6AZ8toAFf9ph8GZ17i954OmdX\n1qwGHnx4MQ7f7JU82ZxGD/CbQxfgesZGJLDsiXzhJCf+EC3pDQ/5MHZjPZGT4gEd1ejVW2Pkwdb5\niL/+9a//LlyQF1rBYGP0DAddkyt7TT54gDPZ4BtN1oW9Gw/od+CZ7q0bcnQ2nhzxosBjPLtBl/WH\nFrrHM/kYzw7YqwZmhU82Q0Zk5jmY+Car6PUMT+ihJzRYT2SFZ8/ZVXbPTsjVWLjQTRZkaC3B5zk9\nGgun4j06weZryNE4vJgLPj3C5cAbeWXX+uxh9EO27EUfnOi0N9IFn27d0DF+8aGBjUc2Y53CT0Zg\nkDH7th+yTzoiG3KnQ7+Bzod6E1qDy3gHfPBaQ/CRiX1G0dUcPiYfjQYwNfD5dT7EXsGXkRF90oM1\nYw1ai3g0nq9gF3wruZAZOfAJeMJfY+EBH11sj68xl12jkz/jk8m0tyXpYjYw4CVD9k3/dMJ22AU6\n7Zv0aKxx8QdOfROuMfSNLryjycGHgUvvxpvLxrNvdNMzfcGLdgf5oF9chA62aAzb08gA7XTsIEOH\nPs80eiE3cxzWtjUMDpzswUHv7Fkf2vBBPubDS8/WA3+GHrZAzmAlg/SOBrDoAixn8OmKXNgWv0Jv\n8U4m4Nvb2Jd4hf5as/hj93/84x/XwisYaIUTfjya6y1S34JzjTbPyd5PDSgQsi2+RuFUTAU+OOxT\nTOWnysA2J9nhBx9gsUlv1PotbOs1u0C/o2YsOxDH+ekzb9q6N8fPFLzoRS9a1w/ZznnNdz5f/xzz\nVF/jA4/Z7cRHJmTl5xgUXu2nfJCfYlB4pU962dsugV0CuwSudQlc9YVXCmrT4fg1Z8GYTVCgYAP3\nKbqvBAvs3NtABU0CNYGL4BMcQbEA0mZqAxcAGSu4sKkIUsAP14rw0T/mb2mJnsY1xrkNKnjga52b\n81SftzRHI7zx2Vlf411r89m/ev77b3Mai3fX3fd8wqvP2aZMXwUf6aRkJTj/jflfPZ4LAgWokjDz\nJEKCgQJPsAX573znO9fCq8AxfOajI924jr7z4dz7L1wCU39TrtaxIFQSKTBVfPBmhUBNgkUfijN0\nKWmZb3gFs2BbourNAcG6hFNybDy43nyWcMJlnjmOfISks58QgE8xwhx0sSUN3RJqwbqkWpFA0uI5\nvyLYlDywN4macZ5X1EGLoh88aMOTtzzMFdj7PSxvaHguMTLeP4J4+OGHV3rIyn/Avfvuu9ek15oh\nL/+owdfX4PK1NT+3gTbJo9/bkkDgW/LhDYt+kww8ybAkQxIj4SATNCZHfIIrsG4d0Qm/y9eCXfJv\nnLUHN9+Mb/6V3OiSTvjjCgGSQrKWkEq+0g39pFs8SjTRRL+SPnLxth+8fLhGj5IsdPMBeFN48Ztj\nPnxxb71L4sjQGMUESZC9Ay0KQ96YV/zGg+dko/iNH/xlJ2ChG3z7jQKMQqGCokIdOZClJJ7dsSWJ\nHjlK2LwhpthBPmzNGHbELtAgEWTHklbP6AcfyUjSJmFToOX3jAMfvYpt9EN2cPmqfAm7ZJutSYDt\ng8dL8bxiFvuwV0pU0cF+vO1jXyUfNumf00mk2Dcc0cZ26FkRhh4USdCkeOKtcWf2gw4/9QJGX3UH\ngw0bQz7we0uJLsmRveEbPQrQEjv49IPHpo1FM1r9vAzdsSHJNH1YU2xNgZecyEA/feIbPDZlTZrH\nzsBmcwpM5GKOggG7N5b+7VP2kH47Gk/sQXKPDnbHZ4BBNuwfT2RFHnROtnRBb9YzucLFRvFlHvsm\nA3xZs2RlfYHB9sgbj2xbwYZO+b3sGz4wFLqOjo7W8eaBhU7w2KJ1qsjRGqFz/slaIjsfeOCJXdlL\njcObtaFo7LmDDPDNTtk5mqwvNmksGVvz+LWO8UyO5G08+ZOttY5n+qkIAr9Cj/XmICf7hfWmgEUv\n7ICOwNXwT89sy3FYivX0QM5kCJeCEBtDPx3TDT+ggDB5sIbIjr2RKZtFn7fjrFG65LPI2gEX3vFN\nnuSCHr4Lb2zaPDJGkw/gHGTHBslMwwv7NI4NW5t4tQ7QQXfoZAts2/7D/tFrDJ3gy55jLn2BzcfD\nZy0ooIIFVx904M1YutDQxEb4JzSSEXnMBh8fw2atOzDIFRx2hk/2Qz7w0711QCbwetPVYT8Fn56t\nAzwZCz69gZXe2IeD/MkYDrZhzdEBm2Ij5rIhNuiantHKx7N1NJKze/jwSi7bwqv54KDD4Ro89oCX\nZMi+rTPFRbTxi8ajES9sAQ3mgZEurTGywUNnsifr+DCPzZOTw7onQzjQz67RxO7w7yAXZ+sBHGPY\nPfrYo9wI/WwDffAZj39z7d/sylk/PjS0xwfc7IU80YVGemIPaISPXZCHPjSCAx5dsV92zLfg33q3\nfuib/dtPFU9bp+Zby8ZZr/wmm6Z7MD2nY3bf265o5L+8ceqMX/ZjD/UbsOyPjtkf/VtHx8t+yY7x\nShcVXtmnsRp91uDFH39UUZI86FbBVnHYmgXb/Dk3GCf19exyntGHHzazpYkN8UV4tPfRa4VX/8yW\n3eTHLifNO65dArsEdglcbglcE4VXQrOh28Bs3jZMwYUAQbAgsJE8c/w2V5uDjYGjtzlKhjh+feZL\nnsy1WQiAbChtes7a3FhmX/31rYOXP/PemDanOR5dmrFz/Nr5FP2Z+LcoTnqmr/7GR3f3J53NwbPg\nSJLhvsBPkOKZdrF8Nz66uu8MpmfuBayCRPjhFPihIfoFkYL92267bS1uCBzNMb/W2PDVv5+fmAS2\n+goaPVnXEnDJp0Ca3iQF9CgBsF4lQ61Zc4PHrujw9FIYUfBRjJIo0a1kwxqX9AmmFSEVN/gOja6N\nkewrdilcgKOgoWihYCTI5nsK6r11oghoHN9SEiiYFrTzRZKKw5I8SPDxgHbJ7vEStEsm/O6VwpUk\nR+GS7yIHBSQ/g3H99devSQ4aFX5/+tOfrsmCRIX9fuxjH1sLfJIM+Dz/yle+svLiK3M33XTTWuTE\nh//E+73vfW9NJBUnFHfZv6CYjZO1wt/PfvaztYgIp2TYmwq9iUFG5E1ezg4yxK+ijSQIHZ7zs4os\nkkj46ZaMyEyiTsaSWTAlUYoB+FfU4cvBJe8a/YJJNhIpSRifLYFSlHZmI3D4rTVvr0i2+H6FnZ//\n/OenfvzjH69j6FlRVZHMNbvyX4rxYO+Ah27oQKIreWAzZ8+eXfmTGJItGSoig++Z36YzVzFVQVFx\n1z2b4X8UViQkEkU6BNs4yRpeK/KTFXtROJeUOZOpt9PMpUsy0tirr/HBKYmDhw6M6U0d9CpWSCol\njuxVsYjeyUxxAW1gSowlfwopYFs/CiCKSeCxYTK+44471mSTjOG0PtifwrBk31yFVYkvO5G8Kv6h\nn/2Ty0c+8pFVhuQAr6LfN7/5zVWf6GIjZ86cWf9RYsUB9mQsHn3I4IBfYu7DBnqTYCu2ffvb317f\nVIefjMmaLZO9QrnEkN2zc/IjczJQHFEUcC8ZJjOHtUoemud8lDfh2ay1Lr5gM2zLNbmyu2984xur\n/yErumS/fAKe6JXuHdYBW+RvFPkVFuiODG+55ZZ1rbJn/KczNqP4prjDFx0txVQJLp4URdguWA89\n9NCpc8s3CcwnC+vaWjos/olMrR9f1yU3Y/gFv7lprfpwAZ1kwx/yofyRAgx83lwG0zjr1BrynI7E\nWfrZn7WCJn5aY3/kyOfTPZ6saQUO48mcDvhuftUY+I2nw4orZMof8idslz3w9dGKJ7LlaxQlyR5f\neLRmwCkuqbhsD6Jba5s8fJCCT/PgsX7oBi/gavSisEKOcPNheGZbZMnOxSXNcRankive+D82hVfr\nj3+yZs2z5tBoXRwv64d8yYGtkjeeydZYdmZ/ccYvGfJBxULmpB92SzZ0SS70SCbiN7rjl+mFDyAb\ntkIecNlfrTs+3bqAw1qjV+PQRL/8vz3OQW/6wZ8FYuvFPDjQxG4nTvK2FuGzDq0ddsFXsv0Ke+a5\n5oPQaSyZHBY7tx+RPxrxbIwzONYf2dJZ8IJDz/YJ/Fpj/ItGdw5w0OEAA3/s2LPyDDpik3hiJ/CR\nFxvgj/lDesIXfK7phIysH/K2b+vPhvARzfCwGzS7xhN5GkMX6NHgAwsP4LArz/BtPjrJnwyseevJ\nWPShhZ7RgbbWADmzLfyiJxkkSzqhd3Ebf4s+snImB3aNLnDhoDMHXdO5a8/Qiibys9+0J/FdeMCr\ntWh98h99AGUNolVDI3p8aGcvtubwaI3yI8aiG0zxjHXpuQKwtS/uINv2YvDox97jH2NZd+SuoQe9\n5E8vYNn/+E+ysM7sR/ZJvEZjc1cg409wR9f/5DK+0NMRIeTBvyhqiwXYFJmIUfBKj/naK4WfaN/P\nuwR2CewSeDIlcE0UXm2uJTyCaQFhQZqExeZmjM1Om47dhiyoEfBpNgiHjd9GohnfdffB0N+z+ox5\nvD5jOxrfnO05nM6P15r7eOMu5Hn8PBkwbaoCJAGMgIk+JOvHS7IgyK0lEzjDq29eR5c5c1ww5jl4\ndI+G7p0FhVowBHkS0zvvvHMNuASi7GPimzY0+yfO/friJZB+zZxypSOBuAKQoqgE1HoW1DskNxI4\nh2v6mfMlMRJ2wbM3OQV7Ega2AKfxcCgSKtQpsimY8AE1SYUEWxAuEDZHsiQ49zYeOwZTUiyRNrav\nLcIvwEafhFhBRJFVEqAoIHHhq84txQ9JL/q8cS2gx6cikDdayUASqnjokOzhU6AumP3JT36yBvCS\ntQpXAn8Jk6+vff7zn1/5fd/73vfv4qNERZLypS99aS2s8IMKL+wfn60XdIH/9a9/feVFskmW3saQ\nlFdgSF7OZCTRVKiAX1IhsYFDciZJkWzxsxI9b13SkaLCYUmGJZlgoFEBiW4ULdiBeTU0ooFMFDwl\nQOTCThRNJTRkAN673vWu9WdEFG74ezqRZH32s59dZU324FT4Rr/5CrOKp+j29os3ivkwNkKXioIS\nNgkS3XkrWWJoH/rOd76z6o/vU1hTfFN8xDPaNUm3ZAQcvMIjGZHQmYdnRTJ2wubZ4Zml8Ej++GCL\nipfkLInTjpbCFzoU0fK3bMU4b48qBKEBHgU8vBsngSc/vCn8WHP2VDZOz/wjHRmrTxKqyAkvGX/4\nwx9eZaToQn9s2G/WPfjgg2uBxfqgBzLGC7tm+2eXAjVbt14++clPrjDoUrKuUMf2FK6scXbCRn0A\nMRt8EjrF5fvuu2/Fh16JL7tWSFPkAYu+rHu80yl5sTU2w9Yl8NaAJN0+wOYUHciA/Vjrii10VfzA\nn1jrEkz2Tmf8CnumL/rnS+iLPL761a+u9o8GCbrnikEaXujBkf8gH7Lmc/gNPL3nPe9ZdUFu9lTy\nVsz2gYBCLZuhKzaTnvkqBQ/0sQX+Dl0SfTCtb3aF5wrIxisIeOvRBwcSZTSSobVmnVijZEiW1iL/\nZhy5WOdk6mCHbKWiFRkWfxmbP1bEMF7BA32Kfw4wjYcfPvSTTR+ysBt2761wRTX7usbW+GAfFPB7\n9EBuYhJ2gm565Wetu5p1Ko7kA/ogiS2ArXDgLW/zrSf0pzfz8Y1fNNIJW2YvCkD0gZ+5H5mrsXPr\nzjzyxSf/gi9rlk7Rnp0ohPIT9iSFefEwWuwz9hL47BkKWOaRMVzGkAubJW8FZWsfjcYeFtt1sHs8\nsycHfPhicwpQ9hpyV9S19vvQcWVm+YNODQxypwf7CnxkZG3CY77Ct/2TjXvGj9ItebBJ+mCL7Mda\npD82pPEX9pkKmtaD9WMOOq3l3lB05u88Iw92hi+6Zu/kYp8iD3DFqeghCzaIRzTTBVmRGTjmglNR\n2TV9gEdeDrDIwh4Etnl0QTfggEuO9AdPRVF8do2fdAk2eOTDB1bUhBtfWvxbS/iGz4F/60lf8BRA\n0Xa8xOf2J/DoEN98lAPPdIQmNgy+tQYm/siBLNlJtFWItreyac/Id9vIGN90S8/ZFbnoj/d4oCd7\ncYU9dGdz7Lxipr2LfYEBB97BICN+U6xlneKZDxBb8Ankw+7tz/Tq3l4mXuDnjOXrzfVBNp6sCXuL\n/cde0tqGjx2RKZq///3vr/ssO6AbH+TYu/lsfnLO28rJfc9PenY5+9JFNE268MaXFwuSN5/Ef9r3\nZjw0511O+ndcuwR2CewSuBwSuOoLrzZXm7mA1qYnObfp2vRtfgKa2Wy0DvPamAUb201j3p80X5/5\njTtps/BMm89m3+xfBy5/eu6+65PGNX57bs62f3sP5vnGnu9ZdJxv3hbHvBdMKkZIAgRBAmKBt2CH\n/ibOLR760tLXhDuvzQtONNa3nds4Z814QaNgwFuBgh5BZsFZeIIT3Pr38xOTQPoCJZ24tn4lFZJK\nRTw2I1jXjBPAC2AlG9Z7cNKP4o6EUFHB174E3PRcwB0uiREcEnhvvUn2PAOP7Qq+BcQSbIkGmiTE\nknHzJCACcEmxt5EkTPyKBgZ/pDgl6Vf0OSwJhCKG5EWQr2ghsVSAvPXWW9fihuRFv8Acz3iR5PsN\n4qOlSAC+JE4x7bvf/e5aBBOo33XXXeubhxJCfPha3P33378mF54J6q1D8CXqX/7yl1c+wFMQMwaf\nyVJCIaHx1qx1K2GVUBiL3ooUZJo8zZXwSoAVwvhmSYsEyZqyjuCXgAi6FRklRYqJChp41fBHNwpA\nipMKWhIfeMCAUzHCG4Xe6KMbfRI9Qb4CFx7R6E1eb2SeXgpmeAVX4VChWoKoYH7m0YImvcABnzck\nFf0UB/D9gQ98YC3OwM8e6cfBThQEvY0qYZP0mqtYhm+JGv2hU/KcrNiGgrw3INm4pE7BDz3G4VeR\nrCKFfsVL9syWPSdfb1Eq1ODfGEVg9sgW0Wqt0IXCIrvFD1oc5F+Riu4c1pXCq0IfPYKhUNRvCKOb\n/LwNTT/0+olPfGKVkYKI8fimA/ZJ/5JedDnQaX0rAv/oRz9a3740573vfe9q4wpF1rQC8Ne+9rXV\njhUW0Kv47U1VDa3J0vNzSyEXHQo86PVWqDeRJet0/q1vfWtd4+xT8Yu+/CQDW2MzEmc04YFtkQs7\ndVjnCgH0K7HGcw0NaEGvwh57pTNFJDjolH0qjMGh0I5f8vQmtj2H3U1+wEaXdYc2hWFFK3ahWPv+\n979/pYMsNQmtBJcP86GC4jg62cPR4jMUTSX3iip8C19ETnjlVxS1rW+ysSbYFd3jTfEDHOfwVfhk\ne+SueNOHF8ZZZ3hkSwp74jSwFW7stQorZIhnzVjxgLEOxQ5rly1YP3wam0dPewPbY4f41s/G8IHf\nChfg2iMUOvh4MoSHLPgwPhtvrQFwHBra+FG+QIGZbtmlefT2ile8YrWJZAJX8/m44yUetd7YFPsT\n/8CFn3xR/JuHL7RadwqO+bvDsmewEb7b2jXWvIoaxuOLzMAwBo10zl7xqsWXawVe9NmbrE92prFz\n+ByKavhgS2ybX3NNfmIk/oX90BGdu89/gxU+dLI1esWXfYUdwlWBDZ30xwbJk7zsi2TOdqwFhXH7\nMTmYZy1oeOaTKrqCb82yH3YJj7lsSEzAX6ONvugTLeayVXjxx3+BYQzccLA/9IGFVzEF+Bo49EVO\nztYQePYj8PIjZOHeOd2bby1Yr/giS3RaK+ySrBXf+RA8WVvooUM6h5Od0qeYooIvuOagk+0523Pt\nM/QEjuaMR2uaLMCzpvChmYMe/ozd4p1MrTEycaYz+4z56EAXWYLp4J/wPWWRHScHdJEvW1B8diYL\ntkgGcEWzOWiG7+zy4Z1Yh52Qi0ZvZGq9iS8U+dAOB9mbG83sjD/kF+ksOsif3tgWPObYAxQN+WB0\n8WniQT7aXgY2PHwhH2G8hl5H8SN/YjwdooNP9KG2PYGe0N76MT/f4nr2u/9ft3iLDvSlW/IgH7HQ\nuWWfsK7EHD6gO1r8tL0Z/9qVxlf87OddArsEdgk8GRK4IguvHLgNRmuDda1fyzELTiW+kkNBrYDO\n5m6TbOM1vg2BY+/QbwMNZuPaKNzPpt+BnsZMOsMx55x03ebi2YTT2ElPfY3tfo6JrpOe1XfSecLo\nOVjafDb7wuX5HGPOHOcen/oUW22wAgrXAifJsSRBMqIoUrAfjM7hmffh2uLXf1LbzjVGX/Nddy+g\nQ6eihgRH8LcNfLY0Be8k3HvfhUkgmTY6nbi3jq1pQbEEW4IooWjtCvIlNRXxzEmfrulP4K6YLvCW\npE2fws+w1fD0AY639NglPMZLhBTNBMSSATgkdhJCibxAUjKoGNTvasKfnUk00C7wVDyRFPvpg9NL\ncC6g93aapFmQ7w0JtLI/hRuBueIqHtEhWFWcPSwBPzokRxIOBTUJl8TVm4foIDvF3p55o03h1TNJ\nl0TNG4ASAPx6G5Os4EgvEieFQcUvH2yRKfrAap3gddvMJxd8KYxIaBSp8ZFcnMEjUzjRJqGT9Gj4\noxtyAAOd/L1ERzMXHQqvaDcPTHqD7wc/+MFahNJPd974lbBb65If/keRzj5CJop03kqVUGrsTlHV\nV7LBxa+fciBjyYJEXdHpC1/4wrpn4aG3YOgcvQqTkljJl7c0FZe9YRqP+UPFOIVRtCsOGEPf7JOO\n0UoXkl+FxNtvv31NziSzfCkaFdzISyFEcVJRiDzR7rCGFEHZrHH8HZoVM9mT5Nk468Lz1p39VdKJ\nB7LGv+cKWdYKPtGpaO+5gg84eFG8U4BmQ4odPsAgc7zRHxmyX2+AkoUimDc5jVPQkPg/8MAD69qx\n1hVD4UG3Bg870cxXpAb/eEn86RQ9bESxgj2il5z4Dh9+kKUPTTTrk3wUwBUprGfP+A1FD/uXfnTx\nC3iG3+G69UiPCnV040MMa9r+57m9jzy8XcUG2LxkW3EA3HzSStDyR1LuA8r8gA9hrBfFXDagMJZP\nYx90ZSy5S3g9M0bBxJtXEnowyVUMpSDHTo6WBFiBh19QWEP/uSVJ5ofs4XSKd3KMRuuZffMv5Jnv\n6U1h8oYHLH7AmkM7e2N7+E9u/AKdsSm2Hm3WAdkovli3xhurqKWITZ72BDSxKYVGBffeoiKT3rJs\n/8ADefAF9ge2zzbxTkdgkZ0CjLWLdsVCxUl8kgkeHOiCKxvkm9gpGfJbDnCsLXjgNIePyQfQtbiV\nfPCCNwf/bY1Yw+xHsQ+d5MrWyYh8Hfy3wh/e6Nh4+wn9Zq/4Ijv0WM8KY+bCqd+aho+9mIcv/MAD\nPt7xiW4w7V98Ap+kYAg3/WSP4LE1vPCx7Jg8yQcMfIFBF2wLTnsjnMbZjx3otMaMV+B14C36khmZ\noxUvfA8fTc7WL5nQmw832BEZooMc0MdOyI8enLsGx4EXNLARusS/Ax/mWOvphN7ao8wDyxlO8vDc\nwcbArJE9Ovlv8US2iW7FU/yQMR3ACYY9nF2zUW8u0yde0EzfxoJJxvREHvjHB13Bbyx62R9ZHC/r\nUCyBJ3Rr9FLh1f7ERvAejPgkTz5KXIPX5OV58tGPfrjR50ATG8oe4GDvfJJzMoBPA4/+7I1iHD7X\nXgJuzVx7gA85yJMc6ABt1gCeyRwf7IYv4X/YG/hwoV+jc/bHbx0tvlIskC3hV2zkQ0a0mGscvy9u\nxAseNXj5N0VeH+jCi3fwxCg+DIQH7ng1r/mur8SWLrPn6HXPjuTnvmFhbyVTOrGH2+/xP3ndwrgS\n+b2WaUr+eKRHfmTqR78x6Visyw/xv3Rrj7fW2g+M17Zw/9W7/90l8P9LAldc4bWF2dnCbnFTjQ1N\nUCWQlkTa7ARzNnvOvXlTjfVtYemfz06aUx+nY/50PuZySBNO4086T/xdm++YzbNa9HXvPOd23/OT\nxvdsni8ER+ODifctr+DoSz4FTwI0gY6kVcDHCUtcNYmI5NhhM6a36AFrXhu/vdd3qS1Y5seXPtdo\nl+RJ1AVBgp+C3PAZN2nUP2E2bj9fuASSqRlkOeVpvQvWJfjnliKAooLEQnDtmcRFMiiYPmkdCagl\noIrpiguCd3quhRtO8+HiTxQTBMYCak1SKCj2xqSET7AuuZGMK7wJ/gX5CmveMqxgZi4cfBZbP7u8\nlQG2xFSALYH0TDERjxIrhT9vUkgY8KjgqFhkvnsBPRv1xqNkwHzBrGKLYg7+FHMUPwRBEjIFYj4T\nTEUeuCWjkmm/walwIsG1bhUO8anIZF1LGhXgwDdWkqaw4Y0PMsVDvgG/tdaJxIKfVpxTDIJz6tg1\nXN5G8VYq2JK82fh3/sIbJb1x5jk9ePNWwRS/1mt2oBipaEomcAgGvd0KjwRPkmkP+fSnP73qT0GE\n3MCjS41O/NSAYrngku4/+MEPrgU5yaAkVVH8c5/73JpASZQV1BV/6IHO8M2m0KaApPCqcM0n0o8k\nlP2g0wEmeeZDD0uxhl1K1vhONk1/ipP8KxjoRCMd4Ytu77nnnrWoiG+60NBDJgqPklaJI3rZErnT\ng9Z4+MhbMqlwQm6KfQqSdMQu2DT71PDmzcmjJTFVlKALtHkuyZTw4sd6ZGfgsQ+FOT95AQfavRFL\nD4o65COh9bMN1j4Z+uDB28dkWmOXigXk4O1sRQmF1TPLW8zWLnr5DQVqOkOLPQoexVx+hPzRqpAB\nNxx4qdhKp3Bav3ibdkxmkmpvuvIdioLsyHrrQx+2rwCNF/5MEcRb0taSdUSXrRt84Ukyo1BOtwp/\ncKNJ4dU89+wFPcdLwYSuFI+tZ/PRaEzFIoU7Yz3jD31gAY6iKd74POuCHMlbYRr99nEwNDR6xrYV\nq/lBc8mLfVgHeFEQ8wGIde+azVt/bI6PzM7IxRqBl1zoBm30Z7yir/gBzeB4e4qO+DT2bqxipv2b\nHMmVrhViFFP6yj5bglch2Rq1NyhokYlGLuIROMiP76RHvFr/ik3mwAOGAhm7ImP4KoRZz2hUPGRX\n+LZWFeHNQR+dmIcna5Gejefr7GvWufUoDuELwDCerHzoh/eKY2QNprGHZX3xTejCFzjm2SfiyzqD\nqwKd+fYe/tS18fYac/geMtZPzuyggiCaKgiaax6dOshRAYss+B36tT4088iRPPDGD6DTHLJWQESj\nZN7+A4f1SMfOjUcbOdARuRmLDnLj2xRy+RPz2Q8btVbIEG3WC3+LT/zxWWTmOtukV4cinTiDbtDp\n7N5cduW+Aw444VYcBk9rLjvh95zpn91pxhl/eilG+5CE76bTiud4YzcaGtgMOyNf+rR2i4XoAly0\nsFsw+SP8wYmfeHKmb7aKJvZIluaD42BP7IpcwdMHF9k4O5pPHu75C7ruAxt2hEa8GwN++jIOr47s\nCq10Ah+dOtiJeWDR+7nFX4iRZtGVHK0H+yTfztbAMoe9WNf0Tpb4oSf69sw+S65kopEfGqz33owX\nK6DRfLTwFfa3s8teCIZ+OQQfba80ViNjPlyR2F7jmv0b2zeqyBj98M5G3ldya71s6UxXYlR7BfnS\nRYVmcrWvNi84eK3vSub7/wNtdEIX6Wbqxfpnx9YgHfN78hf7netpx81PZhNOfft5l8C1LoGrovCa\nEixaQYFNUyIisbbgBTMaB6+1mOcin05jHTT+NH50rZfN93wejfN8HvWf7zxhdI1mMKK9uZ6Hvz7n\n5tmYm9d5jruQa7Bq58OlP5zGNq5+QZCgRGAlKHcWSAiOJTg+6RVICjgkLoIuQaJk3ifLAl8Bzvn4\nhTM6w63vUlp8tBEk++AKAAW7ijiSPQGgZKTxcBob79EQfd3v54uTQDI1Kx251s9uWvNsRgLdVwjp\nT3IgwJ/Ji3kavVknbFIgoKDJJulUM47OZ5ALjmSUbSpQKQRIrATxCqof/ehHVxgSOHgF3Aqvih3s\nWDCp+CSplySgAR4+SqFAUUdwjk+FLgG8NaTAJdEUUGWb8AAAQABJREFUxCiAKISg97Ak0ZIAhVGB\nOnwSILTce++96zoTxEpWBfMKTq4lqGAbix8JrETz9JJ8KTQpmCoA4EERSiFI0EQeR0tRx1eYFXjJ\nipzJHH7wJS8SX3ySqzcXBM7JnWzx594Z7wrmfq7AIUFuzHqx/CEDfsMbIhIVtKUnY8yhf4VXhRww\nwSZfxW7zJFhkni+VkHmL1Feu9dGZopBCEtlIEu0jn/nMZ1YZsxNvRioI0gH66V/BCwy2hk+4HGBI\nHhUNvfFaUVQxQXGQ/5DACkjp1nx9+ONjFIjojg4kgXCRMdtj8/yqwmCJCRh8J5j8KxgKipJpNiLx\n84avQgc9Kp6jEwyycrAfNkiO7ME4RS2FTDYl6Zv+Dl3nFjnSm8I3PZ1ZCpl+uoO+2IW3WLwNjQ+4\nPGcbitSaIpoCnYInOwBDsY/9KmChQXHWTwBIzOD3JqEiHp2yAzpXmMU/vArFvsJpz5Hksgd4FILh\n8Qa5tUQX4FRMt5bxTu+KVodlfbEf+MgVnXSgQGUPwIsEwvpH92zZN7nCBT8bBQOf+JBMK5ArVOGT\nzPHSzxmwIW8mw1+xH7wa+6r4jy7+kD3wDeawIXQ4FJP4GHbAXvkyBQvFD/Thz2EtwMHvKewogtIX\n++fDxFTk41AwUMBnG9Y8PObDpZhKluIw/XjxgRD7VshQXFH0RItCmuIR2umUb1EIww9ZG2cd+YCG\nXtgO+TuMpWe0iRfI2GE9kI9CIFnwQ/iR7FlrijKK4Ogzlt+iR7wqJLMNRRf2E18KedYIX2gdVtBD\nJ5+qEMy345Vs2CZcfKy1ougClxgVH+aRK3+AF/PgJH/z4FOMVDTjP6xjeuO3zTss9imGao6x6KMj\na4+fMJYM+Cx2RnZiLvZHVwp0dIEexU82olhH7p7zmXhhK2ycnM3Bk4Pc8EGncODfh1xiJXOSnzHW\nofHw0RV87Jc8KrryMfk1umX35GFOsidD+xj9wsHO6UsBjS00vn2T3NFcLGqft9fRdwVXOrb+ycw8\n8iMDOMwjA3ImT2sm+dEHmcQbnYljHebye8aQJRyatUUHdAgmPw+esWggI2vIAba5mjHmohv99gvr\nBg/5H2Md4mk6VXAka/YUfrDIqHv7Fj2TpX404McR7ebQYfCdja3hIdnQOXzmx7+5HfCaS474sC7h\nJi88k6H9V8MbGdErHaDTXo1fMOBCP3l6Rkbw4r1cgv7hDq/5bMYblWwVfL6P3dtn+Ru2rR9t1hj/\nLE4Ck13wmXRB/j6w5svtBfiJDvShhb/wgboPq8gFvfygPcq655OMBbMilQ/gyM564hPRa43BSfb4\ndq7h+0pu2Ro+Z6MX+uaH7e/2aLrEs/iFTNO1ecFxvYWlb2+XTwJ04cj20s3UCz/og2Zxl6I6n/Wh\nD31ojausrzm2+XEwn9W3n3cJXOsSuKILry14ZwvUJlUBwBswNkdBQ82Y7cL2rPnbZxez6I2d4ycs\n1/M+erbnYOTE3Jtnc30sGBOvuTZmG7tmI3fY3LQLoWMd+OifYD/WvOjejikoEURLoAUwkmKOV5Im\nkNEEloIcuhN0CHoE44IlQUvBRfJ4lLT/kLe+Lf7GnXSOr56ZS3ZossnDSW4FncbrV9A4syTbPikX\njAkKBUA1cBwT/rxu3H6+cAmQJ32QY2vD7Ppn4VViLmliU8bzCa4L+M2b9gSewFli7pC40Wl6FAA6\nrKdwg6VA0j9GEox7rmjwqU99ak0AzWE7x0vC42vSiq+SZ4mpr5Yp5khMsx00svmzS9FV0QV+a0Ui\nLohvfSgwos98BSOJPn4UkvwGqCIeu7XGvHkJl4RFsC+g9ZVshVTwJW8SJXyZQ45koegqIZH0enZu\nKayBrbAGDroU7RR/JcXG8LUKMQqMZGPtWyOKlBIMeDR4tbkmwLTmyWkWXhtrPBzWJpiKn5IlPMKj\nVQAEgwwkjuaAQUa9WSLR1Uc3ClwKkQpRZGg8Wq1vhT9jFLO8rSopk6yRjTc2JVlkJqAEAyx2gS+J\nlAIuGunXhwH+mRP9skf6VCRQ0ARToueZZFuh5mgpbCu2STjYEdoUDdg1WhXu+EaNLshEscJzBT1+\nlLzZiDdD2ZAklo0oqipKaXTjubd00Il/hR2FZPYKhz7BMXoUJxUsslkw2Az+JJQV8xTh/ByFDw4k\n0ehld2xY4izZZLv4B4ucJV3eHAbDWoDThxgKYPSMLjj8Ezi8KCBVMD0sxSfyU/Sne+vDb3iyfQV6\na1Pwr+AMDxkqSrADxTLjJHiKU3TAhti6dW090CMZSw7ZOBzszocKbAF+egTPQWbZExm5BlfCbm2b\n7948b7v6TWBFBw2fioFsSgEsWSoaGhP8dfDyB1948nuwzmCSC374F7yzSWtMkYvu2QFZkCt/xx7J\nw95LjvZceMyzXtgze1ccUPzy9iqfQD7WiZ/nYKvRZ74ECw94BZts6URBnMytA/7I+gFLAaa3utiF\n+CC7xxcbUsjFL9u2TvHI51aYs0bJju2agw5wrQNvqitu0ifcijL5G7Jgc/wLOulE4ZrtKCZp1jZ4\nCq0KwGix1siVnMBFE/9AFtYj2/acb4SD/skODP6KDVm/+D1a1rx1SCd0xn8p1NOJoqTCtDnWCtko\nnlqL8CjGwEU38Cge0Q254984vpzPIXvjNbDQx1+YAw8bQZ91y7+JeeiVHeTD2a4iqTFgZPfWHV9j\nvfC54j5zWuPWLZ4UAuHCG76Olz0ym6MDvPEdDjpQ9LT2+DcytMfTNbwavGwdbvLjQ42HBw7z8KmB\ndVjWCLjOxhbvoY8MyZkM0EoG6LdXkgHZ44mONHZDBmyKj+YP+Tlw4GTDtdZUdINh7bEdPLCHdIIW\nsPCBhgmHvaEZHeabCxa40eOsiIkWsjXfPEf4J118Fvz5rvTaGGdzt3T03DPzycq19QKG8Vt8cw6/\nKY5ml3ip6Ix2MNgD+yN/z12bA67nDs04cnDgnW3SOx/K1tCCtxo4chIfsvAh7OB4sUN+gw+xjuBg\ni9anYqp7MPkt+sUXfNYtf8F/GWfN1YyxXvgM/hBsjV+Bm6+xXsBBHzqtXTjEi/r7QME12RoHbvpI\nvmR/JbfoRLfWPbnSFxkpvPpQhb7tOfZm/pRtNW/OnX0r0P3PZZFAuoOM/thkupjPPLe3+IaN+I1P\ns2d5mcEHunvhlYT2tkvgPyVwRRdeLfQWO7JtcDZZnyxy4DZvTkHjGBzucwzN1df1Onj5E+zGOne9\nHWvOSX365zz3s5kTTP3hnLA8j4fGBKO5+NJsvIISG7TNX8AmGBTMFEhNWMF5vPOWzjk+WqMlHmyU\nAnzBs4RLYCyIkbz16T6aJAcF4zZcgb9gXLIi+DRGA/8kXJ5dLE/BCa6zRnbRJ6BjT+gLPp4Uj73N\npUgnyFcYmQEPOiet4E587vd2cRIgTzqYmzsI9dMRu1FQEDiXaBlvDUiKnOk0XUaBMRIYbyx4s0Di\nXYCbDUvsBf0lW+BYU97kUyiVTKNFAqGIIlhUYKJ3SZz/dM0nsW9rwnpQ2BSoWwvxwe6NU6SSPAhK\nFJgkfOi3TvCJH8G6YqKAn/1JnhV1+D042TI6vKkoAcaToo6fAlB8U8DFuwTO/GQlIVHsUtyUPONZ\ngcFvTio2SAQFxfD6Ojj6JC0KIgJn/4gLjWQkoZFYKJBUHNGPX/haF3wUHIpuimJgaXRljMMcZ299\noE9BSqKNFg1dikresEMnmJo5it0KL2SuCAEuv4Jeby3TT/AVmbwFSjdoJU/FZPAkdwpwipWCRok1\netmAt1OMJ0tzyZ2O+GF7koJhxSAyVfBib+SCd4fkw3hy90Yx+dGHxh7IRdEBPsVOdsAHSVAUErwB\nJtGUNKJFwuanGbw5gi44zFXEwi87pEO+TEFCQ4PClTeoJX8amhRe6VKCDJb5GhmAS+6K1ORE3r4e\nr1joOX2wTfTxr+xBAS77Asua9WGp4quk1toDQxGRjYEraaULtm6tKQR7O1lirMii+Egf5KLIdrQU\ns8iXjbN3CYACv3XIBuCtcE2vdKKg4+30c0sxEL0l6PyDNU+HYLA7BeQzS5FeMQYOLbmwu+7R48MI\nRUYf1kisref2Ev8srAIf3owjB3okK0V8tmANBxN8OlYsIF/FcusOz+hiE/wGeozjE9gOvioqgMlG\n0I9vxVLPFZ3QrPGN5Eue1jk4ilnePLSGrBe/p8vH2AvhYkNsTKEBLrJSnGBnbBEf+LT+6FQR1Fr2\nQY5xdGuNoEHxP7+AP37Dh5/8k0InGZKdWI8NSe6sZ7ojIz6UDPlKtssv8qN0yH/70APv7AEcBUp0\noDM6yBAt1p8319DMDsDJR6GfT8QjewXLHGP4dQVD68T6JB/zyF3xB072hT4yVihT2DQPneRN7nwA\nezy9FHfYLfqsJ+tRrEKm9FLRFa/2ITISh/GdYjB6Yn/msMviLvPdz6Ih2HCQYzzxtWRhPWh0Qkb8\nBFx4Yg/WE3qtDTyRBR052JjCkkQcX2CQibHsVrzIV+f/yIytm4tOdmaOxi+TBR9YPIZGNgAHOtmC\ng13Zg30YiScyQjsa+Bh4HGyCjDQywDt9sWV8auzfgRZ+Do9kCg7dZxvGwqElK/fgoscaAxMf0QIe\nusGEA6xavPCRDjDIzdxoiq7mmlOb1/rMm30TVzKefcHpbK5xwQDP8VhzGo92NnpYiuB0lxzRjSe+\nQr/9ydowntwmf2DRjzHmkD9/z3fwP6414+IVXH5NHMFewWVX9nE+Qf5BttYNH6lYxCbsiT6ccm2O\nNWXdg2P9ojXe4ITPWD6DjxajkAud27t8eGfto5382JK1xSeyJXSKSa1BsDQ8zqY/vtLBfH4lXUcn\nmuKHPPgcH16Lt8RL1qg9jO8mf2tj8tbc2Xcl8Xmt08JOyd5Bf87sXqOb9PN/7N1fq2ZLcfhxX8oz\nr8EkN94MErzIRciF3viPg0YMiQYUFKMQ1IRgNCASE6KiDiERBN+AIHquJDe5ywuYl/Jbn3Xm66nT\nv/Xs2XvmnNkzZ1bD2r1Wd3VVdXV1dXWtXs82T/tpI+MLzpwReOUfs+/KSrXredZVduanBN7vEnhp\nA68Eb1LmgLnnbHEiOf2CMJw0DtBRakKXW2RLyjIA8GdIKgNXO/fKe55tq5MfpRyBFW+4ahP9nquf\n7SzGjFgnIPQnB9lCTg76cpc08dcO7UkfTGUMcM4kB9zGm0PycNsMcppySDhXnHAbBJsKGxIOzePN\nscYnnHDJtYEzWeFDP1yTj/iTKz/iPZjaeZ5wHHEbGnLkdHPY8BhPZGozIIgj+GMTwzHCXwk+16Qx\n74M789tLYMp0yrJym26bcnP+zS1wYMNqzIyLDRV94wC46FW6pL1k7ghg2by1seII2xDYzNkEXraN\ngbLa4IMD7k0ue+NkCf2g8z69lQvWcp5ttgVSBFTwCp+gkWAAunDBa7PtpJ0gnQ0jfDavAg10ks6j\naTPBMRV8cOKOw69fTovihwzgs6kUbOTg59wLUAmICJLZYEr1Sc7BFXQQGBNEsNk0L20atLGZwRfZ\nCDI7taEPZGwzLWjM0bKhJjuOM/rsAfzGQA6HjYu+swWCQoJmNihkVjJWkv5JxkpgT7+cLhPkCEZw\nQwCQHPDcOJMfWccHPGTpU2GBaMEa44InmyiBK/IC48Te9773vR0f3RDsIZtOxNpICVQ6CelFkTFn\nHwQMOZj4FTQR4BVUbxNI1+DQFxs+Y2a9Ai8g5p8/CXaxL+TlIgPBc/TwzHbacHJgnQqh8/pNR4wz\nnREs1R+bN4EIwSY6YrwEJQWZnXzFq8TuCYgJgvqdVziNk0/EwQmo0Cspu4dvwS7BWrqJZz9zwPaz\n+2w7XOy8AINyG04bKzzqm5cn9EaAlkwlgWlj9uEtuEffre3qzRF6aiwKMtI3cjH2dNRYXbY5C7+x\ntZG2mbUpL6CChg2t+eOydoIlV7RsBo1HQR0yI1frqbJOLLnXL/1gb4wTmWVzjLnNPPmwBWAkc4L8\nBVbxKchCVmSpH/SGHtEnwTm8ltBgc+DzEyKdwvWyhczMiwI58Drlzk7Z1NIZ+gJO0EEQgPz0GS5j\nRc/ovzlhvAsokI9LYgPYCoFK+gOPuStYyN6Z05JxZEvotfWTvuDFnDEuxootM5b4ZmfxbByNKbtD\ndyX6RB/MZzJBk5/D/tOLTiqTvTHIBtEV4wuWnSAPekYfyJId0kdzib9S0I8NwQtbyRegw160sVmS\nenS8bCELQYJelJEhm0jmxkl/0g9jIFhrjptTdIiu4Y+O0QMXmvrSWAgYkjXfQ9+V44XOohV+Ywan\n9QOsuUB/6AT9j475+nizGfpHf+kh3sCgiyfPcrjpJDunntxK5EBXjI+5akzRMy/goV+Cui48o1Wa\neMKhLbmqw1sv4bWrbfYdHrZI3/A4YcLdGit3aeuSwIMLrzx49+DgJ4PK9Snc5TuyJ3+0C180e46m\nHG718IdbefyEZ9Z1Hz7PLmmW1Xav2P6AId/6gUb9mLArrnBOPGBmG/1Y4YJfc3DBxxO9wRc50F26\nTYfk9EACG118G2tJvTUHDmVshblG19jsUvzBgZb1jx0015Vp19pJv/kNbJt1mk1iY9hGLz3ZDWuq\nenYLDnzDI5W7p/uCTmyiHI/mpvWUvWYHzBPJmHSlG1NW8OoHmOr3htsf5ZNu5S9T3hjgKX71RXCa\nPRZ4ZV+NO3vKz2MjjbH+lsLzsvc3ft9vORtO9umj8UgfGxswfC6HMcwbfpD9hLXeF3MPltPhZFTb\n5HWOb5I489dJAi9t4NUEbbI3IBZjmxHOJOee08qJtQgLZHDemsjaWuRzFNukWHAt1pxteQ5m9KJ1\nLZ/4r8FU3oIK99MSvOEGi3eLtc+ULFI2/DYOOSk2QJxkGxv3OVgTx9Noqj/ibeUlJwBtmw4OiYAC\nh8I9Z54sjY1NKwNsU/J4c/gZ5t7u4hG9eOQccb5s8IyTsbBAC1AZS4a9pE28zvvqy8Pds1w7Y2GT\nZuNnceAc0R+npGxS0CJzmxhBAwElfSN75SW4Zh+UH9EM/syfLoEjmdZKnZMhnGJOreCrTaiAEf2R\n0yuXMaSrUmPSWOX0swM2fZdto2pDbHNPjz1zvnP+tKfHPlcVULGZV2YD4LSjwABdQo/OC6Q82k4b\n4s08FXzyOTb8aGrLQYfHf28XQKDvdLHNM10TVLaJB+vExhvbiTuOP95sNAQvOfg27XhV7lNbDr7T\nZOyEf9Tl95bQ0IdkkEz0V2CY02uTb+6Sq2CcwIy5YQPXiUlBZnNcoIqDJchoPNASXLM50c+cZ23d\n1282SmBKMEQAyXzDS3wZL/fZS+MDp6CUPsGlnm1wEk1QUpAb38rNWcErcjLH4XZZGwSAjJ81QkBc\nMMppVnB0RjBD4IeNYtv0VQBJAERiw2zEBJsED8FoT27GGR2BKiflBLydqGEHbfoEowSR8K3fAlXW\nHcEwJwJsOODQhy48gRMIJ2s6IvD9cAsWwemZjoDBDxoCe3CZJ05HfuMb39j1B//0sBP89Asdds9Y\nkAs90gdyoWsC0uDodXZPf9CjU3hSZ9OEJ8EuemEz5cKT4BTn28srth1NbQSo4HAqVD/oCXnDY2NL\n5wXryJAcjIPgOx2z6VUuaGx+mHPmOxxy+LRBS5LrF50SWBIsao2xXqJFzyW2gY6FRw7WvCQPc5Qu\no9G6hJ8S+ZgPgnZw6qvLiz7yF8inN+RkbtIF+oRf42Yu6qu1XjubfmugQAG8xsh6KlBAVuYl28MW\n0T3yEPS3sSUXuksvrGPg9EWf+Uxom+vw6kspu+cZD5J21kB2Ek4yMnfNGf1Am10QuMCXOUVG5rpx\n4qclB7pg3tiMkRFe8Pvm9kJC37QzXmgK5JJ7c5ANs06TA58HrPE1bsaGvtVP/dc3dpYcjSW8LvwL\niOgTuwmH9cO8oQ8CgMbIczIgB3TwLZBuHI29OS0g6sIfucQXvHSOTgv4a4M2fuA3rp0GnTprvum/\n+c4uoGuMogNWgh8sO1mAFjwaYPSFHOiQMcKX8Q3emCljP8kHPu3Q0hf9rxw9bbMFnqXKyFUiLzjl\nU3Z75fZn6pf7xgTtSWvi07bn9d5zadKb8NXL0Smh77my2pQHJ59wnoOp7dPK1JeO2sJTObieJ/7a\nyyes5+CU2y/QNZe1WT+NKb2jE+6zeeDTgXwoz9GPTvjL0Xxa0taljQsfyVw5W8o2Ws/wSc/porUR\nf/TBRSfZd3NV35TRT2s1WPXwT1p4i7628FvPJDbQvIUHbS/W+ED8IW3YNT4Q38L8YfesiXw9OJoD\ns1/wki9fi1/EvtJHNoxPwg5fNt8yHuVHqXJt6xOZ4VVd11Hbl6ks2eCpPikjey/C+W58JbbKFzHk\nzwdgL5OvttpI4dgfzj8vTALrOHqmj1Jjw9ezH/n+97+/r898LL6JFw5eeFiTatM41raOVN7zmZ8S\neB0k8FIHXk1Kl8labrHlTLosooIRNnQ2hi7OBVjOsaAeY9CiaRHjVFoEujgdLXYGXNvSaiSqr3zC\n1ka+1vc8YbqHw4UHRipnwabDplUfOB3BcDgYPJsEjjUHIQc6nLfJo5thxKMLH5L6mThHeLG5sgF0\ncpRstbGZsCFy4Yds8SifDhJ84OHmfOmjjYNcH40pHDYm8HAEZ5vu98Irf+JbXp+A6qdNECeLXDl4\nAhDegKOVg6OOQyZwILjMcTMmpXBGR/m8D+7Mby+BZKpFsiynj+a0zbSgEsfWJjyn3Lh1aX9Nf9Wh\nQ+9sbH1ixuGT00G6zBlsPqDPVqAp0ClPR+iGYJfggDZsCJ4ebYFXp/rok+AaGCcsBUjgo890W8DL\nJSBJt2yUBPIum4NO//UVHNyCTj715ciYgzYdgo8CvW9uQQt6bF4+3AIfglQClRxYgR1wAiQ+T80u\nksODLYjgxYLTkgKm5MKOCno5MakNXgU1BO0EhswFshXQ8E+O4EaHDNU7EWZjj2flOdH6bWMiKIVn\ngVD2gpyz0WDZCnBokIkNyxvbpkdQuU2XOgEbwWHys1GSyBcPNkhOtGmProCFIJCNFHmSsU/OBbvM\nc/gETJwEZE8FvgRL2COyJhc2SWCo0zVg2BFOJb7BsL/G0mkOvMEHBzsi4MQWprvGFx9f//rX9zFr\ng7x3ZPuDb+Mv8Gos6JL+C+AJMBkT8vPZuHHVX46uID1ejPs3v/nNfZzoJT0UkBaEo2cSftk9AWcB\nO+soh9lGUUA12TSGdEGgyGllgVMvF+ASyDaXJDJSTg7kYzwEc60T5KxfYMjBz1qQkXJrM3g6SXeM\nqTo0ldEvQUk6LuBsrTfXzAP90+fmrHsJrWi6d4GRS+pcwStTN5/B4wddwTCyYHPwFbxcOXnSI7oS\nDbiMm2CdOUZf6KM+eAkAFg9krd66CsZ8povkaH031sZHIksyN6YFD80bG1obf3jZKDpqPpKdcdIP\ntgxOuiVQ66VEPMCtv/hJlsr0RVtjZGOsTl/xY10Hr47uCXzSZbyzH+YpGG3AsLNkIYhinqs3juSG\n52ijR8fJhWzJWx/NA+3AlvCXX0J25j07hwe5MWg86g/7b1zghsuYzmvqgDae9UG7AkDK9Y3+ubTH\nv4SeNnhhl8iE/qCFJzKXG+dolWurXZdn/QeLxsQfTwUswCoDt/KlXJ/JtKAuuPgBjwYdMR7GODnD\nG105XuN3LQcbvDoy1heyc68dOaEN/5QZeAmv4ZB7DlZ7+CT36j2DgUsZWPlMnict7bqqm/2deCYu\nbUpH5bMMXPBreTieNQ+v9hM3XbC2uLwQs742psbVeM9+GndzyvwyZ5pfcE4a7slvlsX7pF9ZcNV5\nnjjMWYFXtol9NX7mE/7kdB68cnqrH57NnWwimHVMJz1tu5S7mkPoW0utiU7Ks6vwsUleCnq5yFaz\na352yPppLsO3JnyxTXwngVdBRWXWP+syf4w9VhZ/RziUxad78EfpWvkR7H2U6UO6Eq+eja11xxdL\nXqCSt+A0OXlxlz+F5ymncNxHX153mukjvXdvLBob85Sv9t3vfnf36YynvQqd56ta89j9dc7UPtme\n45skzvx1ksBLG3g1CE308nVgLKScBhtQp+G8fbGx4YxZ7CzuggEWb4aBc2kT3OkGbZXPBXzSWI1E\nPE2Ya/cZKvVHeGrHMGV8OKccEYGgy+WyO8p4109OB37x7oQNRylnavYhvE/L0eSAkJV7Mlgd4nAE\ny5kTmMAbPqU2k4+3k2H4wYv+1ucph/qpnQ1JuIyVvuubzbkNJAcrRykc4dT+WoqGHHxtyVnA2AaR\nXuDT5t1G3uYWLW2cBhGEcNrOhh9szj6aE2c8RLPnM7+bBJKpVmQ55Ukv6b6AgQCawI0Ajw2EcVHf\nZis82jfucLqX6AC9FXzn9HGK6UOBhTnO4OmEU1mPtoCqgKENqSSY6vcpvbHnYODBnATjhCydMlfo\nEKfdhhdufAhacNL9B3dwbBKn3ukKJ+zMcfovMMK5sVF2whYewTy0BFAEoOGwWYADPcFKJ1/hIjNy\n8jKKo+u++VRQUKCNDCQ4cowF4wqO9rn3h7eTm2wpvvxUAvraCD4LsJkz5gpnqzFM7nh2Wo3TLZiI\nfzCdPrNhRI8dZ5+1I9s3tsCrADG6cEjsjf70WR9YsjWeZKT/gujwGxMBRoEg+MnShsvGtM2QzSec\nZM35Z5fYXAlNfWSX8OWZfQCDJn1CH4xxFZiko4LTeBYId8qvwKugrJc9D7aAot/9FJR18oYdnokc\n+okEAWMyFRDl0LJh6AlauYw1PMolzrCfTrAW2nQLdhkfYy24h198FwS10TS3yI++omEjuo4hGQiI\nGkNrrU06vaZ3xs8z3RCgtqF2kkUgXMAeTRccxsJvEDtxWxDAxtqYkS1ZCU7TVfPSWAnMqtee/Og8\nHWqtwWup/slL6uNB341jbZR3H7x8ttdmloVP2bwPRpmLjuiDeaGvdEQfmof4MLb6JthIDmxMJyjB\ngZGsj/SO7tBj+gvePE8X6LBUoPOyrdNsi7Z0hmzhJkPyQ+uaXHZEV/7MPht7dLJxxs5Pa+AFbrLD\np7kuN2ZsnPlo7sFVwieZ6bN2ZJaOxCfY5Ote+cRRWTk8YKTJ91G7Fc/eaPvTGES3Z/yGWx7OcrRd\nkjJ9qU5Z9GZZsLNOfUl58PFTfXzNtsGwaeYq22/NInvjQCfoAV0THHFvjOCaeKK/5uGXz/HzzK4J\nVpvXAuqNJxr0EQ+SMdfWpV39yS5qV9/MF+XBk6/22jRfwHZpqz/NuXiki5I6/Liiga/ahCeetJn3\nnvFcrm6t3yuXP7UJtmdglS1N/vAYbHCe3ZuLXsywufYQxpyc2ZzGuTaQmaPK7SUED136HUw5GZND\ndP/AyJObWa6NS5kr/U+2xor+sV9sBlsl4RM/xsGYGWdj5Mom0E821EV3tUk34hWu9M56rg1Y4x9f\ncPJnfFXzcHthzTah7YS+9dA6zT6Ro99I51fgs76goW/6pMx6xO9zWpbvhv5nt5+Isp4K3rLByWjy\nGR65VN2Enfdgenb/sqX4Ty54VeaZfPkZXvbyH6xb/RyOsSjwGo769jL3Nx7fj/kchzkGlfOZ7cV8\nXcVu8GN92cPPNG/MS+26klHte564KzvzUwLvdwm8dIFXAm9ympTuy+d9E5qjYDPhM0cBDcZdHYeP\nI5IzZ/G1CHM0OCKeOVgMRHi1K8VDufJoup/lntcUzgmnfeXuORQcUgszZ6CNv42azRjHiSOScySw\n6R7vFi6LGYeiPqw83PTMYeAACRDggxMDN3rT+YKjfgtacVLwhm9tBEidhsJPfdMmR2u2r55TZfNo\ng28zYKzQFCgRaLBx09eM95Rh+NayyuUzgdNXV4Ee/cCfTaIgB0cOLYnOOEUmaCD4Y0HBb7zLo00u\nUvn+cP65swTI03ikZ1OexkVQR5CSQ2yx93IFPAdX3rUSnmOVvjstJljo1KNNCv0zvuwEmNrgwdxy\nstPpSo61QJbkLb3TrIKW5hAe2RKnOtkgpx7oMxqce8Gj5pl5Igjpdzh98suBMfcFzsDBIygiOGJD\nZJ4JrPnNJLyzFea9egFS9Dj7+BVEBivYR2/RYg/RERT0ooGsbCKcJPU7nQJ6+i2xo2AfbYFmJ0X1\nQdBLoBlOPILxm04Cr2yFgB2HCz52Aa7GEU70PJtnZAg33pVxvJ32084cFPglG3g5bzYu5He5XHYb\nRc6cPKc9BQCdTGGD0DC3CzwLNrKd7CRbQj5svjEQfITPxo9s9ZF+GWvP5j+9wh9dMB7kaOyVsVXG\na+oMvoyVoKKgsA0cveh3IdlVmw1BWbwIsvntT0FiNrDgGHpwCXCSlf6RFb6Mk7EVaMXf4+1Fl7HV\n3slG/Zf0108e+KTP5lG9k7dOImirDy5yFJR3SoeOG1vjbBy9mCAHiWwl8qGXxt0/Q0JbEgwkE7zT\nLzacfgk60y9zxNxqjtikekFBdwVpyR8/rYXotaHWT7ISLBK8Sc7a3bQ+4Gudy2jgUY5GOl9Z9Z5d\nM02drp36cOErPOHWZzpCD+T0p7UVTPTg009rP72ib+YCuZTCrZ5vAJZ+wwHeGkz/8EGOxkPghV7B\nrz2a6Tq9MDc8qwu/XIK3FJ+zTll9oJvmFZqNj74mE/TxhGf0jK2cPoUbreDcq4svz6Xg5S4JH1LP\nk8/K1zLlyrTBm8sYSPgohTt9rFw7Y6rv+mkM6hOYcHcvhzd82rvW5+C1By93zaTdWqb+aeV4NVfZ\nWnPbGsIuuchb0k/Xit/zEX5lLvKjj/TNPXz6Rl/ZgvQDDXIiL1c6ok1+Olpg5K3JaJCHZ+NE1/RB\nu3iAO3za4sEzXOYdengybnilj9rSVfbf3qD+g2fzXeSkXFt4Je2k+VxZ5dXtgAd/gg+u59ofNNmL\ngqudQmWeycR67QUu/5r8yUD/9LNxBuvST3XWRnab3dHf2Vf4yZzsXRJ5wGVMjAHdaizgTc7ok7fU\neIClE+RPX4wFeDjx6l5/lGsPHv3mT2ODV2sAu8cnMVZoa0vPrXtsJTj7k2wqPGjz8b1k7KsA4+9r\nEeuSdZF9tF4WQMVz/def+okuf896a13zTD/9s0p+onVVX0r1r3GsXA6nVF392Qu3P+tz5e9W/rz4\nte9KVp712fwrQM2Hp2/8WaeOjYP1XRvwMyWLWXbev/cSMGaS+SIZF2MhZ0v4qPxMeyMw5pMv6PiP\n9h7Ska7P8T3HdhfT+ec1lMBLGXi96zgwBAJ2Ah9O3VicLeScCgszI2+jaTHNAclJQytjwBC0wMdD\ndeUZollfXWVHOdwZLjmHghPsdBAnibPAcYIfbxYqDpHgIN45F3hHi0FzuV9pT/7RKU045RwlG1r0\nOThwo2MTR34ZXrAuz3BzpFzKOLWuZBkNdVLPq8w4JpfLZb/IADwnShBqOklorrjgVRZuz5Kyytc6\n9Xjg6Am02Qh41l8nv+qv9mTB4RIY+fD2JlZAY3Wc4I+e/EzPJwHyTN+MSzKt3ObQ3PZPaQQQzXWJ\nDkvapp+115azL5fACroJdnH0BPboHt2dbYJXRi/8vqfTh97Ue1bvBISTEE5Et3HAM33ihDslKzCF\np4JvgqoC/tqzR4LI/rGMYB0+zUUBQ3OL7RJcerwF19gBQUIbAHTBcFDNO7bu0RbIdLpRwE05On4e\nQODL3CY7JzB9Bi9gZmNgIyMgRscFTdHUX/ySrdOI/skR/MoF4pxo9UkYuoKCfS4muOx0o/rmVTIk\n9+4FEG1MOGudCvHZ/8PtxMmD7RQf+yPwik9yJCvzD240bJbIgo3g9AkQ6zeb3tg7QSMQbP66189O\nvNhQeoYHbvZWUIxewEvm+mYclbnaLOqDchdacrjITS6hY2Nh3NlqNs4mWHAfj8aZXug7ndF3l00y\nXtkmCazgs0CtgCg9sFaQExnbrJAzOPphQ0iv6Y+kzGfnAtP4Ye98Aiao6kUS+4Z/9tZGk+NsI6Sc\nnAXY0bps9tnYz0SXjJGfjPCTGgKxZEMG+mu9JUfPaNFD842cS3B4iWKDKxBtrNMRMN0nbzm9xks6\nas66jIUEZqbGa5Z1H37P2oXX/bQXwStvrMnIZdzpClzGne7qd7jpjvG0mTTWyulfehYsOPjlcMol\ncOSERn2Egxxc2kjq4lmZOvwV7GWvjEkw8IOBNxnGM3zdh99zOuC+erCl5NczGHwFC9fEN8u18RwM\nXJ7nFd6ZH/EUjeDgAJf8Zr179flg7Ct7ADbe1adj5Gic5ZKxFdQxZuypQDa/CcykB8dt0uTttm1u\nwgtffQwfWRh/OX3GJz2gGzfxHG/hmXTVwcUGkSHbmn7BTT5sFdmaC2ijF1044WicssFyPMUrvtHh\nH5tPbI2Lrjdn8AXfvIyfuWSMXGjjCZ/GD05jZvysyWDMU/NZoM5aY/8QP/GLFr6n3KIvrz/uS+C1\nv01aYT2vKVzqushZwJHPyreh32SAf5d7yRhpX3l2KbtQP+ElX7Ime5c+sykucGhk58C69H+Okec5\n7mDIXjka+EJbUmeM4HWh6dm4u9cGPPtob+QLD/4N/1A/wPKRrJOXbQ0DZz31xY81Dz2ysTbzAa3P\ndAGcl83WaC8QJT7SG9tXN9Ywcx5tfY5f+sIX4S95Ac5f0i9j8OUvf3n3M+3tyHsmOGbC032kxhlt\n98Z25bW6+Ju8ahMO5T3LJx7PbOfjzTfhg/J9+Q7kL/DqhTIbYuwn/mie+YuXQLaNzs9knjr4Yj/k\nJ8fYy8s2z/h6vk4zr8wBY67tNTwT53l/SuB1k8ArH3g1sRl1htypV6eNLLAF8mxcbYQZCAsmgyCV\nZ1jkLR5wZjCmQqifCwMcK55wK4dzheEs9htmNtwcVs6pRYdR4wBwAnPm433yNHGu/E1+GMAWwBwv\n9fqgzpspjoGNGvnYPJCX+9mPlYZnOODWR7znWMVbcoqf2ijnlKGt/5wpvHFw0e/N9NouHrRXhy6Z\nTLhgjnLt9DkHDgzHieMNR3jU+z06Qa6HTwIQyupPND13HdE7y+4mgeSvVbJWZs6ay04hcNoEpGyI\nJOMpNVfpI13ksGvbhgIODrlAnnEVDBWQmvMz+sqibx5wxgWn0GZn4H5jc8Z9UsO5pxvaxoOTnYLD\ngsQ+c+eEd1qRXtmkgDXPOC+Ch5x3OMwFmwZOKL30UkAg1Nzq03vBOgFVfQIjeOXzfRsGG0Yy8fbZ\nb5MJlLItcDip6HSjYBx8fubDaVJwTseRHR70URDXZ3OCd+yPOhsU8jNv4cA/WfutScHOfpaD/LI1\n6smSHG18nOAUbLZhksgPTg44WEFLMrHx0T920ulkuG2Ww8VOwOfkqwCk/uAd7eyrPvWSBW79Mt/b\n1JE1u2f81LE/LjI0PuAKGoBFGx19ix5Zg0NXG7zAYVzUse36oI2Aqw2gsYCLXuj/gy3obCOIF32G\ng/z1jy7Z4KJBd5wQ5tgKHOPBizl9o1Pa48HaoZ0AqTURb2Sh7cPNnqGnP70kMMZ0x9pD74yln5eg\nb+SHV7LFG3rGni7ZaNJPdcG4d9EXejF/K9u4SHiEx3z2e7Fo41m7Uvjms7JSdDzP8urLJ84jWG27\nyIlM8Sd51g/6UZBeH8x/5eQB1vjg37qlvWTs50ldONSRMZuUXQoWPm2MJbpwg6WvXXRUuQQG3/pX\nGRz4c8ElkTN9ggusNuDkeHclo/K94fYn/OWzvLJwVidf8VRXG8/uew6HZyn5u69swiq/awqPdvFH\nDuZRJ+DNIXXGiUxd5i1+yN6YkaMx4r/QCfDmuzltzpJ1vK48Ko+PeChf6yoPx1pfuTyc7rVb204Y\ndddwKa9+4rkGD4YsCkKTJbuinA0lL3rIprCjLnYMPjIl3/SPXMnaZa3QVj382phzLrQ8o+NK18EZ\nz+aFPsMNn/nDf+BXo2Mu4sk6pj1eC7yCMYbmsjJ+hvb6VEpOs6y6u+bJFq+SZync1e+FT/7M+QuO\njMmC/PnTgoj6R17ak02pZ23ca0/OcMKhnEySt5y8pqy1MR/YPePk2dpTcBZ846Q9nBI60Wv8s7dy\nl3pj2NX4w9G441UytuYen4FP6OVhgU+f9/MZ+FJoWUutvV7+Wpvht+aSlTVa/4yzIK65jFfy9AWN\nL9/4b+hL9IVeWM+9ZOcf8vPYWrT0GfwXv/jFnQd4yHom/ZxprZ9193GPv8njEX/pz6yb7cjYc/V0\nhV/HLxaodu8Lrf4JJ/trvIO/j36fNN8pAfNAMueMJf2m+1689zNnxsvXeE679qUU2ObpOzGeT6cE\nTgmQwCsReDWR15SBZhw4SxZNm0EbOsaBY2Ax5SS0qMNjQSgxJJ7hqhw+5SV1rniIrvrKgq1swnBI\nnEay0FtcBBAs9NHjDHIGXPjFt/64lKmfdOb9pOs+uoweBwg9tPSfMwlfskAfbzaInC0LIxgOBJrq\noxXe+scR4rQI2uoXOE6QgAqHFS4yXNvFowUWf+hzaPDE6eV0H8k/PrQvwa1c3v0Kt9IPVt/c47HF\nBV7l+uNEpLd3ghXGTn/hVq/NpDtpxNuZ310CybQ8DMZHoM0pPsFPJy3pCrk3jmA9T0edY06P6RYc\nHGJv1gVenWSg99GSN+cnTvrIqXfilbNIr82tPt2Gh+OuDA20OPnskCCj317ElyCnT3CcOvQbo+Yb\n3pzu1h8nAN7c/lGWMnPK52k2M+ajzYT+my8c+gKVbRZsKPwHcacXwesLWJsG8AJ8+IKH/GwS9AsP\nAp4+hwOLRzQlc1l/9dvLLPA2U/0THbT1Cw7zxRxhD+KJ/cULmeDFuAgC+idA+mnzor06PDilyy7q\np42MoCCe2QbjhDe44TE+xhZ+wV92EuwcP3avTagNv7bkwv7hid1BDz669Hg7iWEjIIBmjNHAmyCn\noCV47ScdeEpoq9O29Ub/0I1vtOEnW3Ze33rp1kbV+OOHDZa3uYULLDnbyJG7MjRd+NUXZfgiXzIk\nIzyBJ8cHW9AVDv0BQyeMiU2kpL1Nuw2RQK++K+siAzx5UdA4TRm4x4tEfvTFaSF6D5cyOPRTQN/p\nZ4F2fCgnR7TclzxLs2zWHZVXf5Sv+OpbdOFzedYXsiMTMnNv3Mx3dfglD2te6yaa6a3AtfEyvmD1\nuyCecSsZO/YJfmsN3HigM4JG9Ab+2oBvvJUlAzwrh0PCm8t8QR/e+uu5voJVvqbwruV3eQ7vxHXb\nsqfRqS/g9OcuiSzMCbaWjRRINa74NIdcZAtv89r4qTe+9EG9sWc72PLWpdlXPOFzlh31Pzj5hPV8\n25Q8ai+PVnlyClafJeUubciGDlkPCuKpsw7QSfIAB4Z9ZUvBageGfZPDrdyVTmrnkuT4gI9sXa3b\n5A9fvNBrcneZK903F+EJ3j3ccOHF3JErwwuerVfskfnIJmcr9c+Ff/wkk53hgz9owltf5FLyrQ6c\nBJ86fOuD9SG+5fpZ/8jMc3M6eHZCe5f2dHHaKO2iX3s4J96dmSf8oAsneWSD4NYWTfjAKIPX2JCt\nXH/Ur3DgS9pIyab7ZFO+Az35U3t5fem+9vTGnsNp13woY2le++qFX8EX8ILQi5HH2zrPxzDmcOJZ\nf8lFf/gSxlyCwz6Af+RLEOX8Gi81nbB1wZndJws4rdOCUH4mCX1js6YpB3XJZ4W7j+fGYvKkzPMs\nO+JttgU7+8lW8gH5lYKvxoLtFXj1dZY5Sd/OdD8SmGOFg57nuNN1LzjsC+yL2AN7B/+Dwr7GGmqO\nsgnqmhPN5fvp2Un1lMDLJ4FXKvDKGGT8y01uzq8AgU2c0zicKIZeYgQkhqD7FoXwhWsH3P4on4an\ncjnY2T64CeOesbGwXy6X/fSPTVhOLN5siDjqNlUW9DZXnAl96oJrpXHEL7gSRwgtziWnmNNgo4uG\ne/jgAMfpIBs8oS0np/oo7x5+sIItPpH1RpmDwlG1+XAaqrfKyTqji2b9UNYVbv3VJhi01EmV9bwX\nHvwBdwRT+9kEXLDVe3aakDMgUOaUn77qs6Q+Hmsfjon7vL+bBMh/HbvkSi84zhxrb1p9ss1xTq/A\n1dY40Wd6DSZdVm/DJQAk8Oo0hICINOl4Dq97my9BTZ9FO5maw84RpyOCoIKCNiz0gmPiM2o2yKfY\nnHTl6p0k5MQL/voUEF34BUIFRDkz7JggjaCXAJnNgPkEj7nplE7BT3ObbAQfBcKc/DC/k4V56fdT\nBQ9tPmwq/GyCQC266KPFYfJzA/ok6GsjAo/P3P1uWb93RrZkRnYcZjjbqHGYm8/64NQIvsiL/QHL\nRgjw4VO5pI06gQ+BUrYJjM2Re/U2lvra5q4NHrnCQ0b6HH1jrg/oFhCAQ3/xoB/VaUe3jJlNFLnE\nFz1y6tOJOLqDn0kLfbSUudRnw+QSWmQDlwsPeGb78YL+rINPgEAugXc/n/UfXm2laCtztZlMPuiA\nwUcbdP2B01glb7TglNOLTgLir34YA8nYeqnQOGkjodm9nO0U/Pdbr/TG5goN8iEDgVcnoH2lgh/t\njaNcgsNVX8ujEUzle6ODP8GDO4KtXlP1PcvJk/500S08qtMP42WzT86elZMXvTZfbcTdS+awsZh6\nGw1zyYUe/PgQHGdTBNHNSW3BTzhyy2dAwzjDAY4+40+7xka5dE0W6iaM52dNE0/34Toah+qu5XC4\nJu/hXfFVDtesqz0Zsyt8GPaHrja2ZGUsXe7Jt7Ej7+YZuRp7AQX+DxsLftJb+4KuFB/uj/qz1tdm\nlru/ltC5Rku5Puhvdon9om94Mc/5j2RiMw1Ovf7RR7pODuDoYjZCmTp46B5cUx/hmPJxjxe5tnIy\nn0kf56UO7/VPnftg1Cd/uJob4QWLX2uZOW0M9cs8iT7YOSZwSmiUoqHMffThkNCR5jM45eYnm0C+\n1iLPZKlf5EXensvdgyFr8PhWlmzZ88rgwAs6XfoLV/iU1z/8eYYPnKv2cvik+udeW+2U1Xc4PEvq\nkn02K/7AzVR7Ze6l8LivzH28RtezseMfCebxEb3EIxd+GT+FX0FnrXWCtObqusbGO/2MH3bbF0O+\n/vAiEh1rpS9J7DV9bl3f8CaR4YPt5aafcPJyPt/wrdq3/84+KZ39fRvqxd/hq/4n457j5ojX2Z/g\ng6vO/CZ/X2jxpY3TDLz24is6Z/5iJdA4laO+jqH9va/m+hJOTOPzn//8vhfyYp3tkLIN5euc34HO\nP6cEXmMJvDKB19UgZBRMbhsTbz19cutknIVVfY5JzkObULi6wuPZvSta1dGPo7IMCzg0XIwPR8gm\nl2MlgCIIwpFVzxG06eSwu/DuaoM0aU29jL9ZNu/jTxkHwCaX08HB4yBwONCZzgVYRlHb2V6/qsMz\nOcLJ6bNZuVwuu4PR51rwckpsoAUwyDkc12RY+aQ779FfYXremRt/lLtyoNB2rf2qycTjPrr66hNZ\nv1fjk273ghDKS+GN5sQVzJnfTQLkT65zgU6uHLZ+H1TgVeCQDldfjqJ7eipx/BsreM1FgU+/KeU0\nhHmBbu3Bu+8ZDgESgUd2RXDUvJXMK5/zO/HqBYS5jZbgiE2AT+AFiAWo0ECfDfBbm4KcTlLgEy0w\nbJbfVGXDbLCclBCcNe9sGJzm9zLJsw0jm2Ieotvc7reRdwa3P/XZiwSbCM99EqtfEr02pwUYBYZt\nMOBniwTWvNX2OV39xpvArwt9tq7NtjbGpUCEoJw6cicvsGDYCpsYPJAZW6k/YGwMlbu0ze7YcEqe\nXW0i4STHcjDZN/3Ndmkjsb02gGwj+yw44IQy+bNd6GpnzpOFn6RgA9AjZ+3xnI6gpUyd+/Qtfe5Z\nH+mbfmirjZdu5BGMXJ/hwYN+4Vt5ATTweKSrElzutZPAGyN91AfP8AmEoKktmbgqp1fWBjjASNrT\nGzpITs2p+gWf8aW7xlP/JfWu5KPdg20j+oUvfGE/1dILB7Tp9c9+9rP9Zak5ox/6TVbG072kHH5y\ncB+N5LYDPfkTXY/qS8pd+jjLq1/z4JXjgxz1BW/xBw++zA1XPNbWONAz+m/s4dFvMnaBr89w0w1y\n1w4O/TRe9MSp114mqwMD3jjqk/FIHurRqg5NdG7T7ykHeCR8PEuqfTjmc2V3xQuHKx2Y7dMXZZMW\nOajTpnL3ytkwOknX3Tdn4CAzspUbK5dx8yzB6Zkto8su42TMktnM0UbTuBk/Oq4+Ou7hTNfm+OFD\nPRzqwxX87Jd7+oTG1KXo4B0O9NUXjEuf6Yt6em59Mf/xQsfooDWOToJDX9IWfjDmgtyzcvzEn7Ip\nk73x9ke98uoql9d2ls17vCUHfEvxM+UWnmiA1Ta5VA5uhY238ugHWw6fe7IlPzTijZyVWW8FmazJ\n7IMy4xWse+09d8GhHA42ormPniu46MePXFKfTjRmR30BB0ep9j3Lk5Mcrp7Buidz+mE+WFfMCTit\n73wg+qR/+Km9HO1Jz304o29c41+ZZ3PQoRIvu70oFhSlm+jYn3iZ7NnayTexbs05Ck+08B4PZOyl\ntZ8DEmDSlo9lf+OgDFjzR55d0C+fW/tHlgK2aCtbUzKL9lr/op7xUX/RjK+jsniadZXVLhxgJpx6\nY0Af+hqMLAVe+eOdeE33Vr6ic+bvnQQaw/LGz7OLTbf/evTo0b4nYIvsZ/7mb/5mPyjCrs25eU0X\n3rsenJhPCbw6EnhlAq9EOo1ChkG5xd3JMW88BUq84bSwc2oYCLCcAQs0WIvAxJVxgQusK2dGWY7c\ndByDBYeOzZWghY0WxyqnFS6Ls80zJx19FydWzlG1cOMBrBRv0dgLlz9HsOHAE/ocHQZRfzkcnKH6\nPmlMOuGVk52+tIGEjzPjajOJf4Exb8NsoL3VrD8Ly+/oY3UrH5VPno5gMvIWa1fOG1ibJP00bmuq\nf8onXuV0RsDFW7wPb6cZOwEYLBg4tXPftdI4n+8mAfIk18aUXEvmDifNou+fOjndqaxk7GuvnWfz\ndCbz4XK57J9/+WdNgqUca2nqwGwDFx3iyPunUH0ehTY+zfMHW1DJm15zBB5zwcZUQMoJKM/hhw/8\nxz72sQ/81V/91T6H8GUT4BSo4C6nxkuLgqs2D+YSXOZu/dJHQQL4zG8w6ILRHo/ooolXzr+5G482\nIdkBfcYHJ9gJb3NbG7jMaScT6ge6aNqQ6D84dWDRh5Od0yfjiUd0bTL1iT3BA5g259lp9kR/2S38\nzsABHuHTHxd+Cy62EVUGNxmZ/2SQvVauvQs8meEF736iwWlj6wa+0bd58gmVU8CCMnDDN22KvsOv\nvAufUnwojyZZ0Ln4JANjBefErX/k3MYUjdYO/FrH9A/95BE9tLVFQz+sS+DAk7d1ka7AJ0dbnbVI\nfbqDT3pgw5lDra6gC5z65ZluCujjTRleJLy51w+BVy+z6A3eyFnA2+8I24g93j47BI+WuUlXtMMb\nunBPnrV3kRv5SPrtijfl+JHglvRXeTzuheOPtlK81165C0901FhKZNZ44EWqLXh9JUvwnuEDR/by\n5IVvOk8n6b1ndfqv3+i4jx/1cM9+qau+cvzUV/ksV/e0BD6cK6y6cB/VzbJJe7aZ/Mxybaur3HNl\n4Z54yYNcVhg6RaZTXuE0lmx3fhs/xzjAQU/m3HS/6o8xoYfpqHEytskMncbF+JuP027pBzouNOkX\nHaAz7uE2/nK04Wjs9QdMfYMLDuXK0IGrvuDVhRae0k/9dWmHX3Qkz110lZ7nt84XQOrgJQPl4PCL\nTuODBzQr2wk8+aNuJs94k9zrb/1sfJMBvsnU/DKWnrVFh9zwZDzAk4m6xkRdMlGGhqs5iLa+wSWv\nn+SjL3AmN7hdnsk9/79xjM/KrXXsM1jt6mv9jVfPrurRjM/K9sonfyZ8/VSl3+HxrK40yyub+YSt\nvDbRiC5ZGX/7AOuqL0kE2/DNT3qw+Q58ar6D8Uo/9YmsuhqD9CC6cjRdK00vu3/605/uXyjRU/Xk\niJ7xog+tI/hEE1/1RRl98Bx+42as8GXtNL+VeVlz2fxJuqe/vprh85kvArV+O5//YA1FZ03wl6Lf\n84vMyQX9+oz2NdGqa30AAEAASURBVH7iufpkNPlVFs45dsrNQ76CE69+buDxtubzBwRefYlmPhgP\n6Qj3pHPev/sSIHOpPJ3wbF7Yo3znO9/ZD2OYS3zkz3zmM/v4WTezrenHyuG18hXufD4l8DpI4JUK\nvM4BaSIz9Iy6oKrTcBZ7byeVSeotmBZHlyABQzINDLjwMSA5AhZWiwGni6PG4LiXwFloLcycCp+V\nWOQ58Rwq+DgAnQyyORWUFHydDvzkIx6UVb4TO/gT7FqlHd44Lxw9vODZJlkf3GvrArvi8cxh4czq\nj823E2mcJYtjziRHhSND7hwtwTHOB6c7/NHAY326qV8TPhzatphXluzxqX/GAV59M+7GyRhrN5P2\npSM+4OEMCLw6laj/5CjVFk5t46Xy8J753SVAni7jmmzDYq5w0gQ+/ZSIT72ag2RvzIxJOgIH3ZyJ\nnvgtUb+75e36ZXOalWkfPXl43LMB6PikzM8NeKnjU336rV5Ci33Aw9SD7uHDC3i5ufOhD31oD7x6\nW2zzAZbzLqDs1KtP/NkouNkfOftl7sIXb4KZAqWdJqX37B7nthOMzXV0BBALovXpHbrwgWPH2C7z\nPp1XTv7mEv7xwgawK2DU9TIJjLmIFjpw4c1JMmVtjsmAvOCS0GjsjIl+gQXXGKmX8Nq99mQvT947\n0BM4sMpd7huH2oAlUw7lD3/4wz0ASIZO89o0+UkIn9tny+GI55UeXPHlfibtpGt8hgvcpAFfZWSE\nt8ZBee1m/+qjtmQ8N5fK2EW6VODE+HXBX0BeO+Ng/OiFOjrFzgvEw2V8wQnaCtBbe60xeMVHCYx/\nvjADr9YNeu6fa725/eYvvQXndLF/pmZja5zAOVFrjUEH/+afcXPhC710gb7YGHsmK3VkhV+Xvio7\nStpMvdQH8BIZu9TTZTLxTJb0P1rBNW6epca+cvmaapt+xrN8hQ9Wrg6M5D6aK/6b6if+tf2KM9ho\nw7u2OaJdWbDl8E2cwVXmGayLbFzuk496Yz7tRfPAeLFXxkw9uNrmy8GnzuaRXcvna/zTGc+u6OKv\nsZHTq2DTR3nl2qIDP/sml+o/WPzhVZ17PJqTdN09WPyDNV/AsMPuK9dnZfC49E+io/S1tSRbAh4e\nvLmHJ57NL30y52qrzDN+9Fs9XJU3J9VJ8Elg9KP5pw8u/DXWYPHgMpfJwVxzWVPITZvqjO2sn+sW\n/tgP/MBLRvBq79kaSLbgjA0+tGfv5WCSg/r6DJ++xQPYxgG/eOIr41c5vK45RnDfNaUntU0X5vMs\nc49PtEvh6Fnb2iurfi0PvjElw+Dl4LUlS3usgmt8NTJWB4Y82HYBSX6BOUfeZElX7TMebMFZl/VH\neeM1ecLHfDYmvlj50Y9+tH/Gbs+lHdzWKTY63YsXc9040XvttSlgu8rBM3xeIvsyiA/Hn8SfPZ0v\nlXwZZK3yAjv/QV/1eU3wlfTjvlP9Xce1cjmZq+9StvIevP6Ey71y88cBHUFXF3+CDH0Bxtcyt6eu\nanemFycBYzRTc0xOx3/wgx/s/2SY3bQvNmZ+29XXeXOs0wk2U1JX2cR/3p8SeJ0l8EoEXm8aIAaD\ngySIYFNoc/h4C9T4HMRCqlxuc8fYWwAYk5LFk0NmgcyZZSiU5ayBRcMCneOoHaePA8FhKGAAlpPK\n4bARZbQ4IzaPaGfg0HDfs3alDJV88lr9tTyc8vjXBzTQxnv4gtEPfQfvnvPYKTX9UwdWsjCCY0zJ\nQv/6fNnGONmgCRZdBnjSjXc4w1uZfJVJcOhyzvDEubVQg+XQk7UxztFWrp8u9+FwX4q2ssr1SwBd\nkMDC4p7zNhePFWd4wnvmzyaBxkDrKVO6I6D/61//ev89SA6uzZ5kXOhFY+2e3q06R685eX3WZFzp\nNZrRaqNm7sLbW1w2wz9S+O1vf7t/zoaX2sVzOHqm/zZenHtlnH46Cs7vCf7Zn/3ZB5y85aTTafyr\nF3x1+tJnc+xG/Yre3untj37anPg5DMFBQVV6ao6bk2wfu2duaKuvNiDmjY0G+Zgr2Ud86TN6OUz6\nYFPpIr/mMx7iqw23Z3BzI0x++tbGKjsjh1sfpGwDPvGgvvv48nyUptyDgeMoVV8OzpgLrP/Lv/zL\nLnN8+V03/xBKYNz46bf+SRN3ZXiIDzDwu9byWee+dARXXXk4473ycjiqC1YdflfejG/zg+xdkrLG\nVTvjSVfIBAw77x9qeQlBbwT9XWREl+bLN+ud9dYY+w1Nv/HqN7PpqUQ34RJ49c/lbFiNOyfezztc\nLpeddzj6mqKfNMCLcbP+pN9wGic48I2uvqjXLzKpr42bNlLy196aAgdYdmD6CuDU0WsbdjIyr23q\nzd1sEtroJcvopTvr+OABbUmdBDYc6NZ23u+A25/gPEcrPOXBwjMv9XPcPc82yYYOaJfeoFNdPMlv\nStE1Pi59JmcyNpbxDg4PnuWewdJF9oQtU5cvpp6NUR5OeMHgWxsXe8y3UWas6LALfWXq6DLY8KDh\n0m9Jefzobzyqc48uGHqCX/fapkvaqkOLDKTkT2/0A331Uw/pFxxTn8Hr85yjeNU3dOCgp+y+e/ya\nN70oo7vwSeFKd/EEz3olV/jByl2NvVyfu8jVBVZZ7fRNee3R0zZ4sgEjTx76CY+kHVj97wp/umM8\n9E8Od7Tcu9QlL/S1R9MFNjxy15QJnMEf9U8ZGtKah6+66mf53vBJ2+ork4MtzXrl83nCruW1D0Z9\neK/BVj9zsgqefj3e9l5eUvvs30vNdAwdcOQm1y49MIZsr/lnP8W38XNQfDa+mrmrDbmnA5N/NARe\n/XSNf2oqiErv+VrGwqEQPhF9hocuwSswam6YE14egpsJj+jhj5/FN/Cb5V7O2iNJvtzgG1oX/QyB\noJSX+37j1aEVbdGcKfkpW+sm3Iu6x48rvccTfWd3+JNshX4YBz6eeQlGm/gPRzwrn3XsLPn4fVeB\neWPkdDCf3M8yGAe6caaXSwL8Lj/F9ZWvfGX304yTn2z75Cc/uf/UWroQ1/RAMvbZ3vQgmDM/JfC6\nS+CVD7waQAuvwJ9Nmt8adVlEBTu9oeFgq+e8WlCkFgaGRDCvAAHjz8FsUbFwW5AkhsTl2eJtE5az\nzolQh0Y00e0zXAvPujjtSJ/8wc80WhmrjFewwfR8lNe3nBww9an26ji1nPM2nIyoxZXzQyb6RLY2\n1hZhvIRTf8hUIKqANtw5K3J8aMPhkUvRd18f3ZeUgZlwcOGVU2PzzqniCHAIbM4t4hYIfKLj0j6a\n0VHW/TU68PuvpH/xF3+xB8bIQ59L4da+q7ozfzYJrOM95Wq+Gtv+ydWb2wm5nHlOMd1oTMxVF3w2\nVXReUiYAxMkTVOt3O9GR0OjFjDlLtzjldI6O20Cg6x9mebkTv7X3LMU3vjio6NBV+k838QS3gCtn\n02+rcuD1AQzafrj+l7/85R7sBX+U4BCkEsDlvNpgmK/4sPlhf9Bro2Ees3Pk4F5Sx1aZQ/pPVnLl\ncjqPjksbfYOfrMlf7pLwz36iUfAge6pOezmcLvfJbEcw/sy6Kd/oa5ecaxau4JVX5n4tD5f+C7z+\n0z/90/4JFTso4CooLtcH/JTg1Gd9CP8R7uDLg+15tqmsHH71wdS2Z3DKXJO3WR5seXWew4dOeOTR\nlUt02CWpt576j7ZOnbO3NqH017yiI9Y568DjbeNtE+vktXZ+uoWj/sd//Mf7XMCDtaSfePBCBT44\nfG1A7g+2jbe21m+/b+z3hr2IUCbhMX31rBze5j9c6bK69Lu+TTm4N57aWgvpKjjzR4DYfJDIgj3w\ngtW6rw39sWlvbsNlDdXepe20Q/BMenwI15yT+QnxHG9yPGgPt/rkoUyqTTk4MPREW/qMHvkoI0P0\n2Ax5Mq0dvHhjy9DXT/YCnGdXfahfOyPbHzgkdNSRC7rZCOXsCPmhn5z3Rtuf+qct3rXFvxzueAWv\nDIxy8k7meNfGuOmD+Y1nbdn1fMJwsKFgg4GHXODFb/olx5dyuYuc4VWmr/qJJ/0gMxcYuPEr96xe\ne2X442/MtujTMzIir/qGn2SvrXr6yvaDwYMDAXwmOksOaE1fGD5lEn7qizLj0aVPU4/IFU1X+qRM\nf8nGvRzOxk4ZnsDLPSc3uONBObzJGo55H6y2ZAC/PFw7oid/8F1SX3Jfn+TBoXMtoWt85S40p8y0\ng7cLzKR503P0gy+/xkvl8TJpVydfac6629xrPxO+kpv7rvgnH7ZcoMbPyPiZJvq78tFz/ZQbR2NP\nP/hE/Bo/9WPd4Efl30Rz8kWPBV79s0ZfRpnX1hDBUvAFVc0RdMyHfkefrvH9+Hh8AfD4c6njB1qX\nrGN4ERB2YhevdMAXlnxTF99QsFXg1WXu6c+a4C6hd1+pcUM/uSrTLzbHGk4mbAb76ctO+yN7XnKc\n/ei+/qzP9EDg1fj4eSEyF8Dmk3/kIx/Z7VPz+L7kcdJ9pwTYfy8W/ISH0+TG1D/+9eWgFwvmmDGb\nY+3eVXn68E7M59MpgddbAvceeG2iZvjX4WghUD4nOOfQQmozwNkUnGHYZ+CVE8DhtTDnFMNj0eBk\ncXItIhYVCyn86HFc4c8ZAMuQuNR7zum0sMLN6c2pxQ/e4MlRrp/olzJK6tzP/gWzlvVc/VEe3nIw\n2rn0Qb84933yw+H37CITTo7+WSz1iWz1ST+1hVedt6ECr+rIC/4cZXQkbdSR21141zZ+8eUNNQeM\nY2MToQ5twXYOAl7IWnkXHEdpyqV6bZTbfAu8+C1OJ7o863Np4gZ/hCvYM7+dBFaZ1ops6Q5H2qfJ\n//Vf/7WfTMyZb17SLcmGznymg+a9OUknPHMYOXkf/ehHd0eaDklo2/w7scfJcDJCYOWDH/zg3obt\n4Lj/7ne/29/Ug4leNgGOyuBEDw5OCjxeZOiLftBVNDgtAqd/9Ed/tG8EtDdXfLb285//fKclmJV+\nyZMT3m1K9MVnb/pWf+DBswu8hE+y6h4ucC7OVfx7bq4Gqy/aR3/WB6PeHEFD7prttHVJ3cdb5Xvl\nlT/BXqnei1c82tRurfOsTgDQKeOvf/3reyDQXPeZoN9oc/KyzVXtyUc7z/osRWN/eI4/0Qhfz9dQ\nxsdaf9vy6Gg/73tGPx7U21T6B3P/9m//tusx/RNQffjw4W6TzTObNWsu2MdbAJZusdv+CR0dtVbC\nCc5nqI+23zT2MqPAq82tn3gRzAXHvhsfG3hBXXzQK+PQumIcPIOnd2hYL+gpnvCg3qUMDrDauYyx\n9c/FduQHsDHsAjsC3vwyp11gJXNMX9CBn/6jL9cGbXjU4xc9Nsoay+cQ5IPPWislQzi1014b+Fzu\npfojR0fSLzS0ceENDjBkRibWdfT0ESw6/CeXucBniS6c+CITgQqwnT4GixcvfIyvl0vJDR+uZJ1M\nyIUMXfCCIVsyhg+/a3/CAVY/XY1/fY6W/qzyA4uvfBo5HQFbkFJOXuDwlo4qa+zQQhuM+sZYOZ6n\n3D0b23xKdeSLDvnqk9S4gYe3saET6Q84fMChnbwx0u9kqp9kaW1xMp3Ppp9w8vEEjgRN6C08ZK5v\n4SK3+EIzmXYvT5aNIT5dZApv44ou/uV0RDvPxrxLf9PlSaPx1Ua9Z1ewcry5kl8w8Dxrgk8K5/qs\nLrrupegewb4F8c6/wb2z9K2n6sJ5E0x1k1ftPZd37znZ1S4Yz8234IO5KdfeJRknKTzKzWVfJT3a\nbLuToAJsyvFBJ+hz7eXRlrvA0Rc/c8O2+CemXvI5/coWhWsnvP3xTH+tJ4JDXg7SbTrv98LpHN/O\nvpDe01n7CC+/0ZD6qolvFx94tR75UoOPZR710o0Nl9D2AlHQVV/Nvcvlsv9mqXaCthNWG/glbaWe\n94cX/CceJh/KXPbSb26HDVxsP3n5GaAZeI7diaeytV/GiF/g/yV42cpGCa7bZ314+38a7Iexr104\new7vmT+7BMg0ec77idFcNg7mkDljPpnLAvB+19XemI9sbvApGqcVX3Qm7vP+lMApgbckcC+B1yar\nyel+nbQNjvoWdWXgLNwWd0EJJ2IsmuUcz54t+Jx5iSGxADIUnFWLcU62Z45gTi1nFJ2cbO1yIvES\nv3JJLvAomIKmRQqutW+rIap9OHZk79KfaEUjXuScGs6yIAPHgzPDGSEP8smJ1pacLZAuhjjnmzzV\nOYX0eNtgG4tko468XJx5V3Xx87Ruxr+c/Dkw3l7b6Nk40gFBLLQ5CMYcf3PzUJ+v0YpG9fEGv58Z\nEKTjGAia0QX14QzW84onfGd+ewmQZ/JNxlq7N6b0zyfJ//mf/7mfTDTW4OkyfctG0GGnJei3eSyg\nY25KAvZ+T4qj57SDeQ8HXeJw++dKTi/YwHL4vYXnuMPt1B3H2id0AkHxmp575ljKXXiy8f6TP/mT\n3VERfPVsnnDUOZ9eFHA4vTkWoKV3aDlZ6A2zk68CHVI45WRi7joZ6M0zZ1jgA81kJ3/WVB/kR6ny\nScN911Gb5y2L5k14Jj/g6sdsE0y5jZh/yvG3f/u3+6aAnfGPHgRejV12Hzx8xqc05V3Z8+bx9bx4\n7tI+2R7Rrk7OCfcP4P75n/95X1cv2wbzU5/61D6fbHKTEZnSYbbZPCVTL7DMyeaq+WxD56cGvFAx\nR80PuuykkE0em2s9tVnj9Js7+DAmkrXd3HVJbIH1Cx12wFgFYz32XH+sYy5tWucLYsGvL7XXBwmc\ntQhul8Q2hVvf+BVgwHpGDwwe5crUzXXW2osPCRw7wnbJtcELXuMLXH2pP3IXXuIJjoKZ2qNJxtFT\nLyDIX9FH9LqHpzbkqQ1b+j//8z8feHMbNwEGPBeUYC/JJFnEoxxcPpe+kxHc+EQ3mvquX+mh/tTP\n+qVNfSZLsMrwDpdLv7qUg8GbfpABfuAAw4dh78kJHBk3dvAqT4b6gm/jW3+U4Tva7vHFp2KT0UUL\nHYFX8kYXnD6pQ5d8teF7oQEG71I6g6Y65fGE18rNKSfDvaQwPvBrS95O6rnMU8EjiWzJPhms8tcW\nPXn39R1NPJfrp3uyDVYu9QwX+YZzr9z+JIOe38+5vt4m0YmZntbOWJIrndWWzLVJtuELT8/B9zxp\nXrufeKMTLDx00z867uWxvZm5l+45xKHMfsm8iadw9Aw3fRLg8Xl/n/jzfeh9POu7eeXF+E9+8pP9\nJ2z0y8s7bc1DL/DYL+X8LGuSQKr5Zg5Y29g2L9jhdfEj+QLWOP6ZeTT7W1/97r8TvtYxfbJ2+VpO\ncMqJc32Q6ld8Vzafd8B7/oNP667gKB9Uv/TbF1rWZmu0l6j1q37Ib+oLu2Ud909yBaqNGZvE1xJY\nz47V/SN5VXfmd5dA8rzWsrEzn6wdTpB7Ke6nIawr9kIFXek4+69NeMuVhesarbP8lMDrLoF7DbwS\n/pykJv0sq065RdMiaQNmgbS4C0wUaJV3egEOTp7FoU2OIKONRw4i3HByFDi6Nn+cVzTAcIQt0tpz\naoKzgHBWwbnX1mbTPXwMkIUKfffoaC/3DEZ/XJ5d72ZKZhNvtPHBeeZUcMDJg9PchlG/XRwbjrg+\n6bf2yp2gAI93gSPyF5Sy0c5x1xfwOSnxcdu+xj88xk/gU8DVZzvGRD3anCXOFCch2WsjTRzRf6vm\n7b9HMMqMOYdLgM6nMOjjAx71sx+eJ563sZ93d5HAlGl6oz3Zmi/mPEfQiVeOIF2TjAt4+ijRbc4u\nZ5vzwMHXFoxga/9c68F22lRbuk2HfPr05hZQ4DibG06hOo0qoGCeC7b63VX/FIBDIuHNHHdJ7EB8\nqMMLmn6AXoCCo89OOA3yve99b3f08eHUKofGiQ7z01zymZ5Puun4xImOuWkTwwnm4HOIzMn0ELz+\nPm+6Nm9ugzdebgN7G5jb8LLSnDoVjWDk6tl8vzXqnz/RA+Nl3tsMkCs51gY82cqVVef53UrRerfw\nvVt49JEu+t0+/9nWhtlaYFP68Y9/fJ8vdFeyNoK1yXJv3SVXG2ZzTqArXBx7QSJytRk2T5yi9ZLN\numt+GiMv2dCUkpE2bIP5qcwaZh7YELjHMxsApsuYma94nXPEvbLK5dHRFq1og9UP9cHIw51NmPjx\n0hUtONBRHp5g5NKsC0Ye3A705I+y9FNOdj2jSSZsRzjZIrJTx1ZJ2rSO4005PiVrPTtJB7yoUue3\ne42XkzDkTlbwl5ILGi7P9QMM2ClfZdWrm/XhDn/49BHPLuPdvb7wB9Xrg/67stfw5d+A8SyBBQN/\n+NIjvFUPRjt18NBP92TMr8pX0gZP1od8RrD5LOiQnQtuMH4jmS8Kv3lg7vDX3EvJwhihpx2fyDol\nqMGmeSlectrVSz4v65xYgwv/eMBXvMCLXzy54O9ero0LPXXuy4OL5po3rrO8sTyqm3Dvl/v6+7T+\nkMfTYKsHS0+Mg3zKcuKpfLbr/mn8VB++2hnz7sG4N+/8o0Wf/bMX5qCXmNYJemif5gW3y0s1/rt5\ng3ftwxct/bI2OHUq+CdIR3/NZTDmlrXbJ+yPtpN5gkRw8dvpugAsvVbGZgm2drgEXT4ie+aFhTlT\nn7T99Kc/vf/sGHpoueCR3Js7/FHrGL9OMNFLxk5x9kIc/OyXZ0kZPPed4kPO/ugTWfotVraBLfPz\na3zO7Ac5SdrUvn6sfVJPVuQsmPvm5mvTE/+ozPphbI2NsS5pI624qj/zu0kgeWrVeJVXVv54e2n+\ni1/8Yt+D2I9Y3+k0/8wcNve0NV4Tr/bSOWZvyeH8e0rgmgTuJfC6MjMNwFrn2cLJERVw9WbS6TT3\nFjoLoQXUgtECXuDU4mvRlHeaAAyjz/m1CYTDxq4TqxZyhqXgpEWHo2kTaYH3xlYbcGjHewaI0bEo\naSOINzeC6NlI4rX2R/19njK0cw5WPBxlzru+CWJa7PCLV/c2rnI4LJRkxLjqhw204JH2ZMiB6vf3\nnDol0zYEK90McTJa64+e48vbVcYev/jiyNmYcNrI8Aintkfl1+gEqx19EdBqQ1nAAEx4J7yyMz2/\nBMjUZYynfNM1jjVngINMz8DR58YEB/TY+NEV+khX5Bxgzp0Ap9On6tHg9DvJ6gQqndJWvc/bOIXs\ngACFTYJPbvAwg6F4iF88SemDnO586Utf2k/a2jyY//j/5je/uf+kAP45M05XP3z4cHdwfRbnH2z5\nrFuwA59wdeERf3TU5/BsGzzRDr58r3gN/+i/q9S4zDJ2X6BC4NU42yAKJpr77F0pXOVwGfdwBveq\n5lMm+nDULw640yrf/e539/XS3LAZszn1UwLmnmSdtPl1kvjx5sBbi21GOyVho9vpdV+omDdwgTE/\nyf6ynaa1DpVW/pRPHuc6rHzWTRzwrPWVTbju5Ue4Zv21+3ie7Ssr15YezbTyU9218pvqyaX+ah8O\ndtEpMOsn22hdt84HH8541w68E/9O4/usF9+f/exnP/DGG2/sLyiNYX0BP1N4lM2xCn7CxuMscz9x\nBhPe6uYzOvDTr8o9dw+nunBlv8khOHXwSOXVKVNvfdJW7rlAKDyTFngJTHi1AcN+x6s1yfwhb3Xs\nPf/Hi2cnBydOeKR445+aW+ap9YoPB4bv6/eYvUwUgPViY64ZO5Inf8JZ2aSnrPq1PPib8udpexPe\n91tdcrpNv4yD8W885Norm3O6ejjV0TcpWrN+r7jhT20CmTTpnCDkf/zHf+xrqz0FX4Uf9GB70cwH\n8lJOcJYd4Q/xeew16gd87iX3Li8z+HDsjfWGb0WHteMn+RrKFxnmjWTf5nSmn8Rh4+xbwJur2tiD\n9dWcfYxLmUQ22vknu16Mw0WWUn3Hn32gvahTgU6+sqdOcfIh0MYz3me7niubzzvgC/6jP/WJPfLy\n5oc//OEedCUftoPcBc75nZ3irc01/tVXR1bGHW5jRFbqjKM1Xz7Xj2QjD8cLFsv7jlzjpWPuXem0\nMmNUXMQBFz/bYV/v8BGfzB7FXsM4SdqbJxPvXrH9OccsSZz5KYFjCdxL4NUkNzldGYEcAXWSZ/dy\np9YsjH7/0KLOgHsTJ4BiARbclGwoLPw2bZxUC26nVuGyMKq3wNoggu+kq0XGMxjtLbbaW3jwaeEQ\nnAUHJr53wtsfMAwZw4QvdLW18bQp1QYtzjHnmpGrr+F4L/JkDDdZ6huZufBVGRnmnFiAkyWYAq8C\ntvpD9voh+CkA7tTSkUyepz/4somx8ShwTl748maaTkyjP/t5V7q1RVOgl7PlnzA5WajvbVLgneOu\nnetMzy8Bcm2+J1NlHGVBHyetvC134lS5sWpcGhPzj7MraGZ+0VM6ZOMqSCnI2Wk6TrMNgLf6nGfw\nTjlyAjndTllr64WP0/U2sk68Cry2SdfreJXHh3L84cVn7JxW+NgcNuzv//7vd5xshVMcHBtOLbvh\npwhsIvrPr3CV8OP0oN/BtIkWJLaxQUuKh/LK9sqn/MF7qT71XA7maXUTT+2eN79G8ya8cyzAwbHi\nYcP8F+Svfe1ru10RnPjMZz6zz33zXqo/5cqOcCl/UWny8rw0w1UOX3JKr9TZ3HpB4cSrdYwucsZt\nMumudQKcdcB8+c1vfrNvrs2ryxZIdfLIGuPFpTng80zzwZynwzas5gG9FmSCL17iZy+4w5+jPimb\n+IKZZU8jgecVfj6vNG7CF67aX2t7Gz7B1D580a6O7bJms33WeWPDphibeInWHH8vWtk/gVdBE7ZW\nQOUv//Ivd3up/dzIRbc8nD2v/CmPR3VH9bU9yrWdbdbn2sxy95J2817ZbZ/BBaudRG7xoq57dRO2\nuuqNDd/Q/LDOkCd/xEuLfs6hNnBJ85lfa+55QWit5Jeph8e69+Et6Pqnf/qn+0vFAlfhANd474if\n4HYff5WXayPFQ3BrefDV91wefM/yI9gjuNnmvu6PeH0eXmY/323c+DLPG+to3ZVO7eDT1jO89kkC\na//6r/+6vwTgA/Gn/Vd0L3jAzoCn4Cufx/7Oy09zIHx4hNez9cZvs3rZZ53g09nL2M8J3Dph+6tf\n/WqfP9pZQ+i7oCFdV8YftH+wBuHBHuLx9nLQ2mZPYa2SwDpZK/DKxtkLSvGGH/f6yk9Dlw/Jn/MT\nVdZEASt7ULgk/agv2lfW/V5wj3+s2/whL/zZeOsD/9oeyE+v8VP9dAM7L+E73uuX8u5bS8C452//\n7//+7+7H28Nb3/lbxlKQmuzCFx75LPN8pmeTgHGZqXFJvurND3PpBz/4wa7X4hf2TPbC9kXmm7Wk\nNvAd4Z10zvtTAqcE/n8J3Evg9dpkneU2BT6fEtxzesbizChYnAVE/e6Oz3MfbG9RLYw5rTYIYBgR\nix4DL7fJg8+ia8EFYxFW7g2ohQeOnBKLjoux0R4+cGBKwRbMFCTEG2fDZtLFSOlL9DnDTtdxGLR/\nr9KRcdQPfbLIMar4dnEQBBoEXqXeBhdkFmwF05tf/SE/shSM1hdj1/gd0b5rP+FwcbgKXsNvDFx4\nKEW3Z+3WsuqO8uAtKgJkAmU+q7HZ0W/lJXjDHY/VnfmzS4BMm0/kWjIvOYGCkZxCb2Eluuxq7LR1\nb86Zh/TGuAnac4IFh/rNXvrDlvikim3hcBtrJx4FM51ONUe054xyGAVefTr3eHPU13kbv/GCP3bH\nRuON7YSGT9fht6n2kwl+akAwGR16xlm3uUavE0t446yGU1/p5sOHD3d4jpC+JQM0JXJUlp3SPv7e\ngjj+O3U6iNnuqB5c5eVHbSt71nzycVscKz/awVO5MReAssnwdp+8jIXxEthmc4JdaT4LPyuOZ32+\nxtPz4lvx6iM9Klm3nOz5x3/8x12PzQ967cSrDRR5SV5U0GFBWp880+HWR3PT3HMqCRyZo2szJ/DK\nwbfBs6mGX91dZD37cNSu+rWu8vp6rb7y+JrtqgvHbfLaH7WtDh7163P4Z3ll5dplF5UJFGT32B9j\n5jNC43fZArBriq6c3TP+fgZF4FWZQEjBiexXNnziwqNLm2vppjpt1n5O+Opm2dpmrTviIzxr3V3b\nPg0enWiZYz1b6wSAnMInY2uYFxbWLUEPPhvY8IfDM7l75tsKbPzyl7/cx4vfKplP1iO4BF+th5dt\nzM1JaeLdC578icYscx8P7te2s82EA1sC0zVh5n2wL3t+3zwn78lHsp02PDkewVd3m7z2waKrjA7a\nOwhC+ieMb26flNM76+rf/d3f/eFlNt/dnsHaYP/gE3TBWi8crMntjcIrd9F/68PnPve5ff9nP2IP\n93//9387PUFQz3x2wTw/Gcans69R3pdyAq2+tvD1Bfrq+APZSr6b32i1tqHHTvLNqseLeWVNfLR9\nku+FFL4dTHGC8xOf+MQ+X9tPkVPz03ho/zKk+tO64IsGL23422TAxzR2gteXzVaQPzkY6/qw3uuX\nunC7t87bL/pa1U9o8bnJ1GEI8rL2s3XhhCMdm2XKz/RsEkietU6ujRO/zLzwws4XE8bD+NB/a4ZD\nIdkSbeHT9mXS5/p25qcEXnYJ3EvgNaGYuJLJm2FQZiG0MFpQOaAWZhs1xvqyLQACKQKvTgNYfG3s\ntNdOoNZpAQ6sYKdFvkChMps+i63FxoKAXld8ZZTkXRPGooQXxkig1YIrcGkDydFokYbPgs4ZwZtA\nJh4Ehxk6ON+rVB+Sa/3AG3nL8eoSKCZHfQJPbngVqMa/FLx7crNJSLbaREd9tN3Pcs+3SdrXbhp7\nbaNV/YrvWWhHT1DaBtJmsgAA52kuLtFHV7tJb+XlfL69BJoLjXct6Z/5/7Of/WzfSHKejUGyb+wq\nYwsEJDnfxs5m06aVzXBvjHP2/YSA03ve6jvlKgjBppgHjSs7ZEMg8OrSduoAPoPlrLjYBScunKD1\nu3pwm2OCxpyaf//3f9/nGIeT42kTLFhsI+KkIAdYsNcGBG6y0S8/f8ARtnGGmx2KNp6SYfYnmQST\nTI9ysCXw19qEE+xsM59vah+N9zpfeUMPX8pdAhS///3v97f7Nn3st9M0LuNChjclOK7J6KZ2L1Pd\nlFH39WsdQ/OOXn7729/eX7jRR7/7RV42ZgI45qo5JUBnM9qpSjhbc9xbP0qebehskOm2lxCdZjqS\n71qm/VEKrnrP7l3VaTfvZ928P8KvfqaJR/lt6s1X7WobTc+z/ayHu2f3zflZXvtyMNZ0GytBPS91\n+CTkzKawP05EBj9xaYsXgVrj7+denFJTVoDCb2c7XcaGtVbGF5zus+uTBjprSgbKwc4062b5eg9u\npoln1t2mPDyzXWVrHgy8E3dw1c/nYNW1+e3TZeuQtUsAhL/L11xxkC1bZU7BJSBknAWhrJnWHH6a\nZAysQzbSXi77h0Ve/mXr4JjjFJ8zj7483tf6+h7srJ/31+prP2HdXytf4V6H5yk7cmk8jGFzVrmr\nOTnlF/xdZaXd2ja86NJha4ATr14yszv8n69+9au7jaDTJXisGfZ2vmL0ok7Q1qlt+6WVDt/KWvOF\nL3xht1nmA/+NPXJKj21D/7LtEflIAq/8JDSsX/xIlz2iZy/Cwbce4V/yxZSTrr7oQI/PWB/Vw2cf\n56sNLzgcCuKrodU/cMWDvZWUzOSNxV5xz3/0lwzI3v8wEHRlL/jO1gTr8cPtRT+fuD02lsnCtY6P\n5+rnPfnaS/KznA42XuwQ++Nlq/+pkA1KzrP9jvT881wSSJ5zfMja2LjERew9rO/mo/H39ZGx6cQ4\nHHRGO3rcfWP2XAyejU8JvEYSuJfAqwlssspdJrGcARDwcyrDWzELsIXBYn3ZFjILmw2Ck18WxxY2\n46WtRVgbC6GNAlwWRHXeuAmaOKVpsc1oaBs/7qV4e+vpbYfPRsMGU6DVf0kXXMGHTbs+CEYK6HIa\n5olaZRyQ6tRzhvHwXqQMoX6V8GdxU+deHpxFVb/0TxubMvxyMMguPODnfbjllVcW7rW8+pvyIzrh\nUee6Jrvowq/NxHUTTXUcLEE4nxs79WZTQi7JCwycKy/Kz/TsEpgyJeuZ6KCXL/5LrmCOUwpSY9t4\n0wdt6bI5KQggoOOFgnvBWHYEPkE3jqA25rGNrX8aIDCbgwkXGuyIDYF/oMDRbkOQDtAZOsI54aCi\nLWejnHKVsxfmFLvkJxNc2gvKOjVoYyJI7HQtGgK8XjqxU+kvR1VQiqPqTTS+63vyaE7kxMbjLrA7\n/Jl412a3wXlT+xXfe/V8xGd8kas1xglqv2dmTAVbBSM4m8Ys2CP+wn0TzFG7l7Ws/uDPff0qV+4F\nhMDbP/zDP+xrKH31CSn9dUrcWmwzKuDTiwNylibOdDTc6szT/qGdk0aXba03p8AEtyPa/sznybf6\n29Td1AaOm+qrQ6f76M7nFc/kS510E/ycv+BqX5ue4Vnlqc412/GBHm8nVp2EtLly77f6vIxie3w5\nxEbNdt1Hw/izS/1GX7zwgf78z/981wMBPZt2qfru4ZPK94flz2xzBFfZ0+CqD36SqU5Z9Udls033\nE66yNQcDr+sIftbPsQNvnHo559S4OeW3j51INk7WlonTvau1Ci+erW38Z2umIDs/GK34gtfn0Oyd\ngG6fDwcDD9iZT7rKPa8wa/naRv1ROoILd/Drc+WvY77Ki2yUGT9+uxe49hftV/Ltp28VjrvKVTtX\n7cqNg3J7IEFNJ1599eBUKF/FYQb/jM/93Lc1fnSUn8fGWEOcIF2TNUdA9fOf//z+os6+SzsnKdEz\nZ/h3Dk/w3/lX7Bq/Cj4vAvlz9oCCS/aL7Q/Rwr/gLrso8OoTe/Nvzi9+HFvIljq96aU8/0GfvMQy\np3yezR8k//BOuZHZlNsOdA9/8K0fXvTwbx9v6wJbwM+cJ13rh72gRB74n3oQ+0dldNE+XuDVwQOB\neX65l3XkTN5TN8MN58sgp/r2KufGpdQYka0x7RACffb74nwxuu/UuD0Rf0SbuV41XuEKd/m18urP\n/JTA6yyBewm8muwmfVcDwGnw9k3wIYfRJtiCxvH02ZW3nG1MtDfBXdo66eqf5VhM3FuULcSSBda9\nRQD8mlZDEgwagisWnxlUcVrEswVEW/Qt6AJD3h5xPtwLttqAoisxXjOYufLxvM/JZMWDR3JzuQ+O\no6SvnivDY0Y2OcCnfqbgZ5n72Watu+1z/EQTzniaOKpXVj+6l6/1yq4l4yy4L/DKabtsAQDOXvLS\nDo36F4/X8J3lt5NAMj2SpxM8/gGDTaRP/c0pcHMMUPFMt238BRU4vsZOMv+a+/Rde8FYv23ozS7H\nj4Mu6BpuOX3jsP/ud7/bg0lOVMCDlno2welWL4MEL9gnwVbBCPjZBo48vtgE7f3jLPi0d6o6xxOc\nvoERHPGbZ30mqg9sDYdYkMMpjDVQgif8wtul3W1TfXoafDTAofOyJv2ZKV6V23DZpBXMt2lyusXF\n2bTGXEsTbzivwb5K5bNf8T37Z7NpgybwahMlWOq0NgedzbSmOaXtUzUnia17JfoPFxrgpKlHXoh4\n8SHoDZ/51AuvcKw5XC62eU3VKUc32vVHfXX7zfanMs/ug/Vc++qu0dSn0mxfWflR3eQ5/LPsqA18\nk+/aKZ/wxosNFdSwsSJvmysvnJyoZKvaXNc22uHk27y5fTrsJ19s0hs/a6aXFk4/99KiNuGS5/NV\nNvlTJqF52/IV9qjdW1jf/ru2iab8Nu3fxvS23K+1Q0sqdz/lUjk5KofHOuW0qpNn/F8w5hZ7z//1\nQm/SUx+ecHsWHOL/Oo3nJYj7/GDtwThtxs8R/GgtqW7Fqxyf0fLsuik9rX62jd5Rm6Oy2fZ1uE/u\n9dUzuUzZKDPG/AzBTsFXNto+hS8koMYO13bFOXFF5yjXLhxHbcxzAT0/4cPX8QLZ+sre+Adb9nLs\nTbxM/RcUZaO08+JAik/2SdDWyz7BTb6WNYJt82IcPXPGHLJ++I1WdolP54SrFxoO3rQP5AfaH7Jr\n/Cx8SNZ+8806ZI7Yf0r40Dc82mMKIKKbP8k/A8+HQJvs9bG2q9yOZLcDv8A/Xj776Rh2QtCVjMnM\nTzk83E66kne2aeW3cVG+3q+w5NaJV7+p34nXAq/W/uyX7q84X6BI3rekGqP0sPknLsE3cBLZCXVz\n01dMxsbBI/sSKfs/xylhreOtHJ2j8tqc+SmB11kC9xJ4JfAccRO5SerNpIXXBs+bRMbBIig4YUNs\nIeDoS9pkDCx+DLsNn1NxDImN4gySTPgdwZM/0a8sYyFndJw0E0CRc2CcnOOourxxBWOx99YI/079\noG0hw5N+xudKo2e8vVtJf3Ii4NSP8BdAro/gklEw2qw4Vjy1n21WGM/PmuA39vjFi2SBcM2+KQfr\nwsvKT/Vy6aj+rZq38KDZTw14s/5g+/3gHChtVzrRDseZP5sEGrvGeo4T/WQLHm2/pWXDb441Dqh1\nLy8QetkC5uarZANiHjqB7gInMOt0luA6J9k4m8fq4kFb+uaUBEfbZliwTpkE3ttgJ6SdGuI82uTY\nHGcX6FOJ828TLHDhjT89zvF0YpCuC7xy5tHjFM8NAbx9PidgwtGXklW5PsCtH+5fVIo+ei+S7rX+\nTX5WnsjZePrJB58eWlecyPFpokBUpy21W/GsuDy/ymn2b97rU+Mot5m3afIbrzas5pfT104W0XuB\nVptlp5xsts0TOmjTzZm3DlonBYXotXp40bQ5drKI/Ps8VNlM8aZNfCnrfsLS/+omPBjlrSHVHeGY\nsE+Di3Y0e76Wvwi42Uf+iE94+VZeCLN3bJ8giM3VDLoe8QyXgAU7/N///d8f8F+P2WVy0ReBDiek\n6ANbWNC8ejDGnz5MuzTHSfnLkI7GBp/pwE081lZe0m5N6l36HG7PZCpwZpysNdauy7aWGSd+sHGb\nawq82k0ans0zePjCTvU7SWj8SugKsPgNS6fz0JDC1bgoa7zUlRrXnssnH5XVbq2rPJrBy1fYWfe6\n3U856XvP7slpzhtj7J+PerkiIGm/4oWwOW4PY55PebsP38QD97VUG7Qbp3B4dk//fNXz4x//eF8T\n6Cyf6K//+q/3F8d+G7o1Ft1wslMO3fD17OWkaAgc+zkav5/KdvHh9Me+y1zhV/VTA9ZzLyqsKdYf\nwVJBV+sOfPTbntELWCdf+YV4lvhV6Pjywkt5L9Il8GTKjloHBam0xbs+6FP/iMjc8nJLeTJBU/Lc\ntRfc4x8nhX/yk5/s/XFwyJ7WCzTBbX5QXy9MG3XEe+OvK+7rc7BsPxk7EMXvsj83/g+34K69PV+c\njoSn9vC5P9PzSyDZwpR8jSudpstemNujWGf6EoLNWOUPT7rcmK0waKQH7s90SuCUwDslcC+B12kE\nsOPZIuV0mTeXjrzbIAhueFPqDYy3iTZ4FlKbNguFzR7DYVNoA21RtDngsDL24d5vBp3K4wNtGz2O\nijee6Di1dtkcUou4Rd/CbKGGO9ocHeUFdzgB+LEgq8NDNOLhvc4zqiudnIByfDGgriMej4zpirPn\no/bVzRzOiVc7V+V4cc9p8UbbRQf6XVybCXLN8MM98Xm+LS9g1yT4hSbnzulCb7sFGMhMQiuee565\n+zPdXQLJNDmHQTlnmcPm9+r8DpUTCukL+PRXmTnsxYiAKDthIwueQ89xho/Dx7lwctQYm+sciHCi\nDSd4AabH2wsUDirnhIMPJz0R/NRezuluYwPXnGPu9UFQqp8ZYEfQ4HA+3JxPvy1Lz5Q7DaC/TrzS\ndTxLD7ZNt82AU7J9drpXPPkTnEd9eRUSno94fZ6+zLbJYKXh52icdrUxNA42coIQ9KJPq2oLXzjT\nT88rzuBf1Xz2sz7oo0sd2+sT0G9961v7nDLX6CPZ0U3zwqbf54Q2utZMp/W8MNCebgt4w+NqHquz\ngfbCS+DOxo8NLvCanI2TFE/utb1tCjZ8tVufK38Vc310paf6INBN3wU02BX1bJax89LI5vppMsiX\n4p85GeOFhUBGyRpto+4EtP9SLdBj/ODFC5rGr+dJT918Dufz5HBKaKIPvzLXlE1wk35ltZfPNp7f\njYQOuVpL3MejNcfLNy/pzBNfbVgnvODoBV38xmtt4wte4+NFpSCRIBafFFywguX8HOugLz/wUT/J\nLZ6iVa58rUN3Lfcs1c79UVljVF1weKksHOsz2Pdj0k99bs7o4xyTZEZG4JILm2qeu7xsFnRln33R\nI/CZTGebZFt+F3lGd7YJt59V8pKG/tnL8YvYdT9N44WztcF+K/23h/LCzldN9n9sTYnP5uWD06Re\n8NijFUTut1bRYt/4TGwPG2RNsX+zX7Q+kVu+nmd7N/bRPhJ992yZ9UzwFU02UrK2+VLJS3FfZYYP\nTm0cDHJK1stx/hxZuyRy6iKfyqtL9lOele0InuBo3CsLRrvqKgvmptwXKnTFixlJwNg+mz/rwMnk\n8yY81c0+Tj7YI/J1iMHLIPaNT2wdMqboojXbJItZFp0zf6cEpqzImszIM72Qr/KlL76ucNrZmFgv\n6K2gq58ya26iFP5J9RyXKY3z/pTA3SRwL4FXk97EbfI2sS22Pn3w9oVRsChzEC1mnAdvOS2cAp/+\nQZVF1wk494KvcosnfF1HdBKROoEaiyvn04JjwUbHJ8ScXouqIIxNo+Cuk2iCMQwV58ZnNWhaxMEx\nfBb66EfrReX6lDwnzSmHCXPEp/q7pCN6R+3j4SZ4G0GBJQF3QRAyphc+l3N5czp5Xnm9CfcRT5XB\nUwDgk5/85K5zHDD80LlStCfdeR/cmd9eAsk0Z4E8K+OgcXi9mZebb+rB5nybc+A9C4A6YcfGgPUi\npAAmB97v5fVPA8z3/8feve1okhwFHPej9LzJyDc8AEJCnGRsY5uzhQUIgZAlhAALC0scvICxVzbG\niCsON3C3j7KPQv3K+zdBbnX31zN9mp5Kqb6sykNkZGRkZERkVn2rg8fcVY/Rqy6FkSOJssiQhQ9n\nLaMVHAYEJTWcZq9TOMkLTmNGCIMkfBki+BwMeJMhlFMKMZ4PbzBtAnC6uhgF5NbKd2ggrOl74jvw\nE/6h+ib9WGGANeHIZ6D9/d///f5KI57hLHLi1ViQ+wL+EpRvvZppE+Ze8B3/0c+VdvpYP61/Nh/8\nuZa11tr8ets0sPlgbeZotRbjWzKb3CQ/GfycruaTNd0rn+Q4GLUJFiPZODDEnDKycSLUvjHoubQV\n373ABT/Vv6DoO1XkiB4cbjZznAZL9nDkOZ3FMcOJEV+jS5eOg+e5mO7DUPvggw92/WfS0byhp/l2\nKCeEjaTyxWSeWFulzzbuk9BHdNBm/Zj53U+c4FL5+8RrhYWn6RbhJZ9uywFlvbDhxxFrHnGgcYq0\nqYiO4V59OKMzHck8dNrVnLWmWLeE+mXs/REQZxH9l54bDeAV7KPxCs4OcPyEh6Tqj+z9tvZnWRm1\n7b68yTMT3iyr/EsJ9VE8x1f/yquvk47K0lscOmE7fbR9EoT85ODkWO/0YnQTH8nTYF8aT5yCra50\nh1Dgw7Fnw5rMV4buYoPTyXh8bZ3A82w55Tk2nYikC4HjEAYHnU05m0X0IHD0GU9bT7whaVObfGKD\n0fOsIU684m26lbLmhbbANe/ofuCw37RPz2NDop2DN/QyOCrvLSUOSmsYpyscpLv0gbOKPihms0aP\nWU5Z7ZUXrebzpL3yheBUVl73t8EJxhpb0x1KsEaY/zZJyZdO6yo/21jrHz2veCmD19BfWzZv8QTd\nGg+QQXRyelh9nDDu2v4RTi89LT6Jfmt/5eM7wb2NBgc7vLlivuF988SmiM8FdcAt2gd/wi1vpp33\nJwVOClxGgSdxvJrI68SVZiGgcPrGoUWUgGDQEQScKRbKTqJZAO3wMuosnNITEOLukYHQYdyp7+JQ\nZRBysFJKKKEWaq+ZWKQt3PDTPsWX0Uh5tfg6ju9Z25wytau9+iROsblsGO6vlLZn3yfkiZ/0lU7l\nzzrXwZplLr0PfjB7Vt/42GXj/GC4UV6Uwwd2mBkjFu4UstqcMKQFu/xLY3AoH5Q1TjVKKyf86Xi9\nlIJvXs6YuczTOX7uzW0OT8Y+Q9TznM/GjSJsHkqnwFGcGSKUPemCOU/B8yqz2HynYJqnlPCUQ/Md\nn1HowQCPws4Y4Dh1b5PGd7DAutpOxcMBrmDULtnBAcXg4Phw6ohDVf2Cuvitk9UMTcq/VwXJt+l4\nVZazxPUSHa9z3NFnndfR7LZ4hbPCMka+BcfxyolkfL1RYbOFQ8q6oO3ab1w94y9BWvl7wgv40aeV\ndpMO1jsbHz41QGkXyGlzgLFpjTbfPv5kU1K+tRR9zQNzSh6+dllHzRXjoYx1uNccwSKLheisXM+l\nvcRx2Dv5lj9zHOko1k48TwYZC5s2Tk8ytuhAnKTko3FAd2sxXu8yTuCQX2Qg5w7ZNIPNJ3xgA8Pn\nWzh0jVNj1PiB2fjN+vd5X/9n+8Evz3P53YvLnzjC3fNMU/ZNgzZqB4zkinvrlU19ax1dGM3R3/zg\neBXTU+mo6lkz4OdyTx82z9RT32EBOpN8bapj3bNhwpllLaTnGPtCZT2vm87SJt08C9Fm9m2mKVM/\nK1O+PGmeXeVLr0z5M839Swn6JxRPWkmfdJl0Mlb0H2PuNW4nRjkPzW2OQHosJyK7J1rWjrrSakv6\nfQR9wLM24pwU9bYP/Yncx7fkO52ntwk5aa0H9HzlyRpBWadO+96qzTm6XTRSjq5EHvnmKt0Nb7Md\nfPrJes55Co42tM/JZI6RgfCg35sz3grI7jSPyECbSdYwQVv6BBZZBwf2qrpkHeewOdXnCRojsbJd\naL2Ow/qsveq5L5RW+ejQc+UujckFchwfmP94RFw7wXlT+PCrLprjBzLJaX78So92whKPxp/RqXrF\n4XLGn6ZAfPDpnE/zEX61geBUuXGw1lxttoUNGvoXe2Q63sFc4Z9jckTpM+2kwOUUeFaOV7uRFlIO\nTg4LQoGjxUJo8lv4nEYjwDk/Pac8JAwSEsUWOouo79fYzRNTXO3uOfFmkaZ4MrgtOtqiyHCQeEWG\n4w9OFALKgcUdnsoou7br2aX9cLh8ON6+ZG3fFVL9KFYfbR8iTBzdGyPGn5NTjDeOcA53489pRXFj\nPKI7nCZdJ75wnXl3wR0cSh2FjeOVkYNHKFmr8aGN2e68v0ubZ9kfUwA9Xfig+SxHmvnuRMO3v/3t\nnRfMO+XMVc4Cc5uTs/lorMzL6hsbZa425YJzjYLhpCnlAnztgUeWcEpQCM158oWSbTOA0kgGwMNJ\nPXLjC1/4wg6rExja5HiCixMEZBR54RSHk2YcqhnAcNMmucMwEON3ONQ+RxV4cBTwIqerHWkOL3Js\n5bvKruk7gGf+E+6h+aZ9WOGAN2HJ50DkeKV84iOOVwYAQ42xtc73eNKYCWBMmHviO/4T3Yp1Rx/r\np7nBeffnf/7n+zxEE5tk8w+2lMXnNi2sk+glzb35wFDlFLCuOpHX+s3Zh/Y/+7M/u3/zzTptXMJB\nrL2ew+kxxmHSY0dg/ITHSHrS24mr++SaMeF07eQZucLxQO5wfpAl5Bx5Sg6RjWSm+mLGOXlIljGc\nOVEaDx1WDjwGtLXTGyttYISTGL26HpJQtTnHp7TZ7syf6ZUtv/nf8yz7Jvfgu8ADG/0K0q1l1iC0\ndjqM7mlMOMvpJ9Yfzh5ySlnjWWyOKW+MwDDHhNoz1+i8nK4+X8CRy7kEVmXErgI8XaXN+5lWevXr\nV2V6Du4s15pdXm1OmO6F4sq+y3G0WftQH8tf6dCzsacneyPH97XZTnRpDkAOS3K18dXGhBtfr+Oy\n4nLX53BOp7Ie2AigQ9GNtIefOdvgQLZYDzhF8XH18brvjTrpyklHHytPbF0hk7wl6SSlvuFtr65z\nhOo7GYe36GKcq+xKdTmm2Rnknk1FbwSAQ7874kVOWrDpe+YeXY5NYq7pB9uF/OvEqz5GV+11SWsM\n0FV6YxmdS/N8Xd5MD96sF6ybYuUnD3h2rXj3fBOsNQ8cIdzQ1ClXzm16NNmEntYLb3HleFWnurO+\n+zMcU2DSy300d2/syje3bJr/6Ec/+szf/u3f7uu6fG9TsI3YF3j7KAQj2EdlzrRi/aGJAABAAElE\nQVSTAicFLqPAkzheE/ahaDJLIxgYaBY/xhklksFnl4ZDw2KX41UZBoHFPaEgBosSSaAwGhgSnBYt\nmhZQxoaTHk7RMhAIfYESw7kHB44PQoqyYJFgMFro4dmlTouStsMDDvVJmXchwFcQ14/i+8Z/LgbG\niHPz1fZKD0OessQxbqHmhGq3HD9kRKB/uIrvC098kOPVYoRvGKONcbTRXvSaeLg/w90pgJ7GNOMv\nCNIo6gwKJ14pumTEnNsMSZszZAEHqXGRP3nEuFLGnVLlUOdoWMeUXDHnnWynnJM3lHK8iO+07TQJ\nmSCdQUBR4cQFS3myg6yiyJMXlH27y4wKsis+FeN7Sjy5RBbBUd/CYTVCODY4XZ1icQpEncmDaBb8\nNT16Puf4vnAPzuzrSg+vV+En36vk4OPw43hlPOXQqA54eMlzPCOt/NnOu3w/6da9PtZPa5/vt/7F\nX/zFbuyiCXltHviDDHws4HUnl8hu/Cw4LWQj01xmfFnXzTHzVVt43ylur6lzFphf5odQ+3M+l/a2\n41A/94ZGWz2LK1MsrfbXe89PGeB4hCfHjDHhfOWYQX/rKwcNfueYseFgrZPGKYLXwSKTyVdyCQzO\nC/BqSz6HCEeGTw3gBZtJ9K5CZdGtq7yHiFca1L625hz23Fgq0730YEhb8+TfV0i2gFc7Yif0jBdZ\n5fQrmlsD6En0197EobOaX9Y/awx92ViZf/Lqx9SF6VicruYcHceG8+yne3hV1/Okm+eCMpWrTH2Z\nZdRxVVZez9qCa/q8NR1PwRnM2qtuz8F/l+P6tPahPpZfPGlMvpKnnH/eCsIv9BA6iZPMHIHujW8h\nuJ6TqRNm5d4mhqtLW8aVPkTe04fwtXWAvkVXwtdsOTZX+lu86jV0b1TYcGCrgRdcsTofbZ9V8Bkq\nm0pkGN2I7s7xaoOCbDMv6GHWL3iQb/RB37Qk/+hqHLd0gmy8+k8/ABc94QEme8V6ZkPd/DT/0Bm9\nzSuykFwsRA/x5Gf59Yc81r/GorGRVr+VLVSuZ3GwZtpd7q9r86it2+CuuNChjTt65Xil/9r0pkfj\n0dlOfdX3M9xMgWil1KS78URTNHTPpuD49t8GPrclzya3Twz4xBP+JnuFk+47Gc6fkwIPQoEnd7wS\nFFPgWoAs1hZmgtpCbXEWW+w4N8ROcTDyLJrKC4SFRZtSyniz2+n1FLv6Ftmrq6t9ESXktdtCQ+Gj\nwHy8KauUGLuoFmoKAaOjcgkybanvOgoJrevyj+o8h7SHxhv8aOKeUkPxp6gw3L3+TcmxSHO0GgPK\nJMUNXwjBeAhcLTp4hROGAoVfGJBHSlTth9OO3PnzRhTAE+YWOruPR6SZl04mfuc739k3QCjngnlO\ngTZm5j/lOsW9+sqlXFDwfvmXf3k3XM3/5rQ21WcUOCXEscAgYNySGRyvZI4TG5Rzyra2vZLDgMW/\neJN8Uo/MIp8o4/jWs7bil9rlbJo8L18fckqReTmu9MMGEcerk0qMCvitoX7X1pr/HJ9vw1n+XfoT\nvNnXWV8+5d8Jaq8n4h+vWPWpAYaY8S0o3/i1Tt0Vp2A99zjaFaNbtMPHDNe//Mu/3GUynue44bTG\nk2SleuYP+povnEDKNWf13z1Y1m/36nCyOKHlNXWvazKWo3XtN28mTuqWfxfa1r+1zhGsyharc1Tu\nKG2F/9jPrZlwR3MbyP6A1CYS+iebrMN0JnKRPLT+kkX0IoH8I4+kNRfqr/nCYDN+vt1oLbeGG79o\nBuZa7yFpUbtwdF/b8ZS2pdcH+Z7llxZ+E1Zp9xkbo6N2pXMs2fg3Zi76bvhZG4wP3K1f9Ue84mxs\n04OtWy5rjw1I6xCYwa1ufSy9Z3Fl1rzS4STIjw8qW5nyxdZL+p5XwfEknuK8t/a2CaBcdYMl7aWG\neBYfmI/6rt/pLu7pF+Qsefvf//3fOz84OPD69eufzEWydQb1wG5c5D0kPeGtD2R9h2bYWTaAOEvp\n9/qnjEBW2FT2JgWdzUlXjk44gqWsMvCns3HieXuFQ5XsUY+z1iYqWgl4yolgp1rxGN2JI9U3RsEG\nx+a+P3ZO5qlHN+BoZQtY48wba5MAJvz/5V/+ZbcZ8axPrNgYpxdqe9IV7q51rkub5Xbgn/zEA9fl\nV/YmGJU5iuc8nW1c2u4RTGnwESZM49s42CRwwIF9buPWmo/WyncdwdiBnj+fokC0QmP3eMwccS/N\nvTWc/cKO8saXPDYF/Y3j1Rpunaj8HLtPNXgmnBQ4KfBWFHhSx+s6uRMgYlcGQKfJLIrSLOIcHV5R\n8RpLzldKxtVmANpJ812jTrRmVBDu4BJCdn84VsFwz+Hh3mkBz8poK1wmlQk2obwWi8qU3vNTxiuN\n4QK/pwjoxqlB4Sf0GWgc5OKcaMaYs80YUNAYH8ZhVRLqQ/F99AdunL92/7z+wlihaFm4Co3tpOu8\nr9wZX04BNDW+0bkxpQTgBScTP/zww5+ceJWPlzgM1FGXTFDeWJQvpgAzRjh1fGYA7+VYk68uJ4RT\nRS7zn8Hn9TYKtFNgeJHhSzn3urV62saz8sGwQROfkkOMB7yjHCcsuJ2mUJ/By7gkr1J4wMDvjANO\nK30qmCOUf33wqQE4rgFc4V3ix3C+Dm/5d+nPhLcT44Ae/nDG6RbfxLMmcLoy8jja0Tk+VB884wuH\nKffvglN4PPc42hXrY/3Eu+bAN77xjX3zAa9zvKKbU442INRzksKf+nhFmjMFLdHYScreHrC2ku2c\nR2iL/51SsjHyenMamD/RuvaVEyZO2iv/NtrWp5vKHcG6pF543QT7sfLQCc7xcHSTRo8iXzgpyDxy\njdPLmkv2uGcckz3GW3n1okH3ZBq5Zb5wXnhll4OCbCUT5UfL4mA8Bq1qS9vdazf8o03PeK17dcK5\nOvNZ2n0G7QY/HMRwsp5xVplHDgTYiOY8N3bWE+MjNMbqWNvMM3KMg4mD1TpDrzFH6cTmovXHvIwW\ns0/aF8ILfJdnV3NzLXcEY8JxP+u4B9d3aJ3EIl/o4XR36xyHDP1whRFee8YL/TH25CRdwEWHMG50\nUocB8AWHIQcm+tkY4aS0+eFNBDQ0vo3VJBOaH437LPMm9+vY9hwsz2Q+e40exWnJaSzII/fpNpyn\n9C861HS8B8f42wTSd5vy3/3ud/dNb3XbvPNmo3I2JWxeWI/od+iGNhyzaGkdc5KfTuDtOnQ3h8wb\nztnX23oErtPmdMnoZu4p//3vf3+HK8+GOKevU7fWtEl7/XNJm/wrzbMxOcqvz9Vv7IIhXehZvvue\nq39THOwJ5y71g73iUro4WYZm5jq7nXzqG/HrmnETrAn3vP8/mXpEC3S0rrNdzDeb53jeWmCuoL+1\n25oRbxt79W7jgUvKHOF0pp0UeN8p8CSO1+sm7Fw0lOmSTnC7SmvHn4HgpBknhYWbokYxoVhaDAl0\nC6kFuFOtFBUncyix6lNqLKQucAim2sEgBJDLogmXwlqmdLHys+zMe8r7hCncHzNo11hQHik1XnEg\n7KUz/ChEFE1GH+PPszFuzMNVeVe0vc9+GF+7sP5d2+lCp1/tZMO70JjDoTDvSzvjyymApsZzVUrN\nQ3OWI4eCS9GmcAvxgTqNSTwhP1gc/BRnDiKvgpEPOV7xFvhOLrjIA3KDwk35p6CDw8ChLFLynYY/\nCtpWl4LOAHLhHQ4NhjLlXkwOKUs2mQf9wYO+4vk2gNxLE/SVo9XpAM5Xzg79WkNz4V3ix3AublzX\nvl36HJxZftID/+Anr1s5BcOw++pXv7rTlgKaoVcd8IyXZ7wgSCt/tvOu30e74vqrX82TP/3TP903\nQMwdr2v2XVZ8LI1B7U/L/HEDJx864XXzzukiMI0BZ1KOV84ghvbnP//53WhVvhCdm9ueS7vLONSn\n4BYHq+dL4utgqfsm8C5p89IycLuOLtLRnJ7DGHORM/Qf48t5wynSZjS9Sn84cMg2lzWbLCLfOC+M\nOzln3iinfDQIj571QZow0/aEe/ypDTyD32pLelc6nnyXNaE85asTjHtEbwcVjrUT/HCAk2BOWTOM\nFUe5T904scx5brzkob05w9ljnplPLsY15waHuDzjlzPuiC61OXFzn/wLRzoyHsJL6BZvVL84/JVD\nb+mMe/qUGFz4f7S9Lv7DH/5wP5GI5ziNbX5/5Stf+cyr7dMK2ph0mvfh9K7G0foIf7RwOs0JQTaL\nMTTnzD96hfHHF+weznV56IUH8EN0EqO1YAwegqfjW23UrnthPuNnehBH6L/+67/ua7B8coR+xtnu\nG9Hsg/S0FYZn/Of/H6w1H26b8nisP/fzOSlOW7xlw8JaxOnqhLA1yMEccwN8c4puxjmLptI4rp1c\nfb05XW1YkG/oVj/wMhtF+w4FcCbKc2rQgQ2n/82/8I824glHP6SpKy50r6y5RkYbZ/dsW+NrHheq\nL26uur80aC887lJvhX8THOPusJS3yuhd1hljjl4c1eTBbDsazLS1vfP5xxSYtJr3+JR/wyfS/vmf\n/3nfFEdnepuNLfONvLB+oHNXMEC/jv6VuS7/HJuTAicFrqfAkzheoWPirpN2LhqXTGxlCBeLrroW\nI0pd6Z3ioMBYYO2yUVwpMZwsjI1wqT3P8PIs7pKesqitQvf1ZdYrr7Lvc4w+xoYSc7WdlqE8UEyM\nEWcrpcg4McqN6Uq76FvceBW/LW3BNb4UMruAFC8neuB7Ol7flro31zeGjaNxaIzxgTnqlfAcr5Rp\n+ZWnnM76tSSd8cGRzpHqdRoKPce/cabE4juniDJs1HF6y6tllGcKCdlCKfdKGzy87qm9cMTDDCLG\nEIXet76cpMBHglP1FHMXBy78BcYqRx/nLmNAX/E/xyullGEhTdAWJZXzmOMVX8JtDdEk3Nb85/jc\n2IU7HI3Dm/Zhwqm/Exankj/RwE/Gg1Pij/7oj/b5ztjDG0J1wCOLPMNLkFb+nvBCfqJd/Zt9ZOR7\nVfOP//iPP/PxdlpVGRsAvsNnkwLv41en1hijlH20Vs48JO8ZjQKZbz02BwVGMnnrxCuj15wKl3Bo\nPfBcWnjuQG75WeHdUvzi7ODOCuE30x7jPly0f909PNDShf7kG5nEsOeAJRMZyAw24wRWelWOV2si\nh55xI7vMmbW9+TzpUTo8Zrrn+wq1IV7bwKM2BPRTHtntzQTxUT/Q6W3k0VGfwm/iVpry0lfcOS6M\nFT3JpoX5Y70whsbH3LImWN/0xzMHJqec/Cm7ug83bdVebU88urdBji+sT07cog1esIZZ/zjloxV4\n8FWeHIArfPCMGC/pE5hkxfe+973PfLQ5YPEifYvz7A/+4A92GaMvK17h/q7H0X72Q19dnHs2Ca1X\n3iTAn/QZY4x2gvWLI4UDi/NVXuMLRsFYaWvl8fLfJl770FjVD/mCsbWOcFjayDbeeJnOROfiCKJ/\ncVrCE87ChBNssslnFv7t3/5tdyrhNc4khyY4oPGiueIP6v7rv/5rPzVss9o6RZcy3/Exp6vX3vEh\nuiljM9Hnh6xv4MCfvHDpAxy0R3+wJtoIkeagBuevTw7g8+yG6CNufuwd236kqauvYqHydEBOanYr\nPdg6ilY+qQD/Oc7qew7eDujCn9oLnmchfC4Es7ddP4KlLnjoRmZxgDu8QB44eMDRzmFtvAu17/mu\nOATjfYonveo3/sTf+NMGB7rjH3YNG8JcI7OlFVY+nOndF9fmOT5R5IxPClxOgSd1vEJzTlyT2fNt\nk7r8tb5nCgkhb5eQoLeocpY4IWCh5AihDFJYwWmxWmF6hourMmILyyzrvrLan3meHztEz6fG46jf\nOakY4RQaY+WUKwUzR1MLd/XrR/2Sfh29lVnL9xy862J14Uex9QcvHAH966n0whG8iVvlzvhuFEDX\nlMfGkZFMUefwZHzYMMlZA7o6la01zy5jxmDjBKVscA5xWDL45HMy2HzhULUDz+HvFBeDj+JMOReU\n811Xp13hQXbAk6LIqKVgU+YZPeo7IcGBpx2KupP1DAzfMiN78Lz2GcmUaA4MeOoXZZTMojAxLJI1\nyivrH2AZF9rRP+kzxJtr+izzFPcrXo0bXNwbZzLbPUVQ36bifinOtRPc6FAs31g67co5yNgydn/y\nJ3+yK6IcAmtQxwXGhNP9Wv5dfp7004/ZR84q3xH8wz/8w31OKutTHE5hm1uMKMo+o8oJIwr/x5uD\n1tgaUwZtzhZziCGZ84DjhjHgxCuZ29jP9s2FcCq9cSneCxz8zH6tdRVf68/y8tUpba1funJrqOya\n/lDP4RK+17WPlmuecXIZQ7JQnKw1HuSdecmZYDybp+CssODhKq/7+r0+l35prL5w1K704Jcfn8kj\nz5264tDgkMR7ZHaOknAOTrSKJ6W/bTjCX9rEu/va6llfyC36UjLT2Jhbc4yMlUtQt6A/sy/R6Gh+\nVVcZ7ZIBDi5weIm1aX3lOBHT6+BQPXqdcox+da2RyqI3hz2Y1jnfHrQR5q0TvAc/m5Jf//rX9/XY\nWyTB3G+Wn/qwJD/Lx8YRcu4bG7Rw6Xvrnw0QjkW0sXErzLFDf59Roq/SC3pjQ7ngos1sp/ozX/m3\nCfFOMLTRvJHm3oUHzD1vRegPXQfPcBrrQw5FdeI5sBrfcJZvDtg0t47Ty8wHm4D+4I/uRn6x/axF\nXq/2TIeyvpjr+JQ+iTdtDAjS8GavYONpbYNt81157XJu09nwt/6wLeGpvM8N+NwDHZB8EeAdjWZ/\nytNG+fXV3Ia/E8/6CYdX2+lEuqxP/My5pg7eae7tjd7hJ/6AWziJw2VPvOBHH8BSL1iqSTfP6QPG\nnuPdPOeoNvb08kmXOc53xeECNN/JItFkpUfpdUq+NHYTWn/rW9/aeVS6k8X0NbatdW/SvPrJoJ7X\n9kqv3evyK3fGJwVOCnyaAk/meP00KpenmPRz4pv8hDvDwQJF6HByUPrsaIql2QEl8AkXQT1wEh49\nlyee7XgWZvs/Tjl/L6EAQU9Z5LCiXGbkMfAakzkeUxkpvbHW3k3jpa1Lx6nxZ1RSbnxmgCJLEXSi\nIwOmPoJbqG7PZ3x3CjRO4pQB95RPTshONdhAMcejuTKTB9SlfBovl5M/lG2OVCchGCYcBviO0u8U\niW8fMcI5hijMFHcnJijWAucppykcnD7JMHTShKLNmKSsc9hT6DnvbCoInEscfRQgyr/THXAWOF7V\ndTLWfDAHOKSceFVOO4LyLn/s4E/fKE3q6V902At+Utb9ml7+Y8X1MVya28ZHMK/nvdN2ZLOArozy\ndc7tmQc/s62yo1ltlG7cnW72Zxy+LacNjoCvbwa+k5ZOkRTAuImOt+UH512Ij2i49t08RDsnXjkE\njCmj37zyhgCeZJQyqmw0MEgZ2so1J9HCRhse5wATtH21vQHBIPjCF76wO3Cla3/iEI4zrfqNRXk9\nlx+80sV4sEu9TidJMxfxSgGf6EOX8srV3gq/vJkfrOcYo8cMnrukz350v8az/kPf4yntm98T93kv\nPxyTP8aUbOXoc4qMrOaIYfjbgAHPVb3giSe8h+7fTfDhMi9lw3fiWNqENfuTbCytcp6D0/xAPzKa\nI8jGirmd08xpSwa9zUC6UnDV5Wixqem1cgchyFon3DhcOK+UIQ96FZaTiQwxz6zHv/d7v7frYcZG\nmgC3xj/c5YV3/XhucbhOvMJZzG7hnNI/+oCYzKVzeJ3eZ5aE6sgnl15t+iqdwD/Doyu6kWWNgzpT\nHlV/Tfd8SVC/AAfPpc02K2Os6DJ0G85L6y5HIt2IfmbzDu5Ol5qPwQg2ON3PdtDKpva///u/75vn\n9EKbd95uokPgKydRrUX4lt6XviYfTvLxJz4VtI2PrUW+OY7vtMmWpMPZqEfbq229ouuRJ+xLB3qE\nHK8cozbUOV7D2RgI2tCfo6CMS9+Mvflg7tBPOVrNNSdq0Wq1S9C5OXIE+23S9OE6nIOrTH1tDMuD\nm/Egc40/HcF40bM53Om2K12CBcZtbdfOS47xBZok66JLdEc/92hN1pobDos4sEKfoZ+xadHbnOst\niCPagnOU/pLpe/btpMBjUuDZOl5NfsLmSCAfCYWcNBQUiyHBY6GnaBPyQkJKfRf4Qs+EWotGZRN4\nylXe/RnuToFJ58b3OppWVn6LijrCzLs7Fsc1wLQYcc7Zhc2ZQBmk4MovhIfnmV7+Gd+NAvHCnOvS\nKKBOE1AenGxg7OGHo/GXRik2Xi7BfLazSxk3nk7lGUuOHw5RJ/g4RBmBPkPwevumFwccpbpxpXQ7\niaN95SkxXoUDj8FAiWHsUMI5kxhQ7skcRqQ/xtAG56176fpmA4Jjn4LO0FInxyulm2GgHDz0mYPA\nK3A2BRgHnaaYlFZeCPeZ99j3cHahdwF+LuPcODrla2PMaRJlfY/XiRWOaf24pE/KVHaWjw7SKKT4\n5wc/+MFP/omYMcNY+9rXvrYbsMakEMye1/i2/LX8c36OZhPHaCfNWDkVxGHF8YpPBYaTOcBIJTet\nwTZHfFdvbh7geXODc90YuMyTxgw/+4yGTw04KRRtJw7hONN2JLafynuGq+fWDOVrRyxfHkOwV0dt\nspAZ5hS82vyAM1jmN7zM+7kpEE7add/zlGPy3tVQf+B/RPen7BfcGutkjGcB/YWeG3fj6hVnr7WT\nO/jXGw5kzqvNgWX845XGs36Lu9+BP8LPTfSfeVC5Dbf6E23UiX7qznR55KU1Kb3aeul0oLlt/pPP\nHCacruhnbSU/1QNPGeue04gfbc4vji+f+/FHfNYycy4ngXXVH79YZ82/xo2TgExwyo+jSci5VP+1\n5f62/u+Vn+hnpf3EHUrkI5mIP5M5ykjjfEM/OoE+oo2r8TIOdBY0EnOwkFU2f5WfdAFTXWnqdz/L\n3EaiI9wnPPXBlqas/lgTOBC9BUEHEvCO73rb7OawxB+F8IEfGPV13tMN2XlOtNoQFKxFnJNkOecT\n3Q2/woGTly5It9OWtagTr8rgc/ojXNDRmqQOBzFHIXvSOKEvXZGTmy5oI4JjF47y9AcOnLvkUvTC\nt/g92sBXXn1qLMgl7dno1y+bl1ebo9fhARfYNvmNO1jqo5f6PYMdDd0/Vpj9cV+f3FtvOa59+oEs\nQQt09rYMedC8hqvyMzxFX2b7T30/58FKi/LQD90cMCNPbdaQHXjUJwVsatskZ3Pgy+itThfYXU/d\n57P9kwIvmQLP1vGK6AkEcSHBMAUQZY2DpsXdDqGFleOD4Jn1g1MMjgVrLojyZtvzvnprPPEp76Z2\nK/M+xSuNVvrId5VuTIQWF/ezzCxXvdKK1bkkqM/wutqUHN+bSiGgxB3xRjDVO8PbUcBYGeOUh2hq\nXlOOv/3tb+9OH0qwsvJd7l0UZoYcZZdizZHqNTCndBhsFGWvgDFIODTJB69LUqYp8JTZ15vT1UmC\nTirAx7j7lh2DIcOQPKEAf/GLX/x/r0EyNMH8eDs9QUGHA8WdksOx6MQEw5WzB86MVIp6jld4yWN8\nUbYZAnAoOLnrD0c4fCmqFO81gCtEvzX/MZ8nLu7DqXS4GF+np9CXUo4W+sgoc/pU2cZB+WC4PwqV\nV24ti57GGy8xaPAG4+oXf/EX9084mOf4r7rhucKpXfnX5VXmXYnr68R37VuO169vp4OtrfjXhoYT\n4uaPuWUuKScfP+N98wVf42l55oeTL8qaX9pmxHq9k5OFk7MxmPiE44qXMmue5+vKSefEcOrKvGQA\n4jdzmrPCaV58wmjhOCJzOFs5lpSDq8tJdetFa1Q4wOeobenPJVxHn+eC36V4RHPxHIf5HCxOrI82\nB5Y/GeEssVHw2e07dy4O2Hlac8I1lsmgxx7X8NCH+2wb3ODNe+3oqzRzlkPKmsURZM00l8lJcx39\n0M26RG73zUl1Ob3Q2Lc1zSOy1ppFp3Jiz8aauaMteZwxOWito3AzL21Iki/WBDqZjQ952nAJyRCw\n5MUHe+Yz+AlXsfUlPEMNztYm9guHlPXQppVy0skfOgiHHBj1X333LrSk+1xtuivZ5MQlZ7gxEqJJ\nNAMbLmisfvl74Vt+1K0vioZT955dYJKz9J7/+I//2GNjzdlmTHO42vzkCA1O/Tuik7zaoTtwvDot\nbT3XHkcuOc7Bqqw1iB6IjvVVumdynhOY3sEx3GYgnQ1O1jd6HF5W1iYEHrbxjYfR2zj9z//8z35y\n1lqH9hzgNiPAQOPwjSb1b8/YfvQT7mxVh4bYsOaD07japLs6JQ6mE7jmH91vwg7WhO3+scMce203\npmiPjnhc37xpZgzoDU4XkyNH/Qn/p+hLbT+XONrGR9EWbdAX/zjcYa45xU3HUoaO68CGOUce9DZe\nNJ1wpd1FFjwX2px4nBR41yjwrB2viEkwWJwKCYYEDwOOMcdI8loORdGinIKgnECodB8scfBm2nq/\n1pvPCbC1judZ7ij/fU9baYde0krvOSWsdHRzT+HkdHNPSaKoMA7uGoIrZoBRnpzAorxSsLQxwxzX\n6s788/7uFDgaa/OY8fc3f/M3+8mGjI/Kis1fhiCllyOTcUapcwqBoocnrjaDhALiW3HyGAScQPjK\nZwKMt9emOVMo3AVjSznnGPTaDiMSn1G+v/zlL+9KPocvpZKDmELJccp5pD2KDgesPmQgkFXazfFa\nmxQnRhYDgOMK3pPP9IGSyvFKUZ2vxYdv5Z8DT8KlyxhNnKSjI0e1Tz14/Ux/jYPPKTBwOLuEYFS/\nuD7PuLLStOlZUAd9P9ocLx988MG+RqA/449R78QmI3/iOevuQF7wT32dXVzpjK8ZmX/2Z3+2z4m+\nhc0hgtfxo7nllJGy5i641mfzzYW3xeaA/MZIfQ5wpzLMnTkO4RSOK17y5bnkHeVXBs+RIfjNnIYr\nmeDUo5PPjG4nc3x/0B9SODXCeIcPfnRyxDy0QcOBwBFro4chXLuMoCP868dziKPlXXE5qncTze8K\n/y7l0+8Y7Ov4xwvgkSuMUH/6xqnhLSjjbNPARe53Cg7MNRjL5zCmk/bdx3MrzkfP1ZGnT8JM8wwe\n5xiHko0JBrw1jROWXuS0FJ63zlrb6EbWtxxB6EcG2LhwEtF6yZFq04JDzMVRS1aEu9OIdHdOWvKF\nbJAHFjzBNz+tfRxQxm7irw+e64u6wdanpw7wiq/CKxzLIwud9kUDNCcnBU4STm1OPI495egjNrHw\nNbjBku9CH/IUzZwYNlb05EmfaCut+pfSSZ2u1VkGljxyFp5Ol3tLgkPZOsAh7NSdeXe1yVEydcJQ\nVwiOuNB9ZdCC4xXN8JpAN9Jnp1at7/pp7rroVnQ+l3tyHq+7tybBF9/jpWSK+tHK50isEZ/dNmrw\ns3Kco/RCc4Xz2NtPr7cNfE7SNnLDV6wP9Q2+7uGmXXMAvcTwwffmi7fvfKKjT1KxReJ/MIIffaQ9\nVqjttT24oJvQPR2ZHCYT8Lh5j170Lw7Y+CBYwX6KfoXDc4mjhRhd489o65Qr+fGjH/1o37jB0+YW\nPjQnyAJyxJzAOytNg6+/a95zocGJx0mBl0SBZ+14JRASLhG9RYcAks9JQdGzk2a3xyJm4S9MQTIF\nTPnB8yz/qExlj+IJf82/K6y1/kt/nrSbtGpMUnrKm+Upk3a2LTCcrQxqBgIHi/LKVu82Os6yjAgK\nwS/90i/tpyy0cTpeb6Pg/eUbc+PhMpZOI/gmpxMxFIrGtBgfGC9KKockRyiZQNnnQHFahAHDUcRB\nKzACwDe2lBOKH8Wkb6vVvrIZED41wGFDUabI+CMgjjt1KD6ciAwB+FP8weTUlc8py8Ho4oSFOyWI\ns1i7lHaGBDicVvrJsBLgIijHaPGdJo4fBlZ5e4HtJ5qs6eU/ZgwXF1nMIAwnMRoxehgtTqA56YFW\nDBsXw8aYBQPes/5N/ahOMqSyeIlh/4//+I/7GHCiObni+3gMG2Ogjvoz1O5Me2n3a5/1b/ZbPt7E\n/3/1V3+108+c4wxxksJJHPOQHP54c5yYM8oztsjlHK7kM0eME0TGv3aNN4f7l770pd0Rqu2uaF3Z\nidfMk3+UVxmxOcZY5lB1EotTlZOfcYsPOH3xJkPaCXevpDPQp0zCJ6+219LNfU5ndDA3rRvCLLsn\nPMMfON4UrqN16bOuOXMb3Wf5+7rXB/hkhAYXLuEppg8y9p2KI2esDxxAfSuxjS/1juiif89hTPVl\n9kt/j+h+lKZsfZvjFTz57s1fJ1udVkUzTldOPuskPicnOaDIahsWyczatDaa35xt1mvrHuesjS30\ntt5xItKntKeeOehErTou8zO85LsHg0PNxow13toZzvJz2sx6e4En/oFPV6jokzEQ4mGy0lpILtEj\njINy5Io3dTi7ySay1NjQbegI6A1+8Oo/naPThOhmYwHNwYym4aNO6aVdF8dD8tVb6S5dGfqXTQ59\n4hCCJzlLxtq0Ju/Nw3AJB/WPgnKF+ohv2H2+8cruE3zKwqlqfEYeBxc9rUnKuzg24UkvoZ+gJT1T\nmYK66IrXyAh6F/z1g1NU+8bBZ7DAZIeQKxyzdEqbC1M26QM6NFba0TZacUTSL61J5o/DA9YX7XFS\n4wPrq7qTFmBEj2i55ivzUKG2J/xoXozOdFmOVk5vMuWjbQOcnouvOV71Mf4MVrAfsz+1/dxitIge\nYnyFl9AGXclPfxhLftJx8KyNYXONzeANg9WGrY8nfaPEGZ8UeDwKPFvHa8LmSDBIs2gROj5sThkh\nzCmLjL2pICjbYuc+uLNM5C6v50viI/yqB94Z/j8FotcRbcpTQ77n0oyXe2NJ4beTT4GzyFBWGPxO\nME1DOTj/H4ObnyxQnHRee/U9MkaGNsJnhRl+N0M9cy+lQOOsPIWNsvbDH/5wvxiFFA6h8aDAc5xQ\nMnplyWlXsoDS79SrQBFmLHJYOo1gjBmRlOWrT05fTDlhXLWBp5xEsJtMMSZ3nCjhIKTcUPAp7vDk\nTOLcBVcZp4QExhTFmpFAXoHLOKLEU6rxHLnFyKWQ4md9h0P8xfjk6NLuc3a86tsMxisDTbr8TkV9\n5zvf2U8C6yNntvnmlLlxYmgI8UN0KN4zr/lRp7GsCMcr58s//dM/7c4FzjPOAE4B42AMgg3H7ouD\n8xLjdcz0cfZbPueAU4Mc117PZNgbLzTEw+htbjjV4lSh1/jNCbzM0SpmrBp7Gx9eAQXXxTD4mZ/5\nmc985Stf+czVNhdrf8Wh9L3A8jP70H31PcONYe37Z06fm9ecGea/k3ROW3P2qyNPOfzJqF55ED9b\nFxjHjEYwOJ+tE4L2antB81k8Rp+Q6bm49Ev6oMwl5YJ5H/GKJ5jhIM94kZ/kKaeGtQBPKkM2G2tr\nhTHjMAleMsNz15Rd94H7m8IIn3Bd+zyfo8Vsq/r6474y7tGLwW6TkmPEPOcANV+tZ04Foxt9ixOK\n85R8DpZ2wDCvrdEcbja56OfWKg4kayVY1kt0DgfrA3lijXV60euyZAT8wllbNjPJCP9cb+2mAwqz\nH3vC8lP+kvwoj/AX6od7fa9vaEYuobmNHo4Tm1TK6J9NLZf1id5Cv/ApAuU4W+i6wQ6mNjgUjRG5\nhF7WVLRPPikTbnBQN96XN0PlpFXWvfT6Up5xs04YQziK8VAncM07p6b1ZW7GBneOVe2WVizdvfXc\nBhkHvw1tuHhrguN1nvJV3tpj04X+xlnK8Wq9hwc6c2jjW/ICHHXkoyFYeJd+Yhw4ReGOt8kWm3Pm\nSs5S+gS600vND7jWF/2MzuhiU8jY00s6BWqTw5zhwAXnalsP29SrbjQQd6+dIzoam4cK9Qv8+hk+\ncMEPxoksxuc2Xq2n3jahJ7zadDCOVzyeXAjX4PT8vsfROjqjL3lLdjrx/f3vf3/nX3yHXx1EoZu4\nn/M+OkZf8M5wUuCkwONS4Nk6XiNDAsKz+y5KCCeGU20cr06SeSbgBQsn5waBTvBkyFsEes3EoqB8\nMPeKN/wkpJRfQ3kz/ajczH/f7tEoOkWb4jWvdDSS55kiY2Gxo83RxkGDDzjaKGF2rRkQFqW7hvBS\nD89wvP78z//8viurzZm/4nbXts7yn6ZANG2slTCOlGan2Z2MpMhPY0MZxrPPQjjtYAfdfGY4UsgZ\nf5woQvzDCPDdLE4TMUWXnEip3Qt/Ul6dvvHq1WPKMflBloBDcWS4p6R7ZqR6nZJSz6jEn04Kqg8f\n/KmPeIoxm9OKI4pBQPlXJzkW7njdqUCGhdNH2l3DpOGa99DPtV07jWNx6ZRxNPWtVSd8KOPGQt+c\nIHQ6xzw3HuoKwe45WDOeZdyvZSmpKaic2xxnDEEKKnmiTaF6E95s5yXe19fZt+hQms0F6ywHAQem\nucY4pNg7Paw8Y5KBa5745A+jwPiaM9pgsDJ0zQtrr1i6TQUnM371V391n1frXIRDOK54hV+xcuSG\ncsHRDucvh6s/LeEQdmqJE8DpJAYKp1Ll8QpjmjHjmmsKuC5tkAP630l0sggf1f5tuIbzU8fRthg+\nt+F+W/5D9gl9wxHOjZt7Y22NIGM4f3Jm4VEnNskaF6eKesq74k39ckWLp+znpGH4iFecygv3WW+9\nVzYYYvKY44nuzPnppKJ1yHqDt9GKw4mz08YEOkVvsNFOMMd7ZRrNzX2ynEy3MWp+mfvqTnzVNzc5\noJxcNEfJmjkG4JtXcPJHiDYf4QMXobLxxcSv/L3gI//UT7GrNcY9XNGMLPq7v/u7z/znf/7nrqvI\no3/aGPBWjTWKjoJ2xurj7YABR6Py3rABg66gz/U/PtAe+tNjrXOcr+Upq62exWuQfxSkGzdtNp7k\nOdzwz3e/+93dsWbj2cac06LkLH6oPXDBaaxWfMoXh5tYOXXIZE5UTn60EH7rt35r5w1ruzJwJAuc\nvIYX/ub4Q0ew6FB42jOdCy0Fcv3VpsvB+fX26QDrQxvk4eCkqs05J15t7ts85Jy1JpIzYMMh3KMl\nnKwv5hu91nqqPh2Sw5UTEgw6pI3ByTNwC577xnvSUP4so9xDhfoUfO3GG+jZYQR96xACO9044F3O\navqsU9mdEA7WGR9TAH2NO17F1z6v6GAKnRa/4B/y0Un5dGmQquceT3l2PSa/aPsMJwVOCmxyfJt8\nx6vrE1MnwSBuAXNv4bLbSIBT1jhj3EvjzKBQc3pQ0iyWFkQKB8FOWBFQOeoILo6OFlxdbjG7rvst\nLtfln+m3U2AK+8Z51kqRkCd4Ni4WFgokpyslhVPOzj9Hm5MAlKHbxm+2M+/hVKDk+tSAP3xhdJyO\n1yjzMHE8IG7sa4kzh5LmxChFl3O9+aqsUwG/8iu/sv+jLeNaeQrthx9+uDs8Kd4UDcYJB6t/vnVR\nTCjo03jTJhwmL3DcfrSdptc+uLNtfMIowiNOlYDphAT5oxwDkoxiKIFB1tRHjp++L6hdxidFlXxi\nVJBzgvICJepzn/vcTxzM2l5DZSf+a5mHeq7tCb++is1LF4cIQ9PJSQYIp6eTk5xXnHnGFP7B6/6m\nPlW2ttc6aOlEsRPHP/jBD/bTltplKDGqfK8w+OLqT3jdv8R4pZ8+Ro/6y4Hq5LYNDYYiZylev7q6\n2tdWY8thw7Ali5XJwJ3wG9/4AXy8zQDjeAXTfF3bD8aaDg6Y5YM3yxh7uJMhjHSx9jhdrSE2P+YJ\nOnDANB/pFk5IcySTI+C6wOye/GBo/8Iv/MJ+Iq9v+8HjDA9LAWPlaiyMmxODxs1YO1llPKwRnf7h\nAOQUIZvJY3ojRwsnAL7gJIhHwRUmb93Wo+rcVu4p8qMVOrlPj0Ynm4JOodGTzQsOP6faX43NRXQR\nguPeXHA56egQBAeXNRpNzS0y1gYn3Q1ttC0Ey71Xwc1LjleOBE5bMIXoqU1ywfhZ752ibaNjLbdX\nHD/BGEkPdgvPwmw3miU79PnjzVFJvthURj+0oRdwVtqIfL05/dogCKb63ibgbHTZ6CJnC7UZHuhM\nb6DPmgedfpMfTnMsgiMORmnxjTaMhQAfTldy30aq9RVfsbucZvSNSWutOVcd9cCOF2a6vEL59Ukc\nzjaqzfP0Mo49n6Lg5Mezypnf7IM2Atl7cNPf4GjLfc/kOX2OA4vT2lwwJ7Tdpb/0Qm3byNOOPjrt\nymlKrzs6wak/Nifgg9fpk2BZi+BtvLVtbSWHCvU/HMN5zS+98uW/bazdNaxtNF/1ET3IAnY2Wpuz\nZAG9mF5Aj6cXkxHmsbUfn8cHK+y17ff5GX3pzTYd8J+NKvSmN5lrbBtvB5Aj8Tl6xTvN9cZ00voo\n7X2m9dn3kwIPRYFn63jV4VUQeObQaEEl3L1CRtkmxAl4O4WcIRZ+jlcCiLJhQbU4ULidZrH4efWE\nEtOJlimEIng49HzGb04B9F3pGc1vSrcgW1goQxR5igrF1SlXir4P0lNoONcsTNfBvA1z9Vz4hdOV\nskoR6nuTR3BLuw32mX8zBYy/ayoLaGtMOeu8jsVxRmEzXwVlOeG9osxYMW522in/DBpzO74y/xmT\ndoOVJSuU14YyYrwTXGmeKYpOrHoN0qcLOHYL2rfB83pTmPElB4xnipF6Tv0lYxgK+hJ8DgEKOmex\ndhheeJgso4yHC7xcnIN9/oKMS4EKF3F9Vf4xQ+0etQkX+WQvRZwTmuPVJok5zelqDCnmNjiCVR88\nd38Ev/LleZ48JF3bnG9OHeMNTjSnWRg782RAuAar+Kb2K/MuxysN9WXtM/4lb81BThL8abxsZqjP\nsW1MbRx0Ylv6hA1mNBaDYazws3/eZTjPU1mTpsFZ8ZIerO6bG8bdfHW6yNy1QWfdYEw7Ne7UOmcb\nOaBu9dyrZyPEvGckcyab1+Efbp4Z5mSLE2pkgeeMyMq9lBhtZljHY+Y99H3jrR3OJ/KFPmDM8Chn\nqjnOGTIdGjYI8DJHI32SowMv2Pix1uODxrn+XtrPS8s9NG3AD/fa8mzOwdHa6BMM6GVDxZpqXtCx\nbCJabziz6NXWzvoFhqtnsM0VtOe8td7JM6fJVqdmfZ4ATV2zbvdi6x5cbJjSzcMTfPmC+nDhECYv\nfCLE5qm5NsvvhcfPxHUkP8htuAK+tlseOeKwCFlqA9KJY7qBzVTOUZ8HoKdwRrURELJgoDf+5XRB\nc7DoDMGvLHoJDit88Ytf3OllThTQTB14VrY88Qpv5rlXD99wgHJA6o91gG7lLaSf+qmf2vnAnFrl\nYbCLJ61mmvT5HA7WGnq/jUAxfcqnmPCuezRl5+FHTmGynOwHDz6dSKULcMaSA/LUJcs5sOiJnPt4\nTkAvQR1OXH12uhsN8Ln+qkuvUWfibXxtKKARxyOHuTJOlNt07nMQ1lS0UteYrP0PB3jIcwnSj8Zw\nz3zLn/oxwdRuacq0ZlpnXdZfvICn6XfkCblDlyd70BydfULEuj+dzcE94x9TAH3Ri/8CbfER/4dx\noMuwPzj+0bE3+Bqjxq9YuvuVX6RV56T7SYGTAg9HgXfC8Tq7T8HmeLWYcroyqhiFjB0OOQr21XYK\nh0NDGsWRMEmgWLDVI/gpeBaC6RSp3GwzgTXTulf+uvwjWNWb8YRxHaxZ/rnd39TPN+0PmNHFaQk7\no15JoeBQTpwWsGPssqtNmRW0N/G5rv1ZZtazGFm4OF6dYsoY24F/8jNhrnBmufP+cgpE03X8KJTm\nu9eTOEA4UJx0Nk4UV6cqOGycqqGwKus1dq/fcGQK0jlEKXgMGg5Pu+/l1fae8MmPcaVQJyu0b5eZ\n0i3IdzFkKD2vN4cL+UPeUPK9lk3pV59COhVmuFNCc7xSUOHNwcxxpfyKk1cPGU+clDaVjviuOkd5\nn3TrQaLaXYGXDh9j9tF26pdDnLFo7BgcxoQTlPNDOZd6xe5XBXG2UxszrXswBAYXuuIJrwYaC0YV\nWjJ48EaGYfDCQf3guH/IUJvwq01p9T/c4BB9up94BWemvc09eBmyTqTZ/PAs3YVfzQvGP16Gv/RC\nvA/n2a/yOXzIW6e8GL7CWu62/s72Jr3gaQ7aPBGb9xxCNkkY1QxwsOEt7vLMINdXJ7msM+bo2o5n\nvMNR5RuD5FGvBtc/8aynjfct3LX/szxaRbPmhudZhqw3xhwxYvkcrmSM066cfwx7soC+oAzHKzlk\n7MgBfJjRqhz5T9+U5gSbsuEBp8nXnmeY5Wb6Xe/18VJYkzba6dl9tMLX9F0OIyemGPEMemsXJwhn\nphNT5iF61f7EIVil2Wjh6PYpF2ukNZFzFN3Bpa+Zk5WHjwBO8M1T+rhPe3AqhHtllFffM33QPOPc\nM5eNy8wPZuVrN1hwcV8o3/NRemmzXHVnrBy8kz8zr7occHRXp4xtApIv6rnQnPOE3smJNx1R6gdD\nWScu6Recr+hGNkUz7SpTeetrbwVZZ8tXRgj2rOO+Z/nBDmZ5PjtDPnplnjPSQRdzjmOcQ8hYCZMm\n6gpgdd+zeKZ5nqH2Oeo5XPGcDW5y3aYBBx8HNl2KDubK6QoH8xh/sg/R1xznzLLxba6DQ5+jG3Ci\nkg21GV54leObrOFENKfQ2Pzh5PYGxcpjHNLGiv4Bb/LFKVn6jxOf6sCttqK3vtdueUf0UOYof5a9\n9D5Y4nkPvkuaMNuDLzr2DWKyFa9ZZ9FGX8lRp+GNGf6nN5DRaECnpTuvcPeEd/Cn8Zs0uq4blS2/\nOpPOeMzhATqM+Rb9+DvQkNywedhhkmAFo2dxY1g7M++8PylwUuDhKfDOOV4tWBY+igdl2yuBBDgD\nivB+tb1mQoGxq5lCRrAxCi1+6tghtstv8aQ4cApQiAipKagSTKUVNyxrvvQ1refqzPgob8Vhln+u\n90f9CNeVZqXfFoNp/CzeFm6KkJjDivOc0skYpuhTmho/cNV11XbxbHPFWZnq4Z35jVcKQ/lgTHgr\nnNnGeX8ZBdDTHOXAWJUQz+Y4px2nD4WD4YjulAzOSIYKJZ9sMLe/+c1v7s69HLSMAUYgBY8y3e76\nHFOYgknBYYhyJFHYGZSUd7vLNmnIkYLy+JHT14aAEyo2ACidZAtDpJMok2co5RR8ODMAtMkxSKaJ\n9WMt77U3PEmxV+coVOexebJ2r8OJYU7eMqi9Hmlc0IzhbDwYHfPUoTEX6kfxdfCP0mcdBhXaMnoY\nu9riYCBTnMawXqyGoT4Fo/ionftM02a0rM3wWNNnu5WVdlO5Wecu92AaQ3OLsWnT0txos8u8ZTRZ\ng12eW2+t1fgZj0/cmueMXwbz57bXYW2sTeOz8nDVx/W5PgTLszIZve4ZK04XcbQx+swdc8i4kwPw\nVi7Y2nGBCW8GPp5l7OBhabOd/WH7wUPw9z3FHA7oUJg8Pcer/JceR1/9vKn/ysmvfLE01xxr93Q/\nMpM+4MSkDXm8xuHHeUXuv9p0Qs4/cl1ZGz/WE+sKfuAktBHD4chpoxxHFn5R3vrhZCU55X7FsbGd\nMuSmPt5lrGvrkjrRprarGw3RymlfzlangulOaJXxzvnshBpnmXnRPDoas2DKsx6bG2CaazY00JNT\n9Go7BEGPm7SZdcMRbpwK1njOVzqdIL/y+uUePE4u66ExTmZUrjrmn/tJD8+zX3sjN/zMut3P4iv8\ndQwqqxyZ6E0Y9Ke7crqSoWSgPpBHeDEHHr1TX+u3uAvv2kBwepLzzwEUYxmO4aWv0cqY0FeEeHYt\nX73wLi5deffkIF7SD2+x0HfIfic4ORJ7+yf5Gs2rD25t18aMtTFD9aqjbfQzl/Ge+W3jhA0IN3OX\nzoYu1n8BLeldNsbwOZmNDua6tc0fbCkDDpo5LW/DW9ocV/qLNq2FZI58egz5z0bh2I331LOBR3fE\n1zY8rEmcZHjXgRKHO4z1TXME/vpe/z3fZ1jpvcJu/Gc6XPQPvfEjfRdvkwHGgwzGB+QL3tY/NCYn\nHGTA+534NR7mgDIP1ceJ+0Pfr/SKvrNv0kqHT3nimY5O+J18RF+HT6RZr9AvxzbenjwE5oTjWaid\nHz+dvycFTgo8NgWeteM1YiQ8xC6C3k4l5wglWZoFnsLY7rq6yiljoeNwtdPM0UqIUewsuHbplKH4\ncd5NA7H2i2vf8xRe0gulz7SZV35pYmmVn23MMu/TPXq4KHIMpxQaizdD3g43Q5iyZ8FP4US76Bs9\n0W3eR8fKrfkWLo4ZpyidYLJTSyEAo0Vtwptwgn3Gd6MA5c1FgUXbaOpeujHm7PGquNh8NRZXm1H3\npS99aVf0GXvmufxvfOMbuyJN4WbUePWLc5aSq47xLIAvaIssoSRz7HPUUcYpzJR4cgMeZEr4ifFK\nnzcBgzxx2kIMnlB5+T1TkuaJVw4eba6bCPEjXnSKhFHgJD9Ywd2Bbj8TfmmPEdfubEuai4LIGeJ0\nFaOD0cLpxQn+ejsl7CQaZ0cw9Ml8FvR97eNsw331ipujsxyDlzP8H/7hH3a5gfa+h+VPPxhW1oza\nKcYX3RdPmA91r++zD9qGi/658DS+MldWYw1Oysz694EnmBmPHCOMTQaUuYB2nFdkM8eUNVh5cppz\nFl8bc3PWOKjTGqtvyntF1IlXzvg55uC4lHO5F9zPUJnKg+Ee3eDBYGHoeR2asc3xyinUH6asMIMT\nD3BwONHFYKRH6IMy1YMPOYCvOV6dQMHXdJICWLN86e9LjF7ruK19j+7KuXoWx9PBoKvZDKDTMUTJ\nFvd4ER91qhlfki94jvy2iUZ38Nov/YI8JYfU4TABH78acyezOBGsF+BxlHSiLnzg1vycvBueax8f\n4hkOM8y2w8+hA2sYWvn+LT7WX44R84GehXY5XMFQ1zX7qp3gl49eTrp5I4Ws53BxapBD4OoTx+vE\nr3rg1A4a0sc5Fjio4EleNG9mu+aaTTNzzUkv4zhD48H5FfyZX5q4UJ3GEI7CLFNZcfkzLbhgTTh4\nlRyiR3CUkp/WI0589MnRTVexttNlOKs4SZPx2iPzldGv5LENJc5HDl1lwkFsLDkinUC13uFdhwqE\n+qtcdeB8tPbWH/Ddk+V4ySa41+3pO/phHtnQNKemHRb84EQz6deFSd+jctYVcxktzVE8QVdHM/ih\ntU1zPAVW8Kz9+BOONlPUs075XMJH22aMsbJG2OjmQDY3PBfAwe9sDxvJ+NQY6Ts7xQY8fkTLZBRc\n4JnT1ZiAz7ELZ+O69jF8a7d4LVf6m8RrG57Bd828nksLB+NJrrCnyUsbOe7xNb2KQ5lD1eEZvKg+\nHRcdOOzNCfLH56bQwdg0Z9+kP8+1jn6vtINr6fqc3het5aMvGtFbbDI4Ke0ev7EdWuN6c0edNdTu\nTG/8Ztp5f1LgpMDjUeCdcLwixxQgU3CUnsASE2KMU04Mu3AcdRYFirndeYsiBYRCLnC6UmQs2OoS\neK4EozLB714s1P6Pn27+BcM1Q2mzLW2/z8H4UDAZTYxYRgFlBY0orBQ+RrBxQ6toGM0aE+mTruWL\n5zgoo03BPb7wfdfPbaewKKsWOqE6wZ9pe4Hz540o0Bg1BhMIJwfl2XhzfjjFQKFlDDO+jJOTOuYz\n48MpBJ8aoByDa+woz7/xG7+xx8rNcWwsOQgp82BwtrrcM1DBwmurIxUcSlMOFrCUIUPcyw++PtWu\newYW3qKUKq+P5BPngP4VwGcg//qv//puCFBkU2InPOVra00P1kPFtTvhS+MkpCgyUJyKYeBwTnEi\nM5gZSTnb1Q3vFV7pE373lS1eeUi6TTonX3xbFn9wMDBGU/gbP+3UVnJl4lWbjxHjCcH4C/CxduER\nyjhjkMOf4SjAu77rc/3YM+/hx9rIWWUcOTHxKwPz1Xaa0MaGVzJ9soHctpY6KcgIgzP6w9mGhjnm\nPuclB6U5jCfACffGs2f96b7u9FxZ6e7RoTRtM3wZ1Yxr8xgPOv3FAMeD0Ti4wUFzefqjLt7hjMuY\nr7z2OBo4mrwCTd7Mzw3ABSxBP7qqf8Y/HrfGLPqsNDMn0Jp8tMnmG44cWRxP5K754OQZ+jPkyf54\ngZOWLuj0MgehNqwbHEX0C+MlTRt4lI7h39k5AqVfbY4lmwPGlwyOZ8LRGMYv7tV5qBCdwHfv0s+e\ntV376GL94hjh8DAPOEs4iNCJ8e7klLlcPfFseDQyrQAAFDhJREFUI1j1tXK1Z45zvJLzHAQ2NDiy\nwed84YiJXsEKfm2JOVrNVZs7nOOce6252lKGrOY0s4nKEQ5+enz4hGdtep7tgeMqzPzoKG+WqawY\nLFf5a3uVxUvWQGu6E5L6xUlIlr7a5CZe5UDBp8bEZpb+s1voKRyy8vQDXu7RksxHK04szkVOQDIK\nPuGlPvmGRmSdE5b0CHAqF57i+uKebFYu+kkT9Ifs5lz3h2DmEr3JPLIpTB8zj4TovT988iyt9ku/\nLq7+xLV7MRnMrrMW2VijR+A5doLxQBvyAQ+hDXlhLPAKp7aTgmJ6GL3EvHByWBnw6WZOvXobg4PW\nuiaggbEyTpyHTtqT/fQZPMnhSDeFQzKKc5bTTJ/AJW84HG1UoodQf/eHG37gdp9Buyv/SuvSXm0q\n1z06kalozKncmwbkLpmCr30/fXXAGxefXEA7fG4MbAqgG/40v2vjPvv5lLCiJRwab/fRXRq+itbS\nXeSEjRW2D/lqXtKzzGc6jPUOzfCmNo7oJn0NR+XWMufzSYGTAg9HgWfteL1NmCRAlCOoKm/BYyS2\ni0npsVgm0CgUBDwlxoLNGCPkCDYCULmjUHtHeUdpq9CrfvF1ddZ6R+WeU9pcTMK9+K54RhswKUUU\na4oPRdIYWbidRKTMCrMdddUzfsGRP8uET/nBqA/qWsicwvKnTV4bXU9UTHgTTrDP+G4UmGNkHDxH\nV0a2MfeauNMVHHnGh+Hy5S9/eT+1yJHmhClFnHOWIkgxBIeDilKsLGWF8QK2q3YYMX0egIGqDU4i\nMPFZsJQX1IVnBpF0eIq7wt9z7UUVaXiKkkpxwnPa0U9tro5XhuxXv/rVXUG92hwA2g1+MMXgCkd5\ne8YD/tR2TegTmctRPk+jMcad9NB/sleAb/OP/HV/aR/WdtWTVuyecchQ4njlOOTs69tqnA7hEe7i\nKUMuxWXWv497uNcXtLSeMeIYv+SSE7ucndGuPuMffbovvNGC7EVDTivGJpqad2SzudifVMGN44pR\nZV5ZZxlfcOKgYQhzgMnXN4Z6jldjUZAn1P/6NvtUXmXhKUyHgXYZ1mQDxwe9wBzi9GB8c/auJ5pW\nOOA71dWpe0652iw2R52Q8sc45rW1K1yVCaa0rh3Z9/wn+kUGtJEW7UovNp740FhwuDL8zQHGPvnO\ngOd84ZwCgzzhvLPxog7nCmcVviWHOF6NV84SdTgUOBC/973v7c5EMASwbRA4aclhD89kVWM852I4\n33d8RDNtwBP+4YDn9NucJfesa5zG0zltDut79I5Pw1m6S5u161m58sxzOpl2OOPo005hGQ+bERyA\n2smpEqzqB1c9zkdj5JMw5qrxLlj34c75be5ebfN4xR0scKPB2lawitHM+k73JzM55mZ99zMET1r4\nz3z30YaMo0/gUw5C/eMA5XTj+OZ0crggGeVwCNmCT8ksYbZPrsEx2Q5nuOuDNuGGRuhinXWq0jpB\nNqFTNFG2e3VmO+vznrn9qENHsdHx4fYHaNYi7b/eTnp+bjugQMcyxsENZvQSywu+/FnW8wyV0/9g\ndK8ex6s5Ch/rifXHiVM0xWfoh54uepXLGoZ25IO5zIlFTlivlOM81JYyaMb2IBucxBTojuY93QUs\nmzLGlawnSzheOVbRmg3KIY5O+BhcbXK6WnM41fUnGtTfSYM59jP9Pu9nu9rDS9LgFW7aw6M9t4nF\ngYr+1nW0fL3xgouMQaM539UF17iYDy50RwvjZjPFGJp/tX+f/XxsWNF1jqG0o+eZbp6Rpw58oBF7\nhgwnTzlcbXKY0+ZasopcmHP6sft6tndS4KTA3SjwrB2vN3UlYZWAU9Y9RYSCmdPV6ygEvAWlQPhZ\nXBmE6lCILCwpMJUTJyhnOzPffQvSLDPv1/LzOfjSLq0z6z+X+9mPt+lLCzR4lCJGVSfjKDscYhZ+\nSt9KL3XCY+bN++hVuYlraRYyitRv//Zv79/c4qCfYcKrzsw/7+9GAfSkOAiNfzSWztD+4IMPdsOO\nQoIvKGq/8zu/sxtgjA1z/qPt1IITaTZa8Ifgu6uf3U5Nc+4wAinJzVf52qEM9qqUk65O65EH+IyC\n79Rc+KkjUCop2CmKHFEMfPXAxBfxRn1RrzyKaadQyB0OV04pp5OmrNI3Culv/uZv7o5XCpi0o1A7\ntXtU5rHS9IETzk49GWzuctD5hh1jJqUxfOCMxvrQ+FzSj/oMTuWjcXnGz6mYv/7rv96dwAwD35d1\n0oIDZjrqwqe6wSz9PuPaCOZsS175aNlpbo5X+HIYcUAw3JszwRFHw5n2pvfwMH7mWI5XvK7tq83I\nx5+cl/DkoPx4O5XL8ISnjQVGgnu8zbHCUDaP9VfdHK8cNNLqN3zdS5u0qR/lVa56s+94SrtOmvlU\nCfpZ9zmFOHE6eYQfhVl3T9h+tE1GcDh7TZvBmXyRRx4xhvAUI1KfMjrBgFfyo74c9af23qe4MZt9\nnrRJFjZHnaLmnCLnyWxylFxnlHJ62FSZbzWASw5xtnKSGEO8Z7yc0FOPTDXu2hLTB60DPo/iX+fx\nDzytHerYxMM78Jz4N7azLw9xP9sEf+IR7axD8ObEdHrUxgMHkhN8OajoVtawaItHqx/M2Za08kv3\nTBaY8+iLZuSEOWF9M8/MMY4ZepS5Z65pU93ahK81kCMdzsaXs6x5Zs0Dg8wzBk57GXsw4OKaczfY\n0cezUNnSjbV13hqBFp0oXWHtlZf6lYkWyuiPdPKPM09fbARzwtJZ8JuTmfAnF9FJfU5NPKos+cKR\nveIKvn7UZ89C5dAVjThnOF7Fnbyv/+JwFBfAMCbigvvaM8b+xMtJVxtY6GWe/dqv/dp+SMFYo18h\nOGIXmky8w6fya1z96gRDLI2OxsbL8Xq1rUM2U/EamprjHLPkPX5U3hoGD/IZndgVaGBsrK/sRM9s\nQ3MF7ZRtjihfGnzpmcZXvpPFNkKNMbqA6ZQr3cfYWgfhRlaBqY3Zp7X/nm+j0VGdN02DS5d2azsc\nk42crHQpTkF8YF3koH69OVw5ld2TwY13+IAHlnHA4y516V9ohzb0ieaD+u960F8hWraWRd/S8Vxp\n5CA+xLcfbhsc9Gd8R27YSDGn8U/6czC01f27TrcT/5MCL50C76Tj9TohQ4A5GURBoLzYOebMSHmb\ng0lIWfyEnCXuE5buE4buZ5A+y8mbafLW/Fn/fbtHG+ESmlRWeYuvMXK5N06uFrAjeI1DeT2DN8Ns\nR7ry0roYVl/72td2x57d6RmCLW2FM8ud95dRAD2jqXHuGW0p/E5Ncpox7BhJjCOOJ6dAGTCc8ZRc\nSrhTCJ7JArAYN683pdBJNKeijGWGJtiUHAY8JdrOMiMdfzndYOeZ45UST2mP7yg9lESGK94kX5Sj\nYNv40bZwxBv6Jp0y5YSfGFx1jxyvcNUOY9+JOnW0fxSi4VG7R+UfMk2fOKMZNBRs/XCKxGkTDoyM\nvHAOlyPcj9IqP+tXbqa5Zywwwr71rW/tMeevU2s2V+CET4TqgTPva+s+4+CvMKU3B+ThUc4mDj8n\nh9GTg/Lnfu7ndsexjYWJv/rwL22F/6bPOV6tq+aYecLA1L7xZHxy9Jgr8DX20hiqHFvmkzofbw4a\nfcDvgvnpFCHnK4f8DNFIfxrb6/IrK7+y0lzmJJyc+vM6NBzMX0ayU0jw0weOHDgz/jh6wOGY8aqq\nE/F4iMFIXghgK++1SrzEIWRs1E/G7AW3nykTwq+8M/6/uRct0BadGkPjQD56RZXj1XiQiwxSBr/N\nlByJeD8aq2+8OWkYsxx7AueXNQQPqFd78owVxwk+t+FnbSHjwSW/jLXPDnAyGOvCOufAFMKlcm8b\nBzc44a4duHOKcVraiOQgsa7ZGGG0O5mI562DNgdWWoEZvuAGe02fZbRJxtpQsUbTv22WCuSrseFg\nMdetd+Zac6Q2yBdrMRjWe84dY64duHKqczz06ndriDbAWIN61iCxPtZOeCuPThxBLm2RZZxG2rOu\nz76v8D1PWMEna2wu4R30d+qRLHTCFb+h/dXmJKTDtDkDP7qGTSt6CF7lcKHHcODiPfCTIWSLOnAE\ng9zi2ENjsgitcuzmoAlfONev9JnoI5YmFuqT9sk+G1ccjXDSlrHwuR7zQH+SeeE56VO7O+DtZ+aV\nNmNtr6E64OOV5DHHKkcq/ciGCpqQFcaArMD/+FPf0My6BV/9xAPy6JXWWu1KVw6PWrfAIyO04YQm\nGSDgU/NLfrSw0WBzwdjZ7LPWoZ86nNP4C1xtRN/oPftbX2faQ9xPOqOrdidu2lRGH/QFb9q8skmA\nD9Db95z1+9W2sW7u6P8M9VOazRVy2LiQUehBJnG8ureeKv9Y/Z943vf9nAf6sz5Hl/LoGdYqm2Q2\nntCY/GS3uJzmbiOlMYLzS6DVfdP+hHdS4DlT4Fk7Xo8EsDRhFTbSCTaOVw4Y32PjeGUMzrLuE3gN\nTGk9iwk2igQDzEWBaYHUjoWIkpXTtjbkudY2JuyXeh8NGqP6eV16+Wt8XXnpLvCL17qeyy9vxUd6\nbaxlpBtni9zv/u7v7kqB73DOMOGtcGa58/4yCqDnOmaNL4OMw4njtZOslBHf6Pz85z+/G3EUFAYB\nJZjjJ4OC8kxRoRj+9E//9G78ZFSZv5RjyjtFkLFkLjNinHagmHvmUGXkU94pRuY2A41xAzZeobg7\nIaVtBpwy4R8F4pP6iacYR9rSDlwoXRkI1QNfmc9tr/NxHuPL65TT+LK2gvHYMTySg+Qvo5L8ZCwz\nesKzeOKXjJ15N/VnlgNnpTtjioKPP3z71xhxnPizNU4b/BD8YE0Y5U0c7+O+tlZY0msTH3MYcnb6\n3qRTUAxADj6nexg7GXHgqIvuaBiMFf6bPuN9c4BjxXxh2OJ1c8ylTWONf62LAoPU6YxXm0HGGDOX\nOeGNAZ4QOEA5seY3XsHSl2ikL0f9qczMm/fVFzOwGcr4gCMNrviRsWcu4gPOCw4qMkCfzEvOYmNA\nPjDwXdK0Y15yqDAcyRhGOUM9Hl5xgYe0mb4T4fzZKdB4eYhWyUaOOE5XvIePOPOc6nPZjMJfxgxt\n1Z2wOPN8K09dY+nbigxZm6vVNW/oe9XDn5yHXnn3Z0/4RZ4yeJqTxxrE6YQPtNu4h//eqU9+7nvM\nw7O2wG+90l/Gu/5yKOkjp6sNJzwavitOYAZ35s37ytRXz/Ktpxwx5geHlzlmzDha6M/mVps0xsp6\ngJbqknPmp/ocatZcMsQ6x8EHb2OlD1eb0xI87YdXOE96T7ooN8u41551Hb7a0xaeQh/OYW3cFoIL\nHn6xhoPJ7vhoc7qSdWjNuc/pqh+cz9qK19TVF/yHr+FCD+DkwqtgsmnQQxkyVX3rKNkv1oZ1gT5C\nnrkn28AFPzrN/khDd3FjKV8blcdP5DkHolPTnGXWU842847c44w0nvpTAEMIzryHT2Hml1Y8y0mb\nZeGNtk6TorV5qt9kMJ1KsD6ZAxyFHOvgoRf6qY9f0RsfuA/nvfL2U3toY03QZ85Bc8laYV5xQJIr\nYGrbidfeqgIXL5MbYBgTY4+vwA5+7c4xKC9cHjKedHY/2/aMB8zLvuWqz/Qp89nmlX7bTKCT44PZ\nt/CuDXnWzqlzm2t4CW3xr/XzpYTmUjSdz2jikoYP8QobwkYNe8bGn3XKJ1XoGOQgPsRr6uGXYBzR\n/KXQ8OzHSYGXSIFn7XgllOaCNAVNg0HolC624DmV4jUIiyIBNsMUgtJXoeVZmxZIzheLrNiCQLmA\nEyXIwkspsShZnApwUMbl/n0IKw0bjzfte2MEjvvoGC+grTDzZh15lb0Ol8orW6gd48y4+v3f//39\nVJnd6nBRtnLuj+BIP8PlFEBPYxotxS7ziuHB8PXKJ4NEOiXEN3g5oJRxwqZPDFCqBWNISWEYMBAy\nkjlVhAwKr05zyJjTnEBOv1EiKTlwMr8ZQRQiCr5y+IERqCzcKaJOqIgZJgI81T/iQ2kUcYYeA4ni\n7wSg/pEr8Tc4yjK0nNB0ypERR8EVtDFDfLmmzzKPcQ8PVzQwJsbDVbo4+ijnWbgr7tWrXyssho+x\nYzj6XhY5zoHtz0AotBwA4QTGEbxg32e8tgN2fUcX+XgCb3/zm9/cT1kyHH1HDu9TyPFQ/S2ecO4L\nX7gwDjgVPtocChxgaIq2xlb+7A+eRVfrJmcL40oao4vBbE6pB2dziOPVa/rm9QzBVM61htnudWXU\nUU57nECcUgw/MYO8zRT4oicnrPmVwckg4iimR5j7YHHw0Qs47jnxOfGuNodQRtHEM7xnX8qXVn5p\nLzW+pK/KuPCK2EnBHCxOKnOa46fPbp+OcfrRxgOHizk94btPhoo5DWzKcURyYnEUcOSRpYx98+qo\nvrWnTT8OuqnnWUdsfpAj4OTMbPzAm+Ghx9kmCFpxetqo4SzDoxxBnCNOQnL84NEZJl7JHfnSu2Z5\n/Zq0qqzYHKN/26BxKtw8sy5+vK1r8EO/6FK74mDWTvKDM+b19raKeWbMrMkCPNWLT6rveYbaqM3q\n4ivzn+MOrsqRPZxrfdOztWrCcx9M97VLNtqY4WzmnOTwE2yS4jNj4N54gLviqWw46hta0QOyMcgo\njl1lOFq78H1OWLGxBTsclXdfPNtxX6h8z8rTSfC/zyV8uL3ybCzR33h4NZwTmY5cX4Khrkt69/LC\nQxvSheruD8tPZcTVrwg+I5PpbeY0h5W+c5qT3/iM09pGpXmLpmhF12LXkeP0P+uRe/nC7APcwCRv\n8J5T9fQFc4iOBy6ZYn0GG4/SR+mFZIGgXDJDu65C9IhG2qv9yjx0HI1rR/vNLff40PrHeU1/wt/y\nO+XqlG+HB/B1+E961oY8F572LV2w6NVoZ36Y6xyNePulhNn39R5fmNP4EC+ZX/jZxgs9xPyiV+Bp\nz9ao5gv+j1/AdZX3Umh39uOkwEumwP8CAAD//73o44gAAEAASURBVOzdZ7RtS1H47YU55xz3Mecs\nZjliRDGQJMOVJKAoDh0OP/lRHeIHHAxFJV0REFQwgKCIeM0553zNOef4f9cz4XffcrLWPnufuM+5\nq8eYu3t2qK6urq6qru659h3+3zZszmiA2h3ucIcFu4lmeQrKlyf9r//6r5tbbrll813f9V2b7/u+\n79v8wR/8weZ///d/N6/0Sq+0lFdfW3navfIrv/LmVV7lVW57Xv3VX33zhm/4hps3fdM33bz5m7/5\n5o3e6I02r/Var7XU/e///u/NX/3VX23+/M//fPOnf/qnmz/6oz/a/Pu///tteITT7EfeDBP/mV/6\nuLbVOSuxsaBdY4L7//zP/7wCrS8WX3Nk/gR9eKJPcfnVm3M9608c5BfA6V1a+9d4jdfYfPEXf/Hm\nvve97+Zd3uVdlj5nndqW1/shPj0F0Dy6m8Noal39zu/8zuaJT3zi5lu/9Vs3f/3Xf715tVd7tWU+\nPvVTP3Xzvu/7vpt/+qd/2vzgD/7g5vu///uXNamt+VPvdV7ndTbv+q7vuvnYj/3Yzd3udrclLR/c\n3/7t395893d/9+Z7vud7Nn/yJ3+yeb3Xe73NO77jOy6w3/md33nzZm/2ZptXfdVX3fzzP//z5nd/\n93c3P/VTP7X58R//8aWPt3u7t9t8+Id/+Oad3umdFt78zd/8zc2P/diPLWX/9V//dRufooT+jI3c\nsC4EOL7Jm7zJ5h3e4R02r/u6r7v5z//8z2Vst95664JbNIgOYNzznvfcPOhBD9p80Ad90Ob1X//1\n/08fC9DtH/0ItVteruEf42he4STd+0Rrne99huPGs6uufpMB5PNLX/rSzc0337z5kR/5kWWOH/CA\nB2zucY97bN7jPd7jFXAKl/osnvhcjvQabzDrS9m//Mu/LPh+zdd8zeYFL3jBMp4P+7AP29x0002b\nT/zET9y8zdu8zW16bd02OJcDTzDQEz7WwS1b3fr85z9/8xM/8ROLrq0vOEtbM/jzbd/2bTdv//Zv\nv3mrt3qrRb/+zd/8zQZ/W3fWcXNkDePru9/97hvrqv6WxMv/gFs/M78+Z550sGe+uo3j93//9ze/\n8Ru/sfn1X//1Rb782Z/92TIWMgDudD0ZUb1/+7d/u23tWovw/IRP+ITNZ3zGZ2ze7/3eb7EP4Dfx\nkRZ24R1es355N2ocPRrfcXQxT+r/8i//8mLHPfe5z938yq/8yuYN3uANNuQ+WXjHO95xkaHgWeuF\n+gm+efyFX/iFzfd+7/cuMpqtou1Hf/RHL/qAbcfeU3/yDTh///d/v/nhH/7hzdd93dcta5EuKCh/\nzdd8zc1DHvKQzf3vf/9FLuP9Qnj0Hj69nySeMI5rD29y7nnPe97mmc985kK3c+fOLTIOvcg5vA3e\nLjjlF69xC4/aetengPby5Xm803V/+Zd/uayxn/7pn9785E/+5OZXf/VXFz1L11W3GJxgmx/z/G7v\n9m6bT//0T9983Md93IY+Zo+pQ4fWZ3zCfpdWHhywS2sjLY8c+73f+73NN3/zN2/gpu17v/d7Lzzx\nnu/5notONq+1LZ7w4CvoE+xf+7VfW2wJNsov/dIvbd74jd94kQ/k9Id+6Idujo6OFrmoTbjEs8EV\nC/Unra58NoW0gD5w1l5cCI73NaxdtFnXB696YNjfkPVPetKTFvuKLP/Mz/zMZU7IPDSaMOp3ji88\nGiv4gjHOcS6Zqz+1nX1Ih+cf/uEfLjYZ2+/nf/7nN2S4tcyeUo9dSOfYD+Kd137t115w1g15bg9n\nPaNtfSkLV+PDdx/wAR+w8KCYTlOONj/zMz+z+c7v/M6Ft+0Vz58/v8z5B37gB95mnwW3sRq/9uXr\nT96cR3lXKzTf8PHAw/yFIxqzPR7/+Mcv+2hy0jjpPTY1GTPnO7yD27hnvvVHlpMJdHDyGH2tE/Mk\nrNsG43qJ0bMxRN9J43/8x39c7Av6xR7kZ3/2Z5exs+/vfOc7b+50pzst/Ic+M0yY5cub/ZV/iA8U\nOFDgbFLgDtsF+393uVcBz7pMiMwuK5MnPYXKuv4U8LX7u7/7u82P/uiPLgojxytY6gpgBJOCoTQZ\nSpw0FEuBoaqMEUiZU8QUE4X+t3/7t5s//uM/XjZtDF6G5oQPRvgEr3j2X96+upVfqzh6FzfG8Gks\nDBt0Mg4KxWZH3cZV+95rvytWd1e9YGhTHfVm/nwPRnXXfcn34IGMB3XgLd8G+zGPecziFGCYrwP4\n9af+IVwaBZqvYtDwkU3NV33VVy3GyT/8wz8sRrRNGePk3d/93RcDmtPTY102d9ayNW3T+cmf/MmL\n45UTyOaY0f1zP/dzC0wGNJ7Fv5xZnKkMbnXlMdJt1DiaXvKSlywG6NHWQOQwshmBLxwZkvCLl/AV\nGeLwxgZeGSMffykD+63f+q0XHG1GbVT/4i/+4raNgHHEV+rf+9733nzWZ33WssEnjypDp5n2fnsK\nk1+MGy3k9XDc2zw8/elPXxxtNkb3u9/9FuclR/vc9ATrStJTH+Djk/Ctv3AXc1A+5znP2TzhCU9Y\n+BW/2PjCnXGOv8M9mAvA7Z94rPfLEVsjv/Vbv7U4sV/0ohctTgubKCH8OSzxtAMF68j6wP/WED1p\no8WZduvWAWstCB/1UR+1eeADH7isUWsuWM2fOvI863EqO20Ag43gsIVj1UOXW5/6sPEj+23Y1XFw\nS67Q8fScAxn6wMbzgz/4gzdv+ZZvudQPj3A0B4K1W6hs/Z7Oaex4o7lVd92u9hcbnwTeSeqctv8p\nG7Wtj3W+d84Nh+ff8i3fshx4oQdnKQf9x3zMxyzOb5vS6BusiRM4aEvGO2Qjw8nOj/zIj9x8xEd8\nxCLnrSuw1+294wkb4qc+9ambF7/4xYsjxxzNuQXrpu1hyF3ucpflkD44zaX3xgrXyiee+9Lq1h68\nYKoPh2BZSw5DyLgf+qEfWg4OPv7jP37ReRx/DvnQKlj7+pM/+ziu3r4yfcDNenHA4rDGAQfnt7VE\n95IlnF4daGhDnpEf5sPBhrVlvulv9nnrQV3Pmh7wkS/MMcRb8uhZa5oe5yTlrDu3dR6RQeaR3OK8\nmw507Yxn8tnsH4wf+IEf2DgcsN/QB15wMOOgjI5hh9RmQfCUfxpXzRpfcfm7YrirV12wPHM8tasO\n2WfN0D8c+ebJwTUbBD+RgeYDbcHRLrizr+BeTNyYxRNmfE+fcJw7VHWgSo5n89mrScNt7s3g4d34\nyPT/+I//eAU9rD/zRX9xBuINh+xsQzD178INe5N8Ih+sLzLpkz7pkzbsC/0LjSG6Lpkj3/u6rDqX\nEsNRWM8xfDytpXijvuBSHftcY3zyk5+8jNOa4HD/lE/5lA3ZYl2ikxCcOZZwkDfz2QwOYchicgEu\n7//+77/YNNYi+SzMNtFxnb9UvIZ/wmuNq3dlM3+iibbsUvR1IOiAA30/5EM+ZOEjusneBi2aq9l+\nX3pff/vqH/IPFDhQ4NpQ4Ew7XhMkCTFxD4FUWkyhEuq3bjd1HK+MIcKdM0N5wlDaxorxQHnkQCHk\nGBIMw27AUFydloq1pbAZb04DGZKMS+2UFeqruHyxPI9Qm+Il8wz9mXiWDu9oY6PNUYWmHEwMIvRh\n1FzOcc3+S6fcI1k4MYQY8d4Z+OaI8bjGBxxPhsMcm3yOrpxdFGP9Vi94+jmES6MAWnqisZiBYsP2\nuMc9bjGwGcycmQxABq5NGn5z44Hz0xwLGd5ur1njNkGcr/jCpo8DiKPU7RRtbErxC9huuDO63X7B\n2za1ZApZwuFEtgT3Ld7iLRY+5yTzxI8ObN7rvd5ruVHFWFemL3KlOtaL/sgV8sNY4aI8vjIWdCDr\n3Aq8abvBtxmAq1C9aLZknpE/4XYcOpcD79lP8Mojg/DPt33bty2bSLLbDSo35twocINFG/XFzY10\nsI7D/6Rl4aO+NHlR3q5+8Mmzn/3szTOe8YzldghnoBu68Mb7+BgMbcEJVnLI+y64J8V3XQ8868ZG\niQOLg4FDBd9yVKAjpwVHqzXDgWod4W84kb/aWkNueFirYFp31qYbg+aFTi40psbSWC9lXK0tMDlI\nyBPjore6/aSOcVmLyjhplcGVvDE2zhTjYzPIby7gHr6NY50XDtkM6tMtc4Mlb4ZLGfOEcy3TjWmO\nBS3QTpm0YF7ciPqO7/iORebjFTzm9uC97nWv5YsEjrgcK/HFhF8f8sDjoHH4QuabQzzHqXe0PUBL\nltZm0ggP0BXf/u3fvnnhC1+4OAwcBha0weOcdm5ngtutuMbTmvSu/q5+grcrblzFwfMOprUFt5u3\nN/qtMbzpUMDBJNsWj2a7BGNXP+WdFr/azRhe+mKTk8HWGSc2+euBs5jOMz/GBEe0JAM4ucgRepTs\ns8bgBa660uB7pHe9w6fxKteXueRA56S2ro+288+phhfoa3q99Vz7+pjjk7Z+2bn2GRy5vnrBS+wS\njimOE3xKv1vb8A6fNaz1O3x3hdl+X511O20m70Ur9dYw1LOH4rznSDYuAV879EMjY2K7BCcY+gm/\neHRpfJF/ghXuE6Yy+y/6hOPKHLADyQQ2Gf7BR+YD79kDOsgx59Y0mw5v1gcUpY0FDA5zc8jp6ms3\na8iY4QAf806PkVHsOrxKf5FRDuX2rbdoNkkS/Wbe5Ug3HnwK79l3fUbbdZmDSHQl98hOa+LTPu3T\nNue3t13ZH8bLxtYuWMXhDrYw63gnPx3g+oIM7by7SMGhb82Qz2tYc57WZWCepTBxhdd8hzv/gi/n\nyCE8hDcdTpNBnvd5n/dZ6MupvZ63C43zrNPmQvgfyg8UuL1Q4Mw5XhF+CqsmglCRT6BTnDZDjDmb\nJkYVg0GaQnarhvF+69ZhwvBj+DDgCDOCnWLmWOHEsGG0kaVwbbQY+m7DOdWkFCidjDFGIqOx22k+\nZckQT9HAN1wThI3He3nqlV8s7yyFiSu84CmPEWID6jNuhgljzBxwRDP+bcoZOMIuGEvBKf8Ep1jz\nSXNzxHCnvOFlTs09nJywOhFnhBSiefB6V16eU/6HPvShiwHG+JpB/dpMo3DWOaRPToHoOWlpPXKc\nufXH2cOIZvQ5ITfPgjVurTtBjuesd+uZQWMjajNkrdsEMXxswNxitXbb3OFpBjP5gKd9jorHBTzU\nLXrOV/CPtps2/Ibv4QA3hj654sTaYxPAieZzODczbM7iWTyGZ+M1+Tlj5E16GMsjHvGIjU/kbX6M\nQ4j/grFknpE/4XYcOpcD7/oJ1nynI2zO3NqxiaADOODvete7LrcLzI+gzZrmx+F92rJwKsbj5rsY\nPGnzT7f4ZNiNLJsePGbja+45Ujih8N8cb3DLKz4tnsfVt2m1UYKbTQPd62aatWh9OeCAGx2LzoI1\nQV9aPw5HOL7EHYaq51NoN6lsOrQvNCax8XhKV+c08YSXjJGH5vQ6m6I1aFPeQ0Z40Dz7IYer/oMb\nfvIm/SfO4KMJWnr0a37JKTD1UXvtajvhLRWuwz+NZaKOHsbmIbs5NNhe+IvzB4+R3w5JrAF8hmei\nx5xHsARl5XsH1+09zjYynIx2a4tjEmzvQvhpHywxfQGXHDx4WV1BXQ+dQd47GHHbER+Hg3L1azPb\nLUCO+RMeYBTkgW1cdBjcnvWsZy1pOpHzB73oMLpN/fAMxuWI1+OZMNdl3uGB31tPxWw0+NGFnDnm\n11qg83bRsLz6mLRZ5+nTujZnv/iLv7jIUzG73eEqfvL1AMePNQiHSa/gzbGhO/nlMNU+w36BDaA9\npwmY9hRrGXEl5mDitS9Nvq379r4em3p4na3CoUhWszM4FH1abmz4iYzS1tNcrPuec7IuO+l7+InX\n+IPB0cqB5TNtjldzwu7v5yKsQXNp7ukttpd5J9cFMJXXjzzjodPY/fQS3WZtq1eQ5pjUJ5li/o+2\ntqDbrpy1eAmcSePGEIwZXw5aTXil9dnY5jyVF07FxmUtsqP7CS40dpjKEe0wh3yxr2InC7XdNYZo\npmyW4zP2MjlPLnOIs7Ppf05dDvP04BxL6QmrvKsZR7+Jh7GuaVG5/GiLb8jrW7Y3XO1J8SI57aar\n/QaZ1KGi9sG4muM79HWgwIECV54C18TxepJhJeCqS2AzemxYODM40jhZpTs9zwFLwaoHBmOBMCfc\nOW04Xc9tP2nwuJ3AQKJI1KW8Xf/n5KGAOHPDgwGnf5t5/VBSbdYIyBQNfL1rt0twzrxgFzfWsxJP\nXOEET8YpGnJkUZToyIg2F4yQ6fDWZg0jOOLThOAUawsfjzyGOoPX7RN4uZGUI92GyydBDP9C7bQt\nPeFJ+3zIb7gxqMCbobrypmEz6xzSJ6dA9IyW3jkpGMw3b2/z2Ixb59Ys5yMDOb6bzn7t4gdGsw2R\nz4HJALDJBQc01qsy82rDRwZ4GOwMTCfwnCJg4W0Gk0/LOF7JIvVsTDrwIUcY6hwENr42AdYKvtPO\nraR5K3YfZcK/ckYoPB/1qEctN77cLm/zUx04nrVgHBcKlwPv+gnWfOe4cavAzVHzhmdskDgnyAib\nCCGaz7YXwv205WDv6qc+8SOnKzyf9rSnLQcOeAwvcUxy7ODH4zYlcIoOp8XvuPpwpFNtljiErUX4\n2iygpZtBnFj4XaAjHVxauw456Gq6Af9bwzYc2luTbgr6fNzmw3qFfzQBK5qVf7HjCw6YhdlPeWL5\nlcGzzTr50BirN9vNdPiCQ+6QGewGzkUHkzZhYJM1ZIU17vCn+soKycTer8c4eoY7+jRGehqvWKsc\nKW5Dkad4goPUxp/ck1eYfABO8OX3qEvnO7zjTOAsYbfZ5JPTnElkAPpqH8xg1Z4tiOf9pqODnGlH\nqKM9XuakIqfpp24sgTXhqT/x874v4JlZV1qe9UXnuZFIr1hf5IMxoRk7SP/qz3Ht6+di8neNaQ2n\nsUff2sBLMG+tLXV6lIV3davfe7H8XQGd2A/kj99/50gkXzk2rDnyX8yW7aYrmHCasMsz52QXGcZh\n5AEvewQv9RNF1rF2jRd+0sZ3tQM66LcxRddw8m5NkNdsHD/twSnEZmL/ku/sGmsPHPU9Al3UGga/\nPpbCS/xTH4FZwyZHzakDET81YC9GD3F80/NkNZ3F/rKns17YauCQ4crt5+I//Rgfu8/XRdYyp2Nj\n1A4PWHvWmz7JE7LcHsiBizacZ+p6Jq3AlzfD+n2WXWpa3+Yme2FNT+/Gq46HrWTeOZM9eN2hhENq\nt8LRgv2hzQz7xrCPL+RbNw4tzB+7wGHL+e1tWnLeejI3M0zc9/U361/J9MSlfuR54BZ+YnnGG89w\nuLqAgS/pC3oCvzq0dgkAHcxX8Fpv+glufR7iAwUOFLh+KXBmHa+TpJSjTYvNCkFNmdoEOvEnxDhg\nUqCcIQQ3Q4GzlSLssTkk2BnbnC0JSzEYFCrDn+LxOQSByXAhPIulE4zhmALzfiEBOcvBEYqXlzP4\nJ5zFlAOnq003hUEZU6Q2Tk6WGThuOTUf+4Zz2jFPHMA0D+V5N5/w4SRlKHJacLBxBDvFdzrOcNKu\nkBEBl2BJe5QxPG7aft7tlhxjrjraV086ONKHcHEUQE8BjaXF5suGoE89HYzYOFnH1jBj0am8zRDn\nqDXcHJEBGdjSzZGYg8chjMfBjHIP3pZnE+UJlj5sStwEIR9sVGyuOPu1E9RnpNqoOMXWlvxgbGln\n82ezEN8qnzzU+wLs5X/gSp6B98hHPnIx7skvIRpJh6f0WQnN53H4XA6862cXLOvfBsmNMPQ/2t5M\n4ZywQfJJIBkx20t74pXjcD9tWfOunXQGdnDwso3Il37ply4yS75bJuQPfHPkyA9n6V3jln85g/7I\neDdwfYKKlgKnsJtBDru6HW4zSy+ra8NLT1ubDjzo0PBFA/Ohvc8YbUA4QNB+jk9aG0/pixnbuq33\n8iZOsy/9VFaftRHPUH54KpPnMdecQG5fcQK6dYeeZBgnoJvMDoByvNZWXP/F8q7HsKaX8eABstQm\nnIzHWxwZ5CpHBoc8hyLnGFneGlrTIjqLlfXUJ9vEYTonjTlgD5IDHDWclGRsfBcMNAbHO9sTzzt0\nAId9U1lzQQ9woH/BF3zBAttGGs7ae4If3NodF4dLMPSJBujl5jl6GQ+HBTmBVtYhXNQVtBV6X14u\n059gB27dB1zVyfmjXm2q27syed57ksPlgydvtq1M+4J6bAG08U+06F/7BLchz28dPH3W3O2ydX/g\nhJeY3HLBw76Ds5tOp8vZm/3mMJ6aMjq8guM9vMPzYuIJ7yTt0WL2XXttpZX3VY5/5Eg2WRMOxNwM\n5xyylwJDXSF42gevvKXCZfgz4ZYOrL7YhQ5ozAdd4+Y6RzHbn1w1//QOu59eleactTbUJWPctlQv\n+NYrG87Pi+ER/NG4tcVD+qXfrEH7HXvSc1vHq32H/jnftQlmMdwvN42ix664fsPF+7r/6nBI2yf5\njWgPmWyP5wY/PmBvtxYbR22DX364rHmlfO3YZWSyeTF37Hy0szbRkjyeob7k6e9KhdnPvj4ar7qe\nKdtqY+zoJcZf+IXDlV+BLiE3OLPtL601e2iw5th6B0P+LKufQ3ygwIEC1ycFzrTjldAhgNyIoDgp\nOoLaZo7gnps5gokQZCQ4TeJAoTAoQsJcmgHP6ZJBDL42nISUKqPDBoBxzbCSr3+PuvuCvhOU6iQk\n5e0K1a9sX73Kr2UMV0oEnTw2iIwxyoORj5Y2IhzVnOI2ThR59NJ+Hz1OM+5goIV08KMNx6uNDwXO\nqYIP8IdTXAaaT1zXjtdwW+Ph3Vjdinjwgx+8OAeOtk6CGdSp3TRKZp1D+uQUQMvmuLmVh7cY124s\nMXJtbvAd45nzglOUbJBmHDcnYJnD5sZaZnRztHKikwUMdHyiDqeHW2ecnPhbeXjolwPPZtcNI4Yp\n+AxEMNRlqHc7hEOPA4qj2G3X/gkDR+zEr/SkErjyw59Rhp8f9rCHLbztJoqy6mkrfXsN0XBNA/kM\nfM4/v5fK8OW0duOVI9MmHC/UHv2ab/ywhnep9K2fYn3Y0AvyOAncNvJ7xpywPln0u3r3uc99FrkG\nNzh5pIODx2eQf7lxB986JEc5MjgerBebB/Tk8EFb47FW1HN7kZPRbUG6deIcvsZoY8fJ5uDiSjpe\n9RnNLkQf9aqb/AjnffGke3zUfKGLz3jRAz+yXcybdc15zUbBi/Jqqx/tT9r/PrzOWn50hRe64HuH\nWX6H2W1SMprezaHFbnMg1pzN9mDM/DkH5atDP6A7u84cgMdZiW/NAScpfq5NcfA5zbXneLV55rCp\njj495ole+vzP//zlU2XrAcwZWu/q1n6Wr9Pqq6e+PugwN9HoQuuQ44I+8Nu3Po9m/9CPhbnmglPZ\n5Y7hV9g1tsrXZcYYj6ujvDq1Abe8+mid1Fa++uCxPzkTySGynwxCJ5cFyCwHHfYHc86DO2Ow6Hr7\nD/bjLVu5x5F36/ZTabIKLIfy4LKL4TjnLFhr3Mu/UDzHv657GpjB0UYa7dCNvYSf2Mh+A9mXIdYf\nG9phmPHh6Wg8+wyOvB44yp/11nif9D2cZ/0Jt/ml180N+x++bDc2kznj8FJG3tKpxmF89ixkLRjG\njw5gg3Hf+953ufHa7yPDQzkZYo/D8crWtD9ke+rnaLs3OL91GjpEI68ENA7faNL7HFPp6vR+OePW\nSv3rCy3kSxubQ6knPvGJyx7OHple9rvyaIrX8bUQL2jnQUexEHzp2efMV8b5aJ/o1ji5ap9GDzpo\npgvPuuPVGARjjB6Nt3c0Ia/xmHHSPfjH3oN+888D3bhH62ChU8+SefhzoMCBAjckBc6E43WX4Cbo\nGbyMHMqTUc7pSnhxaqQIzApBzbBy6sz4JLz7Rx+cKTY1jCxKIsGoXQqBcATfBsAnZRRqgjTcqu+9\ndvIqL694llUnGGJh5r8s52z9ZaA4GaZ4OajQkaKwcWmTaC4yYGwunfA1N2h93BiPK9tFiWgr9pij\nYMAVfhwqR1tDCI74x1wyvKcjPdjxAljgNOeVcwz4j9ttaqqvXP36nvm1PcQnp8A+WsrHXw5abHoY\n0DZVgrk1p4xgDjZGzgzaxi/NE/7g4HHK3G0XRrW2ysy3jTjjKOOPs55zgCOJ45UBlaFuTbhhwWD0\naI/vcvj7FI1McSBhXaz5a+JbujUDdxsBvOxk3G98uhUIT6ExSTdO6dtbiA67aGAe/MyIzbe54Axx\nM8VjntFSe4/2wboS67m510+46o+stEH0GfPjH//4xUGHr/y2NKerAy68qB68wnMXruUF/3LyQo5X\nzicODThZS5wO+B4tOVitE48bQdYlvNO7jVcMR3xtg2c+jLPf24R3Y6lu476YsYHhmfNanr7ADK78\nwjqvsrlG1ZXf/BrrDGSFAxh86ACJLDBOTj9Oawc9HAXa1Z/26/meZRP+paYbU3CuVD/BF6MV+e0L\nI4cNDrulz7385hinj/XJichREr2bPzh74DrxnWORrx9t6BB2JBvPwZmbi+xCfXCwsBnJfLKbvSPG\n3+YETHOord+K5iAmV8Cf/emHfHn0ox+98DR4YKkT3pMGp0mHA1138/Znd6xB47Fxt37QC+3grC/1\nPcZvDGL4XioeF8K5fpuTaCRfuvyTwgnf4HpvTsGQVtY8kTdsAo5E82WeOU7JKY4Oc80xxoatDTj1\n05qTJ81Z56cKHLpyEHEWGQN5d37raAPTXqPDW3AaKxjhLS3Uz8ve9v/V7kLhpLRs7md98NHFl0Jk\nua952FgOjN1y5UC0l2L3s6ujeTC0lycYk/zGetIxXmh80SDY6kuHi8MP8wt3F3KUmQsOdWnlxmdv\nIljT5onsBcP47Q3Ydpyn+MGe8X73u99y6AMWOPSefacb7/iKo5ZMIrOtb3XQylcfDt+t++gTLbyr\n59kXGm/lx9WtzmljfXjCCx3sp9kevgrC68blp418icJByE4W0CecwGgeylvjolxQvq7Dhie/OCTZ\nCvSj9cQOoA/JsRkmbdawZr2rkQ4XeEiHT/lwIDuMEV86qLFvUU5usOHJIPrHOLUPhrbBMUfgCMqb\nsyXj8OdAgQMFrmsKXHPHa4ImKiaEOCoYUQwDThcxRcoIJrCcMLupUMzopQCPto4KQo3RTjF2whl8\nCoEzxakbpUr5+szC7QGKwI0dAg8ecEuBaE/4rfHtPbzrp/aVz3zpdX7lZynm+EFfD2OV8xrtbDxs\nsikXmxpGDDpxYBlXY4teva9ptB5r9db56/fgqC/dwzhgYDEYpeHkliEDGt+s4afMxOo21+GNp9w6\n88kNJwGYBbCCF5zKDvHpKRA917Q0bzY8DBi3lTip3DpgWNtodYtZ+/hC7xMeOeBghlHH+CEfbCjw\nK/4wr4whG3EyhIEuwAV/c9z3TyfEyQc3XTlcfZ7GcYT3yBQGF0cLuUW+wDFeWeO5dPTyP9UxDjgx\ngm0AGPT9V2F5wZj1J5zbUzoazDHHB+QUwz7Hq9s7brv6zHhuKq40PTOgJ2/Dkbyh09yis/HBN+ad\nI8VvS7tt0g02bcNT213jjgaNv/fLEdsc0ZE+2+VUtUasFzeM6AfrlFPRwYQvR+gGY0FzG1obXmvN\n2rUZRhMy1T9uMR/WJf3SGBtf7435YscWnODuokl1dpXVf2XBkT/LZj4bxvrnBHKjiHOR7PE7nJwb\nDgnNr7kNjliYcOrzJHHtjqu77qM25RcfB+NiytKxbAc2l0MpdMELnGLnt5tvtDna2nDRZY3b+h0e\n4VvZzCPjlZPB7Ely2XrTvzKOBTzKlmTj+IKBrvDVVHqA/cD5AldrIDtn0gC+1qsvE8TpmFkHHuEY\nzrN8VxrN9O8nnDhIfD3B+cOZSO9w3nP20GfWW3JCO33MfmZ6V1+XI289vt7F6/7leaZc3IWDdrXH\nK60XefGUuSV32PDmFo+ZS3Ty2TT5Yp7ZtOBFp+DOPsCk961dDlfOPY4iewnObk42B054h1wLn3DX\nXpjjlWd+ThvgtytM2LvK13nhBFc05HA0NuvB2ByckcNsDWsBP0981/2FV/ngy5tt1jic5n3Cn+nm\nnz5yIYdTnD7SP3vdGiZ37ePYjZyqxkZHWdPGBQZdhAacYg40rJ+jrdxxkOHGL1ja6sPvruMtPAUX\ncoHt1z4Tb1nznGpoJ4RzY45Ove+qM8t21Z/lJ03DI1jhJHbwZexkcP9/4Nz28AZv+3KLbjc+86k+\nvmmO9T15Prj1ozx+kzfzlbW2cmjjvztvf8vb7XHryxqdIfjy1rBmvX3p2X5fndPCBdMYtUMLAV8Z\nmwtIdL6HveNAg61DZpDVZEbyGpw1fmB6yj8tbvvGeMg/UOBAgbNBgTPreCXACGTCOaerzRzFaiPn\noeQoB4KNclVGKdrAJQwjM2OZAUvJMqg4Uzw+s9CPuJtztU3wgSG9FoCzfF1Wv7NOeddLzJHkBBmN\nKUM05Fhi9HBc22xPZTzHNemxiwazfLaT3lV/Xaf3NRzvzV+wKET5nmCLywtWZdWjIH0G61M+hgFD\nvqBu9Wd/lR/i01Egeq5pae5sqhgxnK8MYaf0+BA/Cto2l81J+WQBHmb4MCxtqhk9ZAkDnWFpQ8Z4\n5nw1x+EAJuNbfz5p85t6Nnb6sAnjyHVzzc0XmzDwyBRGOjwZ9rvWB7jhF+5LxvaPd/3DizyDlz58\n9iVt41AbsRC85eV29icazGFHDzyS49VtQxsvjgqPzTi5NgNYwYsHZvnFpqf8CQYcHR5wAvls2AZY\nPQ78hz/84csm5Gi7EYQHnMRzMwNO4wzmlYzhaqPudqLDDxtZzmuOV/rXOnFrymfQHB9wtTm17tww\nx7f0hjJOJLqYU8Qn5ebDhsuaMlbjah56L+9KjLm+0K/07Ccc9pXLr37t+5wS/9nc2oy5WWkt24D1\n227xWX2IPfKDCf5JQn2fpG511m3qs7h6lxrjB+uR89kBA7vODSv2GocFhytHNPlMZgtwiB7zfY1b\n73Ms5c2154AYH9Mj5oTTxsYY38HDAZ0YP5O97B9l7EL2IUeOeRWMRx/sIptpa4EznZ1A38hvDhtD\nODWWBdAxfziL8Q1dwjnC8cth0m1pMZ2FXsY5eak+9K3f2fcxXV7WouZD36WLwyf81h3XZl0vuqvP\n/uSEJo/oZXqXrYAOR1vZaU44kMwP/Wx+1/2Fz6SdPsgz+ptTz7zLI/OsYY+9BztCCNd96fpsLEuj\nq/wHDj2cjtYeeqEdvIzJbx6zhfCTvPAthnL0Kq/3yqLjpQ4vuPoJb7DLp0voG05xc8ReMgb2GzvM\neuVYtN6tReMiW1zKAMP82geiA1j6sYckh9hZbH9rj6xy4I/XyANyAQx1yQbvdCDHa87KNW30t4su\njQutahPd1u/lnybGs+u+5ZFh7NRbthcD6Cc0Qh9j8Lh8QAYa3wxrfMNRvtC7tH4EeTNfXXKY3LWv\nZy+YAxcYOL3ZBOg8Q/CDN8tOkp7tj6s/8TyuHnj2HtYRPuoCkpg8Sm5w1JMT9gf46tx2/0EGTV4A\nq35Lz/d13nF4HcoOFDhQ4PqgwJl2vDq1pDwJZkqQIrCZcwus001KlTBTRmARVDNQAAxYxjOj36aP\nIqW0pQlLQlS72k44CUlwpkCcfZSe7Wa68ustpgAZm90gpbApacY/Q19Iwa7HdqHxR8t1O+/Nw66y\ni83TX32u53qd710dc89491MDbqHZGMYPE0956gfnYnG8PbfbNefoic8Yxt0gtWkmE/Cg0FyJPfGj\ntEA+cOrYVJAdHEDadsjCGcfYY2wz2smRcAFDvW7yuTnJCascXIY+R5mNNsPfoQ6D1kaNvCJX8Aac\nPPEIuNL1A8/wrQ48crza0ONBjt4cr9rMUPuZd5bSjfVS8VzD6X2OtT7MgY0ZxyZHi7l2q8LD2UO2\nFcDp0X6u8+pcbLzGMfxsfL/+679+85znPGf5isCXHObZP/fgGLa5U1d78eTtYFwsTqdpp3+3VHO8\n0qP0LxrabFo39Ci9is42VHjfuuIcOto6QYzNhoSDhCPJ3JCnvibweat0a68xRzfvV3K8s5+5TpPr\n0T+a9R6e8id+xo5GNrYc1WQXWplbv2XHWUa35iyrLbg9+i6/fi8Ua3sxoT7rT1z6tPDAqu3ExwaV\ng6TNPl4gj61Fv7dKtpF35Og6rPFTro/g15/8df+znnLza9PvIMbPBviCwSF/ZWJtPHDxzAPmytRj\nd7JFbardFLPBPtryOsdV8kN9Qb+z7ZK5/TPxLU+MN2zcyQiHM35ewKbeevL1Awdvfc120UpefRfP\nepea3of3hKuOUP/hNulQndluptWtzoQTfdgCfkaGXUD/crC6Pe1wg0OMbqYzW8tglw4fefGdPPPt\nYIity/bAH2DQHxwp+LQxTJzA6V1aqI/44WW5V+/vpJ20vRA+YqeQ6cZmPGRSTvyJq/FoVzwxn7B3\njbu667Lyj4snbOlwCJa58VMD1q/DPPYYW51MMX+3bi/T2N+x17w7ZOV4NVbjs5fhpPfFCV0EPv3D\nJsBD6ISfshPlk1HZiNazL2rUpQNzvHoPx8bQOOWv8xpXcXXF1Q/eLLtQGjw4CnM+0cK8O3RCO85n\nNHFASoaxlemm1kP9rPFbv1evWHl1Jv7ywsHhmy9o2ANuGbMF2D0Ov2YbMIMV/JPG2s2wD079rcvn\nuzSawp8+w4Mc/OjpUBGvWFv4hg3AmU3vu0Vur4BH0wPhBOacn/LFyuo//Gb5IX2gwIEC1ycFzqzj\nleJjeFIMFGTGD+VJoDmRWxu4hBSDjGAk+MCwIQSnE1DKmCOXQiYk9wWCbgq7hOC++jdivlNfTtd+\ni4ay8aBtSv1ixh1t0bRQetJc2Tq/99pdjjjFN8cED33htfPbTyB91scBxoBjlMwxaJ9CXeN/OfC7\nPcBA62he2rv1zLDhQLNZZjByauDB6kefaD/bM3Y4Vf0Wq00Y45osIRsYmE73bZgZ7Phd0D4YjGsO\nAw4ljldyxFyre257gs0BxVAEk5yCKwMM3vDBK9KnXTNkGxnH2LfJ5vi3ybcBFNa8Kq/xS5+lgJYX\nCtWZY2gOalsd7+p5L681XJmYMYxv/Daj+bNp9hkdR5+Nho10/e2DBc6lhmRDcOrTxvFJT3rS4lhx\ne8JXHH5fDX7mGn+GV+MV1z54VzqGP77meLVRchBBLnJw2KiRifibXuVk5IDF8w4l1EFnMGyGlfmt\nPI4NzlZfE/g9OeluWhlP45a+mmOe62ryFDyE+O1lb6/4Fx04a3yS7oYihxCZ41avT3mN07oGG6zm\nsvgVIZ48J9wmrPImFOXrfOOeOFUnHHsHZ8KfcNWtvnwwyVm8zd6yFvEQGcqBYaPvphMZlz034a3T\n4byv/13113XBcCOuwzS/3SiNH9mNBfXgP8eNPh586lCEo4qzhyzhfLF+/RTMSYM+PGAKvVs77Czr\n6Zat897Pd9BB1pwvH3yFYyOvr/X4Zt/Hlc161zpt3IJ44rx+r455YtNzmnHeuLXXJ73Wl/ngdHXT\nlW6mg6PtpPV6rTfXbuTZN3DO4V3t6Xv0pn/ddA1nbSbOy0DO2J9wFVuP9j3kOZsFPYyLYxFPR6s5\nLvwY3QwtOoHX2Mtr6PU54VR2kni2V9+7Jzw4vTjszD19Yo9C17DxzCsZI99+zxxyLtJD9jNgmFt7\nSzrJXAvyPeS1MeMz+Jt7cgpP0cnsO2095BjbkiwjAzheZ2gc8sCK56QF5dLVK38pHH+qs688WOLq\nJr+MqX7NvwtNnK7oY4xo5pDUONAID6zhLRkn/NNYZvWJNx3JOenyk4NJc4h+ftPegYm5CsZsF7zK\nvK/LZ5ly4zZ+9aSVS8ur7oQRzeQp78EPaIdX7AmsH3S0FxGTRy50aIdHrCf7DnSl39hI+hTCYfa7\nFBz+HChwoMDtggLX3PGKyvsEIAOIgiTQCC0KkOFDyQqEIeHlITApEQYroW7zQzFSwGICUux0k8Gh\nrae+i8FNUCcYlfUon3W936iBAcLITEmhL6XZ+NGn9IVoMGk568qvbCq9WUf+1QrhIw4fm0LOOTdN\nOG5yvsJp4o4W3lOwVwvnG6kfNIyOxoXfrFu3WvzWFseOtT3rlG7OtGM8etxKYhzbtHaIQH4wMBlG\nDL6j7S0lDtr4HDxp8oFBxcD323ocr4wu5WCAy0i0Lhhi5JQ2AlzCQX35+OkkvKyttQdHzitGv5th\nPk8mAwvBUl8orvwsxmgR3tIz7MNfvcqKtZPfY77mhkE9G0yOevPWjVfOL46LfmpgrtXwmX1M/C42\nbbxgruH2+66cUcrghB/NOb5qPHOsu+BcLF6naYe/bZDcEuQwtrngaOLcIB8F9HaTkY6FJzlpjRi/\nzSpdbMxtdDlJ/MYr3rZpBlOIP5aX7Z+rNeZ98xRfxGvmZa5zeFaHA4ic6rdwHcy4yYPnjl4uZ4KT\nvNHeGI8LwT9JXXV2jQUM+ZOvonW4wCP8wJGe9N/1rt7EP9q0ySezfVLKwamezah/pOKmKx5af34J\n3uUMcBYmjnDjvHGjlHOckxN/kuVowkbEp/QPWSyQ+Rwr57YHbsbAwWdTbZNNLk/4S4Nj/kTj5E84\n6i+nIpmFdt7JfraHm3XzUAauwZjdnQaX2e5ap9d0iT+NB1+ZH/aAnx7iyOeQVofTi+PI4zCV3Omn\nAMDUfg07mhvzpJc50I/+rBX0zQ6e9bQLtvRZDXBEI7Gx4W2HD8Zi7eHrbH1jMG5l8dW+McoXZlxa\n29ovlV5eb02/ytZxcORr490TTHs8a9f6cONVHfPOZoI/OUzXuBFtD8kBz7FMx4BjTdFp6wMX8Otb\nms1IVt10003LuuPEZQ9yXOrfRSA3Gl3KwIPpwsYDVrSf/Ni4xMrrV/36Vyb/pDRTvzDhTNjkngNp\n64Ytiy501NTjaxjanzRM3NdtGofx2qdz/LrJ/4IXvGC5Gcrx6ss0a1e4EKzKg+sd7BkauzoedTxz\nTBNOcxUM68VaYdPQF3iKL8E7e4ddg57q4BUHYhz09APdhh87IAM73bsLj/o8xAcKHChwY1PgTDhe\nd5GYkPIkLNWRngJTnjqUIWcMw9knNISjDaAbaIQlJUvhUMjaMzYoYMaGPO0JTsZWQpmArG91hAR0\n8ZJ5A/9Bq2jQ+OfYZ9lpyKCdJ5iz7YQ/8y+2rwljXzpclEvjKWHyGoc/56vfX+QcsdliSMFX/Vl3\nwlsAHf5ckALouItuDB/r2s0kzk/OH8aygObrds2dubG+wayONEPILT2fbN55e5PUjaV5c15dD9hg\n6cvJ/POe97zbHK/gcNRyLGnLiCRj4KptQb0pR8ALv+rsirWDO2cx/DgLGf9u5dokNZ5gqS8U74J5\nLfLWtJg4zDLp+a7eXE+znTGu6yqfY6+cYcyp6T+nv/jFL17o6Z9rcWBw9HGizH4mHhNe/e/Kq+y4\n2DxpO9vLsyFkxNtE4hM3cs15t7TW9dcwjuvzcpfRo9GSowr+Npk2SWQjHUl/WgscVula69A4rSOx\nOtqiuw2K33VzGzTH65yDxnC1xr2ep/hozoO88J/5xsyx6B8gcQgZr4Md/ObgxAa9G73aNc74b8Jq\n3DMOF3m76ioP7qwD19q26Qt/9ZR5V1ZdcOClLLj1OfNmPxOOucfTNtZ4xU9P2KjiFY4xzkNyzfrT\nr74mfHCF8l72dvF/4SaAZ4wFePazM5wQ5owt6JHPQcVuxLOCDbQ1ylFhPr2b08YQrYJ/XDxxUi/6\nWSNuB/tJDrf1bOz1yfZwGwwN6Z7mMjizr8tFtwnzSqcbR7ibp9Ji88BRRheTQ9YaWtHnnBxow+kR\nffBUa2viHp3Rrz7FpcsvT9/hUR540R8PKd/V1+z3WqXhvMYfbT2tu3BXrzFKz3ald41Dm0Lpdf3e\nd8Gv7YyDI6+2lSsjTzgPHaziCfaXdWJNGpv1TGdxwLrAY83Qq9ar9aw++0C6vsRoIaa3jrYHZWwF\nP/3j4AMMco3T301Ncu3c9hDm/PaLOJ/Kd2AabeE7YXuP1pUZmzpzjLVZ563rzXLwCrP9xEW5d2vJ\n+KXZk/bC9sR4Wh64HnA8E+f62BfX967yiS8c7NXZZs94xjOWA6x+QoWd2zwEJ7jBKFauDN4FZT3y\n5piqI9ZuwqmM3Ecfc+02663bW9FkMp8CmYNObJ4O2/AX+uEFh+cc8PYGytnxjQUe0rv6rO9DfKDA\ngQI3PgXOrOMV6RO2xQSWNKHNIO12K+VKKPqh+G62EpptAMHSltKlPBOaOTEIU0oYPM4TIWUzBfpM\nL5Vu8D+7FERzYeiVz7yTkqS2wWHoyENjxiyYHnme3k8K/2LqNef11Xs4MlAYYQ94wAOWT0bx0qwr\nXd2L6f/23AbtJk9EC7zA+OF4dYuMoc2oFuKLeETehJORA0bBKbRPuX2678aSm4UzBLM8coZhz6Hi\nth9jnjFlw+eRhg8cGWBrGTHHFK8Ee1+sDbg2+DbcbgQy7HP2a6dOfdVH8T64VzO/tVCfF8JtXV+7\n2kQ37575rl5tKy+PDuCoZ9zfsv1k16fBHNgcYYzjfkNVfQGcSdP6f1npy/7uypvlu9JgTtzUiScd\n+NFneJV+8sS3ExbcLqbvCeNS0g42bTitAU4hG1Zrxy0Pmw5j8OS84rhqPRgjvYoOjQN/+/0z69Cc\n2LSmj42zOYXzmnaXMo7j2oabOtKeqQNqO+uZR/aHTbh/gERWoIff/bQh52jM6Vr74M/5nOlZ7yRp\n+AjRLbzhxrZBe/Smv3IYqWN+zBe7B87k2Zr/5ljDZfZXnr7MP1noRmI/6cRZhoYOFMyxQy9yrc+a\nw1sc3GBeCk2CIW5Nw6M+Jq2U42d06jEeT2Xaog0epfelwQjH4tnvSdP6CR/6xi29buqxVekst1w5\nlthJ8WRjmf1cCh4TztVMN46JuzzveMqNMjeSyR+3G/EY2cMZ5sYxh+u5rdODLGpe4A9G8hUsZfhc\nqC9x/c/8ZBVaV1e98Jp5s530WQrhG07rMcz3Wfck46u+uBA9a1/+7Efeurx6xcFc1yufPnLj1M1T\nhzv2fhyrzS++sf/zCPLJQMHckn3knrj1J19/1pyvMRzMsxUdEln3yth5t2xtCb/Lrn/1HK6d38p6\nB23agjPXKJy9r/MXZLZ/yJ7w1A8+rf0cf2Ov3Swrbx1rU73ai8k5gT5QPuuUDtb6vfzj4vpSZ7Yv\nHy1cqGBPPOUpT1l0pK9fOLrZaeaqusX1B14wlVVeXn1WVv1ZTxrdzT9e8XC44gl43bp1tvIp0O1s\nfv4BOLPByR06rIsX+jPvdBxZLR/+4bPuf46j9CE+UOBAgdsPBc6047VpSGB6pyRtFghFBj5Hq4dC\nJDApZKdVhKrAUCUUM5hTbIxnwpECsjnRxkMA66NQ34QnwXt7DFOBRI/ocCl00ZaBwdAwL4wABog5\nQGt9ZYBIe8JljUf4XEoMtmcfbLi4ofW5n/u5i9MOXwnhBOdgXAoeh7b/PwWsRcZPN14Z2jZec46i\nf62aw/Kr650j8773ve9iUDOghOpLT36Try+flvlU1i0HcgevHm1vQzDC8Kw68ufBDVj1u057v1Cw\nJvThZq7fwBTPG5pwSx5JC8UXgn2lyxv3hfA5aT34rut6D7507+VpQye89KUvXTZJPkm0gWLYn99u\nkjiA1k73ZI628YH0DBP+zD8unVyoDhjhKxbEs89d+eVdDA71fbHxdLxyfsCV88xDj5LZZLd6biNZ\nE3SretFVHC3cBuGcxNvmg2PJ5njSYY73ao959i093ycNjZMjmmzwm67w9OmpDbs16/fz2tzOduCh\nRXN+OcYXjsGGm7kwN5xSHKvd0iFXzRWHhXVClzmMINNyXsAJLE/4Fc+xgMXRbnPKBnPT1Q0hdhq4\nPmO13nIewgFNZkALYcKf6Vn3pOnwFgu9S4Nd/jpd3eLahU/xbK/uxYbWhDjblrPRu/VlQ59TXB/6\njV7xj/zwkr6eQvQVexqTNJvcf5a/Zevs8rvJZAx6uC3v4aRxQw5/7+IpThPrACy3IdGxA/NJo0k7\ndQXxzC9dee3L7/0sx+Eezr1PnNdlvVdHmx5zpTw41d33HgxxdWde6XV7+eVJO9Dx+75+gsoXBg4q\n2GUeez6B/rFO4OiRBsOjDqe8vZ+9YvnsLnbh+a1OIsN9+s6hG09yyPnNZf+w0+GSw3s2hZ8aIN/i\nrWgycZZX/oLg9g+cyGh8To+ySTzw0HbSaMLSfpYFb1/c+JQbS7B2waiusl3l+/o4Tb4+6B1fknG8\norELBr5+cUCHjkK4BDt8iquzfq++eJahN33FyUouePrCgf1uLtzEZc+THeQNPqKz3KZ30MPBTqd5\nz8EKX/OWPRRe4QGHaF6eeOI28w/pAwUOFLhxKXCmHK/7BJP8BJcTKgLR5o+y9R/EOWAZqt2CJSwJ\nWEqYILSZsAEgPFOgCTybEoLXpsENKTGFPAW+uh4wb68hGhj/nKfT0EXd2poH8+NzVQaxd/NmDtAf\nrZv32Wd4XIm5AHsdwlcZHH32/djHPnZxGsC7NtXTvrw1rMP7ySgwaWmeGdkcr26d7nK87oLaHMzY\nJo3jvN+UtFkT1NGPuMe7+WaYu9ngd6g4VxhljES/J+YmG8OL3IFjsoNh52HQgzPHswvXXXlzA+BW\nIGcOfBuPNsEtr3gXvKuZt8Zr9j3LSis/Ce7q98w2s21p9RzI+Z1Et1P8LqmfCDH3Nknmr4MTsIIr\nFsz9OgR7nX/S93gB7Amrvmef5YEtv3ftZtuT9n0p9fRNLrtxhpb0rtuTnIp0KzlOj9rE0Mc2LdaE\nzS39m7PPZsd6EtuoOATB2za3R9tDBjzfuoOvfoVrMeal4+2f6N47XMKL45JTiHM/uWQj7nY6pzJ5\n0wZytis9xyrvtCE8ausdTPS1gTQXbCUyykaRY8Dhjfrq+Fyb08I/PDOH1gdnMUdWG8pgatMz8dQf\nvY0W1pufeeJ8BV9f1tnRdm45y/oMfO0gAw8cfc010Lhmf6dJgxnOYHuEfXmVLZW2f6rf+7p85p82\nHWy4SIvpDLaPdcTOlWftkPvmp6B+7aOXutdraPyNy1jIEzzFzvfTAm6Sc4zgJz8twDlztOUrPIU+\nOdvQABxzz653KEJegUdWcZy4lcZ20ya6iT3RdRctq1sf4e19lu1qe1byGt+F8K1eY5vv0r3jv0m3\nysTyZ3l91jaalN+7uDoTduXyOEA54sle/OEAibxhm5nXnGtdwLGePMG1nuBGH8nHL+TS0Zan/Pb0\nnbe3XcnCc9ub1IIyDjgy0yG83yblOLzTne60/H63n0/RFtzGrp10fcK78ciDG5vRTybQr/iY0xd/\nTtsEHCE4L3u7MM+pr7+CMQrGPWWjvGBXf/2uzuUM4KOfr9huvvnm5bDPly8cr9Y3+0IID3G4Fa/x\nqW756pWXbDXfnNz0op8iJGMcdpG7dJYDRL4EOk1784Cv6C/2jrkRc7IqS5eJHViyYQoTT3g0honX\nrFO7Q3ygwIECNzYFronjNQG0Jm1CUn6CipKY9QlHAttpJ4cIBUyQyk/ZZrQSjE64fRYgpthSoAwx\nio8yJWwJYhsHNzVsGusfLoSjJ8Ul7/YQUgpzXsqb45/lM3+d1lZdhhGD+WhrqFBiNqcMEBt2mzbz\ngdbBrU/vM72Gfynv4IaffvCdsMbBZ0Wf93mft/xOHadCdcJrybjIP/U1m18OuBPeWU039sbbOz7g\n1HTLwOk4R4ENWCH5UP3yxc2hmJP0gQ984PJfoZ1YZyCTB5PX1I0PxOQKOcPpy/HKscDo4sRgjIFD\n3tgsM9bIFUZchzkZ9bvwm7iu0+DaJNoAuBXot6M6oAhWcTQrXsM6C+9wnfj1Lu5pHorhXVodshp9\n5YHFOYRODF7zOOHTBTZJz3/+85fP2TjMGfZoaWPFEZVTTD/gzzBhzfxLSTeWNY8FEw71u05rW7vq\nX61Y3xx5NrrPetazFrqSfX3iS8/iczrULSA62RrwyZ2Nqxju1gj57ga7deWnBu5+97svjlc62hwW\njL85QZPoUvlnk1JYAABAAElEQVSVimef+jB2IRy84y2bNTdcHchwCuFFhyMcyX5egJNn3loCV9vg\nNJ51f0tnO/7sqidvwvFuY8mO8dMH5JZ5wOuc3P3sAfDw9zMcz3zmMxe5am1ZF494xCMWxzHZFr/V\nt3azP+9sKBtVTl7rjQNEHfNJzpJhYJnbNZw1/uDNUF8z7zTpSe997dSBR2Od9SZ+M3+m55jknxRn\n7Sb82smDkzBxmvWrq86E4f16DM0T3PEh3ekyBV1/y/amK53LEeOGq8MButDhACfb5Kvogibki3ac\nOuBYF9r46sE65bhlg5Jd9Adar+kdLYPb+40S7+Md+YXG3jpp30QGoj25l7PJ3JE37CD10TX6ggdW\n8Hb1UZ/rst5nW3PL4UqGkXP6PLfVNfSS+nQNfWRfQUbhKToK3uYZzvjHu7Zwtz90aOZwniOVDIsn\nwLTP1N9zn/vc5TfjtXGQ62asgzZ7GWPeF+Jz44ATp58DYc5jsDld42+8qU915/hL6yN67OpPPQ/8\ndwVlta+uevLK39XucuWhhTXOrmZTsMX8BBQbzc834BsBbusQfrvKygPf/HjwrD2DfQTd6CCGPejd\nXt9c2JPCAQ/gCzGfAZlBf4r7DeHkhb7CJRzlhcOkZfnr+uv34BziAwUOFLhxKXBNHK/7yJnAUl6a\n4pBOQLXBc0pIgFJeFCfh6SFIKV2GF2HqtIoCPdo6+QhPitlmncEgENCUM0Vus0KxOn1MUKqTAE1x\nhpuyGzlMpb2mx2lpEA3Ryzy4dcaQZlCj97zBbB7V1weaC7P9xGUpvAx/JvzAzX4qP7/9BInj1S0t\nt3XVgS9+UudSAljrcKkw1/DO4nt0FmfohifDiYHWp/5u3XHMr+WC+sGRjnflMWI5XR/2sIctxjnD\nSX719CGgdXBr360ZTl84OBwgPzgTOHMZaOQMGHjVQ/YwpBl2DL7Klk5O8AcejECbQ45+hr1bAIzR\n8JpjjUeKT9DFVasSncMtvMXybHzIdDSzaZPuYTCjXfnkNNluvZEbnFs2KwxjTunpuAPPpoaznPPV\nfPgNMZsqDihGdDrgtMRYj+lC7Rvrup6xo0Fzqjz6yPd4TwaqJ+9aBI5Xv6X3tKc9bblF5iYepxr6\no715QmPrgyMO/7qdhodtYJTfunXI2iS7JaqO20LWpdhaarzFk85Xa9yzz2gf3c2DcVjTPjW1Aedo\nxH8OSHwNQaflEJrzNOc6uMbUuIpnm3VaO091i4OH59kxL3nJS5abRBzcbt3SVfQWGdJhobp+fsN8\n+g1k+IHjxtFDHvKQZRNMts01NfFRV7A2zTsnB9vLgzfcDCIj57qcNNAWPecY5M214P1SQ7QBp76C\n6b089Ty78uDUeIvX8Gq/j171Ka7u7GuWS0/aeA/PZEHvYF1umunvagfjsLbwkd9x99uPDjSMzc9U\ncJZybnHmd6ixxhGM6EJPOBT5yq/8yuUyBZ0h0NVH272AgwgHP3QBOWafQB9MWoI1YUp7hOr1Xr9L\n4Rn7E97iiad0Y4zfqlNZQ1FOZpgfF1/YRewRerSDNXLAxRXyHX3IAHNHBpEJ1r/8cIh2+ihPeld+\neCk3l/3jPjea3Vw0fw4C2eSc7OQgXeOgL3tCu+DkZAPPWOCm/b3uda/N3e52t825rROXcza88KYv\nA9iB5D7HnfH7h1B3vetdl58cwJf4a4bGAk5p5WwZ8PzDWF9zoYuDr7vc5S7LTVs0nfW1CRfpkwTt\ne7Tt0bZ86ZlfWfni04Y13tqHuzJp9DQ31ih6mj9OV7YAm4KNfaFQPxM2PqWT8ED2Ih2NL82ZvQT9\njSfgQD/Zj6avzCF7BT50pcc82zOQ7fVVDMfGtMZ3jZ/yKb8njHXbw/uBAgcK3LgUOFOOV2ROWJWe\nBg5BZTNOwVOsBDdDnxClOAk178opU8EmiHHgNJJQ7dN2hgBBypjgIKGknaBy7HDmJiAXINs/+k7A\nThwrv5FjY2/8c+zlnWTs5pEyZTgzoG3IbezMk1NIhpRNO4WpXoaaubRJpyTXc3KSfk9SxziE5rdx\nzbEqNwaba7/x6kTczcfqiuEn9lxMWPcHxsXCupj+r1Ub4+5B48Ysz3p3m4oDjZHKWJWn3j5+qL3x\nMGAZs/4pmo0Wg3v2oc4+usv3Tz3cbNM3xxNZAz4ezUhjmHlXH5+6TcbpQY54n/BnWt+7Avj43396\n53jlDOkWANwLjb/xFld+rWJjbJxwCi/4okcbIWvbw6lHBqNZspvxnEwHSxv1bKjbPKOPzYpbTGQ8\n47i+6AGOJRslPzcg3Pve915uvOaAQkuwa3NSes2xnabNvn7A88TT6nlmfn3qbx+ck+JyMfXMDYfe\nE5/4xMUhAgb5x7lmk4JfHYDa1Jhnhx023DZRyuS7DevWrPVsDJzgN9100zKH9PIMjV1e9JjlVyo9\n11RzIJZvfDZwnEJu0eFRThuHiG4qGWsbtPDTVsjp0Dy2jnuvXu12xdFE3VkfbE4Fv0WN11/84hcv\n9gxdCy+OV7cEj7YOp9pq44aqTe83fMM3LLIKfPLx/NZJ6x9IOqgwnnANp9m39cyG8jRGbcjDHFmz\nPhhoqS/5rUH563ryZjgNrWa70rvazzzp3muzjuE48az+zFu3Wb/Xz671jjbywTOn6Q9tyL3pDFrD\nvV7fjY3cZ4PjX7qWPrC2OFzxMAcpB4nxo080Mmbt0Uss0L9gPf3pT1/WqnWrrHragkN+HW3XBP3B\nnuOM1QfeVaf6C9Ab8M+kSfzb2oy+sw4HlsNMtKWLyf1+SsRatx+zhyIbzQGbpd/tVK8+dpFylumz\nMPPlKSN32YH9szV7Bpdr/EY1Rxq7yxeRt2xvS3O0NYbWFhnXz66wJek2dgXnG6errzDgS45pm2z1\nWbzDdzYhWA5/yUl6DA/ReegWnuHeeHonK+EFR7RCN/tU9gxZjde960Ob2oFTeulk9ad+yq5u+d6l\nPeFZXfG+ud9Vd7YrXT/F5YeH99Joar9nvaOp+fNbuey5DmFrf1ysLzLSPhJPOhhAW3tK/CqNH8wz\n+WnO8AjeZb/ri2/AuhcrY6+ku4y9J9wbX/RsXPLjscqqGw17r81xYzuUHShwoMCNSYFr5njdp1QS\nTGLCK2GH/NpQWgQpoUphUrqEuPo5Um261SPsErIcMBx9FBrhy7gCz4aQ4nNKS5E7QXWjziYiXMKh\n95OyQu3UP23bk/ZxsfX24VZ++HovrzmrrL6V78pTXj5Dl2LzG3gMCwoPvObSaSTjm8JjwJgnc2iT\nTnkytsAKXn1f7niOd90ffuLE+5zP+ZxlQ9DtoTnOaHVavBpX7etbn5WtYVZ3nX89vs8xSjcPDCY3\n2/2mls+SOG9am9Wb451wyAMOfg63+93vfotx1Y2EaDdh4Efv2gk2bJx3DG4GIkMx+PiUPHE6zmnE\nSBfwLD7G12QLXIXZ35JxzB91M8R9+jZv0mXAaQ52dPJeH9LXKkQf/UtP/jWX3URgIHvIcDdoyGDv\nbr+jO2PafJgLtNW2QzbvNkaMdPQhU8iW5gAd0N/XC/iGw5DMxwM2SR36wE8fcNxHu8ajXLrY+Hal\n13Bqo/6+sKuP6p6kfXUvNq5/7df4y1PuVpEDiMc97nGLTEY3a8mhA90qlsdBLl9et0isFZsia7fb\nrmjun9w9+MEPXuaPE6S+ousc+y68lgYX8WffeMsvjnfDB4/6yZOnPvWpC39xtJ7fOik9nAzkQfy0\nRmuOZaZPOy7wtQmncLVuuunK+cGGsT7IDged3eqbfducunHE8ergUwCXbr7nPe+5edSjHrU4KNBh\nHcIbPuRQcs7ct56qo214Bic8Zp3KrnY8cZtpeMx3uE58Z7p667zy0QSthFmnd2XqRmvzx5lAFpJ9\n5CCHAB7r8FB9sNbwlk6u8J/6Pkk30aCxiuUFg84kF6wtThgHCPRqN+AcGpzb3kAkY2rbmIOxFGz/\n4EP6xFqwTt2apUvUVxedPdGNXUpOcfBaK3SJwyQ0zg5Qv3kBQ6j/5eU6/jPph3bxqfFJK6+OOfJZ\nvANo8pyd3s/N0L10OUeiG5z2ZObQT/vc//73X25xRk/kio7S0XJXnvJCeFgXeMR+jRPUWsEfcKHn\n4QFHB1BshgnXfHOykdcOa9loOeisLT8V49YrG8F6wzvG+qIXvWj5fXO3sfVnLPq6aXtwqI3DXHag\n/NlfuIsbpzXNlkRPDxzpP/hz4JLV+A/fzXbgNidgzX7M3aRvfS0AVn+021Uuvz71Ux/iuWaAq27j\nDZfw8+7Rtr6KtSfT0j94ii7FK9YfWgSnNsHXVoCPubEvxA/0H5qaS3tJ+0bvbHG0wYt9pcY28dBz\nni5Q4OccrrPf0i/r+f/ybnnF6zGH9xpG9Q/xgQIHCtz+KHBNHK+E0RRQU9ibgoRVaUJLHQrLhtoG\niDOOUKUECVYCs5PqDC2KkxDPWA0O+AQ/pQverdtPIDl3KHFKW3v9hYd2pW8UFpmKwNi8l9dYi9f5\n0WBfm+qrRzEzdig4zhLGBSeJ4FMQRrJNvbkwf4whCtLcOYV2um5ezL15vtIh3MXGHw30yxhwC8iG\n1O0IfFXAL5Me5e+Lq69cH/Xbu7i8cJjwy5v1pK/HYCyTBqWN1zrlsPFPfdyEsU7xQeNf06R8c2V+\nfLrE8eo03SGMfGHStv7kS3vwo58zYbzbEDKQGXnaKcfT4PcpEvlDbuRY1N67ujOs32fZTHO8MsJz\nvNoohD8Y8ECHOf7GNOFczTS8wi061b9869382TRZ04xlMtyNdmVoxnHX/JIdNjc2NNqjv3WDDm5T\nusHsH2C46cKwNgfhwKi3+XY7kfOcof2gBz1ouc1iY0O+CGt89W3TWJlyeOwyyNWZNFd3nbdknPE/\n4R2ac0zylNvE+MmGL//yL190pjz10MV8mCfv6CcP/9K9YvQzz2BwrlsXNpYPfehDl7Xppo/2M4Bf\nH/LXOM26lzOtT2H2bUxw58jnGKKTzm03+njPY5OOvzgda39SnE47rjX87BQ30RwQ2cTSm9YH2cfp\n6naXTWUHE3DTr7nwX8E5qMRgCebPmnJI4WdOwOL0WstOdeHT412dXWNa463urnryr2WYeM70xAne\na9yrW37vtZM/db736og98vCatcKB4NanuSSP2EZ0Tb83SPckk+rjasbhW59zDI1NnhDfeJ80oNvZ\n335mikPLpQdjZx86nOdwZS+yCckYcqR+gw1+/YnRy616v13soIicwb9kEQcve5NuoEvQWhu6XJ9+\nJoTjB++zVdmh2ulr8nV9a3ujBGPyND+NtzwymzPzhS984eLwRGd6GW3Rjnygv91E9Y8G0dd80dE+\nx/dwcMkTJg1Lr2kJl/CYbTgqyTs/DcfBho/A5lAlg+3hlJPX7Alw9EvHcLKbZ7YVm4EMxHdgceDd\nefuTMW680knG5OauLwM4XslIsKMR3eZLKg5DPJPjNVzjS++TV9CGzWMPq384skfwuZuf+3QJOs21\nFN3AjlbrvrzvC9pPHNULpnQ4r+uUHx3ULVRXmeC9+sXyrUW2oMsU5gkfuW18xzvecZFzs6761iq6\nsa/JCPwnxgvmiC3pyZYEH63QNd7Ap2hMjpIn5g9PmGcxWXGhMOlzXN01/sfVPZQdKHCgwO2LAtfE\n8ZrAJpwIsoRZSmVOAYHrIVw56BhNHK8ELuHKINCOYUrIij0EaY4RaX0S2trZ5Kf4Ou0EW7l6E6cE\naDhO3G6kdLTfNc7y1GGkegS076nOpIn6lFoGhU0Dpacug5sR7EF3c8XY5RShKLVllPgch9OL4zVl\nPvvYl4639pXvy2++az/Hxahzev/whz98MdzwVSHctAtGZbtiPG2M4HumQQoWGJV7l17Drd46f1d/\nZznP+BuLcc7AqGb4+k1Fjlc/MaKuYNwe693cMGDVV+7dpo3jgEFnQxWNayuO/uBIa08+4DnG9i3b\nz9V8Xgx29dVlpDG0xXC2OXYIhJdz3NkYw8O7x1rRx0kCWcb4dwuH05jj1Vqa9MFD0QBM6WsZomU4\nwNVciOHqgMttGL8pyXlloybfvKAVWqKT+t7JBLKjmwjgGiOD2SbL78f5nNpmSp52cACD05yj0E9U\n4B+baL/xa1PldgWeCV54mzt6wWMuBbKOkU5u6WM9B0ul7R947Zrbaz0n4XdcvMZ7jbNyt0jcHvab\nielJMM0dGpmv1pf25iI42qOntWUNqGsO3Ha1aeUYTKfMNtr1XnzcOC62rPHro/SM8a0DGLdDyR96\nzD8C4dikr/CG8QoTxknwOem4Ji3CDXzryzqygfWzGnClR8+fP798om0jn5OuvmrPpuKgIFs9Nrat\nV3LLRtVBI/nJucwJZY5rv4YHn/KkZ73S8guzbnlnIV7jOt/DuXjiq558cW1mvcq0Kb+6YuuDXUQ2\nOpwylxwMysgddhGnEYek9UMuTVjLy1X60/jq3zveMa7kcHV6V0beyycP2PFuSDosYIcbY4eN9B0H\nlDy8GL3qo2HOfGWcuOSUwwSOGF8osQHoCH1y9rgpydHGcTN1KN52QYATzcG6QwuOw+lQq199Nfby\nwqX36yU2Hx74k8/okDyTb6z40kEmOeh2PB2L/9CLAzPZgOZu3NMX+FkdP8XCQekz+rWsRCN9CJN+\n9SsvXNSR7wYqZ6mH8xJ+7ffYafYUcHRgbzxg4COy2nya2xyr8Ey2O1w72v70BLnejVd7ELemrUk0\nAE8A0+fqvqLJ8eo9HbhUWv2Bew/a4Ed7WEE7Ngm7bx6QGRtaqx+vZu/CoQcMsL2fNKgvFM+2M698\neZ51n2BUJ3hzfcz1H1y6h41NZzl0OdrSna7BI2y+4Khv/N1qtf+3hufBFL1l3tkV6Eff5Wyl/zxs\nyGw4ddgb8Gosk8eWzvf8Cf89xbdlT3rclnlIHChwoMCBAlsKXBPH61p4TSFVmTilQ9Ha8LglRTlS\nVoQsg4wApYjE3ikwG3iKuI2ycm04VDoZExPelDOFSrjXd5yxC6/y1nVrc73ExrEew3ps3stDWwqN\nwU+BMQSc/jKe0TZYtcmQYJR5GCXmQznam0fObkpTXcqW0c1ZZu4YJYwqypmypVjro3hN63CVL63e\nvrrrtrUprl0xeAwit13dnOP08a5c2TQ0Jh67+imvtt6le7yDkTEAtndPdTJm1BVO2ufLap+tv8YU\n/TKGwhCfWaPPeMYzFieaNSuoh2/wlU2VNU9OcJJay+SD22j3uMc9lo3X0dawm0Gf0YxBqw3nPp52\na4OTxQ0HMkPdORf6ZcjjZ+sCjurFo/iXsWdTAg944WV1MtwnLrvSxuPzNRtHv5OG38ANZ20yxMsr\n3gXvauTFm8VoE52N2yYHXZ/0pCctshf+aMkparOLXubAOIzVhpfsIHesNXPgkTbvZIbNuXkAR9Af\n2eHWk9uubuiYU86yz/7sz14cr9LmRdCXNuSQTbsNuU2bzZsyBrv6bmSQfXjNZjJ9o07PAvDlf6JB\nfDPLzloarjMYzwzWJt3LOfeEJzxhcbxqox66z/rSysytdrtgmz+/qej38dzo5kQHR93oJe0JdvHE\n63Kl66u+w1vMOcN5z7FJ9ph/hyFuRqWr4AGGEIzl5TL+mbSoL+DRmX68efvf2x1qkEt+E5rc4IDF\np4I2EzdjI69sYt2U/cZv/MaF58Gb9dlO/tkW5yv9zMFiLprnOS/7cFwA7vgz2+4oPjNZk96QuhDe\n6vc0CG3QH92lJwyykfOcTcThynHlJp889clRzgIyj5zkyKIbyCb9zHmtv6sR45XG0njgU3ri0LjF\nxkWn+/keTlL2IGeyA0aOF7ouW3HCkA7O7EOfAie1w9knP/nJy+1MvP9FX/RFy0+aWAvacqQ5bHD4\nxwHrferkYNFFfl+d/QAnMj8661s945cXLsULMtfRH2NBG6Exhr4yutFtVw5y9jg60590NLqQCfQ0\nZxdexb/qdjsU35KZ/pEi/rV/MDeTdrM/6eNoyZ4yhxyi9LR5IKfg5GKNdcTWYHPBny1Ffzt89/Mr\nYrKbzceh6oCWA9Cao4eMq1unbDYw5Ueb+IX9QS6StdZjbRrLOkZj+BjbHN9MK/foSwxH6wMtHXgK\n9CX+hGd6MxjaFMrrfVfcvKvrWb9rE0yxR71ooX5tq+u9eus+g2Xd+RLp2c9+9mJz4R105PSmY9Uz\ndrY1eaG+OXWILkYT5eaczkN7NjfaODBkU2aD48/sx3AMD7gKxcvL6k91L1Rv1ezweqDAgQIHCuyk\nwDVxvIZJiojyEKYhY1Pg5hGHK+Vog5CDlLInWD2EKqUrMBCcjBHIKYQUpnwbcoI8oU54MwApXOXy\nE7Iplt6LUypLh9f5H2NpPI3PkObY5VNabiUx+H0CxriyCWVgMV47tdVW/TYKNgaMA8oR3c2PuWG4\nmYsMd0YYxUvhcrKYe3PDMasuQwfcffjqV1C+DnNc67L5Xtvi2hWjCQPysY997PIbUJww0+iJ32o/\nYe9Kr+t7RxMPQ9GjT09jB0c97/JP2teu/s9anjEZ23pc+MUa9Y8yGMecDIJ6jH2bI7eAzAUZwbHH\nMMezDLn73Oc+y+00xv4Mk454DD8z5N3A8eA9dcgWc4HW+NAjzwMHPM1ZCE/8TDZZI27LMO7xMoee\ndcKhp/5JAviMebd13Kjo8/g5562f8opPAv9K1DGHk1el0Ys8gBv5jbZPecpTllsOaGPN+6TZb0qi\nF1kiXzCnZAf5IBbAFLw3B3Pc5sxtCp879vuu3m283VT3H4gZ5238FmDbPzZrHLU2Am7Lklfgwp0h\nj/7WvA2czSNnLJnVhlzd9di945GzHqJpeE56ymsNWn9Pe9rTlk0Q3kND9JFGL7QXwFvDlA8uepDx\nd946Lv2WnsMRG1hlPcGpzYylL2eYuMLNWAT5+PVZz3rW8vMCeNItPP/oh9P43PanBow9XPFqQds1\nDSu7lDiagh3e1hcnhE+rHRjBizOAo4Ozzph2tZNnXh2ccthqz+lHPhnTnAvzxQFFlpovcLVfj7F+\nTjLGdduTtLke6qAdmovRQ9pYy28MyqIz55FbX37SxlxaS9YE+5beIuuiLdnFSUnncTbIn7wX/KsR\n6zu89Fc63plz3PjZ9BwuZLObhsZGFtDVPjMma8mVxhRMcfDE3nv0Db59ggMEMpyzBg2/4iu+YtH/\nOam1tZbpel+0cP5yJloLyiZsfO525CMe8Yjl92YdBDaf4ZO8qK34egvGIjT2+NI7e5Tt4gDTT1/I\no3fNm8dc0YH0OP2N5uywm7cHQXQwO17QBi39HqrDNvrU3kDf8caknTxB3syXx14j68w3+WU+4xnz\nznZjzynDR3S/G67sKTi2rozN3ONDvMC5Fy30I5Dx1pkbsOafrWe9qmttOixgg4LNHoAHHhHWsBpH\n+b0bq7zZTjq9Sib42QyHwpzA9I8vd/RJNk949AG4waqPBaHxZ7YZ2bcl4+vWoXewgrfGt/zbAGwT\n9SFvlsORTe8w04UKc4WX8AenOB6yH2e3cTaX5gSXti7NCXp7yMSjo6PFGW2OOGLZ7PYA4IZ7NIFX\n+OzDcebPMdVu5h3SBwocKHCgwGkocE0crwm1YgIxZQ95xr9ND+FM6XBcOL20KSd0CVqbYKd+nGGE\nLFgJ6TbvjClwCV4w20wTxhQKJe30zC05/VU+CRiOM+96T1Menoyb48bDkGAMcyQxMBgx6GyTdsv2\nM+wcr9EJXPTtFNw7AwetGS2Urkd9j3lglFGglCacGBecZ+bR+0nwPG4MJymDp1AcfrU1JieoX/iF\nX7g4w/BgRok6cNS29rW7UBzdtHeqbdzWA762WYhX13Dqp/azvLKZd9bTxoEGxj7xt4adcttQuZl1\n6/bzSwHtHQRwMpzbOhvwFkOc49XtPHBs5vw0hM+C8SM5EHz9gY3XyACGvFsdbkpy7sKFAWeeM24Z\nffgY/4KjDrkiX5qRzjHnVgUHxdHWGHRjjsFsE8LIx9MXCsbPaLS55nS1WbFhIOdmyKCMXsWzztVM\no+nkRzTyDi/0YTj7PJDzzm9looV/auIzRM7X1j/6aqN9Ya41ecp7qiNGEzQnm9xqcvOG/LHR43jl\nyDan1pUQvuac88njsK988s9GjQy00bLJNBeccBywZELzok3jDfYcw9LhGfzTWEMNXWfA422UOCI5\nqbVpA56+Ncez7UyDpw26o7/NI962Vuhxa6cATiEYxeVfSrweb7Dk68djc2/ddjvb/Lv55kaOeTfn\n4RQ8eOPT6FB58C811k84giVtreR4ZSeRheSFW/JoXf01H8on/9hVfmOPs8pBKjlaaB60dduV45W8\nZQNoH2zj7L22jb2y3iu/UWN02BWig7JoQVbR95yunD90D32E18gYc+lwkQziXLIOyUiH4PQM+8Dc\nBG9Xv1cqD2/EU/FJeIh3rQH4O3ykxzle8Z71hF85Xdj0dK32axjouqufxkfGk/XsBE5CtPUzNF/2\nZV922z9ChW9w6AiHgHBx8JCDsPkTqw+f/gkg5xtnodBY1atNeIfTWY/De45HWr6xkOucYmwqthV6\n9AUK+poPD73oljJHIIcY/cmhhrYutagTLR1c0cHmHQ+v9fCarmuaws3ckXUOSOki9pcAFh6zl5OP\nv8wXXQ0/NoC1RYdbU+wRNhn55zAAHPDjE32zG+19OATdwsYn7Ev2AtlrT8S+dNjOYchuE+Y4vAdX\neh3Qp3GqV135xgM//+OAc9jei/7x9Y6+6VL1Z3/ehfKKZ7+1mXX15934talO+K3bqycEY6ZrL096\n4mD+7Buf+9znLo8x0f/WP9lm72PcZCF7m57Sh8e8sRfM47mtfDx6ucPVu/lBf7DoYX3OuYSL0LhK\nL5nbPxPHOabKxbPOzD+kDxQ4UOBAgZNS4Jo4XiGXYEuQ9U7YUtZ+25NhRIlzSNkQEKiEMmXjxhEB\nzPjkjAWHsGYQTJje5Ts9A4Nztb4Ya04unYyKGbeVrQk4Ya7L9r1fTJt9sC5n/nF4UVSUF4MTjW2y\nGC02Aowqxpj54Xi1Me3T7ugGNgPIxpQiZJxQrJSntHqzf2n9cXLZyJsj89I8Kdcm+OhQ3uWmSXiB\nu+6TwmfAufHK4GFkTcMj4wSMCeekOKIPQ5KDzok9g5ER4qQev6Nlzqc1/Emb+lvXKf+sxsaAhmg6\ncbcmGbrf9E3fdNtPDZgL/PjQ7T/ncXuCTCAjyAvONk5U8Bj5bmo1X+CDhx9teN1cIF/A53zNiLeR\nsGnj+CRftGMs3rp1+qrn1g6ZIl8/ZIw2nHDaMMIZ+fja7Q9GJqeGtvj6QsH4tQXLDU1OSePNwad9\n9FI3ehVfCP6VKoeTp5DRi05wI9s5Xv3+ns0cnjc+nzK7oUe+q1f9xhPM3oO/K99ccJrZhOd4JVOs\nJY5XznhyjawRgoEX3H7yqSonIzjmnvwT4xt6wmbO3Nhk2kByxjk0ghtYwQvHZETvZzFe47yms/Vi\n4+3Gq58b6HDIOjQ+tJl8rb1HWZsgsks/dIPNu1t7Pol3QGHdyFceHdGpd+k1TvIuJjTWCRuc+pVv\nrXNmGi95DD+38s6fP7/oQhv3ZLG22iQLGid4lwvn+ghH7wU6lQy7eXvDzAYdbtYSZ9a57cZ04hk+\njR2Pm0trkiPslu1hhVttYArqCdqRPeQo56v/Nk/mroP6wdam/tb1bg/vaCu0/tEierJvyBsHimhv\nbXEWobGbg3QPecWZwPFjDtldHrKH8xX92UzBv9o0bZ7Xcw6Pxilt3PgpPvPzPRzMZArbxgGB390k\nE9g85IAw4Xq3vox19itfHlqTyxyuZD5dCw6H2Jd8yZcsepT9BJfWqZi+5/Smi+gLe4R1v+BzCLmd\nb03RyfYbgrrhFF7XC8/Dd4b4Mxqxb9j5ftfVbct0XjKF05JTDE/iU3OINniSnqdH2WwcmvR884ef\nzTvbzKEb2jrYRFO0LITPfC9NPrOV2XnsK85QOt46wQt4K6edtWI9saHZaPS+sVuD1pwxsv/Yj/gU\nDvQ9G8EaNCa63hiN1cEBncCm0xf+JW8dTE3Ha7iK9bfmj0n/ddrY4yt9mgPyHZ/q0zpxocCBgAML\ncmMNo/7BEoqlqztpXFqZuTK3Hv2hm3mbMIK5C9YsU46ubARzZJ9t7qw7dGQT6w9sNM7eimfMqTmz\nfu1Jzad9P3nRZR06D02yH+t/xtKFcO69eD0++eu6u+rU/hAfKHCgwIECJ6HAmXG8QpaA5sizAXC6\n1ymkfAKPguH8owgIYgpSmrKnuG0EpQlo74S2DSGDiqFL0TIAnWwyLChfaRt1af2sBW1ETODuK6/e\njGsj7zTtJowrlQ638KLo0dcm08k+A4vB4h091WOcMDw8jJVbt46oTomVgwkOunu8U9yUaP2I1RFm\nG0pTSOFWFp7KgrFOe7/UoJ91X7M//OTk+zGPecziLMB7cxyMB0HehLMPr8anXNq4ff7GwLJxwI9o\n32frDFuGiTkqTPzKKz4JDtW91rFxNJZoCid51i+ZYEPlU3BptOeMfPSjH704OPEOA5rjzE0Lhh2+\nY8RxjLlVyfBGY+vfJo0TrVsRnA3kAfnhkIEzyGNTII+hz8B30OBAiGNcfTTGFww/64Wz1WPeGIv6\n4sCxsbbJtlmJT46jObg2Ohz9DHtjhZe+CmiTwdpcF1fnasdzHuHimXiSv7dsZXs/NaDcDbqbbrpp\ncWwlM3bhDY4QzPqa662+yHu3mDiTxGSUeeHgRU+bqrmOwKUDzBHZBk9wbQjVNRduuLiV5vfgrE35\nfuv53ve+98JncBfCSwzXyc9LhTP4B64zwHsGtLHRdCvSOrSJMl7rTlt603qbobFbP2uHinf8zPF6\nfuvMtM7MRzQDR3q+r3GafZ00Dd6uEGzl5t5YOXE4MuFqY+2xAbcBFczrhCftmfMd3F19njYP7ODV\nr3d0dxCE17tFyFngE1g4k3sdMsz20uBYG3S522k2+PjfZj85NcdJxrml7D+U00vmdo4XvPAEv/5O\nO9bruX7jbz2gD1pGR7rGoTXHA8cRepMvbrG5VScmW+g4tqwydKS76EJw0F3+cfLyatBwznf9xVdi\ncoEDjOxk07Dn2eHWEHvGFyt0nLFylO7jl3U/9aFPabQmu+l/ny+zo/TBUfrIRz5ykf1T3oOHjvic\nXr9lq5PIdrqarIP3DOhsTfmNUgeFbmo2n+qBJ8BF/vUQwjlco6mYfuMQc5DN2WfOHHA7eGGDopHD\nSXYQniTL2Vhi82g+2EoO6ehLtlbyBHy864DB3NPLnJbaspvYUtE2WoartgJ7zBrCU2K2nzz1PfRS\njwMKDjp9WkOcsuadjeDRznjhrE02I/nG8Wot2nNac/iYgx5N9E03cMg7gOVMxsdgFMK7d3FjkFa+\nq055+I585vj2u8ViZWBwuLI/8CO6TVrVfva37rf+Z3557GPrybzRHV0kQAP1Z5v6Mr9omJyyhqTZ\nyRy46Ez2uWHsAZ8TVh0BLck+e08ObH1Zs/b5eMI+32MvSi4qYw+r17yDM3HzviuE87rsJG3XbQ7v\nBwocKHCgwGkpcM0crwR1QjxlQiEympyWUm5uchDmFBBBS4FSbilRQtlDIMt3GpZjllDWluFHkXDY\nUNCMBUrA6RvlAA8PHBLICeDeEXVX3oWInTJUb8Ka6QvBuFLljQd8eFJujCDGv9/aknayKFCQDC3G\nlM0CA4QTCf3mWMAxVx609yifdWZ6Af7yP9Eqvphl4bqGNetIV2/m7+tv1qntbL/uC5/ZzDLk3dZq\nA65NfYi9TzjrfnqvTe/G7bOuPtHq1h3Dh/PQP6KxUWH4opU+tBF29bcrr77OWowWzXt8EI4Me/xm\nQ+XTJEYb49h/qPeJOiOMIwi91OEYIjfAIzMYpee2DgMGOCOQ8cegdEsi2UKekCGMfw7XO29vtzGk\ntcfjNh5u6TB83djh6ICzcvKGg85mTD/kEP4nY+BhvXDwMvIzMhvbcTGcGKFuaM6bNnNe4e+9vOLj\n4F7JMjSJr8Old7FNrn9UxPGKJujH8Rpve48PJp5gBUe+dO/K6kuZ9mjNieTGoo2SzZaNs40KZx+e\nQN+C9nhIPRsdc86gt8ZtCNDZRsHPEHzt137twkdw5cjFgxxy5rwQfuFVXPlZi6NleK3xdYDACelQ\niF5WPxmkjXd0L8z2NqJoRY6pZz2jPWdr/wQKn1vHymsrPd/Lr4/TxGtY67bBptOMkxOS0wFOZL4H\n/1jb6lYfnHAsL/7tfd3Xxb7Xj7igD7yJXznyzA+HMTnDmcFBen7r2CaX2EPqBycY5sOBKscT+UnH\nd0Ckfm20YyO4qebWK7nk3fwms9WZ49f2Rg3reWic0XeWmyNzQve45cW+FdNHbCw3/zi22F5HR0fL\nXJEnk37Sk7b1dy3jic8cL54iR42XU5+Tit5EA3rVWLvtSBasxxms8nsXl1csDx4chWQ9/udAxZsO\nCThLOdA6fEAv9cl7Dz196/YCAT3NMWz/kUOo/vTFoeh3yB/84Acvdhi867s5UK+1UN5ZjOG9DtGT\nE5KeRku/Ocwm5SB1wGjO0BGtyRv2jXcXEvx0zNGWd/Et+GSKQ0/6Hhxw60O5R136FU+QU2QLXcBW\ny6GmTfjW3vw4HIOjOcNj9o6CeSGn3YjEA96tP/tAh2rmGx/KEyYu9o++kPL7qXCCh/lUl0zUF0ey\n8eBtNuNN20Nj9hkacQqu7QC8JqQv9dc45Ne/vMY689ipdK6fZ7KOamtsnL5kMfqnP8EUwBCqP9OV\nhVv9ogtdf8v2IMJjjPQ0x7K514e66nnoHbQRk2XmwL6ao7X1lZMbrFu368y8ickIsDx0CH2Fh9Dd\nHgdfzIf+8liH4b8M8OV/5AVvlstbv9du5k/6VH6IDxQ4UOBAgStBgWvieCXwCP0EpYFJE94MIJtm\nDycLwW0D7ObGPH0k8AliCoii7bMDDjLKj6KntBgJbpxxvEr3+YT+UjyTsBMn+dWRL6yF9ZK5488a\nzmx7Uhg7wF6RLAqO4ZDTVZpRgfacVObB718yStGU0jWG9RgpRQaT/JQz+kXDiXz0nHSRF9yZP9vt\nS4fLGu6uvvfBmEYzPOY8McoYZD5XZhziPaH+xPoKj319zPxwCwYDxo1Kv1PGYGUkwgFdOXwZvwwT\njgy4ai+eeAY/mL2f5Rj+jQXejUcaTRyccHqiiRsONlLoYSPEsOZo69Ngvx3KUTpDzgE82RzJs2lw\nuk62cOY6cPCAD67+yRlOQo4YjjwOCkYjPud0ZSS6vSHNUIc7I51xaWNi/agvv3FN3Pal9c8RzDnF\nsHcbwDothJvYIxRX52rH+8YIL7LdZ7V42yeI5oLTwUbHg+742ny3eQNP27kujckcegTl82mTRH9w\nJNnwcwK4IeLzvG7tmD8hvistnv3BQR2OV//g7au/+qsXHG1COF09Ng0z/H/s3dvqbclV+PE8ym/f\n+hSbv+C1BkMwqOm2o0knMQcNwUbEC0VBQS86aufQoRVRVPBOBEHoF/DGJ9iP8p+f2f2Ng8pca/9+\ne/+Ou1fBXDVnHUaNGlU1TlVzrugw4cz8x3YP3xnQcwY8/+PNEGP8OVUWvavnGY2qVxwd8K8MJuNj\nfDm/nT42t9GPvClUz3Owiitzkxi88ANnhVW+NW6MzR3zg8MVz7X2VqN6wguX8L7LcV/b7RmPtOlk\nbZHXaGxDgKPIyVcbQ/qkPPzgKnimE3E4O9HMqWBj6SiQeYx86whf4twwrjMY32gcnbXV/Sz7VO+j\n3cR/9m/Nx+vIAfLLGBkfdPP5GA5sDidvF9Fh8UABHZtH4HU/23T/kLRt7tV3uLg4WejcnMscdDZO\nre/nm3MN/6VntoFcH8ASzFuhedo9uEJztzbDAY/iGKMn2CSVjrY29cj26CqdU8h4cMaBQxegQ8CZ\nvOAcanNVvra122dx9IEsbozCLfx2RB/pz8R1olg6JyY+YK7iKQ4ZcPChpQ1mvAKdOFXZU2Q4Rzr5\n3ee30Nicp//Ql8x5ei1ayqut2pdu7psfZIKDBuSDdFehe7oVeWSsza/0PWOETz/bNprYiu45AuVz\nJhtjba/tg483cjJ+85vf3B32zU/6iHrsHxtynL3oAhd2KT2UDLN+zYmJs3b0V5jzei2jXH1Ttnt6\no2/Z9jYDJ3i4g4cXk0/a19/gqF+5YIG7BnnmsABPjmmyz/jbgGNLGxPz3qEPtrZxpd9aH/P0sLVk\nbqA3egnWFboaF/Y4vqA/+AHbEo7KGGvyxIEHMss8qq5+zj6o44oPdL83uP2UL1ZvllNGmkt+z/vN\n5edCgQsFLhS4Jwo8iONV3xJIGGOBcU5YU5zs7jF2MWxKG6Hv4gBr54ugI/wI7XY4wSUQnGxVn0OG\nwxCzJxQSNJhvOGh/MuSY9cwPR+WEGHfp4mDM+1nOfdes95D3cKZkeJ3E618EHyFO4bBr7SQh+rnQ\nlODVh/paf9CMMcGZJaY0EK7g3CSA9yoBPoS19sWUa7gab+PYmE746qzPa7/kS+NYc4LIR+2fbYpd\nzk+4KtNc0Y7y1wnVUdY9JcOOs111Tg6GRIGx68QeZYsCpE1tCeqGZ/hXr7j8nh9TDLfZH/eCvpg/\nFGeKNscnpR/90YLjlQPMCQj8Qr4TL9Z/tI0eteEZ/7i6utrhmPudWKU8U77xFOXUMX+clKfk+4MD\nBgSczDNGh7VCUVTHvMNjKJj4DbytAbiAJ9S3/eHEj7LWEIORIcIxyfljzskLtwk3+MUnQN9p8qTx\nxAOe6GKMfvSjH+1GnbKcQQyHX/7lX977h6YFdZQBp6s86cbFRbGXX9tiGxYMJCfLzBttO02hLUaz\n8Uqhrw2xNgV5gjQBLzHvOI3hrxwnu3+75tgyTtai9Pqtrusm/GBv7IF+6vukNfw953j1bV7rYPYR\nutWZ/Zce/dDT2pBvzNDEGPiEhovsQU9wlJEf/SZ899cJtTvxDO5RfXkMSW8bMDoZuJ0Y5XzFH8yz\nQvB7FtfWTLuL+9m2Nj2jKd3J2BgjznEBzfFIlxNLaK58dA5nhrK1yWlr3eR0qq3GA9/0pzh4L7ow\nzOUJwYKL+y55ten+qQd9MV/q3+xb9/KUEaThR5z6yXR6CVnDmYEfOU1Nh43/BechaQUHQV+Ent3P\ntNJLwyvJSJtenPicc9Y2ZxoHEUcemZssW2F7FoL3ydMnv9qKfzTvpKG1zTW6fp8IQWP0fWs7kWgj\nVXuVNR7KchaxLdAeXJ99IC9cZHdjqHUboTbe8XtroI1ZMF0FeJ/C/Si9eq8bh8NRG+t89Yx+ylZP\nTFdBv4+2k/NoQKdxavhLX/rSvuFvvZMFnHL4BL2L/uNbusa1NwL0hY6Ej7DlOA69rWRMJk21GQ5i\nuhcHL30APHpu4zz75RCNuQVXOnKOPuuHTmG88WzPcGQHqsOWLICr/XAwnup961vf2nmb+gJdkjzg\niLapD5Y5TqaxOTlenQi1iUIXLcx+SoP/7EPltN94lFasbeOAfhzY6KksOOo5IOONIfMSP2lOVl8c\nbHXcq7fqN8qhoY1xb/Wgq7bQwPe8OV7pn2xvawc9HEZwrx6Hq5ieZYzRBy2sLc5v92SRchz7aGhc\n0qPJWm1w4OuHOkL0gvN83h+2n9J7PhUH51T+Jf1CgQsFLhS4Two8mOP1iGkSDBi+3WiOCw4MwpKD\nNSbungFAKGPQ7gkcjD1h2qsyDBFKIIaPyWsTE1bWpT3pCSSElx8c5cOzuDJzkMqLwa+xspURdz9h\n3Pc9HF0MSo4DQtznBRhnaEMw+lYmWnK4UgLQaob6MWGB5yKAc7xWbtY9dX+TstqtPEcVRZEiqH2K\nuLlkd7YTh7N87UsTwKkfPQebouJUo1eLOUA53LQx61ZnwpB2Kphz1a+MNJedZzvsjBex9u0IU4I5\nKawFafALx2Ccar/+Ve4xxfUjJbs+6Ys5hx4UbAohg4kCSOGkoOMBeAVDgMPaaZXWenDANV521inI\nTpI6tUxJpzwzKCjpjDPlUkzRCP+xDijdHLs2IowRPnS1OW8Zke7NdconZdScM/8yNMLjJjSHh/XI\n8aqvjHO8rvEFc51D5d2kndssCydXeMBP8Oy7cIylv/u7v9tP18njDPUHEZ3Ia04rLwRrf9h+Jjxp\nnpszntVjQBuHvvdnPghOlTEgfYvO+pk8Pny1V3AfbPwP7pxaTthItwGCHzC68ExhrR/cYD7mGC1X\nfKO3/ltfHJNiob6q03M0Kw+drCvrQ7BGOAiNkXVr/XIKOo2c0V7dYvVWvKTdJExY6oWze0aiDUbr\nm4FL5yALOQCcwMEzrEUBnFl3T/z051T6LPM697Utrj/RxTOa2iDSDw5Ubw7JN9edRuMc4fwix/CR\n9B98ir718WbgO9Flg8E4CeC2TqxNPIij3EYQHlr7rZNwK/11+vvY6k6au9fH0uDqeQYyiP7B0eDk\np8vcIrs4GjjCbXKbX9YH+oIRvY9gTvh3dV+fZn9mWvfx3spZR/rnJKQNL2+mmEecWRwq5p85Q0fL\nQRSMo74Ed83Tvrx4U/Qy/+kBHNxw4BjixKGvpTORxxyHNhmcbIUfZ59y+BSHkHSORTIEbO1wHHEE\nchyTVcrPOR+O4Vxc+kPG6AJXOKFd9Js46WOfk7G5qP/owcHMqYdvGDcwXnx62pQjEP3wbjTBG+Lz\n2lRWrLxTlJy55oQxmPRp/OCDJz3bNtU5+xxyAHM6X+GpvhPjbDsy2QlKa+dq08WMi/lGp9OGsZaP\nF5JhgvVH9mjLGLNz9MOzenSt+L45bePA2wDkPj6pfTSEN5n1zvYHr5yG5jY9UrsuZYTi0vfE8SNf\nv8qvrrbRC0/2fyfsMHbMDHgHWpmX+IkNDrSYAezmqnTt1YZn7Vgr+BP9NntZHlvK2Ls4YcFCA+vE\nWqPTkedoIo8NZg5YL+jcZ7joyDY34OZgFZuGXubkMBriDWybTk3PPkQ/+AhwF9b0PfHET3VOZF+S\nLxS4UOBCgXulwIM5XmcvJxMlXDg7OEvFnjF0xg+FzeXeRVhi0lN4MyQofowoApNwTfgQjF4rJhAI\nCAKDsuhSzjMmnaCC18St+/LrQ+k9x+iLZ777+Vydu4zDoza0L82FhoQiwUoIcj4xGtCEkOVESrDW\n79kHMDzLA8tVGjirEywcbiPWZrSkKFLaKF/miPkDf0qFOWEOwKtQvdI8uw/3mW/+cdR9+9vf3pWs\nHDfBCkZt9Fz+UTzL1nbzFM0owow2pzA8X22KJUccJYZiY96HY3H4H7VXG0d5D50GN32fChecSqfg\nUQgp+2LlKIOc0WhhB57BRBnnfKguHmFu21hAOzFDCy2l53AFL9pp09Vc17bT3ngKJbiTMJR3iq+5\nYH1wuDK07fo35+GxwgX7OsE6dMoghzvFPsdr9TNweq6tnu87jnbahUvBPQPHRsIPfvCDXXGXx2nJ\n8crAs5mhHBjVnffKmyNCY7Pmy0MTJ5kYK5xQjC607NuUaGrOzDbACSYYnkvDR8w5J3ZcxpgMYRhy\nHHKiZHCqG47g14b0xxr0UxBPnEs3lzth5NTP3NiYfaq+NLREE04+PJnxjI4vNiPc+mToWpvoZ/wZ\njWSyULvF0iZenm8SggPGxNE4MTqtZ84a+gJ9g7FvPnod2jjj/foTnFNt3/VYr7iHR/NWPvyNlbnP\n+cppYD3gczaZ8D8XAx395ZGNZD05w6FhnNBGf8Tgc7qY5xwSnGhoZA0Jc2yqd9e0qO/3GaNvc6D+\nzTGJFmIywzhwYHHyuUcvDkCfCrL5Z21wTtBbZgj2TDu6X3E5KvMqabNP7udzuM22yb426TlvOD3p\nXTajvEFlo0ts3qFBsjbYp9ZWbc0+zHbXe3PPXLZxQBcwl8lLp17Rnbym49OpPt42GfB0vI0+ADd4\ncChx1NnolWftc8aRweQHOMYNPws/7Qo9r/d75gP8RJ/wid7wdB++eIDx68S7DW66ER7IoWr82AVo\nwRYzlzlSjbOxfL69iu7UNocnvVsIvtiY0M/IYn+OauMa3xXgED57wvZjPdiQ8O1ScI2PcQSrMYYr\nXdAmPJzo5vDE4/A2Y2cOOsGpLBsAD2QbuMxNsMgi88BcobexXZ5t8kqb1qa5bS7YmDN3lNEe+PCG\nK8c+Z625gU7N7/oD7+gRzcsT1y/zr3xj4qALeWuzk8wlM5UtKM8xih9zWprn+LR0IbqqU9qs757O\nyrlrLG2omv/GBm3UJ/9sMNM9yXM4mCsu+JEh6Gpdy3dvnVkf0jyjozWUU9i4aMvGON2M/uztCc5r\nmxvKh7944rxnvMJPdH2FqpcqFwpcKHChwK1T4EEcrzH2yRAx2CkslCHgSpdHgBBsYukxZXkJKzuD\njA6n3+xyEg4Mb0KEoOIsISAJWQa6HTjKGAMshSBBhdq1EeXDubj8YuXKq86MlZtlZ95d3J/DRZ6L\nUoVOrmhLsOZwDd/yeg6252ApU7oxkVf52+xf7QXbGHOuUcLcM34oXHZmKU1wmXWqB6fw7d7cK8ij\nUNrZ//73v/+555uiScmQDsasW705f4Kzxmv7noMHJnwpOhzf7il52hWbu9poHU3YE5+ZHuyZ9lju\n4aYvc+7ALZpwBlCOKWxeXaMAM/79ERYFzzhTsDlQOBHQwJxmDFAcOXbMCwYF5VSdaSQc0SE64hGU\n0xyvFEd4USozSOCnHP4RnetLcPSv66i9maYO+AxWRp9LX4x98JQHr1B6cen3GTde2oRHuEhHN47L\n999/f7/HxxksHG/GES2rt99sP+oVwOp5wp3p8o1Bf+zBoMDbGQPWrW/VMbLRUZhw1mew5JtPjEav\n4Jlj8GaQMric2OUwllZoTIJdXP5ji6MpvJuzcCwdD2Lg+oMPDj30nHK5svUzZ0W8+NlmyFpr5KsN\nDMawtaIt4+8bjOjY+NducMVgB9/zTcKEpx440jgE8A34fLw5YowzHm8ucs735oey6qzjOnF4Vdwm\njJvcw6l+abs+ifWLTmPOGi/GrVNJ8sxThi0eSIbok/WCn5KRk3/RBYwJfYlB7DQSp6HxxD/VhUNz\nBvxC9xPH8p5qvNJ87Qd6WBecEhyuZJG5xbnBIcRBYm5dbZt+nA3WBNoVolnP5+LoWpmb1K3OqVg/\nglefJ57qlY83cF5x1uG1ZDO9y6YFfssZhg9wvOQ8q36wgzXxOUqTP+soM5+7x/vR3aELa9pc7Q0l\nuFkbOVf11Ry3JuhYTuBZCwJ8yQobvBxbHHbKGre17b3Cpz+ncJ9l7uMePU4FecbU+OkzucZe4lBl\nJ3F4OklJ/zB2+qQ8pyP+z+lpk1vg8CMPvSVAPy2oE4+wIYTu6rjwJPbFxDG64UtX2xpx0tbpenob\nR56yxojsgCfnOp0iJzE84KqMcdcGvs5pia/h6cbS3DQf9J1epy/KkU/agAccjLO5Y60qj2firS+2\nzUNyA0w0cVrTJqz2OeXJv/oCXn2UVno0EstHJ7Dke9YH/PiDDz742QZatKwMHPEVY2V+0nHRH5zC\nbFt99px+g82uoFNbt53mDQ+w0ZwD2rxHY/IAXskI68O6sWEqpmOhl3Rl0SE6ssfoXOA7UILmnPBO\nvtJzbcDrAznDQQvvaFUf6tOrxMF6lbqXOhcKXChwocBtU+DROF517IjJxjTL6xkTdy+dQCHICURC\ntJNOhAShweHKUcOYIiQIAcYIxywlzGmPlzlea1fcfTjDIfwaoFmmtFl+pt3l/cRj3odvcTgo45r0\nnXnuqxO8nisnLs/9Ub701wnhGWzC3Ti3884ZRgmnWFKYKA0TJ21Xd6a71/cZKBNOALz33nu74qat\nNYAVzabys5abz7VfmvpTAZMfbsXVCU+xa6YH76nEcK+v9TPc0YQxZJ06UcO4o7wZa44ACqJXynwO\nwOkF4w0WhZmx2581UFKjbbBrUzxDOEinqILNMOE4dOJDwEPMC/MKfniQ8trg4EgBl6YMo1xf1rZm\nu91rn5HHaczpygjS3xyGlQNPCN/i8u871jcXPFzdw9MGiD/ZcOKVYUQp78Qj40EGDgAAQABJREFU\nxxsFftarrj7M++DOtOhqDDKuGVwcINrF8xkoHH2MI0aVAFYBvDVIY9z5tu9H26uSxp6h8PWvf31/\n3ZpRwtipLnhzTKRflxesbd/nc/Sb60OaZ4audee0N4OJY6k+ytfH+unZODLCnZB0UoYhxWBneHPQ\nGBcwBa+s+15or0lOOgZXueaF++sEdefYqhNs99ajceWcsZlD9nMScSDA2XwxP2dQR9DHGdZ2Zt5t\n3q99mv3RTvnwoduY906Y41n0G7qQ0NjtD+MnGuNb1oc3YJw8MzYu/JPzQTnjGb/LyEaXYAA78ZP+\n1MPsj77oE1rWNzQhlziE8AtOBXU4rDkVyKJnm9MaDw9WdYMXjY7y5ZVeueIJp7RXjc1z8ObanvDh\n4FlsDSUXyWVyj0y2waW/5gz+WP3wr/58Dt/K9rzG4acc+oOh3WCa55zBXkPn/HbquzfnyHK6oPVR\naD2HixiPZy8835zHnELWAVnfHFemq/rBexn+lbvLePZFO3AKr/Kk43ucmE774/HmppOmPrPC6cp2\nEpoL6I22nKdOY9pUsFmFRvgn+6px2CtuPz3jF8ZCPXOGY9Sagc/ED98lV32CBlyOew495ehQ5LvT\nkmSJ9jkH6UfwgD+HonZsFnIok9nGjsOVDs+5R7diL3LQ25xCA7Zjc8t84kg0f8kyc8EzPZOzFly0\ngzf8bB47sdmhj/oO5+g9+1i+WD66zrnlmXPUH3n+8z//887LpVVOHTg6Oe+0KDrpl3mrHf1Ab/T1\nrJ51Ye7rgzGk05J/YutCABMexh1d8auczmRCsiGHNB07pysakwVgFOp7z/AwfjZxfUtd+/R3Tva+\n/2xsBHirP2FIm2F9nnmX+wsFLhS4UOCxUuBBHK+Y6WSa8/kUo5VenrqYOAFDqSKAGRpeY2HYESxe\nCSWIr7bdUwLKyQ1KIMFACBEAhKcTsoQzgURQCeBP/KSlYE0cpIdX6dIKwVjz1ufK30UcDmB3H86n\n2lNOmeLqnqo/y02Y0su7yz4bG0Kf0Kb8uadMMITMA+NqvhRmP9Y0ebOsfEoXBYfjlVJICQlG9aOp\n9DWvMkdxdJl1jtLUrQ1xilrpwZ5wSnsKcX1b6WcscrxS1Bi01q3TDdY1ZwAe8GI7icDB4EQGvkBh\nTCllFPhEw6Rr7bWuj2ikbbyCcsqJ4RtYeAUczQFGAmMgQy6YFNR2+eW5crwetXOUpn9OaFCqGbH6\nY17P8W2ellZ8BO+u06KtODzglyJuXBgRTnHgtejOqey0iH7qn7LqG7/ggOXyLD945StrjKx3xpRX\nAxlezQVtcf4xuhiUDApyQQCjUBs9awdsssQ/3bts5BgXJ985UzjDVwddMMHT/7lOg/3YYjhPvKOF\nGD05MTjwnI5BY0HeDJ4ZYU6JMUDxSfRhkJG1xsPaderVelWeg4bj1fpUd+JwhNNs79R99cCfOAbb\nmDJqbdJwklnbDFa4MN6TH+CrXz33xtNzc/AUDneRru21T7Uz+yxNWUY2JwEnBacKPQcfbW0pFzxz\n1IUOTry5rja9idPB5s+zT0+5qmOdcW6IGeB0KrwOzwNDgA/Yb1KIxvpUP+kV5oI8ugZHDh7HkYPO\nnCGcQvg3WZX+2RjEO+bYguX5aI7JOwq3SevamDDh21yBG1lmDXNscqCYX+abTQubF/rMWUU2o9WE\n2b1+zDaO+nWUFq3ACVa0gqd8Byqs7X/6p3/aHXw2euQJ2px1S4OnOewy742Z04wcyXhT5Vacw2FN\n3ys8wE/4FDdXQ0U6WtBJ2Er4uoMqaEQO44P4MXvJulYefdHVPdo6IWlzwYlJfMLmtjGfurE2tB1d\n1MUzbN6ZM2JyYQZl8SCbFfQCY0BvI6/lTccr5yc+RMb4DIQxU4a8ssmHr/vshDL0dzIJXDG+hRcq\nYw7rD/0RjnQsMsABDnOY071PUbAxlSUH6YH6Z25wVttE5KxeNxrAFODmWoN8tJ3jJM3BEY5XTnH9\naaMrWMrD0Ry1qWyecoQK5Bu7x5iqh27Wp2f0gTvHt09AyDfn0d2mKUeozWnjTyejO1nH6OIyFuYF\nGsb/9Tn866NYP+p/+TZuOd/xSRvjxsacc7rZZi16qqv8rB/cvYOf/hylzfzL/YUCFwpcKPAYKfDg\njteYKyY6GWnpYkxYXmkEFSFil5JBR8CKPTOOndZgYNuxFBMkBAxhS0HG/CkQXYQR4x3cQviIa18e\nHFJCKlu6vBlmf0pfy5R+l/ERHtorPbpOHI4E34r7rD/rdv+y/Mq9Sgy/xks7LgoiJcI9ZYPyB+fK\nhf8RXqWJKx9enC12ZDlcrjZFUxszgKveCn+WWe8rK7262o3u0rsvPRzlFYJzlFeZpxDrx+xL/dF3\nSqj1zcCjKFMcKWy9xqh/Nl8okpRpCj6FnaPNReH2PEPtofEM0ie9GQcURMoiA8VpTeNP6VSXQssI\nLUhjUHfhOzn+619lT8X6Dl+vr3HwPd9O3lCAm3fgKAPP6ATWvD8F+3XTa3vCqV9rnufo60SUf/X+\naDs5ih7yGDWcr8aHsaN/6MUobAwo+9LFxpyB4N7a5gQ0Hvi5K4dQfN4zvs4gYZgx0DgHwNF+Y4Nu\nHOmMCrDhLB+eDPgPP/xwP6WhnG+5/f7v//7+2jBDRdnork5jIs1z/Z/0emz38HTVD/h1zyC14cDQ\n5jTFV8uvf8YHjc1ZdCZ3GW2crsozWMlo9clcNFKHwfUbv/Eb+/hnNIIdPntD2w9cwqe0U3F11zrS\nzRl8gmMML6ErcDIy8DnmrbGcYeCDod4c0+vicQq/102Hj3CEBzzLc6+sTSq052ThGPRGgHUjz3zP\n4ObA4GBwZXSTe9aFOQye9eSUo/FUXx2XsZubkfKO8NuRe+I/+uZqXeMR5I45laOP/mnDjBOSQwSf\nwFcEdYXqm5No1bO8l9EvGMoKt03r5lE4wbF7vFV/Oc44hWyoWTfeWtDfNtH0N7yKZ7/c91z+J705\n/Quv8Jg0cF86XM1RJxl//OMf79+tjGdVJ0di8Kx5fUhGcDySE2RS/ACOK57RZU0/3YO7z6mPtQQ3\naS73+kwm+qNSn8+hT3m26fTVr35154VoET2r37PxN+Y2or0FwXbiMCPH/9/2DWg6WTwDDuETHBte\nnL3q0+PCS8yhR75y5IJHjtCzjJf66E0XdOLWJjzZzynYBjybEL/D1/F5fI6cAYM8utp0d2sTPP0g\n23zX1HxWFr8Di8PVutUX9fSHI5Oz0iak9m3ICuYIOebUZqdOpdff2X9pa5DfPKysMvCxSc1JDUd8\nJpjGwr2TqWjP4WvuogV9VHmbbvg0mqCbdHqVe8Ga0B4Y+uuqv9I4YI2HdexCRxfaab8xgUf9Am8+\na0ffhNKNuT7FO8gOjmtvI+nLkR4Q/ODsAC8/FwpcKHChwBOlwIM7XtEtgRODnc/uCQmCkhMkI5vQ\ndMKVkJkCRlkCmwAnRAkRgoMgVpfh4XISys4gpUMbXQRFwglucCJoEnbyZv7EP7ylPYVwRO/S4B9N\npJVe2rn+zbLnyr1OnvFIqAdHuxQCQV7jIZbX88Sv9JkWvGKGqFefvve97+3zqTbK1xZ8bhrgUx/A\nDE9w3LtmP+EYnrWljLCml/9U4vq79tFao2z71ADjlsHnpAWnDkXRpgoFEX+wrjloKa2ca883h6VT\nr76thxcwosCP5rVV28UccpypHA3a9Vrbx9snTLSLv3BYUOApuhRiBkAKbmPReDQ+wb7OeBhzDg0O\nIQ5//eAgad5NmLVTu9eB/zpltD3bBGv2bea5l4eOTt45NWoMC/rEYNBXY2isjSPHuXrGi9HjMt5O\nQ6A5+iubIwhvN6ZguNDPnOlkJSOCHLjaDC/GFbwYIbXlGS6UfvNGW2htI69XVjkMtct5awOGsaPs\n7K9+JRvgsObV78cYo3dh4k2++oMPn4lgoMqb4022MtQ5lzotmSMOLYwlY5jBxVhlAILBGGZwOdmE\nlsa1MOFLU37iVLniiXvlxcERk/P0BQ5XRjsewbnCWeBUJ/zjD8rHI+LL0l6GR/g8VAxHQeyCu37r\nKx7FIcVRwolgbKwrc9i64mCwRqwDa8i4Ro/WGT0Lj7V28F38l2w0dto6GqPo9lA0ua12o60+1if6\nqA0ljhgn4dDJqT98m8zhxEYbdFSnetHJHItPNN88C5W9LfyD+TJ4cAsX9/XXOsYPbZ44ua7f0vRX\nXznunm0no60jDhowqh8MbbsXokf93ROv8aPeGrRl/onp9TZKOQU7yakNONWWuQ0PJ/U4zugGHG02\nAs1r6wF/UmeGcK5f1hCY9Wkte5Q+y9zW/RFN1raVobtY/z6vYhOUc46sM370DCcn8fLWfTDQNdrp\ns3lvM8cr4+Q5+YuGNq/IR3MCHHSe9bSN/3K6wkE9bYCP5/ikiVf28WQ2nDT54aFtNps2XTkkjZX+\nWX/0MPxJHe0bQ5d1aFzxO3IcLbIJwUQHugjnKQegAzt4IVjgmvs2rqxznzGgOwg2HDhdnTzFD8GB\ni/bFLmH2Y0/49Ef+pK9kz3i2MbLhyeGLj08Y6tUv+pN5iw70nhebbUxWW59ghYv7gvWCd9tkcHG8\nem7camvOhdLAcH8UZp/XcurQof/+7/9+38wlj4yH7+XTA3yH1ziBoax4hlNtzjKX+wsFLhS4UOCx\nU+BBHK9HRInZypsMl4AkSDhAXIw3AtzJVTublADOj+qICSKCRMy4IICUdXG+Es7gUgoIZ2UIGIKd\noAVP/hRU8gVlZvqe+OlPOMy0x3xPkE0Bl2DTj3l/1If6elRuwlT3qMwRzJukzTbcu4wnZcS9cTKG\n4nNhwjkqJ58Sxknw7W9/e1feKC0zTHrN9OvcTzqu9+ZZiqt7uHRVVhvSnnqof2t/jB8l1ElWhpSL\nwm09etXKxbFmjXOOKUcpls+h4sRrr2JJQ89oF908a4fSynDDJzgYKK8cuRw2eFCOPAouJf1qc+Qx\nDvATr4Opo22wwI5PuK/N64wTHDmx+i4pQ56x0LwDa4VZX64D/3XK1PaEIa3+rXjgp+jn1KSTLk7L\nVEY/Gb8u9dGNgWHdCsrps3HDp9Ha5Vl5tDY31Gc05AQCA5+Xrw3zw4XP4+0MKc4nTkBtGidwGVoM\nJzxEu2CYA2QMnMBwqus73/nObqRn8EUL+IInaLd+lv/UYnRhnDOU/BkG551+ob2+GQc04bTLaY0m\n8WDl0Jthqy7j1b26HOBf/OIX91c0OTzAUV6Q734+n6PlqbLwNx7Wp1ftnfJy8tM6tjHLWO40/Fxb\ncAhm7a6xMvcZJi1mu2t6z+LGCh1sJlkP5nwGuXGyJlpXeEzzVh3lrQFrltOVzoUONp04qq42/peT\nvbaiExzDZaZN3J/SfX2BM1pyGnDCfLxtyOFvaMlhw2lE9+TQw5fMq+oWRw/P7l3lgT/TPd9WmG2c\nglnb8psDbWhympBz+CcHiX7qM0eb/lr7rSN16+dRW/VZe+bOdYKy4DbX1HEvTR4e40SlzTIOPrLc\nHOUUxKPwduXxBHjC12ZDssOnqpSRN3GPJtoRZt7Rs7TquL/LoB1hbW/iKA/PYzt5g8NpQ3ydjsFZ\n6jMBnG9o1PitOAcPLPOfTDQf/OmodcCJyd6ic/meKtjkKRlBdtKt8BGbXpz29ClwjAdnn3Vjkxwe\n4BgHYbZr3Mhtp5m1ywGKtwvytJPuoB/arr71iVeRO9rzTHfA08gk8scGINxtyJkLaEb+m/NkF/zd\nJ8Pwzb7vymFrLqWb1G5zUz9L2xH+9Ac9m1eV0Rf08ifRXsnP8aoKGOoU1MHD4Yve5es/R7P+4kPS\n8XO4i/XfvPfpBZd10vxP1wyf2joVw6e+zf4ov8Iw737605/uGyP0bGuQbUUX6MRrsNSffZ3p8i7h\nQoELBS4UeIoUeFSOVwSMucbAGQleh+FwIbQJQgKbcEqoVacBoAQ+23bf7aYx/CgJTt0QZuqCTSAw\n5glcQp7ABJOwJZg4DAhxbYCvvFCbtVXbU0CU99hjuLuOcD/ql3IzvXv9XPPq+1qm9FeNV3g9Gx8K\nCKWK4mDeGHfjaFzXoN6Kc7BKL7aTbVf2m9/85j5fVuW0csVrW9d9Vl8ItyN4E8fK7pWe+E99rxv1\n09hRkDlAnZSgcDs9Z7ydimBUWcOcbdY4Y8CYCxQ5347y2qfddMpmIfietYE3MKYp19qyycNZw+jE\nE5pD6jE6GRicD5Rt7VXP90Xhqz/1SZ3ua188cZj5+sa5wfHqNbbn24lXc1v6qTozfbZx2/fwXNuS\nFv7lifFKhhFj2Ng5rcyAUTbDSIzP4tMrb41Gwe65NpRHF+uTI80JM8aQjTlzhJGGxzNAzBFtcCTB\ngdKPRwQr2PAJ98a8PGPiD8Heeuut3dmQw1i+UL3uJ+y9wCP8QdsjPKW7OCo5Xn1qI8db/cNnydpO\nSlpfjRW658izNhnmZDf6K2MzyykXa5Phx2isLnzcu8Kt+IiElS3POhHMjxwOHGQc/8aeo7dPeMAj\nY7n6Yu2pX/B8DofK3VU8aTPbOJcO35nv3pwW65u5Hq3qnzwXuuF9DGWn2zixjOnVZqDjezaeGPXx\npYnTvAfrIek2cTl3fx08lcGr8BUn7ubrshxG+LVTexw80bU2owEYwjo2lZPvWuuXv8bKBvsoT9ps\ny/NRndJmzEnPWUfv9tbHi81ZZo3jtzYs8Fzrh57dXKqtcAqedgXPQvnmYX1d86pbunqzfHDkm68c\nev64iePVRoG5yqnoVKJ7Th5lyQFrnqyQRjbgVXAKL7ALKx7KzLRzdYJx27H2C+HSszic5KEZvmfO\nenvBWFq7XufHf9t8Mg7VA6M21rRgkgfmhrdZnIKmQ9HJ6Fo+O9O8IGfJZBvmeAkZYAy0h3/4PAXn\nm08rcQYamzknap/txrlOB8TLnWwGOzzrd+XB0PfSrUvzgBw39vQ0PE4/jD99kQOVHkG2S4cvxyfd\nEt5kmfasA330eQYO4+rsjW0/cFCua6Vt5coXVyZ91Fj5fAkctFtf6o820ArunegVs4H00SlY/TW/\nwWQP0XuMBT6GHpztZLg6ZLDxkN59eJ6L4R7N3YdnaeLuyRMneZ1Id1DCONCpfHKI45uuNstrd8I/\nh8cl70KBzyIFLuvj6Y36gzteTZoZYtDSCFpCgoLrxI3XnBJ88isLBqFFGDIOCB0CSD5lgNEgrk4C\njsAiYMXSCCMK3JHjtbYSKjuwN+Snvs2xQI/5XFdn2qzXvXKVOUoLzoyVq85MP7pXNriNhWdjb9yf\nbQ53Y0qpomQQ7pSzgnaqf3QvD1xxODEyv/zlL3/u3Xff3RWF5k/5wauNS3xzCkTLxiSaGgsGIGco\nhdvlhJF8yq4TrxR8vMJYU1Ibb68/+tMDr9FNB4s2KKIcptY7+Oo6zcDhCj5HKr7RRk346RlF9fnm\nDGUwMDQEhh6nrxO37p0s0Ab88RWxqwD/+igN/NowvxhG2vjSl760v7pKQZUuVC94PRfvhe7xJ7zX\nJuHH8WpMnIrxqh46C3guo1cZY2C94ruF+qbP3c+86OVkDUcQo4nRxqAzhowyxpJNtavN+DBmAgcg\nHBhwTm4JeIc21CVfjLmx0wbDRr455iQMQ5WhpS1j8tSDPpo3xfWnZ4b1R9t3ea07DqfmoHKMM4ab\n14vxXHDQEL3IXw5Z9Lce0dyasjGB1sbM51s4q6xhc0GoXXH30s/N7cqJweYEEtwznq1Lzhh/yCJw\nxjhhha8zMoVgnGtnL/jIf/SjoC9oIK5fno2h+V26Oo2rdOuR7ORw4FCxjqwDhrx15iJrjVm0rs2n\nGk+61YdoVh6+QCagixP8HH3mt1NyzzdebTPOab3qBecovk4Z9Wpb+e6NYXIJ/a23I3jKu2ae+zkn\nglksH2y8kdPVoQc8gB5urTjlyjll84LjyTo3Nwor/NLPxbWtjPvmYnhKK332RZoy+Au+wunqNCQ+\nA1dviuDXcMaL2AbmtwvOaOfSXm2ew/Mx5UWTcJp0KU2sr3ggZytnpc9imC/e3OB4pSOdkmXaWIN2\nojtebzMNbHOE3iSN7pLjzvjQr8wnMsD6oQ8ZCycsOfF9XsBYkQPWk1B/Jg5ks81xTjvrzzrUXmUb\nR3H00ZbAoaif2qALKEMXsLkOpme6HHrACf5wNpfodHD3rD0B/mwNb7+QYdY9ugrho+/w8Ny1Fxg/\n4bnWow9xuvoOr37SVcGrnHlr7eHDLo5TlzT0l2Z96qu+o515wAHv0hdroI0H8ps+k0xXn8NWOzPM\n8aifaz4862/l0Vegm9nINRdfbBs59EDy+O233943SOgSwhHsPePyc6HAZ4QC8Y5z3W19WS9H5Y/S\nzsG75N0PBR6145VCxdnqI/kUKoafMAUQhk44EC4EDUOQMCFw7fBRGNWTj8kTmCYpGJQSE9PlWR1t\nUjwJ2PKmEJH2JoVVwOlf/dXP+lt8ru8TVuVLC27p4My8c3BnXriJjRl45gDHCGOAQW/8jb1Tb3bZ\njX8K2Gwf3BSCmT7v5TM0vvKVr+zOV/NnrVM/Jp6X+1ejANpPehpja9JYMqwo3Rx5AmWXkkzhVM9a\np/wbb+PEueIVJo4ySn5zhhLLAGBYKk8RdfJBTMG2SRNPwSO0r457wauVOeDMueYbWJR0yjzHBYOD\nA5aTD04Zy2DAZfYT/nPeUYS9Buhf3xlJlODmnfpC5YNT/Enu/f2GRy32LEY3/e9kCVrqR4av8WUU\nRGN10Nklrz7rmzw0VF4+Q4cxxSH6bDOCGG3o7mStuWLOUOSd6LGGGSTqcQYzQsRgkg3aMlbmhbHi\nfCIDjAMY4HPUcTpx4htzuD0UzaP168b6rw/6L17745XdTqigj3x19B3PJW8Ze2goyOf04KRrbaIn\ng4vjXSwwcPvn6qvNMU42F8B3CeFTXJkZ14fqwc298TP3OF45ycgEY+dkFQPcmqo/1nttBvtUm5U7\nlV/9+47hZRwLq9Esfa6pyrbGPDP4OVOcUud0xSPNdc4rDkan2YwXI/2x0qH+3zTWn9mnxjd+hLdw\n3nMaOLlljjvh+nxzujr9iU9U/1zbwT1XZs0Dt7GLT+GtTohpN71WvXCoHfi7b5wro5z0yoGPv5KB\n+mmzBS8VyCJ/etSr4OYEHq7u2h44E+4O4MwP3QxuR/hVrTaUAVsb0mzW4fOcOfB1KhGv5lS0sZN8\nro/Fp3CsndqtfM+PKTau8LXO9SfawFG6NPLMGPpWKCc6nm0j2kECcpOjTR+P+rnSor7PsmQxHkvv\n8XYEJ6F1wrGH35qj6d7qmTP4LtngJDLdzEnH1cnX+NQmXOgINsetP45X4y6dHoAGZDU5gg7apcfB\nT5vklLejOFfJp2DRJc13cPC0dAW2JDj0BBtPHPv0OzqDYL1dbXzwu9/97u44pIdopwCeq3COxsrJ\nn+Xpjg4c+dRAn8eZsMhctg45ijfnfEUDa9NFJuuDeWIsjAt+ri/urR04K+eiP+ElZKPxQTP0XHGb\neMpbg7FTRtsu9z1r31o1H42lsTP+Tg7T16P7CvPyfKHAZ50CrbujNRdtlJn563PlLvHDUuDROl4x\nb8KH49Ufe/jUAOO9yYehY9oYtZNvhCBHDMWCQOGEIVDFjAmC0qUeg4xQtuMpphiA25XgqC1DtAqf\nhx2222m9BTr7OSGfypc+89yjWcFzMCuL7u4pAZX1LFRWmfKCtcbBK726FDeGIUXEPcWPYuakJMUp\nR3r1ijO4T7VLMWGoO+3qnzenMVvbwao/PV/i61Ng0nLS0bgwBl9su+MMCI5XpyetWUaDtY8HUJqt\nc6cXKMccrU5ReKWYsZgSSgFlNIPl1Tvl8Rnz0ry52vhIMPES7TBeOFPNJbApuuaC78d6TZpyCk/K\nPKMYX3GZg5wYFGcXA6V+Hs3j8lANvoz6t7bX2hlKq2GiTHM2ehXLu88w8a7dcIEjGhpDNJbeGqqM\nOsrIj0/UN8/gV9a9vC6wjD1ZAAYaM8D9cy4nn/HkJOc0YGgyTMBgkMUTwJbGWDOHyATjqG2w0Z6h\nYz6ory15b1KY9K5faNIfsfgjFTSZgTxFG4YsuhhjNHIK2Rri5JRuQ8Oa43i13tCPgevzLdYooxUs\n7TUW7oXGvXi2v96r42psjK+1q016AFw5y5wCMq7K1d4Kaz6vbYebMmverHff9+E1cSotXMprLfZs\n/PEszgVjhd/FRxn4eJ61lJO9esF9qrF+o1E8ybO+1b/yOWhs/n+8fbKCvOCA5jjiNDCnODpmvdug\nxxw7sD1bY07zc4xynjjJySlqQ8ichq+gP8p31R/P9dW9IM98sL7JVrLRhkuv63OOOZWmzxwzdKL6\nOmHswLYfabVX2stidbqUbW2eqqef5qsNAt+MdKJdm2S9jUo6G3zxmvAB0726R/CjXbgXn8LhIdLh\nP0M0qz/1Ib3FH1qShdazeeoNoF//9V/fndPpRPq5wr1O380ZQV1yMwelMeHco/uYo+YVvOhkNijo\n6H1LlXPPGIW3frgK4SW2GeoEKh3Q5w3MT/KF/oenk9/aMi9s9tHHBHmcic82h3wb8Bz0NuTodOxF\n/TWvbdCaO/Q6mxroCJ6yTvbij9qBM7nF8Wq+sT3RE54r/tLAP6KpPFdBGc/oSeZyMvcNXWXQCXx8\n2FwnP9FT++QwOYpH6Lt+gUMPRQ99ZhNnF5OPdFdykdxWnwOXg9rlHk8RJo49r/2pTP33vJahx5uT\nTvOyz5S92uTKN77xjV1P6820vdHLz4UCFwr8HAVaZzLW9bWuufX554BdEh6EAg/ueNXrJtKcRAQM\nAdfpC44LygNBQrgQEgQuZYKRR6hKq46Tjhg7o48hTahi8toiwBkVBCoDvPbDZT5Lm3itefKfYqhP\na3+kl3aqzLn+qtNFOTFWFBJpaG18KAbGd4Xf+NT+UTvBnnnKUxDs0jrhwCFHAeOoN38Y3ZSMo3DU\npjbCAe4MD4oBBWuGypRWf3q+xNejADo2H9bxlUfBN5aMwb4VSrE0v+IB1n5KsvUunXLvH3udVFQW\nDEYBZxJ+QhlVx9yhmJs7jDWnIijrYGqHsshpRPG2S2+eceaZD5x5YMMzXME0x813PMuf+vSnYPIK\n5l5B/wtoYN5Nx6s5ncFcueo074rLv89Y32eYuEQb+aVX3rOrMkf5E271pLmvvhjNGXoMM6cqyADj\nw9j0OiNjKqdB7U3Y6Gl8zDewwERzdcSuxiw8Z/2nfD/nUn1DB6+moiWnE4dTefUVPdAHn0c7Dihr\nhyHIAWseM5CtAw5Q/F9ZjiKnub2mebUZXtIaT7Abn9orrt0ZV2+t45m+QBbAjXEJv+bA5P3n4M+2\n3B+V1VYhfI7KVeYu4nCo3aMxrd3KKoPHMcatF5sVnNXGjU7ldD8HA4dbmw7BqJ2en2rceJnvzQl9\n80xGcHxwgnDSmD+crXg/5wS6dMruLvrfOIEdPpwxvrlsvDhNOItszvnUQY4s+MerJgxwPNdP409e\n0pO9Ls6B6VSaNaJ//qW+b6RqCw8Euyt4YLpmujzP1wn6JoTzqTrwVebFJpPh6uScjQIyGC9x0hUd\nyH8n+JSHQ3CPaFFb5Sl7Xbyrex9x+GlLvwTjUXo4s2vQxKlQm8v0HjrN5z//+f0UMP0FvWY/g7ED\n3X6C1XOxdpVd2zV+9B1zCZ/nhMVTrB/2lvLmJlsNLjYMrKXmE5jaFLsmbtoGH2xznkyix3n2FsvV\nJj/Aouebu+n8eD7dTj6HnrLmNdvPfKfL2YhXTrp1zIlpU9Dc59wkr+gU6GmzQ78qz/b81re+tc87\n9+oL9aN4T/w0vftifRXqvzr1lZ5qrX+8bfboW2OuDHzxZ2ufzopHw5ccVR9PRx/9I/+MgfGBu3yx\n9aEOBzNd1701jk7Gx7N5ct1QX2a/u4e7MaUL+NMwmwGc6NK8sca+Mj/NTX1Q7xIuFLhQ4OcpYP0K\nk2dYR0ehMkd5l7SHo8CjdbyaMISDVz0IU0IyJyrGTDBQrhh3YjuZ0u3yMR6cCvCvl+oRPBi5iwAg\nTKURTtpIYKzDkNCY6UdpM/8p3+ubED3W57Vvp/IxAQoVpYexSyFRFt0pPcYoJWJtr7bXtnquzeLK\nUxDMA8oIA5GiQVmh/FFAYlbBKV7heHaB66KcMGqceLUTLtRmMIqD1fMlvh4ForXS0d996WLjyPHJ\n8coINr7KUtqMOWXRvOMccuEPnG4uPEJwasG/+nrtmEGgvrmpDCet0xgUbuUpo+ZRjldKN4WfA4kS\nzxnv1Sjlzb0Uy72hT3+k4V0cgRRop/fxm0J9rZ8z3drxDVmvBHLywmUaO8qqJ4Az4/3hAX/qT/2b\nqISzNPdHZSpfPjqeK1d5zlInXhmcXo+38eaknldO0ZATCQ0L0c3zxKv0maZM6bP8TJP+VMNKY323\nWWXT4KPtG68MeGtB0Odos/afQcgI5pCyhshkhqv1i/9rx3oxFua2U+PWE0cfmCmQ7l3BLz6i78Sl\nOvWnDRD18HLjX179UEe7wTlqY6Yd4aJu9YN3VG7Cue372q9fs5+lKeO+Z2NCTjrR6TVh42R8bETh\niWLGuDQ0mnQC400JaCXUP8/0BnRxQouTz9y2kef0PN5sjpu30SHa3jZN4AK2i7Piww8/3GUKfRi+\n1pk3O/yRJMdRsjB8Gmt4uW9ekEX6CA5HllOETvSRPfimvjpVZ32SP9oq1GfP2pn0OypT2ql4rQ+m\ncIQ7HdJr85w33m6g29mkxOefP3++O/ZygkUDsNzXh+BLFzxXVpuzf5+UeNjfFd/GsPkadjaa6Dl0\nDqcKbaIYO39g1B9YeV7hVb/4VP8nnSorbpyMBRyMERuLro/H4LvmqbnJoWfdFGZbE37p0vBxJzdt\nftggsA7IJ/Bs8uFP5jHHLB2N3QgXbXH22gzU73QEDkAOas/gW9ucjxyZ5v6zTackL/SFsxVNbb7D\nQXnt2cj92te+tp86hUNzTr+UWUP9melrOeOqX9phw5K/ZK++KRudxdapdq+urnbbB/426PXF2qYj\nwx/9lUdzsrnLeKCPeni8/pLXYmWUn/rSxPvovr6EY/gq2/o2PjZL/GeLcTJ/jQs6+vSQQxLZi7UR\nXM9gX8KFAp9FClgH1hG+5mp9We/WabJt0qYyM+1y//AUeLSOV6QxyRh7du0ISYKcEElIEjIEB8ZN\nYJh4yhOQHCy+UUaRVD+GbSKatASTy7NrDbP8mvemPs8+z0V8RCNlK59QjS7qGiNj4yJIwTB2xpEy\nEO2DId/90VgEV1x5ce26x3jMA8oEhYHywqjghHNf2WAFp3al1zb83bs49Bk077zzzq7cl1794ImP\n0mb+5f40BaL9pGFpanHeOKXKoHB6lGIvUBA5BzhLzTOKvvWOH3hVigPWvTnXpyfMQfPFCQzKM2PV\nqYGrTYGlyFNCKbXmAV7hBAfHK4cvQ1w5jtdf/MVf3B2v4MMV7q7wNue8cscRSNHk2JjzcJavzt6p\n7QcOzzcjsm+8mtuTNspVp/TiYDxUDC9X/QuPNb0y5RdLn2Etd9RPZaxzr9M5DeaUpk0342r9cvBx\nsONLK17amm0Gf6ZNfOSXV9mZ/xTv1/6Yp07IcGygJXnqWTjq86yPxgxTcxYvxocZgfF8+Zw5/snY\nSWSbF9YbGMF2P59LX2k7y80y8PcsvzWnXaHnyiuTvHP/slC9WW7Wc6/MUblZ567utR8+Kw7hJjae\nnK50JI43mxZodLXxN58XYARzLqJNcMSnYN9Vf+4D7pwT7jk+OFvMfw5J8sNJVycqbcBy5qRzwi+6\nRKfbwHmOFTlEt+WE+clPfvK5j7dTcJ5rjwy0EUgmwXOefF1x0T91bT7aGCTTHFLgjOKEsSnCAeUN\nECfp6Nmtj/o6YcKzOVG5nsNvll/vJ+0rX/3ZnnJkNz2AQ4oz3Jw1V336xycX2igIj9oKnnRwTuVX\nfrY70x7qPvyP2peHbnQim7s2iF2clHiweYE+5i09KT6oXnCje/DX59KLq9dz5aXj852uRGvPAllA\nRyMbKi9Wp2flgl0aGGwHTmQ6FF71YjvxbE3Qz81190666jO539sZ+BfnJD0RHLIIz+OYzemqPTRR\nliy62vgfvRGe4LROOA3xAeX1xUnwt7ZPQTkV7tAHfjBD/Sit/vQsnmXgoz36K/7D4euQgDe9rNEc\nqPoBFh0WjtandcvW0gc2UPqrsso4AOOQggvNcraaH8ZEf5SzLsB2D/4RzhP/ea8vrtaWtl36BXe6\nOZ5q7fqcCd1Y0D46+iNZhx/gVJj0Ke0mOFXnEl8o8NQpYC3hc+wca8qzNYrvuNyvwfq5rJeVKg//\n/Kgdr5PpmnDTcIu5i5VrghFadsMpy14RI4wTWKfIPdtRpom6pp+q/9TT9be+um8xi1vsaO9+hsZA\nevXlg4ERJNzdGz9KBef5NMIrL54wSl/TStfGxMczfMQu9aornmUnDHmVlz6fpT/bdr69AuN7hF6P\nlV+ZWV7ZS3g9CqBroTGJrk5iUUI5P12UYeUpaQxEBpd769/pAPmUR3OPss0hR2B5pnx63Y2B6rVE\nJxw6EUEBb16Db94w7mzicOg5bcF44TBy8olzAswZ1EmJZig4pUvZZOTOUN+kzb57tnYY0eadWN/C\nS77QnA5O8Se5D/dbXyY+pRWvfQnb8ovBcHmeaZWvDbQwvsaKo9u/AaO38TFWHOWc7MYqPhHM2gim\neM3rWd5ReelPOehftNQP9GQ8m/NO/DH+0Nf6sK6UJxOSC3M8GXGMwAxA8td6tDatC2UZw7416KQe\nh7j5PXGI3uFUfETjWbZyE9Za56j8Wubcs/qF2uv5oeO1b+sz/IwZnugVZCfHOCs4I2z24KPWDMei\nTSj9q7/11dyY4/3QfX7d9vVP39IxzVOOSHzERp8TYDbn8BAnXTuhPWkDh+jzuvhUP7p75rQwVl7T\nhZOxE7TZeHCucAKRS06rklM5TcNNWU7Xxp6jzvhz9Hhd2ilnTlfzgJzMmGse1WZ9D+6OzKc/lZV3\nlD/Lukd35cypxkI6XAVpeA8eYgPUJibnqzQ6mY0136Bt81Wd2l1xAVOatiqj/BqUEc6VWevc1XO4\nTPjwqm9i84ND0p8x+WNJ44n/OrFMhzAvOBPVu06fjsqEx3XyGtPKVlcfpJ1Kl1+/KmfM2A70ut5k\npA9qg5wxT8mqF5sz1uY6XgYGZyu9zhoAA03oB+yPObe0aZ4rj0Z0LzA9N//xSxvw9Ei40CN82oKz\n0KcJtJNDG7ybBn3Rhs0PjmMOXvyYvWR9crzqP1kKf/3DxwV0InOtf4cNbJbUb33QH7zcxemqHNjT\n0QreOiaepRfK73nmrWnKojH8HZrgREY7ffBHbPRi9NRveHzhC1/YN2LR0pgWjtpY8ajsJb5Q4E2l\ngHVgPVnzeB09urVj7eNHR/yn9XNZM49rZjwKx+s5kphcR0qSSZiiVn2T0ukNO+F21CgidoGbfJU7\nFZuc1y17CsZTS599dk/RIKjtnBKA6EwhoPRSBoyHMMcE3UtHv+BgBpgCmPLbBW+3JlopL0T7nmfa\nXuDTH/mVhUflSvM8YewFtp+ZL635U1n5swy8OecoBZyvDC75tV95z+FRW5f4ZhRAS3NNmHPLs/R5\n6tSmCuMY3SmYnKecNwxkCp4T74xUBmbjCSZDxHgyLF1OQzot4XQAWHMcG2fzlpJvE4czz4kjiq3v\nhjL4GH527NUNV8qx0xlwcFLQ5bQEhXmG6kgLT/fSKf4crl4P9AcK0wgIt+gVnGIwHjLUF/i4D9/w\n6xmOs+wRztU3fvo7y7ufc4UhzqHA+OSgMG7Gh+OVYW6OGCt11AXP5Tk4tTfbgffEfc07wvuppelT\nfYS7Z/OY4xUtP95O2OHzDDcODvnmuAvdC9YgmjOgOLrNW4YXBw95zLBUl5OHQ8AnIIwL43gGZVzh\nVDzLzHtlC6fKTpinygTjXFxbrwPjHPxXzat/4hwG5jc8XdLxM6e9GL42k5w64vR20sh42ZAi+60T\nofURTmAEU1qwy39qcf2x/tGG/DDXfRrGRh8HtJOCHJk2+DpJqiwaR1dwbkIL5V8WwBPoTQ4Q/PjH\nP95lEF1shtoW07mMIQcxvkfeWbOMMvlg4YscOT7JxRHF8UG30b9n20YzmWodKx/s2iut+VW6uDy0\nvEmYbXRfbK6Rm+apN12cvue84WDC08lgJw/xmfpY3XU8wHIpJxaicfFN8L7rsvpxKoSvfuDTHJJ/\n+7d/u+sn9HTzlAP+i1/84s6POdvmuJi/AjjS17aCf6r9aFy+59Jm3dLF65yRBv+ZLk0AQ55YGgce\n267v85Mj9Dv2BSeisvrNVjGfORk5UfEx84fTlW7QJwi0qQ7YXfXFGrLu6YdkE3mHXnRQOp1LOzYp\nyDD65+p4BXPSIdinYuVfbI5j/WO7wo1s9M1TedapfP2m+2pf/wX8G8+2JlxwYbtJJ1fpt9aHNa1v\nxnvOhfoP3+gdnvXjVF9m3erQE8CHIyerTVu8lOMVTvLZ5fiQMbMebWq9tZ167RMuwQp+z+HY8yW+\nUOBNpoD5X8ATrB36tliedTb9LJUtVubU2q3MJb5/Cjx6xyuSEHomWELBBJzPlfEaEgfJx5vibGc8\n54t66hSaiHNSn0tTr7bdz3qen2Kov+GuT5QRSsyzTfmmbLinqNtBprSIOU3VRX+XgBEYo0mX8mqn\nPHH3tb2W6Vn+Wlaa/NJn2cqXVhnpwprec7Hy1ZGGoXF6UV4psZS5gnLNKWXrb/mX+OYUmLSvNhqb\ng04vcmB69dOpU3OO0k0xZhSLzV8OTs5RhmoOIcq3U61eRTSeHAwU1ZTQ2przoPGEk7mvbd9M++//\n/u9difXqutN6TpSABU9rgILPSHRiijHktAIFEy71r7j2tD/TpHO8ekXQ3Hu+fXLAWtQ/5Vzwm/MP\njAnP80MGOIYPPN27pIf3pPEpXJUX9D0eA47nQm2hMccJx6t/unbfiah54rW68FC3+uCFc3H58uBb\nuuc3NeizYN05XefEK5lK2fNKpdcxGXGMYY5XjiBGFuPOesArnbDiXBUYrOo7qe5tFDKEQWlTwavb\n4Kk7Q3SP3sWzjPs5t8prPINRf+aaaSzLOwU/mE8lXvvTs5iDhvHrW9l4pHsnj40Vg5ejAk+dtHEv\nWHsCOpUG5ptAN/3QP85o34a2ca+PHK5OtdlEwOPRRn/nFS8rbSfSNX4al3NFwVSO/PDGxB/+4R/u\nTheOJZvj1iCex5kkhgu88TfOFs50m8bkyLNNpyMHrT3OG3LSutSGPHzSxiSZqH5ta7/xbg54ll+o\nL6XdlCbqH7UHvjlKp3fKlUOKowa+NsLb+OS4CWd1wHNJE8cj4F1byj3WAMejEH3l1S9jj6f+8Ic/\n3DecpRt3Tjv/TWCT2LhXVxytg6NOY1y7le+5smu6uq6ZPuHPdDDmHJowKzfhlWb82Hb+4IoMIUvo\ng+STMSY76ObWqHXB6ezZGlDvxeawpAuQV2BZA9YQXc18yokhTzqeSKekK3aaFRz8QdscifRLmxVf\n/epX93LmpPUYzvoh9Lw/nPlRns5I1trgp++99957u0NSX9Ctz2jBWV84Xs19zlWOVn3n2IxPtU7D\nQVzaHLNo3hy4Ke51KzjaQVPO1n/7t3/bT2DjYehrE4hzGN70Brq1dLr522+/vfNbjuNCMHsGu/6U\ndokvFHhTKTDXont8AP+Kj+o3Hpjc9lwd95e1ggqPLzxqx6sJZOI0kZpEazqymox2BSlpHDOcHj7e\nbbdzwlDW80wLvrynHghP/Vn7NPurjysNPBOGhLzXzBhhFAn0o/xSXhjZFnz0V0cgZCcjWPOP8Nkr\nXuNnxfsaVW5cZCock276z8H2a7/2a/vpCspQgbJQ2ZSZ8i7xzSkQLZtTzRnPFGxKL8PLqRcnWuVT\nkv2phhMvTvkYE+WciKVo4wmUb44d5RjRjBKKOeV0htqTps3wABMsxg3HKxwYMpwVFHMnZyn85j/n\nk7I2fODholzCo1A/ez6KtU1BBb8Tr5TrDEkwWuezfjjPtNqT517cWm3eV/6ofnni6s+0V7mfOAX3\nOnDUCwe4hm/w0JmCz/HqdJiTlhwKHOTWMYd7RkntVtdz8MLF81H+Wq7yTzGuf7Ov7s17684f2Dhl\n5nSkYEPAJodYGa9dmveMQo4ba/H5tlHgu4tkCfg2Ijj62jQxTk4UeU2zUz14raB8uHQv/RTNZxnl\n1iBfEJvvcHbFs0uvzGxHHoeWS3ny0VVdcGb58JYueO7yXLr6dxHqa7DDR6wP5DeeZCy8kstIdyLy\n+TZeNqaMwcRtwut+9qd2XicOLhhgr+Fl+Wv5U8/B0UbjVnvmI9o45crxyjHpNJu3GjgtOWJyXoFT\nPW1NuKfaPpeu/oQ5YauHVzuZCq/3339/L0s38x1WDgrOdKfJ8Tp6mACGccTrOChdncrTFmedU6P6\nbD7bZKfzTd64A9p+6p/n8FxxrOyMla0uXKobHPEKpzrNQQ4mzps++WDj3zjY2PFHPDYL0CDYtVcb\nK/z1Wbn7DOF5rs36YI4e0U1a85czkLOOc8tlLtB1yLpOO6NX9Ax27aNHaa9Dm7Vfnk/BLT0cimf7\n816+NWDO0vt8RsEmuPlr3dIByRkbec825ydHM/2OM9Z64KDtZLfy9MF4uPkEDtlVsBbodhyBnK7o\nyanB/mFX/ud//ufufHXqVDtvbac0bR6SiU4Vz6Afxkqf6W6NqTKTDsrpo3796Ec/2t8yof/9yZ/8\nyT6O1rugPj7OJiN39Q9cfFt/c76s9FO39mZeafLPhVmnctVd86RLMzf75JNDUGgvoBleY07iWY0j\nmud4NQYF8GpLWnO5/Et8ocBnhQLWAR7gwi88Ww94gNi6W9fjZ4U2T62fj97xGkHnhDLxhJmGsXO8\nMhA5X30DyqsphNRRqG5MfX0+qvMU0mY/3Ne/cJc2y5Ru4VLS7EZSYOyeSrOr2olXTiTCHv3BkC9g\nAqV5rs2jduSfC+FXrA3wwBd3nYNx07zaWmFTpPwbrFOHFLHpHJhl4Vhfb9r2pfwnFEDPAlr2LKZk\nUt44bvxpBMNYGY6DnJ8MMOUYIk4lUNQpop10ZaT1LdcMzNrRxhy/ec/5RHn3CpjXrvEXcBm+LuuF\n4ON86gQgPkSppJwnIOtb/er5KNZ+J145/ec3Xqsf7rP+xHum17/WqFho/QbrVP1gBafn+4y1Pfuu\n7RVfRgm6/+M//uNuwNgw4mh38oeDz3gZu3jKCjN45/pZmfvs+122Nfs654V5y3ji8LHhwHgVrB2G\nk9M++KO5Hx05Xjm3GaFOxpIn5K/TdR9va9JpcSfABfV949W4MG4ZxDMEUxqavw7dgxWM2Wf3rYPZ\nvnWPh+A15hV5aIPFuoQrWOoKYvoH/oNm+swhgD6VV671d4SH/NcN4RMc7RhHvMnpxr4VaF04IYXu\nHOScFsaudRF+wSk+lV7+bcXNw3PtncubeBzRXJq+gsHpklPFt7idwLKJx+FK5tsgWB3SE/7r3hsz\nV/0pDi7nqHXzN3/zN/tJZfzLK/bknhPlZA6HDYfQ/KwWOOAqQ364fKeWY0r/OTXpdsqRo+Z3bReH\nw5xXa15ljuLZt+rNsZXW+Mz6dEw6p5PZNjrp8zY0OaCeb5sEHF0c42QvegjBn3C6P5dXmfuI5zif\nai9aN0eVK00/XOjjxCW60Id8woVujibGmRPLd5rT4dVpLMIhWKUf8cBTOL4sPXxfVu5UPtwKYKEF\nXsyms0Y5QOlYZBFbxScybLC6pwfiz+a2OUNfc1LW2rCO8b3eruD0s0kujxzDqzmtvR0DJlhkmLmo\nbesMzW0k4qvWzW/91m/tGwE+S8BZGh2P6But9a0+iqXjOxyVPuuDT4P3B3/wB/t8x5uro6zxJ2/c\na48jOeeLtMruN2d+KnumyJ4VrrNcdcvrWUxeWrsfffTRPj/NTeXQxxsxHOV0Y7RHS+VtAL61ObHR\n3zhOuGC64tkTj8v9hQKfJQpYB8nQZOfKcz5L9HiqfX30jlcTLSYckaUJTTjPmDdh7KQrpk9QMhYJ\n4EL1ei6e8E+VqexTivVr9sfzqb6iJSWDcuvqm3sZk4w1BiWhXwjWbEPe+lz568TwoEi4cpBRciga\nxtj968A/wuFUPxjaXtXjeLX7jT6C9rs8wzkYni/hZhSIltGwGBTjTel2SsuJJK95MTaVsXvOOOZQ\no0xzejBCOGmd/ri6utoNEc4dRifFmoK6Bu3XZrF2weDIo7hTup16paxbG9pOIYYf3sOIN0/VTSgG\nrz6ubR89q8NockLXP79zAph78bvqgFmonZ5nXP/CYZZ1H5yZPus/hvtwDJcjXNGescVZ+OGHH+7z\nhkL/q7/6q7tCz6HCUK8umCkxreG1ndoTV2+mPfV7/a1fzVl9Qkt/8vHBBx/sxi66CspyeHCwiq0F\nTkb080YAo8o6Y+SSFV7nZGDZEPFdSUYY3s552zdeOf7M7/DQDrwaC+kzT/5NQ7DUC9apNHLOOqdL\nOE3IkOdMZgxzGDPegwOG9Y4n2ehVnrMMLdRhwDvBs84vOKD3uqZ3wK/xU5/E+Bf6c9L41p5x4FC+\n2vii8cM38TG8MzyqH40mKkdpM/+27luTwdOuC26u8Ciu3BrP8pUtzZhxSKMN5wzHJecHBw6+64Qo\nOtFBos0K/zaewyf8isE2VtaNU+ecGOSLtfXuu+/uJ+Hgx2lE33XC32nm9F1woqMx5oxzUpQssSlS\nO9oX2kDZH7af8j1XZqZV7mXx7N/ECU3DL7ie6Zsc4fR3G536b6ysJZunnM7WYRsFs/3gzDT3p9LX\ncnf9jBbXxWXSPBrCzxzgrOrtHzwVP8Jn6DneOMCj8F9tzTaDM+dz7cy016VDMF8FzkqfcMZTOVzN\nCX3G22wikO85munr5Aj+bS0rR2+jv5lXeDLbxoaYuWZTjYyTR4bRD7yF8Uu/9Ev7hoUy3qCxrmx+\nkAfgko3oBd5v//Zv7+U5ujkWj/RLdNCPozlvbqffOrXMsUumekuHI9K8N5ZCtJn0nWmN9yy7Vzzz\nM2EdFQv+mle98ntGG7aizyW40Bdt8Rw2lDfPBLII3/rf//3fXU8gj+afbU46xifUa55qr7alX8KF\nAm8aBU7N8dZasX63ForfNFq8af15tI5Xk2pOvHWSzQlGeFFICEWOF4q02KcGCGhhMu91EMGa8Nf8\np/QcXY76U179USZBJi1nJ0OsUz2UfwbKdLqqo64r2gWn9Nq4aQyHdqbhIHC4MmwpSAS7Nm4zRJfg\n1ic73hxfHK9OBsFNqI9iZbtuE6fPEqzo2Tjoe/ecN05recWM0m1dW9PyOW8YGk71UO6cTKAceyWN\n4mZ33St3TshwMjRH1Z1jrb2exXiFE0GM8jZyKO+e5VEiKf3mqbXBUOTgwIcE8GtLeeni2tgLnflR\nn1LPyHznnXf20036F8wzVX8uS5sudWu//nvuXux6rCHcw+8IV7yKw4wTwqlXY+JbbdavUyzGzRqe\ndY2LMGl7nbbC46nHzQH9mP22xmxg/OAHP9hPe+O9leX84SztdBHaWafoylEVn0x2MF7JZhsj+Le5\nbD1yvDrh4lThXTteZ//m+K/jx3FFb+DY8D1Bp92dDHWSzClDBnabkq0p/cSjnMjHo/ADtFGeAc2J\nt560hoO5B8Y5fFb8zj0bHxe44eT0lIsxTJ469e8UuNfnO7GsPBzOrQHt3hae5/ow8+DVnAs3zzPc\nFCf1zUHODnShK5IXno0tPmGTDq8wT297jCbu7uFTHz3P/tjMc8LPpz68ck+mcTp+5zvf2WUDh6p1\nyhH3k5/8ZC9rHgavcQWXU8h89AYFB2Zjr71wQGN1BOnhIr+0/eaGP+qvdCxNn9y3SWNMOMF90xbP\nsAFpPDq1a1wmr4Cz+q7wXdE7lb6We2zP+iTAnw5B1+BM9L1bn1Mi3/Bh9DG2PntkTpi36rZm6v+k\n0dE4P7b+wwfOcLXxx4lKDyRPcjZzuuKv5rE01oYAAEAASURBVLeyNiKU5dhDK+vGPfuBbOKwV5dN\nYc2joXs0Q7s26Tlo6YBgkIM2rsCIbspbi/Qz6+lq2wRxAnbSOnqLXc1VZVz4EJnoUIG3SjgirYfn\n26ludge45r+0aCGujT1x+5nwS7vrWJvCxAVt0Iwz1SEJjnJ6A1ljQ8shCc5tNOdgNpb4r3rKcHr/\nyq/8ym5rGatC/as9bUqbbVf2El8o8KZQ4Lpz/GgtThpcF86sc7m/Wwo8Wsdr3T43qRKClE9OF7tr\nBK1TJ3YpCWjCLQYdwwZ7wu2+Nt+EePa5/s5+TlrUX2mli1MU0PmornwXpZAiIuRkCo60WdfzuUDg\n2rl2MRS1TXg7KUVgG8+bwDvXVnlwFYKrT9p1eusrX/nKbqwwyipX2Vl+B3D5eWUKoGVzpnvPDDIO\nT4ocg8za5hwx3xgalF/jZLycTuUo9f1Cc4ei5w84nPLhnDWucwxD1pwtzz0FG/9g9FKKex1KXe0y\ndpwqoWgrq12ODfmcsRwzHC3wpFgzBjhC1nVU+2scHCcvvva1r+1G1eowXOtc51n7+lmIzj0/9rj1\nBs91HOWRA+aKf3f2nVf0d3qNQm8OrCdS1IkGK7zHTovbwK/+zzkBrnQ8l/PDK87WlPmLRoxAvNlp\nV/MfP2ZsmeM2PwvWkbUriF3mHxgcJ05o+U4jRxdjTFohvHpW57bGp/GGi6DvpXl2avVf//Vff/bv\n6fpr0w2uNkLWzyKAgwfgS+YdZy1DHlz8yYkodW1mglU/tKluRrW2XzcE0zrgtHJq0NjB72pzDNik\n4nTFL3OOr22C0XWbuK3tnHvWvjBpVVrjVf3K9FxcebEyLvfmK35tAw9v91YUXu1kGSc5JxbnTOXX\ntRH824rhFI5gzv5wCH+0nXQ1H3td10bFd7/73f30mDmlLj7ntJyyxtz8K0x62QywCYkfmgecr/Jb\nC8a7+3CZ+ATzJnH9W+GVHn5ONPqcjz7Y9BBszpDf+sxxA99JK2U8w1kM1orv+qzOYw4rXcIffzUf\n/vRP/3SPrV/rGW38CZz5SzepfHRpDa/jigaVfcz0gJv5TQfzWQUnT81v+rhNVacon22vpgtsQJtm\nNsnpbz5x41Qr/pcsSo/CBwpoJaAVHQGvJI/obi+2TTTyTUCvaEa/5CT0XVJriTO3vL3w9hPcmU4u\nBgde+NAf//Ef7zjrl8MCPl/g80jme2PaeE48JtzaFNfuTDu6P1X/qOyaVhsThr6hGYcr+rPXevPD\nZzBssKI//mutczb7I0NzE8/1fwa+q40Ht7mpXW0dtTfbXvG7PF8ocKHA//GCy1p5XLPhyThekS3m\nS8ESMHonMSmlTjoxmghdO5ycsNITuMo3+YIjTZC+pn2S8+b9rjTwXP9XGsyy3c+yxoFiwAAXGHwU\nGuMC1grvOtSk8DDsnapyDx4nAIFuxz+F6VVgn2q/voHp3kUZsAPOcGaoMLhnmP1rPs78y/31KRAt\no2NjaxyMN6Xbv6tTvDk4OHgoZilzTgVY5046yKcsU4w53SjHTss4wSA0tu61N402bVEWteeTBnbk\nnXQwr2dg5HC+UirhknPVWuB4NW/1gbFEyZTPcWVdXCfAERxOKY5XTkO4ShfA7v468JTRz+gbHhll\n14Xx0OWaF/A46j8DjdOds5Czwng6weIVNsap8YoGYIAXzJku77MSjuaS+WHuWnNO0pGp5i8amdte\nnef0MafMf99rw5unrF3pF63NOePAkcK4tDYZZNZrobI9G+uj8S7/ZXFjPGGUpm7p8LfufarCRk99\nNofwkU426YO+VxetOLz+8i//cj+1ZN6B2ale/3zNMEc/6dpWH5yJR/B2wK/4ow/wsQ44ajgWtYPe\n1gAnd8Z8TYSP53As7y7jte+e0Scaadv9Gma9o3zlg9W9GM05N+iHnANOmHHWOEXJgWN8vUVhblfv\nrvkCPCeusz9O2jm9j5fRc+HiDY7vf//7u1PfWhSMuc/gfLQ5LZ2EpPcKE5Z75TmJ8EPrzjqWJi+a\nFld/wtiB3uAHLDQHA+4TNjDl4dsOTHAeW3fkJWc4/mDTgoOR/G4swOkCOxyLb4Dioywa3eov/SMd\n6K//+q93RyKeST8wH7y+nQ6uQ9U76lx0q4wxkIZHPMYANzIGP6P/mefmu3n8fDsZ6lMD5oZyTlo6\nSekUpZPTTn9zmqbvcPq5POPRwqRHcwktXPEL5dBr0sra8QkjJ1PxDOtIvjBpCb4AdveelYWfz4iQ\nG5yw+I7/lHCK1pjCVahu8MNTPEN9qc7MO7pf6x+VOZVWX4IBN+NCF6AvmK/kp80e+nJ8VT38yenl\nf/iHf9j5lTbIf2vdxfnM6Rzs2hKXps6893wJFwq8yRRoHdTHl83/db1U7xI/PAUeteN1nTiYO6FJ\nUfOaiFNmhJeL08XuJgcs5wnjg8ICRnAIxBQOaQnkhqGyPT/F2GLUj4LnuUBnH2de6TMNjDWdcpAg\ndXJGebQmaL2W6eTCPHEBRu1PvKQfBQo3JVI7DETC3DhyvoLbmF0H1hH8o7SJX/031xipjGYK1rNP\nd9WrP9uvfnmX+GYUWOdYtEVXY+4U43/8x3987uPtD3qcYjAX7JAzPpy8M1fwBHxAvtNenPe+acdh\n4nU0ipwxnWPlGXyKIAMc72CU263ncAVHPnziG+o4PevVKO2aj4xiZThLzV18Rlr8iVJN0Vf3OgGO\nHDVOvHL8MzBWZX724zow4acOvBgycKHsWmPWnP4FM/oHt/SeHyJ+GU7yzQEbbv4ZmBEvzSk2JykY\n78Zm9kU+OkhrfPVN+iz3EP29rzbXvqIHnkuGcoL4ZIPXLa0DbyMwpKwt81mZNhU8gzVDNCzdM2PS\npppTpE6QmtuMMhsp8itbDJ70YE34N7lf4ak70xiJDEancHwywGveNnScqrIOOeaccuc0FsJHTBfB\nm/78z/98N/gz6jkEOEa+973v7XVbY7PuxGEHPGD3fJPY2HE22PAhj40P2pJlrugcTO3Hl8IvnMKz\nsrcZ10Yx2O612VqceTP/CI8jXKsf3OZ1b0WgEx5IhpiDZIo5jh+ap3gjh4q0I/hHeNw0DW7hp+5s\nx4ncH/7wh/sGoPUHJ87I3/u939sdT+Fl/Iy3z1zYLOHExOdniK7mrzXnMx+rQ1P55oLyE5cJ67r3\n9U354E34xoPs1U+n6znCzVdy3clcG45ONtIzjYkA5hpeF88V3n08r/1Y+yA/O4fTkTPRZoETnVfb\niUyfDHGiHh9FL/PU/LB2Wsf1o3FoDDzXXnj0XJ3HFJMzeLONcDFdzqY7Bx2eRjcy/9GHY5buZh6Z\nXy59I3N8Hkosjc3yYtugp5uZk8pEF3TEu8HmYLVmlCcTtGNt9VkCugV90FqctAwWOpYuNjZ0RryZ\nnPlo2yyhc+I9HOlOeJM55rx+hVtwgtV49SxfWunF0u8i1G7teNYvuiVdGr3QUb/QnG4cX5dnnOgW\nxpS81Feysj8yRv8JWx+0Ia30u+jXBeaFAhcKXChw1xR41I7X2XmKJyFJ8HHEEFZiDlfOPsLZbhuh\nislj+hg1wSWNYKRkS09AgAduyqD2Eiiz7ad6f0pA6SMhyLAg8HJ0Um7VQR8KMQeXe0E6ZeP5prRz\nZDnNwzClHFJ0nBTy2gxlBk0TksVgXIe28DJGYm2q44KHcZpjBeZthOgUfrXL2OZ4deKJIrCGWX7N\nuzxfnwKNMbpH+2pTyswpr5g5zcAIMec4Jp1U8mqYeWwtc5xyvHF4Ptsc5Ryvxo6SrnwBTHPbHO97\nYPiJzQObNxyuylAYtcHB6hl/Ud78xGPwFPdwtoYo6GLBCUBwKKGcOs3b5ky4nIo5uOD/m7/5m/t6\naz2cKv+ydO1al07AcVB7RjtOB+ua4YYXCCuO+vfQ4WU4yWcQkQn+GdhJEgENbZxYy6ecTvqHvp/F\ngG6Nr3sXeclw9S1Bn2zgeMV/GbzWg7VkvVkLjChzGwzXyqODibbyrVXrisPACUMXWcJAM/+UL3Qf\n7NJfJQ4PsIRi6Tb2GMKcrj4vggdYfwxgxqDTop7xgebJrI/fcB45ucQxgleAS9/w/UHf5OzEtXrB\nQNPuZ5+CPdOuew+mdW4tcCzCBR7xptY4eHCML8FjtitvPl+3/euWA3+G9Tl5D9+Jc3XgttY5wneW\naV7bnEMb42kuow864NX4Nr5O3uOL5mV6Um3fZgw/V7gXa4Mj8qc//em+AWK9oQM+9ru/+7v752fS\nSdQ3zhyunDlOBpKT+tv4ggc2GBxQ3qTg5OFcIsMKlVd24lL+TeJJ+9lHMKw58tEJXc4XuiPcvGbM\nAcXpanPTvG2NwGfCcd/zmncTPB+iLLxnmLQ2BnQG+oxNYOPqbT7r2ps2dBuyjL5u7uLL6fDmtDTy\nXBn3E/a8D4eZNnF6LPf4K8fzv//7v+/6nXnhpCvnMx2GDPKmExtETHahoXlj7XKeOiGrPD6ON+L3\n1hd+bS6igfLWPNnEqc3pry4YPlvH6Wuekg9o7jMPHK/wQe9JR+17djVP0dM6paPaaPiXf/mXXR+z\n6eOzWDYiO8GrzbWu57k+1/GpvTX9Lp6P5g7ckj/mqj60IaB8/cF70ZF+Qd7iu4LvFHO8ogOatu5r\nKxjgXMKFAhcKHFOgdXKce0l9DBR4tI5XkwcT52TBqDlXCUtGoItiaQdSPgVTwOidxiEsKdSewZHv\nnkIttCvHAUFoa6eg/FMPCWB9cXnWf8oZZYwyy2mKVp4ZwtIovhxS6ErhoyBQACl4FBKCkbJOibEj\nKxgXTjGKBAWRkpThSXCmgCh7HdquQtVz/QDjLkJthl9tOnXBQPFaHoV2DbP8mnd5vhkFJi27B8Ha\npfQ6zeDVSw5Sc5Tia52bx9YvZZshZ87ahLnaToVwdnDs+A6scuDiF9a8DRxlKd5t4jBuBWuBQcrh\nwilk7Dlpe5XNnDfHzW9rxgWfDCBzXhsUSkr97M+83xs78QN/Th9/hsJ5Y052najys+SjNqRxHHNI\nei0azZyUcepJPxkwGeBr/dbHzxp4gBs4hVf4FENHHlq/2Jz0DBqnKfSREu/UMxqaA2ud+FNK/gN0\n7UGbRLdoEn3RzXx34pUzkiywDq0DMoNsJUPxeo4qgWxFQwaXtQEGuMGsk9aKcWDcep2Sc5OBy4mU\nvK5edT2HY3BuGoPlCnYw4Wk991kFvAAu+AanvbjNnXAIDhzc4yW+Vec1YA4StJKOHngUY9LnahjY\nNmwK5t7RvKudyt0k1i64M9RGOIkL3UeP0u8jru3ZFtzxaDoIPm6+cH6ad+bfShswXDN93k/Yxhps\ncAVOKfDxRc7Y//mf/9k3FGwu0HHMS+1Gm1NwZxs3vV/xn21w8HCk4mccFfC39j7/+c/vJ/k5aehu\n1p48G4d0MW+HkJXk5JwLYJsL1t/Xv/71z33hC1/Y5Vt8H+6Vr8837c8sP8e3MRLjGWSv7zySR3R5\na4wsonNxQlk3xqZQ/Z6LayO6FZf/WOPwDr+Jt7GkixhzTnSfDMFTjDeeRM9gC+HLdB5jSrc3ri5z\nxMXJ6DSmOULPN861qz1jLZ5th89jiul/Tkg60W2zj27GMerzX/gpO45+aO7LRyuBPEnHIWc4Xul2\n9DKOXOvEmueIRRsbEvQF+r5vkPcdczSztoyF/xlgf4LDFvKpAY5wvCQ+q+3o3L0xxWfIF5t0YFnf\ncLLJQFfVH2M116P66grWg/s5Zg81dvVvtj/T5tya6e7xYJ+CYDNypjsMIDjB7BuvHNo2GNAT/OqL\nZ9/3SpefCwXeUAo034+615qY60+5U+lHMC5pD0eBR+t4JWAYdxQLxgxhZzeTskFwpiA2OQlZyhqG\n7ZVAyrrdNvkMQcEk5UjkpHEyirLtNUGCugncxH24IXn9lqdwQicCjGJLyFNEKAouBgY6uSjv6G2X\n3at4TiJw0FDeGaKUYbu7jGXKgcC5hIYUIoZnjtp6oN3GCU7Xoe1abn0G+yitNl8lPoInzfeG3n33\n3d05kNIqXZh9mWndvwoen+U66OkyZyZtzR8OHk79/l2W4cz4YFSIrelOr5qDjBaGxy/8wi/sl3IU\nZQofWHiKeU7xxUu0Z9xsMDC0OWpz2l5tDlB5DJ1OKVDuOZjmWKtrDWUEU+bhFezZp+uMMz5GsTcH\nOQG01fWy+mtb6uGnDJg/+7M/29crJyVDjlPICSMbK3CvbnF9LJbe/cvwuM187YYTuHAIj3BCb0YY\nR4WTYvrIkPLdNEa9sTW/hGAVl75nfoZ+ot2kiTXHSGQU+Q4buYuWaGSOWFvuyQvpxqGTLdKMQ8Yv\nuNG2tqxZjlen94yLe0auNZS8UraxmWP9qkMTPLBqwz2eQIY5rWp9y7PByLkldvJG3foQneazdcWQ\n5nhlWINRe/qED33jG9/YP1lA5s66R/2B1+uESbfghE+wi8uHs7TSle++MrcdH7VBV+N09Q1APN8z\nvYX+wRFKDodX/Sye+MN1wnffc7E+0/84ATht6DvmsTnJGcL5crThept0mHiBW9/cW0c2+3w2xXeH\nyTiBLMPXfHYArnh3uhua0cW8HZKDWZ3giq01jldznD6YgzNcKl8dzwVlhKO8yhQHT9nKW290ebzF\nmwk2PeiX3kzRH/olXdXYWCe1B6Z7cOZcDW55tf3Y49kvuNYP92Q1/vvx9vkSf9ZnDqAROeZSF6+y\nuejUZn03LzgiOVnRkOPVhqOrT2lE0+K1bc/3FaLB7PvatjL0LadZbUKYL/riLSab4tYrWw6/YLPg\nHeaHQM5wVHPkmVfsQ/zEZjsHat/wNyfRjNPfH1uRSxzY2g4Wu9PbH3DQHhvIxoU/321DTT8ai/oG\nD7KQrcSRbh3bcDDGNvV88sP4GCuyFYwJR32wXFNuTPiTfqXPNDBuOxy1I83V3Jo4SO+Z7kz3NmZO\nvZrn8um55jdegPfO/k78gzPTLvcXCrxpFLAmhHW+l96amvmlvWm0eNP68+CO1yZRk6dnzJlSTOmg\nXNj19Uo7wUtoxdwNCMWR8xDj9v1RiihBCiZBS/CpAyZHImcLRwqFm4KTcAVLHTiEh7TbDAmTtQ3t\nRoPam2XWPGWOcJx0qYw0Cvbz7TMBdooZgs82xyvFhKIWToxoTikC0Qkgji4OJE4gp+84gpyOU4ey\nwslBaFJGKBUU/ZRiuME52ta/2af6edMYrKO+3wRO9Cxe8WLgUaooYhxU0eio3WDcpP1L2f+jAJqa\nJ2g8aSndurVRYv079UAB9mzuOqEgtsbxihfbaUdz0jzk8ODkaHPBeDpp43Qa5ytFGD8QtEuBp5g7\ndWC8KcUMfgo43DhqbTD4fqg1os0CnFeHALyb+5W7bgwfa5Qh6gQAJRSPizbo0v0K89T8hA+D4Y/+\n6I92o8Nav9qcyl/+8pd3A4KDyeaVADaeCQ8XmC73R+MUDvImXvO+MsXB6fk6cXiAG2xp3RtPRhqn\nK4chHsVB4VMDPo/CGK0/a3vBWNPv8hnuawiP8npWbvZ1rXeT52AHc6WJfGuFDDDfvWLJCSQoy0A0\n382pYEkzptaFcZAnwL8yntXnILDOrDEnkTherT0wmxfVEYMRnEkP8G4SwAp+cMh/Dre/+Iu/2Dcc\n6Q6MdWuPcY+/1Ha4aLP67vEUjte/+qu/2k/voUH466/TUL/zO7+z/6kR/cTziovn4E/Y4M9QmZnm\n/lT6Wq6yM/1ce7Pcde7RVwAzuHArbb/ZfqTNsaiMuYPXcspxLuHldA4GOceINYwXKl8d7bg/12Zz\n1RwTtE234QBw+o0jhj7ImcNRw9FrAx9PzDG5V7zln9kPoNc+dJran2zBs75ebbz7+abPwdOcEvA+\ncpK+7CQfZ+xc2+rqPz2ZXuNk3+T7YERT94I65wI6hrO6no/oVTlj66QhpyEnseAbyjYA9Qc+a/1o\npC93EYI/+6Gdl/X9dXCpzdqZbZmr+BJ9B61sDNF1yDHfLMeLO6FPR1cXfdHHvdg42yCj7xtn8o8e\nj58dBfhMHJSRJqzpe+I9/uR4pX/ZfODotOFg3rNF6GN9J5gOSHcxh/ByzlHziw6Fd5BrbEp05dRm\nB6I3x7ay/ngO3DZc0BW9wadT2NQAgwxT3jf4bQg5cXxEQ7CVx1tsoDjhTVelWzrIYt6b8/Glu6K3\nfgTbfWus9NaWZ+PdmB/16dTQn5svM498pKfjZ5zf7EdpxoidyfGK57cRC5fw0/aK4yl8LukXCtyU\nAnOenqt73XLnYFzyPrsUeFDHq8nrWhm9NKfWKByUD869PpiO6TJcOFTsOnK4EqiELEXZqSZCjALv\nEwXgcLaKGeIEN0Ht1RH3GUnhQCC54KCtFHbPQgJpTpnyZtq5+ylEzpUDN9jXbVe56oDtmfHAiPTK\nrZMcnLA5XOVXB7289sXgodjZGRYoCU7FUXaebQ5btKXgUPK94uMEA+UCrYTZvmfwhdLX5z3znn/C\nob7DbaZRpHxLzY50hk1lV1Srt6Zfnq9HAbSP/pOW0qxBRohTd/gAY43jlAFxtRmfFGQGtM0Uyhwl\n3fxUzzprPcNEmiu40ijcTrgaY0a3tUER9ikNc0B9dcClqH/wwQc/c67ANYWZsg9uYd7Xp5lWuaPY\nemUc2+hwwUtfJpzu1/qzjVnG2vRK13vvvbef7oIv/smxyynEEYavFpSvvjieNeFXtrjynpXzHE+o\n/lHZ0l4Wgxnc2upZXQYSw/7DDz/cjSTPHK8MJE6+Tryqs4bgrel3+bziEQ7Sy5NW+m3hEmzw3K9j\nI40sYBRxYnNMWmMCXJR3hZfYOpl55rD5ZANUWTA5gsgJZTlaOQOef7oZmON14qY9z+C6upf+KiGe\n0Jz0bL6QdU6r6jPnnvkCNzxg9rM24dH6kI8fMczBsMboFOFcHXzl7bff3h0nHCD4hjKF+l0a3CYM\n+S7tFarTc3V7PhW/ar0jeOElb8XtCJ/aludePPtKR6N3vP/++5/7r//6r52vm0f44VtvvbUb5fjW\nqbaMC7jyXbUX7p5d2qFTcqRwmrvXhlOgOV1zvsDxqC/BfJ04fIKxtmUutRluE8TGY44lOpyTcnRf\njiD8jpwiB63XYIsFMhMf5IjzRoc5qY+1+f/Zu9cdW5KjYMO+lN53soX4gwS/EBLHsc3YZsAgDMaA\nBsuyxFFInHwAAz7MGAYEFoJLmEuZS/nWUzOvvyBVq3t19+o9PZtKqVZW5SEyMjIyIjIyq1blJi7d\nr/FaVr60SXPP0Y1OtoHjpCt6s785Bn1KhzORjmPLp0/Vq41grDg89jk5AOfa0GZ4l/bYdvbq1448\n7dSWdONLTlr72BBgk3trh/3OKQVfthDZ7MQg2k66T3icV044+3YuXYi3vaovaOuSEG6XlH2KMvjZ\nKVHfA7URY1Ma/9qww9M2JxwWYZ+xE81tG+mcdx0WIcvJGbDYkG3iK4t21pPK2nBrw735BKbTtE7d\nagvdzDdO0zfffPPHjld9b1zBNHe9DeH0uU/20KPGFd6crtqznorno9016A0PcNYx9hyvzPzZZnXD\n5z7x2t6sWxvKWHtbN7IxOKONK7606UUe+OwAuR8us273E/Zxf1DgVVMg3nzV7R7tffIp8Gwdr06k\nEcxee7d7b3EjULQWaTlHGG9OpTHaGKKUHaGuPCUp5rgBT+zZRQHmLCHIGaCMWPAEhqs6yjkdpmwL\nhK3A6ecuJXMuX3tdYO2VkzbT95TNzA8nSjWY8tWj2O182zG3sLTwszCWx/jsFLDXtJ1c7SP1FsoM\nNzvM6jPwGTQWqByvFkhi5WpL2+gkgL/iCL/6Iq+y58pvgJ7gJxzE4TDTGKv+PdhJm5uTgw+uGSwr\nOtVb04/nyyiAti50nLSMP2yakAGMb6d5nFIiB2y0mPP4sfnuNGyLb62DUcDzynO2kh8WnhY0nI4M\nb445cDlcmx/wAY8BzRHAqWeRTs7kXMI/5kAyovbWeOKy5s1nc84mByeA03f4b84bZYM16bWXXjk4\n2sh6++23N2cD/Bm2FuJ/+Id/uM1vTrJZPpwaF3mzPfeVr+ycS3Cez5WfcfUuibUVDuHRs/oWURap\nxshrgfrIkPe5Bgs1OqK21/aCt6a/yueVlvMZftfCccJ1b5xmkEYnWPS/c/rXZQtHc6xQ+XCKNzlU\n6VEboRa69IXYaVjOAa+BOmHkrRXzkHPzJ3/yJ7dXLZ3oUl9Y8asd6Q+hgXrVVR9Piul3i+r//M//\n3BZ/8OYIMu+cYjIPBWWDIYYnmSDdpT905je+8Y3NXsF30gvoo47+0sH6THZNOla2doI9n+EdrZWX\nN9sJxquO4VEIn9I8Tzzd6wd+YFuJ2RRkj5izg3Pk3Xff3ZxKHHTq4Cv082eXFuXGKvppOzlTu9LK\nLy1cyGpOQKfeOF45No0HR4qxuTnJW/yp/KQ3mNcO4TbhRkNp+oUm9Bsec+qPjYbn4gd6KF5VFv/J\nCw7acSZ5pdkr106WsXXbFNFOZcOnZ3lrUEa+uPtZpjxp5gmdzOnkxJ+Yk4VNyYnI+UQXc2Q1XuqB\nMedYaeJrhGAHS3suIRq4L839NcNsA9zZDjsCjdgbHH6c6ZxSnIL0mfE2R3wew2d1nBzMBp841gbZ\nw64x7g5eWAOQb+bb2u/qhE/xhPuq760xzFOOVzIjx6uNEus1m+4OgHC8tknIlvPmknWLjRr9wod9\nYo5ciWboYw1pbjigkl3J7rQmoiOsRa0rjQ2aoCdZ7sRrJ2/RBQ9rC2xjRHc60cnRi+fYW051coCz\nPxuD6A7GfWk+68760pMR0gVpcIRLQXtz7k14D8UlGLO+e+li9EFbY8bGQCsyyeYAmYA+ZIIwYVQ/\n3I/4oMBBgYMCnzQKfOyO1wiWcE1gW/hxsFC6DA+OUAs4i2cLOkKag4Tikk55Wkg5wWJxpy6D2mKP\nwqWwXcq0MFKXUUoxc8ZQ1pwRFpleB2HcUrZwsUCgxOAXjuG+F6dkzuVRdCm74IEv7LURfYJXnZ6L\nJ8zKoA1jwis3FBrDheHASNdHtOKw4EjlnEE/TgyBkcco6ZQJHI0Fw1BMgUuDXzjWj3ABx/0sI40R\nM/uqzHxW5qlCuIrXNuHBmPq93/u9H3//UpnKrjgFa00/ni+jQPRHx5WW+Muctdi0EHGyAa+atxmu\nDGTGt7lqnoInGEeyAa+b35yrN6dF9YvTKQOxZ/IEf5MlFq/quITg4FOOVwsdr0g61ZY8Mj/wO0My\nGbFVHj/xTfBG1u4tGeT7kk7eMUTJO2HSJ1grvVaAynVZdHz961/fThnAF+4WdD4/YEFG/gVPn2oj\nekjrvnKV8ey+ue+5MuI1XdnyV5zPPatTver2LCanvdLXSSAbThY5HK8c2RwN6im7huCt6a/yeeK1\nh+e1cJzt6N8K11ihpZNpXvm22WEOSleWPhHAceEJaS4OMU5UjhUbGvSOBRR9YrFrHnvVk+7hCOJ8\n4VDjfAlu7dSGNl3aWnHdELnjJzzVBTseNqct2J240Vfy5DOnU5UcHO5nW2AU1J/PaOMkoldRvS3S\n5o/yYLiUx382AMA3r9EpXJRVprKlw1e6mCw0Z4MZfPHHHSY9wgWeayBL0YtNx1bTL5ucxj9nKjvN\nuDglRuaiJ1hkvo1QJ/98h5FMxzPa7tLepI/ncGP3sXc4UmwqaIPO4JR0yorT9cVJN3C6VqdxAOcp\nQu1M2JNu5aMb3M0fziWOY3qQ3pOHNyoLFrrQZzcnPefkn096cEJ5pu/IRn2rrVm3tIlT95WrjPFz\n37NyynimY9iSnE+c3GJjaOycuqVzzDO4BKO64AS7Nq85FsHWrntt0N8u7bAbmmtwuXaoT8Gd9IPD\nB6d1D4fd+6eTrdYjHKWcrngUbuSn9Y0NaU49pzjpd3IbL8wQba136Hu2hTlkHcD+Qf8CvFzhU1z+\nxxHTG2w/pyPJBqejOUnhz25zwMacQCvf2DYfyBS6B60cnFGPHDHfyZ9stWhjrpDH5r/NQjYYnWUd\nSE6Ze/iZDBHYlHSX/4AwNtkWeMkBH5vzPgMBJzaJ8mwQcp9D2OEh4yHAYfLDfWk+624AP/opvXnj\nGW/gHXhKN/bJgomLstFmwrzrvjaLg1lcOjriX3rXZ1SsO8kGMoGMR6f0wV6b4beXd6QdFHgsBeJT\ncO47Hx/b9lH/9afAx+p4Rd4YfDK3NIKZweGiAKVREBSthRzjuIWaspQqhwiD1E4aoc4opWQZI+pr\no/qcDC7CncBnZFHYFDRF7qJsORi1nzGTkXYXa2irNmdZaRSe/GJpLrCF4lnP/UqjNb/nyoEpaIch\nYYHBSHDiVd85rBg1DAPOV0ZGShkMF5qL0Wbt+2zHvfZKE1fXOLkXlEHLFgsTZnW3gh/91IeZdo37\n2hLXRvjD1+Lgy1/+8rZQxiOFyvYsDtZMO+7vR4F4Hi0nPfGKud33oJx8sGjHTwxlxqs5y6BmYBfA\nYAxzAOF7xrpFhxOujHKLT0Z5c7B6M44fzAk78k7cOklpvjDCwxWO8MfTgnR1V15Zn2db856M6qSm\nRVInNmov2D3Puut9bYqdmvItSyf83KMhOWrx4LQXRxl6givoU/fBQS+h5+3h9FO5nuW7Kt88nziv\ndap7Lg7mhCHNM/jkmQXPO6cTFE7H6BsnF8er+Vzf1FnDfXFZ61/jecXrqXCa7cw2SkdLc8pi9733\n3tvmHj0o3Xgmy+N7MOhPctMJJE40G1dOJJl7NknpaBt7nAQcuTZELUAtsl6+fLkteNPn4YGm7sF3\ndX9fWqsXzPoABjnC+ebUGMcQ2fDGG29sOMGffBDUESatwkc6+cCJ63MDTiRy7EUv+RNvMsni0ids\nbISa62gafsrXX/KETLPJw1GAPurDy33lJn4TR7CeOoS3du/Cgx3FJsMHHNUfnJxL+MVJPK/foj96\ngGlszGGvUpP9+Ec6B4bNFPOa8wVvoQUaaj+a6He44VPy2hhx0Pi0BAemsl7B9laBhX6fu5gwgiPt\nKUI4Bnu2M/Oke8YLbDVyzik8jk36MWcSOOYiPuFAMv/IPk4qG3h4BxxX/exZ3eS1+xmUWcMertLw\nKv73p7h0JgciO5O+tvGP1jZd6GHtBac2eq698DuHW+XEwZhpe/faCK45Bl/2vnvrAU59dl8yaQ/G\nY9JWPOszHrbm4UjF/9Y09JiTmOSG095tECtLTptP5JhNafOKHU921Edx8MXsCZu6PjPEKW8Olj/x\nKu0x/bxGXRsMTv7aLEEbdpzPQ5EXeMIc4IDGb+YC/aSP5oA5jx7mTTTRr8bevcs4swnpLmPvHt2V\n0yb7kgOWXCLvrafw8m//9m9vY6O8oB0bi5zEnIrsxg69sOmsvdA7HQp++EQrz/cJjVnxrIs+0l3k\nLz4nK/QNn7uyg9VrjiXLe54wb7uvrVmm/sx+gk8XcEz7hIo3W+WT6b3pRV6cm3/1NdizveP+oMBj\nKYA/8Rj+6noszKP+QYEo8LE7XkNkL8b8DG6BAkgJiBO4ylhwU7qcMnYZKUfKMkWrvJ1dyvjmtONP\n+VGGDFEKiPFCqdottfPGsOWYYKwzIhnu2qMEmpB7+M60OWnPpdcf+coHO6Uy613jnoJFB5d7BgTl\nh37RuXbgBg+xS74YjkLCSJmJrzLRShucHTk8jIeLAYCu7utzMDfg42fCHsmPvo1/xGufGEVOZDCq\nLFrOGaYhEayej/j+FDDOxiH+CYK5Z0FkYfFf//Vfm3OD8aiccbFQt7Hiar6DY/HJecJxyUBmqDOo\nzXd1hXPjFs+Vb56QDwxpp9rIiOnkVR7PgEtGqAdvPA4Xz8GsX7fFjHjOAIsjJ+Q8Vz9Ye7S6Dab6\n5rlv1HqN12KmYBHsFV60cgp4joF62hKmEVwafFxrUM9VXnhLExqDtd5tzxNmcGsDPvrHGWGMvMJm\nUcGxh44WrsYoPNZ2gremv8rn+jL7qf1r4wZ+YdKj9tHSHMPvToPSqRZr5bdoxOMzDSw8wmHhJJsT\ndhxbFsrqOJHFicbx6p5TyPiQtZ18m7jBMfjh+VBagKNf8Z1ni3QOOBsRnK9w9/qo02AcHBxXtRu9\nwi84pVtwc4BwMrFDOEDoOUG74IQ7B5+NjrfeemubbxwptVN/xfiZ7MshRG9zVpF7LZaVA18AY8Vr\ny3jCn9rWbrSpLzXrGa8Ycw4lspxzgry2IeYkmAW3TTLyXGBv+Ia819PJfQ6M4JLhvjlvQ4Uzyiay\nIL8Aly72HcefRT5YHONsQXWddKUfOHCDH4zi+GbCL+8p4zm2U/aiJX2Hf21guOIRdfAGBzVewWtk\nOlkoBNN41V9pwjneKX8r9NGPtMrPfPfpa5sQ5gJcbfh7hdi4GXNOsQkDWHQuLdweQvOJz8R5754e\nd8jCfOXMZjdYG9gMILfYrq8y4Hv4cLqSv+SueeHEMpmEdqseQzdrHs4+mwpkLNkTDdHDvStexhs2\nXMlf66Fkur5W/lX2+1xb8CVXOV5tbBmvTqaaw3iLc5o86eCIuWLcjCVaounsU3SQhoeVNz/YizYo\nbk5rRGtDc0g++WFNSFeQHdZMYOPpP/qjP9psNDLIvOSgtdlAp5BfbE4bRfRKYzf7Coc1wO8+IRjF\ns757eKEBGerQALlB3+onXc2JrJ/RQ9t7sC7FSd21/sSpPCeDbYQ58erNBmNrAw5PuuBIN84QnGD0\nPMsc9wcFHkMBvEXuuPCXK1138NtjKHvUjQLP2vEKycn8IV3cBKEIKUWv+TE6GCuUKaFNATPUGRoM\nUKe6KEBKx0JG4FShUC0wnZh1WpbjVtuUlktIOW0PH/2kAGZa99NYlraWbRKL5c0rGA+Jg1fd8Jae\ngaVv7sU5QOW7pBU8C3ADR95Mq9yM5es7hc6gYaRUl3LtlR3t1udZf72vvZmu3mNCMMX6BD8BXPha\nfFsYcx5YJAjK7rUbrK3Q8fMgCqBr4zDpae61M+70EwONIWy8LNJdnB4WGozL6przXmF2ysDC2iJK\nWfW05VLW1TPES3MPH3lwIBM48+zOW8RzqgrKm0fxukUvvuY06ZRF5cTg3RUY8fC285/jddYJL33R\n/gzB30s377y+6xuonTDA6+Sgf/O1OLDgJDPBaU5M+NoWJp08o1FpYvXDobzgzTx1Lw3qVTfYPYvJ\nfQswr8c7wWjeOhnH8ep0JZkUbmubwVvTX9Uz/NF21RlP0b62CpMe0RL/cp5Y+Jtz9CJ+Fiadusf/\nxhb+YnPB4phjFd3pWzyVg4OOtZA1J20wcLzSy+ZOIRzDKTxrs3KXxuDgw6n/6HgbtpwcPiFi4W6j\njTPOqTx4h1Ptg1NfZxqaWXT3HU4xeELlw5WTD19+6Utf+vHrsOXVX3qSzHGay1jA48XpNVgnsjhe\n56k3deHyUNrU9kNi+ArRIhzQWtB3Af+QORxxnXjmlOCY51CiZ51gwyfqgGtziCOb8x/PzLbwFxp+\n+tOf3k5Wa0Pb0RovGmuOGfLaa+5OzHG+ws23Fi3ubTa1MaBu+GtLOeOK9qVr51UHuLiiZc9w0z/6\nUAxfeQL+INfJQDRNrsivL8FRPtjuZwjeTFvrT5j4lmPdmyFOzHPycGTSZxyv9Av+FYIzYRu34NX2\nHJdZ9hr3bAubdU7i4xObnDbp2gigH19lQL8PTifBfS4HHY0jGYpfvUHAkW4s0Ulwj07sETqP7mMj\n0fXJY/nRsr6gqbnjsvGKR/ZC9fbGaq/8tdPYdJyFnK7ooU9tJrDxyEabOcaQDTjx1Uf0FNCJPHCB\n6YouxpjsQWMngOkiTl110JEcdyiH3NKWZ3XIja9+9avb5x/IMvMRv8OV3OIM58zF+2BzcqJjtNS+\nOaudGcqfabfd1+e1zIRDN5GhZLCDBPScwwh9gx2twKlOMHteYd/2XN1ZZsIpn/614eEgANvaZi9n\nK/3rNDZZQfbCbQ3BmHDXMsfzQYGHUMCcJGemjJ1z9OC5h1D1qDMp8Kwdr4RrTO6+55lGiTidSvEy\nrilI5XyOgOHJyBO/OC1aOF8pSM8Zo3bdKFNGuVd1GD1g1h5iuRe02/2WMH7kdVEU3QfHJO4+WKP6\ndjvz17xLn1NS52CFV/DOlVvhqKesMGEoF4xi+QQVpck4cp8gQ9u9067hsxeDt4ZwWdMvfQ6mGG7z\nGc8wSH/xF39x2wHXh8Jeu9WtzBHfnwLoahyaO9FZGkOX0e0UgYW7RbxyFpWMWcE8tgBl/AoMSt9D\nc9qAA9bcx4fBVaZxq22xtHBQRgCTXOCE+vu///vthJE0xreFmoVlBixnK3nkdAGcwudDSJf9kk8c\nP5z/HK+dxlJ7D/8J9bZ8uFhgen3cwoAxXn9vThtRjF1tWnyQj2AFL1qJmy/uK+PeYsbYWKxI54DL\nSTTry5tjPfG/7X62FTxp7hlL6M2Qf+f0qQGLfnTUn16pzOmmzhqCt6Zf43lt71xbyumHxSJaChbe\n5GgydOXNh+B3Dp/SyWdOPxuZTlA5ucOxIygT/mJ4oWuOwPjd2ONbp4IsZI2FuWFecCZywtoIffny\n5eb8Uq7TjrVTrB3XbFvefUJ9C466eNAcsOnqtBhnqX6az5yBTpk5DUbG2EDUT/QXgrc9fPRs4W/j\nF83YE5zL2hOaM+6dpuL0++IXv7gt3nPugB0fs2M4hb0qK51jwEJUzLaJl8GDS7SpPemvIuiXEF1X\n+sgnD8xL/2iPxuQ0GjvdZPHPwa1fnB36pS/gGAvODk5xJ1VzomhPuRcnm84JSp9t4OTHc/Bw4UOO\nD3ahNsExHuT0T5xOuvqDIW3b5DK/hGgH53Ao3gq84p9oq1l4COabEI7u8YxrBn2Z/Cqv/omDN9PB\nlFc5ebPcWtYYhaOxMbc5/4wz/pVPl3C4+qwGeZA9GA7VX9stv/gpxoGjx4k7Th/8QYaZ9/iDk5PN\nIO1VhtYj3/3ud7f5b4Ph5RkZGV6NGxuJw5b8MccEY4B2k37K4w3OwF/5lV/58digtfKF6q1jU/6r\niMlUJ5GdIqWH8L/NJ2NDbtJTbBqfGmgOxDPwU5787gSrPrEn8Sp9pA4bjo1oo5vTvXHHH07bkiF0\nhPYd0qGb0Y/+8n18sgR8dEV3ZTnxlbk52VVOLE/7Ew5CtJ74Svd8zcDBaW3M5tMXDmPjbm7Sy/Bc\nQzheGxftgA0u+U7HsevNQW9EGCt2O7vNmxArftWN558Cv5UWx/P/LQqQCW3M6Ll5StbEa8X/t6hy\n9PaaFPhYHK8Jz/t2ZK+eCeKkEyObc4SyZCxxyligWDBZ/Lu3sONQoGgIbosuhpeTPe14zwmnvYLJ\nNttf8+S3CDVR3ZvALm0VTxhzAgevuHbvGwczOOszeDNt3tdWaWJwgiU/Y0Fa5aTPctKVm1dl0MKi\naJaXd1uonWJlwXlMCJZ44oJ3GEpvvvnm9vF8C8IWZtpTdg3BWtOP58sp0HhO/mpcLEYsKiy+OdQY\nzso5+WABbzHHiOOk4PRkrDPgfuK0gHKizgKDsa5O49eYzXkJ23hWfmVsFjh9xQHw7W9/e4OvrFfR\nvJrGWGcg4muvfTImfY6AE7L2itW7K5BdTmJ1IsviizwJRnjtwalMeZUtnfOBk8mr1U4/6L/AsHD6\nzCvQ2rWoaCyCVWys5E3Y7tHeidNe+7MYYTw79UEOC/BoHKof3LtidV3qVbdn/cAX3nxwgsKpE/yR\nM5mTBQ0FddYQvDX9Gs9re3tt4R16zAkeuswCjtyxYMO7+Kvx2Kt/HzwnPu6DWzonikUQPnFZrFmk\nlj/HHk3xDt1KdhoHOtTFEWYMLPTMR/XNCeNET3OCcXS8PDkWjA89LeCv+qiOe1f39+lrZcPd84TF\nyYzmXld9/3Qa0pywuGYn4FuLU3PcHNQH/TQuLn0HC75khNNOFrgWkewJ86FQ+2SV00Z9Y7GTVcqB\noY4TXhb5nArg35wW72QMGuEDbdcHcB86n8LtMXFyGz5CeLmHG75BT45oTjnykX4lm51yxd/GnXyo\nX+oKYKMFR5LNIt/un0F5sMgsp6TwmTSOBo59OqM/Y1TPBgBdgP4vTk5b8pstuNKwsapPnruf7T/1\nvXbvwmXSGz7n8Jxwgqts5Wd+/Sqt58p6Lo/c4sQid80fNMe3xpUzyzijNxlGTswQDHCb88mi2UZ1\nZvulPTRm+ztwwfY3Z8klc50TzQnQm9OcM9fTGQ9t5771yEayg+OVDMbTnNacUeQRfKJbsNGOvrDB\n4HS41/L1R0Az16zjHp1tVjhcwDGuHWmzv8q5glF7rzI2l9kTeMvmDblsbNgWcGXPOOErL1umfuM3\nfKhv9BAZQx59cFongsmuVMfmi7ei2D3kLLmgXXYcmpLF6tAT9AWakBt0wte+9rVt88eBHoHeI8Nt\nNikDVpvP2kpWb4VPP9EWzIK0awQw6RSbCr0thlfIys9+9rMbXdqsqr3aDp+ey79mzE7H4xzCdKYx\nNKbsUGPRd7fhGF/CC07Ji6fE75p9PWB9cihAp5nHeEzAe23A4beD5z45Y/lcMf1YHK/XJIbJQRlS\nqJwvnpsoJouLsjZZMupMLIaXVyjtznO+MhbBWSdVCiic14nnWXuULEXvXjvwsIClbN2LwZrwamum\n1c5TxbUJvnZ73sNB3poeDaWveeEczHPPd9UN7mx/thvuwX9IDHZ4TnwsjDkDPve5z20LB6c05oKh\nstUtfggOR50PKRBNPa3jbO5YVJij5qpFBceU+WYhbbHEcDanvTbopAEnqXG0gLJocWrUomWOo7Zq\nt7j2G1O4yOMQYxRy6HlVX1vyGN4WldrRnsWOtr3SxWifJ7SCCd5dwYLPaTv/mmvBZeGQ4lc3WLfB\nme3M8mSkBWfftZwLtByVnzn9s7tFmT6qG326D4fgynfP2eGUpG/7cWRZHFnI+hZjfQivxvm2Pqx5\nE4/argxDSftOHHrd0oJJmzmSnaqbbYZH9Vd4pV8jxsPg18ZsG974m0OKg4oewkMckxzwTgVyXnMw\n4d9gPAav2T44wSzdotHGAacrBzZelqYfaBgvmgcCvGxsWiAJ+mRRRZ9aeOIrDkO6URpYLo5XzreX\nJ8erWBm4hAdY7qWVHq7yrhHA1w9zXD/JGQtVDj+42oDAOzZ48HP91FcySJ/QRX/IJY5bPGhBadFb\nQDdyykk6myrmNYcuGIKFvvEnZ5yYUl+ecSdjvG5MF3Esxsdwb0yuTZfwvivWvhBO7hs/Ng87i1OO\nTEAbTggymWxr0yybCYzGGxywOfU4XcgrDhZjJT2eMA70tdd56QLOFWPppJp65hIe5FChB6Ijng1n\nbXav3TVMnNa8u56jReOzPt9Wv7LKVH/2/ba6e3kTXvnBlTfv1/yei+FBd6AzZ6uxwbfmjLnM6crJ\nTY/YsEj3ThxqU7ulh4N2LkmrjPLVLW19lm5OshM403LYkVdOtsOZ3rXZTvbiy1cdzBf09EkjGw10\nmFPd9CgbZtKq/nDWckCyO8gPTkLyRF/JJfqF3m/u1Cdy7ed//uc3xyvY5I15MOmmDc+lVfdVxfC2\n8WcDxclXY0Im5+jUV45q+oq8kU9GmvPKvDhtsCiPB+WRDf0ZFwepsSfTyWX8ig7Wi/Sv9owFHke7\nuYbDz+T322+//amXJ/1FtgvoZQ40T5XTrvRJS/fCQ+kafPWDWwyue/YnB7MDA30vmKzkbKd/nPQN\nN3WES/BZce95rT/x2YAvP/Bjs5mHHK/W43jVXPSmGh3Bxg/P2dfZ/wXs8XhQ4MEUwLN4i1yIx8jE\nbF6AL5kjD0bgqPh/ggKfCMfrFOyNSsw/80wUikQofQrr0ilzStVHve22UcblzXi20b1YG2IT0j3j\nn7L2TEGbtIweigVOcJnX1tgT/YRn/Z/NlDfTut8rX554rXtX+Vn3rvsV9vqsLWni7sG8Dw7BrI7n\nmVY6I4yha0eYMcZgY5DWbuNZ/WDc1ccj/zwF0Db6R1elpaG3RYRXySzenZpibBsTJ8AsliyUPFu0\ncPhZ4Jt78p24cVkMNkcnbPeNYWPsWbsCI5pTjDOGAcsRpZx5/+Jk1HO6egWYYnYiglyx+HH6Fgyw\nggue+71QOXmcuHb9OSjwYosB8mWGYIX/Xt5Mq18WaeSexZ1XQqvPQeYVL5/ZQK/wjhbV38NDnoU4\n57jXHdHLogOcP/iDP9icHk73gQVucjr86ovn8ClPLH8tM8uRt5yWFkqc44x4CyMLS9+C5MBSf9YJ\n3kybbV5yHwxlVzi1Fx+UL91FT1g0cw5x9HG24SEOOOkckfjb6Y/4NxiX4HauzB7OpYFvHDlRLIY4\nEfGLBZF+GFMbA/SczU6xuWehi2/dS7Pgl29ecLByZJSXU5YjkYz1jVfORfwRb4WPGE6u7s/167Hp\n+miRbWMC/5jLbAMLP33gNNR//cC/Lvdw01+LSM4Sjh1yI7zhpW+cOha8YgtK8kif1FUPrfEv+YZu\nynC6WyxzwGgPfcAtrLxV+quKtS/McQs/NCAHOU28rcDhYU56pZejFD31qbFWb46xe7TkuCWvyBa8\nyQFSUN/4kPXohQ/RU7s24cwhTlcn2nK6wnW2GaxrxCv+wYwm92m3ssE4Fwf7XL70FdZtdSq7lpEu\nDf3NbQ4x30e2GYp/2yjiMOHkJnPZUzMEe6at7cy89b766rjv8rwHp3L4lI7AF73lZn7jH585eXly\nntHlNgPMy3PwVnwe8zz7EhwOP/j9wz/8w7YR5KRwjldObPg258lZ+sI4cLA5cY+3w795QL/QLclw\nbWlbv9OPnLBgT/nS3L6UFnv9qV/n4urI3xu/+IwM4VgmU9jk5rW6NmbIa7of/vjNBhlnK3uGjsGX\nnLH4Fo3oM2MvZieS6coZe/XIXjqK7AEfHdFFmnt6G43prK985Svb94DhI8Apnqs/9bHnreADf4IV\nDyTLajOweIM+sgn9gx/8YNsUJCNtgpO/N6dTw+gVTsFVv7RgicuvHe2rX3rxxCccqzPhKm8sOwBF\nhhhj89NY2GjgfCW7W4PN+pM34TfzPB/hoMBDKIAv8VabLPgKT7PzjnBQ4FoU+MQ7XhPAJsdeaCLJ\nN4lMKEraK8t//dd/vRkkFGn1lXdNQe7elaISm4iUeU5X+ZQdQ4Fjl5HX5IUXmDN2XxvlbQUe+XMb\nzPL2mrgLh7XuXeX32jiXFuxgNlYpbvXklT/hVLcyM2+9VzYY7qsbD3m2QPYqjj8bYqgwqIx3QVkw\nqh+M8o/4/hRAz8agsQeldPNpOl4ZzMbEwoHTxqLBPOSsUu7900knDhPpHB0cmBbd8xQL2I2jtmu3\n9DZOvI7GYcAR0+tQymufgciR8OLkgGWIa98ClDOTs1jAH8HcEs78VE42BxaHlFetLLosuPRv8qFy\n4Ap7PFhe+fXRM2PXiVAOUqcN5IHhxBgnH8OcE2OG4E04M199C5PgcpKow7ny5S9/efvjLgsb5dZ+\ngBN89+f6s5aZ5bSd49VryfgA3Zx4ZcBre8U9eBOO9u8TwIh+wSkOTu14luc5R7HFpAtPW9TRGfgI\n36EdxytnuAUIHkhPBfsh8cQnnCYcbTsRxtmFjk5yWqDCHZ9bqMLVHKPz6EILXnwrTx+Ud9GRZKoY\nnSy2XMbL/PEnNuYn5yJZW//CUazd6CZ+ytAc5siwgdK46Kcxo9/hry9wi5elkVP6ld6HK3qQO52+\n119/IMJBKF958oWzhdziEFAH75JZxt0JIM7FZNTsf3R6arrMNue99sMBfu7hIkYTi38y4Uc/+tG2\noaBfZIwxz1kx4XUfHLyIJp2k/+DklGav1aa2jEHOGHwmDQ3BpyPQ3slxbyjg31m39q4Vh/c14IXn\nNWCtMG7jl9rdK4O3OfDoOCfibYROB7dTg+Yy/ZFjfbYd7Jm2187M7z7aztg8FMBY4cjDk+auuUk/\ncNJx8HBG4htzEX/A2TwzV4OTLKr9a8fRovbAt7FA7vzjP/7j5kzF1zYN2AFsAvwr6Ju5wd7QJyc+\n0Zuzm/OQrjD/yDEbOjYvzMVJO/B865N+fHGyYeAx+6xs5SeOGwI7P3v92Sn2v5KqI3GvDfLRZjo7\nxWYu+hgSmXkRAABAAElEQVQj+gYvOrXqTQU86YQrPW+e0y1oRycZf/QiN5Trc1Dkbhs5dJgNRXIW\nbPe1AwY81MM3nN2cszYXfv/3f3+T02i/F+7q316du9LOwSxdX9l4dLhPY5G/+mScOV7xuzcD1rGu\n3b1xQOv4A3xtqe9eXB3l8F1p5lg6EvxwdG88bDTA0zd8zUsbn3SjwxI+gWFeGkvyXF3tuLQr1G7x\nlnj8HBR4BAXw1uQvvDXnyiNAH1UPCmwU+MQ7XqcgN1lMkimEu09oU9SEvG8oUUjqNKmabPFGsAh9\nBg8FLDDuXZSvi2KhbCh1i1FGnmf1J37BFYeX+3Nl5N033NYmWLPdCfsSHKp7SdkJe70PTukTXnnS\n3J/Lq+5aprFUb9ZVfpZ17xIad3V9E8q/uzsJwBBnsEzDQdlwmzA2QMfPgyjQWIkbv8YKvc0nxhln\nHuenUwjGhNOTc9JinqHshIJFhlOp5qETDxyvTuBweHAAzbGErDa1UbueGeqcTU4hWtA4LWLR5iQi\n45vTSRmwyASGInkgjcMVvhn7YMcn9fM2IikLJicop3KOV/2Do/zwDk5pPZ/Lr33G8QcnBwY6ObHE\n2HWyxuk6izynK53wCw741XU/+1TbpaGR78x985vf3BZ68tHeHwlxtlgMCZPmtbNlnH6C2XP5cCgo\nM8txiGnbiUEnk40dZ4uFhu/86t8agjfhrGXueg4GmjY+4JWu/vrMgYef4enP4jj7LC7wq1cWlbfQ\nwwd4HB84Ve05Pr0Lr9vyw03smnPCs8WQRS7ecJrKXNIuHseHgjLmm7mgDh1JVlrwW8QaX5dn80Mw\nRnSkvrl3Ut1r9+anxaBFb2MBpiCWFg3L3zKv/FOb5q4FORlgoW1+cP7liG0Rute8PgtoYLxuTieL\nXp5O09nMs5FHBqGltsDhcLUJbNHJgWUBz9mKJk5UcaKg+964h+9T0mSvjzMNDuExcZSGjhwA3kDw\njUEbDMbcgtqc1Lc11Bd0dM+OInPRCQwyi4yNzuorF009cypwKvnTLY5Ajhg0hBM+FdBeUK82t4Qr\n/MBt0iT4pWmitCs09+O27oJ1SZvxdvRUR5pn/SKrfBOVfCfDbK7Y4MTf3ixAdzbxObpOGoTvJXhV\nVnxu7IIdPM8uegHOvjPcn3NyyLMNXp7mJtnaN0PXuvrxVGHFVztkI4egjQrORnOIPmbn0KP0Mpyc\n3CST9IuMVo7M4LAyxwRzx8ZZf15kE6kAhvHieOVAJJfqe2XE4eh+L196obJ3lau8uDru9+pxztHl\nTkRy9HM005/WYy66S1/oDjYTWzDHc449PItPtYV30PiDk/0Drlhe7YOFxmQwW4he8oyHyCByGt+D\nwzZz4hX/0Ivg60N96nkDfqZ/5d0nNtbwrC3xpB2HPP39rW99a+MhZX1ewGESNt6ePglneExYE6/K\nzPzktDT39Dr7HO/RZfiKHpQPj0kT/WAPcJyz28h2b9qAw+Fqw/nlaX6y3dgRs/3uw2/iVNoRHxR4\nCAXwVvyFrw7eeggVjzq3UeAT4Xi9rQNzgrg3ScSEt0Axe6ZcOV2dXLOgtFOfMlaOUrBYcgVTLL2d\nTwoLXApdXko/Zc7hQvFQOrUP9l6Yk7n29so9VdrH2f5921Z+1kF3Fzqj3X3pt8JrrIz1zWmhzBjl\nfH1xOgWQ0dA4KKu9YEy8KnPE96dA47jSE70ttJ3YsBixePI6krHyCr4TgcYJP0jneLUQYZw78fTy\nZLgx4Dh4WrTAbrYz+Ud7DHXOEKesWqzgA4ETSjti8x4eYJEbnPYcZ+QEWaAcx4NyhdlWOKxpDFaL\nCLhbHHLYaF8fC2ud0mc8y0jXXriQU07AcPZwooEPf0Yu56g+CMEIV2lgeO5SBt3QAt2dwPF6m1f+\nyUpG8xtvvLFdnEnRbMI815b0gnZctVu6WH+MlYWR1+s+OC2oOAH8iZHX1vacPHt9mzAvvV/hJCPq\nJzjK4AWLZYsM31xDe3zDceHTEvjZQoXjIh3CaWkhzTG7t2C6FMdZLnzDC54Fefi/U4rmkvmXY5Vz\nVVAG/1jEqgOGMpxeLn3wbOwtSvXHIotDk7MWn3h93thwwnEugA2W8Q3HnktbeSa8rxXXrjGEs77r\nK37iELHw54zl+JCnvH4aG302Xi5z6eakS5zAMr5OY6ED/NHBQt7C32IePLCMMZ616OcYIkvAVGeO\n0bX6eg040WsdF+muHEmcP5wnnjmQyGSye54wBEOdYLk3DvjF5pcT2P4U0LwhVyqnTHXRjMOEU4lD\niQ4g29APvEJ1Pc/78h8bw6kA/lO0EfzZr9LW+NL2g1Uc3fCnU64OLdj85ETH82htDhtTetjcv7St\nFcfbnuETXPcTP/XKR3f3+IP+5SRj85tr5ixnHbkDbxtzZCunnTkczNoBd957vmbYa48zij5m73C8\ncmKRoU6ycirC1xwiM5xmtSFMh5AZnLNO8Gar0Ikczf/+7/++6UX6R9AnmxH+x4DDnN5J35/rX/Q9\nly99rz+3lZ913O/R2jja8PKpEnNff7VDbrBV0OPmJGfRx3Mbl/SM9R76cUSiEf1i/NGPrYCHyRLr\nQHxLTjtsQRezv/Az3jAHbB71567q4hcnSH1GqU9B1f/i+lS/iqU/JoAP1mwnecPufP/05sQPf/jD\nzcagw7z18wu/8Atbv8hDde+jT2ovuy+Z4Nk9eC5y2kGFd955Z7N/6TD2ns1j4wLHyuu/Z3YA3cpm\nZHPbSMCn5qg1GNnSJ2S0McPs/5o3yx33BwXOUSDePpd/pB8UeAoKfOIdrytREsZiF8VN8Vo0McB8\niJ1RYzGVsE4pU7IUM2VFOYuVafHI8UFJT+cq5aEcg8lFGUkLj4lf7Unby59lX+f76LBHgzUvA8G4\nOBFmQcuwtBAwppS0MQZL3ZxTnl3GYg3KzXbCQ1uMrS984Qvb65C9mlhZcBrbYMy8tZ3j+X4UQNvo\nWk3ziaPC3G3xbu4aZw5Jhp3TKuYgZ4a5bZFuLnJ0OPGUAcexEfy9cVMHPzklwnBlBILLCORAwYNe\nM8N3DHqyoGAhYNHDwaccxyyj3qk5cM/xYfXjX3hxfHJEwZ3DOMdrc2HW6X6vP/Li7eBXHj76Rs4x\nfsEm5+BOHkanYEz4E6Z8dcErdkLNovFv//Zvt8WhPMa3UxcWADenhdKEF07B3csLj/oxy0hj9KM3\nh6axM04WoxyvTtqSG8Kk4V3tbRUu+AknvCqEm9iFfy38nULhdHVvAYlfnOxwCqVTV+gPR7BcxoK8\ny+ka7AvQOlukfldgwpSHdhwsHOccF3jZfLNos4CCn3nixGubl2BYjFrA2jgw9zxzHKqLz+hhcjt5\nzZHA6Wp83OO/+Cgcoy343Yf3tePaBDeaGAPzBH9Z1HKKcDjneFXWmLmMUZu0Fvlo0TMadIqW85bT\nBB+gibJ4gSMIHeg59Yx9YfJtac8hjmaND5zmvfHE//iJ48QCGz+Ta5w+OZjRTwBv9tUz+YknzW2L\nevIZ32kH/OqRm3jJp1LMKc9guRrPFd+1vQ3YI37AW9uaaeU9ooknrxpN4Qp385+TikOH/KJn6TnO\nVjqKfqJbjeFT9A8OAtjm4+SP0uEsH69wuOIR+ts8M+/MMXocv5lj5ptNLjLH3CwEB6yn6EvtiGe/\nStc+fUwucPY5AUhe6ANc4dymLvlLRtCtTl/ayCCfwVWfPnSK0Ga1e3KXTOas5KR18txGD5iTpuo/\npO97/alf5+LqyN9rk95AB85j+oj+IGc54+CO9zhd6fc2+LLRvKnAFiS/6S52ok0xsoOzD2/IhwN4\n3iyxWcMBi5/JKXXZcN62+p//+Z+tjvrGwuYOx6u6U35N+s0+zftz9LgrPdiTbup4Rivzk5x1uAie\nTkBbz7CTycPJ67V1F17JA+WVdWkvXIJDLngr4W/+5m82uvlUDh7Day9O6yr1Jp+pZ75ykLMzyHcb\nBeAYL3Y7WU4velZ3tum+cFcfKnfEBwUOChwU+Lgp8No6XikLiscCkXJ1soRgZ8hYRGVgMUQIdafh\nxBSofIaOmKFHWbUjzOnK8KHkwJAvdgkppDmwe0phKo1Z9v/yfXSKNp6jvV1lipwDTLpdZ8a1UxjG\nQx2K2TjJ98zQpNiDF23luwR55avPIP/N3/zNbTeboTbhqWOclQ9GcIJ9xA+jQOOwGmbml7noBJ5X\n2BlmFoLmLccag9Jiw3zsFIPTIMadcexVMc433xV06myOW+MoNq7g4icLlXfffXczCMEGA/8JFnUM\nes5XDgUBTIZ/p0X1gdyx2GFU6kP92yp89DN5J1yCZVHhT3gsbC0WOXFWo1mdGSa8me5e/+RXJnzg\nWtuzTrBn+e6Vq777xqw0C0cnH/xBiNfpLV444Dha3nrrrU+9PJ3kXfsSTLEw2/ow5cM2u5/52iUD\nvLJmceQbr3iGY8CnBhj+T+V41Xa4GGcBPaR5xofw8pqkE3sWe9I41pz6szBywsZieDou0ifgBL++\nPzaG8wzg1w+xjQ2OMieHOS8sdo2Xha05RCaaK3jcWAfPnMSnNjCVzYGvL8ZHHTpV0Ffz16khNHDS\nSP2Jh3I9TxylP0WoH2DvtacfxpSs0Q/2hTrwxt/o4nI/5wRY7AbywAliTiwyBJ3pGPMbLTjfyRAw\nJi71dQ+n8qJTz68qnnh2n0wJBzTjZLZxZh6QnTenzRdOd3OTIwzPoJs+zvqe0R3vOBHlDwE5b9Fe\nkKeMyzzyOi2HCOd16eElblzULV25a4WJTzBL6/ma7QXzWjGauKKdseMIQXubaXiY84pu4qjCu+zm\nNgnq27VoGxz9Axs+whxHz+FtTtl8dTqRvU920d3mVycZ2XjkExhgzjbc14di8J8i1O5sRxp+Eaxb\nONLYPJyP5C064322rXLmjc07Y8FBZWzIGmPGPubQEpPTHInkC3vGBgV60Is5DbW5h5P0S8JD6lYH\n/EmH2iNnbbrT6RyK+sFRTLfjQX12QILekZfdRd74NiwaCvqpHPqgHTtOGU5VNMUf5IY3jG5Osikn\nrk1kG6Ycv2L8BGf59LdvvHL8ktkF+fpSf+pjz5V7SBxvBEssTRvk6junjSly1sGAFydnJ3uLA5Oe\nyeaqbnjBo7Q9nJTTRnPOs/KuYKC9efd3f/d329wDhwPbZjvnqfvar4765jPZTi96I8JbZmxHtjub\n3WndPveg/IpH+Mo7wkGBgwIHBT4JFPjEO14T4hGbIGeYUJB2hDljOFM4XhkvDDN1KBGKgMPV7r3d\nQMqbALdod7LFrnEOVukWzGBTMu4pgZTeigd8UgbF4VjZ4tKvHc92H9JW9W+rq8xt+Zf2CZxgiS1m\nGTd2nilthpHdbePFsKSoLQYoe6ePBMaPcVTXuBlH42WMZqgtafI8C2JGuj8DYpiCZTFYkN94B6O6\nlTni+1MA/3S1GAqK+WwuWnz41ACHkLltseB0AgOcUc2598HpFIONFZ8bMEfxAb5hvHG+cqI2buBr\nE3xOIW0wXMkIbTCyGeQWNQx8jjHygFOXPHFiER/Cg5FoAUR+qCOd7GHU48N1fvQ8eUeaZzLJAoHj\nVdsu/A8+2DNM3pU+4c1y3dduz8Xq1X5pnkvbg9ucklf9ystzKtArqX/5l3+50UGaU7w+4+HU63rK\nRrvqF/baPJcvnfHOocU5b+FhceV1Uo5XcznHa/DFwdtra5Y7dz/ru59w8BU+tQDGu5z58MOXFkFe\nZeSIFlsMOyVa/Qn3XNuPSQ9+MLQb/mLy1JshNh98ukE/zEuykEx0esycUY58DV4y2+LWnACXntRn\n5c0L4yLor7nbK+E21PD+xEO5nieO0l9FaH6t46Jt4+uqDNz1X4ge7uXrOzvEK7Mc73gC3dCR48rF\n8Wzec8jXV/UFz7XT85YxfqLTSHqlt9qHo5AM71leznzOMM58z/rt5CsH0IuTk4B8RhN0JOsmHOXN\nIY5Xuh/9hGjDLiDjORlsxrEFqq/9rtK2yk/wU5/h5SpIh4MgHR7PMUz84Wf+cl6RB3iXI4xTm17i\nMLcRE9/PPs++PrSfwah+9DTvZlvyyRibnGQsmcVhSf865cpxQ586GUrOkGEC+MHsvjZL3wo+0c9t\nbcljv6I7u4dDio4zPhM3ctY42LSxjiGjbQizTzjJ2UTmCp3jZKay9DBaSCNvkruzm7ONmX7b/W39\nOVevOvL32qR7OF7p9f/+7//e7DyOTrYfHnRvnYAunK4cjvptY8uFBwRjrr/sKGXpLjI5ZzZ6cLqC\neXNyvKIre8+mqVPDNv6dpDUf4MzW8z8Qv/M7v7Px1Op43Rpdfvb6txS581Hb8E+Oucf77E12Bgex\nzxmZl+wf37nmnEYjdV17eOylTWS0o4z6gnuXdGnozt7zXVkntOWZc2w9do5xql6wqk+moDPd4KQu\nGx4fs9vg7yS3sVNeW8nOcAnu1sDxc1DgkRTAV3itsD6XfsQHBR5KgWfteL2L4eW7BLFFHeOE0cGJ\nQgFTrpQvZ4k8ZUwqisjin2EmZvAz9ikBCtdOJ6XMISOtRVaKZrZ7jvjamRN4lpu4z/Rr3e+1G86X\ntjFh7NUtfy/vXBvn6mRIyDcWHF0WoxxnTv25l66chaxTL4wMu6QMbmPHuDKeyjCs7GozXo3ZGrTj\nKs89A5SR8vbbb28LQu1VTiw0/mv6Cv94vpwCcy4Yu/gJjc07RqWFh9e9LNrNR44bhhkD/MVp0W7s\nzHtOVwaghbo0p6TtunO+OpnTIsM4ctaCzejrW3Acr+SExSTe+9mf/dkNBv4iQ7RvRx4PkiE5ouBp\nkYAX4zuyRl/ine5n/6JSefDTH4ujTujgfU4Jxn2w1NOH+TzvgysONhybZ+UHozITxh6ewSsPPCHY\n7sHgcLZg/6u/+qvNmDYPnbhhRH/pS1/a4pxz6gjBdD/x8Czs5UtzkdcWqe+cTnw4mWW8nKazOHIa\niGMmXD+E9v/h7bVVmUti7aNj8N3TIU7UOIGLb/GZRS5nE57tpB8ZY8yFxuKx+NyF86Sj+/CuHtzN\nI6eVyVfPcDIn0NE8Mr4WoulG+TYhjLEY/fGEchyu5ppn7ckDh1y3KLOxwekYHeARjmKwXd2H57Xj\n2tSW4HmvTfn6El6VDx915Fukc4KQG5xBFsT0kkW7OW2O0zccJuk2dY0HXqjtCX/e195ziOHqEqJL\naZ7Rgx1GznIQuMhr/GJDlaxDC/qbrGsjCy3IVbYcuW5TRb3sOLwkOH32mc98ZnOyzU2MLfPMz8T3\nTJEHJU+47o0l/nevP+bR5PUHNXLFSuEbSPgKcEVnGwXoj5fJMHP15uScMnbKPAVPrjiFm7j24OmC\nIwcj/vDfDeSu+WR+cexzAL046VQ8RYeusIMHNniN00yXd+0QHnvtmC8Ce+P73//+j097SsPz1cFH\nnFT1q82t6itrbnmrgO7leE0XghGc23DR5iXhITCqA364zLbSRZyu9Dt+Iyc4SOlSc50tRhexN/Cp\ntR+eZYtxSmoDnVrzmX/JZrLFmNssJJP7BIU08spmGaei8hNH5W0i/8Zv/MY2F3K8aks/1J/l1/st\n85E/xljf2ZvkqT+Mtt61UU+vOmmKRnOc4++Zdglu1ZvzXV9d7GWbYvj0/dPnSAS2HZls45t+z+Ft\nHNQpgIu25q8++FSBTRN863MxbHdz2HrQuEVf9SecPd6pjSM+KHApBeKpyU+T5y6Fc5Q7KHAbBT7x\njledI7gtaOxwdqLEQl+gABiIlBTjVzplbheYEsgYc6+MhSRYFsqUOWMzo9kEpHjETdCtkeUnpVaZ\nOYkreheMyj00PtfmfeBNGPVl1i9/L2+W677ynmcd6S5j4PSXU2AuBpZFmd1bxqUyxtrYOJXIoWE3\n3HhSypxgnZwyhgwnRsEercMlPDyDwaD72te+til9vJMBZdyFDBDlu7aM4+fqFDA2xtvpSTvhXlPl\nGOXMcRLah/cZdQxNzh7jzfBTluGtPser1085XhnLLdTxhVfRnJp2ooHzlRGrDljqff7zn9+cQxwB\nHLlge4XRjrwAB3kcKerBC9/ZsAHfIijDP35TT1lhTfNsDuSUsWDE/xYD5gC84kP18eKEMe/lF7RX\nnvuuZJm8YFWueNYFT7nqBb+ynlvwSdN/jru/+Iu/2E6pyUMzJ9PQlpPFHCtoqzBhlraXX18stjjn\n3zk5XukAY2LxwfDn4CPn174Eb6+t2rwkDq5YH/GrBbNTOvjLmJJlFr4usq0THGg5x1R9+HSBGfzH\n4llfwBOCDb8Z6EgOMhtbHBn0oDJ4HW9auNuQbFMTjwvmlnJdeMX8bQNCGX0gy8l5tPBP3E6kOZEs\nL5zq6+x79+A8VdBGIRw8lx6O0tZ8z/UZfTgByAoyi7MQr+N5429eoyU+RbdgFdee2LWO0YqT548j\nhKe2V9w9hz8eZ3OhC1lLf3OUcUrjeU4RPEHWOZnnhBR9jn/IdXPagpxcZ48JYKKfDTgLdLobb05a\ngS3ARXn4JMPCdytwxR9tBBvvc+6wI+Gln64cNVds9sGg5hiiDdxd7uXBn25kH3G8podmP7tXLxk2\n5dp9kJv4zHorbO2w/bxKz2Fjswidb05OYU6bl6dP2pC7nHNkTvjUN7FQe/GHNHn1yfNThNoNj7UN\ndoQ54pvlTlyGj3lh88u6xhiRzy73M5gbTj36ziZZa36hgzDniOdgu39ouKs/e3CrI2+PDuSFQxYc\ne3SSMSIjyE46wzMHK1nL8UrOWh+wPcgO8JUBG9+SD+gina0GPnkiXzlXQRk8Jo5eaKyMzQeOTX9Q\n1meC1Ku9xmL2ad7Xxn1j8MGBl36jDac0m5ceNs59Xsl40y1zPqoPN/1xXziH2yyvXuXCw3pZ+3iU\nYxzN6TmfCXBogdM/mdw41CYYwWEz0Qk21thM2qIjbZyT78Yb3Nl+cMSlz7Tj/qDAXRSI/yq3Pkvf\nS6v8ER8UeAgFnqXjFaMLCdMp8Gc6o9Zun1fPvHJO+TIQOSk44BjvNycjrJNuFBClzNi3K05JM9TU\noXwpLgqbA0WahQJFov0C5QG/cAyfcK1c+Wv6zK9MaZfE4J2rN9uqjDRXfajMzJ/3+peRAR956NYY\nVHbiCuZMX9uorHRXuGirYDFCuVK2Xvfv5AtjCT7GmpLnALP4YmznZDduDAwGVUqe44tRlVNg4leb\n4dmztuyu/smf/Mn2KlZG6iy3wpl5wTni+1Mguq70NO7mNcPSq0jG3PzkBPKqMgcpQ9xYmc8+EcBw\nY1TjG04ORqDvCXL6aYeBbhGvHNgWLea/8ffKGR5wIhEvkh0CnnN60evX6uBhC1Ena+CC78DPuYtX\n7eL3LUf9iO/1ER71dfbdnNAuZxTcOSEY9hZb5sicm/en8ofzWb3anDDCp7T1uXpr+gqrvpEbnHO+\n9cph7eSIcTLPnRQxJl5bvaRPtVHb89kc50THI5ydnLBoZty9yu7kE4dBdevHbf0s75IYLsaWbMKf\nTjfiQwsjix+vPuNTY2mxCBe8ow6cXPVnbW/ivOY99Hlta22f7nM605+Z9EYB3m4jDI+bAxbC6E5n\nCvXFPT52kcv6aoxbCJPT+Jlz5Kd+6qc2Xqez4ZVOcB+e0aAY/FcRwqF+7T2veHBS+RwJe4TD1b36\neB4PmNs3H9kkFpL6u/arfk/Ya5mZ90m5x+94AH+RBZwG5HCOaflkMDnnLSR8oryNAPJcvXgI7Zze\nc5Kvf77mYMNra1hpHH0fQ9OVF2abwc/RTA6YI+kKm0Dwf44B7tGlfhgXshwdu8K9Mj0XB6PnNZ71\n1rLytCloT5DmXrryzTP8k0Oerqa/27C0BsBDZI86s53ZPvgzz7OgzF76h7mP+wW7Pk1I0vQRv3hz\ng1PLxjBblk6zucA+xuvKcTyzM9g0bF74mjs3JxmTzOnzCp2KRUflHtu/+gBW8OpLz5WpzfLF8gRl\nhfVZmn6TpRyvxtm40z/0apup5IM3XswzOti8m2sWMoGdgW4vTiefPZMn1oDkM1tN0D5c0JWdQlej\n4c2JlniIncjG5CSU79MEn/70pzc5RKfvhdmn+rlXbqZVp7S1HhloQ8+mKBuWjYkGvpfOUdnnt+Ao\n1K/grc+lr/GKh/zS0Be9HX7Bo2wBNrS3N3zuhbMf7fApG2C2qT/1SbrLuPocoA0UMPEyurPh2Ahs\nDzbDrLfiW96afjwfFDgocFDgOVHg2TleE+yIlCAtLSFNibunZAl8homTj3aIOUAsdDkuLHIYKwx5\nsNTheLU4diLJ96A6FZnDNcOe8u2aA7bi5Lm0WS6cZz/W/Flm5j30vj5Gn+Dv4acN+dXxrN5cKMvn\nMHJRtDOsMGtLmfJmWuny0LVnMaPGuPlOlcUUR5pnBhKjyIKLYWG8KXtjxhHGAOKEAw/uDA0GEHhz\nPLWx4iItPMt3gsDu6p/+6Z9uTvu9RdwKZ8IA5wgPo0B0XenJmLNR4o+JLEQ4evCDccYrLnPcWOEH\nDnmyAF9I4+zyqrmTsRykjHIbNV5rIgPAxz8W/AxzJ0Qs5O3UM/DxEliMWycAvU5lMRC+eI6xCQ+v\ndVkQgMVw9EkCDjjOR87Byffq62twopr2OGg4pSwgzQULgE64mJ+PDbVZDN5K93Npe22D4wIjOJ71\n1/z1pxjf+973tgWU+ujzxhtvfOqzn/3sRjfzbi+EH5hgBX+mq2eueyWQY1xb5IMFuBMpTlTSAxwd\n4Vj92gznni+NwXHBzQZe353GW+SThYd/m8Z77i0c9L32wsNz92vblV3TH/M82wq+NJdn9LQo9W1B\nc45exdfmhM0AC/h0qAWg8oVg41N6F9+KyWdzz2VemlucCBZVPunxXByvK5/N58Zp0ky/PdOPZIm5\nzqHohBra6K+xt5ljTtsMthg1z4MT7YqjYc/ic2Vnmed8Hx3h6B7PcBhZbJsvaMZ5wv7SV1d2jPLx\npthc9pbDlNX0QeW1YTw8B2fSL1jKXRrCH5zqi4UJ27N07dMTDgawWZTB4zYwOIzIgdchRIPZl5Ue\nM6/7WS+anssrv5gutfHjhJ3NWLqZnCGbOJ3ozb6XjAfuM3bhIIbjJX2ZdS69Bzv4xdrCN3TmlL/4\nh43BLkiXkKnoQDbTNRyC6pG7bGd2A1kTHcgbQVto0r34IX2c+K/15e0F5Wa9ylS/ej3L51gmG5z8\nJSfQQh/NIxsZAhmr78qyDcnhYInxhvWgixPaesbmLLjWgGw1AY3oJnDBZ0Oog47aUIedQc+b206X\nfub0eRP6i7N70nX2FWzPs1/SzoVoJH+tJ4+T0iZzp0zxDJnyu7/7u5uj0qGVnK7n2rgrPfqFQ+XD\nDQ7s7G9+85ubHZ1NTiZ7mwmf0vHRZNbf6xP6GgtOXI5XPI2Pbc5nj3Oeg6f+xC/Yl9K38kd8UOCg\nwEGBj4MCz9rxSrhOwZ3QF0+nq51Qi23GCeOLgcKJR8lSiAJlzNh30oLi9FoSpy1jXzqD3yUk1Iu3\nxJ2fBH3xLLLWnWXkrfmz7qX3wQyWZ/elixkpLYIZFYxQjiRGW04n7SnL8KCwGR7qyGfQiBkrBWW7\n6ks4BEs800pXrzrShAypXjFk9FhcZVgaazvULkYSJwe85M9FGV4BSz+MJYOk/A9b+t+/cBHCkwOI\noyTHK1hrqGzpwej5iO9PgfghngqCdLzn1VSG5vunV/0tSPCAsbaQtbDAL3ibc94JBkZbiy3znwFt\nIYKn8A3niD8AwE8WMBxijGsnIzmDyA6w41UnHZzKcgIQHuYC3ODAOFSHU4XjlnMXzox0dSwOLRLx\narwT3OL6K8ZzjFYGrAXkzWnXXxscC/DX5kqnWf/S+3ApBnMNe2lrGc9guGb50uQz0Dms0c4YKadv\nXtNzYo1Tr4WCvIlTcItrb7ZlEWBBBD5nIZluLH1jjNFuXMAPRvDBEiasD1Mu+wXHgsHil5PdBiBH\nO37Rp5cvX24ONwshiz84aKv2wmN9nq2XN9Mee1+74Ez4zRn60GYHR7bNCfS9OfGhMbPBoBzdyblo\nsUSfgAOuCw9bCNK/5icnkzlhsWrOKU/HmDcc4+Cup1n2cJy4PpYG5+pHg9mfykoLh/BTXn/wALnC\nIe3iVKSDfFKCPaKvZAx5hD7q5QwJfnGwe67Nnj+Jsf6SXQW6GV9xGJm7nCA2zTq9hQbRQT2yz8Ib\nPfEVx6sNFfxI/qNlY6Yt8Eub41b7943BbBzgVV/CcbZNP+FzcoC8E8wHctz4k+V7tsV9cXoO5ev/\nxCU6zbT1ftaLdpWJvrOMPHoXXc0zmxouup58wQ9sf7rbRiwag2ucgrO2A+YluCp3jRAeYLmv7e7p\nEo5FMrU/+CSL6Q/OPXKEjUyXsHfQwxzCZ5yO5I1NMRs7eI1MZdOiQX3X1h7vXtK/8L8NVn0pro/B\nN48E6cEpby0LBp1Bp3LGOfWqn9L1M3uo+q1r0KH2zTN0Ywew0cgKc5Jt1oYPp6F08hnd2H42u9mM\nNs3MWWPjVDGd55Qpm5TeevPNNzcHrLWnMRFqWzyf1/5tmTs/6lU3OlUM/Yy3DWbfYKdr4GfD4a23\n3tr6StZc2lZw17j2pQcrvNCLvfPee+9tNgKeTZ97wwityenoEezqgxcPlsc+YHPYSOF8NQeMb2+f\nGTvzAD+rP/ELRnj2fMQHBQ4KHBR4jhR4to7XhHRGQ8RjUHO8pYydyHGqgLLhNPM9PwKaAvWakfrt\nhjoRx7DnvKE4OEco1NWorq1z8RTw6/1UCBMuWFNhzHLn2rkrXd+i0wpfHoOUQcEoYIRZ+KOFRSJa\nOP1L4VWXouSI6vUQhgwjBY1mObBd9ceYrHiAudfHSa/ywTJWFukcV3BAO+PMyIAnXKZBVd0N+dNP\nuIhrY+JUuTWunvTpeGV0rYaDMnvtSj/C4ygQXRs70KRxWJqrDG8bLO4Z3/gD31hcM8JdFiLxycSG\n8S0fn+Ihz4zVm5Mz6cXp1TPGNeesmMPMoi3eAY/M8Mq119i1H64WQE49+JaVhZG5BqcPTk4XuFo8\nMSDJp+bPxGvyXvd4jhxz8tpC0txl1OLNHHdgnHPaTPiX3NeXvbJzLPbyS1thGBshHM3fPtPAwaK8\nPKcZ/OutP5tCu9qT734+g9ez+xnIKHT2DWB8QmZwdHlNzeuAFlTGPLgrvufgzjb27vGTTSEOIydy\njDdZadyMH97AU3gPX2g3HLSZfnC/4qS9h+K1h+tMm23NNkrP8eqbuRys5qB54UQ33UqHGEc87gS6\nPtc/7ZDlnN3oQI6iPYeJecFp4t7ceXlyTHO8govHwRDgES6e4TjxlPZUYbarDe1OfMJFmvHnGLAg\nxwM2c90b115tzTlIt+UECZ45sNfeU/Xt44Y7+zrvOSotutl0Ft59K1AZMo9s8KqpN5k42F6cZDbn\niBNVLcTnuKC/uqUVX6P/4Lri99rRpnmAt23+4XXzht3FEcgRgcfZNmQ8nF6XgAYz3Ldv1V/rSUdX\n84zMsaHGSU8msd0FvEB3c0jenPQ5uz9bgD0AJnqba8bMc+2pv7Yp7amCvsz2k3faY2fok8/UsDM4\nBvG2t3XoEvqM7MU/1QMvvlNfMF/Y/WKh/umzy/PEofyt8B0/Kwxtw8X4CMFF6/oa/Gg+cag5Zas/\nyytLl1vjoYmNTXZUeGjbRb+Eh7zWCfCwnvB9f6++kyHoByZ7zueP6DFp1o3obK6as/STNaUxCD9r\nJjh484mMUtbpTjYGPQeOUN/dw0fQr/q2JdzyU52KzHpobR5wQuuDg0TaZjO69Bc9HhsmDrWvX2hL\ntrG1vvGNb2wbBeQwG86nDvArXTdpEC7SwG3cShfrl8NTdIC32zi4bSoYM5vzL0+2gk0Vdnu0nDiC\nEZ7uj3BQ4KDAQYHnSoFn63iNYIQ1QU2oErQMMLuNdtuccKJ45BH2fUSecBZyMjpV0bd5lOcIsWvH\nMJvCexXoax6Y4eFe8HwuwL0wy0245d83nrhOeGglML4Yak6EWKx0Eo/R0Yk/p/4oN0E9xprFgUuw\nAOf8ZNShlaBchg4cKMwMnfCorz1vFcfPxF2ycuDm6CwfbFcKW9ny4gt1a0de98peGqrHyGK8+MZr\njld5M6zw1/xZ9rh/HAXQ2uLV9yZ9dP/904lXi9ocPfiFIT55xHic44143Ng6IWAXvc8DcLaCp8yE\nwclroccY5NSzsM55C4Z/tvVKO+MTvpyMjHmGKeOYY27Kgck/2um5e3PQnyNwSjI0zVtz2WUhUQjP\nnh8bh0dw4HNpWOvOZ3gKFpI/+MEPtossQRNyxp/iuDhVLJj3AnguOO3hxfHK8WWM0J3MspCyEBC/\nOC3O52Jk4qe9PZh7eKxpdAh+5HDleOWEcwrG94HxFmflXru1hwbdPwaPFa+7nmf/Z/vqyaMT6Fgn\ngjhWyX+OLvrESSCOMvTuu+o5ONTX39484Xill81Xiyq0cplTNycnCaery3w09uECh3AsrVgbTxnI\nEmHOrxUXz8rZwHTqjrPQgtyCFI3wslPr+q+fvXIZ7PqijWDXp/J6fp3i5KA+1k80cY/nbIj7buG/\n/Mu/bHJU322amE/mspNrTkFN+wP9XMHURjQtrbYeQ8sJMzjhLo/MYVdxvnvDQcDXeID84cRpA6b6\nR/whBdAxPSGl8ZJOv5tn5JHT9+YbXiGHbHb2KjhnWfOJvGHnksd0NWcsR1pOy+C/avqv8r72yU/9\nc9KPg5FdjsfJRm9t2MAjR6cuURffxZeTfuVpj81QGen63hxx3yXvklDdbBGw0dtYSeuCz0rn6kpv\nrNw3j1ZcwCZT2/Q2/tKCK6496egoFrSFXja+vvSlL20yxOaHtvBFnyUic2yO+i6pjVqbPOrVBnj1\njS3HBjVGcCKLnHglm6yzHFjRL+XrXzRd+1b6XlwfygsXz/LYmHjEae90M7tjxb36D4lXHDzDw9xj\nE6Cf77GiOfnspKvNATjMgBZC/OIZHPQpgO1iV3gblT616WsjwpjlFKdTzQMBjInjpFFwj/igwEGB\ngwLPkQLP2vFKmFKgCWlGmF1HJ204Xi3mLboJdQLazhhHinrSGWyUVKc7CXbOxBT0KrinMJ95Bk5e\nl7y9fOVm+ryXd+2QctdOuKEFZ40TR2jR6zPKchpxQFPaTphQbBR3NFaX44eBKg29XeiVAmWUKOcS\nlIue7gW4CGv/pa9pW8EH/qzwZrvz/lLwHK++OehTAxbQq6ELzop/7VzaxlHudgrEy0q5x5+cPOY7\no9drTRaxFrU3J6cGvsTTTqWa5/HpHBe8j68Zp4xDDlNOTUacdPmzvLbBkZ4xyInK+cuBJI+h/cu/\n/Muf+rmf+7nNwVZZTjiGufJkjQC2vuzxTmmVwYO/+qu/+qmf+Zmf2U7ycNrgQ3hWJpjafA6hPkxc\nVnoaN8b0t7/97e3UUvTwSQB/UOFUigWyMOsq5znZMvsszTNZTxdwjFsQWWw7hdIfNzl9mLwCf8V3\ntif/0qBdzhav+9nQg79NLrKDDJ4bSfUXbDjDXZr7h7Z/KZ5rudn/aBtd5emXzY7+uAMfm3McyfrF\ncSrfAqz5gEdtDuBfdHAaCN0tTi10LaDpG6d18LLvxfojEIs28xAekw4TR/jPvLU/D31e21jhyI8u\n5Rk39OAAYof4jAZ9qhyZ4OQPZxD51EIcP8Z/9RPs+DfY4qfo54T/qu5X2tZX/avvs79sNfOIs993\nX22am0s2Qi288Ug0BCs61h9pwhyvcLgGTScs98GEJ962CYEfONDgjb/pG3zA6RdeE064H/GHFDCG\n0ZZNSaaSM5zZ3mjg4JunnznVOGCrA4q55tQ5PuLEtznGQev1Z7Gx+LjCyreebSxzNPlep5Od8HeC\nF9+TjWQK2Yvfqh8vTXqVNmkx7+uzNPUEdcDdK1f5GStXqB7+N285MDnlXpw2GZxStB6jDwT1tBX+\n1ZVXv7ovr3TzCX0csiEX0If+IFttlgvapbPQcrZBJ5HHX/3qV7dNG7oJX9FfnNxg0kc2dNhxTryS\nMfB1acv6J/yVxYvwcTITb3HWcpCb73hT/XCAm7qC/riuEdjE8AJPe665cXmNNsIbrPrP7rXBxOFr\n/YgedD0eNe7edFE2GsZnPcsLVjjqQ+nGz6YVG9r4kKnGDG0dRDAfnGxXPlrO+2Ae8UGBgwIHBZ4z\nBZ6143UV0gSz06p2Pr0mIuYYIdgt8vp4OoVJEVvwUbLKSKM03FNc01monUICvefimT7Ldz/z1Sm9\n+o+NwZ8wGTIZWyl6dGDsMPYZ/2ILFgpRfzmhU5ocVXZwKfACeDl5KFkXuom1DQdltOMSKic/RRu8\n4mgz8Z95M78y0lyeXd1XT7yXVr48IXju99KkFzicGVFOvDIk0KJwGw6VOeKHU+DcOHFycKq9++67\n22t4Ng/wtFNlFijq9aqvzwDg5+aDPGPISLcRYcecEWdDgrxg1MVDte958gnjmpHJCUXmWAjK5wzw\nmrwFnRN+2uRY6iSFhWIwUWXCjErSZhnpHK1f+MIXNscrI9PiwpzjxAuGcuo1/z2/6jDxDi9pMx1+\n5IN8dHz/5Dj/zne+szmlw9cYfub0BxX+bMupymCoE1xlG9M1TRtkvEUZY53jVTAuHK/G2yKQvAJD\n+YmjshOm50sDR0Ayla5x6gpf6QeHY0G7s83aE3df2VcRr7hEF23LoyMtptHSnNJPb5FwvFpcojen\nq4s+VofspHtceJazoJOe5qxNERskdC/aeCXxl37pl7aFMXpNWkz84PQUNFrbqO/StdfcmuXQiTwi\nbzjZ2B/mPBnju6M2ETh3yBoOnvTHSl9tCeYGvnyK/n3YwsfzO2kWBmsfmxP6jydsYJDzHNkW33jC\nBhmZzZbBXzPURnAbN2XcuxrDWe+h97UX7OQJ5yC8vSLutBbe53Bli3IM0g34XX8F+IbzQ3F53epF\nW/1yz84nLzhe8AMZhEfIHk4eMp3eyLnXPFKfI5ATkC7whgXZZV7a2KMPbAjthYnDU40PHgC7ttgq\n7PDvfve72xsTNiedvqS7OJnYKeTunu6vDxPX4O6lVb4y15ob+N9pf/xvPcFmIdttbBuvnK/a13b9\n795zdAlHsXT08WkJjs7evpBHr9Av5hVeoYO1bY0zYaEbWr799tsbPspbzyjrtCbHPF3W9+B9T5TM\n1jZ7xalpsOFKnls/0ovkPvsOT3qzhZPcfGeXttkKT0Hd2dcPUx/+GzwQ4FlwL0+Y6eXfNw5W8HrW\n5w40oV2brOn62qk8XIyJC21LV869/HA3fvgJfY0PniJnjY+5ayzxlXCNPm6Ajp+DAgcFDgq8Ygo8\na8drAjkBzcAi9Bm4dhwZZE7cUL6cKxa9fWYAHRkXLWwoXItjxo06LjulhRTCbQK9MtURz7TqzrRZ\n9jH3wQ5GffOsPfmUPhrcnE4CMgLQgrGBbhbT9d0CeM9QAQucFhXBpjTLKz98tC2/eCu4/MyyGXzK\nu4Ir9lzZLeOjtO7F8l3VnXl7aeWvcKWv5S3u7KxyvFpIt3AOxl6dPbiz/HF/NwWMg6uxrYY0hp4F\nmNdPnSLFxxwbTjQydtWx0GKkWaRZaDWu5sOLkwP9J04n4RluFvDmBIerPHwugFGdnreM04+5Y974\nfADHq1MS5pTX/5ymsAC02OaA0j6jMWdV8wbPg7/XxkzTphOFv/7rv75tADitjifVd628tj6H86uI\nJ97hMftYWrgwqr1mbrHj9LJTgk5pWLg4bWLDQ9/XeuqDK704mOVZINEHxscCzfh49c2YM9otDhqD\n4EwYe23O/HP3eMPiMGc/fnIaJ94KX/EMe+1VdpZ7qvuJz6RH971O6PMJFr6cjWjIKUAuWpTagLD4\n5DAz5yy8fDqCzJx0UVc+/evSto1A4+PEOEdlOrv2137v0Wstc9/nSYNZ15zVHn4R9MW9PjvZ6PS9\nOY7nwOBY4yBxkTXsEP1rAQ+Gcmt7YGqrdpR7XcLaV/2SNsfRs3nDFum7nU63kfdkqo0tTjYnGsnA\n6opd6gezvJ732nssbcEWtIUnzBF6h9OJ3Kcj8AKd5OKAIs/IovSMesH4pI/7pPXWqZ2faFZW49Tz\nGht7Dlef9iHP2fk2bWxo9bYKHc7hStaQs9ExnuAM4ghnL3hDRaBn6BefBeLQ9LyGietdeK51L32O\nZuQhBxO+4SB2ep4j0ds4/lSTTOS0xDvkiD6qm2wKv/qs/dKUqZ1oI1+aS1C28lvChT+zvnYcbrHR\njM7GzHw2V81f9pk5bLw4LbU3cav90nsOPzFHJ7hOArO/rFnQycWhCx57kA5yoCT9Uv/Rz1sVv/Vb\nv7XhoQ47BByfJWIrOLVpzWSTh61Af5vLfRaH41Wf6D6bQcZOWzbc8Jp0Y6b+zWndpc0Zorv+zT7O\nMve91+8Jq/trttVYww38aEqGoSFai80lVzJOOfjFe+HkOThrf0tXj15l77PlvCHFfmDvc257C8ym\nS7BWOMfz86XA5KdzWMbH5/KP9IMCrwsFnrXj1WQlZBPeYoqPMnTqhJHGMJPGCKMgKT6KgJKVpg4l\noY6TFBSmuhyvlLb8gvvbJn8KovLiWb+6M22Wfex97YvRxVWQpr8WyK6ME/ntUqIV5zN6ZaTIn/iC\nUzt7edIqU37lKc69IF8odj/bnM9zvKWvobbVd+3BlLbCn+WCuZbhkOOs+eM//uMff2qg9s7V2YNb\n2SO+nALnxhKvWpj7QwNOO3PepgLHpwUunnci1Z8dWMDE18aFQ4dR7M+vvEaWY2hiNccPDpOH5eFH\nThfOVK+yw4Mx6HXyFydHC5gWHIxxCwBGO4M0Q1Rb4DJYxS6hdnsuzYLri1/84rZQdGKdPFO28pVT\nb6ZJv29Y275P/b260iZeaIkOpVuoWdAwrMlheehoUW2xhpbq1N/qwWvKuomnMmS5xZkFoD9lIP98\ns81c9tpjC7/qqTPDQ+kYnOpP3MGXX17trXXW58o9ZVyb2gi/mebUGH73vVxODPrDnENL44S/OUXk\nccDSKWSnDQiOAuWNtbmL7+ecMo6ctL5jzBHCuWbc4QEHVzhFg/W59MfEs7/BKW22p682Vcggr5nq\nL/pwKDjRyMF2c1pw4zkOV/3b41V0mHDdz+dweB3i6Lj2pf6iKVvEiWknh8kDDlh84E0G89Zim8ON\nLYee52BqQ95T01Mb+Jjs75QrnWMe2Pi3IcHRRC/RCxzwcK/P0eJV4FpbTxnXj3NtyF/DSovy8QO9\nyfHOGYmu9Cl73uYjucMZSVZwZnOO0R3ozgEuTt+SO/iKreCTP/LgYo7SCZ85vV1Bhq1h4nsOz7XO\nQ57xvVOTXqfmtNdn/XOaD+/oL7ultctsIxzFK7+XVhn16kdxeT1P2JfcV58sI/PZW9/73ve2vnBC\nCmBbe7Fd5med0J/cr21x9+nNcJAuDa1scr1/elOGjaddTnf6HA/QL+xBusqaju2XrqGHlPXZJm9W\naF+aMpx7nHreYkJ/waaJS33yHlzlzHfzGO8ZJ/O607AOAZH7No85XvUZz9Yv9Ipms7/186FxMKsf\nvcTyrtHWXhvaW9PX9jy7ktkz3/0ME9/ymr9sbade0dgpdfa7zzqQsea6ukf45FCg8b0N42NMb6PO\nkfc6UeDZOV4Rt0kqngK8PI4OBhel6J4yFQhkyrVTR5Qo56pdzU7oUNIW6gR8RlntbUDO/OwJhUvq\nnQH36OQWd+El1n+XRXDGKWMFjSwW0ckzvJUP/+JgQW4tI6064lm28sGZZbufceXFhdqrjWD1XH+V\nl2ZsKxOM4nCb+aVVZuaVxsnlNSmOVws/xq96LuWLKy9e4c684/5yCkTfajQ+5ihnnR1wjiDzF29z\neFiMcfY4wWCxJY8xjjfIAWPoBLM/3eOkTZbMMZvtulc3A775ZGHIsHe6w0LDIpExzshWPlkkjbFv\n00Nb5pw8jqjkFFjJq/qoz+HhBIUTr5wPN6fFAh4UJu9N/LfMB/7M9h8CM5xn8xMm2qChIN0zmli0\nkb/SjB965bQLZv0Nnuc9HMHkxLWQstB2IpGT0GlKi9kcunCofjClCaV/+PTw3+AGr75MiHtl5Fdn\nln2q+3AIfm2Xjl/jdwtfzy2knTgxtzgiObk5Smw4CNJd5uwen2vHvHCK0R+qef0Xv5tHQu2Lw6l4\nK/CIHzCDG8za2wMLf7YD3nL6zsU5yCmCBi7yxcIb/votgL3ClYZPZ7vue95rfw+GcsGpbn3ag/Fx\npIXfXttwJp/R0adBfMqC05UjA39ZVHs7wR9S9erqHp2iTTSozZ61/RC6rHXmM7xzDsKdc5BdaaMM\nvviBc4aTgAOe3AsfcOCI92eae3m1s+bt0fC5pIVztBaHfzgqM0P9leaeLepUI+eXTRx0Zaebdz5r\n4jMTdDxdT69yxJtn4NIj+MibE/QJmyBnN5hOI7MXODnpXvW8pkzuOAXJgZtumnjBLbyN1yWh8mv/\nqyufPOHI00+vzntDh1OJXeL0v7dnXpwc9mz3gnquFe5sL9wrV9nKgFVacItnmcoFp7zgF+fsTP5z\nilpPSddHYxosspL+NT/0k+OSbtbHaBvc2q2u+WJ80YkO0oZ5Nb+fzoYw/mhKB7GrgqMsh6g/v7L5\nDhdtNg7e5nCxF/AbXmD/03X6Uj/UwTu+A2uDGI9ZdzrIwzGMj3Iwc5qzY+qTvkw6Sr9mCDaY6KUP\npV2jrWCBP+GVLm2VvTNv3oPRs3thDybaG0tvlv3rv/7rZoegsZPq/sSWfuDYX+tvCcfPs6XAOvZ7\niE5+2Ms/0g4KvC4UeJaO14hrsq7CXdqqZCo/J64yDLAPTq8HMhK8qkJBU9SMNnCCL752mLg8Nfy9\ntvbanOXco1GhPLG6rtImrNKqJ94rG5xZzn31Zx3pnjPGZnvyBA6ouZixuIf/LLsHey8fvJnuWeA4\nY6R9/etf3wytHK+VrU+ea0u9ee/5CPejwKTvrCndoskJBK+GcXyaw9IszC12vSaGbxjCvpdmvjOu\njSWDmOPVa29eBc45og1jFv+7bwwZ3ODjL+MPDoOeI8prgd/61rc2R2914wW8aZHhxJaTE+o7tWPB\nwPkaXIsFC8UWCfUXHP2A86/92q9tGwAcVOHZ3Kj86xbHA/Wr8ZCO1vpfWmXK43DHH068un9xWsBa\ncHk9zWLIgkrZuTAJxgqz9Nc5jtbi6KK/PeN/TiWnTix8LTQ5P16+fLk5x5xM7BuwnAhO/akjRE9j\n1n3teeYg4WzlGPfq4M1pc8H4zGCu7I33LHOf+/olDq57+JTX/PIMdye49KvvBnO6cRz4l3Gnb+DN\n4Vq98Almz8XRoudzsfb3QvUnbcJdXvl7dZ86beI852rpcHMvz0kyPOVVcI576ZwyeMGmJ2e2hbW5\nGg/Vtwnvkj5dWr5y4mhZmmf6BN5OPDtJyelKpns12eYOp5n5wdmjPJ6oPjylreMmvTKzXWWjoTLP\nNUwc4T/7EM71b/ZJPUEeGnKQ/sd//Me2ccbRxrHF2Yon2GL4wQnH5i1YdCc9bzzwED2rjFPoLg5a\n85dT0Py1MatdfMVm+MpXvrKdLs1JBuYM4VibM2/vfvZf/oQHFv6h823e2Bx02pV9AJfPfe5zGy4c\ny2yNGaLfTJuwZ/pD7lf4YMNXXF7tlccW0w+OMTZR8s9YmiOcmOrOeuQk5ysHs/nidHjOs+pPmuuL\nZxvu3mQxzsbQJgcHqJh84Mj2uRsnh/FAOIN5c5LP3nTyx53sgXQMutNt8GdP2vih3wT1zNPuPdNX\nxsYctzmkXbpA3zle2yDg5GVrkAFCdHQfPaKJtMeG+loM9jXhX4JfbSt7n7art9aRjv7Gx6bc97//\n/c3OYG+QBRyvHLDryelwDW7PK/zSj/igwEGBgwIfJwWeteM1whCotwnRBK4yFB7hzblKgDsJx+lq\nZ9OinAEkv7K14XlNK+++MTgzhN9Me+z92kbP2rqrPWVnmeoWl1ccrmt+6eLy3N+nnvJrCFZwGD+M\nN0Y555ldUQaeMc5gU6d6pZ2DKz3Ys4x2nLpx4pWBl+N1llHPVVvy5v0sMwIDiwAAQABJREFUe9xf\nToGVptW0yOK8zPFqLnPyWFwxdjk7LaAstBjqvgnGMMYnXv9yctSCXjnjKRgv7cUnDOzGkGyYjlcL\nBAsnGzYWTf/0T/+0yZBZlzEOH9+Rs2B0ugJ/kj0WlhYlyoBN/lgkWAAEI5zwnx39z3/+8xsfgiko\nB8dJo3m/FXoNfvRJaCzqUv3vuVi6OmhsEeUzEE4oWnxzvHK4W+RZdCm7wgVnLy34r2scncUuvCmU\njt/NIYtTi1pyFk1ffuR4xZde/bQ4Mi/NSfxcQNPoWhv4VzCfOFb8MR0Hpk0KfC/MOvN5y7zCT3wU\nTrO98CNvbNjaxHGKmvOZk+fmtJDnyP/pn/7p7eRTJzKjWbCgWdpEeebPdGXLm3hJm3AqU914f8qu\n8l5lHM7anDh2X//IPjKRo8NcxVtkISeKE4ho258JtUFW3foDhnDtPmsn+QC2Z0FsLnDw2Lw3Fzhd\nOZg4YcgXl5OubBPl4yP3Xev8amz1p77WN2Xj0w2JZ/qjb41xKEorzDzp5lV9dU8nOtnmO5uco+SJ\nk5BOpXbSlczh9Mpp1hiZn3Srul4Xp085wHLYvjg52sgjcsmfcnKSGUe0deLSqVcOOXXInnCN7o2b\n9Mazfp2LqyNWz+UeHhx05AmedwoX/3DS2WyAi1Oc5GL1akP9NShzrTDhBxcNSpdW/6Wxuzk6yXwO\nUXlw5/S2oUwPu9BaUD9Y6GyOe/uIXeZkOEdzc0P5yrqHhzHurQqOV7r85UkHGTeBo55T1slVPFAf\n0JJT2+ae9uBXO73NQbaTQ+a1NG3rDxjK4jn1yCcbhRzH3m7At8ZSPTixK/0pF1uUTOjEMvyFaCAO\nvy3jkT/Rqvja8C9Br7aVvU/f1DtXnhwkb/GXuYvO7HY8Y77gIePQeE48Jz73xWnCOe4PChwUOCjw\nlBR49o7XhHRCNYGdkTQVHEIx7hlxBDYjwatLFk4UZq+QgEHJgln9axE5/Ca8cJ9p17yfba5tlbem\n39V+9FEPDJf7CWeFvT5ro3p7eeEgz2UsKjfzfNSeoeYEIKOKkcfQ8q21nK/qrfgFo3jCnv2QL49x\n6Dtbf/Znf7YZWp4rV93a6Lm6tXHE96dANMVzM0hniJm/PjXAUDanGV1e+/KnTMaLgWx+m/cMagsD\nCx6nTzlDLY4t4hj6jVttam+2qz0LB85XBh8esFBkbHv16Tvf+c6PeU5d/Mj4ZhRqx4IKfnC2SHdC\nF7+CJZ2zgUySNmWPPA5bjp033nhjO03FobwXwn3ivVfudUnTX+NWrF9o5zJWZL3vgf3oRz/ajHab\nJ77txljn2Mvhrh4YM8QPM+11v580cJ+sjxb43eLHXOJssqlhUWmBibYcrxyzFkfmpNjr4gJ46G3h\nar5Jp3eNFR7nSAHDaSSL1fWV32CEywb0nj+zf7Nq821v3pTnO/Dvn07KWcybv3C2GWJe4ieOG3M+\nmoG/4gqWtDV94tI9XGe5+UwWrX3R7op/uF/aZm0/RQzf+h+e+oFf8BMnm89TmLecbOYpfph0jR71\nfT53/xjcgxuMFaZ8OLMlbdb7Di0HD5sDT/u2r5NXHH1sErwORjwRfGkTNpiCcjM9PD5pcf3RF312\nuTdnooE+lS6P3rOJ2ecacqzQoeiJJ8gacoETi7M2PgKHk4xzz9x0cpQjn+6nd83TlyfHHFjakveD\nH/xgc8CyEwXwbk6bKL77SWezC8xnPLvirTw4l4b6qTwZ6lMC5IlDH2SKk6Ic9BzLcLVJy5mo3XXO\ngDFp6Fm4Dz4f1jj/G/zi6FwN6S7p8OPIthFFJ7CP4G/zjCMUfY2p08s2wPU/uOCBgc4cmd7qUc8p\nUnXXdrWFt8w9uoUNZdyNKxsLfxhHDnUn0I0xWteeMfU9Xxs6TqLn8JeP//Ac+a5uTnk42ExTVx08\nAjdyyb3PIdFlbDcOf5fTv05isjH7tnObBCsNjdtTjF3tiK8Jf8I9dx+9H9s2OOHunr2B1955551N\n7rIf2Pvo7A0248LGqE74TXwei1Mwj/igwEGBgwLXpsCzd7xSwgIhm6AlYF3yGPAEMyPZyTgffCe0\nGWd2lilLZVah3LN4wq69+xI63Pbq1dZe3lOmzX7BITxKn2nhMfsxy8vvubLF6sir7m3lGJkMIYrT\nxRhjrIiNEyOa4u0ElfIvTicYGNacr4xxzivGndNtThMw8oRz7U48u1/Lwt2i6uXJcP/zP//z7fQN\n/Co3+yatZ/DmffCP+HIKoGc0RctoDgKeYIC/9957m7HM2c4Y5ghxouHmZBTjH4a6hbFy//zP/7zJ\ng4w1r7c5lWR8M/JnG42fNPPfogI8Tle8CgdOXa8+cbzKV0e7FuFOVVjE+eyBV83wI1lk0WCB6DMI\neAkv41fftMPnEwf5+NvrVL592Su3e1RUz1Vf9sq8TmnGBL0bp/qGBuQ7R86//du/bU5A44WGThJZ\nxFvo7tUFY4UX3Nc9nny3RwP86zSPzwhYYJLHHAQWypwGFs/yfXuP41UZz2BZvFogOyXkXl26mLPF\nPHJCygl089cpIuODjyce4TfT7jMm1Vdn3gdPXLrYXDcvberoMwcCx7ONEPqAk8CCnMOZTDCP1cOX\nE3dpYJ/j13N9CJfyw3NNlx98981/+EvvWd6rCtoWZvv1XzrbjJ522o/jlRw15pytXj3mbONkI5vB\ncAlgRM9r92vS1b1rjmP8j2+duOP48fYUPOFrw4Bu8Uxu4+vsFfIHf7gmTH3yXNv1tbGr38rNe8/P\nMczxCV996z6cPUtXHh+gJQekz3hwgpElHHhOKJIbNtnpVXRUd8JDZ6dk6VTj4nMnYNC5ZD25wql3\nc7IJlOXw9IYKPcxmDB7Y5jNHjjdi1O2zA/Cuzb3+1K8ZzzEtHT9w6nH+0k+cfWxcfE+mON1tHsQv\n6tVe7QfrqeLwDr52w0Gae+MmGLsf/vCHm7wnK8luzk06gVz8f+zdz64lyVH48XmU0y/AM7Qsdggk\nFoAFRgyYwdgyYGPJIBbGILFggwABFhKWBpD4Z/ZsWMyj9KP86lPTXxO/dJ1zz73T03PbXSnlzazM\nyMjIyMjIyKg8dckxJ7N92E1F+3IBjtawFK/ZTZzPbDOOTmXBaGcN4hmHtXmGwzzhHTsJbXQJ5ym6\n0KQMHi9FOF2lfqbemOBki9Hv9BG5oOfpHvLAiWpdc+ySQ3JF36uXsvv8osonjfz6yd7GEcjesC9y\nCIIt6FcUkr3q1jS4tXx9TjaO4Ktb23yez9Hx1L6P2ufgdtHByxVOdXNiH2Y3mCvnQDp2hnBV9lSa\nan+mJwdODpwc+Dw48Owdr5SpSImmSD3biG18fm7CKHCw46Dh1GDwcGxk1FLQDoGivG/6MMS6iRPu\n+noKo6PtqC28bzs0ptnvHJ/66Fppr7y2s36tAxOu4I5gHFAYRW6IiN4g+3xAzi1tzBmHFaeqGzIZ\nfW6t2Xg53Bg25s4cizbp4OC4RUN1aF5pVMfgZ7z/5V/+5e7oZRQHW1vtZj/qq9uBzz9P4sDkafOJ\nr9YoQ9k3AX0b0IHGt/X8h1ORHIEjBw7Kbj+4/ejniJyXHKKMNd9nNL8Z981jxHrWL51RdFAiAw5x\n9IpDHKcuAx4eLwMc3tzecxAhm8rV93kEzgYOYfjhIuOMfzhnsD44txxm/Md3hxFr4yhE62p4HsH+\nNJQZr9A68yx6xsv/+Z//2Q9CbqU5/HC6+hbnZTuAdxACK664fhr489gxxIPJ03CoI5v46maTw6lD\nLR3MOcJJwlniMMShgPecIF58kmFOKQckn2px6LVHmxcwnCZuvDpwc3g4fIOxZppbdFiHzVd0PSZt\nfKXayrf2PcPvFpV9xi0mB2oHfXuKfckh33jpGusSna235AjO6JYXwcxyfd0KYNfxKpu0ep5lUz/q\nf21/q783XadvtKEjmj0L5h5P6UA/CXcrjtOEc+zl5kChM+fPgLWJnxNvZeqF9fnT0vv/Rl8tJm/p\n/v43AJngjCfbnGT2EzTT+2wZa8CLQPqdTWL8yjnspdYDWkWOAo5aeOgkZdFxNJ5JU3Q+lxRtk/by\nzX/yqNy+/Gr79QfnGacr5xxnqfXkJYx9mcP1sulqfLPnFsLr2bzgt5c99JL9WJmXnWxDuoQz0zPe\nc5I5E9izOdlcwoBPxG9zY49l7/n5Moc6WVR3NB/RdJQar2D85dkAxk23oAMfjBGNxm2sdIUxpFei\nLz4e9fUmyyZ/4wv8xl8d+si2X5NwqhqPNczu4XC0Jsi2YJ1wdv/TP/3Tru+10z7c8CYb5tm8cUSz\nz+jZdIHxa0d3cLw512lrvswTRy870LnP3sIuNL/0trXplwkcwmQLn+HTni3pvGhP88kHF3QEcORA\ndMZwTpy2IprNEf1lz+MQdLMXDWw/Nhud1q9rGm+yoA/9i9dC/L5WX/ktHMG87bTxPqXfeDRl3r7s\nDMjBbd+wJ7MbXm57xpSVzmf1u/LwOfIqWs/05MDJgfeXA8/e8WpqUqgpUs8UNoXcG3Qbvm8C2VyD\nt1kychm8jAUbu+Agqa1DV4bBXvHEP9F1rXn0XKt/0+XRUxr+6Cit/BrcWg7+qC048xF8MJ7lbaqM\nohfbzVWGmttQDu/KMj4ZNd4+M1LdWjY/jFeBIc0g6oYJw92BxzxyEtQf2JUGZYXqPB+1YWwxwn1q\ngFE4N3bwjaf8Ed7KzvTpHMgYg8EhmPHtJqtDMJnh/HFTgqFMNsgAg9pNGA5aOoFRTM44Xt1IdZNh\nGtPmsKgfeqBI7tSB76aDg54Dhag/esUtBzcrGINkk3yI2juM9/N3Mt0tWWMLf3KkDVkj4wx5N14d\nRjuERic4wbMwjdW94Kf0T3xqeHiozPh9AsJnKPoWp3n+9V//9f0niW6tdKiNd+F4n9PkJx5M3qiz\ndtzw4+BwqOWEdYClu/HXIUiZg+sn240k69K+64YQ2fUJEAdkB3IvGtxw8/kPe7T161DsppBb6Dk0\n0dA8R9+kK1rvSWsPduZrCy8Zclh3kO6fiHEU2qPoFc7jxmptkrVJz4o3nZW81ddDabIMtz7gFctr\nX1+z/4n3WvmE+Tzz0TfpJkNehNGBHBWcMJwsPlfhZ7n0GwfHSnvP4TyiO5ijunvKVtwTH7rd3qaz\nOXzYiGSU891NKy92yDV7hZ1ib7IOvGgjJ5xCl83B5juE9g8Bfg5X+5Fxs33ATn5FN1jlovykLZjn\nkJLbaDuiV50LDhytbsTT0Zyv1j/nNeeYTwHhKd2Cp9ZOY4ZzBvqFo80NezynVzgw2QKcdvLdSNfO\nHm3uvIjlJDOfc62BMQfmhC3hZSe6cpbXf2MEfy1M2PQAW4KOJBecrvZyjjlnkOxeuGs7cd/T54R/\nan72LR/v4fNsLObQ7eS//uu/3vcDc8Tu8dLbjdIpy+DpULreLVQvLjjR4FU3dZo+4LJOfPbBnmF/\nsWYav345SekR9Fh7nK/2GfJgj3q1ObedFegXL+HJgbXqvHfZ1iF9Hr/R4uWfW7Kc8ZzI9jIvAb2o\n9aKtlyLoE6IF/c4n9kO2qO+bq2P/cUBrO3mhDs1ieMK1Fxz8Cfagai96qP21ds+p3Bgbx+QP2Sg0\nT+bIXNHD7Hxyx9aW4rW5mmHlX/1MmDN/cuDkwMmBL5oD74zjNYWdMuW8oJC9AXebxqGOkWMzp5Bt\n4DZiGzuHhkO4coYEpx0j0CacE+SpExE9t9qvG8It2M9at9Lj+aj/tWxtF7/RU37C1L4yhkn56jK0\nGLM2SoaVN/6MXfNiPvDfnDDYHIT7cD3HlTqBgeyQxuDSh435yOkKdqVBWaE6z9EoXzmZcej+i7/4\ni/1AgG4hWHDyYm3Uz7znMzydA5O/5t/hxfe4GGEMbAdYNxQYX1Iy4RDMOHfA84ZcG3gcchlqnK8O\nVQ4/08ADQ24FBzWHpVJ1DoNklNOUXLrx8fd///e7Y8ph0c09tx04aRj3yYHD+6vtQOCNvTZkGQ44\nhdZFh5HKHBzR6yDiMOnAL0Sj9vVRmx3ggT/1+wDYT1TPvn6i8pEF99BQfyts41Y/68yX29Bu4/iJ\nOD3CqecfNzkIdYMmUsPf8/uaxkOpSB4nbxxq7ZHWk4Omlxp0oYMvR4m91CHUHsr5pN5atd9yvHp5\nQH6tCXLPMeWGkZ/depHhdlCf/6DXc0KhJTpKnzJHja+24Wq8aLJ/oAdd9IuXeWjxDUEv3zh02A32\nhPDBI046q1v76vmhlAwL6aVw00P0iGe8x7fGMemYOqT6h/p8k/Vz/Ghhf9mfOck4yDi13Vyz77sl\nx/nKedJNtEnLPfTHn9nusflJc32GF+1km0xz7JAVcn3ZnDgcZ3QyWQfHKeQnx9YIeTKH9gzOnOyb\n8Np7rJ32LfaQMv2TAWm0SGv32LG9TXjzHd3y0Ux26WL2dS9dvODAGy9b3IoXyYRfP007a+IzFs9w\nc6yRI3YAnQ8XPWIPdjvdi0+yB15AgzacrvZheopeCz9aBevbCxaOP843ui161Lcu5W+Fxg5Gnoxw\nDntxLKCX84g9AWf9l0bXDvyW/tS37vTvuVQZGWfH4LnPB1gPZPjldvOQnvRyzXrQRpAat3OZF+B9\nQ9X8KQ9uB379h+73Isa3nr2UsS4EsByj9nVzx8ZTx7FKT6MVfeTMvIp0JHvQnNp7yJab0NajOvrU\nvkbneyHEZiSDnO5eznPWzvnWh0gHmEfOey8jtSeL6PDrGjYb+zIZfD20va32jedo/MG+Lyl+xAf5\ndMjke/aHX9P0wtaa7H82WPPtzbNdvI6X9dPzmZ4cODlwcuA5cOCdcLxiFAUtZLR4Ztg5PDnY+d6P\nn7rYDG3QNl0bLmcGZ40NniHEoLahM978nIHRu24Ge0d3/LlXsa8bwh2onwwSTUd9VlcaTz2LDFdB\nufazXl2HPzxjSMW7iG0T1K4+pIwhTldGt7fR5ochqr3bAG6YOOww7MwpB5uDcP3DH77myvPsZx3v\nhI++yjyv8MoYxb7z9Od//ue7MW6zr039SstrIwTz6dP597NwoDnFU4a1NcpIdpvVPzOwlvver/lh\nTHO0Mva78a5/dQ4GDvscowxw87vOlbnUp4NakaEtgGfAk1NyyUHD8UpWL9tBnAHI6Oasb+1YAwxH\ndLsZ8fH2DwIcyvVTQMOUbeXK0Mwx8dFHH+1y6BCovLaljaE0vNfS2l2rv1Z+hP9eXGvbo3az7CH4\ndEtt8A9fHe66TeXgY64doLsZo92K+9p435fyeCgV4218su7cVPMTcc5XDlZ6mh4nkw7bnulrL8zs\nBXBYLy+3Q7kbRG602YPVeSnKCefWuPWkDpw5gsvambRMHfAm50QfcHMKekHTP3oybrRYzyJHjD3K\nmLSJL9FYmfLqolOdsJZXLw1GfsKFH41eItN3dFK3KPFu9i1PN+HfxAPvmwiTzmv49Bvd+IUe9hXH\nC/7ax803xwYHC+eGvV+bW/P8eYzn2hiiBf3klZ3IluTUYfPYc0T5xoq+HFIcr9oYT0H9jOo43ryQ\n4NgXObHgFBov/LUL13NNoxV98VDqRaM171Yg57RPBFy2/dJLMTJgfXGckIP2zXWMEzenF33kggUH\nrrXBjqTr7b0+LyCYO7yDkxyaQ/qL81/bvkPdPMVz+66XtH/wB3+wz4uXAnBco+2IVvQKZEjwjB59\nweP8MYN6cdUxtY222aa8drfqg3sohacQPvTKo52Tkp78wQ9+sDsdORe7sU6OvdjEu/A0Fjicybx0\n5jgzXxNGn55FfXGU+pWKfyrKZsMr5c509nZyxP7yAoST/bLJkjmyJu0f5Ag8OxDN7DM0eFHCnkI3\nOGNy/oPPCxM4vaD1stB6dHaEJ1rJkHUNJ9uSDPm0AVmE3wUSN3/JIPlJbtThhbQxwiu+7yF+4EP8\nwavJd3ue2+psBvLjnxvSxWx4L2zZF3if7RBPm7eeT37HiTM9OXBy4Dlx4Nk7Xm1+FPMMbWwMK5u6\njZFxR/G6ReCAYpOWCpwzjDc3Kr219BMWhqGNeip8sKvyVraGxyr0e3Cufdz7vNJyT1+1CZbxj2+i\n4O0ynuGz0OGDocUoUu82gcO3TVKAM7y1U87o5BB5sf3kh7HtJgh8jKCcrubB/DGM9ZvBqn3GHNzR\nq7x8suG5MvXRclQ228sXGJEOiX/2Z3+2p+gMTzD1M8tnPrgzfRwH8BUfyU78dGh3s4ABb72SO8Y2\nRwRZ5fhhoCU32pIdwdpndDPUXm5OHo5/8xtuMM2llLNVJH9SuPTBGBfoGbfr3Z5hhDPqHULgd/PG\numgMZNkB0T/jcmPDGlE3Q7DR07gZ8N/4xjd249INw3n4C4c2tZ84j/LgandUX1l09Cw9KrsH11Hb\no3azbO1r1snjg7Ry8/xqu43DwcMBgucOZX7CzhlufqzfAv4KGfmVv49pPDT2+D7L6GW3gfysl/PV\nSwRrAqx5kIK3N0trq9xhiGNF5GRT5kWaaG2RabdJRfXW6ZRxNLUWtH1TAY1eiHhB4+fHHDJk5rId\n4tHiZ7Nu0NufOAKSE+3QMeWnsjludHoGV9trtNdOPdzzWXt6j3OA7qB36IQ+39Aera1+tI0+qfim\nwqTrGs7ZHxlxO813sN0M094NTz/H5VDhmGhP1S7aZz/yxlWobvZT3UPpvW0nHP4X6xM9zSmZJ0de\nTlgjfXPU5204BwTtausZfhEO+wQ+2DM4fF5ue5Nn5SvsXvCM/zQuY6WPvQjDE3PPWcIBxvbjpLMX\nc5x4oeEFTnpkrhd5OKc+wG/7PLmC00sT9dYq3tEz2fnaoiW60MRRZn+wlugxZcFgrbx54bzjGP6d\n3/md3fZjY1S/Zx7xxzjgFaJpfY5GfQe/wlzrMpzX6u8th2eG+kcPm9zlFA5Kzi83Te2r9KRbouYV\nPPpnaCx0mDXB6Y3/OUMnrPZogIPd/eGHH+52j71bOTvL/m4fMu90n3l3gcNLixfbmQId1o4XgGTP\nSx8OW+c9zjkO3S9tL9OcXdCGDi8D/v3f/31/QQCPl0LsOHNO3oScf+xPthy88vYMeLxkRAueuKzh\nxd36CxtjiMfGGn8nD97nPD7iT+s9Xil3viR/bhdbu87uXuR62eIXNda9+aotPtY+np78jhNnenLg\n5MBz4sCzd7xSpqsCrcwmyRnjraSN3mbLsFJPeds81TEIGRJukDgAemPpQOMgCPdU2PU1y57LhK20\nPoauxjXbKGPMzBsdDhV45fCNl+oZy24Pc0LhKyMH/xghDlsCXPUR76SMKjgcaDnD5cHhvfniPK8v\n8wm/oJ1DGmPGYZ6x7hlM/aNV0E99wi2/0gKustpIZ2DAOSB+73vf243w3qSvuCd+7Sfeie/M/9/B\nY+VFPJ3l+Gj+4yeHqlsGnJ0Mb+UMbTIhT06tf3nRYZgjltHm2U0HNxkYaww18rMaavoj53SFSC6l\nZKGfrNWXn026xcXhxwhkcDPqOUbIqzGhyW0Phw0/lWLoa89QJ0/prPRU448fbvP+3u/93m7QXzan\nUAEOMEXjqA0Y9YKy8j3vFQ/8mW1mu1ke7qN+Q19d7XquvjRcnoOVb/3XTl1RvXKRk8NhnBPNzQhO\ndYd7jlcpGcnRDj685knoeX/Y/ijXT/gnTcHMtHrwhcp6nmlwE0bZfAYfnPxap6wQ3IQ5Kgt+TSfs\nmqeTHTYdmt144vggt/oCGw/l17bksj3DWiX39Dw4ByWHVfNjbfZz7PBFI9g5rsqPUvMIdoWf5daz\nvcr6NR7fpEUXB4KfL3IIXba1Zh9MZta+Gqfyta8Ju9LuGS34Ek3BhyfcUvspe8W3pN32ove8sCTX\nH26OCfoBf2sT78yPkBzLByNfqM+er6W1Bb/mG4/y8LG/fNPx4+2G/yfbd385w9xupH/Nd87F4PUb\n3knDrJ/lbyO/0rPSYh24te1Fv73BnNJD7Eq3wq0ZN+riS+3xS+hZ6vYrB5Lb+ZxZHFv2h1uh9rdg\nPs+6+IMOYyJrdAW+vNr2RJFzk22ongPNGEVya8z24GR24kO355V31gO8HKjWr3VMj3DUcerjm3kQ\n9Ik2ER7Pbt9y3NiPOW7ZCNEvLcDh5qzP/HDEeVFrPiat0atN5bX/LGlj/iw4Htt2jmXyCx/Y45ye\ndKVflPjMkludPquE72yfXhTol+4R8ST96Zn9xvmK95y37DJzUoj/UvOI9/pgTwn2d/8cTVt2HdyX\nTU+7pcrRSb6sQ+cAOtNLNQ5SZzxlXuz99m//9o7T3OoHnF9PsSnJqj2IfmLHoYH9h04yx4Fr7C7r\nsDO1pefYbs4j6PTynRzK5wRGe/wt1bfoWewZbLzTd+dYMPaj1ox5qZ1UgONNhXBOfOGv7t7nieNW\nfsUbLBnBC+d0ssP56rKUfQ+vfUrKnDmTkgkBLvKXfEVrabjP9OTAyYGTA180B5694/UhBqWkbVg5\nXRjDNkoOOo4P5YxDThGpMhtzSnr2kaJuU5h173K+cc0x2Mw5QxkfnKqMKY5qxip+4oHyF9ubZYaL\nwxRDmPELxltIh9prQXv9wmuDtHG2OdpYc3it8wDGwZiBfdkMLT9vdXDLyHLQYRQ55KBHP82X/uoX\nXZXLrzxY6/DDf+PO8Wq84au9NhN/5dIzPI4Dk/9axmspmbBuGf+cnQ5z5p/RTy7AOCCQFcYp+SKz\n5MKhgQ7o54g+N+Cbch2ktBX0IZLhZJE8yTsgZvSCdYhw+OOMIn9u7r3cbtxwvlofgkOdWxEMRTQz\n7PVFjsiwlN5xcD/SP2D9U7dvfvObH/zCL/zCB5dN9uNRNB/Jn75nvXzt1rr5LP+YEM76ekzbFTZc\nlYdzlpc3xzOYM3PNKc/xyuHD0erwhG9enjgYaRcvtBHCBXf4wRTBKZ9w9R2NpZWXhq/nCVfdLAtu\nTcFOuNqCq7yyntUdlSl/KBjzHC9Z9/Np387l1OZcKeiDnhTrW5nDozQa4LMmpcrMB0enW2Uvt3Xj\noGrvAQNP7UqVhb++j1Lwsz0Yz43JWrZfuQ3lkyXGRX/Q824dcgRftnXW3nTUxyyrv1l2Kw9exIcp\ng7M8nOrti/bVf/iHf9h1jX3WXshR/d3vfnfnnQO5oN1RuMW3W3Urruha++kZLpHe45zgzHDblT41\nx5zF5ns6x2Yf4Zllj6Fvtvss+egonTSUNya63U1kTlZOFg57dhEZ9rNlTio3qVeb6Bpe7brpR3fZ\n2/RXrF1ji5ae30a60qBPdCSrHFNeZHBIc0zZd+1z9l63Ce1neGStzwAH3I1Jfj5Xbj1wpLlZzPHK\nPvUiwn7erfnwRmttPXOiaefWpLljUxwFbegAPx13E5luMMfhMt6JP315hOtW2RzjLbh76j4LrjkW\nfXk2Rnrd+cjLY/zipPTijA3FKer2cr8C0o5+NUf0f3Y+uRasA/rLDVP7NDlRFk93oNd/yItvrerD\nS3KBveUzB9aVsxz81gjHKxlID6pzttOXdUgO0aOe49UnDOggdNnbyFLfeGUT0q1ewF22fYBdRt7Y\nkOw38HhDfs05mxM/4GcDcgByBtrbpiMQ/fFY2j5o7JXHB3yXt8960SbCb+3oo5fIcM72PUs/a4im\n8Kz9qFcmCj2Xl1Ynf0+oz7Wdcjwhh35x4wWkOcMTssFB70UA3liz4MV4XN+V9XymJwdODpwceA4c\neCccrxSocE1Bd9ON8W/jZWzZHKUMLQcvmzO4IiVOuZeuffT8HCbpTdCw8g5OhohNnYHJySRwaHBo\n5tRSd9kMEm+XbXIMazzlPLIxzkPG5Jn+erYhei7Fd7FQnmHF4cWw46jSp7fWOV7Ra14ZJt6GM/Y5\n2OunFN424Vm28mDWaQM/p82f/umf7rd1OPrgEcA2pvJ7xfZnxVv5md7HgZWfnhn0HJwOshyZDGBy\nkTyQE2uX4cwpzzlhnfvmM+cKeIY3x6gbLG4VdesKVfpIDvVFjqVwmnP4yLuDiACfAxyDHV3WBKPb\nAc1hgMPWmuAMdNPVz6Tg0yeapeQEjQ7u0/Ga/EhfbE5chwVOC7eE0DHrd2K2P+gXpOkwdKM32Vdf\n22ClgvJwTJhPa4//Phb+GMv/lYavkiOawKz0Ga/5cDD0H9Pp/Ms2H+bY97/cVqJLZjt4xNZzfUpn\n+YSTrx6uI/p2gNd/autx9j3zwYNdy4/KwEdHbaW1Xeuulc+2Mw/eOogv8vS7W2IcaX1fDRz9aL3Z\nM+wXZM1c2BMcGu0ZU671Ay+c1hJnp590cjKZI79kqN/G3nj011gmvWt+tqstGH1y0jiQcw5xzov2\nCzcx+4/qDsvoEB7T397ggT/RE96eNZNHI/4JrVt6yP77wx/+cHd8cwJoT39wIHBO4B1HthDOtQ/P\nle2AB7CV30rhF8NVinZzx15wM8nBuM9ScEJYi/hMh8XftZ9on+Xhn2WfZ37SMPP1iR7Riz96nf5n\nd7BJ/DdzYyRD7Eu6339z57DphXB4WgeNT1/KrCM/neVwIpM5KNWt9NQ2nG8jRYMYH8y7fc2aZ4e5\n5etWI1vQfnvZ9DCHkZ95c44ZD1mlO7QV5jjKtw6Me8Lg46vt9iH5oovoGXYhh7Wov3gF18oz+sjL\n2G690gHoL9S/FI3k1mc92A0cO9WjPdzKojM896Sz/T3wt2DCBSYab8GvdbWv7Xxmx5hXthdnqTo/\nqWdHWdvsYmXa0lccr50D6DGO9+aEvY7/bi76Rn63UdEDR3i8ALMG/CNULzSUs+P+8R//cd/n7S32\ndL++o//Imj7IIZuKPUDf00fo0R6d1uhXv/rV/TNE2tOt1imbknPVGC6bDHHM2teMo3Mk2ukut2s5\nhrW3zjl4XeCxdskJxyua6QF2aTydY4wf6CpMOGXR5mUnuYfXC4YXm024vkgOh3TFM+tu5aOl9p7L\nazfr59qdMLfwP1Q38a+w+rNXc/y77MDWM89e5rjxys6zt7BHhFu0r7jP55MDJwdODnyRHHj2jteU\nc0xK6SunnBlWDld+ZsLZwalBQVPaos0YnE3YRim1gdpgbeba2rwZY1N5r/3W/3NK48Wk6R66a8dI\nwg9GjJTxi2eMCxu/ereDGKAcsJ4ZNg7mbuWAbUOeNIQ/WjyLjA9Rmwzt2pkTRjpjXWRcM2T0y+hA\nnzlj4DPkzLWUI71+SuFcaZhl9TnhlTG8HX76xitnQbSDlZeWD0999Xymj+dAPJUKjGcHADdeHQCs\nVbLIQCYf5EEwRxyy5s5admDgAOAcFTLoGfXkmJw1j+RQJFfWv7x6uDg8Z2DYMwL9wyx0kU9v393c\nY5xbM14GOCA6mMOBTvVgrR16iZ5y+OtgnuyUOtA75Lzcbow5YDgMJIdwtIbAW0PkH2/wS58OPeCN\nAzy4YuOVzhBcuKWzrwk7881VtKubZc3pbFN+ratdaTSH03NtjNX8+gmiAx0eeGHiZ80OKngGNnjj\nmXiiQRovZn+zfs1fg6+vCT9pWHmkTpjlcKN1loEBW7+eZ1jxrG0nrHzw8mD1p6x21gEnk1tGDjx9\nW9mB0qH3sh1SX2wHQbqajOE9ubYfcMTYG8h2IfxgOV4drH36w2HWoYmcRRMaZj4ct1JrQLvoxyfy\nkUPQTxT9/BR95MLPnt3CdGijN/QvxPtbfambvLoFO8cx28hHIycS3lm3+Cmih67xDUIvFdAPXrkX\nPG774GHOV21Xuq71vcLdoj9YuMTWkPLmiWOCY4ZTi1PMXNCJXkbZR71wSk8f9RWd1TWHPb+NdNKg\nf7xe6WBj2oP8Z3d7izXCZvrOd76zO6M4ZYydU8nLCr924Lyxr4Qf/+DuubHpi43jO7huWtJjzam6\nI/jafh5p/cWD+WyMra1eMnoZaW3hh5uDXkZaY3SFfWjKTbii27N+RLgF8I27crreC1UOKTzWF/nS\n1+oIrI9SOKwz7d16NTfshFmvX3Do/dmf/dl9TukIei79AL4ItnEp83xPWPu81ubzgFtprA80qGsc\nUi8y2TEclF6q0P1+SUJv54Aky/GAvrdGOjM4Z9H3BXuElxF4b1/x6wPwBfi9jCP/UnaTtWOtuUH/\nyfbpEvDmgo4kW/p2/nC71RnPmmyMjc06cjv2a1/72p7qT9+ceMbGgaodODRLtYUP/egg0y83W4ws\nqPMSgCyll9289PIlmdcuOvSnjYje8sqF+G5c+OnsSsdwNnum57/yla/ssk5HxNMjPLPPT7E//Fcf\n2kVHcxou/Qie1ZUPvue94gl/Jv61uTp9mq9+QWYf9wLSy0cOdc5uuiB6ojtct/AHc6YnB04OnBx4\n2xx4JxyvFGhKtZRSVu6QaMNi+PuoP0WtnMFPKXOK2LS6KdfhxqGB8QjegdFmm/FnElLab3tC3kZ/\n8TC+Mgoqw9e5yTJG8dEhWTknD4OHkYVf2k348BiHcrgZDBk38GnPGGb0oEGdOeKkEjnIONnMIUPf\n3OjXDWbzzfhmEMKBhuaq8ei7MvnCpE1ZMMrlGYBuUXC8+hmbZ3XVl85+4FF+hsdxAA8n/1ceMrQZ\nuQ681jZDvHXMIc9Y5Vzx0kQgSw5UHAGcReQGTm/IGWnekruJo13zqI0waVFfJL/RBTcHA6OY7DHU\nHQCk1gJnCblE52VzTr3cjHU3FuSVGQu6OIbpKyHcyZOUzOVgtg58BsS4rQVr0EsIzlVt6TDrwQHC\n2rCO8MZPO7Wh+7QzHgEd+Io3xg6H/qzJUriNST+iunlokF/DHEd1k6fKwAQXTClY4QgmPLNf+oNj\ng0HuBQy+OPw4BDmIw1O78HpuHJVJlUfXbBNsdWAFMMIsV5auW8snvLr6mKnyYrjDA6+5oufkZ/Bc\nv3SseI3u2kVP/YCffZERN28ckLvBSGY4KS+bLFtPIhklV2SQ44Xse/HgdqmDdrQ2LrQ5xLrJ7dYr\nxyFZSzaj7ylp+7a+yDb6HYy9mHMzSbAmOAU5fHMKgcePaHxK3/e2iR/6QyPbw4sD+soapy/sPfL4\n54XTxx9/vNs0ntEIh3nwYsYtSTLvINqcowVcQV/aKAMjNN5grqW1nfMz+Uznsbc4iP0sGR2cVpwF\nnNpshtn2Wj9fdHnjRAd6jXHyyzN9/Xd/93e7447NQSdaA3/8x3+8zxtdK+AJpxWHubklf8qEOUd7\nwes/ys0RB9Gv/uqv7j91Z6sW0CeUNo+zfs555Z8lra8VLxvMPmeMrXW62J7DCUL32mPtO3Puj/BV\nhk799Fyf+N5Y7fNeZvrJOocgnaMv8mYNeCERntZZ/IYXTvskx625cZNSeVG96MWMTw3QUey/8MId\nrBTu6Nw7fgf/xKfG3hiVsyesabaKsxG7wqcGfM/0su0BdDk4bfHCXJFz+xRYtkRzF9/Ae+nMkcoB\nbj4EOLyYZp95OW6PIDtsfi/+3CBHiz0ITrjt9/ap7Jho0Vc4o41cfvTRR7tcctKyF+xr7DH0ahMP\njMvadlsbHT6r4MW9tc4WYmv63Ij2ZAi8vYyT3rnFnphsNO7o8aw/9UVlaE/v0Pm+aetlMj6Swd/8\nzd/8sTNaO2Hilo9+6WOCtoJ2kxZls87zDOrE+i0/Ye7J1wfYlXZ8MV77N16TBfwhZ9YnXWm/zAkP\nF/hwhu+ptN1D/wlzcuDkwMmBp3Dgp8Lx6pBlQ+XYYKQxoChkhwFG4IxuslHeDoucrg4+DGQbfRs4\nRqbAn8LUd6mNzWr+rDojimHDUBDmBus53kjLT7jyDAoHMHPRd2TVueXjoM6ZZS4YGWAcjN1oZPAy\ndNDgBpXN13yJ2phjdbPv8mgtr68Z2owrC642jDrOMo5XNyo81wZscOXDE0zPZ3qdA3hXnFDkcPIx\nB4pbphyvDni9TCEb6hnP5ENedCh2MCRTArkmUw5T4mU7NJC1QnQ0n/VfSh+QM7es6Rg/NXVrg/xq\nE83hIS8OhH6uyDhkjKMB7XSNgx/nrRsTQu2iR6pveK0dhr3ooCGgPQcsOOOlt3J0KdNu8kn/8AnW\nM1i8Steh2WHDoSEnr1u38g7UdKj+4UWvFE59aOtZoDdEfeCZOdCHZ3RFG1qMSTvtjcmzVBm4o6Bv\n+PCSHnBrmHPDLQg6xu0nN17dquQ4bsxwwan9TJVXJn8tgAnuIdrgAGvMaMUPAS1Fz+oKcBr3pFc+\nWuEwX3gqxKP6qSxehkf9vaE24PVH33KqfbLdNHIId+A0P/ZVLwMu2zoiL+aNM8Z8OKA7lHLKOCQX\nogN9DrQO7xwmDrYcVsrr35jjzTVeh7cUfrAimfMCgvPXz0jtE2Sb05Uz8LLRTXforz61F3sO70zv\npWW2mfloVIa/bn9xWHJCcCLZ83xGwE+cOd3A+Pk2p4NDuPlAAzx4bv2Rcw5Y8cV2G0vZDNGsjTCf\ny0/4o7y25gNvmhcpBwb5cBjm5NY/BxjnIZ2Hx4J+RG3I7XMNK4/QqYyuNFecIV5EcBbhP+e9/5bu\nFqD1QMYE4zR31oKXQvQTmzRduMpYPFXO+cSJw6FOl029Dfekcc6f8vkM9rOG2Ve46B/z7oWBNW7e\nwdkrOFvJrb2CnhDQZFxgxMYe7mB24IM/wcGjb3afNUHm5ss2ey3nmr7p/akf8Ve/cLg1S5/927/9\n2+7AhVN9vEM3W+HDDz/cHV3m1RxUj8TGomyWH5D/xovix0T8VBrgSvYay8TFvvGyAZ/tr/YfN1G7\n8RqPoyW+eA7fLDMH9kR2j38ayHFpPgX6337gcwAcab3EYNf4rIf5yvHafFqD1tkcw5xLeNHhJRW8\nPpHgJZ8xWZfWsjGBQSf6yI/5Z/f/zM/8zC7T7B9nRzQKbA8yyAYkS+wiuPGmzx+Ai5dogr+yyo/K\n7Fluu/pFlbVljG52crzS9cYSnslbeXiLO9Aj/kRLTeCZ+D2bu9ZvNMzn2j4lnf3raw32c9/6tQ+y\nv8mNfabvvF62Pd06jQ8TH1xHONc+zueTAycHTg68TQ68E47XyZAUKQVrY+NocQONY0PKoLKJcuQ5\nkDOotCnaRBzIGNHeojMsOAGn80J/qwKfNDznvHE+RHu8sLlzoDhE29jxyiHBYZCzyYGbgXMU4CjI\nw8Ugg4Oh4lnKeOFINSc2SHzmLGNoOLA7pGvnJjLjhRHP6aNtThZw5ks78LdoauzR1zNaK4vuWadM\nnxyv3//+9/e3zegtgNVeWr66FW/lZ/qTHIh/0jUw5uLxPGx54+3gZN4dcskL2XAAJKdkCry1DSYc\nDmLm041XTjk6gXxGA7hgpQX1dAvjPFllcH+yGduMQGtkBvBoIru++dVP3smxMaHNAd44GP7woFUf\n6rUVBbBCNMhPI1dejO7wgGsMUvikYu3xprFLq5f2goQDwJp1AHKo5myjI8CgV2oOHGSUWyP6Uocv\n6DcfdId84wGD9+kFeW3DxVkDp7LoNSZ0wmHdiz7pYN7Nh9vQHIPmmTHuxquDE7rDg159z/HCH3/k\n60M/6Rbl6TE4lBtj9fFbW7E6PGhOtDPedKJUGfjGJtUXOHWiZ0Ff8Bm3EA+l6qLFswhH49kb3Pkn\nmkodbsio22X4y7mqzhzR4/jrQKpMHXiHRS8wrRfjR4so4I35eLE56PyU2hoxT2St9RypxoQ/cMeH\n6q6l0Y1P9MGr7YWMiA77GsfrZTug5SyO/7WDtz5v9XGt7qHy+gPHoeDn2X/zN3+zy686zkrfdeZ4\ntVeii13C6eAfi7jdHa1S0br0WQ2H85cvX/7Yia0POBsP2Fl2L0/3Rq9xyZtDge3EmchxzObCUzez\n6Fk/t/Vc0Jf+tX1sv+H4PNI5H+jzjEZrqKCMruGk+au/+qv9th55sodwtLhxRYbpzTk2eOg/L4a0\n5Sxg62jbXOijfpsna8vNOT+39v3CfpmlvqhdPJUXav/p0+fzVx90IycIW0yUt3b9HJvTlTzSl+gD\nL8zxRtk9dWtbbawb8tbP1b2M4AD3Isc8+Ak82Uvvm8voMR9sfD8v57i1/uBsDqT2EE40P+120xH/\n57yiKdpX+jx/3qG+S9F8xN976ICj9Qw+mQo3nU7ncHiSY+uArvFiwAssPBbCcURLuMCRfTjwn+PV\nvsI+MEf2kw83Z7cbr+aTTNkDvFTmbHND2V5vDuFsTuTr44gP8Lit+q1vfWunHYyx+BQInZpdopzs\ncm5a1+wI+xRZYt/Un3HQfWjX3oUA9XQ25z8dbq+ZNOJPNIZHf5XBKdjj3eb0D8h8BoHdiaavf/3r\n+y1gPDeexqn9xKG8uk8x3vcXjuYw+mZLPDJP5m/aMOat/qKj59n+3vwtHM6iHPa+D0yfsv3w2r7H\nzu428uwrfMo+C10T55k/OXBy4OTAm+LAs3e8GmiKdFWiNg2HLUagA59Dl82CEdvbb5sYo81GLnpr\n76DIkUOJe4NPudtc6mf2+aYY/XniWfnyEP3gHYodGhjNjOcOEIwuRi1DNX6u+LS3+YrwMFI5TRge\neM8gsVGr9wy3MgYVAwzvOaKkvXlmJDvU9JaZIWDT51g3v+bIXJujxis/52zyeMJUXlnPa1s0eOvu\nn2sxNDMwg5fW58Q18xP2zP8kB+J5fAwCD4vqrG03LxhdDq8OXdYtGQLHWLWWyQ/YYgYkHBxEjGm3\niBzQ0gmzz/Lg6QAGPlmzBjj7yakXNA7P1gSaCtqQcXi9NOB8IDduTHCgdPADh3YHCIcJh0dGvLXD\ngcXItk4865tT2TpEC31mbHAUkjep8p7VT7gVvudgtBONwdq1/jiLrWe3ORj7+Ikv1h6eo8e4rGfr\nQ/QMBzrjIfrBNl8Z7mCLyvRh7PqkJ7pdC5f+RLhENEjx0sGQc4pOxzcHbwdmt5/oEHjqJ5lAD9jK\n9Y1uNOM7XPoQjMvcNC/aNv74Fz/VifAYr6CfnNN4S0bgqs/mrvkDj05RGVz16Tn+gZtt1TU+qbrH\nBO2F2uE7ve+Q7MYTh6r9Ey3B4p++0Gj9kWU6WgTjMM3ZKYUPX80bfjhc07G+A+pW2VyTaAAPh3zj\nujWeYLWzXtBAL5hPOOBHhzVGJhpnY+lZ+/JH/d2qO4IPvzq4jYX8uInL+eOQzWYhf27H95NSMie8\n2hzHXtI45M+XPegQtfNyhNPTz/vpHjxvzdY/WPmido8N2uIth5tfCHnhITV/5pLTwksn+pZs1Ld+\nHsu3x9L2WPhJ22xbuXmSJ7McNT4twylCJ9Pp9hO3jDn7epE3x6itaJ8w19aRaB8hm9ZMfdW/Z3wz\nlxw5v/iLv7jrMHMVvtqgb+1vPofzqal+VnzK6DVr2FoXyTJZ46Ci37KV5pqN5hXfNdqCV7+2oX/o\nfb8asS44BfHSLXr7LeeUdW5fag7pSjykC+zdPo9Ap9nX60M/9h0ONz91ZyeYZ2NbaTiir7IVdu/g\nDf2pj4nus/QHH50kTDzl8ZXex2Mvi93gZt9wvFrr9A7eThzawluqjozQG9YC+8068osfuIXWk5cN\n8Jo/c6d/bXyS4D//8z//P8drNO4Itj/16Tk+0fPwcaT7pZN+0ONXS27RulWaHefln9v6bt2SAWva\nnmE9NpZk2lnkk+2F5I9+9KN9TZN7tOMLZyA5QkPw+ow+ZdaQNDql9Aq5NE68cSZig3mJ7FanX4aw\njchxY699PKi853vT5g/8igNd1pto7Zmb1nr7/+xnbT/rHso3niMczoB93sG697kKZ9YuU1j76Frb\nNrbm4iEazvqTAycHTg68LQ68E47XW8ygtClZGwXD1kYv2LwZijlaHWQYXKLNxMbLuHZwFFL++8PB\nc+XPKbXZrBvOPeOwGTFQX2xvdh2EbWQOfAwD/HLLibOJEcB40oc2NlwGKSObccNA8aytyBDp1po2\n5kXM2DA3DvWcWpze5sCmXuBcEBl1gjoRXW2kc8zGuo5Xu3iy1lUORpj16vTN+Pr+duPVQdbYhNmu\nPmfZzO8Nzj83OTD5Xh4PJx/NN0PXd8Y4HzgtyaV1Da550FHP5ZMVjgi3ERxkGbLkdjoe4ABLxugP\nsu9Q4JDmoJCzlc6YTv/6Iy/WDoef20pSPxvOUG5s6GJAwukw4bYYJwYj38ERnR0Y6bCcR1JrBG3o\nhE/fxmCNcOSJ1pyydJ51Jq8MjcYNpsMEXNYUXGRc3xxT1q91bb0arwN26xUdyvAKzvQAOnqWr63x\nghX0L+pfBC82Dv2LcKJJO3pZf8bi4Bz/tdEHveQljjpj0Z7DFS9zsinTnwAeH+FXTnd1wNIXJ5h9\nAT4BHxyA4EKrPsBJkz35SSu+og9++tBBTAqPg0vPeJGOm/OpH7jRarztTdGLP/BrUzu0yk9ZU4ZH\nyh8KtQsHuSHvvqfI8WQP4HhFT/upuQVn/MZc1BeZpkMdfDnm8MfBnaNcOwdd9Rx2XviR3zmmeIue\nx9CPhmjEN+PHY7zD7+QN/sY6eVP5LJv5SUs8m/VrfsKE2y9yrP//+I//2J0AaOTQ8LN1zjy6AC/A\nW/t0n8OmW1DmRLk20vLGhZdujNFB9JHxgsOT6J5tKltpXp+1AZvjigOYXDgIv9hsBzRzWnjpQc71\nKYRf+/m8P7zlP9Ewu13Lojt+0RMcy27b+dwDGSanHCycc/ickwjeiW/yPb5ZR2LfHE6nw4tX+qWn\n7B/we1FIj5FfuIv6gj/+rn17vhZmm2swyhvLhK//9B39JKTT419twrEDLX+CURzcUZn6tVy/9mS3\nDTmz2ajK6Gh6xVq3HpSlo9Ambx+z59oz8FugTznlOLc4XNkIfWLgiM/Rq21jDtekVf1RmDAT1xHs\nWjbbrnWeb+FTV3up56LnyoKBz35ovXtR7FNPnK3WOtn3OSXy336EB/YDfBfpYSn7gQ3H1ufwdlvU\nHAiX7RcIPqnhRYNfQbA92hPpb2cEDk79W4vsgMZRCs+ap4fsL3STSE81PvqXPuXk9NKWrnVrkhPP\n/JMh+ARrkx5ACzi0GYvb0j4hYizkznqFwwtfdt9KD1z1j0/kBgz8ZJFN6JcNLhd4Jn9oQZM9lM3Q\nnjBxyQtzzj4tuf9vY42+8OE1G7hfg5pnc25/IgfWWfI/e3sqLZOO8FWG/5ytXvaZOxcxyJ65xXey\nQ1fGo2jAaziUn+HkwMmBkwPPiQPvtOOVYs0YdDi0WTNqGbzTacCIsJFwqnCu2PRS7CYjZa1s5p/T\nRK20oHONYPCjsZXOttowTm1eDmkOTd1UyUDFJwfljFRGBwOAUcCJIM9pwfAW8BOMaEO26SmzgcPJ\nCLOBOrg7UJofhrAysGiSCvLNg7xQnfysn+OrHEzGzayvrbQw67VHP2Pne9/73m5gMjCUiwVtxFk2\n88Gd6accWHl1iy9zPsiG2+huSTDAGVzk6aH5mDgYxg4LHK9uP+QcAGOdOCCQRTpBXww8TgU3lTh5\n1ZO9YrSTL7LvZ04vt5/5OpB7825NZehlmOoHzYx4eB0kGP7WAVljOFpX1qTx0WHWnUiXeXZYwQ9B\nv/rhZHyxHSocFnIOag8vB6I8WqxT9Q4FHW6MB13h42TkWHD4d4CyTvXpwMRZQBdYr/hmjeRIZJAL\ncMUT4xCsf0E5OFGd56J6vNEevcZrHujrdEMw4OAwXodlY0EPPU/3oxtt+sAjaU5XuPHTwcmcWtd4\nIsKpL+PtRZM+0egmBV6nB6JFanzmFK/oOM/6JGMifkvxtjI0c4CDE9ErolcfyuJFONWhEx1oBW9e\na6cNWptTPFEPNrjJ78agTP1cT3B4Gcmh4Wd9DrzJkvEZq3q8FvQlwlHKieFQ9KXtZiD5xG8/TXd7\nCv/JrduuDsf2HXTO9vAUlN8T0K0dGkXt8K1xT/xgJ97oDuZWf7XTZtJ51CZ84NCBd9b9D3/4w50X\n5o3j2bdd/eMauoRsFMgsh7UbZ27Icza1zta+4ec08jNpjpH4Cm7SbOyCeX8oaAtenw7gbhp2+w1+\nN8m81GI/RHfzgB7hMf1Fz6S5sqemk0/X8vgTvfoh2/S0m3G+7Upm6RHOkC9/+cv7zTg6qPmV4pEw\ncdUffPYYTh/rij6F3+07zvTw0BN9OsKnBrzAsMbhKYIt7h1uf+qn52updveE8D0EDy6Y5jk+el7p\n1PdsIy9qM8uDg0NdfYARrAu8dEuQfrPe7ncAAEAASURBVLJHWVvWkzp7ub0Kz9mdtd8bb388m0/7\noluKbi57cUFv2VfSp8HXr+eZD+8sq821tDaz/qH22tzb7hou5SueYGe5subSGcB6p7M4vcDhDxll\nU3HEWQd4Sefag9ke1ou91t5oP29fZU/ZS8DTGZyubvrDRVcL+kCD+bRWrEEvndwWby7BJF/azHFY\nQ9Ype8/+c7lcfrw2tX+1Xb7hsOfkZE/alzl+vejwWQK4rWWw6KZ/yRK89l/yxVHK+Ur22Ez6ogfx\nwz49A9oakzx5Rjv8bBwvY/CXQ1E9xyZbEk52IT29roHw6Uf+s4R4B0f0Gb81ZYwc7uxP6+TlZuda\nI2w/awR8/Wsjj9aHwmwX7KQjnMpEvLLezZvPDUjZDG4o05PW7ovNziBX4YYDnz3fs9dFx5meHDg5\ncHLgbXDgWTteU6STEcpESt6Gn9PE5sygtVkqc0DsUM4IcACsbfgo6PqQCsoqr6xyafDyhQlX2eeV\nok2Q2lQY56JnGyCeMPbRFF2NRyoydDgGOBZEz5wPeMZwwj8bns3LJmuz9VNChkHOV230pQ0jgoHC\n8GI0cRooZ/yiBV1SEU7P4qTxsfxqTA+1AzdDPFE265Tjo1snf/RHf7QbcAyzdeOO5tl25mdf72M+\n/sYT8zwNssrJQfnmojIpJxjjz+0wBqC1rDyZr62y5Co80WA+vVzwZvzDDz/cb5dxcJFtcs6hyIDm\nGGJQ0x1kF72cZA5nZFzfOWHVwctxxGHCAGR0MwbnONGCDnSi0UGG88Q3xhxkjANdfl7qjT04/TD4\nrR3RerIWpcbI0Lf+OGn0KXKCGJM+0A7WejTGuc5zAupXX/FI3njQbq7oSrxxs4iTgDNa2gGEkcvJ\njK9wwuNAQn/gAVx0RhEflDGMpfWNPmOS0hPm23w4jEjhE+BHm/b6tT7pIn0L4LSnd+SnLMijDU+M\nycEPj+HDSzpQao61N3Z5Af34V4rHaBCNgTzkHNcW/9GU3GgrNE540YPHaJKHG15txPgDt3r94Ck5\ndPiDCz9aA/oTwei/8RuTNuq6ZQtGf4IxVJ8juHl0yHGr0c/hrQm04JfxiPpoLGgs6F9wYHRw9I9Y\n3P7GGzc33Xgi05ftMPxyO8R56WBMcAv6F4z5WgCz1ut3LZvPR3iVhSvYozJ0zPJJl3JB+4mjstp5\nlnd7zHdd/WMZPMQHOsmNKWuJHNQGT/DYeuZgojPckifn4dsz25/6Np9w+YdP5oBTpBBez/Lkp3zp\nHMdeuf0hb682ZwWnKx1MN3FA0H0cG27rkp9oqB/0yx/hnuXq5/zXHr7Kw6EuGsOh7ilh9hNOeMgS\nfWvP8S1K9iRYsupTEBws9J91eo0G+NSVwisPt3VPt3EeuDX3yfazZQE8GeCIctONc8sanTwAB48w\n+65sr3j9p/6DPYKZ8Lfyra9wwC3OOZ7twU36qqt9z9KJaz4HM8cPNhx0El1ONkUOPjqek4jTyFnA\nHoj2cNSevLJjOf78qsmeYv+lHxtT/UQHna1MjGb54JUJwchrU4iG2iuPHmU975ntT3DRP2FmPvjg\nwhON1nl5deiovec5t+Doc7KNv15Ae0nM+Ymn0YtP+MduYX/QW/SU/ZV+wHfzQX/hgT60tXewVbSx\nnjjxOGD1F3/QpJ25ZSv5dYCbpWwPeAS4hHhUHg5OVC+f0MYJCoauRR+c7Dt7GqeutU0WrGkvCskB\nHPrxoomTj51mPF6CcPDRffZ8tpFI59K3dCGe2G8by+TtTvD2J16wp6x/N13RgU7t0e6CAL3a3DW+\nOW/hu5bikThpCY80Hs4y+M0X/dfnPPDBmO3ldJPPediz1xC+e2gEu8Ipm+Wznixa4+SAPKKNzFi7\n7Gfr2K82zeXEEc54sNJ8Pp8cODlwcuCL4sA75Xht88UsCtUGz8hye4ChYFN1szUnDfiiNpRxYeZT\n9KviDrZ0wlX2RaToEG1Aok0aP4y1w3cbz6RPG3CMIAd9RtM8tHtr7aDcAR8O9W7mMAxEjh+bsT45\nKhhF3mZznDBSGCbTiYGm+Kr/6Cpd6ZvP8uDeVsBLb76/+93v7sYUx8xqAEW3sRRmvrL3NW2+4onn\n5j2eVNfzTBl/1rX/QOu2A2OL4QWP+SF7DGFOJOucoZiDn6wJ09hiHDPE3WrgMCD35JwRzsnnJh4D\nEw7t0cZxxbl32ZwjDD+yzSGlP8GtPQY3Y7Sbe/WZvPcMH8OffnKL0GGC4a3c7TQ3PhxABGvJ2PWD\nRutLdGAnh8YO1s/aGOcvNicAYx8v9GvdgtceH7XJwZbDUL/N0d7p6z/ohaNDCr3aAcP6Rg8nntsP\nnJ/0AD7Vr0MbvYIWMd2kP32jZfaNPuPCd3rDHHPy+qSEwwg6wNfGmBnZDmwOygxtoTHHJ89oQZdD\nnPKc0Q6Hno2fXoMj5x94UVv1xmA8xoH+YnwiFznH6Ttt8Jp8wYtuY9C3cYIXwZoftOnD/GmDl57R\nrx3+CPDoU0q3wyXksNWn/tDXXICFz3w5gEqN1xwYjzFrR7+pl9efw6m1wDEkeo4O7cmffvWn3LwZ\nn7w+8cC6cSB6uTlXOZPw2+0iDkTjJz/qrRv8RXNjNC44lAlzDXlWB7a852DkZ5iwyuE0/sKED2d1\nT03DOfHp17y51fS3f/u3u77Bb4f1jz76aL9x14F9toOLjFiHnAC+CUsHwdeYy0vx0q1Xjju46QYB\nnmLjqp/oneXqRHVkjQ5w2CUX6KF/cpx0QzB88CQv4ZRWH+7q1v4rr/+epZXdajPh5eNP/df26Fkd\neC/ifAOSs5t8Wy8+BeGfafmv59aSEI79YflTPxUHizecU24Scrr87//+796neo4EjiM33i7bvqNf\n5RNXeOBVXl3y0LN6sMZTfrbdC1//CY/6CVO5VHl9zLbl67d0xTOftQln5VNmlFVeWhvt0GFc6XX7\nJR1EV7lB/GrbR8isPZa+BwsPfrpkwEljD/EP/rzAZEtYj3N8+mks+o6mtczzpBGs/iYcvCsMuBlW\nPLO9tp7FaEzfhlefq24Lp7poCI++lfUcLHzgvST2oshLIr84wkcwtbMGOFDpcnsIetj9HN/mg62A\nHnuFCMaebW/AfzqEDWUfQYc+G4v9kc5j++nbemx/3QnY/oAVo8nexyn4u7/7u/v6se/AS+9abxzH\n1jLapMYnopEseHnuVxj2TPKjX7aal4V0ILkBYwzsFS9P2IT2bWv25bbXGZt9NZrQOumUx6fwc2h7\nmaUMHi/NOIDdwOagBj9DeNfyCVN+wsZb7ZSLeLMGcPhl7dB9n2wvhTx7icfxar/O7oYjfNJ7aKq/\n2vYs1bcQnlJl7CG/guJ49csPc4N+tjO62IS9AARfgLO+jsYb3JmeHDg5cHLgbXPgnXC8rooZk2wK\n3lxSyN6O2qBtqhS1zSyly+ByoFWmTnlBPqVcOaVffsKVfyidm8YKu+Jd6+991ofIcBCNIbodjhr/\n2h84URt8kW+D0kb0LNaHAzcjiTHjoMUIYaiCYYRwFtkYGb4MG4frcKz9N761XF+C8vLBXktXHNfg\n1vLwH7XHE2++v/3tb++GlrEqC1ZbeTE88M/82t/79jx5tY598m7yTDm5dYByYGLw5oAjW9YtA56B\nZX44/cgwA52DlkOCgdy8zHkyf5xL/uN2xrGDgUOalzTklqPLWmDw1odDhfl3oOAIRBNHLb3DSHcQ\nZ4xftkMyp0ehMUYL55wXQ25PuEmIXmsEjQ4LnBgOInBwyBmH9dN6hNdYrTk3z/XnJiEeOADRbYI2\ngnZ4Kcy1Hr/RBQZPReMR5fHBIcc8OEQ5XIjWOfroAHzEI0Z4tx9a7+jUj35F+Z53gsYfbYxVPw4y\n5l3EH/Oag1S/5g2vGdle/pgXhy1jmWMwDmMXOVA9w4N+vJWmn8gF3dbhEB/hVB7flDUOfaEZXhEe\nEc/QIMCFXjjwmJx5MSAFI2ojVQ8/eHwTlONJUTtzAYcxaYOO5MH8O9TmeMXr5gLu+K8sepWhUxsO\nP85U8wi/A/ar7eDppQS9rkx/eADOmjD35BWvwFt79mFzhn7jASNad/gPn4Oufr0E8TN1jiYHTrhn\nQJ8+C54FZWJjUmZc1ZcqF8JReW2P8Hza4v//u7aftdVVVh89z3oy6PDPccrZhg8ceL/xG7+x/2dm\nc5iMwTPbypt/esf3Rv1Elj4JRlob84GneMuxbc2om7Thl7DyXFm45LUBSw45LaxJc01mLq/1j/Vv\nrsMvhWPOSXjDCSZ4ZcLst+eZzjbRP9uEr1Rd7WfbyvbK7U/wcGqDJ/SDF2P/+q//ujtFrDM33b75\nzW/uckv/Kgs+XGsaD/QBdj57icWR/s///M/7ywj1dBoHDscL/WqdPDRH+tT2KDS26qOjNp4rAyP2\nLF3DWgZ+pa++wjVxzPbBVe+5NtEQjOfiCkcX0k/WF91Gv9OTzgD2LHYDHUY/mzO6hv1q77TvukxA\n//VCKhomXeXRkOxFj7raRG/wMwW/hglffWVSEc1Cz+CM2fo3Zuudo5CsgJl4yq/td4SvccpPOOOj\nqzne6Bv2F7uFjYS/6vUv1TdbiY6RokE5/Y8WssFesTepd/telDcP7VetJfuptubQ/uNlOHvJy2p6\nRz1ao1cfAv3DJvEi2M/O7S3mVT0ZYLf5NRO7ghygUxtyo15/9jV7lTVozzT+2uTwxWd6gK6ORvPA\nce+ljJfn7DGyFG07ga//oJ9s0qNetvgllz0TP613+tqLADTgGToE/MFXOBt/PHiN+sFEe/MRnvDW\nEG502Ge8XPMPvsy9ci+7OTh72W18s/9JV/geSmsTnGex0Dh7JhdsdTyjmznEwZuPXvDiIXmb4dp4\nJ8yZPzlwcuDkwBfBgXfG8ToVMqXKGLCReWvI+Wojs1EKDr6MAxuF1AaWM4HRon0hA3Iq/5kP7p50\nbkrX4J+Ke8UXP4ytPNwZR7Of6ApOWv2azn7A4Z9NjdHBYGK4iPphqOErB4E8AwNvJ355oX4mfvm1\nvucVzvM1HEewR2Ur7hUfXnqT/61vfWv/CZKDlvHPoI04cc38hH0f8/E0nvRMLsgMQ4rhK3i2HskP\nQ5jhl8H/ajPAM/jBcv4zAjk9GdvwukXHIKMHGML6sJ7rUztBmXlkQNMN+iSv6FBunhm9bjtzinAw\nKSPnHLMOIm59ecFD3n1iwD+z8ZNQhrv+RGMW0aEPbd320xad60/oHUL0xZHFSSVozxFGdzkoWHut\nPzCitaissda3ZzLsGW870OA5XqJJ6hBi/PQl54py6YTpWVs8M84X2y06hy385/zEH30Krfv9Yftj\nHPFFWXkputDA6cophy8cPJ69vHG4Qb8DiH7MCUPb2nR4wx80wYU+afLVuM2tOmMTPYvgwCcTxkAG\n9CXCi3b1YvTGN3SjXzlYbfC8qK2gH23wWP/aFLUtgsPrnMMc/dqJ+MB5QI7gQCeZcTgTyQA5QYcA\nvzGbWzjJqoOrQx9cxq/faDV2Ol17fEPr1ONw4oG5d7jxksA8cFzoFy8ciqxb8u0XJ9Yx/GiDX5/1\n7dkhmROdk5As+WcdyvUjJDf4IqBLjPbmSh8zxHfjK1/9LJMXVphgH5vewmcMdBs9xdHmUGsejf+3\nfuu39ttZta/fSSsajfvVpgs563wPEK/JBrhgyaC16carn866pcTJJMAhTvijsasPXupZ3+SS/KCb\nPqJ7OKzMWXDS+jBmc1kfs9/gpNdCdFQfHs9rnbJZ71kILpqUBVedsoIy9dae2174TJY56dxEE7vd\nq03wpeGpruf6r0/rwAs8n/HwSw58tbb8vJjj1a0y/D2itbJwl8IdHddgVro8gzVX2rb2WnPqVlw9\nN5b6r3zto/Jr8JWXghc9VxadR7jA1Abd6Xo6yZprb1NufPQVucVfkR5Jh9Rf/TS20up7Di4a1vro\nDn5NJ3y4wCivbs6J8RkPp3K33smjfZj8BFtbuFa8ygTl9SNvz8AvuDkd2Stk38siepfNJFr/5Jed\nhcf2DDaZFzBsJfsR/hazWeh30b6Vnjee9jx7lHUn1Sca+vWi/tDXuBonus0ne4AN5ruunK76hqeX\n9/Yk9oU9CvzlctlpNi4vwBojeUCffuy16NEX2wOfjY/us5dqB0Zgl3zjG9/YXwjjBXmCI97T03Cx\nbdi16MFfPEQL2r1Mhodj2l6s3zle+XCGd+/8gT+1AwYnnocnPqpDi/0Fz9m3eGe+7PX0Eeey8feS\nPRxokRceQ9feYPyZdIYrfOrsQWyK/tGbTzRY0znb7aXsdvM3Q+M11vDN+jN/cuDkwMmBL4oDz97x\nijEpzhS9MsrXW20OV5uFDZFxQlF3IKZ0bbIMCzcNwMlTygUwE+/MBzNTtFyDic7ge17h1+fgH5vC\nXx+1hXviD0bZhJ08qG310nDIMyhWPmkDB/6CCZ987SeO+jhKg6tO+zWsMOqDq66+1c2y8sqvBTDG\n6O337//+7+9vUzl5GOjKC+DE+lY+88G9j+nKZ3whF8od4BmsnGvyyhnzHD3KrE0OTkZyeMiW9Qz2\nxeZYYKQyBt0uUOeWO4PMQYHDjpEurPOjDC30gugAwJBmqDs4MOAZct7wc4I6RICHh+OLsewGxifb\nz68cBtwq++Vf/uX9JgBjGRwatekgQx+hjcPEuBwI0EyWyJSDAIP2shngxsPYdcBRzogUHQgcrBxi\n9KNOW0E/Di/4o394jc1aRYvDET4zrBn/RTpSVI//aAIvaJsDUh6PGNz4hA68siYcSJThIzihscnD\nhy74pWiVgpHqn9PBLcluHRsLXMaJD6X6Mvf4hEd4AK41CadnvK9v/YuNbcpD7cBrZ7yC5xUHWtFF\nRu0b5h7ftMMb9OALHinTT6H+0VB5dOkHT5J/vHDwdbATlYO1x+lfRDe5dBB0yCMfZAEceIc8NJpv\n60zEWwd1Mqw/dETLHC+a0a8PqYgv5pfsOXw5HBbJAFkTzKUDrJcfvuVqTb7aDnKtcThnn+Tmss2l\nw5I1x4lrjvVVaN7wPx5I0WTceC7Vxvgb1+xnllUe//WDriJeyM9Qm2Ri1l2Dn23k0W8efLbBzyTp\nA/L7pe1TAD594tDY/gJeRCNamh/PZMMLZg5BPE6XoMlc+QksXG4AOTBbp+QTvuiXF3reH8afW/Xm\nQ4gu+XCXVjafr/UF9p4QTWAfg2u2m/SEZ9aHVxmZ9asE0bx5Gccp6lcW+DkD+HDDEc7mD2zyZu3R\nIdYIx4Gby9alNcRh1CcG7D1w4XdrYPaB//ULd2HKrnp18BRrAx5s+8TaPpy1U69tQXmh8llW3ZoG\nq3yFr24tD0f1s62yyhu753BU7zk4+Z6Dg7P6+quucs+Tn8GVBuc5/OWvwSjXTtSmPoOXtubofvuD\n8wvdyk6yD1jn9KcbnuZz0qH9irN6YyGP7WtwO0exocgnRyW9Rb/CTSbtOfYXeohup++tFfu0vYD+\nEemd7BV7Iv2czWKe9A23tWBPMqZ+tt8eyP6TR2Mh2numMy/bHuKmKb3XC3Br1m1Z65fOtf/hA/6g\nL9uOrcjBa6+Nz/Vhj7Ef+SQCe1BqnG7/+kSI86b9Fhz++yyZl4ja6Ks1xE5g1+Kpdj6dgM9sOnuf\nPUDUBx5pW4wWaWWN/d5U2+R2rpHa46/xuxXM4eryEt6jzT7ikwfsUvs//s2xwQFn9IXzKSkcorCO\nVTl5IW/m1csqkey6sOCzLG46mwdrIjxwlW/sys5wcuDkwMmB58CBZ+14xSAb46o8KWgho8RGzRBw\nMHb4tDGqU+aQYkNhsNjkbfptjnC0gcgXKG19pLwrb2NQvtaBia4JL7/Crs/B30qP6LkFry56V7j6\nL13r13FUv8KHP372DP6oLDzScJXOunvz0QlHfScr9V9faz+zbf1p67Dlp4W+38mQ7GA84euvdtX1\n/L6m13hsPTJYGcPe+luP3dqSWrciQ50zktFv/jgLGejWrLlw646T1E0Pc2U9MxwdFhjT+smQNifN\nE1i4HRLgZyRzXjlYMC7NebdHGMGC/rXTP8epw/Inm+OVQf0rv/Ir+y0otMBbP4xEdPhWKWPbT6MY\n+Ixc9HCSOMDr88VrZ6IDAZo4pDgbHVikeMBIn4ZvctbhBX/wJh3pMCDgA6PaQYnR6saAcXDKcWCh\n19iM1aECTaK+9IsWdKgTlRc9zwOVMc3Qoc580sv6pJPpY3ONf3QyekRwgn7xAl+kbvbGE/3hSeMD\nHy/kHQyMpzlXVlCmrrDKaOW1Ne/4l6MVH80pXivDe0Y+WYpWvBG0hSdcycVRH3gBXwdOhzR9eTaf\nxmpOGnsy62aMfHKKr3gYT+FxwHOodZgmi2gX8KHxy+NbEf/NrXlPDsifcTqwWiNuqFo38bNxotdY\nHHTd7sz5mpManADGCwn81B98ovk21+DwkAyJ5sH4knH0uIXIEXzZDt7mQd/mBHxyDU841MMpxfPk\nH3/xMAeB5zmeyafobz7JvH0heYwGKd6olzfeV5ujgsOVMwBfzKdDbYdG/ITHGNCWDMFvbowfz7z8\nyXlrPoMzBr8E8CJISrdo11iifZ+A138axyy7lgcb/MRV/9rNcrBCbeSP6mf5UR+38FQ3ccgL4ZJP\nTpWht1C553BJyZn9xAshfCeXfmZr78HTGeb4wy8ld+ZfH+lpcgAnpysHDJkQrG/fCicLHLD60xYd\n1k7yANec08r1B16dPJkT0aaNOryvTkrWrD1RfvKiMTVf4MWC8uoqq/7e8tqVan/UtrI5b8oqr700\nOmf9NbzgJ47onzjAFPAnmMqCRVs8a84nbvBg5xjgC6a6+azMHKb/2Epk0o1JutXaZ3d8aXPa9asB\nuiI6olEK76Q1nPZkeDn/2SdkM5uMTPZCmM4XPdOd5JYdB56T01joYHLLlrJOyBUdp19t6PD0s/71\nzSaxP9kv4CLvBe0EtDemyoJBIx4YP6cr56jgNrkX3V5O6ad2aPPCno2HFn2CtS5nQPeLzf7g0PXT\nf78cMCa4/HNDn4qxn5ofPLdm/SNev8LqF0v61Iex0dnWu5f29nXrzedE/PNJtKOL3MygfbHyKTOV\n3UobNxj5KcP4in62hu+l0kkcr+bJuL/85S//+AYvfsyQHMMhvokwaT3CiVb2K/k3t+hl77ADOIid\n0+ynHP7JS3Q19p7P9OTAyYGTA8+BA8/a8UpxUrxzc1qVsw2DkUoZO9A5gNpQ54HWJs9g4IhgtBZS\n1FP5q2ujU77Wrc/hkq60zbryt9oHc5TCPduuz9farDS1eR7BV6ZN7fRZv/gizLIVtvodcPwJLlyl\nA+TRWTjDI09ORGXGKcoH81AHxsfQ/NrXvvbBz//8z+9v+hkf0a59+JQVZr6y9zFd+YwvyqxPDlf/\nLZoD01plhDc/4DjWGNMMX8Y845XBxanqp1oOl+o4XTgXGN8cd9Y2Q97ah9eBuX7NgTwjmaEGf84j\nhhoHFsNa5NRhGIOfAQ19c4xBD79/YOPWq5tQHDeCcdI9DjNup/kWFXjjVEcu3ZDsMIMOTjR9G6/x\ngDFOzhT8ED2vgQ7zUsmY3TjUB9ntAE7/OUhx2Eg54xwezMPEz9HmoCRFQ58ykDcuEV3WAJpE7dGJ\np+nJ6KOr0eNwaG7oW6m+Ha4cxNAARioKnG5u1XDw4YsDSQc4/ZmTqXvSYfUvRVNzV/mUR3U9B+cZ\nrvDjIzrRi26RbBkH2SKTxm3OHOLQKiU7cIRr4i9vnOrhIEPmD5/IjOggJCoX8JoD1FyQUzxxwI0v\n8QPN2jsIo1WUd6DukGw8jR1uPDW35FE07w7X5IDMJRfy5oZzMIevdnBNHjcf5pXMOdg6eJLPZJNs\ncAhzHqjDF3KFd8ZnrPDazwXwYs5SZZzADtnWsfWsHXj8xFcyYA0LyZhyNFgzyswvvOYRL+kB0TiN\nKVipAB9+qUOfqMy6wAt1YNGAlmiQkm/rjwPc4dt8aO+2jkOjfw5C5s21tmhDL5zpImsZ33x3kPPW\nT0LBwYMm89dhnnPB861grrS7FuAtJNONXfmsV97cX8MJHp7ScK/P4ZnrZeZrB055dZOeyoItNT/4\nSwbApGvhIgtwtC7NF37jsTVhv6GbkiuwRWPWzjyTU7j0pV4/8tazNcnRwwnDcQNWIP8cr37JQSas\nMXJpvVrT4YSvgOZ4pX+yQtbQIRqjemXZLuiqzJo2HvrEmgMnRHP93JtG2632c16Ch7/y2krLq5NH\nt3yydiRnR+3CrZ9wys+AL4I+zJVn/DDX+pl9TRx4bH7MO/7Tl3RBa3bCwmle4FfffE3c6sw1fOkR\nbcgBXWrt05teNJMPDj+OwT77Qnc1x5MX+jC2cMNnL2NP2R/IuWf7kP7ow3Q9+aCbROVg2GJ0mUss\nZBru9gcyRR+nE43DninSYeljNNjn7K3qrMujEO3Vmc/mlL50U9QvMOwHdB48nHO+oWp8Al4LPkVA\nN9o/zBt7zueftEm26AQvWeDkzJXiAX5r41MxH3/88a7D4TSX5uFP/uRPdseffTreG6tPwnyyvahn\nB6ILLXB6ae+TMGwHfc6An3AI0VV9uKfcVHeUhks7Mu1ZkDc3eMCR7PM3ZIBd6vNZ9hJzbh5v9TXp\nlG9ujmh5Slk40c2ewUP/7I3jleywu9x25njlxCYDjbH+4DCGN01b+M/05MDJgZMDT+HAs3a8UqSU\n5lSclGkKVb08o8FmR0HbdBkUUtEhj8HA+GDg1B6z4KWYbUaiTZYxKtiUOwjVbq/4gv6gFe0FdM+x\nKF9hKot/R/DX6mornf1OeHXXQpv22uc1+MeUH9GgP8ZNxpY5Y4yKBe1qq2ylDY4Xm3PP9/f8xJCD\njwFCNgq1mXhmPrj3MZ1yYvzxxUsQjod/+Zd/2d+yTx6aLwdOt7U4IxhUDGvGuRtibo5yZJpP8+Bg\nwOnCKDY31jXD2EGA04cOSG+gAX4/ZzafbokwKjtwJi/rQWuOA14/w/Jfyd1c0x+nPMcrQ5rjiK6g\nYxyO3B5g1HIIKxcYhd7Ku0HhgH3Zbus5BKCfzunAhl9FstgagiNeOvQ5zDM+cxAYb7D6xG/9cyJw\nfmljrPpDL0dbDiepssodspL5aIgmdNSPMnm80j9difcc1fpGGxrNo8MWY99aRAeHgMOqPvHBnJsX\n663DWzyBv37oeWNJHyuHTzqjtoXmMv4pRy8ccKGrAy85wi90c1aXd+gEy2mBXjqCDDqsoB3P4Ic3\nfkS3/uT1Aw+ceGKOlLUvocezfuCCU1/WBpmXJ7eNDS/NNZodnPAeXvgdaJUZg3LPaLCu8NwhGV5r\nCM/JJ5lQD7/Y2iitzBo0TgGdItyCcvSTBXQZo/GJ8pyGDrzWtQCX9uYuvHBNnJ7DD8YckBH0Org2\nf/pGv3rtrRHjRg9ewTFTfYJ3YMZfOAXwzQucxk1eweIFGqzZor7IpTbmA5z1wyEBBi/YIA7i1gU6\nONDpAgd98oNmONDMSQGPiG+ezaEXOhwvZDV+oI0s+rnly5cv98/kkJvGaryTXnmhNDzKjENQZtxi\neObakp/z09wp00afZFkU0IgPtQsOrBDu/WH7Ex2eowEdysMR3RO29Zy8mUe8Eq078oeX2pIbcwpf\nuMxtPNcWPmXmEU/Nq/6iJXrZneYtHaIPcGhXR5dki1qTcIcDDeTA542sb3KjDi5yYyzkQiyPZrSQ\nGePA39qgH//BoL26cCij7zmT/aT4su1Dxkce4BC1PQrqhHhufPI91wbcWqZubb/Cq4cT30uN2Xjg\nI0PGjVaxPsILTsQDPNbWXIjGDz6eyNdPdOhTANMaxuPmHY5kyd7GcUnXmkM61DqkT+lS+OkDfZtH\nNKETLuMwL/iMBjDkgu1i74RTmfb0V3uoMvD0FMcgp6t5NJ9wkTVyDi45MJ7ogHfaSMpFPCN3HIFk\ngj6iE+0T+iIfeGNvoX84Xr1AItN4jEdo0EYeLfCiBf3oMh9w6Kt5lo/n6CyvPf41z+CMu3mOj+wF\nepQdYbx0pHnRr7kS8NpLDf/IkKMWvfYeNz1FdBqfNfhy058ctObSPmtetdc/vv3gBz/44L//+78/\neLXd+kWrtQf+D//wD/fPPuCXAN7eZ69jt3Kakxu/1kKLvry4Tf8YqzaCvFjQT/xQZuyzPrhrabyG\no4A/7FjjYa+aH3asF0CcmOY/2moT72ff0TLLgr+VHuGa8OqDiW6626cevLjyqQG2tpdi7HmOYnOH\np/gVPeGZ/Jv9nPmTAycHTg58URx41o5XynMq0pVJGS02Rk4GxouN0YGzQ2eHP7goYZuKTZKxYNP1\nzCCSMohs+AyFDBW4bdBtBqXRhabKVvre5LP+Zj/G4nmWRdMsQ0Pl4aje81oWzZXP9rPdEVz1R22C\nf2yKjmth9ocf5o+xZANmzDDAVqOmjVhbcNLw6ItD4itf+cr+cyDGqEMXmSgEP+ma+eB+2tPJs8Za\nWc9SvLFOGaDerjP6GHt4ynnCeObA8p0mN9kcAhjajHw3vBhajOXmUZtuO5gfc+jA4haGQ8Grbf1n\neOsfPj+hcovZm3Ht9Y3W1tCcP+U9y3OWcP560+6tu4OU76s5/Oif3qBjOFZEdDNutXUo0KfbFg41\nHMAOZso70OlLBC/Ut7wyEZ3Gj48OYg4YDj7GzagXjElbY8dfxj+HgJCzDa/179nhAm8clqRoyiER\nLm2jS16IVima8IOuRI/vmbmhQxfrPyeDObIu9al/ji7OP84GBjMj2iEPXfgJtyjEA30Zm3hEE5qj\nOz0+caBBpMvxxZyhW+yQiL94BwbtHfjgxSM05rTES7SjWX/gtTMfDngdfqV4hB8Oh6K+4cZvfLcP\nSeER0K0/useBtnp18E36pxMXX9CK19KCPHmrL2ugqA99aUPO0o/xrhSu8vF/fTY3xoo+4zVO9Crn\nfPeT2Q6j5rP1F805JirXDzi8iqfoUK+NVL15FThNckbp03xoWz16aycFSybxAo/h084cimgHhz/q\nrRVzBEY052D0gz4BHHz4Spb1b+zmHV/0YR7IPEeNvAAPRwVYMln/8MJPLltP+GIsxmsNealDh1pb\n+sQT+KR4aozGCl675i888RMdylor8RYPtKtPsgKXFE/0qR1ajcHckwPw8Xf2D29jwU9RH/WDjngL\nJ3h1cBTRHO/1Fe/wzzqOZ/LowfvmSH/xonHpUxm8Ah7UrzJ1M2oHpr7gFskFXjRG8wbGeMCrE7Q3\nJvJCr5AD+LUT1Ankhyyg35iMn+yI2mqjX33oe/JJnT6TVX3qh43D2Wv/os+UGWOwaNDvTKM7Xpjz\n+BHPwMAhxFepAAZtUnibu7nWjMMYRfWetTfmdKF+PYcHTPzJ0Sel0+lG/EeXObeOrQd5dMIxdY6+\n0KgPvMUXsPiH//A5VzhniHCDx0N7u2hNNyfGgTZzL6BDn1J0k1U4rXepZ7Js7PgPTt/4hQ57Aceg\neTP/+KDO3GvLNtBeG+Nr/uI1etGk3LiND0778eVy2Wn3nNyAQ7ux0+WvNttK5CiGJx7igaidVH/R\nbQyCcdMXeKvf5tC4BLzXPhhwcMFj/erTnKInmaB7BLSI8UyZuebk/LVf+7X9hil+sZey5Xz2ip7m\nvPPLAzrUPEZX/XppxkH5ox/9aP/klPkUjIHT7+tf//pu25EXAU/MAfngIDQnxvFic8yTD+dOYywY\nSzwqVZeczHr5x4TwaWc8zrI+f+An+y4T4BFb+uXmuGSnopFc1Kf20VG/0aAuuMqCuZVqV9u1XXXa\nVycl3+x7t5n9Y0JOWPsKul2CcIOYPTbxhgv9Zzg5cHLg5MBz4sA75XhNsWIgw8Uh30biG4wcHowX\nBkIbsc1GmzZ7BxOHZUqascHIsPGnnBka8NroOQ9snBwKDDkb6q2gn7cZ2phmv0dlk6a1fn2esDMP\nbvajrrYTboWZdU/NH/UTrvoDw7hh0DAclJOBDjvgzTHDTmw8DDWxuVVORvyU3H8y9paaoaRNAe7Z\n7y36avO+p9YhxwMjltPQGjNXnFb43UGSMZuB2E+LOGsZr3huDjkaGNQMRbdHzZ11SgeI1qt13Jw6\nsDGsv/3tb+9v9pOP8M25aV6logMHZxEHMKOPYxXt6HbAghsc/WBcDj/kifHuJ3Bupfgv45wi9A5j\nsYOGdmQnWexZKkiNAz7GvkOHw4eDDz7ST/pVD8cq23hF7zlcoLUbImjGA/wHY91omx6Mpvgy6Zk0\nWV/Giyb8dzjhIEefdYcH+ETHOpRYR+YOLaLDv3pzjh506Luxz37xQZ05VR6N89lYhHD0jD9kCr0O\nRHQ7WXQIcYgmW8ZhXgW0dMhHH/5Ji+rMI7rxFw3mp8M+XA64yuCMT/q1N0nV4X+O3G5cwmkuGpcx\niMaEp+iHA/29WNQv/uC3dWRvcziHE+1oVYfWor7lzTm+10c8j4c944uyntGHr/p1yEaXwxEZ5UQw\nRnwwTrj1g36y4qaYqA4N+EoHiPJo1UZI/vEQ7uYrJxQYNBmDQ7ixivJwmPfoBIOOeIEHnvF78sLY\n0KpPKfzwoQ1ubcwrGoxRavz6gpOsg0+m9Y9H2sCFrsanb3wQ8S8ZIT/GDr5orM2BtPGQR3NNduCt\nP31qiw51aEIfGOMCZ6yCMYFDT33MfrVRLoUDLD46uOML3OrxrLVFDuBXb91L8Rkc2owZz+BsHpJF\n5XiAt9Lg9GksjRVP8Q2cVASvXNQPmqT4WUBDobzxogUPBM/ojw/gRDSK8nCK4ER5OGoTnh3h6z+z\nv3CGNzg48Nbc4o35IhvkzHPrBR8E41Znbqx5UXtjia7Gj3bzQC+bFzpDP8rQHe+keCdNXtCpf/Og\nDTkQGzOZMlf6in/1rx364ACHXmOiv9Bfv+ZKDA+6rDv0SuEQ9IEuNFqH9IO5hzfZSTfGX7jwzBrV\nHk2e4Y1XaEO7OuOqH3j1IaIXfcYmwEvvcohKtYUDfeRcW/nawYlu9ImNFS59miPjtK7Qauzm1Lzj\nPVzWmTVG9tNBcKJ/BmOH0/haP/CYe3NoXepDHTg4jBHuxoqfomf16Dc+uAV5QXt0kz048ZZ8NIf6\nU47fyo0TXdqL0Yl/2kjxxp7HvmJnuG2LjvqvrVSAD6/YiJxy7C9zglb7jp+r+1a2T374xQE73zeW\nzZ1A9silF+5e5Lsw4IWyPB6Yc7iMw6+o/DrOS3VjU44O/Gne4TNOYxaNMb7tHY4/jUX9hGlss6xm\ntYFXfsL0jF/Ox2xqn/xybrZn4JHowoNncwePkGyvtNTvtXTSuubhqmy2V57c4Zu5ZxtJ1ZH3V5td\nyWnOAe4TXmTDhQo3ddn3LzancWH2I3+GkwMnB04OPCcOvDOOV0yjtFPcNmObiG/ocIrYKAWKtmgT\ntkHaeL3NlJan2Bk28NkcKXyGkU3KAY+it9Fzciiv76nIo8Vm1UYVDTsx259gep5puG7BTPj3IR9P\nGmu8OSpXph7/MyzNqblgjDLmmxcwjL0OJAxUcw4GDhE+Ri5DzPeO3MJkpNrkC/AFC36lK7gz/ZQD\neCV0gLHWBEYVQ49RKsRH64+h69MEflokz/hWD95Pofw0yg0FP/c2j36G6wUMw9KtBqE5NZ8+YfCd\n73xnd6TrV4CveUTbjHAy9hj7PhvgdgT8cHewid7GFy7jYcT72Zb/XM55TyaVB6stOZJGR3LVgU6K\nBoe2HK7ocZOimy3akk2yLzW2+Erv5djjiMM3BxJw2sWDPfP6z6RPUc9oM27GsTXjAOJg1ssphrx5\nyumtX3qWs9kBL6erZw5XRj4Y84kW+I219WoulBXQYYyidVxUDs6z0BySMXk40+sO572Yw095h156\nAq/xxeEJvfEr+uehX1/NpX7gtV+IOXHxqfmTTr6ZT2XG4tBrX8IT/HAwgxuv0S3W1rrQlz4cuuXR\nDlY7tHKu+/mp22wOIjlV4nP8LE0O8HHm1feMv+qbE8/tlzkjjJ0scGbj6+Qp2sgiGtCqDoy5Vmfs\n+I0P5NNawWP9iK0B+/2rbU+2z+vP3MEHhtMAL8mZFA78jW6pZ7pfnTWCz2sAI8DZ/MlzIJANKRg0\n6d+cSPEBLepyYNQ3WFG9ceErXiaXeJFsmlfzLYADP2PljcV49Ddx4i/c+msOybZxi8bd/JkDQb25\ngEten4L2+pKWN48iWP3jt7baGSenhfVFTvVjzyXb+Betxtja02YdI7roF3OuHr8K6IlGYzRPUqHx\n4n3P8tFfWp1UvTkuH4694MYf7cI92872M7+i0lYw9nBNGHyjJ+keMMkIXqgzl8rxx5wL6S5rSf21\n8cZT9daCeSTb8OG9SKbhpevNV/JrDs23edcmmVIPTtReH/LweE5u0m/q0mHqzYH+zS0YPJFHnz61\nR69+yBjatPNM3slBPMUL+fgPL5zwoZ0sCurRP8duvGQTbeGf8xNO7eEV0UbX4rs58CzgATzpbHjR\nm7yBgQ8Ocm1e0Ya3In3Y/sAOVQ+fF8B+OcSZZtzwRZe0sYI3t+ihg+FDnxef9gv1+iVTxm292cPZ\nU/Rs9KJTiKf11fjrEy/R2d6vP/0qN572Uc/6FbRFv9g6h9dcxUd0sHvcdHTWc/vRuI8CWfELIw45\njtHL5bLz11xq78akf3pK1/rV0i/90i/tnwDAD3NDH3vZ7kaoX2fIa9uY4wGZ+bmf+7kPvvrVr+7n\nBGML5oiuW2XhvAUz68DPgHfmPDmIDvwkgz57wOGMd/ZoN285pH0qQd4c4Xl44JYX4ArfXnDjD7qi\nLXzhWMcYTv3gO/uBM5wMWkuc2WQVHm3Z3j7j9V//9V8ffLJ9O9fYnAE4153X2D3hjIb6vkHyWXVy\n4OTAyYG3zoF3wvE6lbY8ZW3j9ObLhkIh21AyXqQMDgr8xXYAtfnKMwQYAIyvNnWGoY2dMZex7+Bg\nI+Do0I8DhNBmtM4ShZ+yl28DCE5d9ZWVzraVvc+pjVaIZyt/1Is23njqOeOSQWQjdyhm3GfMMUwY\n8YwMRh0YDnUw/4+9+2q1LKv+Pn5eyqlbL0QQjEgXLaJiajHnNou0eKEgohcqoogRRDEHjG3WRlFR\nbEUMiOBLOC/lWZ/Z9dXhcld11/9pq07jmjDPnGuGEX5jzLjX3odds62Nr9/Me/nLX742VPxG+4J2\n+Gbnva1rd6QPIACvsAqT8PO8t7MxZ1zbJLrwdBAQ2NiYdlHjYtMbpTbLNuDGqjcSRGNY2+iyp02m\nN15t5hw2kkcb/tFhy2GOP9ho8w2HD288eJPWYUQd2vuQPvyEfH6v1sbfxrZNrTZC/pJ88KGDOQZf\nPMqbm/ixuY0s5iVzFZn5snmsw69nY0CkI77mOv7rAO9SKt3jTZ6w2stGzmQLD9g6mDhIkoVcNsTJ\nZYw5gLCLiGeHL2nPzcF4kIX+eNAbT2NTmnxkNKfDt1jfcJXqBz92FB1SbeTN7SIs2RquDiT6oNNl\nAvnYz8Gxy2GyqidDPMmmP1u4BOSjPqCDTz6SLWAisBn91It0pgs7wYaf8m/BRQLaInlnHzTwnvOa\nvl26uHz1gQQ90CZHNg4rPNJHvqC+mK7kJI+Yf8rDF7ZszwfgwDdgK/A12MG0S2X6hoOU/+YrXc7p\nBzP1Iv70NR6txfjxP8/qyKmPcUBfh/rsRY5sjKZ2xgk59Kt+ZbY/MBEFNsZff30mXXX0FGHBPvmT\n/urz5zAjazSVkb/LDjjSTVQnsBv8jKd8wxigR6l8dkKbLGiiPfGBR/MEunRqjiF3/OCjPrrKy9Nr\n8vZMDnRFfZXBgt821mAIP/UiGnRUb0wmp3L9yaaeL9HHmD5lqyX0+FMbaRE9+eSmW1E5Xuhnu9L6\naEvHOR/pQydl+Qcx9NGeb8WvcilZ2Cha8mihr6+gLrp82QWZ+RtdWPB7c4w8WflUkX+eb/tca6O5\ny7OQLFJ88hM0RP3RZ0OperTVGePsM9uhS7bWHnMW2ugYD/yPbZt/+YL+6RpGZIEJ/QXl/CRfQVMM\nNz7RJWYYwKqgHR6CvL5o8znymmONJWMKr7DQjs3oTX6ym89c9PHl2kmTWR800IODOa6IVz6DHlmt\n3S6V4JrPoBUdc7cLVnZzcUlGY765Uwp3/V22euHEb2V7MYTcU2d2RMe8ak7Vz/hnJ7KSWVQOLzqy\nFd+y97KHQpfd2DTaMBXplo2ii1by8lfrJ7zx00bUJllghxbZRXKIPcMGH3YR+c/F9qGbvZjzng/Y\nyZ3u2cYzOVyIvvSlL11vRLIHXtr7Vs699967Ll7ZxQf49oZSGPMx+zzf3NHWBS8bop9vwcMznXzF\n/a1vfeu66KWv8psN0b2ZvnxI0IduhfAIW7ixpf9P4J/a0o1t/FMqe1Nv/PIRWAtkQVOaXJN+fE6l\n9Ym3NBrV1Q+P9OVj9pFs6x8Qmm9copLRHp/9Beu+cwH7Oe/TjfxecHDx6gUH42kGfOMzy4/8gcCB\nwIHA7UTgUl+8TmCaxE2kFh4TsU8wXYpYXBwkbFgsgBZbC4qNq4OoTYjFxcJqY9im0IGnt3Vc3ojo\n2uDZeGjf5g7fFrYp18xrY8GxALRgkbXNlrbpUT999mXV/a+mMBHCJSwrq3w12v6wrY2QzZONp8Xc\nwc0inv3YRBsbMxs/5WxsY8Wu2Zbv9Marr+F08ImXdviTsVjdkf4nAmH1nzX/KtEGrjbH3jCwARN9\nUu/Qoo6NbfjZsEOfZ3Y0nh3ijVuHE6Fx5eDlk/G3v/3tZ1evXl32V2dM2rzZ9DkU4Wtzb0NujlDH\nh7oMIaO4D3xTNPfY/Nn02zR667AN7fRfvOmDPz5kxqeIr3mHX6ozRzkU0ZEP42Pz7A3W8+2gzeeV\nOdTwazxFefiInvEVStMn2cijTlSnnBzmQzawaYeTr/qZM8llzsXXQY++vrJ2vslkzLAR7G2c0ZKS\ngw7xIQ++bDgPpfhro71+8tGgDxoCHPUtws7BmcwuQh1SLzabwg999BxAHW6tCQ68ZJWHo9iBccqJ\nf/zMLXwETbStPVKXr+wJd3RggrZDrjmH3PTi42REQwpDgX7q2Z0vWIvwgA96/XyAdY29xWQ1Z+Eh\n7WAdzWRfTE78wTO8awtXcrFxupLJGCNT5elgnm3ckQG+LhL6SQn4kpWv8AkY4SFvvjam5dkHDgVy\nFeRhzyfJxuZoaM9W+han7WZ/5ZO+OjRE9PUPg1mnjzjrpmxsRH+2ZT+pyB8b48rJLlanXh5+1iKR\nXrBwce5tJBdp8uyNv4h3PLWHCx2UwQYPfEVy0Rv2bGNc0lM/bfGvfzqW4iMfPvH3rK8ob4yyYZd3\n5KBTvmMe09YY0Bbd/JxfkRMdemvTGFMXj+x4KiWjSE/9Gwul+R0ZjX/+J4Qj3gL9YJP/oEkmz6L2\ncIMpjKVkVa4f2safvIAuLKRimCtLXvTxpSdMRPVkNT+hBzN4ugx0MWYOhi168bHPffSjH718Rj/9\n0UG7tSC749EcZF3RLtvQgazTV8mmDTnYuDFbHzJok80vtvnQJZ75Akb6zkA2P79DXv6NHtpkzYZh\n0vhpnaY/+WFe0FZQho5514dPaFsnzT/mTf5AP7gZe8YbmRsrns1vrR38L4zRNXasvefbGgdvc7K5\nmX/Blhza07k9ibXSGuEyz14iudnE/Pj4xz/+7I477lgfChvnsIgWH0FT5Gfk8Q0c3wZy8QpnttIO\npvYf9jq+qUU+OtMXT/ZhU7YgH/3pbi530Wz9st/iW3gV9GUTczos6Q9Pz/DEA95wMEfhxy/op1/y\nl4+uFG2yCOmsrD6lsKSrs16/T8q36F4beYEs3mJ91atetbBQL9DX5d53vvOd9XV1/WFGJ7LDxTzF\nXvyLHclSSK7K9HV5ec899ywbGqfxmm0ri440GrPsVLtZXz7anqOjL/mlRbrQ9zOf+czZ/dsbonRy\noemi0pvAfIUO7BKtZIjuqtj+VN7zjVJ980n9ojVpVAZjeHuL9Yc//OF6k9tYcv5yoe1ilR/py0/Z\n3z844/vmP/r4mQE68fnaTvnwmrxn3ZE/EDgQOBC4HQg84i5egWQytUmyYbAhs6iYdC1+Fn95C7lN\nrai9A4YDuT4dHqXRkJrMtbNwiPqJwpy892We1VvE8LbxkLcYtkGPnnb1X4SPP/+BwEPB2ka4oL0N\nH/s7XNo4si0faWNnc8ouFnY2sujbcLMPe2QT/X013U8NuHh1iNG+MO2I75S1Nkf67wiE7b+XPvAU\nfsYKezgAuDDztoFDgN/lYkuHBHaFvz7RzHbKxULl5gEHnOc///nrQvR8OzTxHQdPtH2Kjpfxr4wc\nDhQOFnzEBt2Bp0ML3vzBBt8hpMslhzy/OevAoy9fSzcyoevw4xBhninaUOKBtzpy48tvtTcf6ctv\nHRA6+NED7y44zTfzoIYn/slQqrxQGVxFPOmJpznVptiFq4Ojg7S5tjFFP/I4LNLdP2lwUWS8GIsd\npPCiU7LI04et6ImvVCS/fmL6SEX9pUJYwseBqsM5PyGni2LRfK+NNYCsLkNdCMKwi1Hl7E2feCcr\nHNCGhZR92Et0sIGFMpENYYeGOcSBlB9Enwz0I4+2sCSvvvRRBxt4KOPvntFywOdXZOd3LjHJLIY1\nvuEXTvoL2dnzzGcDGMZz6ktH5fmmOjqTja7NrbAjJ3nMwWTkB2IXHvyXrMYO+chC3mwrn2zkygbp\nsBTZ/qhTVrlUW/2FaFReui+fz6vj7s++PqzonL/qgn7+2GWGVOQ/pezOttrqj54YFsrUeWZfY7tL\nI9gq34eJBTkEZeiQU/RMF/7BTvD3rL26ZNJH+bSDNumnvjxd8n1+oBx9tM2tdOE3fNw49CECX9KG\nH4j0gY+xJMXXpRNd0anOWOFveJI3O+PTnOgiSOR75sP8TKod2dETyUZnMbn14afGqrw+6vAjcxG+\naCmXZjPl9Jn4KhO0RUuoT3yV6Qd3ddlMHk9yqDP/WJ+8aOBtP5d41qTa0d2Fm4uKK9s3vGAIJ5jV\nhmx4KWMbuMK+eSa/IBOZ6ZbcUnQEcmXn5EOTfc1nbO2CGO0w1g9vNOhjnXBh4o1Bb7WZG5Vrz5+k\ndLZGWoMutks365BLV/sD9QIdycJmMGhthIGLV+PHHIw+uclAN/OZS1DrAxzJmj9L1Uvx0Q99c+/5\ntuaibc1D13zn8ope5kZ00IUD2dGAL2zUmQv4pDMKWX1Yad2UR4sudIIFzEV4oKE/H3A56qcGjCsY\nGQPmW5j64NOFNvmU608G/NlbvrXMWIh261FjlT50Ng9ZJ8NSvvWMj2lDf/gme/5MB4EMQuN2PYw/\n7KHt1Flee33p3gcOPoy/f7tEtC8kI//j12jQR8pevnHk4vWuu+5a8mGHFv9x8frlL3954YFHPqyv\nNs1NfBo+xmRh6qSdbzW96U1vWm/Msl8BnfRR5nkfolW6r7/ec7TqF69wJLc9kJ9JcEkpNS/6+YWn\nPOUpZ094whPWhSX7RUNaPjqe0RavZ7vryRiWUkF/fjGDOcjLDmT0m7vGOV720C6GvbHMp+tnTLKf\nf7br7V062heZQ/zcgA8w2GTqgh+aQvqth+PPgcCBwIHAbUTg0l+8mjibNJtE4WWBsdhKBQtuC3Eb\nf5sVGyubIRO7TaHUJN5Buk0WOvq1WKAZ333e8wzJiL+NlQOEBQNNC0y09Ynm1GXSOvIPIACnsMom\nMLXJc6C32bSRtam0oWQ72NtQCNm4jRNa+Qg6aNpYi9MW+h8Xrw/Y4Fb+ZQ82NC4dBIxVG2yfcjto\nOni1uSZXPsGu2c8Gr02ijbmg3ubcoeSxj33sutDQxqHLG5wuXc0T/MD4tZlzGHIg5E8OUeRw2DGP\n4OsA4itqftzfpaPDiM1tb3ygT6Zk4af80Vzk8NQlZj6q3hxBZnOH6EAj5tMuBhyExC70bDT5dHzw\npK9YCJvK5jNd8KW/g2JzpXyHRWXyDiHGjQMG/g53orHo0CuFgfGpnYAnfpNnz3jTVyrWJn3oNHUp\nz04Oj3yEbOZzdnHJU775wFhmKzZ1CCcvW7ET7GDLN9g9DMmEPtuw08V26EcfBg6B5nMykBMWeNCX\n77IMld0bAABAAElEQVRjl13q8XA41Q4ueKgnH7+CO5/WX1u0yNaB1mGWLyhjd+WzjtxwSfYwX+Bf\n+wPX7EA3corkoCe9yNKhm0xszSbokm3aSTl69Mk3Yco/yU9eMkrVi/RAJ9smHzqnQjJXd+pZXXqV\n1n7/PNsmvzaigH6RbeEj1bY825qb+ADcqtdfO89wE9kUvuGW/OHJbvxOhFmXF8phpSx7q4NdsuJ3\nvYBPgUzpVF8pGZJH29rMsmhUnx7hQUfjwxiEiTmkoC18+JG5zvgxjowbvPmG+YO/0BWuAn8yTswh\nfIesMEQbtsnHh+AEF7QaG/oqy9fCWj+8+bhxTGbjj43w0M/FVz9dwyb6zgD/GdAU4CEk295OtQt/\nz/p4rkx/+eqkRXLAmuzWKpcoPih0YUF+WNDf214uXr3FZh5WDrtsgz7Z0IMlPNgHDvBVDje+jp9U\nHzizi4BedeRDT6otes3F1m2yKQ+f+PMN8lo7/f65CzLP5BX0Mx+xkTXInO6i1W+I+zDWBRyZycSH\numiVmuddjtLffGQMmVPZk6xkoYP+6HirlaywbW6nn3bok4uPomuvaY1rjosufLTX334CPbTJDF/8\n6MYv0SMXeug0ZxrnZIRRMho/MBXhgDbfhbFxB0fzahjQ29qGrrEjaEeWvvWhb35PLrKLYc9eomBc\n0dmHP9ZO9I0TesNGn/rm8+QXSuXzY2Wi58JsN9tWn5/C0t7L25vtA8lvPXchzC781z7O7/DDjrze\nmnz1q1+9LuTS0R7SJd9nP/vZZat4qdfHixb2c+zF91xy++16fpHs5MYPPv4J72te85p1gR7u6ZK+\nbHoqqC+eqr9RGVn0FZILH+PG5aR/QuWnuuhLL+PNxaRLTc9kpUN0ooWGMnWV1eZG8lSnbf35aCF6\n0eKb5jG/t+vtVesDfvbo7Ob85WfBrAX6CtZd84BLV5ev8vzfW8e+ZWYu4aP8cR/wFdJpX388Hwgc\nCBwI3EoELv3Fq8XAhDknzSb4JvLqtTVRm9gvtg2/xVhs82EDY5PUBkt7C4R0hib7fdm+HH99k8Pm\n1ebEwmYBsJG0YLQRRS899DnCfyIw8cmusLLRs3lts23DanPrwsAGE87aw15bGzC426QV2K+I5inb\nW7xtVPzG6/HGa8j9/6fX83c2q648m9lE2lz5nVe/62Xz3bid0ugjoMG2bbzYdtJ1YHCIsFHXhu84\nfPETNIxdBw1vDdmkunw1ll3m+UcWv/3tb9eB14HABtGm3lecbP477JsLpjzkIofDnbmHn9pkig5C\neKNXP4cphycy2lTaePJzUV49PUSHtRnSVVkyzPqZ1xZP4wPODoxkMmeSkWwOfeygHbyMK4daBzyH\nk/Pz8yVnBzIYzPlxypBs+7L0TrbZbtLSzjMsXdQ4jLrUMfZ7G5ed6KLe+CerNyYcNshr3oAp7NSj\nRx4RXcHBk03YC12HGOsH2yl3SQGTDqbeQuUzsBEcbDvEaws3NlPfhU484OtihG5kchAnowhjc50+\nDoXoyEvFsJl4LQGu/VFOL6lIP37G3uQyjuBEBrqxvYsdOhsX+ri4IBO/60KLjUXjQrn6LhDyT/Xh\nm7zJlv3RF3quvrT6G7WpbempPsoqxwvWM6hTBh8RNjASYQQzUd76kn2lc9yiiZYy/tG4YSf2Y7si\nLPkDH5LCrzGUb9Z2b+eepw4zn37hmu6zjfypcn0ql4aLPGw8i57hZKyJ7afCEFb2X+YQvmVukcKP\nP/ATPm7c8HE0YcSnPIt8Dwb0DUNt+NXEs/kwn6NDGKULW/DpLsXIYv6gg34uUFy6mtPND2gUww0t\ncZb3HJ7zuX6l+t0o6CvMduEJX+uU35z024b9A0nzCH853+Zhl65+p9JaxJf0Nb5hLi2gr045G5l/\n8EYH3rDi21JtlcNYMCbMgejhjY528YGpeVMbNtV/6uVZ7I0230Cx1gpsxm/oikbrZRf3Lt+sS+ar\n5na6ouWt0fMNA+OI3xhfzT/ZhDzsjT4/sK9wKWXNgAMd6CMYly6nzO14TNr8JT3QRhNeLkVbQ1vf\nYUwOa7fLVrSsR+Z2ZeSkNzrNMbCjIyzRDAdjiQ/DSD/7A/Ssay4g0Wd3gUz68xkXhz64toZlG3ri\ny9dF/k8eeqNt/ClrLbKOmqcaV9Jp28V0/FE3QzZQJi/s2yirTsqvzC3sbw126eptb99QghUMfdjA\nf9gHztr4j/fOemj4Grq3Xl2M8g087Rdc3H3+859fdPmFvug98YlPXJd+fEoZ/O7f3q7VXp7e5i/4\nocVHvFFrH+gtY+MEX3UzxcPzDNrMOOseLN/Yig/aovHpkpi8/uE0m9vv+n8Vz372s9c4gUM+nEzo\nCJ7RFrLxeriJP+kKp+SsO/p4wY+c3/zmN8++9rWvrfGjjX0vOb3tav9NVnSSzxhlBxe1LmydB4x3\n/yDNPtybr/xZHyF+5Vfh9id6PR/pgcCBwIHArUbgEXvxOoFqMjXZWpgtvjYcFmMHSpshG24bFxN/\nC8zsh55nE3eb/sqUtxjZdLbxbLFqkXEosFm1gZHHz2bKRgLf6En1vUwhLKZMt0NGONscwNBhTGrj\nZzNog2nTaVGGuQ15lyM21eS1adKfHxSnTns99zpazF28vuIVr/i3i1ft9MW3vOc9vcnryP8LAZjt\nsYbdxLLWMHaAsFH+9a9/ffb1r399vXVqPE0a4R9tvmPcCcZo49KztsamA4UNmjHOP7TTh93Pt028\nA7g3h65sXynkRzb/Ln9/9rOfrX9qYSz7utYb3/jG9XVJm/Z8AD3jXCQ/ecUOkw5EosOVjTJ5zTf4\nk8fhiW+Tz2GITHy/cdBGNL3ptQ97fNRXRi7y4+3Q7dDZ5UgXJMq0EcgUfwcy489m3qWJ8Ug+GLXZ\n1Sde8g8WtA272mYzsrJNY9gzLMnnwOwgzj+8mQJTeMPTfOFyh5wORA6obER+dQK+YaGfTT0+Ugdc\n64VDnvkFPtqwUXML3dHkIzBhH7KRy4GZPGjRLfzw1l+gV1GZ/mzONx105ZXRJzzlBc+VrYLtD8zQ\no1N64U0ntiQbn3NJQC5l+QF96ehQA0u+QWZyOFzyR4dyB0v+QA/P/BOmfFZ7Y4svkBPvZNzbN5mv\nl+qXD8y+M3+9vsrrH770VCbCBu3y2oSPtIsqeLE5/LQPK2NGnJdL7Mc3GgNoC+RVDi/YhZFUhKEU\nhurzD/2Ki9C1P+TIH/DwXNRk6lReKkZPXp98xbOgHm341Ga2k6+deu26vONT8MrX+I8y67Gx6gJF\nW/V07FLHHOKwjS8Mw4jfi9rCT+RXYawtrKX5GtnIlWzky/7kMR75uPFJHjZEjw2M4y7Y2AMW6boy\n2x/6h6EyfArK57PyaMir018M38qSU6o+OlI+Z8wak+YilxW98cf/BBi5IPRbqS6P6QIrfY1zerKN\nACsRH3VoqwsHurMRm+knTw9jnjx4KoensYFHfNSJ+tCFfdDVl52yn/WCrHfeeefZk5/85LWOkIE8\n5k1rrUvG/Efe2smX0CY/nznf1mn6ung0zytrvswe9CQf+vzPPIe+Od0HTPgp146c/M9cxj/RF9E2\nD5rbwi6d4cef+FVySvkXjOhsHbI+8PVoKlPHP7MDfeFORv1LyYeWtgI5rA3oJRvd2Q7m7KIPmVwu\nu6znN+Z2vLInXV3YWm/4jD01OsrN9/LS5qbmNlgJ6IiF/DbsZ1ob6WzXszI+k63I2QW5NZ6trPN0\nYkv4sTs/crlqjSKfi3QXr972vNg+QDY2rl69evaWt7zlnz8FYI9z/3aZ+t3vfnedDfW7sq3hvobv\n20tS9AS2dIZ0kQlDNiMr2/AdvuLNzDe84Q1rz8gGBe1gAC/5cFOvXBT4VPlV8CB/olU/dEWYsbHf\n/v3lL3+5sGBDl5LeIPX2KL+hg4BnMkoL8mgLld+MfOkL1/pLy7Oz8ed3etnK7xVra4yxFTztrc+3\nsRfe8TcO2O+Pf/zjunh1tje3+Babny3R17gw7+zlj/+q2P5Es+cjPRA4EDgQuJUIXOqL1zlhNlk2\nkbcRApY60cRvk/2rX/1q/SdHk7SNmwm/UFt0Zl69yd7CbiFo44+mjU8bThsbm0wbBXTF5CSThUQU\n1Olfugq3P/jWp7LbnZJpH26HjGxwZdsM+eT5fFuALaY2h2zisG+TzBYuRxxE/IdXG0wbVlgLFl/6\n7HHf63fq2WHMP0dy8WojZlPahkV7PKbvnMLtFN3/1bKwOqW/umxmzMjDM0xtcG18P/nJT65P8I05\nofrS/NSzzZhnY3bylucXLlZt1qQOL8a5casf/3LwkirnPzb9Ll79+L+NLRkcGl288hPtyS06GDhA\nmXM6hNkU6yOSgf86JDqEOtzYwHt2qJKq529i80jYpY9UbJM862sTNslGFwcaBxiHeSk5zZci2QV6\nmwNt1PuQo8s1MtOXnGTDawY8K4v/rD+V174+zekOkGTtAColnwPqPOSai8lBHgcNh1xzhTnDAYoO\nxjPbkgcWeLGJ+YJ/OTyj7yDNdrAIF4f9aMOC7vigWx59QR+Hv4vt0IemSwp8YQc3qbbszMZSNs7u\n6vmdsuthF07pwqawwgsWXYzkc1KY0Q9uUmVwxod8grECX/ToSz9jw8GcvmTUNrkd0EXP+SjZ0E12\nz+UXk2t/lNd2ls/8jfpGUxuhVJ592cz6wJ6itdoz/egpGotwUwaz2szLI/T2+ugLIzLQG4bwEh28\njZ2wgZkII/XK1Vcm1X/ywHPqRx8hPKRkJzf55clDLnorpysbS/VPVnS0o6N6/T0LbGtuRF9ZmJIt\n3trkM3THe2IXb6k6sfGGh0sc80pj1HhShm6RDPJwkobNxKQ8mtHXTqBTl1jS7C5vPqE3fdiCj9tT\nmCfIokxI9/Ww/cGvMmn5yj0nR2XJozy74J3dZpk5Rx28YC+yKTu5KLzY5hOXFfY79CmwAZnJ7xKN\nLvwMT3zQ1B49uMKU/cjbGMFHuXWIbfQ1Zppj4aY/2dAjk7x+2goTD3zMYWRCz9zhmZzGB3uHuTp4\nmYO9zegNPRcreKBDVgGW9GIvvuOiuW8woM1PyAIPKXnIjI653Prt8s7LGF3g0VE/8zLbd5Fp7dhf\nRJIBXRFN8rrUtPf0ob91VLlAZvM4e5xve1cp2nTGCw7wg6s1wmUZufrQk4/yYfiiBTM6kpFccJVa\ne+jJviL+dGIj/fkUXdG2zsEDf5iztUgueCpjF2sTftrxiXwYH3YSBc+ioI08bHpuDHiuz6rc/tSv\nNvqRt30JHFy2hgedBHKxP91hemU7H8iTG07owMwb4fZpPqynP/l8Dd1bry7q4eKs4GvueLCLvZyv\nqbvENScnG1mt6S5dyYQHf+p3lq2lvhH3rne9a50T+HtBW7yl6KR39eGiTfl9m9qeSpNRHfvzo868\n5gpnJ2+BXt0uM+ltPMWnvqVkFKYsnqc89VV+vaA9WtqiJVQmb84xn33uc59bv+vKPuRig5e85CXr\nZxvIbfzEb8qgv7Hn5yS8BOFbaHT3xvud2wc59PVGufV29pefdMhSvfwRDgQOBA4EbjUCl/7itUnS\n5FlU1sImL6oz8VskfZrmR7t91cZGp3rgygtNxuiYrC3iDpsWdZsdwUamTbtNgA2OMgcOm1uLgQVf\nmLLteawG19qUv2xpMk+5wmiW/bfzsPe1H598+rq3hdXibDNocw1/F0c2RH5s32bLW80WYTq0kTgl\n517H9FNe3gbU7wa98pWvXF/hs+nlHwX0tdWnWN2R3hgBuIVzmPesZ5u/ymxufbXoE5/4xBrLNumC\nvoJ20ckWfMSYjIYUXRt0BzZfSbq6bUi9BcC2Nn+TVjJI8feVJjK4APYpO3rmCb/vxU/kldnIX2yH\nZPMP/7RJdxkm8F3zS4cHb2LaJDpI2Wg6BApTF/zRTX5pbaQ9r8Jrf5SFQ234q3nLAdGbUw6h5HMg\nM4fhLZLDQazDosNdhzAYkUdAX75xNvnFs3bSwpRXH0HZlFke5i4ZHBodKMhtbHcB0HxLJmPVfO2N\nNZeEZHYAcoBSP2VD21rALg4AeLCVSwZze3O6dnyFzcxF5+cPvPnEVuwHE3iFCR7WAQdpB3I0Hdhg\n68KgC1p90dPfAbxDHhzRgGlp2CyQruEknz4wYFN88KMPvZSRxTjp8oVuDrbWMf5Ivw70ZHLw9izy\nAWV0NTbIau5LV32TYabJ+VBSNAT9Z9iXx2u2kVfeHFwKD/rSz+GaD8FGSv/8hw9pKxXhpE7UH212\nYBs2EulfZHe+wa4iXzOuRfjlN9qf8kHyh1t5aQH/Ijn5K3tOm/JTeloH1deOLu1N8mU64kcukW7a\n6U/n9kbq6BYuaGqrjDzm1ImJvBAN8ukrZZMwND5hxI+kLnz4mzxs0S9MfwgjvIXqol2fmdKlucNc\nbDxoTy51Un6MN98+38Y1PycjefGgtz6i58rDedbjDUtYi/La0wtesDAe80XzmIsD866xqE40Nvme\nSMbwRk9MHvzU0QFu+PA5vtecpD+a/EBf8vJF41obutZfSkfznDr+rL9x06UdHOlRyB6llZPHvOHy\nylfAfahpPsY3v9OWjvmm1DrkIssF5sW2dqoniznTxZrLQXTmxai9IJ1gnX2Sg+58G8Zkt4agSyc4\nwwUm7JMPkNm+wNoHS3hEG126osl+1iO/926/KSU/nvqQ05pOdz/7YF9gvocremi09rRXQM9FGdnY\nC45sZJyQRzzf/PTKtsaJMIYnmcxzdOsnE/gZ3dTPPZBn9OCJHpnwIFdt+UGRzvIzlZ82r36WK9NG\npO+putnPmDIO4EqH3mw1RmCFBjnPN/2dA+Bqb9L4Uh+9ePMf/uRiztfR0aSvizl2hi8bWPPJ6Wzh\nnOEbTnwOHRiSjT0a2+Y7drZ/shd0sctu5o+PfvSjax/INgVjlnzSiVv1pfgVb9Su9lLtm58808eH\nAN705U9s7SLZG7zGinGePNrjE0/P6oRsRv+J7aq8yT94xEdXdoHdZz7zmfX7rHyVLYwTl67+SRlZ\n4cx3659MaJDTOKGrn1LwMoRxbZyxbz+nYE6c/fRFbwb6H+FA4EDgQOB2IXCpL14DxcTZYtOkORcT\n7ZRbNCyqvkryve99b12U2DjWxyJk09Yh0yZcbJNj8rchsUGzqepNAzQtwmhZkNvIt2i1UCTvIykN\nm/3iFKaVW8wsiuFMd3Wea/Nw6G1jZSPkq0QuqGy6bZ7YzcHAQdpFgzckbNhtgm202X7KMfU6lSdr\n7Wc9/t50vfvuu8/uuOOO5Rt412bqrazyh0P3/yUasC9OvfmYoM5Gy2/auXj19rpxKYQ7W4S/9m24\noludTZ43ZfyEhMi32pR2ALA5FMwRZOBr/MzXzWxq8TcPoKkNvzzfDgXmD33Vdbllk26uaH4gFx+y\nOXdJyL99us+/m3MW8+0PWuTnz2Qoze/Qip6D0zw8KSefPvSCl00uPVzQuRyEKfnw4OtkcqBxcLSJ\nJY/5EWb0jGby3WyKT3aob2VSOpKVTDC82A6TInkdwMhBRnN0cqGn3MFMORs4/JJXFMgtwNMh1Rzh\nkCLPTrAxlwvail0uoesCQOygij6e4UGG9GKbfADe6LOBPi4fyEd2PkC++qIFg0L0eq5uliuzFrkc\n6dLCWmVeFPBkV3xar8jCp61trX10Ixv95sWMeu3I2nyfPMlRqnwvo+dZNtvW/lTZvo9nvsFGsO1y\nlE4in1Gunu+oZ1N5+MMDTsrob5zAho1hA3t2U9c4pTPdYcMHxHDIN9DQBj1l0vwCzb1/pCt98BHz\neTqUV64NeejC99PBs3bRmDKj7zk64ZNOdCUzu0rZFF/ttCEvHUX04SkmmzazHd3RQTd54sW+6MNE\nu/wLjrCCk37hFTb6CejNMs/CLFsF2599HVu7xDHXOZB71iZs5PFlW5duIvnIQ18+Y24Ma3z04WNs\ngR7f8hwtGOVj8nCgJ0zZg++Zd8xrLpT0x0tduJaiuQ/ZzmVKH+CQma3UwVqqb/zwJIugjt3NP+bQ\n5jLzAxvlq9rSC24uq+yr/AMvWMIP/skHQ/bsTUnrhjXNxZbUGoJnMurL19jGftqlo7x5Et7mY5ig\n6+KTXdBwqWUtEtlsP9bILNAbHZdOZEebTRoH+Of/5G5+wwumsOGr+MMTJnSFI7v5gM6l0cW2Jlk/\n0IaJ9mSKDnnJbV/QBa42yUdvtNBEx9gmI/lgxSbkaF6Wwpjt5dWjV2Cv1nY681vy01Vb6cyjTV5t\nRHyn/dGlt/JCNp9lD1YXjfpqz8fJx85wFcluP0J20fhrbMGDr/KtfmuXX/DZ5J5y4EUXdkGb//Zb\npy7I4Yee/gL9YXu+7d9clrMZ32ArkazGkPFjvIlkQ8vFq39yZ05g8w996EPrw3x+Srb0p/ONwsS0\nfrXvOVr78vrSlx/1gYBnMvWh/vSXaMw0OrNsz3PW7fPaFqJVf6nItt4w7k1kY9X48G0xv/Pskpgt\n8kl0xGhHF54wZ1s/p+B/LhhP+npRx+WtcxvaaM3+5ckaveQ+0gOBA4EDgVuNwKW+eDVhzkl4gqOu\n+iZTzza63ni999571xuRFnuLssm4DaPNjIXYZlT0abBoE2bxsiHok+02cxZjkz8e2kgFafkp3/Xk\nnm0eCfmwswmRF9qgtLk4pf//VTebI5ssm3gbIrayWbaJsFG10XBAcPHQRlZ5MpTmE6XKRc+zLDnr\nZ3PqYu51r3vd2hzY/LXh0zYfiE60onOkDw2B7BHuUv6Vj6FiM+6rYS5eXX7aVNce7vLhP8v1nc8O\nIP4Bic3Z1atX12be4cSYdgDooK4fW9v4G+N8zO9Q2Th6w9rmu2A+0Ta/NCaaF+Jd23zFGHLYc0j1\ntoWLV/MO/04f81WHRvw8S9EX4ksnBwIHquRQj7f2Nqnws/F1ienA1xyGF/3NgTbq3vhxwHEBa7yR\ns4Be8lf2YKk+9dNW/4JyYwhWXVyQ1bztoH+xHXClxjldzc/mAl+Zs8lmGz5CRnn6y8dDir6YfdEz\np+Ph8oMM+sKggzg8rQ9iB1dzgXbkyC+nXnud4M5HpdrlS+jxk3BUJ5Qme7Tn86kyhxeXAb5uxy/p\nxk/owH4i2cmcv9DLoYTPpDO5POsnklfULxn2ciaz8tnGc6E216vXbt+mZ6nIP2DpoqPL8i6+6KrO\ns5Sd+ZI+7N6YMY6U0Yeu/N0hvEsI5fGVnz6gTWOLHmGTTcNIeipEV9rcICVTfpKvkLc1TBs68392\nluZP/JwfzVQej3w+WciV7emRb5NfW0Eb/fmK8sYkLJuDpGSCQXyNCXLoE29p9NSjGYaNoWTTdoa9\nn6jfl2lf+b4/uY1tc525HG4wRYPs9NUHHmTiB/yejOrNPy7DzJHydNZHHR8zj6Iv5Wvo6osm2+SX\ncEtufbWtLppTb3ili37h2xxk7jOWrRn2RC53jGHtwkN/stIXP6lnurJR497eVl/P7CYK5NLPOtgF\njktXFxzWDfVkIys7moPty6wVLhrNzS56PKszzsJACgf28G0AH5a7fPVBkTJ1cKSjD9DstXozUxla\n7EXfaNJNPtrmBm+2+oDUnp0NBfZFA4a9WOEZBng254WlPnTkS+zcG7PmV3OtOZZ9yYPe+XZpBwc2\nYRs2Cl+yZVtjWV/YWoemD3UhyDby5mU6w1kqshNbojcDHMwf7AZLcmubXmhkZzrqH4bT5ybNypVp\nu3+ebctrE91ZJq+cXDDowrm5vH0XPIwR7cgJX3jYl8D3fMNZHjaTl/aNKbrRNTmcC1yO+i1RPw+F\nf/LAEkZshi6fw085PNnYmPbMnn2wa1zxL2uulz2EK9tbyB/84AfXCxr8TEjG/LQyafLt89drEy1p\nfcrXh6zmLh/swM/c1jhcnW7wZ8pzg2bXrZqyaISeMlGeXY1L5/Fvfetby/fh6ucdXvziF69//MW+\ns69+0alciiY7GoveOBbNKfzChatvoKFLdzgk2yla6B3hQOBA4EDgdiHwiLl4NYEKc2K3uLUhkbdo\n2iz6qolF19cSlFmULYw2SX3K3YbUZsxkbcHSzsbb5tDPFNh8XmwXAQ4/NokzNLGXzrop6yy/LHny\niTDbh2SX2rzZwNoU2gTCwOLnEGKz7vmU/nuaN/PMnjbG7NEFAbsot9my0WAjGzgLu80XGcgrFS3u\n9fGcb8ifCrNcP5c8fjTfD9M7UMChgJb2+BWrO9KbQwCOM7Jx4xkl487X+z/+8Y+vn5Tge2HPxvAX\n+MX05cq1Rc/4vrpduPoPr77eZMzrw4cc1m1c+ZS5Al0HVvXmAQcvPzfg4MDfJ+3sjzc+6TLbkK9n\nqU0h/jb+DpltkvVHhz/j0wGAvxtr6vTXjnzGiAODgwr/RFfQX3vY0cnBprGijbbGsnGNt4MFH3eI\nkDfmkoU+cBDwDs9kIIeIbvW1h6Ny9eoEdWRzUCSTaC6RklM5mekskIVMLqp93dDc3bjO/mQpoA83\nurOXwwj7yqPt8EQeB6ouM2CAj8MYTOGjDfpokz358YFBunoun+3ZLl/UX0zWSSda+k062kya9alM\nahxcbOuSDyUcAh1ilfMHeNGJX8BKpBeb5yvK6CiqY6epazyvp+sSePsz29W2Mm3CRNksr04qwCt/\nl3pmq/w3+/EL/i2q50vKYE4HurAjvAWpqJyN4SOFhXb6JCP94cH+4SaNVrakR2WLyfYnGtLsT0a6\nJKdyURm5rV2iw742fFd/utNJuXaiftlq+ilZySXoK08nck896Gu/Q3d0CtrTJT3JIJKhmD76pHv9\n8FKmLf6CMjTxkRbVTx+ovT6z3POptsqKtccXzo13fmIegXFtw9UzucORXPrDWn/zgwj3bIW2Z+PN\nHMUflcELlmiwHZ69xYhPOkzeysitT3ayr2KX9qL2PNaG/FTePF00fvmy/viEuzyZs9/kRdZ8Rt98\nhhz68EGyuwztJwZcEsqbO2GpD33NmS6qrBc+qBOVkZMueAnk0A9e5ncXjuYpLzG4hIQzHOmJnv2W\ny9tefsCLzNPOZKUnujBnF/OeNdo+39v/9v7q4OjDROtGHyiaF7t05aOiAEO0jTNy9aG+y1yXPCK/\nogsdr2zrZN/IIneX4cZY44icIpr6kgu+fAg22rUGwY9d6aucXOwrL90HdMOF3PyXzoK+/FvKvtqh\nUftoRSP/kc6gfVFbwbN8fWvPHvrne7UPUzrTne27cDeeYEN2gax8DA58ostseyTnNuODXvFIbzSU\n5Z/6050/+/DA5et99923bKCPAA/8jAXjih3YTiAXv9QW/ur5tjb0bHzwBfL4uar3v//9Z49//OOX\n3OkeVovo9meWK1O/D3tcZ339Z1l5+rO/cYwuXZojanO99JQc12t7qvx6cilnG2P+F7/4xXrb1Vma\nj8PK77H6mS7jk7z8h130i2YYzjFgzPMjb7t669W+XPvHPOYxZy94wQvWm8fGOdsJ6TdpntLjKDsQ\nOBA4ELiVCFzqi9eAMDGbRJuM50RtobSAW3hsckzG/uGST9psHE32Fu/z8/N1ILV5sjBZfE3Qc8Nj\nEbPx8ptDNnImeZty5U3iydRk3vNMa3ujNrP9rc6HJRyF5C1vI2PTATOfCsvDyybKJtonyjY3NiMP\nd0g2dLO7/I2wnPJra6NGbra2iSK3Sxh+ks7aCfpO2jZUPmn3z5O8IWnjzl+00Vb/8lPWB6gdf28G\nATjOyMemLR2E/NSA39Hy1qnNnHr+aUNs7Np0OoCpm/6SHNnTfz71tSa2FdDmw3zDhtvh2YYaneYT\nByabbfVzDkCTDPjb6OMr8rV8Aw+ypV9+4xkt6Two5VvqBGl06xs2+tqQmr+K6pQbkyJZZj95cosO\nKMaGCzo49saOcU4mc2o0kieZmjej4ZBs84w/nvoKxoxy7fQhm40zzGEKW/Mz28FdP7I55Dh8kc84\nNnc7lHs7WL5DxdyQ0w1va4D522Hcpt885eBPB7TJQ9fe1DK2HfLIqL5A1hnxmvzCFl9BHdzoWYBH\nNpEKaD5YqE/t6uu5/vThr/QT6c0fXTg4yLMjXclUJFvyoRMf+XSrPF49SwV96reXCxboVK7PxEd/\nz/m1enl25xfGIVvRRTn/MxY901Ub8vN3OiUzW8jzQ3p3kNamscFn1EuVsXU0yCGmGzk9lypPbnKp\nm8/4i/SYKbnNG+QW9dEXDfNC5do1ZrJRPErpZ65pTNBD1B5dUaBTY46+fIKu+iqX5gNkJYugTN+J\ngfJpS89CZfLkE5TN/Crc/SFjfbVNt3Cp/9SnduQMX3nywkQejsa8uYSfaJc+4ZKMyal84s8eaImC\n+uwqzRel0xb4sLE9URdLaEw90YMte5nX+KfYWHVRYE4yD5mPtWE7tsrO+uO1D+FDJjLjG29t0z+9\n609fY8ve1r7IhZjU3Cwqp5d2xgu/60KMvC5Iezu1eRMv+OhjPu8CEy4X24dE9tRduJLH3G4edonp\n4sT8bi1CL+zDna3I61mejGQ2z7sY7U1X2OvvLVy/3elbLi5gyYu2eT4s8EATPX6Dnjfo0JNao1wS\nt2eEv72Db0P5HVuXbn53lM2MM3QnbTiYz9Dgm+0hjEPrmP0pLOHKftmSjRoLle2f8RHi2XPtV+W1\nP7Ovotrk1/QzZtiPHPAr5ldw1U+an6HFHrBjbzjSGV1tzWv0t86zveh8hp82ZIYb/UX+0J4EPuyl\nDO74klHUn92kojqY6mvtM27Q53/esPbGK77xxLdxQQfP9MRHOXoFdY1d/fGX0g+fq9uH+e9973uX\nL/At5adC5egVZl6ZNsqktT/Vtn6zjTKyK6NLbep/K9IpN/7Gppef/MSAs7j5zj8j86ary1f+z/7C\nlHfqsa9jb2+i+78efkrC2cCcYozfdddd67xm7PMHOBTCavKp7kgPBA4EDgRuNQKPiItXi2ELypzg\nLfw2TDZ3fULtwG1yNiHbNDpc+1rv+XaJaCFHxwRuw2CDacMgWsxtFhwAbZRsmGwkLAQmbHHyvpGh\nmuCb8G/U9nbXzQWKLBZDn+SLNsU2lvCHi02UtyEsqnCH439Tx3APo3iFb6ny7GQDZfFlcwcasruc\nsDl3uOAz0YnuTPV3CHrTm960foPIpY9NVqGNQbIlQ/VH+tARyA4wFWAvVM7n/Ij+Rz7ykX/+ozyH\nUWPaoccGXRsbbNEYZg/9Sx0izrex759qPfaxj12HXuO9Sx68babR6QDPX8wB+Xf0ounQ6eB1ZXv7\nxSHZhhxN7dES+Zn5hEzmEdGzQ4pDWBv4/Ine8j1Pnur24ZTfhdu+bc/J37NDhdilFPzJST66GDto\nalNf8pkz4DovgpTRmb766eMizKGKzdTB2Bh02eo5Xcmjv7mnrxd2UFbmUNOFLJpdlOpDPjKj7bBs\nnHu7gg3pIBi/Dt/sxXb8wWbdwd/8pp4+dCQ727CpvKDOWkIn5XQsakM/conaoZNs2ST8PNNbkK+t\nVMBDX0H97F+bVbn9ISc5BHxFNqyf9mLP2s18fConl/bK41WqjZA8pQ+UPlBe//poI6883PiW2Piw\nDrtIsd46INMHf7qwfXqxkcMbP+B3XSRmG8/8WArDPcbJeb00WaVsWv/GNpmNX74Gd+PdHqN9BLkb\n03jkR9EhkwgP7fhmURt2S2c61R4W8nQzltJdmX7RwFMZnMICPbTmBZ4+2YIu9K0PvLUvZEepdjPM\nstlOvlh7fYv440tuKVngUVoZ/MIQtnN+JSeZYaN9F4bsI9BBpD9ZtCt6zn7ay2tnb8i30BXizy5o\nSfWVwpMM+vJZl3U+qPeWnXUlXbXX14WQfYQ3vM63uccc5+JBufmHbclARiGspWiI8rATPBdq2/Op\ntDZ0gqO5sTXzYrsUhR9dtKN/0TxrTiNj4w5Oypvz4CGwZ5et8HDRZp9oToYJ+9LRvC4ay/ZZ5mRz\ncR+U09EaqY89pnXYODP+7NdFfKwjeNJpYkQue1eXrtZoe4Qpc+MGTTiQ09lBSlY+gSY5wpt+xpR9\nJRu2dswLXf4APzKZE5oXmjPQJBu97UtdurbGoQ8fbeLNHmJyZEM+kr7TX7TTpv5oeq6scu2ae2FM\nTniTm3zZhr74kMv4C2v9yaVcf5g5FxgH6DQP0lt+rvPJSzaBLfgX+/Cj/TjEn93Zit2NdbG2Uvqh\nqy+/ZAd01ZHBJTq5yFyAhaAvHsYo3etDt+rU13aWGSPesnznO9+5xrb+BRgJs291s7z6Wacv+cgr\nJRN9RO2TQR954RSdVXGL/5An+VyKunj1vxH4gQ8rXvSiF60PLswl6ULE7Ji4e33SEybGvX+q7I1X\nbzQbw8aUb7O97GUvW2PeOommUF/5PV1lRzgQOBA4ELjVCFyqi9c5ScqLbTQAU73UYuqAff/9969P\nwLzp6vBtcq6fjV3/EdNmx6Js4bZhcDlrY+jAZ+NpcbDoFfeGiHcLRs/7do+EZzrs9bBQOQA4IFgk\nbV5hph28unSVWuxgZlMVnYdL7ykbmuTKB+RtkkQbH23JwBekbK/OpRwdbIyV21j7Wi6b21QVJq/s\niQe/8VMDfjfImxg2VdoK/EPb+lYezSN96AiEeel+Y26TZYP14Q9/eF34sy/b+I+tfpzfBazDmQ2Y\n34C92A6R7COghS5/8NVIv//kH1rZlJkDbOhtbLXjEw4OaKHhEMan9E+27G0D7KtSPmH3Cb5Nn/4O\nBh00OiDY+DvoelYnKtM2P0RfHj+HzD700Y988ScnP3Tx0uULXWEioiHy9zmHmfMcovi14ABFd7Kg\nry3ak9dquP1Jf/VCz2Exy1eDa23ka1OqTH/8SqvzLHh2eHIoNRd5zlZSOtAFDniL2tAJfg6R8nhM\nfbSBgwsEF6/oO5DDEU38pdrJwzD88TDXkAcNdPGCoTawJw8/6G1T7R0EhWkPfUV9yDl14pfJ1KFX\nO23okx2lfDp5+WPPZC+qJ7u+ZMBPRFObsCNjbciGFv4Ow+kBF22SBz2+5lnM97QR0MYDPfLzd2O5\nCxNjTVkHalgaFyIaZHABAE/jXSzPhrByeCOjmP5hQoZsmW6NRbKTT1s2YjsYatfYtN75cIB88uS1\nt2D37GH8eM4X0BXQEmHIZ9CHo7IwxyvMap99uzygk/bJqhwm83KQ/5ELlvBGKwyyPx3jTz5yas8W\n9KKH+vDuw4Nw0wcNcihj7/yEzILyxpgxhQaaArzwYGO8YQwzMsjzSeXNXY2L/EuqTFu08DZO+AOZ\n4aw/mo1ZsogwyM50EMlMF3TQZh+0zAn2O+SmI1ro6sOO+KDV+CIT//C2q4tGe1Ef+tgbZQu2urJd\nLNpD+CBYtBbhoy5ck3cBdu1PfKQCjMkskis7qJv6KBf1Q1edAD9rixcTXIa4JLb3RSse2rFfYw7O\n5jXjjf/xL23Rh12ywMJ4aW/Ir9STWYw+WdCHt3GLXuNDG5izI1n5izw66qIRTbLOoFxgX3O8fSyb\nkpH/kRn/xoVxc7Gt9TAgf3KWZhN85elvP4kmv/NsjLKhNnAkM7+2DuHLl2AnyjevNnfpry/+c0xM\nv0OfzNo23uCTf8JHe/wEstLBM52FdKC/enXktIc3v5FbIKPLZT5KZu3zc/btMhlvfdI3W+MjFuLr\nuTr86YE+HPkDedEyvvEkh3bsZozhS0dlcCcfW+grwK5LenoJ6uCsPX54aMc30SQzevDlj72ByYc7\nJ6hPbnIJ6WQdesUrXnH2tre9bfkb+xTqM/tXJ1UulpdGl83Iab1kG3SNQ5Eu9EiWRWD0nXSqu5Up\nHQT+5WUoZy56wMpPfNmvs8Ve972MYVE5nQV0YYKuN179ozNnOxj56YK777577fNhFUbZQP/4yh/h\nQOBA4EDgdiFwaS5em7QnEMpMoPs6i6bLEROvCdgnYBZn7ZqkbVZMwC7hbMLkBZuWNok+rbUZnRuv\nyb+JGl35+TxlUj6fJ43Lmk8fcost8N5ydVntrQybY9jAqE11F0M2SnNj93DqGc5saBM2N7kWbht2\nhyELsU2KDWSbM/7irQRvO9ic8RWbAG+k2GR7FrJZvGAgj7aDkX+u5b9uHhevD6dl/53WHDPZYbbg\na36v+YPbPzBgO2PbptvPBjz72c9etnHQdTnr03UH4EL25S8OEy5e2dKlQIckG33+4JkP2bzbdOPb\nwYaPJSffMiZe85rXrLcdjBN+SC7t0Ismuj1L8XCQMP8YUwIZjSHlNpR9GEQnG1ZjTMDD/MUvHRK6\n2CAPujPiS5bmQQeLeWmAZgcocuCPjrxIVv2NPfJJ6a8dPkL9lMUn+4XVanjtjzpR3b6+8tqQF8YO\n5Nri5TCFj2ftyLsP6mujLj7RVUYXhzGXCTDFSx96pK9+2U65/nwIhsnUwZfdYKXeQdIBI9nJqI78\nyYaessrhib45ziHU4c+lB1rmIfX8kDx4oE1u7T1rIy/iR3a80Pec7cjJ5i4b0NNGHf3R0D6/RRdG\n5CBTtMlgrmULKb3Q1Q9Nz/GlE1noqw2+XfQZZ2iI9dFW1L9ADj7vEkXk9+Ti+1IH6/BgF3oIeE56\nnsmInzFGVthY76wr2QtvGDmYG/9S+wSy66cuW2qLbmNtyk0G2Ip8hqz4aKM97PHPPtlBG1EfdhHy\nG3iyO3uI2tHRWIaniwT00Qz76QfoiXhpRxfzKT3hAgt054Ug31MnwFdfOsNACm808SSLVLvGQTIa\nK/kNO3gW8x180Ct6FrUl68SNTgJZe2vUmMM7H8yn9NOenPTjT+Tjz3SBk0BOvo6e/YI2aMAITf21\n0U+eruwIG/hdbJd39hei+ZvPoK09eleuvdHp0kFemfmH35FLW7qnK5mU0Sn746eNNAylygR95cNN\nnb5ooEVmupDPb5b/7W9/Wz5df/WCtqKx1YdT7GnMtYbgxXboSdmW//FDuqsnZzQnXbRhSX/2SD8p\nn2hPqW91yR89z9kUfkLYSNWR13xhzJATXTIJ+sCFfdlQH7z2AR9RW4H+/G7ioS9fycfzGeUCHenK\nv8jEt+jfnIM+m8EQduYZeRjSAz+RHvoqY1tzUnN54wU+6YZ3PkM3dXxezOfIzG4w0DZc7Z07L2kP\nP3NhF5t0jDY5o49nmMnrC7t8sGeY0D/d5NEgDyyTVeoZJuyHFxysBcaSuYot8ISdl2iMwfb4cDbW\ntDUHa0d2eyv7RB+Y4GGctsbAFw1nHbgmu3L96U1WeTa9e7voe8tb3rL40K+ArqidoM8+qKu+VDv2\npbM3denE7ufnD3xDh09fL+BXiF7PtyKdOtMDvhfb3MiG5mhzX3YgT+2l4Vx58qZHuvEB/uos57dj\nf/Ob36wPktjniU984npZ5o477lhjH81o1z960T/SA4EDgQOB24HApb14NVmKFrQmTqmJ3AbSD2z7\n4XS/H2OhakEsNclaVNugOyRYTNsk2bjYeCjTB219RPl4MkrlGUj7groZZr9Zftny6ZS8YeVrVDCz\ncVEHIwcMG68OzWzQhjW8Hm79LJwdXmzSbEA6PKqTbxPaYZltyWxTRg/9yEl2G6o2cHtZ00FqEXfg\nf+1rX3v2whe+cL35S47C3lf0OcJDQ4Bt9njlf/tyFG2if/SjH5194AMfWJtrbV2ePu95z/vnz0D4\n8MTlrN+S8hZPIbr8Rp8uXh0qHRg76JgHuhhQrp8+Dgj5jcOH4NDi5wr4xp133rm+qs5f9CG/jeE8\njPQ8U/7oWdBHX3NQB3l+6nBAPuUOfPzRpZzDsMOGsg5Z0eOX8ZHPT82ftVVv7BondHWQSA7tjScR\nTWNMXzJ6Vq6vdvAgH3zI2mHHwcgB02HK/AEbdPSZOiuj97y4IQu6bIEf3qKAr3rjVxv1+osCekV9\n0r02notkEsMErWRbxK790Tc60dZP0Cd62uHJJvSfFwpkZkNtsvW0UXzRhRfbOgSat2BDb3iwl/7m\noS4cya8MP32l+LATjNSLAltbI11+wlA7dWRunteGrMrx528OeurJqR8a5lprQv6Tz9A1Pckl6Kdc\nWzqQC48w0H6GnvWHOTytReZz+TCHF3zC3HjVHi/ySLVlJ3kRb2MMf/TpiSY80VHmYN4FUr4Wvekn\n2uYbU+Z0ib5xYDzAMFuSQ2AvcrMpXTxL8zHtG6d4qXeJYy4gM58jo7XZHJbOcBBgrJ+ALl3JQ290\n6enDHXwEcrC7lPzk5HsCmdI5HJJTuYCvMv3piyf+8A5DMspHA3bklE485/Mivv1Jl7CFBR/lG3iq\nRzte+Cojlz5kI5O2sPQswgUtdGALV7p3KYVG6wE6ZA8/854LBuOKDfDWH01YunAQjWs2c/GQP5CF\nbOjno/ICGmTDL4zwpRPZ+CkZlAn6idlM6jlf0Ebf9nLm7nipE/ASlJONDeFCdjKTH3ZCcqBDf/MC\nHdhSQIOf5d90oZNn0bO26Ejp0XjLH+hN/sZ4c1X24sto8l/YW4cutoseNPXDgwzoiPSjV7YkIwzx\nRSN++rATfbVFi0zKG7NkQYsdXNKxPxr0QKeApz5kRou8yUY+QR9+Q5ZokE1bvmPNh79+2tA1++uH\nX+3ZDF00m5+TR386aEMWOmnDV7TBj339/I45F0/lbMvG1nq89cNP3aSNZvOTC0/94YSuPvkMmQW8\n4EzH5CZj+EjrRx/P6BlX1iX28awO/n4Cjf3Na3xRHex8c8+4pjv/94bkX//61/UTVtqiSw402bQP\n3PS3FqPBfuzsMhT29CfHK1/5yrN77rlnYYa+AJPG7SrY/mh/KmiHf0FfOJlX/I6pF4vU+2aV/0/g\njXl4CvEpvwrHH7QfrpCd0bse3dmGvnxVVM7WMOSbExt19QsHz5PHzPMHNPunXb/61a/WB0n6dvEK\nJ5fi0Zv8Jq2HC5uDzoHAgcCBwM0i8Ii6eDWhWyz9F9Mf/OAHZz//+c/Xoqt8P6l6NvlaTE36bfpN\n3qI+YkH7+swFofqZzvo9X+1aTGafy5ZPbrLCCUYdZGyElNtkwNsGuwuRqft/U1eLtE2/C1SHIhvY\n+JGB7WziyGjj5RCZjNramNFDO+U22DZp+s4wcVBuY2PT+PrXv/7sJS95ydrs2IQV0ENDv2J1R3pj\nBMI+zGsdnvNZ3qWCcf6+971vbZqV+ecWLsT9DMSV7VN0bwX85Cc/Ofv+97+/fgdWGyEefMDm2w/6\ne/vBswsYhwmXtg4UNuTmCRs2NB08PPtk3T/q05Zf2ITj+9KXvnT9bIHDX7Kn2wPc/8VfeXX5Sz7U\n5tCzDbdNpQMkmfiseocCcjnU8EsHnDaweE3a5ZWb4zzHU4qPcnNhY6H6+ijXTki++uinzrgLQxfF\ncCS78eqQ4zAFG3KigWbyeI4ujOXR7ABNd7TJrt6Bhox4w4St8PKMpqBNh+IOuGhq43BJXhEP5fpJ\nk2vSYmeR7ELttBXDlNz4kjHe+qA9Lxrro72+6vFjb7QFdWiYgx324Ie2Q7HDrsMgmuhrQ0eY0EkZ\nn+5SRBmc6ICmoK85HB31Avps5ACJFl7mUvKaO825fA4vfdgEDesBHMNwETvxh64z5GdS+grygra1\nr96cCweRHPiZ480J9BPQoTsZhcaQdNJT5xne2VMZ7GAEB3T4Ff/SX0A/3/IcDRiRxzN5w5oviNkE\njmizDRvku/rRjy2l2gtoog1ftnDpAXfPgvFvjYYJudmFf6Crjb7piIeINjn0MY/IawdDayK58BXQ\n1J9/qtNGHf3oqQ7PfGjyWwS2PzDTHg5COsnrH2boRVOZoG/l8rVXj47nyugFP3OONAwbW8mIniAl\nE7zZQ56+8mxvnlWHj7EAd/rTMX3IAa/2RcYTn1FOXn7oAieZ0FdHJrF2ZA1T9KunGzrJxve0q636\nxin76BctOpKXTHwBr3RX57lYObpkNAfwLbTor508bOgCGynfIZvxgZe119d+7b/0Q5eMfM0lkbXU\n2KUHmoJ6/dknvZXrDwtRnmzsQq7GCfsoIwfZtOX/1h8furqQcWmlnPzGHnugoV+4shO9yaF/F8fo\no23uowMe5EaPrAIdlZHfvsCLH9LmDPVowwwtvNiUTo0pNszW2pIVRuTL3mSJhjJyXmwXi9ZH8pAB\nXf1hTF56aktWfskP8BWyJ5kaL9lCG3JrEzboszHd7EmMh4kBmuS13puTfBNJdHErpju6xgy/dDnq\nAhNdspObj2jPTuRCUx09BP1Lsx+7wIv8aKEJF7hme7RgQjZ+QDf1fNaFpg/qvf3Nbuq05+P0J7tv\nSflGkz0jefyclX/U5eIWDtrbC77jHe9YbwjrB7PsIhUqWw/jD72KFWuLtheLfvzjH5994QtfWDZ8\n+tOfvv4plZcH8kl9wiZe0Zl1s+z/mp/043kjWuxSn3SUVqZveWltKqtt5fFC17hzAe5bbt56Nf6E\nJz3pSeuNVz9DZvzyn+jVH70jHAgcCBwI3G4ELu3FK2BMnBa9gkXJJs9mz6Xrn//857XoWlBtHppo\nm/j3E7f62kRTioe2Jus2idqhaSGfQTt1eAhN5qWT/sxPGpchnx5kobcNnI2bDZ9nWDtoh20yp5P+\nk8Ys37ft+aGk0WQHBwJfe3JgVG7RnZGM5HPwFNW10cRr+k72Uo5WIX5TfpsbPzXgE20/vWDTXtjT\nmbRqc6SnEZgY16KynuEZxjbT995779n73//+dZDgl/1n1Oc+97nrItQm7Kc//em6oPU7z/oXtbdB\ndnnvwtalFr9yiHEI8JUzlznKfMUObf9h2RsbDmM2d7/+9a/XHGNs2PjefffdZ77OZJO+t/3+mU70\nE5OpfHpXr625xpjjyw4EDhr4OqDIR0PbfdjzhuG+fTz3bdGqTv5UfW3Qhav2xh55RYe8DsVkdhCp\nz9RR2aQvr56+LjTQckDFx4FIpDtsjG88HeTkjX/9O5CZu4zd5vPmB/QcRPVV1rxeHm95cujLH8yH\n6amefniSQ7l2+PGvDqvK0MHPQVUaXbTplB7oiQL50eJT5jwHP8GhEh7WPPQEvAU6wEEgKxr4p5tU\n29rBVtRHO7ZysMePvmTFh9/TN5rwTWb60yP90SmPP/3Ui/hK9WdDPETtpfoqF2AUTtnbnB8WsGE/\nh2YX/V2u6Ku9eik52bhAR/ZRjydZ1NORvmQkh4M5XkIXFtHlyyI86MNm5g84kpne+k/b5Q/6hKO2\n+R/a5EI3uciiDfrasX2Xf/ldcpJVf/rkR/rmx2ixhUA+fFyQ1A9/bdHVv7w+6NCt8YJWdgtf2Olb\nv/jCh77khDlso4ePPHoC2eXRkfILfWGnXz4UD/LgKyUfWQRt9aWTVD91aKoT1cHB3MAn8PCMH92k\nIv3xI2v6oRcPNNWRI1vSo3mP3sYUmvqR1QcVLp2MPfrjgZ425MFX2zCkkzL4ScmKvrb0ywbkQItu\n2pGDzxjD8UJLQF99Md4uu1wwWR+teXjQMTm1y//pxufgpp5OLq68deZFCDZBnzx+CsjvoPu5J5df\n5KafNuQW6UEutPSBiUAn5XTCm0zqlZOtflLjw/ptXnDpKoW3wN+vbJd6fXAPQ3TIQi96CI019PCi\np7Es1U5Ql5+SF18fAPlNXx/MuoyjG9r6wdTFsw9q8c2+rZXWd3TIYK7Hl77Zm80rhxsd/TM0PxHh\nUk7Q16Wi/bFob6MPHNGGsb4wE+iefs2H5KKbtnxHSjbzGxxdul5sl718KruwMVz4uT2T/6Xg59xg\n7QNruIc1WfCHl5+Gg9Xf//73NX+j4cLVfsu3iPpJAHIW8MSvIE9m5fCGJzzYnezwhknrBn3hNPvR\nxQXqN77xjXV+NEbJybfZjE70sV/0gb0xYrx/73vfO/vmN7+5fB2+aN+5fevpPe95z7qgzc5k4wfk\nLO7l90ymYvXao+2i+9vf/vbZxz/+8TWHPOMZz1g/b/W0pz1t4a7dqYDewx32vG6Gx+xbP/gU1MNK\nmLZWXvtSbZTzVz7Jhu4A+BTMeuPVHt3FKz/Sd9KdtNA7woHAgcCBwO1A4NJcvJ5Svgm4ydqzRdBC\n+49//GP9QwMXKD7xtjlpU27Doa1QanGV73nyM/nb7LjgsHkxudu8d6P6ewAAQABJREFUdgGi7ewf\nDWmTeam2s97zZQxTXvkiPQUYhHt18zkdq0tHz2Fl01W76h9KioaNmY13X1sij80hm9gss7EyPMhV\nOuknGxmuJ4c2s86zDbC3Gl2+2oDZTIfLbBsvfY5wGoHwOoVRdXqqZ0M4lze2v/rVr64NqM0Vu7j0\n9CayTa8DhH9q4neebcIcvgSbrnzPxpsP2VA7nAg27Gi7tCWDC1ebW7RttgVfR/vKV76y3o5wcNDf\nb7v6hwo24/kDWflfcqfT1Ldxg656daK8yJcdHPDh2/J827xER+PAxp4udJu8ooN2Ac3kq4wMs231\n2gqlyaZMvqC+NvrKz/ppu/pI61fb0lleWf3i47m62kvpEqbVh4nndNOfXA7NDmqi50J90dofUmFt\nTdBGH/4nZhd2MEdJxQ5b2qIlous52ZPbc3NXMpCZrQW08LIG8VUHYWsbWtGIj3bak5c86O3b8Ckx\nDLR30HR4lpKf7zmUWkcduvHFn6zRh4f2LibmJQHenvEV9vrpJ4ZVeEnpwd+b0/GCQ5cf6UV2FwEO\n8F2waOug73JHO5h36YQfGr0JRj40XLo6rLu81Rbu1nxt8YUnf6ncnsBBXh2bWX/gxCb4GZcuic0t\nLhK0xZstwoKe7IImOfRBz+FdGT2yGx5wRJss8MlXyImuiI4Yj1M+pg5d9MVwr1wffOAfP7qLeOqr\nD376kyt59KlfeXXapZu+kwcbo00v/PiciBce+sEOJtpGl920Yzu+yf5sgMapQO50RA9uonUc9njx\nF/ykZCYnufCSeiZHbdEjJ5nooBz+bJg9o0NW44eMPjwkM1nRFPTlJ94QdFlEBjzDRxu0lBtvZMfD\nM4yzj7ygHG37I2//uQjEe47HdEHLxYT1zN5GdHHXBWk080u0YTgDHND3n8v9FJCf/XIRqe2V7QLO\nT/H4ffzeFswe5CkfvvjhpTx8Zpv4wg+OLnzn5aD5SiQPDMlqPNLJpV5fmyebgB9s8cA3n1bOX7VT\nV4y/VFs2Mnf40NbFszdtXZTBhE1d9Pp2DXxh2hhFn+/wL3M5G5Iju2Zv/BtzaJrzXGx74/L3v//9\n2cV26YQmu129enX9o1EXveYv/citH37wJDM91Yn48D+penLwVzo5R9HLHCviBW+4oiugcX5+vni7\nYHdpyofTs3b4y0vZzXnNb3L6x27w4ofsQ4enPvWpy0752aSB594/+Ll9n7cd0TXG2Nw/XH3c4x63\n5mK00MnP0CELPcnx9a9/ffkve9CJnzzrWc86c7npH0GhB6cw+uIXv3j2pS99adlbmXHvLct3v/vd\nCwN7NOUivumOr+A5f9NG8CwvLcDa/PblL3/57HOf+9wa0/5xlLMI+azZQjRK4xmdh5I2HvUt5C+e\n5dFP9trcbJqMN9MPT/bK9vUlk7F+//33r//rYExYi9n97msvRdjvs2my11d6qmzWH/kDgQOBA4H/\nNgKX/uIVAC0MJl0bBQu5w5MF3GZBWt6iZWPTZN9Ei4Z8z9E1sdvsWDgdsmx0bfJM5iZ4m6X6RENf\nZYXk61kar1l22fIt/MmbHulZekrXMLGBs8ihJS/Y+LX5Y7ObDfii6WDkkssmyobEBtFhmX0sykJy\nlJcm9yyTF9SJhfpLRYE/ODi88Y1vXJdyfKNQm56lk94sP/L/bp+Jx8Rb+d4u/Mch4POf//yK7G/T\naZPONg43NvsOPv6xlstXYx8dtLOJ1OHG4eTKdijkVw7w5guHCmPepat/1mXD7bDkwx1vun72s59d\nb5nwYfze/OY3nz3nOc/554XJ1KFN4tSxvLrGgzJjxbO5rMMYnqIydXhqR0fyd3FgLNAhmumrvbyo\nj1id8YIPemLjFQ38YKu/cr7vwCEvGtP6oCV9sDAxSdf6VJecngXPgueZX4Xbn7DwrD4687n87B99\ndTCFgVSb9KQf+kVtBRhEy3M8pROH2pTGE71CZT3DXVl9lMv3rK8DvgsG8528A6J+6qRsxnZsixZb\nZXe6Kcu/0pvu6KjT1lpnjqUPPi4wXKBY94wN4wQN9doZf8aLQymf1J8/5iP0QLtAH32TqwP/bE8X\n8tFRKjjU9mFDh1+H7dZ9B23rM/ouO0Ttwgw2yUtmeTzpTi/zhAO49URwIYefMQZfOJGbjsrRlycr\nTPBHh7z6OOiZW1w0uYRADz9YoCeGIczoN8fWEuLEn2yNDnqepflJ+CqvLDLTDsrwF2qXbKvw2p/8\nCn7qyciX8BTwEesr5X/a6ysKbJF+nvWBffOQeQ72/Jtd4a0PjPHTXrl9XH6hPx/lmz40M3/rj6YQ\nFmTN59iG/V1KyaMP+/xRHt8CezYH0605Am3P9MSPvPyeX0UTTzKiwTf5Bx/jKy5h9SGbfsaPix4X\n9fxFmXpjTQx/5WTERyQPjPEQyeIZ1uQjexevMIKdcn3x7K1nvmo9dDnogpL/wiQ9w8NzER3BM/no\n5xKt/y6OL3ldRtk3Xd0u1PDUT8z/0Kgs2rNMXrk21dORP+Ax56g+HII3PNjYpTLdHvWoRy3djF/4\noBWf8qvg2p/47dskS/X4kMHbrr5hww/JBr8+4PUVdXaFO73THQ12zofQhlny5Lvx0tYFqG/2/e53\nv1v/RNj8zH53bh88w9hbxd7y5BvXC+gJ+MSr1FjLb3yT0M8rebvW3sulL3+sLz3gy8b2S095ylOW\njfFGLz21R1c0Zi+2C1y0XZLRxZiwr9ffRSc90E0HtNgcveREU5l5Az0fjPM/NmATF9F33XXXko0d\nokUGNKJJJ/tFF5sub+lnDvCB+6te9ar1/wOMzeyS79mHfu1rX/vnh/XGJRu8853vXG/98j044zfl\nViYqyw6V0am5VV7gG2zu0hU/toHT67efPrPvtbYI0SqfjqvyIf5BY+IbVvvu8Sqd+u3bnnqu36m6\nG5Xph9cM+RRf8lMDfjbCXGTv7sWIq5svZX/9p37onCqb9I/8gcCBwIHAfxuBS3/x2qTdBGohtDjZ\n/Nno2pybeL29dv/2KZgNioW9zWsAtjDZhIkW2za1DkM26DbRApo2ODbONq941l99MsknV/lZZ5G4\nzCGdppzp0wKVPpXTx2ahzbwNlE2HepsYhyGHI4dkz/pH46FigZYFl41saPFrw8qu5L1ZmvFGu4gG\nWm2KPKvjHz5d9h9LfZLq4FbdKb76HOHmEIBjWJayc+XGoM36pz/96fVTAux0fn5+5veufI3R18Ic\neP7yl7+sS1JfOeJz9Z82YV9+5K00hxT+6tmhzIbbQcKliUsltneg87artxwutk2+AyR/8NaBt2O1\nMffwc3ONwwBfV27DT498ir/aPIuNB/XKzS0iWuY0OpI7HSYuDgLkNlfhoW1jwcEDbWMEbe3oZvwo\nw4OM8mjSXSRj9fqb59AV1JsTbfSlLqRFcyQegrbJSCb6C+SiUzTJoW5GNOg653PP9Eu2RWz7Q051\n+ksFqXIhmdHCV5oM/MjhTwrj7BOe9FEWrUVw+0PmgjryivJiPGsDB1gqJ5v+YaKMTMrR0Fb0LAqe\nk5lfu0yQsq2ARv3kWwNhrB9sYGeukuKvjUgugdyzDB1Bf7zM3Xzfeip6Jjd7RNt872DDL6yf5EeT\nHOQT6KgPjEXtpGQiQ7prSzb8k0tZuKE9ccHDOCKXVL0xizY5lZObv0eHHOTBh44uTRy+pTBWzgfQ\noaOAJznJbRyp00a5cWRfgA+fsg72lV9fUXWRZb7AV3v+yP/I2iWxPmGRjvjKC/oJ+7p8CFZ0lGqD\nlphvsSu9si9dwh1tdeEt9Syq40fwpzs8YKs8PvEgn3IxPqXxSx9tyY4Hu5mnzZv2WPTQj/zZnUyw\nbc5Uj6/AhnxUX3S0UUdWtuqiVd48aDw0JtgknOgpT1YBD7ZiX/ZClxwC+uQna/OIMvLCR8qH9bMm\niGREg874GC/kIJdLJm+7Wo/kyaW/9vgb8/iRMXvgIajjtz4A4O9kDneywdUHC10I4tebrd7GdCGI\nL5+GD7nwZyt00CY7WniHI97GH/mMHRdz1l4XYH7+Q38Xnv65jQ8nvc2IB/31Q5tOcCvqo16dNuXz\nK+3Zm537SjlsjT36w0Jb2FibrOEuk0WyKMMremyNp+cZlJ0KtVMPa9iaO8gAJzIbJ/h0qS3PB2Ga\nb6GNlmdp9lI+23iewUslMPa2qzc72eX8/HztSf2WpT0QftkPbbKmY8/SGeIJb/jC1lu19lD4uOCm\nH5/Ult/C1D8pzZfMc8rjjT4+bAYrOJH/Yts/oeeZX/Idfey76OAtVXSNI7yyBYxE/o0e3dndBwq+\n2eRtY3l9yMbvfGMJJnw2OuQKDz7tUtnX+P1PALLAwHysvw/WpcYFuvjzM292+xCeHeBlPPvQxP8a\n8A0o46p5Ej99C2FPBvR6Vq8sOSs3h9j3+pkBl4rq/ayWS0VvvvI3ofbr4dqfaM2yB8ujE63kIafQ\nc/XK5Cv3vG+r7OEIkyd+PUuNO77qn+r6yQG+5SfhXv3qV6/LcLZhj1Mh+U/VHWUHAgcCBwK3AoFL\ne/FqgpyTpMlXqNziJm/it6D6lNDXnvxougXZpnn20d4GzSLrEGUBk1qkbT7lbTRN6hY/G1cbhrmx\n3RtkLkDxSkZpi9K+3+1+Tm7yycOxsH9WXnsbDpsSh2+HS9GGE6Y2MDZINnHwl7YxnvTjc6M0fqXa\nZvfS+mtTkGfnufFR14ZePppStCYG1fEDF202Yi5ebaTre0oX/Y5wcwhMO8rDsDHt2eHGxvOTn/zk\n2oiyiU+1XbzaYPM9H7b4oMWn3/LG/LTPzKPvoODNVYeHDmcOor11hD+fdaj82Mc+dnbfffetw7BD\n3DOf+cy10dbPAdwhwtsh3ppwIOBjxod5pfkEvQ4ONuzmFgcTBw/tlal3wKGfzaL++vFLbdXJq3e5\nYKzJK+vyxfwnaksGB15Rnj7GpQOEPqK5rgM3ORxqyCGPp+DAqp0Ia5vZ8+3Qh646bfVBH80puzIH\ndDJpZ96lc3MuPTqwaWu+FdEx1vDUBw540dczHlJ6SdGTF5q36YkvbLtEkJKHD6BRf1iiIWYzcuEr\nhEX81SUXWfEU5fO18tkLXQEOdMG/NYgceMCRzC5eyNrFAvuSWXtt5fER8dEXfmRQDzvzsTmanMmi\nX7jpAws4wRxf/NNFnhzwy5+m3VweGi9sBKfshx55yYYXvVtb5ekQduFhvOKhD1owg5FIHvTyMfiF\ngbx++pCNftq6oHGYppd+2tA3jOnF19MbHRjhx7b4F9D0zF7k57MCvOiKVjaFu8sslwkOgC7VOvzD\n0VxGBmOnt2dhgW986OZ5YqAsu5ETb7TmpSW5zWvawgMfNoEH/dFXLoWzenUietpqJ0SLnHSiN/3D\nWh4O2VZ7MpNNGzZjU7iIUzf01fNv+yqXdfZY2k/ba0cmuJEPXXzhZh5ib3qoZ0c01ZN5XoCRn8+R\nV59kDQuyFdET8MIzP+Ir5GMTdWye79BZQCPM6eYSgH+QC09yu1w1ZqTGJz3sodSRk0zaG5fmarZB\nH90wlMIUbTxgx9f1yQ+l+isXjQEfCvj9Q7996DL0fJvD+Qud0KQ7XjDnW9Y0F1vy6skK1zA3N/E/\nl2r5IYzgjL711QcQ9A03ctAlffgMndGkK1ylMICzqC59yIIve8y26MGYfC4Crc0u3uQbg/HKVvgK\nldOxiGf18cePrr5ZI/Jd8vE3fOwlrmxvoLIlP2scLybjD3oCXjPAfvL3DC/Yuujzhii+7GqOcant\ng+LzzY7mGPNDtCddNPflnmGGB2xhah/jEvNPf/rTP39/lR3055vw9GGzSE925cPNu2iiRWa+yFbo\neRPVnowexgz/gjkd2Mlvw6KJPt+BO55k409oOUN0eSv1LMICT/KZc/k3vzvfMFHG78gVrnChtw9r\n4Pnd7353/X4/mbUzHu7c3l59/fZW6ROe8IS1tpGBrbW3D2QL4xtNGHgL1T/XcnnM//IbvLRBd4bK\nTpXXDu72nv5ZrH+sRV6X0v7XhLd54QZDYU9HGR43EyaN8vQoH60b0a3tjdpE52ZSdMOsfpWxpQ98\n/G8Hb706b/IDbyx7g9p+Pf+sr/S/JevkceQPBA4EDgQeDIFLffFqEbbQ3GjCtAmyINosunQ1EVvs\n9bWI6G9zYjF2WOwA6LmNeQd9bS3GNrc2tja4NgxozYUleYCrvLq5UGgz2z2YIW5lfTLTq1CZZ7jB\nx+JlI2OTaXNShFcHvXSHm42cjZHNnE1DG+h43Ewa3VMYqlOefdlNzJ7srU0bOIc0m5qCumhE37Mg\n1d/XemzEbA5tcLWrT3RK69vzkT44AvAMe63DsHIHc+P5U5/61PIrtnV49IaE3xVjI18185MA/mED\nG0cHrXxCO37MZ8+3jTkaLtMdDudX9IwFm3l++4c//GG9cWBOUebwyQ8ceBzoHC4cLLwd4vf0HBrx\nFB0i0NUHTz6oXtp4cFgUKst3XWjo47kNcHLpW6jM3BR9/q3cuHTxxmfRwbvLJv1dUqgXjXG4Ga/m\nvOTLFlJt6HK+YefQZD6AiYORC4r60QltcqNDHrKxp7LsQC7zCJzQd7CFJ9zpo3zOLx1k2V85PiKb\n0kFKxvSkK9msCV1ihJ3+ZCGX+Uq5Z3KTqXkOL3KHafy0g2n9HSjJry1d1HWwRZc90SWfOmlzKhy1\noTN5RTK5+CmSTz/y4M2+6RI9/MgTP3SnD8EPTxENOrmU6eIEX/2F5ERL1AdvNtE3HDxrqx+M2c+a\nC3vyaJfuMGVzMvEBONGD3rBLR7z0wY9/ocuGMGZb8kzfIG+Yy2vDF61B+tYPfXLSm2xsFXbJol47\ncs2gft8ejWxQW7LRzWVabxXSGUZsChc8YCDCR51+ZKF7ddkaPe2Us+H/Y+9udiS5igWO8yg1D8G+\ndBewQiz4xmAPXLDZ+E1ggfiSEEjmWzYGb1iwQeo9L9GPcs8v3X+Im1TNjD3dQ9vKI+VkVuY58R1x\nIqKyeuAkZ29siTneusUT+/LTWHPQRg7x77mBDwMveGRf6Cp+gG09+WsOOsDN3s211mf3xQMxDq3o\np6/0GWwwPct+XHtGPxoaeHAGF26yiEaw8OGMXjDg04Q4rTjE7+EEDx7y0/jSAEEf2VtDxuTonLzh\nSe/ZA7zd4w9sWf5XTLLWIAfx0pHs6NUR/2wQ7dawB/sF/aBf/HQPjfkUuViLF3qD33q0OQxzDPpk\nA2jjv+jjQ2REBg60gOO+a/Gghqh9U7OQTVlDdnDjC1460WDSOCMDukmerrMt/Fs7dcY2vHHqJ/7t\nLWi2LtniBw8O+nOgk6+iAb3gOgzz07FrsBwGmA6yQeOT1RQkX2/jJ2/36T86rTO/OIbm7MKzaHUN\nH5ncrjc2a0qSj3vszJfA5/N5a/rhG8/pyXpj0jo/u0a75/SQ/6QHfiG/8LarfNo8fH32s5/dvgDW\nWMIDGMGNx4nTtYO8s7H8ymd4fHGs2Q6fz3yRbWou0qV8Cd7JI9nQFVmwNTYvxrEZL8B4Q9SfYhC/\n0yX67AXeKAVToxR89mngJZnjWe7lzU/xjg7EO3ZCxmjRaNO09WcdHPRPJvDEN7hgsjE2Cw6Z+rIe\nbPDMFTvkd162AItdoF1e6a1KTT56MvgOP/KrK3+iij+Zb4DVMB9P6dn9+bm53SNPsvOf1fkPZf39\nWrFCw1WDF33JCqzWu26A9VFGMKLR5+wofoM5P3cPrnn9UXA/ay46ouWSHD1LN/TDRsRZbx97QYJt\n8MdJmzVzzGfz/nF9SOCQwCGBh5bAo228YlywFCALvgmjoOm+DdK3hN568/emfDsskbEZVqgpKGwo\nkorgFYjdk5w529StlUzY/BWokpY9fmtbjyYwoyka93O6/9jO0e2cjCTwvtU+rSJHYmEjcy2RNZKP\nho2ESAImuaELhZWGjMSO3F5moCk5z2swfS6JVmhJ6iRQDvq0Dj010NEXrElTcEs4PGM3/nMtP+/x\nRoPPjWswen6cX0wCybFzq3xmNxIr/7GWg0/yYW8XeNNAwi2h5u8ar74g8ZkuHRJwdpBNsGWFrzcG\nJNZs2jM6T//8nF0rGCRz/vMFdo0WdgZ/P7Fm84pea4x4AI8tPllFwGn5y8TRPPAUe+JNB3o1Chyu\ni0mu0ScpZ7/ocSieyMQAD+9ogB9ssc8x11rjOVuWwPNx9ONFkSNuKqDAM8CBX5GpCFMEWOseOZG5\nNw1qtsHlaC0ezAUn+biGV1JcQwlfvaGFz+BY0zowa6DQhTk+gwUOubkn5uBTsYc399CcHeDbM7Rr\n7MdvOMGiY7yiXyFswBMOjQAy0wChi/QQjOj2Gb/ohJf9+EwH7uED7+jNjsiL/TjMAavCtQKyuIoe\nMNFmnueGdfCQJR7MCb/PdEdv9kx7XPDTDVmJ89a4Rkt40Gw+uaAD/2RIHuIsfrIfuMiT/dA3eq1H\nZ+vNJz+4zeWz9OU5+TqaQ25goMvZZwPM4JJlPoL//CLdoAkOjUN4wIDLnsUm0BL9rZmfN4S7f6aN\ngjd1TBfkBUb6MX/CjC8yJysyxx9bsB7N1uBLY4TuyBxcuNirhqRrzYXkZn54rI9OfLl2bvQZLrqK\nhuhm81NP2UawPMv36GDaKHk7oq8GDTqz+2iJxujqTEZkoeHijWL+6R5c9Ifu7JQdmRtMZ/bhHpma\nay37QGf2b5576OotO7TizXrx1Nka8iDfbCw7Q288wINv+mFvvelKx2xv2ix9skHnmrrhNa8DrXIa\ne082kI7zc7RMGPiiT3ueLxtrSiQ/8QAs/ODb/id/Sy54AgNf1jTi0+ee4RmunrFjn/FsLbnhU7xw\nbR48wQ+2z45gz+tge0Yu9Ip3uFzTE/skbz4FrzXkQlbR6Jl15pvjOZlHC7vSSJSHOMgUHDhOa2/X\nPJSLkKlGL/vL95NTukFnAwwHPJ6zITogE/HYvqTxLbdGDxvi35p9mpV+eWJYP+USzvA4gw8Gmxbf\n8EO3ZF+MFVM8Y1fm8i38aIpquHozlf0a6AbTenu2N1rlDmgGp32ALZHnHGgF29/o95N5/Ggg81e0\ngyvWaz7erD8Z5wUactAcRRfcdCcG+ALclwloPC1doM8+CE4yiXd8iZlsG41kbK9CPz8iB3agaQ82\ne7WWrHr7G0yw0QAXvWvweUtWbkTvhnnWmmdEj3sO8zybz7eJ6x+0vP/++5/53e9+tzVdze1PDHhR\nIB9qfjD67Bzv896zricMa33ujF6jz+Kewf6nPSeXj4p7A3blH3Q4wEYH2MGPZrrxH+p6O5id8BON\nV397WI4vBljfaF2fg9fn43xI4JDAIYFXJYFH23idwTdhCMIFZPdsmjZV30j7pvCf//zntqHatGyk\nNivJtuTKuUAu2SvRAtOG7hCMJUI2extzxYG5Be4Cdp+jrft93j/v/mM7z42TnCRHkgnfIEpsJJbe\n4lFASG4kVWTuG3J/F0oBT06KIAmZQ6LkaPP+qDzvZdn6KVN007NCkZ4lRA4bsMSAjiWZt+tbbkms\nBMz6YAcr/sPhs6Tdz3s0XzXrJPX7dc137tm8d1xfl0CynzOmDNmStxL8hwaSK/MVqxJQx5PV2DTn\n73//+/ZTsIoi8Pgx32ezbNjbW2ya/VrnrEgyL3vg32yYXXsTQizxP9+y4TnYG9vSMNjzgH7+0dsY\nzuzSPc/gKH5ZLx4p/tivORLaYpSzew72yJYVJTUoxSew8gE0dRTLimd4gA9+9LNlhYbn4HiLR9zE\nt8LEPHGADMnNwR+SmeeKBOsq0qMleVqvgLEGX+jvGbz4c5CLGM5PyV/sMJLttAn8weMwPDOPDMCS\naCvi4MIzXt0TyxSS+MA7OaLd28q3KzaY3yAXNqNJDyY48NIDeOSoIFNoKpbJwrhEL/qin/zIBDz8\nOqz1ufX4YOMaJGy0ghRONGsCkZG1aKlBVsFvnmf2L3jxlR7YIdjuKToVzM7mN6wxX/xErzPfEVOz\nUbJHBzuhMzGV76GPPMBPJvihe/SRIV49Qx9ajfTpbA78fEKRB6a56TsZm+dAb/fgcpCLM/gVivC4\nR5/8n1+yBZ/BRj97Jg9F+cQ5cYDzvBE95lnriK70HT/Bah7eyZuuXE//RSPdO8g4POzSHq2BAU55\niwYI/aQLuFpjXjSE2xk+NkLXbI+MyUKcdcZHh/no8Mw9eMjbvWDTBd2TNZgG2xHDyhGsNaJtf709\nvPvHXDHFF6HkBH75hiloJjc2hz40RWfXdG4O3tg+m2VnyclZfkPOaI1vcAw04I8tx2c8+DznZfto\nxj+75ktkQm/m8x+NyHJN+mO76IADbLSi20FOeEZ7PG2ErX/goT96AAfthjXgoIH92xfNdQ8utmW+\nM3r4gmv40wtZo7fP+HT0eUO0/nGPHUUbPPwNXnPFDY01tgm++eAmwwkH34bnHT5b05nO2QK+yQTv\neEID3A54yQI+dIFLF+KbeA93tmxtuNg2O5ATsBH3DXsIn/Pmprde7ZPwoIFe2Vf+sy24+wfdDvQ4\nwEOvpje5yKM7yAh++5b809uO8h54iwt4AWfC3eODg07FNnuW5iO7Bjv795nNG2Rp/zutZqZmL9z9\nvUy4yInPiJNo1fDSAAObrMA0x1yDbNGHDmey0nj1c35foLANesgWwfW2rC++5X3kk9zNsZ9rPjvU\nJexKfCH7fB9e+OkcrWiz1zvzHXSgkT3gne1ni+zc8Bk/fCGbcN9a9PrTBt6O9bN2PLUOjXDHr/kO\n9xye74e5nvn1lpcMPvjgg41ONvX2229/5mtf+9rGJ70b5u4HHB93sCNj+tvkgxzZi7OYxrbFopfB\n+Txap7ymLK3rmbdcNef9eUFfjLAB9Zo3hPklPSX7zhPvQ9I/8RzXhwQOCRwS2Evg0TZeJ6H7zcZm\noZkm4PpplMarRMDmYAORACleFZASJUHZ2dEGBoYN2MYKvgBvw7XJ2JB9C2zzbeOdNFwK5JPex37d\npjN5koT2052aVhIviYWk3RoJ+e1qVki2/PyG/DUxSpDI0AA32OHq/jbhGf+UnEwY++nmSALoWTIm\nkVawSlZce84WJPjolXBKQOcAH22OiQtcCZ1vT/25gX7WNemacFxPHvfPjs//lkA20Z0pt565R1/+\nrpb/4Epz3z1+Sy8KAkkVH/VM4cqP+b3CVpEiMZfUs112wX75voRRkkyXYPJ36/38THIuhih6HLPY\nmnRGewUWG1RM91YovPxHwcIe4bUejWAqtNil9QorNNcIzcbMj8bslI8pTLJlvEze2C0ZkUNro7XP\nnjnAVHDwDb6s6eoajfxJ8UXO5MefxE/w+Tc/QoOfwpGbnyqizTBH8SZukEFNO/j4I/6td8CV3tCN\nRnDo1Tzxma7wKdn3TENJXHZdrIFToxTNydI6a3w+rSISH3SBBrr1HzP4cxIKR/cM8zV1/C/RdEgO\naAKLPuwLCmQ2p1GNBzQ2B9+zYQom2ukWbLyyNfsWGir2yMbBTrwFpKgTh9FrDp59yUXOGjTopRNx\niT+4plNFL50qoq0jFzArSt3TNO7LMkUoGaLfHPZLXvMgN/fZKplbL+bjXzGvsE3+7bXgkRe5WYc2\nOrNP0C06Gvg2l/7Ryo/Iy8ALXsFxoBUNbMP99A8G/0Yr2snaPfIwwAbXc40LfgknOdEHmuxrYNJx\nDSj6hQssMIod1uLJfDpFh88Ge+jwGS3sSIygdw1vdIHpMIodbJis8QIG2vgZOaMVHvetg4+8FZga\nMuIIuHiJbrJCt3VijtihiQRWMmdj8LJb9ote+osHuKynY/dqumhisEvPGmCSUXFRbAJTrLZeLsUG\n8IM2841g0DF6ux/u5OQ++k7Ln8nUXLZEB0ZrySYY7pMLndLl9Au6RpNzA++GedkpWNHoWbDnPevg\npWd8oxPPaHLfmV3TL9rJUlOHT9MJW0rmcESHtQ6jM/zkzGcdcDnQS//g0nFyIT9rrIdb3KBz9MCT\n3ZODNfRKLuJD9m09OPCwNevpFl/5pPlyZXPdF5fwa75r9qy5ZK9hjwaY8QUe3+TD5oPB3sSc27U3\n4Qs9aCZbMVrzzhdVYofnDrqObryB4R75sDFzyYHfmYeW1qXT+KUT63z2DL3W8Tt5BlrR75l5znSD\nFzzwBQecDjI3j6zkAHxBziEu8Cn7C3rD2X7grVOx67RsHxx48Ma2wWLbzu47skd0g4c/MgQfv9bS\nVevM08AEn32IlT7zXfziMV0Ux3zp6hps8OAlHwd4DoPMxTR24KBj9gM+edCzNWyWLOQU9hj2CGbD\nPHL1pjHZ2/vEQPKlR3aIDrJzLr+Rp9g/0U9f3ob0tiw/5S/iItnbk/ESzinH7ACd6GB73tr90pe+\ntNGCj/h1TgbR7uxeMJuLVnbgJQN/dxbv4je+vvGNb2x/s1QeReetAWeO7s97L3odTWAUc/DqmrzY\npz2InZEd/aFNHMhv9/SE+2XoAiO4zmAFr/vs+R//+MfWePVrV/R88Ytf3Go2e6LY417rW3eNvub1\n/DgfEjgkcEjgoSTwqBuvBUMblk1KAmVzlMDbUBWAEgAFqc3XEGxthDYIhYVNwmcbfUmd5AjMEhDn\nEvSSVwmxBBTcfdBOGdfu9/yxntvIyMCQHEm4NKz8vEhSQ14lXZIgMrbZSRIVDJIkSbqEZy+H+Xm/\nYT5PJvv50Tph0rEiR+FRU81nB117Tm/sBd0STklmI1iXcIEhOfPtqW+1JYoS/f3cYDn3bN47rj+U\nQLLey+OazNikJqhE9Pe///1mYyWFdEPf1vJXOpUoSr7pzFsofoamcaW4krDSHfsGAy3WOqyTXN6s\nn7W99957WxOOrYAr1nge7a1hV2D2s00JuJjCT8QZ9qhYEXdcw20NOGAqPiuwwNGg1DCMp72Mwo92\ntuzPAfA/RRa8Ck8FBFjwmIfW+Jzw3PM8WOjoTVcFlPv8XuMRXM0YcBUa5BcfCraalxLfioV0IH4o\nGMkIbe7DLcaKrcUQ12glK4WeospcsUZMMeCE2yA7RTt8Yr454rhmKZz0j2b+T+5opxNHfNCtN2r8\nT7jeaPbWBL4VFJJ1TU+8Rwv8DrFEgQSv//DNoSHAVvFojWJQkaTghp/cnNksHqzX6FVkWU8e+Ief\nDfgP487n8waLbskCveSlSYxv9ooXdqd4ZD9sBwz2RSYOdMFPPnCDo8BU0N4se/fzUPPQpqAnP2d8\n8xsw2TRc5pCBvZC9eBuJ3hXKYHvz6H/WTy7Jz1pz0eOMP/PQDi/8bDcbNU98jRd7Dpzshf+ZBwdY\nPqeD3rJiF/0Mlx3QI57JwmgtHtiZA3xxQw6hINcUxis+5AwGebHD4Ljn2n1+2F5CR+wtX590ozn/\nZz++qKR3tNM9O6E/ey5fUSiCBQ/fYOu+UBYL4TSSB1tnL2Idm7MOTDQ7XJMt2zfojs7Jf/5HPeIk\nvdv78U5eRrEPDAf+8EBW6GHDvrwwz6B3sIob2Q+5kpGYQdbZAJtogF2zhy/RlYFXfLAXB77AQSMd\n52PmknX2Bh++s1u45Ixod20dPOCACbbBLsgRbLA8d+DROv5eY4ye8ShugYV/ax145nt80Np80X17\nA7o0hehBw4BekiNZs4t0Am70RBP68QiOZ9awR/sCGwM3nuAmR3Pol47YObrRY7057BqMGvQaLuTF\nbjxHEztjd9bzs3zd2vST3YFLPtbRr/tyRm/ziWXsmwzRxf/ZsfgBBxnhj73xUV8UsVtyogfyRoP5\nGqCn1SwkC8/IVeNKnLRfyOHxEj7+X/MIX/mFuM4WDHSRWcO1e+ROv2IUGOg24AEHfnyyGY1FBxln\nF+yLDs2TZ5Avm3KNZvjxzBbMIzt82pPFZXzTIXhoIvf4dXZYK36ggfwdaKdbOOjXPH4kpjhckzcc\n7dlopUNw6AhMMs2P0Ow6nHA0khf67VOnpR+w0UKGYLEXckAT3aDBAQdZ4i2Y4KEF/+TuT2WkQ3SS\nGRhoogs0gZ89T3jWaZj6UwGu4WOX4izfsY5dGGilQ7GJP7M/PKOfvdGNGsHfXzWPrBpoR3ey6PM8\no5Pd+VNZfmGFDrDlX/7EgNoDbrjooJFcfAb/ZceEFyx6sdeL82iUj8it5Qlix6Tp0npw7oM2cMB3\nTHm6Vnvag7yg4U+OsWX//4OXZcQTORW7NvcSjXv6wgHnMQ4JHBI4JPCQEnjUjdcYt4lKoGx+En8F\nrMafYlIBWWAVTCXdNv0Sj5IfCYxkSfJiI7dhC9Y2W+cSARu4hEjSZmM2z5gBfB+0o7Nz9PT5MZ0n\n7dEpyZD0ah5IriUSNi3JELnY5G5XA8DhWgIiUZQozBHs4Pbs2v2eP+vcWnPA9Vkigj46ltiXJEpY\nXVf4SOAkEbNBPGkDa8KXPEnwNAJs4H4WpZkDntHcPYzt4fHPVQlMeXU9k8m5kL9JgjVe//znP2/J\ndHqyxnrJsbPDPcmqv+30uc99bmvE8H+2MHGEN1x8XpHq513+ZEFJtefwmc/GFDoKthqqEk9JtwKA\nbVTAwufgS+zFdYMdKgDEFM0+uDRa+JtiB4xGdDp3bb3Yp2nIB9HFT739wV7hTEbBcZ4wXJOb4kSS\n73/rlVyLq+xe00RyraCVtIqjyTvY1qNF7KUjBYtYLIaKH9ZrJLlGFzrJIdyKTQ0lhbTYKhaTo4Nc\n+a6YUvEDf7rw5oU3pmpWiPsKO8m2guC0Crypi4rG5CFeaRj7hYRGIB4UymjVKK5xqrCehQUa7D+a\n077ssx794gr6Ff/04K0kdmdt+se79Q5yVij4aRx7wyf5aIb4yaJDI46t0ac15IpmxRm5kSM+4WTz\nCloyS0bkVrMHbod7ClN6ulnNT40PehA7waAztLNHOgcvG0aDYQ/QOPPTPo1XTR7PyM1/MiJOkmNy\nQ09DgUlv/habxqNYbC088CuCa7rQn2etd/bZgQ9+U0OS/tCryKoBqRnUXLJiA2A44yl9kCnb5U/0\nyJ/9RJEN0h0ZOsAwnMUljQt61ABW9LOVvngB20BnNDuDw340+h0K2Xj3N6s12dgRXuBmp2yNjSjI\n5Tt8DizyJfPPf/7zm97EDnrEXzTnP+iBx8iO+Dxd4FnDmtzFEXEs3eEVD0byQlfyFzM00PyP0nCx\nQT7PjtglXsg6GwKHryvi2Q65+4xmc63F04wZdIYO8NHOfsVP+Z647bl9n76dwUIrOvFR7ocG8U4D\nT/xk9+bjGW5wxACDL858AiwwyRVe9s/vfWEFLpo1+8XK/B4M64z0AEf00jF4Grj0oGmgEW8u3Ogi\nD/mH2JZNZE/goAm/8cwu8SVG+Hl2jX1zyRBcsT16wUUv+wUDbj6afMVZ9PlM1vY/toI2tspH+Ck+\n0QW/Y/KbLsiD3YBF7+zGvsF/wAVP3PPTc00msY/+DDbC18VMzVc5ObmjxXy2hhe0wBcdfMVaey3/\ntt+yIfs3GxNv2Sy90yscYnp62JCvf9ChOecgL/TyJzIj1/xULMGPXNl9crf34UdsAMc9z9mxGML/\n0IhW9mCQJ3mRAfr4JFzmiB/Ww89+wbQOX2IzWlwHC61iU3HFfbqE02FNMNHGztCKV3SQjSOdom/K\nGC3gkB/cdBzvdIR3sYXdqbvIw3pyErfpU+5lPTqiGx7rzUcP2yUT9PF1smG3aIQPz2xLvASLbNGD\nbjCDS15g8lcx174DnjXs8mbti+gxH1w42JZ9wZkOzDPHdTr+9re//Zn/Xf8BLx7Rae0c5rnncE1O\naORj7I1tg8uG6BVtGq6+yAQTn9Z9nBHOzmBMWnwOdvfdow851t/+9rftzFbQ9eUvf3mLTfKE6LJu\njuDNey97TWYG2BM+H+K7Yp59RcySw9nHNdfFCX5wbUxY1+Yc9w8JHBI4JPAQEnjUjVeB3WZos5a4\nO0rCJAaeF5Bt7CVLNlUJmYTJhmvD1nT1WfIicRC4NVlthCUkElD3Jeue9fbQFDx84e3+Poh77vhv\njknTpOXSfbKTmNrsJV9kJ5GVrJEPeUiaJDqGhNuG6KAfic7kORzh3X9+WbmAZ/OXrDgkShIfupW4\nOcMtCUO/pB3t0dMZH2DhX5ILlqazgsAfz5dw+FyiZ77Retfx5voYlyWQvMjKtaPrvfzYnSaRxM+h\ngGJjdMQf+S67a73iQlLokHiVbIUj+OEFg13frgamN/d+9atfbYUrvObCw4bECv6gsHYoOOHqjRfX\n4s20iXCRAnxgii2SQgWgQ+OJrSlkaxihOXqd9+sV+2KfJoy4p1Gp0WE9X40G6yYN5BQ8fCvQJfoS\na81HTSS2rXGoaQ2mhJU/Bct6/p0vKVbopDd3xUwFEtl7Y7RiGE3xRH/kQK+abxJmMtAM4GMKInHa\n/NbAH276Iju0K1gUsGK8hqsiBU7FGd47rIeXvYhfipvZNKVfjU4FIvwKXXwnS7jpT+FBTvAq5O1F\n7omXGiTod7Y+2qOhGBnvdFgTlY1ZJ85oHqOBPRngoFujkc5vVmHIbmrW45ttinMNawy4o4PeyArN\nijzNHrZI1tFOb2JcfAfD2XpxP715U1jT3kCvt33QT47REn6yV6TCT+6atpou4jH87EzThc1oiNAn\nmyCzaImn5EGHbAcN7M5epXHLl6YfoAH+9IBeMPiO/V3zmS7Ihe0q1PwtPT6NhvBab4Bl/2D3Gnhw\na47wQzTMmGP+XKeQZT9kp3BHg8YEutk//GKOkbw1SDWq0cnfwGNvdOV/0mZzZMbmL43o98xadqw5\nQf9g0gtY4NjryM4ac+fa1uMfDHzQJdqc+RD9iR1iiDjJrg1w6JKsNJsVyOItGeDztL5AgF/THg1s\n0P6bLKKDH7Ah8VrD37U5GjN8jlzEMDZDd+yQHznc15iRM4odZEDHviwQM8zJR8H0WQzAQzpEq8Yt\n2+VDZMAP6aEvLKyzvjX4t85n9+FAl89ihyaupjqfwBOcGq7kyC7IMbuwJlkk1/CAy774w5/+9KcN\nnqaO52CyTTZGN/wVXH6GpnIa9PSiAftmb2DCiQZy4t+npS97nzxr0mEefNHUZ/bCZ+jLXsFexE9x\njLzAtN+c11v+9Eg+7Eysp7Pp62CwDbSQucYZXvI79JAFGuCVu4vXbB1PaNZEE+vZGruFSyxij74Q\nKdcAB33wsE8NXvGqxhrf6Qsge5l9iY0a7I89ok+Dl195hh/z4Jp5qDX4Rg9+yEGekf7FarbCfl2j\njd7Qw/eLVe7TabYPLztHi/v2bjTQLfmLgeQEFtzg8SfryIXP4pMu8a1+4p/m+ownsHwRyfbkFmTv\nGfnyL7mJPQoN5AkWO+gLArYQDmvRzq/sC2yDrtkqO0YnGObwKzZLx+CRqS9E2Ag5FAfMr4lNng5f\nVKGJ3YCBfjqUC7E7dFinYcxfTsvm4RQ3xA86xCscaPX/QDx9+vRf8+gz+59nNIMv/7KX9qU12aGZ\nn7I1e6l4ygbQ0ug6mN2/djbPsK5rn7sO3pyT75GlX5rREztgx1/4whc2ndINP2x/tr4xYXbvPs7o\nAnuPk03bi8XRv/zlL5sd2Ff9uQFxlP7YnrGXQ3Q9FM3BP86HBA4JHBK4JIFH3Xi1KUlU/JTAZmCT\nFHALpM4OCYgkUeJiE5NESDxsjhIGn22oJUG3K4mXkDlLSCQiDrANSYnNEv79sAG0gXl2KXh7Pufs\nYbyKz5OuPS09cz9+kiNZuk4G5rhHfhI0yZdEyHPJBLlJYMlq4gFjfn4IniV69C7BckjUJFWSNUPi\nIEGkazROelzjHW/gWOvAo+RMQSgJYj8Vk/Ew4STLnh3n6xKYcnPtIL+SKkmWQWcSXQWRopff8k1N\nIHrUvLDOoXh74403tmSLrowJu89gS5oVHhoukm4NSAWhARY9VwRpqigiKjrFE0kne2H/aLbGCF98\n+IxGxYDGmUaKAkHBxjYl9hV1Yhb7s8b6YDnjVeGlaUMefE0BgWfNOsUkWtDROtd9jjYFjsJN4+MP\nf/jDVsiRqbUaOK+//vr2Fp1rPM5BbhqHihwFoMYXv3JfUaIBhR9vIflyS5xILuEXJ7wp5y05zQa0\nwKVx5w0PjTOFJB6i3TUZkoHGDX2Rhc90pLj1c2uFQcWANXPQN1xkp/FT449Oe8tUYa3g3NMc3wol\nBTwYmiTi3mkVZGIDHWhssI3kP22gggvvCgT2xvbAUAT6qaKihq0VY9AhlvIB6+DGtzincXBejQp6\nJ4Pk2xo0KLSjpeJSU4Hu0S+2+SmjxhEZipuT9xnHNaxvVtNXYWM9OzCXzX73u9/dfhVA/tkgmUUL\n3JpU7J6P8QP3NG/Yi2aQBnL2n9ym/vCBHnagOaTxpaGiMWRP1zwGwzUa4psMrDPiDW2Kdb5IHmzZ\nHDKgA8UaGU/5WeuAn+zYD/zw0AEeNAj2DdDoRqeinQzZD3x0rbmm0Wa/Ab/55Av+u+++u9GIXs/o\niL1pDsMpr+F7hufB8Lnryb+4Qf6KaWf0+sKCLbFDsMynA2cwHA2yI388eLtI01r8QBP/BYc/p4Po\n4PeKY/YjhonlfBL9fKe/kahAtrYRTz67Fm804qxnQ/QkDp6WH/IDMce8SbvP+CFDdNtL5AGK8+98\n5ztbXBeLk1fzo8EZPPuOGMBuyA794hUfokuxu7nOcAbT5+QIPjm2t7FBMQ08TQI26AsA9O3t11qH\n+4ZrtNGBZo63o9kMm2ar7IWPpWPxjq2hLTpct158pSfyIWs5FNmycXDsq/i0phGP6DDyG5/hYMu3\nK78WuzRznOGjaz5nDxM7fQaXbOBGBzsV9zSR3ZfT+6KgmGHPQU+yjSZz5QgaWtaLF3yQbZ6XjfK7\n5GsuvH0Z6csEe4S9kn794smvaMignBhf9MWn1ST20hqvYIltcGj+WOcev2E/7I8N1dRGOx7YEHk4\nxBKypj97hNip5hF72b6BFnPgolN7H/u3h5El33CPjzv4vjhMJuggU/sSXszTTCMfMrUH0REayYd/\nuC9GoA1Oc+zBbI282J756DKHT4tT5FwuABd+8OALArImN/fZi7XoON/piM3BJSZ4xrbIMr/Ak32U\nXdlbyEisMcjUfgA/vxKj7HngsWt8yQk0funEl1HyMvDFQXqwz5IJfGzYPiwuiz1ohsM8b7zSNXzZ\nv+dgOTf4Al2SF7uxl/BTa8RCf8+VvdlL0Wi0np1MX7PmRQcY1uajwWp9OHymQ3Hgxz/+8UYjXxQ3\nxCU8RhveGtbPz92/z3N+ivY5+Cnd2IvEPjFeHmY/ktuUWySvyWtw9jC7f5wPCRwSOCTwkBJ41I1X\nQdeGIHF/5513tsTFPQFTwJcESC4kG5IOG6BCTmLiW0ObmnuSEgm0JqsGguTOxi8RkBjZBEsYE/YM\nyjNov+hGY81cF9xXdY7+59EgscF7mzP6WuvaxkW+5CkBLlGWhGhiKSTI8JL8nocb/I870Ej/dCup\ncth4Ja1sgp5K/iUUEmw0xhvazMG/BNF6ayWz7EfR4lt71xKy1qF38jXvf1xePu3ryKsDr2RG9t3z\n2ZF+JPaKXI0qvioGSLYlyHxYcWA+fSmAve0qWa649MzIJhUaEkmJmqSXPShCJO5smB0pQtiAgl7S\nXUHiWhxRhMwkDmwDH+HzGU+KDDzAJTGUFMJtnoJAgc224NA4SBbODfxar3i8WY0bRTG7lvCf7woU\nsW4O8KMl+iSovWnhp54KJbDN4zveTtG49oYPWtzHgzMY/FyR01sa5EYO4qqCTJGqeSkxFyfiBQzX\n4rWmiRj+/vvvb3JHM9417yT1ZBy+ZKDAVUSTQXZA93xVQaBxrcj1RUkxLJzopnP2otjVLNL40Qi3\nXtNHoUOOp9VgMNDZsFbsYCf059BwRpMYA7f44EwG7Ce64UaHPQX9Ci6FswLRNX0o3BQHCjeFIbtL\n7uCgW2GoecBGwSEjdqNhQXbsES6HNQ54O+DX7PBzZn/eoEJXs/LpektHgaIgNZ8+W5ce+Byd//GP\nf9yaxmTvmWJY0/rNN9/caLcfzME32ZfmBB9GPznyB/amIaFJj2++QBbgXhpoInP7i0Jfo0oTwRr2\nRv6KdDrFwyU4YJARO6ZDDS+FOhrtZ/wQP2xJnJ9yRJPP5irQFerskZ1r+tOHeIEe8xrlLXyeHtmP\nvAO/52VzGkh0SJZoMyp86Yuv8Hc6RJMvgDSBxDn2Bh++8Lvn2X2j++QHFh/ypYdrzR5fLKIl+82O\ntsW7fzTgyd6XBzVQ+Z2fdaJLU4wNw11+Bj9cmg2aLfQnLuJZrNGgEbtPy//ci970RZ7ugQe/GET3\n+BF7yI/+xEQj/7UmXYBF7v3ZBrFeQf7WW29tMmA3+xEcMMQBdi+GiOEaNvYYe40YIv6KPXBGv/Xh\nB9t9snWfPvmExiJ9sGtyZIPeduOb7QfWoj+4Ps9BDuKEhhCb9qWW+AZeTUqxgu3wu3w8ePyUPNiz\nOMFH8ce2xAVNKwc52xutQ48Rf/ia94Ot2U33fJ/9a/rxIfLSbEUXPcgpwQKnJj0b82eGrCcz+sWP\nP6/BZvGz9zc0gWGPF+foi7+KX2jnp+Tryw52Gv3WkYE3HvmdfVZ8Fgs0D8V4vp7szGfD/Frz0H/+\nKc65R2/44hNiAxt1n81q3IFvDyAHA11iuliIP3KWa7IvPk+/fI6tiB/0wx7p1zpzXYu/9iTXaCUv\nds0u6Vh+bt9BA3js2cATGPIJsbTGKxu1znowfZkqbuGH3PHEbsmXzaGP7tB9XvHEnsY3zIWDrOnR\nHPZAt/wRXYbn7ICO6JddiKl732R7DvO9jJOea0yDL46ICWzM/uIs1tFNsZaN8EExllzZGZ7xCy8b\nIQ9ypSt7hhyMTefbeKVj+Ys9iH9l+3ufpTM2IA7+5je/2XRBvmRDb+B8//vf32Ii/QUnG83n8rOe\nb8J7xj/FHHzPkRzBCSb++b448pOf/GSjV35hX+QH56VXuTaawTWib8J+iOvJP/jJF82+ROCzGq/O\n5Cev6o1rtotHdAdn0viispxrjutDAocEDgm8rAQedeNVkLfJSvYVzxIpBYpNQPEtsLq2SUg4bIA+\n2zRtjgKxDdUaDRzrJR8SQcmD4G0zNdqQXM+A7Npho3E2rzXmXhsT3rU5/6378US++EKrzUmyQ269\nNUqekhYJmITVtSEhsenVvJbMXOPX/YcY6KZbekdbTXYJJP1LXtGl6aNZ5Dz1hq7koHHCVvCHf3bV\n39GTyIFlbmPyNO/3/Dj/WwJknpzdTXbZXZ/nHMm9QltSz/f5qmSVvTrog87nzwEVEfTYUEAp2CWU\ndK/ABFOirWDVWANLMaj40IBQcM6Chh2xL3D5xxzR7V7XiiXFL3wKHQk7H3GfXYlZCi1Fxv5NOfJA\nD9rQqUgRr8Qq90+rQaHgV1BodrJzaxwNMjRXEaLZilf4wVCga0L4Aop/a5YqdCTXCiv2Hyz8aFRZ\no3DGi+JcsUQ3GgSKTEWH4ryiLR06wwOfeHuzkmLFsJhhkPlXv/rVrfmpkFaEJkOxGs34txYNilvP\n8a0ohte1YhDN4aVzBRKdoxfdCif6EOvZzXkVEZpFzvgWQ/AkppEZXObTAZtBM53CcVo6UCiRGfnB\nP22DjWqS4lujCX77DrnRiSG2KEy97asJWUHjGTqs05TRdE337IauNGgUhdbEd3JzdqABHxoYGr7k\nSCboZ+fkjn7Fe8UtH2Xf9lq+Rv5o12gkB7Zg8A1vhiquNTzZNDrIlj/hm9wV+mSHDnZgHyFrdqMY\npnP+S3bpzhn9zuhhB2ghPzxoPLinWCU3vsD/o6H1Ux6avRor9MmO+COZmqsg50tsiVzsH+7zH4M8\n0EH3Gia+tCATuQY9+MJAwwT+iZsc0AwX/yUHtgWXNdZqNOAdrfYofso/NBE0geCsyWJde5H4lM6s\nnf6KZnQ0PGeL+NZg4IP0ik+2rxGFfnqwrrXJjxzonS7FYY1HfKFXXNS4xw8/oJPio/VkgB/NBjbI\np/BjsIHeJmTL2UB0O0eDa7Jjg/yCPaCX/dBf/pfO4sN6+NifN8zkjmyI3/S/hYtB4oG5rZ88sFsN\nEzGIP4opcGvM5IczL0h+bGb6Jr4oumwAAEAASURBVNhg+ZKfDPk1W3b/tOIJ+6NjspBnRYPnwUwe\n/Iw9kyd49OHQTBNf+Bh4GvtkxDbRmJ2IDfZE8QgMh/gmPog95osL1oo5GlH2BTRFw6TJdfIr9vIv\ne4bmFhrh0/xhJ5oi9j90wgUu2ujXlwIacuI1u6M/zTvzNVLEP81J9+CMJ/IWt/BCV/wObjySu31K\nzBO3xV7x3gCDLdMFW+XbaDUHPjqxr6UP/PEnvmqu+CqvJF97EfgOdukeu8aHOfyHX9OV+EHX/MA6\nsYxP4gttDrpnu+ylmAUWe68ZzlaqdZytJ5PoNV/saQ9n/2REz/Z/MQ8N4IkrYCQXNIgzch/0OtLV\nbFSLKz63p9lXyY3NsA2HmG1fYPfm0w0/RqsciF3Y051Pyx/sFeyl9dPuyIUP8Es2RqbiE/uVQ9iT\n+Cae0AQWXTTo1xpfAItL9geDnu0l1olt8IA5407xCzz6Y4++OCJD8onecDmDI37RgUb9O+vlIbZq\nLj8TQ8UjNpOM8TvtG4xLsCeeS9dgWJufmAPO/j474XMa0f5PBfTSi32+N0fVRfRv/RxgzbF/Pp99\n1Guwoze44fOZ39MnO9B4Rb/n4l+/HhDD0n9royOYfT7OhwQOCRwSeFUSeLSNV4HSxiHASo5sXpIe\nTQyJfom3zVWSI1mwOUhAbNwO92zUkktFjeTOJqOwkYDAUXC/JnAbFzgO89FjE35WIPds//wa/P/G\nfTw72tTJSvIlcTmt5Id8JV02rY5kabOT+EiqJXauS0riBVzHQ8kB7SWC6GMDEkeFkaJWg0AiJumT\nbErOJFF0fmmAx4asAaOk6LwKVAkcm5pj6tbaY1yXQDa2n5HckmWfzePjGjjeqJAkK3o9lyBLeiXI\nikMFHH3XaA+G9Xxe3JDoKzoUhBJtz/gwuwFLoq6JQ+fgs4HihzklrmBfohV/CloxBZ3sDE6NAg0f\n6zV1JegaHRU6Cpvg4VlCrkDR5KnYUtSwc/TVKDkt/5QIs1fr0YUfNGh4oAHfbN6ZHBTm4OOPj6NF\nA8y1e/EJnmIVDAWKmKlw9Nl6ssGDRpCCWIKOFvIy0EK+6IYfLwouPqjIhUexWVKvkFakGXxV05nc\nFJyKaDFGYUDGaCUDBY9r/i4meSb+4B0e8Z3tONsvrPfcXHyjXeMbHeKGQoPc7S/0Rn8KQ/etJX8x\nwFp60HjBN/zxjQZyo2+FAPrBIjd8kWtv0ygyydBnzQd0kRneydoXDWQvrrIRBaFGLdzWkLc1YLIt\nuA02wAYV92DUNBXzNJkUxPhm775MAjubBkuhSW7oJ3vXin+Dj6FZUYMOBY39AW4+lfysZXPxLW6S\nlTXsjczJks6THfjoMNCRHeODLZCJfQYffBQdZIIGsZosWms9mjSh0GS9A03kqXGCJs0YsR1N9r30\nEB1g0D17gp8Nsyd2xA4UdvQIPz7g1ZjBN9/VqDMfTn7qLS5vDpEfXVhjPj/x5hg/QSea2RGeNEbo\nCh7X9jT+E40b0+ufdOiza7RnT/TIhzWWbtdbeuxdU44f8d/sAP1zkDUf0DjWtARHIwt+vseOyE/8\nFHuzx9axf29P4U3sITdyx7+mP57oDz1wO/Z8+My22CH6ndk4uh1ih/XmOYzO6QLtcj6+aFjnSwMN\nBbGsHCIa+BMcYhVfhpc+xRF+Rx/4Zsc+X8KdLPHMhsid/MhCTGQT6GbH7FA8YYN8ghyDGRx0kyvb\ntZ5s7WVsUy5mWI83MOmErWiupRcxiD7xJKZqwKMDfeaIZWILndirXGvskRGZpB+0TVnBzV/pmI+R\nFfrQ5h6d0xP/Jzt2bL/RZDL6ksLboHwMf+yfXviWfYK98FN+I+YkF7TgCx/4IWOHa7GbXVrHV+EW\nd9iv9XRsHZrh5HdsRgO0WAUf3yV7sRFceQRbEo/ow5wa8fZ1n+mRD9bUJQ9xUXzn9+aJB/IXsmAL\n+XW+K+7ipT0EzXTK7lpHhuhzgEtmBt9nF2hkv+IKvbd/i+XyJrpQQ6FZ/APDgCu/YBv0T9b0zJbx\no5FM1+zntPIR+xOfIm+wDPYvZthX6dZRfGObZKBRTd5sjg2yF/gcjfQNnnjAfvFENnIbusSDPQFP\neGO79jd8kCnai2e+DEI/WPhDszeb0UPGbJJdwCGGk6Ma0kAL2q1hm3IJPoNuI/9wNtBGF/xV01nD\nnh7EXXYjFmu8W29N6+GZnzdgd/8Ee97bXycz9yes5pGJgz7sPfIFepU/kKOGsljNd+kzGwhWcHz2\nbH+/5y9zDmZnsFwbZIB++7z92Zei/hQhv+df/bkB9iBmNFofjO4f50MChwQOCbxKCTz6xqsgK4mR\n6DjbzCQ3EjOba0mHDUAwbsNKiBI5G5/kzk8uFdY28UYbWecZnM0B1wZeYgO/9XDN0Xr39jDmvMdy\njd7olABKgmy2EgmbreeSUYkcGUqyJBGSHYfEVTJDJxKY+CebKaNw3CffcJUMOMPPJiTbEmyFg8/o\nl/xJpBRPkuj9iD5wJMBkobjsrTjwJEbmxWNrwOreHu7x+d8SmL5CzkbydGYvdGOeJJedKfr7m6Bs\nkJ9LeDUNJMoaOnRcsk4P4JircKFzxZLDtWIQbjGDfbMRiZkEmM1L1hUz0YdGMNP1vPYMnXxCsqcw\n03RxsDMFiniFZs0idMPl2pcaaEAr+1Q8KgL4lALNmxiKFXxUPOJZkY7maEQXeUk+4WLnigQNCsUk\neIpfcUtBKYn2VglaFDqKDEUfOhwKAnDQj46b9YYcOsDnX+StuFcIaz5ZHy3WRwe8aFBkaCCSCZma\nD784o3GjQKI7ciQ/OrLGIV6LLfjT4KCf82p4WKtQoatshQ40sBRk6FUw4YE8zKGDdE4HmhMVr56j\nV0HN3tgKXbivoPWGEb4rlvFdPCBXfCvqrCF7MtNgwb97+Gajihm0kx9e2ACZek7/CiB8W6/gZv/k\npSglK+tqWMA7bZL86I684NX08zYWuSsS4WY7/bwdT3AbYjW9waeQVRyTQwUyOecjaBEXW48/BT1d\nkXtFKn7EUQU+XsmMj03bxzce+FR+yxfQQpfggscm2DB9sBcNO/zQCR8mC7A8pwe2kC1pDODJfs9H\nDbojC00CdPELNgwOGGRpP8uerHfwC/M0tcjRgT+0kz0a0Ux3Gp30QA70rKC3l9A/fPg2n73iURNA\n8ajgx0t+Qu98Fd81N/GQ3KYNuI9/+3RfANEL/0M//aKF//niQiMKnmJn+iADdItfYoCmJXsiV/kW\nvq131jyoeSl2swd20xc21rsHB33hJZ7oQUEcXvSTpRFf5MonNAXoksyerAajt2zJ8rQaPmAbcy36\n6YIe/KxZA5+d82FrHRpO2Y614eTP7IfNaERoltg38C5uoN+Z7KwPb+eNmPUPW+Z/9FozUmzBk5jL\nBsX07KgGZ+s7F1fFMjblyxRypR880Sn/PK/YyDfIRLwU8/DkEBfgZmvosVYTkK75t32BX4urbI1/\nixtgTL66Di7d4bPYJXbQvdhr8A9f9qCN7n1GG7mRA/mI1d5IJiN7NtjmiM90TE6us380ZKN4oCf2\nTTYONiL2kIM4EW6xk62wU/5BHmi1T/rMFmsQ8xEyMDyDw1yyY0v2C4O82INcJBrRJ4bhhX9b4yym\nkKnGqTjaHoDWBt/FE3niSSypgQw+upzZYjHLWjIrdllP/uJmeyGZwE238KObfNgwubaHg5V8nR3s\nj47Fw3xbMzefwod4oG5oXybj+GBzZIcXNsxm2Bwf0qzNZtFXLIC3EV8zJtur4acb+zq9iWfkSjZg\nFc/lUPCyebrmO2hBn0avPEgDlZ3Yn9gIfxF38Il++hebydlgn/Yze4hcSGyjx56bEw/kh3a1kvxA\nHEabPA5uDWM8GNZb5xys4GwT7v65dG8+7zoYPltDloYzmtilvUe+SZ54J8O+lDstG2Ebxh6nz8Hf\nP9sW3OM/4QnkxGfPE+t9yffrX/96i9VP1h6BB3uuvVeeMEfwJpz5/Lg+JHBI4JDAQ0vgUTdeBUkb\nss2ihh6BKBwrHhNQgdSaeS2hselq4mi82nDAM2fO9bl1YBagXaPB0UBLG1n3HvN58nWJTom3n1dJ\nJCUEkgGbsyRE4uZwLQGTyChOJIUSaHKyQcMh0bAZOmqkTTlewv1x75WoWQ+3QkFSdFoJg8RGAibx\nqohGP/qiJ5n47Nqh2aI4lqDOxmuJ1VwT3d3r83H+TwnkK8k5HZjJTtiR4r6zoqw3KySFBhvrp1ns\nVAFrTPlrnLBV/q5QoHt2KnFWQLARRa7CSsKsAGfvFXYbwDuY2UW0wtM9/l+TUkIt+ZPM4wEe/Crm\nFDcaPA42iWZwrFegoVUhJyYplioi+Y+EUcEquVfcoLciiR2Tm9imqCAjRayiAu/4leCDoaCAX/NO\nkS4xRVt0kHnFIjgKJc1DPOGDT8CtSKoBrJmY3NGi2VHTV7Gi6MMPOsRpxZYivGJLwYY++iI3azQL\nNR7pnt/SVb4ItyYFXvh1OMFX1Ci6wUC/otdzPKLTYQ3Z0bNDnMAXujVWrMUvvOhVlGkOKXTFRjZC\nbpoHxTq2QE/sAK8aVJoIdIkv/IEj+fcGiSbCacUmBU52ZD07bS39ibvsU+NBcUdu8Lb/ZI90g88K\nOwWpRpEGCLuHR4EIN/vBg3sGGOyH/PDPdjRc+Rx5wkVOcKNBQcZ++Y4BJx1rirEVPLPl1sElhrI7\nDS9FP9snk+h39jld2lPgZr/0qYFAP3QHt2KdDbBF9www4ORz9MAX6FKDCi/oBD+dsj9/JxVfbDKZ\nOpMnGJoyCnQHOuwb+LGGDulT05H953/0xnZrWnum2cPnvBUFr89kDh7Z0ZU17E48oBs2h08+n97T\nGX7zuXh3NsDV5OQ76BdH6FRsIUNxSCOKH4HLDvlXuqAH/OOHPXoLqqYrn6D382pOaFo600drrINb\no1ch7+fiaGDbfIzP4sfBJjRH2k/RjobJl3tgouO9997b3mZiE+jV5PLmcE1septr+R27YZf+4yN6\nAYu/y29ee+21rUkkv2ltMnAWB+mGP7Ih6/EOr4Mf4Edsie7WRwd7owfNxP7UgoaL5+yQT3oLk13Y\nf/DVWrwbaDbQg5/sC1/2M7SLETXS0YYuthIsdNiPNJDoBT38lF7yqRp6/JSN83k6Ax9f8Qhm1+hC\nn89yQQ1uP6NmM/zNfXEbf/Zr9uZzMNiTmGO+lyHwxH7hrMGtGebgDzUn53oy4Z9gkE12Lt7a4+AU\nK/gS3YONZrKjX7+isVa8gdN8+PgHWulJPBNTvTXNpu1T/JS+yNpe2Bc4cATfPkjW/M8adPN9to8m\nMkcnmiZPYhdexFM6I1t+q6kpfos7PqPNugZ50ymbIxNr0c0H2Q+dikPgkIdGpYY9PYc/WD7jozP7\nAbcvBZ3FL7GcnPFDz+I7P2FzGqJoYBdyCXTQOT2Km/ZTtDh8kcUX4XMY+DHQYR14YoEmNt3Z4+1b\nZNgXYee7mJRMrZXXoJ0vo8M68d0csR/NYmJ0yBMMsMV9uqBDcc3+LragTU7FXtQH4rpYSJaeOSYv\n6KAbfiFGgsH34CcvtOzHJThzTnKa917kmm4MNoEf9bA3RdkdnsjBn4CRW884cAl2fF56dt/34Grs\nefeMjsW3X/ziF5ve2DbfFGPZJ1nPEbw9rDnnuD4kcEjgkMBDSuDRNl4n0zYwY25q14J/G4znEiWF\nh+JGEqyYsJHaDINn3twAXbvnmMP9gjUc0TTnPNbrKbdLNErIJFC+OZYcSe5saJJISa1kSzEvCZKY\nSGrIwDwJVUWYxELxJmEi+4eUUTpLT2iR1GiQ+CZZEYIWyS8e0D7pSZfO6HdIAiXiEjobt0KbPCoU\nWxNOsuzeJbke9/5TAmRHD/THXiTDigw2ptiRpGrC8FMFhOeGRPsrX/nK9jexJL70DVZ+CSZ983WF\nOlj83Dx61TBTNLELiaYETfEKrvvgZB9dOzfg6uADfEODQ0GggIOLnbBBiatii+0odCT5FYB8A09s\n0tsUChPJb/4FjiJAcccvJY+KFffQp0glNwk0m1ZQaDaRFVrcVwgoWhV7CiRnzU70eMY30aGw0hRA\ni6JcwYEnhS3/Npc/1bSRnOOHzYOBVsVshTAa8KSwRgf5ka+3Yc6rOMIL35IM44OO4LxZDSiNDjIF\nlxw12DSeNTs0GNBBT/GNbnajKCNDa/k6fZM9mYsDNejxitYa43TpGhz6s0+Ab43iWMNQM+K0mlQV\nScUJONDJVq3Ft4YnPZAJOOII2VcAKNA0bAx6NM9aRSHeNQL4ADul9xqm7AA8uA100w1bV8yBUeNU\nsUj25E5nGgOKdvKvsGQ71rNBslPMKtj5Gz2ije1YP/cEOsGz2M+/0Kx5aD1bIhPrpr0Vi/kbHtCV\nD7lGB73QI/ur6UoOBj8if/bLB8gCLLgMtOKH3tGOFkW/pqsYAhe62YP1yZSO0WOYAw6+yEDjQ+OE\nL6HDPI0tjRn2iwb4yd8eme6t4Uf4qlFs/9D00GDDq+dsBH0O/NIrnfMLtm4+2yNL98Ez2mfQa0Q3\nP2LD9I5m/ismiINiHd411jT82BW/Eg/xACY49Iqf2xWHskdyYCPspsYUfvi/9daxYT7A/9gvm7Ae\nPHLjP31hwy74BH004qnP8cSefBHjP+XSwBFv6d1/yOXvdYoLPpsPhoMcfOkCv4aeg07xyX78TWWH\nOEgXrYOb/sUCvlQs0kTHm7V0r9lLRzUlotlaIxr4JBo069DOxwx0kB2f5FdiGlgGPhxd44UMrOXb\n2TQfIT9+xUbolL2AS09sBT3pU0wkR3opNtmf+AJ9iHPWsgl2wl6mTDeCdvS5x+fohO2TszjAdtiy\nfe68Yj0+7RfsuIEnPkC26CIfNsZW+KTmorVsRvzGK7nGUzrCC5mQc81ktLNTOMHpzU64izPslF68\nCY0OcNmDRo0msZhHT2IS3zRXU5lvgYFOeyiZi+vyZTokMz5o7xNLxQLy4CdkS95oY0vyDnDSOZmY\nSyb2EHz5bNAvW9EMA6MY3lo02bfET3j5LJ2wG3DJhK/YA+CnazkPugxwDDJugMn+6Ld9XazSdJVv\n0C8+xAKw2ZH9kc3Rpdij1kKLGCRG2IPZq0MspBuxAS3ta/DThyP7J1P61Sh0oAdd+KI3+hLT0MBW\nsn8yaW9V87EXtqOp3pftzmzMQYfWogUfbIOt2A/aW8UWdInJZCmWsHF2K0+asnSdTK0hA2cH2smf\nDTTwHO3B8dkAx739/dZeOzc/OuhVPCRDX3bwATySG3vWSGYn9rdwh985eF2DG2z3HmpMvHt8ntnn\nNdd//vOfb/GAj/iSz39yx0bFtTmCt4c15xzXhwQOCRwSeEgJPOrG67OCpI2kDWLOk3DY6GwyEijJ\nggJKUSIZUOjbvK1ps7Phtuk/KyBPPJTS54dU0H3ATk7BQne0410RIJmQDEksJC4KOEmcjZo8ybtB\nRpINSZiNTkIhYZHckLvE3OeHHGiIB/xJmBVjihLJrXv0r6GlQEabkX6d8W4dniVDeFKYSMZqvJZY\nTV7CO+HN58f1dQmQHdmzJ4m5pEkiyC8l2vTmmUYAuzPcU7QrvB0KK8m+AR7fZXMSf8mkQsk9a9iD\nRgg7nbqf18WS7gUT3nC4x87RJSFXzPqZlgKNrUvk+ZHiXLHFbtghe5LcWq+QVwz3tptCzT20miPp\nlQTjT6EFjialtWz5dhVkigLFPT/Dr9im2AHXHEWOYkSzQOIJJlnFm7U1ulqHH8UaH8Gz+YoU+BVL\naFHo+Kx5SA7otqaCUeFHf8UJcNCuONOwIhtFK1+jV/SKMQpNcUacRqOCREGrGK7ZYY2GK3rNVUjR\ns2KIPvANryYvPApW8Ywf828yQp83UtFLdnPgCW0KwppfrukOTeTFPuGvuUsG5K/Aw4sCwFywFKaa\ndQozxaG4Qh70zFaKr96mYkf8wH1zFJEahIoHNLBb+gc7GyR7Nq7AZ0uKYrSAT350/r3vfW97y4/t\nuwe+fY8satJZR5Zk77l5aEc3+aPdPXTZV8VRRbj/hANuchdDFTd0rEFA9qfVLCU7w1q0G+h3uOdM\nZgpbsNgB+dKNZs15NWDYAXrokQzhSg7oZRN8iA9qOrMNdlGsV1CjR0HJFzSawDHAcYgb7JYcNAzo\ng07ZE9thv/28HR1oIEP4xC3NH/ZhPp40Ob0JhX66FAPIl92ZL96xF/TTlz2XvK0xnyyjcSP07p9k\n6CNc7N4XCWjhR+CycbSAjXY81zwXn+yP6DfQavBFNk12mmiaYfZMOtIYUcB6E4ot8i/r0c0e5Aaa\nRZobGq90B6455G6tOCR2sCPr8JH+fY6ejZj1D98gqx/+8IebrfmsWSGm/eAHP9hsTFzBH1wdYpGf\nnPpPVtg1GcBF50+fPt32c/HLuoa1aGDH/JsMNds08A261JDjC3xqfnESD+mFHfEPNuRNXTphh3Dg\nnR1961vf2uKCPUm8bwTD3PTBvuwv/E18EG/YBjtx8E17DJrQ0sALG2iPkvOSDT69OW9/YZvWiw32\nCzLZ8xM864LP7ui4BrWmJJtzj6+BzVc0TvuSLzj0aK6Y5w01POHXELP9J0NinuYgfU+ZWGvf46N0\nxD7EMDZo4IGdaYaJ+94MRTMYaOZ/5Nmv3nyG+7TilDjtoB80i6NiETo1h/mYwU7Fonzbvij/rTnI\n5tBmLXngQTyUR9rH2os2YOsfcrUXq0vgsTcVF+gDLW+++eYWG8SImqWtZ1vsjUysZbdoze7ZBZ/x\nZTWZsLn2MzDwTz7J2T00gSHPwI94xQbFWfPBICvxlLzkV2i1RhwWx+kWTfwBPDZLr2KIeI4G/kCe\nYNKTeehg42RS41OzlZ7ZG52RKX9mL2yNrbC74iU4vsxNpt7otNZ9eZk46+DXdJeNTBmgyWBb8gu8\ngMOvi0V8h6359URvSG+L7v6JnwnXo2QeDvi713Nn69wHx4jO7cNH/Cf4dGSv8rdQ7d9g0x8e6IY+\ns4/og8o1/JeGZ8Hf83pp/ke9Fx17HH0Gj72IK7/85S83P0IHf7P3sLvT8vE5gvkQ9E48x/UhgUMC\nhwSuSeBRN14jumDp8wyY3Zdc2Vj6dlRBpzhVnNhAJUKKC0WKosJ9a4wZxIO3PbiHfyatgbtvHMG9\ndkZDdHRGQ4dNVYElCZfEGCU/kh3J0BwlFRIuCZRkCCzyNFfi57qkobUTdxt5NHjmuvNc496EFRxz\nWoMWzSIJt4TVtTX4kDw5KoKsh1/hg18JasUful1LphRckrTT2rjxOAe8jUlP9z7p5+SarvHoXp/x\nF9/JIp165p7DvZ5byxf5Jf/s7TRJE7+VqOeTYBjWGODQsYRZg0eDgo6CHW72x7fpmg0oTDVxND8M\nNHdsN+7+ASceu0YL+xEvFGPii8M9haxCnV2xDQU92hRm/EhSzzfwxIcUAzW8FMQKAwVyvsUGFQbe\n1pE0Kuo0FxQUeBO/rNHcUNCDRx74UpCxWfgUoOwVrCerSKooIfeabYo7xYjiRuEGFnnhX3GowYIf\nvqThaaQH1+SCdgWnAp8sNGDcMy/5oZ0vgqfpQ1/umQd/68gFfXjAM90q0BSNCk56FLs1INgK/iu6\nowuf+IUnfK7JBz3wKdYV0xoRCkn8okdhSGZ4pz+y1yhSlKCJ7uFV2N6sN3PZA9nDrUnicK1BqhAE\nQxGjONSscZ9Npn+2rjmIDzJgT9kBHSooNczYE5mlfzQr/MgPDQpdMMAt7uIJ3QoOhQc+rGencNI9\n/NbQu0Zsa8lCUQs3G0Q/e4KXnbB3ctAoBcc6/oXXGt30hV+w0NJBPq4Ntsb/0Q8evWi4ukdXmvya\nNwp88BSDEx5bMRcfYoimK3sQV+iL77G709IpfYCBTrzw1egAh11Zz7YUpXyTTOwN/Jgt4Y8eNS3J\nH92aOOaSC37YH305FOX0xqf5Px/Bo6YEmvvS1xr+rqlnHZprjBbPyItMyA8sPudgz3yOD2uS0C19\n0onmKJ7RQY/kOeNEMMUU9LMhtDnAxSM7xLcvALwJxUfwQ3ZsGW7zxSN2gQZyMOQS/NdP+8Vq8Zc8\n8YQXIx347NrZIb6SrSJawwctdIqW119/fWt2kBH6rJNr8B92pPmrCayhR1ZwapJ9/etf3xpPxR/w\nDPjYDF40mXyBATffEHM0q/BPRxqW4mw80Ac40S9G8AvNGc1f/oYGcUJcogeNQTohS7ShPzmgx3y4\nwenNR7TxPzrlY/ghW/TUwALDWnbGlumDjVrrICs6KTaJb+xarOUPeJp04MlwL/58Jmd2RtZiKJmx\nRXbsyypNRrFLHO1LbOvJxt6lOcjP+CofIEN2aZ0mFh2TDV9Pzvycn8FJN/DPXI4t2C/IRbwga36O\n53yGLG5W3PaFAhho9lys43f2CXsdWfAhMsQbXGwaPcmML+GPPvga//GFRW9joo3cwGQ359XghgNf\nxR50iTv8Dl1kYh9g++yF75IjmyHX7CWZoIle4RVX8IRHfskmxX+8sTVf4MJP/+maLhtoRc+MheCx\nITFefGFbbAUcMNmOeEqG/Od2+T76xfC+mASTjZIbexUH5CRsdtpbdgcHmVhP1+QPv73OHHZCLnQt\nL2DLaCp3hw8t9oNirYap3AsdfAcd5AmOdWQd/uQxz2BGl73/pz/96Ra/5T9imob6W2+9tdkDGzGm\nv3S9x+F+o2fznmf7+332rLnznvsNdBs9FyP5nCa6+GSfc48sfClnvydP+7bBhsCwPhjbg+f8gy7H\nXBctdN6I/j6H43k457rWgCE+ihEayu++++5mM3IXzWR7F3u9NKL10rPj3iGBQwKHBB5SAo+68TqD\nLSEUcAVpwdzZhivplCz4xtlZkqggrglos5Qouefsc5tCMPe47kPoYAcfPDgeAs+zaN3T0NzJvyTK\nIYFwX8LhcI3ePQ9gkH+Hz+aRqxHs7cP6p/Xxbp3rCbtrc/fP5j0wfZY4SRLQLJFScEvGeitHMimZ\nlbxrVEhYwTWstUZSK1E3PGdL1klebdo2bwmjQiwezA2O63nf50/TSCd4mjz3ec97c9x37ZAY8UdF\niQRQYeysCSGx94yfNloXbJ9dOxR0iiR6oz/r6F9CT+9sQDFGp3Tm7J7nil0HO6d/63zOjuABj/7R\njF4FlXhyu4oLSbxCQAxxNgcNklYFhmLntJo9cLElRbSCBL+KCgUfXh2eG3gCQzGgsJEwOmt8gsOP\nNB/g1+RQkBff0K7AczxZBadGkYLAmf1qmsKjmaJIs16Cyh/Qr/GC32RPppoNDjYvEa8xpbDDD575\nuNhATuAo+IoV6RBf5Ez+iiawfBZ78aPwthZ96VCBhBeycOCBbshdM0IhRQ7kB47B/8kJveRPbhos\n8Lqv2CRDMOjB20gKa3EBjegiM/LrSxtFJdzsB4/WaTRozJADXq1tuGaXbIDu8KA4J0/PxB627mD3\n7CpbwDu7M8REOBX3aKA/z9kbXZEzeflMDxoaZNl6uNgSOXjjTAOYjbc3an7QPdnPPTBeFOcKazyg\nH3442A+6FfuuxUh0kTM8GgzW0RmZoweNDvPYC97ogc5rGrBJsmVXeDMHTA1jb7UrmPhya/GOfgU5\nXhTZ7JmNwkP3mjcOMqBD68mUr+ATDXgnf7rUZFDkg4UOtNpD8MKmnNkF+Joy4gFbxAMdsE90egNM\nAwkN4g045ihy+7KEHcCNJjKuMUPWmldslT2nT7SyNbJhr+gjL80JTSG6YNf5ZF9ygM0W86F8j43h\nw/zkqPlDBuQJPjtmvxo2miUaQGyRHaGL3Mhf09WbbXyJTskB/hotbE+zmg5mw4kOsjf0gOkz3Wpi\naZp46xZsdLInstXkOK8mFhzswRpyYZd8U2OEPbEFcSYf8OWpLx/oFA8Nfm3vwT8dafawB/4knmt6\nwVczMPuxHu50RJ/8mjy8KQ0W/zb4k/UaG2RZ856skgE46YS9iE/goIuO8EqP6NFY5Gdkih5r8YFn\n9kAO1pEJPfE/MYgO+wUF+bE1NsHWomMjeP0Tb53BEG/ZGtj044xWMUmclSNpstu7xHr+xv7pj4zJ\nVlPcWTzBr3WaaOJHb7nyGzSxeXYNB3wOdlacwLe9niz4kP2K3+GVXAy2YX41Ab2wW/ISI82HnzzE\nObzg0Xx+ik52y47wJRbwA/aIfrpBk7jBJ8UGerX3avKhiw/Y0/DK9vgzvdAVPbMZ+MDCkz2oJiWc\n4o5YwZ7hxBO5yClaL/6557m5fQGGNzyywfw/XXeGE0w0gSkOqJ/wgyYw+Q2fZj9kQV50hF/yJAM0\nkDU66J0e0OEgA3y1n4abjsyla/uJ9WTZl6voERPoAAw+RM98wR5BD+TNP+iOrbAvPgAOn7CW3sQP\n8qQb/LBPdExa0GOQybzvMzuWe/zoRz/a5CNGiJN09fbbb29xAj3PGmCCNUd43GcbxbU553nXEyYY\nc/8gW3ZMr+IpP6JrNpk8xUby5APo6ZhwXaPtRUbrWtNna9HHptA4eZ1y6PoaruDNeeyEvXiLV/PV\nPsJOfHnrCx26h9Owfq69hue4f0jgkMAhgYeUwKNtvAqSlwJl9wRQm+7tKsZtjDfr22Pf6kmcbOoN\n8w3Bfg8zWJ43z/V9DPTtg3z47wP+i8K4RIe1l2iJ3heVxYR9CV407uHShY244bn1c4MPnmfzvs82\nUomVBEjSIJnu8BlsSaWkTrIhAVFEhFPSJlmSdEiM3deQkFBapwhQ7Pn5m0JWUhsPaJ7ymffj59Nw\nxmO8pYuph2Swn4N38pQQ8U9JtcRIgq7QcJYcKYIM6x3hcC/Y8zo8ztEBD12yA4WRJP+0mp8Sffag\naPFc4ZO9uGYj9C8JrzEDJ5rYQUWbZL6mjEQWvuhgg4oMjTJFSQ1PNLdek0YhTBaSztbHLxgKLAWC\nhofiHA8KJjSWPPcmiOaCeMeW8aVp6A0QxQkYmjgSa7xbqwCRcHsLq2YGGgwyREc0WasQ1iSQkKON\nvjQcwaAzMI1k4Jrc5mf3DPfQOHVFBunWc9cO9KJfE4tMFUieK/o1NhSafFOjI3zBxy/5S7bJssKq\nueaTV0WrAlvxZD3ft8ahmFekWs+e0C5+KC7hZ7fsAz/JDJ/moVmcqGkqfhgKWOvYkOJQk8reBHcw\nXJM1nBoXjujVcMvu2tPwYzgnWzA0HdhD9ogGtqxZqLmoCZLuzQ+Ga3DYb8U1X8E7v3WIoVOe5ivu\ne8uN7DV08EG26FawiqXoJyO4yYNNKZAV7mBGB/rp/5vf/ObWyMELXzUHTA0ta/GimNTAQCO4fFkh\nrIlzXg0zfICHTnIyBxz6Q5tGo8aHQh9M8A1w2L4jP0QD26NH/swe2TGeTivWeJPRm5EaXNbDhy42\n42fvGonWowUsdmKNt41cR2c6QSv4ZEd/ZK95Tl59EYQGsdWwng9ojmj4iAc1+cAC18Gm8M6PwWGT\n+MEXeumc7YgBGn1oE0cNeqVPTRmxwBdANyvfsk6Mhc8bVHSg4WJfZc/Jv3M8kpFr9LFruqUPstKk\ngws9mi3+pqtfnrDPBvlYQ3/+VqG3GekWneKot4gV3nv5wkcO4qK1mpwa42ICOsRd+z585Mmv0Yl+\nI/rNRYNcU1z1k3syoTO88T2yoGdNDjSlZ88dBpukE7FBcxA9ml/2C7jYIB9jK2RBru7jg83WsMKD\n3JePowu9aGAP3gZlm2DVcIUbDCOe5jX+0CBv4mf8jc/2FqG59EPn3ijW3NKUS77kQDb2K01xB3jo\n4gOapmRcU8w9Iz9nk+RRcxI8dDrEZ7IgE7IhW7R4hm4w6BNuMqEX+iYXePiKOKMxKf6bT/78gfzo\nBjx7Kl8gO/sD22Lv/Ad9xQ7xDVzw7J1ikDXiON8AzxwxwD5+s/zG29xikPvoNpetsFu8kSVZ4Qfv\n8IoD6OOz6QLt4hC9isdkyt7EY7EIzfuRnMhDPKZfvPAhvs0m0Y1nejqveErP4jGftoY94AMdZAcW\n+7aG3+BDHCoXwQu82b1ze9ztymf6Eky+hR400DObxQ+ZosUeg1/rwTNPbOQz3ua03j5vHnmIY9aC\nI8ewBi3WB8O9hnuN6BVX0OdPn3hrW06CBvHIn4KwX/FLcA3r+EF45r1twt2c8F6jpbmXztE+6XUd\nDeTC3virPQjd9hL7It14qcQ1GWcjc/2Ei5fmXKLl0r3Jv2t2TN/OZMdWnJPBJRiX7kXXXEc//N2v\nmX77299uuqIbcdwXuPaj5BLMub57x/mQwCGBQwKvSgKfmMarAG6Dl6zYWCRykm/JjGJM8iAhMmcO\nwbpAO6/NmZ8L6nPty1zDGd4JB577xjXh768v0dCcPR3N7f61z+5/HD5aF9w9HW2QNnqHz23UPlvn\nLDGU7HY2x1zPndkA+1DASTgUqe5Fs/kSMYWWBNXmLaFSBLEvibe3ON54440tidYImiP5uLfnZc77\nJF/zN7w5kluf42vKwfzkrWCT+CkWJEWSaw0cSbr7EjB61FyUhNGNAoPOkqcz/Tpc83nrHHDBPefS\n52k1QiRdEm9FQuuKGXDCZy69K7wUqGwJTPjZgaJRsi2e4AVusMJnLrrYj4JL4q05jx8JpoJYAYFv\nuM03glHSqWBSZKFZk6O3dsFhx9kleGAp+hSRcIBlvgLRW1qKLXAUcexXUabpq4DVHCD7OfIX8gTr\ntGSnaPKGgGs0K0YV9c4Vv8m9s7X4MaxxeOZomDM/z/ue0YXmjeYvnugOj3jVZKKL/JcOHXBap9hT\nFObL7uPJerSYi1ef6dZBru6xA/p3uGYH7lsHn3ig4WWPYbd48DyZgU1XCjv0swM2ZR485E/uikM4\nwcUvGAZ85rPXybcCmw2ynUa48ceGFU1ws0P3wPHlA1nUuGa7mmUabWwH3eCgGx2dwSM/61zzAwU2\nuxM7rYtm9MCtsGYr+EY7OsgYTmvJDhw8oA9eRfHtXSwgDzQ06FKjTMNMscSO4SVHdkAHmqR4AaPG\nI7rYvYaFRgwb9pn+4EYDX3DYC2rKsGl2JWahIz1aSxbsAWy+jyd2SJbgsU9yxr83ETVo2IBBx+Zr\nBvz1r3/9199IJCOxAp0aAuiEp5HNgY/n5E9vDjbhTCcaMeSZzhXR3q6kE7HAfTylb7xbx5bxLDax\nTTbmGdlrNmuwOMDTdGQf8NAV3OSv8UMH7Jr90pO34lqn2cKGspd0DI5rZwe5+iICDd6i9AXPzWrm\nwEP2Gi32YI1DtJG5deIQXjSuNLA0XPiXNWKgRo0GFBsih/CSL13TP3zimua4fcngO9ZqgJGjz+Ko\ndeRguGZT7EjuqbHh73OCxbbNt44uND3pGE32hnwIPWyT/bITugBHDku29kz6AEcjDxyyOK2YzI+s\ng4uc7E/WsWX+AS45sWHNRfxYiwYxjk7oINvoeuqFfMU69sZe6NyBTvKjc3bbF3UazOya//clgfXk\nY51mGJlbZ4/TKMUX2tDIL8QN8YJ/aeppAOKHjbE98uefbItt8h/NTbHHHmqwJ/jBIEf7Hv2yFbLH\nI/3Yb9tnyFNswScbMg899lR+yqbJnc7ARg/4YgEf4KdiN3n70sJ8uhcb0NyeQ1fslZ7zH3pMJmSo\nkcxm4UMnWugZXeTnLO7B7RAD6JqdkL/YCT//p2v42Ws63oS0/sFLviAWkBE/0uTmj2I7uYpt4Dnj\nh1zQhAa1lqY2u2MTdEA3dMve8GFf5pPoyAf3ti8GkQt++GG5DVx0BB789IFPNoZ2cPih+Rrsvljm\ngz7ztfTHd6xHH10beLDWAQ6fQKPz/jCf/bF9jVd5FJ2QKd7Ep6dPn2742AF9eoZGsBruweVouNeY\n191znvN9bh4eXE8czceXmMrOfOFBT/YSdq8J7VcA4hsZWx8O8KIxPGAa+88f3v3//044PeGT7Jyt\n2mfoj9zEZbZL7o3W+3wNX3N67jN++TheNV7ZkzwMn954FSfoxTDf2tZ3z3ne8/kYhwQOCRwSeCgJ\nPNrGK4ZtYIaAaQOUnNlcJSESQxu25EHiZLMR6PebifUlIW3a7s0h6BbU5/399QzOz5rfvM4TjnXP\nWjvn/rev9/TvP8fL/v6kO17NcaTTPre2zxIkm7NkyQYt4ZaIzsQJDLo2JCEKDgWrokGy68xezHN4\nHh3O7EFxCD7YkkeJgU3cfLgkbf6DGsW8JHKOYLkX/fP5p+G65C69xNPknax8Jl/JlbcDFTySYT4p\nSXWfTswFi+wVBgr73kyVnEnC+TR4fFgCLeE3jz4UqQpexQF90VWyd5bI0aeD7Ui22Ig1YoNi0GhN\nNqDQMMwF04GfeGu+OV2jzzqNKnjJis2xIbxkR9bAY501Dskn/tFYs5W94zE54hG86MCL52gEPxzg\no0HzQ+Lv4C9wgkGeCtjkar6BnvTo2nxyVsApoMgebjqxXuKOR/STSzB85kdkAR6ceDe3kcz6nBzC\ny//IAx+KAbIw8KiwpTcH+OjUlDAfja7xW2KNZvjJCZ1oMwd95Ieu6IOfLhzgosuwVizBC9t1tu+4\nFlPQAbb5bE0TguzoExzP2KpCUsGdLMyPZ7TQFfs+rUJbUQkW+HTFf6xHa/KzBh9ikSLKmuRFhvjA\nL1nABRbaNQzsmWSIB/yx2eQGrkF27Nd8TRNr8RrdzvizTiOnhhJ+reNnaLee3uA30G+OM3gO1/EF\nLnrwo8GmiadwMhRU7e/2ejDBMqxPjt5u0njw1jQ4ZICGGhf8PzmgkTzwa8BPfr0xbi3fs54enfHH\nJuCka80fjRZFvTM95gPgatBoTmi+8h82UMNJM05zhP7Bww+Z0DUZym00dRzZEBrozUh37B+vYGlg\nOfPd6ADXwXZ7Q68vp8kCTWCQOdlpHtfggANt0XW7mi0KeY00TSC0ZovsgAw0a9iwAfZez+6756BH\nNCiSe8sTr/YJurD3+k9fNF3xhBZydWh8adJqguCHbti9JpFGiLco6Qcc69BCDmTLlvqPjMgXHele\ns9Z6dsCXs/voBocNsCUNJ3C8JchGDbGcHcJfA4x8+Ux0gIkW+mTPmpKaXhrB7rFntq95VeNPA4pc\nyc0cPPTWN32I0WgDWzygC80Gzc0am+STPtEaHWAaaCJb8kCXJtzNaoKjT+y3VnyhC/6pcaPBmM7F\nFXauYSp2iR98j24MdJmLJvZfY5/s2RKbgpMsvKHqs4FOc8Q7tkmuYMxGMt7BoBcw2IU3MX32LPkX\nP8mSj7tffLQef/Yg+d5svqODzPHFXvmCdWgTi/HiQNOMA2xFHCATdiIv4ttkHS1873w+bw0xerOv\noQvd/Ba+viAiE7rgI3yPTMQUOnaGG2/xS2cGfGidg97tB5qu3obkT3TGhulHU5ys8ZRPgwc3OsiC\nDdI7WjSezWWrZGLPhXPSgA58WSMGi0l4Y8N0xf7speTAvvghntjOtF+00xc98H/0iyF0Ym9ilxrZ\n7ER8lhtNO6cXsYB88YNGNmatuNcemo3YC8S+n/3sZ1s8txY868hG3PB2Jbm199ABfg3zkoPP1nb4\nbExZfXjn8r/hJUdjv859exvf9fdOxSj3TivH6O91kw+6oyH6+uy8t5dJ/2XKPuTLs+aCQ1Z0LUaR\ntz2PjYhxYiw/aI35XW8XF/65NIfd8As27E8NiFlsxt6BZ3bARidPk0Ywk8EFlMetQwKHBA4J3LsE\nHnXjNW5LYmz2kiubtYBus7UJtxEJoDY8Z4lUxajNVCEvsRSo56ZYMA/XpXOBumc+z3Xz2pzmd26d\ns7n7+fP5q7yem9GeLs/296Jtz9ez+JlzzfO5+TZeyY4CRTIg+aEfR8mpJE4SZLhP3+zBWTEqefKZ\nfjXk3KPfjmh2jhZn8EtSs6Ho81zx439RtoFLct1rffRPmBPPJ+U6PjpH9+Q132IP7icj8iV7yZXE\nSmEh+ZGU1ygLbmcylxQp9CVgEjFwJYsSJoUGuGxB8SiBVlTQv0IOrg5FHXugQzA6w+WwBn2S+t7w\nmvoyBz/TztMvGlyLH9mJeWBqDOJBQu8zOhQtChJ2ZFhjrbl4cShqJJx4ZufWmgcXPtgt+9VYIE98\n4kmCah18CjNw8SWRVYizfevjGzy0glczWNyDyzx48Uav1ig6fEYT+Pmb5+iBwxlO88GwZvLmc3Ig\nb/jQYaQb+FtDBvjCiwOfBjqSC1zRGE5xXLxAI1jWwaWYIw8y8xlOyTY9OeLJfDDRBn6ja8+sJ9MO\nsBzWFCfijczQgWYwyAgt7FlDJh3iHQ3iHBnTpaKytyvZhzn0pTj3ZhQ/YgdwaXgo0k+rgBKLFLf4\nyo7SZ/SRF/070IQnZ8/RSebwWQe+eeSnUcz+NAwUM+Ckt2we7QpksrSG3dccBQv8DvCTnXs+G85o\nYAMamfjR9PAZT+Rgf0cLeaB/DrDgR5PiWowgI7pgh+SmqMeDBp/16Qwc6zuDwzfFG/phv/iBF//N\nxYd59gXFa41OukNztiVOwa+RCBa5kxn9aR7ROzz4RxM7wy9ZwqkhSP8OerAeX4p6ciIvONmRz6dl\nE84+kx9fRDOe6VNc1pjQpBCnPHPQAVq8naY41egjw2hjE2wZH2KznItNoxkujTTzNVx8YUN/eCIn\nckM3GIZ75GOPlrNpmtT00bAzF01s7cl6c/i1117b3nwG2z2yYQ++2PNmmxzQZ3jgtJ94u8nPaK3h\nj+iEF2x8yx015RzsAj6yYj8aJ4p0fFjbICPzwKBX+wjc/SybP4llmlQarpp2GkZ4tRZ+5znwUsPZ\n22jkCg4d0oUGOF2wL/ThX1yyp9KlNRqL9IJ/9PKD7JJtagTaM9IHHgz0GOCxOfqAmw2KWTVdyYrt\neYZ+9gf+eTUJ55uqYIGDn/5jMb6DLnSzEY1ado83TTU2imZwyVUDjjw1ibztaq9Br+dsXQ7gDddk\nghZ80K/15AI/vdINHvBjPVzsEj68gF3NAIcDnfCQGzy9vW4tPNbxRfaKVjGdj4g57E7jkw2QNZwG\nW9FwxZOcyJfQZO4532WjbIa94Iv+shk0oZ9fwIkffpg98z25E5mCI7aEG/xo2AgZ/1hv4AkOdqih\nyJ/4lft4FwfBR6d7wUO/QX7igANeMQAN9GKuNXtc9ORLLH4nJrFddiLWsTv0gKN5eV425kxvRvTC\nL6aRhXU3q7lItuI8eRn2JXK1nl7EErqiQ2vxjAY5DR25T+78TF7hwBPdk7P71tGFn+zzC/sLeg38\nms83xBBvLfM9cMgg2Znven52LzgbsDt4c173OwfH5+yJfBrukc0HH3yw/QkW+6d8wZdY6EMb3vAc\nrGhwdnhmdD+aw3Ht3HrP0SQGoEXM4jf8TKzVVBeb8mPr0rHr8HWe+C7RhGf65G8ar77sBE+c8vfi\nveXLluMZvGDTUTinHCfO4/qQwCGBQwL3LYFH3XgVFAVWSaDEyt//avOT1HsuoAviCm2boPuCbN9c\neu6+JNNmK3Gy4TZKEvq8PxekO++fo8GxH83v7Pm1ufu1r/Jz9M1zdMZXz/o86fPs0v3mtNbnOU+x\nqhhVYCg6po4kY5IkuqdXiXObs3uSfQlQZ8mRjd6z8Exc2831T7TMs3kd875Cwf9aqvGq6J1jwm7N\nfP5JuY7vyU+0zwSMbMlbkaOIlUTTD3+iK4U0H5VU87OSzuAnI3rUbJLcK8ro1nyJuMaAIsMaBZpC\n2htIimE+TMdokGRPXcNVAhXtzuzJfY0XbxQpDJ0VAehxsCnzXEvO2KGkUINF4q9ZJo4Y6DIfD8UW\n99Ej8VMQoMsc9JpjPThgS3h9rpgGL9qdxST2rDDQsKnYAkcRoIAAA348iGOKIPPIpgMcPJlXMeEa\nXQYapyyTA7qKo3C6b/CpqUe0GskDXNfkgKaK+Z6TxYSdHCpyzEOTuA12tKM5G0QLGM7umeMc3uQA\nN1iekxe515xEpzVgWIeveNkYuvsnWjxvL8GD4Rn5kp+1YMLV4R7doMOc9ii8oIO947tr8saX5wac\n1rIBfsbH4FDYOqx30A+a8AF3PPn8f+zd6c+mSVX48ee/8M0v2kPUVxpBwhYEmn0blmEZhmVYRZCY\naPQP8LVxQQ0mIlsAgQEEHDYFBAaQ3bhE45YYx+g7/4nf/blmvszh8n6efrqnu6d7qErqru3UOadO\n1VV16lx11c3js7YJ5XFCsHDmpPFp7BlLxnL9qC6Z4Q9NHj1pdcAxgNmY2mAxwmq/OowRGYmN+/hE\nVzn+yUFZbcIfmtqt/fB5FtDBn3p4IDf9y2CChueVHM0P6jBm8fpg38/JCn248AkP+aKhPYwK+jlY\nIZoMEtYrNI0tciBrbU7m2sCjK09dYx4NxgW8anNjCk19bk5leGWkYQghU4Yi/KFprTQ/GT9wo0Gm\nZFjfFKKpLhw2pGRh7sZP/MGjPfAyULQZ1ibjA6zxkDG+uR0NhiJronkJf2SnTRze0ObNCcYJh25z\nJfnee1gzrB3o5MiY0cRnotYH7QDDSMPoyZMTmaGTbBmMGM2cOCVnskWfPK0tDAA2/+LahCfjhcGE\nwZRHV9t6NvSpcYhXdBmpyLOXAWhbx2zwGQcZXMkl+SnvGQyntsDjZCcDAf6MY8ZJxm9GCeud50G/\nkhk8eEHXJ9WMi9Y0srpwMLozvulH/WFs6ZOeJ3Wng4/cyIBMGSytucaGtuLP3INv6xZe0tEY6Y17\nxi20tQl+uIwvJ1W1DR486D/GSbypa5xoU7Iw5rWJcdFLJn1k7tEvxjnaDDV0AfVb+7TH2MG/54RX\n13NrHcAbno0FPGivMs+VFyJomEfQgFu/xSN54r0+xKv65GP8k420tjT+yRq+ZG3OocswfjEM0ovg\n0QZGVm1CkyzhaS5ILmRvviNT4xU+MPqjNc04Q5esmkeir49z4vCWN2E8A2RhftVn5gPzQHKuTeqq\nFw7Pq7mRHOBG3zwEPgdWO8hNP3n2yEG6tUV9eOHQHv1hnmMc1PfmVziML/x57j2Lxoxx61lsnkYX\nTfIx5rSDvIwFMsKzZ8i8YV7QbjjJFv9gjE1h6xtcvLGgnjnAODMOtB9v0TVv4Nk84OWP+cg4qm82\nwPt5LD5lGi5l8vPBFtYHyqvTuAGjnHya8/UxeeDL+DNmgo9+OOUXF/LxITyPw1N1ycs856UFeXnW\nnA4mJ+O58QI+nsThQK+86CrLxU/w1n1jzClfdgJjzJxqHdEf2q4fZz3x+D1GL1orXBJYElgSuNoS\nuOENrxZMk7f70lygbWHhTMwmU4q2TYNFkqPQWXDmRG0BtOBavC26FtzKC7fK9/80QUvO+IQpXv3C\n8gv39U+DC/6hCvF5Hl73/F+q3h6+9uk3pwwskJQucAx5Nty8zYW+p9S0aQdjsUyJojzpVwu7Mr42\n7OPRFQYz88BXZrzYUL35zW/eNnR4nS7Y4GfZjR6fvMfrsbzKyIriafPCcJkSrX9Sij1TnjsKLlzJ\nd8bho9zbdFAEbXY8v5RxirSNqP7nfGr62te+dvsTAJtJDi7KOh+/6IgbEylRYM0N8UApo/ybOyhl\nNl/qULRtMjKK6mNGYd58kqELLrija2zIK99cYz5JGUcXjLZR5Cn/vLYbx7NuPNc249rm0ZhuHoNP\n/TYGFFZy1q7g0GfUUB8/6KijfW3Q5HH6Eg1eHC78wh+f+EYHr4X44JMFOmQi1Ha0hY2B6qrvGW5z\ngwZPPmDgUGfKV1lyxnO4xOt7eeLoa7u2NK+jp91kHh7w+K8+XJx0ecfi6qjL4bG5hxyU1dfJFw5l\ns2/VVw42L296+KuLhr4VgqkPyZKf7RDnq18IV/nyqrOHl45f/aAPeXKVH4/hgpdTjkcbd8Ybc4O1\nWR75m9PbBLeBVS9a4RWSSXygbeNkTjHHWLPNM2Sh7caRfjVe4c24ji/1zFPmKEYgz1D8wq++frDx\nMwbVt0GW1h6GJ8YwtHsuwKNhI2+OyFiiLcaD5xB/xp+2eOZ67tRFV/vQMqcIG5f40V5ts5YxJDC2\nMBLdezAuwWfT6PQWY1LrUM8+muqS6WwfvM17DDjWU+3jwOkfvDD+wKn95KTN00njy7ws5MituQIx\nnUyPAABAAElEQVQeXnv0CxzogOUbwz3byvRJ8w54Pt4ZsxhAGSDNAfo/45q+8ZxPR774d/qv08Se\nFXxbV8z1DDRkqg3JAE1GcAYS6zxjGIMAuXGNQXKzdjCkGd+M+njnyM6ft/gsHW3y1A6+5wYcWvqR\nDBhufBrtAIHxiX9t9XIXHwxP9QVe1OXIzJhQz9jmLhyMhHQn6yljqHbrC/XwgCaHbnHpZKNNDCOM\nNJ6Znnlj19rsNGenZ8mq56xnFS50yNXzz9BiLkBPP5JnxkXjRb36mnyMD33rxOW9h7EuTR7WXvS1\nqxOd2qUN6jF+esnD0It3/WOcoWsc4pkR28nHWw4GOM+BU5HkTYbmCG3sZGTPFbmrP2WljRzZ6IPG\nn/aQN9gJjz9zBz3j7rvv3k7wqkOnMK6NN8+yudFzVF+RY84YhcO4JRM86V/jXB+QIzk1PpJpOBoz\n0pXhKxecNJnhz5iAU7u0JxzqFQevLLziyqUnTnAc3sldPxlr1gY6B3zomE+1i9HVnMprozxx/ODL\n/O9Z9iwap8aM57k+R5tMyFMfqktOPQt4qQ34NV8aE3ihL3Dqm7948w4Pn7Wh+ZqcPP8MyMZrYyHc\n+L1weCbNB694xSs2Q6NxlnySEXi+fPSnnIOTfyxeXXX2MNKej4zc2uPZNf7IvDGzVTz8wB8eedLh\nD6b8mT4trq4xZT30lYW5zpyAvrHvhLd5knw58Nx8hsqTX/tn3swXx7852Rz08Y9/fHs5pZ/MHQ5u\nOPXqBUztVwe+2lo8WsqXWxJYElgSuJYSuOENrxZHC7d/jvWZlUnVxE2ps9BR8ChrFhmLqY0TJZ1C\naEK2EHDwULos2BQpE+5+Qk/QTcKF5ReWX/2zcKmzhw/PjRjGq7D2TT73eeCqM+HEgy2c5RQCmw4K\nNmVJn6RktdHWdxSaScNCSznl9TPfRg7+CRu9qVyUJ2zBF8Yj5YTSRYG68847t0/kKInKa2ewcJQn\nfqO7yfdZvGoT2dc2ypOTNk6N2hBQgimvFGNw/DEZJzN4KLc2HDaLTgoxKKhjc2wjxfCqH8FS0N74\nxjdub6wpvuDipRD/4RfOts1NAR7NBTbOncrDLyUdbiFF3Rhk5E1xNwZSENFXh0M/HqKrrLgy9I2j\nvLaLN8729TfEhx94GtvCaKofDnXle15sIrSvOuJ4RceGjdcGz5A8Th2bBvNhmy68gbVZCV4eWnuv\nnegnEzTxgoccWtMnB3zk5XHwzL5DT1n8hlP+hJOfzJMbXqqvHWSWqx3oiR9z4Z+0qhetZK2+stoZ\nrWO41Q3PLJ/5xaOTfMHDXf34nvB7nGAqP1YWjsIJU1309w7O8sm8Tax526aY4dAzbBxl2LORNrbq\nTzjUFXKNJXG4eTh441NofNW3ZAGX0FgqDY+1HS+ddKQPqMeB9azbgHnuhXQG9dVl5DPPMXqgSyb4\nzjBrPoAD39rNEIMeT6/IqMCQAL85RX3w8KFDLmgK4RIXcnAyVuDdqSpx5dZJm0h6DpzGn7KM0vjt\n+cMzfLXJvKdN1lNOm8nAPKx/4POcmAuso83pnj+8My7hvzFP7njP4VmZPgMnlLb5x5e+q6+V58Tx\n2rODZ+PEBpnx0RxMroxqXspZb+Dm6ntt1B7yZuAQ4hdedPWJ9qurfdWHAz0n65x4zfCmLl7x3zjK\nEI4PciRneMhAXZt6BoVbDgY+8qo+uNleNMnWAQJ/AsMYpf+sgU7bOglGFyID/HOF4tpD7/Upvnr6\n7cJB90XXmmWcJMtJFw48KRNXJk0m9xw+1caLdV1/4Z/cnUxjvGSM9uLEOCEbYyKe4IGT0y7PnDGp\n3foFf62txtfe4cH4YCxhSDY+4UffeO/FJxzwcero066oEDKk6lsw5EC30B++VmK8xYcx2ssMzxV+\nyVn/MQihaRyhzyW/5FWo3xtDyRr8lImxw0hIl2EU1leeN88vmXqG6ZJkrV5e29BVX18bt3hFTxu0\nzfjWz9rTmqtcvfBoQ32NNw4sOLjR4cDx8a6OZ6JysOiQrVC/6kdywntrK3i4hXDBo65+8szoIzoX\no7xnqjnceCL7C4cxbC4iI23zXOlLeLQLXfNqz7JxSi7NZ/CYn/WhcaoN9eOeN7h5fCrTLh6/2iBf\nffSF2kr2+ovs5ZkD6L90SWMXf9PBr68vXry4efOZsaZ9tQ38HGMzXbxyaQ5v+fpbGJyy8q01ZKbv\n0NQOa9ccF7PefRQe+J1lE+8DEMdj6pGHMe9qGnOL55Mx3TPpZQjZ6Gd9BJ5HgyseTXmzTDpXvrR6\n2mpcOGXOM86j65oBL8ecfm8uCX841OdKb4n1sySwJLAkcA0lcFMYXn2KRJmx4FmEUxAZ7bxdN6la\n1G3+KKd9QmURaHG02FpkeXETbpPulO+cgGd8wsx4OApn2Y0UP9aWPc/ByJ/x2lFe6cLyC+WHW1hc\neXELo/6z+aAcUIIoZ/qHYkfBozi0SM+6FCX9arFluKMQWXzDnZIxaU+exOHjKVq8uHoUA8qSUyg+\nd3eahQJWnS1y+ImWejeDi994lZ68zzgYzwh56BenRT784Q9v3vNH/udxcEZXH9tUO2nikzsKt02Q\njZdn28kXfQ/eZ6NvetObthOvFOtwRDNe922ofB9qC0OJcWJTw+GHN9aMM/3OSzd+whP96Mrf553G\nS0p9uJLJWbiCPS1EK49XNOJHHXHPjbJc5dEnkzZlYDwD6iif9ZRVV7z6xdFuPk1uexzqy5tuj1PZ\nMbhZZ8arv8e7xwOO37cpOGE49jilKwte+rR8MHu3x1n5xDFhZn6wwsbR5Ef+Hn6fBrN30St/j7P8\nGc46E16+55bBwPNsLBhLPV+eLa76yU9avPHTGNZPcJSu7kxvCO/HCQ9vLFsTrAN4sTkXxxvn2e55\nt2G3kebUMzfQFTK6ylduw2ru91xwcFmjzCEMTUJtttHl0dVe9XhywBM49dDRDm00z+Ajw6F62g2v\nORYtMHQb6xHDgrSNtbb1khJ8bcYjGB4+IRmjp/3mUoYEc6+4NuIPLutoc7t6yhl84GkNhh8+MuNr\nE554eUIGEgYo7bZ+aJd68JAJ/IwRDKY8GTO2xVc89bl1fOFFH5KJ9qBH7tPIi5Z89OI32uirR+b0\nDjTxoU/gIdf6Uhxd/cs1XuFSp3txe3EMN77JhAz0nzrVNb4YBOiw9x5OzIFn5GSU8IUHowRZ6Ctl\nnDivPfghV+3Th8YDPmonePHS8Vu+UB4eGV4ZxBxowJNxSR9jrGSQZKi4cOHCxk/10c1N3GSHP07f\n9lxNWPA8Fw/kbNzVt9pOr9c3dL89De1nwPPlm9OkDNFgjAeHMJzQpVd4qUuWnq3koX3owGE8oqPv\nk3N8wac9PDf7YsvY/YDnhGSg37WJTuNFhrFmf0KWDI3k0/gUoqOuPuHNH/j03HimtU0fawtcYI11\n7THOjDE8aqew+U0cfvB40mZ14EQTLs+g9usvHm/aoFwd+PPq9tzoH89rfRR+9XiwjJJ0Rs8veeCj\ncYmO51efkYmxjD5+8UkGPFzqJV9p/IGDg0z0o3HbvKHd6pALXGSqDvjmDu3IJXfw8CZHeMCRvXnQ\n2ITDSzFGRfqqe5a1vTEWn0K0jEO6rmecwR2f5nF44eeSyZY4/OA9X15hvEmDkQ524pHHyeO1K7mU\nT5bFg9sy7v9Rfix/wsw4msYW+ZhX7rrrrm0M3HJ4MWQf5eWSF12tR3DHZ3iO0QTH7WHlTRz62Pzq\niwCnXvFgbPuy7vbbb9++JiB//VK9cB+jC/9ySwJLAksC10oCN7zh1aJoQmdUpZCYUC1gFjNKQIoe\nJYES6U1bF8bblDSxqmcC3/sp2CZjeTMeTAtAYfnXI2zBOIvWhIn/Y7xOuGP4lM/64UhhKK1ucMqq\np5zc+QkbLXAUN0pXSlxKIKXMItnGQn1jIOUompQeGwhKXp8e1dfRER6jHw7KlPFDscIPvqQp5U5d\nOoliY0UBO+bCnQyOwVzvPDzhJ96iL13/1S/1WXKb7QjGqR8nXd/5znduLzSCnXiLzzBc8UHp8sza\nsNps2pB4Pm1E7zmcvnFCJJo2UG94wxu2PzzxrOfCFe7yrySE6zx4onklNI7VOQ/NY/VulLzzyONm\nb+ONIuuHKx9XcwydB1dyDNb4bIzKM+/YoNo8Cjnl1iSek28NAsNoxDjAKJehgP4h37rUPAYeDL3F\nXMcoIQ0GPptwa525kBFB2iYygwE8XGujOspbD8GJC5VpC75tMBkmMhqIMwRb58q33ln/1Mc3Qyn+\nrAnqg6VfoS0P/migEx/koT3xwuBhE3zvwbjoxJOQsUjbGIas64wuvLZbW+VnNMI/3AxQ1h4vy9RH\nk66gTUI0rftetNMBlOfg0DZ8w6st6NAtyFl96zw6+g9+hjL09M9sJ1w8XGQBj1OZtxyMCtYmcuS0\nG09CePnGlTi86DD+4RUvDEbWRLIgF30DH1nhr7C2oCMuXx+Bka6PgovXZFIb9LVxqq36xYtrPIGn\n8zCE4YdehgYHh3Zog3jprfDw0xiVRj8e0Aw2eRQmo+qiTz/Qpowz8InDgWefTztB2R/FGXfGp1O5\njDrd6UqWxsgeFxrxFF+NaSHeyAdvwugbP9WVp271C9XX92TJ0Kiv9Y0+1cfGHLnArczzJtQGMlBX\nG3n5xiS6nlky4MB6Jhjfo4G+cr6XPfGrPegZb+ae5ia8No7B4qvxrQxOLlngLT6NT88S+YqTi+ce\nTAZjtDyX6sPb2CQPdTzznhtjDC4uHPjl8Y4v5fn5bPQse4aUK+PVQY/TDngaY3ghJ+NanFMGhtd2\nLp7hwbM64trIoO7zeddWOdyjnnJy5MBot3x48GNud3qcEdB1Il5u4B9OMPnkXlg+HnnpxmFpeeB5\nZZy4/NNc+JWfBXes/rG6eNFuz6c/yXNAw0Gp/vBw/uHYnjdpfvIeX/DKn3WCBzPr6DvPDvrueWUY\nN+4d9HjNa16z/emZ08eekRxcXPgvVxbhWeGSwJLAksDlSuCGNbzOSdZi1uJvwbJ4pjDUYAu+ifcj\nH/nIpqBR/ltM4VKPC69w7+bkO+PBVaew/OsdHuMtHvB2Wvnl8h2es+pZAHmwwePFwpmPN+XhEqfY\nWAwpcpRUCipFhWJGOQGT4kghpaDJ05fw6GMndRjmLf6nOXU44aQPj3GEVopbCvPFw+dCGV5TEPf4\nJ6592fVO46V2ok32My8lZvKlnK//xNXLkf09B6Pohz70oe3uJArlLA/uPCEaNkpO1FBCbV4p616W\nOHljk85pA8Pr61//+h8YXtFUvzYFN/tzq3x//eKFUy7lrXBJ4HpJwHN1HnfecXpefFeT5nlw3aww\nzSvkf1YfkDvfRr35kJ7BYGAN4uVL01msWdYuRk1pIS/f+mPt61PiNvDRaBMvhA+d5kLrFt+8WBv0\ngXy4rFvWNvoSA4F86xs/68KPb/jhC04daQ5+niOjeBTKh0Ocxytjs3XZy9GMe9b3XqoymmT8JYfo\nqI+PZCUkT+V0hQyCDLI2+O4ptUaBUxfPjIhemN5yMI4yfEmjxxinbfgnf3WscQxZDM9OUfIMsHiG\nj16gj+DQTxmM8ENmNvyMWoxl+G4MqUsm0Yk/5XjUdv2QLguew5++Q1d7xUsHizYPl7A64KsDFn7l\nHD7wiF/rboY/ZeRCPtopTMZ4Vqexix5a4WycNzb1o7raBidHBvCEAx/aCraxKG4MkR94Tpl2o4ln\n/eKOXCcp6XzwZyimM+obBnX0lakv5OFprOEZD8lAH+JfmEzwEX119Rce8R2f4jx8tU99uNSl6xh7\nxgva2uWZoLMyntqvqKd98CiHS7z+VI+s5esH48y4NGa1QRneaiNexeGET5vU4ckfb3Bpi3FiblA/\nHrRNWTKUX5+ohx786jWv4Bdv+PJMahs5wGE80eU9OxlbyUVdMlKXw2u84QFd9T0D+hQ8fsmjflGO\nd7LiOfV4LtyFW+bhZ8KUB4avbqHy4vrLtRxOXDO+aqc6eHPC2nOj3e6yBduYhgN/5j56r9OfXXPR\neI0G2OmSxb588irOFYLdw0+cwck7C6464PHB6X91ypPWZn947Y//3G187+GFjrb6f4z+JNG4JI9c\n+OIVvj0v5Qmn28MpA+N5sI/42Mc+th2+Ml949ty3e8cdd2wvZ6yH0Uy20TmGd9Jd8SWBJYElgasl\ngRvW8KqBJsU5Qcpr4iwupBR0x4s3bu7hodQEA4fFDz6em/EtY/ycNQlXf4Bf1+jk7by8zDqY3der\nvLDyfbqGVi4NhmyFE57MebDB72GkKXI2Y7ccNklOK1BWKSTKKHROZ0xFFS6LuEWfQkmRpehQ3qJT\nGL+F8Rff0nBR6FIGtYUR2IlXioM/Q7gZDK/aVLtr50yLy+95mvBkmQPHU9r9OcJnPvOZTanyTIWj\nsDozrP7ME0eDjN3D5m04Geu/NlOUdnU5J2KdeH3BC16wKU+Uf/XxPt2xdh4rlxfsLF/xHz0JNMZu\n5pafpw0PxXh/KGherX5sXqwNx2Q8y/ZzUQYKG0Bl1iNx+YwKGRaEdBPl5jSbUgYGPiMIOnDQa/Lh\nla8eAwTfBl9+PCu3jsGdgQIcvHzxZKdufg8jDW++cnWjJx59edps7WYgYpAxz6tnXWd4qa3xj9/q\nwaN+Xr66eAYn5OgEDK82+4yv1g9lTmy6T5Nxw+kyRoCMidGBk1zJ1DrHsEeHYCRm1PN1VS/uM4wz\nHsHFAAQPQ1btU1caXm1Szulj+PW3dmmHfqkN6DdOwEhz+o2s6CU8mmSmL+FI1mDRyhimTsZ28PDU\nZuOOkURfCLVfGX6jIcxwl2y0i8cn3uMfD3DoZx5+7TeGG3dg5SkDA09tVAYWfS56yUpZOpn6jJYM\n4vR8cXwytuoXfQQP2aAnlAZDDuQilAcXPowX/YdeY8E4wCdH1rVDPbJqbCpPrj3f8CQn9fDG2Gi8\nR3caXj0X2mws4JeHk1yirT+Uo5t8kje6wWunOjxaZNDY0yZtlp7PFB55cq4t6qlvvPHw4QttHh/4\nUy8Y/MGf4dVLDLQ8K3R5RvFeWngO1U2e5MhNvvDAgdH+vDaizYsnN7B4nG6fVhbeY2X7cu0Ex1fP\neDHXfOITn9gO+OgH5fhzncCFCxc2nu49GB7pzcmr+vg1Fui2riBwhZlTmPY89cFsQzzFLzx8fVX+\nrEOOHJhj5RP2cuK1QZ3wNiadbvaVqbtVzcees4sXL/7Q/2NoOzfxSIdLPAcm+ddWZXtYbZUXDHm7\nQ9tVA04kO4FrLrzttttOXvWqV22njsk/+HBGa48/fla4JLAksCRwtSVwQxteNXZOjE3cJkn5nAmX\ncc69Loyu/riAYlm9DejwY8Hm5FcXvnBuhQ/znxaXY22u7HJFoJ7FjM/BT8bJN3pgo1Me5c7pR5+F\nXDgoLwxycFGKbYQoMvpXn+rr6KElnUJZn8oPt/hpLj6EFB/KHGWPpyi6m+iFL3zhplRR3I+56ITr\nGMz1zIufaJZO2SAjvMav8tIUGQp0cvfnCD7/9xbZ3Wo2FmDq67P6O/qF6Hj+9K2TSE4IUNxtWJ10\nZdRFN358nsTwKqQ8RVc5z8V36WjVttIz3Jft607YFV8SWBJ4eElgPv/7Z1+ZvNNgZn5S2eOYa554\nafNXcWFpOG1KzY3WnWgUwh+e6sej+Tfjg7x8dZunwYiXj/f93L1vT7DC6Alzx/LLAxPPDFoZfeRb\nZ3ntBc/HG/zqcbVlSxx+gi0tZFCiGzht5d5Fhlgbay9Kfdp74aBLWDuiWZtrR/TwqD/wScdgOGIg\nY6DED0MCPEI6AkfvQB+Mk5PWLvXRoM8I1aWbpKNIT5oMsgx1GULF03HQMB7wLtSH9SNe83CixfjD\noIVPuko+YyM49PBqzRXXFuW8uvoEXjwrz8BX/9W2DGfaom34h1OYDKzt4ITaABZueNUR5/Qrpx6v\nnMevegyq2kQG8QZOHL/arUwf6oPkB2/9DqZ2kqH6+s5pbDxHS5k2449TL0OmNJrKwKNNfkJyITP6\nEa9cPUZG4xH/YMlAH+OTvPCgXrjQS27g+fofTLTwggZ8HPq88saJssYeWJ6Tnwdf+9TjwJEnPhi9\n8QQ3+fLaT7bqxSs8ZEqWjK/6QJm2Mz4nA+NBe9CCc+/iqxBMY1981hNv7Ex4OKW5yrfEkR9wp8GE\nUzkvzZD3hS98YTuIQCfWXk77/UGflz2MqGDnFWhkQnbytYNBmjHaCyJzlT/Vs/dx+MQ41Taw+gJ8\nPMrj9umZp048b8BX6Qft5BBKfe4F1T2Hrw0YXu0VwDAsv+xlL9uMy1486PN4157Jo/xw7/HXrsrD\nAY6DpzJ50vYs/oSbEdgVZmhfPBiBX//6129XnOEn+U488OFtuSWBJYElgeshgRva8DonacJI+ent\nMkXJyQSGG/e6+ASEctkkrY4JljfhcsqatMUn7AZwk/60kMz2lFe7pWf55TZV/Ymz+uUVTrnOOPhw\n1LcWRwsiRcQbcsqHRd2nfxb2ew+bK/2951s6evEhLF9ZistZ/R1ciiul0idsDK+33nrr9mbaBuCY\ni6djfByDvxZ58QA3PmZavHQbgzY3QnJOqVZOmWTkZgz11t7bbP0AhiNHjkKcohKNKeMNaPyAzejq\nTb9+Bk9B9QcMaKGNf7h9HvTa1752U+KMD889HLXlSuU968X3YPO6RCcP14XggUhyO4veefk6D66z\n6Myy89KcdVb8xpXA1Rwb16KVxhu/f/Zn/uWOydnmfd3KhNHQrugHX1h+c+uUQThmXrhmfXmlKz9P\nHphj7lJ0lXPHaO7zN8DDT3WOlZ9Gr7pCMNYPxiunIH3eK86occvhyxmGDcafYOOtMPozLZ5+aV1k\nuAJnPbIG1SfoMkCBsYYyponLp2OCh0vd1lZ4OTDi4NVTPwNnofxwwsHjhbdGF48HYfjRzmg2Dapw\nZFRm9IMjw5jPcZMVfjKgCfERbkY4RkSeEY1hUBm+GRP7dF+bkwMe4M7AlwxqF3ngBV1tE2qPcvJG\nJxzoiwvR1lYOPF7tA4wB9NVVTqfj8KOOfOXoMLDrB/mMjGjhhwdXG/QlGulPyuEFr22NDfnkIaxu\nMODwo13hEoKHX5vwUJ/hSX58oCGPHNFWlkuW8mY+3HwyqBx8PCoLn3JlyQrveMZDbSM7Th081XZ0\nyLLxqb3q85PnyV/878PaIx/tvcPLzAfPTdzyZnriCD6YS8EpB+vEq2suvOQRuu+V8Z5MPEOPe9zj\ntj/Ucuew9juZDYZuKzQ+Jy2yc+CEPux0vlOz5i17jcYjPLOt1a8Ns13JoHbty640Dd8xmXvmnXD1\nh1ZC8wADtOvZnvnMZ25zsbGkfj5ZCmdbxNHwXBpHPReNscYZPFMe6nDyxK0FjMBOJTuABY+v615/\nMLzaz/lDxeaN6E8cVyqjVW9JYElgSeByJHDDGl6b8E3eLewpWIxDFkKe0u1zZX+wYHFrcm5ilRZv\nwg4vIYnzDwdXe2vLPi3/StoLz96Hq0UrGU6a5QUrPOb0L+XMpolSz1l8Ley8OBfuiTe+NoDDT+2D\n0wJrwRanHFHwhXiO7+rBUx1Kj83bxcOb0uc+97mbQkQZavxURxgv8TbLrkc8+oV7HuVrKxlSEimD\njNnineqh7LQJtHGRz9hqo1a7prySOVqVRyeZxE/lFHAnArwNFzK0o+WFiX+H5dGE0+bjTW960/ap\nkpNL4UyecMdDeecJ4+k8sAvm4SuBxuT1bOF5x955eTsvvku18XrTuxQ/16o8eTVvlC6c+WfJJHh8\nXgruUuVwRRc+6fAfm8f38NURRqt5eo+38vCDC2ZfVhreK3HRiF84wllZaWUTrvJZR/w0B96aTi+0\nvjNgZTBSR/nEH91JJ9yzTHzCVBZsuOml6IPVZ62JwSvnuYkTr3zlcIgzxjFgWHutyQxZ8sFap5VV\nVxocHcmpOuspeH2LD/oMjy4c6lrbGV45azDDj5N2TmeChVM5z5Aqra4ysu0krVAdxkBlYNCevNM5\n6GAZFelV9Dw6GcOdeuSmrnaD17Z0NPnSyVa/osnDBY+2gYl247/2qwsvXGDrH3BoKscTfPhUnt+E\ndPgBiwZZoIM/uKrHOJYcwE4etF8Z3OBzYPDEc8EI01nxxsc3XDz+csrAwCfkyiufnOXxuYm3suoJ\nqzNphT8cE195heE/CybYS4XRPQ3Xpcon/mALlcG7x61cXnDixpF5xp7TXrNrTuw9jY9bDnuGpz3t\naZvh0V2u6tqngnNS1v+PeKbqc7Sj4xn0B3EXLlzYjINw8Q6AeNYaX/qFazzji59jbvK8AT/IH/jg\nbyygh765xNcG2me+sEdiRKbfM3DWtsiHpzR8cHHKPFv2J+5mNZd5ZsxRnZqez0/1whUOfJAzw6s/\n4dNfrnO48847T573vOdtX9qFJxxTdhPfii8JLAksCVwrCdywhtcabGK0YDkd5ySef5PsbaOJmtJJ\niWoCNaFSUEywFioLJmWJ50zyM9wSN9lPi0ZtwX55xS1sLZYteoU1V53qhaswGDh6My5UbuElTyG5\n7+tU96wQ3Vlvn97Xnbwqq7+Dq76QosKIS6HGs/HRZkYc35M2HI0ZCsSFgwL0xCc+cXtz60200yEp\nPdEThgPN6+2iHd1jPIDR3pSkz33ucyf3HD4NuvdwipiymMzgEA+HeuFvDCVvclAmXZ1ZD659fQqk\nO3O9CXe/lRMCnluKmzfm7s7ytppT9ra3vW27EN+1BLmJM7qVnTesTcHHd+kVLgksCfxfCeyfm/8L\ncV/Ojfw8acPkb7Zp5te2yvdlezzBFzZPqrevG8yVhJeiexbO2iLkj61lx+oHr+xYW8oLbrZZXk4+\nubSWlF+4hy1/H064ylqHwh0vpYOrbjzL3+fVd8pmW4Kd8MqlwyfOT7rSe/7g2rs9HnWs29Zo8X0a\nPEMFAwXd2EtLa7w1lZ6jLD0HLfD0YGU8fAyY3UPqpTdDh3yGXAaLTt3K4+hHjIwMQXQk63SnURkL\n0UBTXTwxwtIR6V/g6GPqo8PLJyv1wKEjzoln6NJGeMGrl15Hv88QqR5c0hMv+SULeI37Wa7v0vsy\neCrn4Iwn/OEBT/UJerUfjsaBusp4rnxpOEtvhYcfuqiy8pNB6eAKlYfnNJhgrzSMh8Lacrn4ql+9\n0/gFx8/y4uTDTRmF71LhpB++S9VRPuvFV/WljQMGWPr0O9/5zu0Td/Wcdr399ts3/dVzYrwxBrp7\n9K677tr0XFeiGE+5nq/SxqEXIgyYT3nKU7bTsLccjLCeOWX4SCbi9U18xnv8hvfBhOFGF15pzzmj\ns/nCSxHGY4ZS84py7Zp9Jk+7yQSO+AvWc+4Ahr2Aax18AekksP+E0H7ynG2d7YELPXPOt7/97e26\nAV+/OmDiFDHD64te9KLtRC5eow0H+rmZX94KlwSWBJYErrYEbmjDq4nexM7A6i2je1ssYgyvfSrU\nxNlET7mjFJpg1bdATIXzLAE28YbzGCyYs8qP1bkaefEGF/rS5VmQWpTkteCJg7XgkYX4XOirf6w9\n4bTYk2VvCimyKdXHcJ7W1rNoqROv1ZeuzuS5cvwdy1eOV2OAssIIS1GykbAhEFKetXm2m/Ksrep4\nY8vw6o5Rb3FtTI5tVqsfn/F2rcPoRqe21O/S8aStlD1vgCl/7kKm5FQHDvVmWp768ooLS2+Z9/9E\nM/hgwiffW2enAXinWMnT84sXCpK31NL6k8LF8PriF794+3OUaIWvNLzRLE8ob7klgSWBJYEHI4Hm\nMTj2c8osi0Z5zUv7/MrDt8cZvHDClh98ZaUrly9PmFdmfs5V91jeHl91CqsrPWEnLfnxUL0JKw98\n67ayeAn/afWjExxcrcnyZr1jNKunrPLJR3nw7h049fEa3MS3h5euXLw65SuTN/OV5ZSjWXnpDDbS\nDIGdeqXX0JOFdF06TqdV4YBLXXoQ3U2a0dA6TE9izKT7gKHfqZ/BUh4c9COGTy+zGVcYQjKiToOQ\nuvSL6JMZfYwOyYOVngZQOsp09Ep5cOBXXF9nJFWfXgdHYwCP0uXVZnIKP1geT/XBrANHZcqnwxNZ\nwAU3hwdenVxl8uALz4wHK+9SrvqFk9ZZdYM/iwaY08qrj8ZZMPsy9cig9k8elYV31pvxPfwx+uGY\nsJcDB3biiH6hvhbfy7o6QuPSIaC3v/3tJ1/60pe2fabnyZ7hN37jNzYjX88U/ZuO6zN495B2qrNn\nqzGDLzSNc0ZM978+/vGP3wyQdGjXdTXe8Bc/Mw7H3tWuff550mjgz3MjjJb2+3rOnGJO6EVM/R7N\neJRfO5WFR7kyL43uvvvuk49+9KObjBixfXFoH+ZPEveG1/DXBrjx8jd/8zfbPbz2FWwG/q/jNa95\nzbafcJDDHDRd/Mnb45xwK74ksCSwJHC1JHDDGl5Not7kuwPSnToWOX/yY7I36VscW6QogJTB7q2i\nSHIUQCfpvEHbG5tOE2CT75yQgz2rLJhrFe5pS1sMKY4WeAuyBVueMvxTEsmRApvCeKxdeFaHPCc+\n8qSgy7OwUeqdrGDMTplVN5yF8vYu/uWLx2OLMdrVL6xO6eoWlj/h5BkPFBf8kw3lW/97+6wN0tGF\ni0uWFmaX5F+8ePHkBS94wcnP/dzPbXjwF537ajzQ7n1+5dcirM3HcMeHthXXXsreBz/4we1NsOch\nxRIM+bSpmLjFlReK72UmL48fsPn4M3acePX2mvdHAp5PhlbPtbfcXqgYoxxF85d+6ZdOnvWsZ213\nwcqDMzf5Ke9ah5P+g6FFVje7O48sbuR2nod/fXQjt2GNoQckcJ7+vFRfnoVD2b6+tPxZNtOtZfK4\n6l8qPeFm/IHW/nAsfGfRmLyCD2/5E+O+/BjeCd86M3HFU3T26ervy8s/K5z8hde6nZNXvj6Y61X0\nhOWXpw54bpbNcmXS0RCvvDr1e/nq5NS7VH68B1cajuiGT2jd5ukz9DwhY46QfhZN/IET8vLpitb+\njJjJEZy66UhgtSue1KEjWdfzlYOFHy/RUw/u6eWdJu9wgBGPD+2tHrrqh6My5cGoG67arAwfQk55\ncelkID9X+cSlLNrCYORXd59XunKw+7zSp+GRP124qlcazMwrLn/CnAWnbLrqTVzkKr3PUy/5TBzF\nw1X6WDhxgq+O/OKz3oSf8WBmncpnHrjT8sMxy7Wdbv2Nb3zj5P3vf/92UpMOa+/w8pe//OR1r3vd\nyYULF7Z9mTFs32Tv6n8TXI/HKGg/Szf3kgMv8UN2xjg92UGQWw4nPv0Rl/tK6dBo2Jcl48mXeHj2\nfJe+3DDeJh3zjPaSg72neaHnZ8KpK82D5SqPD2nXjr373e8++fjHP77t05x0veOOO04uHvZhDmM4\nUAUuXmp7OOSbt+wpGLgZXp3IZXh96Utfup14dZ0DuXHguT0vW+b6WRJYElgSuIYSuCEMr3MSbGL1\nBt9k7JJsi1sXlJu8LUYmVG8YGdcsUIxtlEiTP8VPfZ+D/Od//ufJvYdPqy1+0RGauPPqyINbSGkM\nluyLN0mXvob98kMLwqQXD2hbnLXZG0cLU0Y08BYhCyMjqbanCE+etT/lmSLeCQa4LKbkLE9dSgZj\nGZmKW3i5uRjGG/pwkysPN3xoBe9khH6CB3z5E8fk9TQZTBhxcGgZF/hHU/vxbExEU19PWviVxqvP\nUy4eFvwXvvCFP/h3TriDj44wN8vKu1RYm/Z1y1dfXPkeprJJI5gUHP1/72HsM25++MMf3j7tl1e/\nk5O+lkcubdaSTfjipzCae76UTxjl5O85dYqYAZZB3MaNIkr5dH1IdzMbvy95yUu2N9T+rED/wRHO\nwj3d+FnhksCSwJLAlUjA3GJe2bvmnPInzL5sD1N5dWa6+L5O6RkGGx5l5U24GZ+w54EPZtab8Yk7\nWDyA4eOnvAl/LC/c1Zvw54lXLzzH6gSjbMKVX570jIervNLC6opXLo+3rk5cYHKn5Vc+w4lX/kwX\nDx5eLt1VWjwdALy84KoXHjznK6t+dYKVBkun4+RXVig/XsRzlReWv6chPzrip+Ha4wHLHcuHj1c2\ny6N9X80H6gZbfuGEn3gqP084cRyDPw3vsXrH+DyWN+ns8ZxGb9Y5LR6uieNS9CeuWU/+MXwzf9bd\nx/e49uVXko6ffV20KqPHfvKTn9yMr77gou86nfrrv/7r29Va9hKeF3uo9qUOFPmKkwGW/ksPlnYn\nrH0RWA4d45+e7rQrvE7BPvnJT96+xPN5v7LaPmUff5XBty+fZcpPc3tc0nl1zAmn4aruHjf4cDA8\nf/rTnz55z3ves+337cG08c1vfvPJYx7zmO1KFHlc9QonXvsXxtZOFzPC2kP4eo53bZy98nJLAksC\nSwIPpQQecsNrk6+JtMnUYsPI5+JuRld3QTL4cSbSWw5vAP2Don9Hl2Y8gsei5V4XJ1x5RlefdTC6\ntQCgYXE0Aft8IYMlA6D6jHOd6Iy36lpgyrvWnYbPXPSlZ752MIzWDmmLT0ZX7c7QGN/qawcjl3pO\nCsPR4gmHxZxBl2woDQxzjGNOS1I0LJT6CC5efPImT32fnzCAoiPN4Y2cKR98uJThER/TzbbPOBh0\njjltQE+78J88MkBPWagvHS51KTkWfvcC+dTFOEs+we/pVn+ff1oazWRYm+Mj/qI1aYcPDIdu8PBp\noxPh+p4i90//9E8nX/3qVzdlRB9S6shEH+sXoT5wIljdaQgPNzrRE8/VZmXFlQUrjzfWvGnuBQEl\nynOGH7ziO7k7KUBJ8oafgTa8tTFa4Y6XFS4JLAksCSwJPPwl0PpytVp6tfFdLl+tcerN+OXiWfA3\ntgTOO86OjYFjdY/lXYkEjtE7Dc95aJ4H33lgTuPheudrc+3Gd7zLE/fFllOvvOs+6OtOa77xjW/c\nDm7sT1naj9DPfV5vD2SfyjsNywhrzyqfPh5dbU5HdverP6p1KtTp1/bA7SPAxqM4VxviP97vKz37\n93Jg95gm/5XhQT69395Dm9/1rndtxlf7fAc0nBp+7Wtfe3LhcGrYPo5TRxvjZ4/b3oYc2Qz8d4T7\nXsnMPs6BDl8v2u9ye/lsmetnSWBJYEngOkjgITG8NnFqn3jpOSFblFwvYFHzZtAEzRDopKs3fz5Z\n9ucAffZkkTJpu+PlW9/61vbJAeOrBc4Ez9gEPyOQE3iMaXA5LWtyhh9Nf+LFW0AzQjXBt7DF89Xq\nn7kIRGvirnxfxoDFwGhhZ0DDH54ZShk3yUTbuerCpY62O4XIyCgPLCMYOcADBk6LGUM0oyu5MOTC\nCd9ZfDnZyDieYpABN6Mr5YKRnMEPz3DBmYxn++N9tkM8+tXd54UrfieePS5pLuXGP5M+//nPP/mF\nX/iFTREg6+jt8ahXmfh5XP2iXvzDG55Jo3bAO/OjI08/kW2nksnWc+OkuGfIs0DOnLZQZhr7nhG+\nvj3GQ7T2YbCFyvETn+ULi89ycfmeS8ZWF+E/5znP2T4vkheeiTdc4dvztNJLAksCSwJLAg9fCcx1\n4eHUyrWmPZx684fbct4xe2wMnLfuD1O8sVLH2nVjcXicG7JP/tow2yHfFWZObP7xH//xyXe/+91t\nD+M+Uf9VYA9hD0SHp/PvdfkOothvuorA1Xr2sE7P3nv/n+CiEV1xerE7UF3L9YQnPGG7gsA9qPOg\nQvC1SD2ei//CCbPPq+xKwujt66JBFvacDMyf/exnN9m5esHehFH5LW95y8kznvGMbc9PZhPXXo7x\nLN8+1f6f4dWBE3vhW2+9dTPkOi1s7x88vmZ8z+dKLwksCSwJXAsJ3LCGVwY5b6+8DWNEYjRiKPJ5\nxYXDWzBGQ2kGPc4C5hLz733veyf3HP653eLFuCe/04+MauLeejmNaRJmzOVM0E5z+uQDXafx0JwT\n/gZ4jX4sAC0CaE66lZVXqD0WYQuuBYvTXm2xqDHGhQsOsgJPht4qUgicQmRwI28GVgY47QbXaUiL\nI6Mrw14uHgrhL64u/N4w+tSGYVg5o66TjhZHfcOjh8/aGP4Zhrc86ejNehbevdvDqTvxzUUdLDky\n6PtXUfeMMrwy9PfWFf5ZP3rqXqmDL96nYha+cAcjzaunr3h9bsxS3njPjLHsLbrPb5Rx8Bs32mPs\nw6Ff9Q08aIQ7+qeF8bGHj8/oCZNZ4b6M3Bm7nXi9eLjmwT+7Gq/g+dlP6kZbfLklgSWBJYElgSWB\nayWBuW5dKxp7vNa45ZYESOBaj7811k4fZ+mgIJJTob2LvZbrvNxR+md/9mebruoU6pve9KaT22+/\nffvEnX5LL6bHph9PXd8ezP7Lnsgn8l/+8pc3I67DRPDHA7ri7bFcyUVftk+xJ5YPJj/rxbO8eClP\n2+TPtLyzHPjcvt4sC0YYDaF9h8Mh73vf+7Y//rX/pvf7b41f/MVf3A5i2KuEK3m1X9znw88GwPjt\njtcvfvGLm2GX8dsJZEZqB4Imr+FQd+ZLL7cksCSwJHAtJPCQG141yuQ3Jz2LAiMQo5zJ2ARt0mVg\nZChkcG2BUV9ddZzYNJE7Kct4ypgElpEVPOOiN4tCi5l6JnZxeQyMFj5GRotgCyQa3D59X+6D/8VH\n7Z8LwYwfo6IO45Q2kA94htfJp3yeEZUcGBWddmV8JRvOKUltZhAlHwsbeQkZ9PQDGXFo8PFcvHww\n6l44GMedYGTcxl+KBTmjxxA4ry1Qj8PrdPBOt08rS3bilZdXWllGenl5+bVFeaeBf/Znf/bEJz2M\ngT/1Uz/1A1mBnziluejdlzr/L1z1l7Yfw5OiMcvE9Y3+YmBlbNWHxrAxYPx6Y87oql/RQEs97aQI\n6hf54DO61pbZxujOPLyqT16eS2m4OjU98SUNeMJVm6PHEMzQ7fMib/KN0/prwgYfnnCvcElgSWBJ\nYElgSeBmlMBcW29G/hfPl5bA0lkuLaMbEeLYs1lfpps64PCJT3zi5O1vf/u2v1HuujL67POe97xN\nnwWbnqyd4RCioZzebI9En+/rTaEv1uxnc3Rj3uEJX38+85nPPHnqU5+6HXjxFaPDLmjBy0ertkiX\nF85ZVt5ZYfBgJq6Zv68fnHbaqzCS3nXXXduVaPYSj33sY0+e+9znbrKzPw1+j2emJ4w9pS/8/MGW\nk7Tk5rq4V73qVdt+zoEg+9Pc5HXiqXyFSwJLAksCV1sCN6Th1WSYZ/CzIJkULSQWGwYf6SbN4uAY\nnHz6wQDEMQrxYBignKC1SDoRaJJmvGLYZcBy1QAvz8IQfnhmXPpqOXxNh84+T3n5lUnv84Kb+RYZ\ni7C7VhlBu3OVTDhtZQhlvGO4k66+cjLly0N/8lDfKOc5Rj2nip12RZ9hT3/w8AsZEzPOVU/dcItz\ns+y+nAd+p2LxQO59MWXGSddTdLLXGDA+8DTdhHcNhX/A9IaU91mP9sTbMZ4qmzjPE0+26MOxxy3N\nV47vTg0bxxQLd7ka98rgIHPGci8RXN5Pwamf8ASGh5PTF9HZMu7/ATNdfKjXuPJm3/jyXOpbvJGv\neHj3eOCEi4sXShcF1b1YfRIUf3veqrMhWD9LAksCSwJLAksCN7EEWg9v4iYs1i8hgWN60CWqrOIb\nRAL751Nfliek8/rE3XUDjH7yGECdeHV9li/o0uE1SXk4Ghfy2g/Y99qTMsC6foCB0tec//Zv//YD\nvRoedenOTrs6JOIrQwdFGBgdsOlOU7DToTP5UYZ+Lp5KHwtPg5/5+3rK4LY3sO90SMofaDM249e9\ntf4Ey94Rf+1b1Alv+4Jwyw/OXp6MnBj2p2eM1mTixCvjNCN1X7mqH07x87QZ3HJLAksCSwIPRgIP\nieH1PAybEPljk2wT5LFJM4NedZvkLYwmZH825BQggxVDownfZM0YyHCVsSj6k9foypu0J8yVxOHd\n45u04JTmGbhakKZxeF9fHXCMjwxjDGT9CRejGVe7Ge0YoTOIhn8DOvxIq2Mxt3Ax4KLXHySRLRxk\n6a0sGarDAMtZFOUJ+WO8HsvbKp/xg4Z61U2OTvc6MdldwAypeHEK2kLsLiF8Vg8JuMjKyUufu7ij\nyclLnuGVwRoMN+ttGYeffX+Vf6kwXNVPgZj1wOgrfWTMGrvGstPdjK7agjcKmL4W6kufKTG+epkQ\n3j09dMqbNIvHl7Q4GZElQ7bxxGfERxOPFCrxxueU254WnDy+X/jCF26fGFGU4J208Z+rTukVLgks\nCSwJLAksCdzMEtivjdoy18CbuW2L9yWBm1kC+2ez5zK91N7RQYhPfepTJ7/7u7+77Y3ovU5bvuY1\nrzm57bbbfmAEla8+nHz67D5tz8QA6/N5uBlg/eG0wxR0f/svMOrbF7o6zoERhtdbDn9Abf/ziEc8\nYtuv0a/ti9COTnp5/SI/V/tKX60wGuRmv+gAlD0Ker7CZHy1V8Ur175FeXwLk2F8BUdejNWufvjY\nxz528qUvfWnbt/pzLSdpH/nIR257OfVqYzyVDucKlwSWBJYEroUEbgrDaxMjAewnx8rKly7PosQA\nxDBoobJw+bOh7o1ltOpEbXWEcPHlJfhjNCq7VmG8MHYxfmbMZGybhmL0j/FrQbaIecsnZDjj1LVw\nCy1anT6NXgsZWHW8gfTpzMXDfULeriqnEFjkeAZBp0l5b2rJNZfcpCePM39fVt3TwuqGL76FFBBX\nBTzmMY/ZQkZYVx0wunob7e1xJ3urbyHnydji75oESpMTr/4kjLE5RaU6k7f4mXmXG4eXD1dxRu17\nD9cGGLvGMMMxRYyBU//pH8ZWfUzBktZe495pV0bbeC48xtukW7m88o0l44+hFZ3ooW08OGWLZifJ\nPX9c9cMpxEe8kCtDq38ydS8W2WfMrS78uclTeStcElgSWBJYElgSuJkl0JqoDa19N3N7Fu9LAg8H\nCcznsvaU5zkVp/vaW/zmb/7mdpLTHujC4co1Rld3ljKI0nXBC+m06pWeeOUpL6TD22/R/b///e9v\nhkWHiNBMz7a/Y7x00MR+zQESh0bsX/DhBC5dHU6ucNItfqx8lj3YuHZ3/Zywwxz4a581acRrMpsw\nlYG3j+2eV4ZX1z8w5Lo31l2v7sS1v1OnerMfJ80VXxJYElgSuBYSuGENr7OxGV2OTZbgTJx5Ey/P\nMMkAyLjqM3qnXJ0SZMBiHHQKcJ56nJNvEzLce5rRCR7M1XbRtLgwojF4WTwyRmU0ZejKYIqH+Mbb\nxGFRg0eeMgt1cor34KVrY3k+V7FgOZHYwgXGos/gyqhNtjyDIHkzeOfg4dQ55qJTPx+DmXnB7/nU\nRgZBBld3BT3qUY868W+f7goyFr797W+ffOYzn9mUFm9bc/EnhMPpVm9GGZoZX71FZngN7lg7KoPz\nWHm0TgvV1359rr4+YhymcBm73nQzunrbTeaM5vW9uvqY0sIbL8rU1Q8Zwffyjef4leal+dJ44qUZ\npp0KpuSh1csA/KJFrjxlCr3wqY9H8GArR0cZ+bqHyVUDFFS4c+GQnnxVvsIlgSWBJYElgSWBJYEl\ngSWBJYEHI4F0zIlD3t6lr5dPz/Y12m//9m9vn7k7MGHv4RN3hld/gEV3pu/Cl0/PDo9QHhcvaNmv\nOmxhj9XVA//8z/+8Ha6wV1AHfvs1dO0XGWB9uu8rMl/xMTrKB4uP6Y61Edw+P95m3fPGwwWHfUB7\nE3sWPp6CCy/4Y7won/zAaV/qnld/dPaBD3xg20s84xnPOLn11ltPnvSkJ20Hh9CpXvuiaEdzhUsC\nSwJLAtdCAjeU4dVk22Q4G7vPl86oI2SItCjxFjufWDOwMlI5Jchw5S3YPPkHfxNuNIVNyOK8xYAx\njkOHQcvkXt2t4EH+RCs0aDJSOQXIIMWYyBAFzkLFsGUBZjyWjpeJJ5lpD/6FGeqU5dFEy+nFjF3k\nlGEsQ6ZPNby57eRnfYAX8v2Hf/iHHxgHnShmGIyv2oU/Thj9yfMevnrVmWn1Jz4GPX8e5ioExmGK\nhre93gBrt89ZvvOd75x84Qtf2JQWfEcvPHCSE+XFPaNPe9rTNuMrxeVqG16TwWwb+pzxZRyTo09l\nvvKVr2yyZWhPbuDwmptyrD3wBD/pqRNMNKsfnHzxlKHKjaVOTsvjyNc47PlonG2F9/+QKaWPUZvs\nGed78WH83XL4NOrVr3715p1YlpeLl3iVH23x8mee/OWWBJYElgSWBJYElgSWBJYEHloJpKfFxY2q\nr6Vvxqdwz7u8+K9Mmt7ubtHf+q3f2vR3cA4S+JOtV77yldtpVLptNI7hmPjU5+TZr9D56fX2f/YH\nDmQwwjr96us2+7aph8NPn7Yn8mfBrk5zGMW+bu4forERO8dPfJ8D9JIgcx8Gb7LRTjyWB1F01REv\nXR0wjNAOAbn24b3vfe+2T3b/7Yte9KJtT9fJ44lb/b084FpuSWBJYEngakvghjK8zsaZCI9NhvJM\nuhlYnf5zTwz/v//7v5uBlZHVSVdpk7AJnDGIU58zYc/Jm+HOYuTuSgtj5epyYDvRl1FyK7jETwsD\nsGiLm+Qz6jJ48gyt3lbyTrh6a8nQhXftcGrTgqt9jK6deEUDLp6Bi2Es/MqktS9e8GFxZizja7v2\na7u2goHLG1MXnjv56fN9fKKDH/Jl4KYAML4ycjN2M3xnVJs0xWcajfLQ5CoXT14zLxh5yY8x78d+\n7Mc2pcZnNq4W6IQwOZCTcWIxZiB24rl+bbFFK37g1WZ3AnlbLQ5f/OCBCz7+Khfuy8AHp63oBqdM\nWj6ZOtn6jW98YzuZ+3d/93fbC4Njxkz1cuEuLYyfyoSTJpjaLz5d/M88cbKZeMQbLxN20jGGjR3G\nbH3F6OoOJs+ocWjM+RzqzW9+82bcZyzHV3zDexo/k+aKLwksCSwJLAksCSwJLAksCSwJXEsJTD0+\nOvRZp17/4A/+4OTuu+/edFyHNp7znOec/Mqv/Mp2jZZDLjk67jQwln9WSBdWxz7UPrD/rvjmN7+5\n7cEcMpn7L/q1QykOoviTL3u5n//5n98OpbTXjZ42Tb27uHxOurzqXKvwmM4vb7o9L8p5+70vfvGL\nJ+94xzu2/nAgRx/Y0/kSsv1w9Qsn7hVfElgSWBK4FhK4oQyv+4m2SVTIEMP45CQlww0jn39E9Jl7\nVwcwsDGOWpAyVKnLhUNokmUMEmZ0ZPTkGRvlqw+XBcxiysPPM1ZmuDurU+Dhoy9kuEKzz0EYVxk8\nLcbiDL/ivEURLUZmBjkGTQsKHw/w+XTE4o5/hlGGVvkZyTqlCF/txr+2kKc2kq+62g8fHAyY3RnE\noIm35MIA3MXo5M/jSz7ewE2XHOTNeP2DV7zlLPR5MMFVHw7w2szoypMB3vU/w7CTlfpQXDsZrp3m\nxRt62sOgqq3gKDFCdF0v8LznPW9brF07AC6HlxQReXsjobz4xaf4bLO6M40/smRkdX8Tw6txzTCJ\nnwfroiUsPnkMPz7jtbCyGcKxh628MmlxY5vh+mmH08OUPX2mjU4FMNgbK8Yleb/tbW/brrOgJMan\nsHg0VrgksCSwJLAksCSwJLAksCSwJHC9JUD/pcdP3T+d2H7Kl3Uf+tCHTv7qr/5q03HpvgyvT3/6\n03/o6zl8qwfPeR34XPs4+0OnX7/1rW9t+rUrCOzv2mvY73SQxpUDjI9OgdK73f3a3mviRiPeyp+6\nONyVz/x4uxZhfBzDjYfK/c8EWbzrXe/avnS0N+y6Ae229+NmnevVhmO8r7wlgSWBHx0J3HCGV6Jv\nAjSJNpEKGSB7u2dS/du//duTew8nLhmuMoSCq/6x0ALXIsTglrFTyNhpAWJkZaBDz+LFkMdAJC9D\nrEXnLBft2oMmn5HUQsD4mtEVLzwjVF5dhjcGw4yuQnfYMB5qi8U0wyN8jKfagJZyPnwMvpWTF2Ok\nz1P6MyT1yICRES5G14yZ8JFDBkpGQYZW9Rks4dIPGVxn301Z1J/4qq/QZUBFFyw82hy+6oSntHZZ\nQBmIeTjAMP6SE970m75KSVDOkzsF5Cd+4ic2GeLfm2LjSz97OUlmhQAAQABJREFUQ+rtKOMrwyt5\nwBHfE5+86eKzvPgtv7Q+YBxmdO2Pv773ve9tRmxjkAs2XFcSRlfI47e8KZtL0art4Kq/51G+saJv\njE1ydFeuz5ycajWGXJ/g7iWfR0kbl/5Qi2LqHmFj7jQ36Z4Gs/KXBJYElgSWBJYElgSWBJYElgSu\nhQTo7/TR9H96cTq0gxP+3In3h1g+93/rW9968rKXvWyL05G5K9Fn6ezq8dGU56StQw1Ovrp+AN15\ncAO8vZY9k+vTHIZgCGZ8tf+d+4Ipr8lj7au8dPyUfz3C2h5/wmRjP+cgy/vf//6Tr371q9uexElf\n1w1cvHjxh4zfsw3Xg+9FY0lgSeBHWwI3jOG1ye+07rCA/Nd//de2sNxzzz0nDFT3HoyuDKFcxh6G\nRUY1hp8WRAskQ5YQXDBChsaMnspM3IxhjJEMnBleGRTVF4LhuSb9yX+LkBAPGTQzLjLiWejQZ3QC\nN3mEGz55jI94wA+PN8ZE5ep7W+nuTMaq2q0dcAqnRyvjLnloH6Of06oWKo48nDiEz2fhjGdokT9D\ndCFeuu4AruSSHNDfywj+ysXJBj9O07p3h/GUw08nmbU1BycXDvW1icGWHCgUyrz9hYPspINXFw5j\n4yd/8idPLh4WYJ/A48H1Da5LcCk7mVy4cGE77crw6sQm2WoPeXL1kTic8VZamJv05elXssSjU59O\nuFISvLHGx9U0uqIXb0Iy43PakS9PWJ3Ju3qllZMFWZKfccJ7sWBsGz+8z5u8XWeAlTbmPv3pT293\nLzm1rn/1IaPsr/7qr24X4Bt/8Rg9IZrxNXld8SWBJYElgSWBJYElgSWBJYElgeshATrp1EtLC+3T\nGEA//vGPn3z+85/fDhjcfvvtJ3feeee25+iQyJXos/T1dOFo0pcdVrF3caDB/thhDl+F2rPZcwRL\nb7df8j8Y/vDLadxbDv+xQO+2h6KPp38nR3VzxScPyq6kLeG8knDyIY5+snF4xqnfTh3rD9csONjx\n7Gc/e9szX29+r6SNq86SwJLAw08CD4nhtUlyirNJdOaJmxwtGk5YOuH65S9/efPe7jH2MfxYLCxk\nTn4yQjqpKU9dhlkLEsMiAyZcFh4GIguM+vAwADl9Z8JmUESPkWga/uINr/Hb5D3TFi2ewRUNhijG\nQYYnIdrKODTxhUd0LRB4lp8x02JSHB00tYFh9Md//Me39mo/Wlww8dAiKtReIfwMlPcejNdOepIP\nOoxo8OITPnTJhKEQTAZsNPLwqTudvMrLn7ISh//CwcDJMEcJsPAzljKAemObYQ6enHrhQQMOhmz8\n4l27OoGLV3zFh1Bd/XDxYHT19tm9oxw5UFbcreqeWnfbPutZz9qMr94IMypOF055kyfpPb/y8GEs\nkSU5Uoi+/e1vb3edundWu6cMa+PEBc+VuHCR1+QVbjQn3fBXZ6aNWd745cldnzGYN7aNHXkUO3n/\n7//9v2086RtjyUnkj3zkIyfvec97tjf08vQhAy3Dq3uYPL/GNzfbv+cp3la4JLAksCSwJLAksCSw\nJLAksCRwvSSQfjp10/RphyjsVxn/nLp0uOR1r3vdZvhz8MPBGfXgmPUvxfsefqbF7X/8n4XTr/cc\nDikxQPo60d7I/pcDh759jv0N4yvfAZj2x/hqfycev7WRnj7pX4r3q1mOLo+/nDRnD21Px/D9uc99\nbos73OHEK8/QPOtVf4VLAksCSwLXWgI3tOG1xYhxxps8pwIZxpwMtLgw2DC0+lycv3Aw4kkzwDKU\nWWSczPT5OG/xYUBkkGvSFWf4zLDIKMbLU9ZEXke08JyWhtdixOOv04AZh52cVGbhYohjcEPb5/Hx\npmzS3dNEo0XTaVFGV3TUAZsHJ86RIYe2fLR9ik8ujMy1VRnjGnz4UI+HO78hOvzs+Sq/MD5mveqQ\njc9vnCZldPVPm3hzClQ/f+c739l4a4GHE288ODwy7Gk/Ix9FAZ/GBVkyYDNyeturbRnQ1aVoWHxf\n+tKXbp+4g/OWmJL0la985QeLtNOujK+UEfWSZe0r1D6utknjMyeNxr0HRYBB2RjWPun4Ure2Tjrh\nDteVhOE7CxeY4PAhDl5I1savZ4yB9MLhOeMZXBlfec+bMcmL8/rYM0gW8Ogf/cvo6u4l4w4NY80Y\n+LVf+7Xt8yf9Wh3tja8rafuqsySwJLAksCSwJLAksCSwJLAkcC0lQJ/l6a90XwZQ/2fwJ3/yJ5vu\naz/h5OvFw8EP+5/2CefVcenm1dm3o/2D8vZ3jK5O3vIOezhMBC4dHw57Gzp8d78+9rGP3eJzb3ka\nzT0P1zNNzjnt0Y5kYM9nv/+Zz3zm5LOf/ez2JaMDIc9//vNPXv7yl2/Xx9mfnFfu0VnhksCSwJLA\ng5XAQ2J4Pcb0nESVmxDlCU2mToS6asAn6CZUeRYLp+N4J+0yQJqALRTqM2wy9jDW9ubP4sMgxzOw\nMtIxevZJhgVzz0/pJup4w2tl4ugyVAn5eHHSVH71M2haIMXR1Ca4wp0MShfCw9hoYWQQ4zohy4jF\nW1TQh9cihAaHH3jRZaBk0GYUBCc/mkIOzRlOmK3gfpjyy0MbD3jN8BkNPDipa6FnyGMsB+cNsZPM\nTrz+x3/8x9Yf8IHXJv3LM17zTlMyBlpQwTCY62ttYnDPiM4Yaxxw8DzmMY/ZPml3vxEZGk9On7p7\nlILibal7SW+77bbNEHjL/W9Hkw08yUecjOobaU5fGk9OEzu567Q2xcdpWgZvNMgjB56bciwvmCsN\n43XPY/jqY2mw9Z0XGN7Muw/KlQyPeMQjtpcaXZOhzzpBXb34h0M83OLGgWeYEsr4ql8411v45MmJ\nVxffw59TjyOLcFe2wiWBJYElgSWBJYElgSWBJYElgeslAXotnZSem44rnpPH24PQ/d/73vdupy/t\nWV/wghdsX9ul66bjVvc8YfjBTr04XoT4sy+0l7L/dehDyBhsbzL3F3DQ5eneDMIXDgcr7M0ciHBS\n1H5NWbzW1uiVfx7erxbMpC0+ebDftc/y52Z33333yde//vWtfQzfd9xxx8kTnvCEbQ9p37jcksCS\nwJLA9ZTADWN41eg5kSaE8hgHGdM6zcjoYxFzOo4RzqLB7ydSCw/DmkXHnTfu1PSJPUNrBldGSEah\nFiI0oxsfQhM7X3kT/YS1IOUrVzeY6h5Lhxs8N9PhEnbalfGVHMhGW7TDyU8LpBAfFiAy0D5OnnaC\nZYAmC/HaHs3CrdL4iY/4lybzjIjS+oGBlOEOnH7j0ancos6gZ0F3OpIBnJGSYdIpXGk8waV/GVf1\ntbYxnsqjIPCuGeDQgOO///u/t0WXsb42ZnhlqGZ4fepTn7rd+QOfMdFn/5QSMlLuKgIh46421uYh\njq090pUlW7TvPZxopXQ53eo6AUZlfIANPnlOnMWDKX2lYTTCt0+Ht77xXDGy+sMrfSR0Itl4I3uy\nICNOnT1e+eQgH1z0GJv1LSX0T//0T7c+AqdvXTHwlre8Zbt2giF2jxMcPOFCY7klgSWBJYElgSWB\nJYElgSWBJYHrKQE6Kn107n3SiztkYu/lsJBTr3/0R3+0GWIZXF/1qldtf97r8Eh4zsP71KsnfLq2\nPHGew4+9ob2HLwkdLPHH1PZIHf6AMwfensv+8cLB+OoaONexuYbAnsB+yZ6zffa10svjH1+Xq/Or\na99rP2hf57oBBlj7z6cd/lDsla985fanYvaotaP2r3BJYElgSeBaS+CGMrye1ViGQ4uYxcKkaoFg\nsGMIshDkWvikTcDe7Fn4vva1r22feDtN2YlDOOFqMQtHoQkfPiFcLVDifAuCeE5eXt1j9YIV7nHs\n09GXL25RZGj0mTcjIpn0eT3ZMFoxUDKeWVQoAGC0U1yo3WAZbBkC5deGwngrHV/y93nK5OkLfF04\nLNi3HE6JijNAMmb6lJ8RlNNfyp2mdFKZXLWBUc4doBlJO9VKOWH0098c/tHTTvnkoA2M8hQKhna0\n0Ia3KxzUJTuGRB5evKPrNKp/AWXwJeMnPelJJ694xSs2w6v2kGXthgfPFvLGpXGGb7S6O9dJ107v\nGnPgJ45kKk88OU4YtB6siw65G0NCihV5UqT4ThKL6zf9wzuNzDBqPOnfvZu8Rkde+fLKN94Yud15\nddddd22nk5W5ysG1D+RtTNTPE4d4ePY8rPSSwJLAksCSwJLAksCSwJLAksD1ksDcO6af0rHlSwvt\nB/x/hC+97jncuWrf8uIXv3jTdxk108vPw3P04M6nJ6sfDzNPHcZXXwPa4/gzXwdU7j0cDGnPZY8Y\nv+Gl79P/Lxz2Pw5gOP1KV3cvrH0UPd1eqT3qefg/L8zkvzYdqxscGPFCbbYXc+ClPzjTD65RYPR2\njZy9I/4njmM0Vt6SwJLAksDVlMBNY3jdN7pJ9li+MhMvQw9DnlOHPiPvXk1Gx1wTdWmhhSTP4BZM\nxku4Ofm5Ju+ZX7myWT5h9vWrE4xFmceHhZAxknHMwiefodAn+rx2WUgYMxnKMmBNY2sGQgstnqbR\nFc3J556XysHMMrJi8HUq0p2tPAMag6jPXLxl9amHRb56DH0MetqElwyl+NFWbYTDZy5OnGoPuft0\nhxFTv2q/079waCNDqzJvOrVT/5NJhlp8oktxoPyQFTgGW/jAc/A97nGP2+4CesYznrG96cUTh384\nGXSTuwVdXBvgouDce1BqvGUG23jZEIyfZJHM8cdJlxc42H1eZfsQHvwmH2NG/xgz5EqW2m+cCIvr\nL7C8MmkyQjte97TiaZbPPPHKKEKu+/jEJz6xeQZyY9QJAPcukbVrQ9DMTVzlrXBJYElgSWBJYElg\nSeDqSWCu1VcP68K0JPDwlQDdPv3W88PTvafe6sCFPYFTr67Ysg9ygtRBA/81YT9CZw/PpaQVHfCz\nzqQZDvy1r8AHHdz+iHcgpivQ7FWU2a/YS3HRUd/+wVeKrhxzaMXezMEVezj7BPsweru2Ry8eriSc\ncq3+bKu8+BOiKUwm4triarNPfepTm+y196d/+qe3vYZr5Hwtaa8X3sLorXBJYElgSeBaSOCmNbzu\nhWGiNVl3CtEiwvjleoG//uu/3q4aYJRjhOOaZJuw1W/iztCprEWEQVDdDJVgr8RFd9YN177MImZh\nsOg5oejO1NKMY8oZXhn+puHQIsjAyDNswWsRIhNvPsWTA5nloj/5KS+YyqSVkRU63oj6LOXRj370\n9udVrhlwAtTnLT7z8MdVjLDcHsdMK9dGxlZ/gmWB77QrI6l2wsOApz2UBHzol/pem+CceMFQDBgd\nef0KX4pGxml4yNvbXUrRM5/5zI2HDJBwe1tsXLm+wkleJ6rxBZdytHhuynfLGD/ByMLrsfQ+H+yE\nE2+cGg/6g3GVQsQ7veqtNYOmNOMrecpnXG1cNc7jRXiWmzyAm7KWPlbOaE5e7lz6/Oc/v51O1s8+\n/7n11lu3T5rwHi/hCHdp+JdbElgSWBK42SVwbH6/2du0+H/oJdCaOTnZr597GLqKtRdcZdXZpyfe\nFV8S+FGWQM9GMuiZKa3c3oCR8x3veMe2FwLzlKc85eTOO+/cvqqzT0vvVW/iCP/MC/eDCe2H7V3o\n5Lx9lS8GGWXtEx2Iab/bPgaPDmowvjpgwxhLh7fHsJ+gv9tT2IfgN56La0t5p/EOZsLN9qtbmTC+\nwh9u+fa4DtM4dOULOweA8Oi0sb2d/xhhNG7Om/xEU144Z/mMT9jyL1UnuBUuCSwJ/OhJ4GFjeDXJ\nOnHozaK3XAxzFjqXiVtMTMS8SZaBihGzE30MhAyYjG/KLRrTNcFbhOCQPjbZzjqnxU+bkCc+MHjA\nI6MmQyC+OPkMk3gX1m7/EO8UpjRYxldGNgZaeHrbyfglrq2TZvxO/siJl1e7pxzR8OdU3oIyuFqI\nuweIonHvwfD9/e9/fzN8M1QyEB+jGW0h3rWL4dYbSWHt10faCa8TprUhnvG2d8p4crPoMjiSKaff\n+8RGGj58g71w+Lzm2c9+9nYXEOUCT/qfQvKFL3xh+3yFMRlP2pSH5zQXn2CLgz0mE3LgU3zC2dgl\ne3G8GgvaRV6UIPfmijO2GgOUOmOA8biwfo325GfGo7sPqye/eKH6+cr1jdPAPv3xT6OUIUoRBc49\nuoyvxhE55+ID3uKVrXBJYElgSWBJYElgSeD8ErCWHtOTJoa51tJBuNb2wvJnvRVfEvhRlEDPRG2f\nz0959HiGTqcvGQEd2rC3YXh9wxvesOnrdPNweb48pxPXjIf3wYRo2f84wGLvaG/lKzQHSxhknRB1\nNZgy/HPq4MO+w75CG5zYte+w93MVAe+QByOsfQpY+w1tmm2Aq7lolkXjWNuqA148WOn4E6ITLBvA\nRz/60e2wh8M29hr+v8Oe1Z6wQzUbgvt/1M1Nnsub4YQt/1J1glvhksCSwI+eBB4WhlcGMwZFBjl3\nalo0hO7t9AkFY6TJ0QLgbVyfVptwGc4sLOqD48DlmrwtEBnBjk20wV8qPDYhT3zKeYswo6nFywIH\nJvoWGcZIntMGRi2e4ZBrYWRk1Gb1GQ33J1434N3P5IEhjJy4TpSSN/wWXYtt1wu4asCCyzGy6gMG\nVwufP82y6F3KaRt6+IYrAzP+1ddXFBhxeVOe0nsHH17JEb9Oeya33ujCoX8ZYhkDxRkuffr+9Kc/\nfbvuQB/IN8Ys4h/72Me28SWPo1igX3rPhzQ68TjjlZW3h5HPaQd59HbZ+NC35ET5YXClAElndNd/\neOPgPaYAbYWX+QNXfIZ7osBzXr6xy1hO4XTi9Stf+cqW544rBm7GV6ebtTFXu9EpXtkKlwSWBJYE\nlgSWBJYELi2B1mrraPFqlW6NDUZ+Bo1gV7gksCTwfyXQM6Sk50i8fKF92je+8Y1t7/CXf/mX237z\nuc997slb3/rWk0c+8pGbbq/O3qnbviJdfg9zJWl4w23fyADr8JITr65DYHjN+Crfnsvej6fP8+YH\n+xAHP+w9fMrvJKn9k72WrwvtWexT7KHwTz7qNc/gPZnh56w0OYDZ198qHX6UwRU+8E7zfvrTnz75\ni7/4i+3LRNc8MLw+4QlP2A6n2GtPmuLxsc+X3rsJW1n0S69wSWBJYEkgCTwsDK+MiT6TYORzytUb\nO2/vGP8sdiZWp/8YrCwQFgoTo4XG6VjwjEIZLVscmlCFTfgEV35CvNxwPylPfMosKoyPFite3CLH\nMCzk5GuHMgZRhmNGSW2ADx5GLIsdWG2ycDIugodn8jF5QJ9TlwFP/QxieCALxkunXS22DGbijJvK\n8MH47c+lhOTLoBnvG/L7f/AwaUvjFT0hXuIH7k7rHuN/4kqGFn18ebNJEWDQNR7gih/0tcs46kSw\n+4sYAy9evLh9TkMGFA7XVnzgAx/YFnFjBk24Jo+zfeKTr2Nl8uozcX3qTTFeM7Dra20gZ7x1mlXb\n+JQb8NpHfjy+oh8N6dPc7IvTYI7l7+uhEV2hcelZu+fw5wLe+rtv2dh68pOfvBle3fOqXfGLRnxO\n+R6jvfKWBJYElgQeDhJojn44tGW14caQgDHV+pyeUnpy2HpbXmNxwu5hgl3hksCSwP+VgGen58h+\nw16I0dXBDV8DOqzyy7/8y5sOTP+lu/e8VW9ivRbPHzp07Iyq7Sftn//nf/5n+2LUoR57OGV0ef+n\n4XSscoZa9e0X7VHsTRhe7VXst+27HHZihLU/sbcBKy50OGTuVWYbkwUZyC89YaZ89jIjczy67s6B\nD0ZYvLlqwIGPWw5/IGxvt68XnehOGsfiE/68dY7hWXlLAksCD38J3PSGVxO+E5B///d/f/LVr351\n+8dGxkWTuQmVUcqEn7HKZM/IxmjmM4rutpHus/P9pL6fVA2LY3mXM1yicQwP5TjDGSMcZ1HUVp5j\nlNQW7ZSnzQyrGUbBTDzS4CaeeFA2nXyesa8Fk2EPL/gSSpNrhj/18WBBdt+pk8aUDMZMPNXOQvCT\n/sxvcwCm9ga7h5Pm41mdeGTYowjk8WrRBwtvxlsyoUwwunqzS7mwODMKPulJT9re4hpL2ubN6Qc/\n+MHt5GbjJTxoT/6k4/tY2SwHRwmhtHRVAKWlU7/kzRCrP/gMrdpDWSOzY7RmHnpnuXgvPAsW3j3u\nWa8ychb3AsT1H5/97Gc3Bciz57S0O3Sf9axnbX82QEGr76sPJy9d3ll8rbIlgSWBJYGbVQLNdTcr\n/4vvG0sCrcmFraGNs5k+xnn6l7K9jnEMfuUtCSwJPCABz9l81uyR7FX9wezHP/7xbb9xxx13nNx+\n++3b/0rYq6QDwzLrFn8A+9WL7XHb09gHMbbaF9nH9YWgvZLDNa7wo8fb69nz2TvR88HZL9mv2CPa\nr2iX/Zh9iz2Lvat0ZWDtz+w57YPAZIzdtxKv3OS5eWwPa/7Cq5PG9h4OfNg723e469X1ZmhzE0c0\n9vkb4Ck/1Zl4TgFd2UsCSwI/whK46Q2vjGaMpv7EyWlEi4EJ3afXvXEzuZtcGSktJN6AOY3phOw/\n/uM/bgZCRkuLDWfhM4nm5/hoUm2SnWVXGodz4pPmLRCVWUAmP5WnDCsniz0MOC48+/LJc7DhtPiR\nJeMfIyAZWhgtqmTJWWSdHPZ2VD9YfFuAGVzDCXa2UZo7Vr7Pky5v4igPnk7HCvGH7xbzDMTaU9+S\nFcVCiE8KEaVBW4wDxk+nMB/zmMec3HJ4K0oJYEimMFnAKRtkjgchFz/xWHorHD/lZyCmjBij3n77\nQzF3ynpRQO54xzd584ys2sihAxcfTfnhF+cqK7/0faVX/hu+MEy8lSUjY8Ibfm/63fFKmfN51fOf\n//xNCXLXKzlUD0748o3JaK1wSWBJYEng4SaBY3Pow62Nqz0PTgJzjOwxtX4eg5l51lNu5onz6Ub0\nIrpQX+AI0z32dFd6SWBJ4AEJzOfqgdz7YvZK9xy+/PLlnP86cFXbK1/5yu1qM/ej0vd7jtOf1YSz\n53aP82qlJ994kMZDe2N0zA/2SnT6Tr3aUzO+2gOKtwfscIq9C4OqPQ+nHYyv9j0Om/AdjuqULENs\ne82MsPG057P8Dfn9P8nQns5e30ljh7MYYl1x9opXvGLb46EHNnjV9/gn3hVfElgSWBJ4MBK46Q2v\nFgRGHHfSOL1qkjWBd9dlp0IZVi0G9x7u6GRs7Y+3pPcGwgRq8uWbkOdkHMyDDZvwoxW+8qWP0T2W\nN+uKH+Nb3jFawVsQ5+JOCXA3aouiN5dkSmbkaZEle1c7eBOqP6IRzrN4BTNd7Y7H0mD2ePEpz6LM\nZ6BkwLNo49Nib/FWBgZevDO6dvVCafzLB8fw6m0oRYjxE4y3u4yG7g4Gy822xWt5hfK5ym1e8OaE\npxcEtxwMu+5GQk9I3ni+0k0OuvykuzFw+JlllVd2OeG+beqWJx7u+DA+vv71r5+8733v2z77AeNE\n8Ute8pLtHl0yyJivLFyFc0wqX25JYElgSeDhJIHmutrUHFp6hUsC+zFCIjNvjpkZT3JgyxfvpXHr\nK0MJw4SvyOjS8ukpjBNeutONqh/OFS4JLAn8sATmM6nEM+NZK9/XXx/60IdO/vAP/3Cr+PKXv/yE\nf+xjH7sZI9P9gw/71Xz2Ju7wNh/Ec3wLg1Evb19knuhrQXMHA6xrxfzRtSsK+uoRrD0XWF8Ptoey\nF2KAdRWgvY/wwoULP/jfCnkO0bQnipf4STbHeFeGjoNWX/ziF7cr4txb63q8V7/61duhD7T289ox\n2URnhUsCSwJLAg9GAje94dUEaWI1wTMCehNnknZa0ERtMnaa0Zs4C0F/vMX4agJWF4xJnJLZgseA\nKL8JWHnxByPwfd0Wkblo7GH26RacPT/4PwtPtMKnfjgqmyE4C5LToxZDJ4gp4U4+kHMLLLlbVJMj\nHOEtjOaxcMJXHh8tiNLw5+GVp834sXjrd2FGVkZXXjk8YNXzxla/22QIO+EhLQ6eodkJVIs+g6D2\n/uu//utmPOxOI7zGR/H4F9aGeMQLHm1gXGXAuMvg6JN7cTQpIE61cuEWwnHM7WUuzYFHn1NffjiC\nURZMvMo7j4OTq351TstnePWHWu9+97u3t/2es6cd/l30pS996RaSg7zqwyd+uXzFxwqXBI5JYI6v\nY+Xl7cd1+StcErhWEjA2G59r3rtWUr658TY+ZivKm3PWjAfb+NrrAdLK6EJ0Oi/SuybKi3Z/lnPh\nYJygu6QfH8MfnRUuCfyoS6BnjRyOzeW+mPvzP//zk9///d/fvhakC7tyQOgwxnTHnu9Z/mDi4Ybj\n2DOt/Fj+pOmwSnspX5Qyqtpr0/ntleydKmd4VW6/3r2x9iP2PPZu9ka8ecd+0x7M3sj+U54y+zvw\nybX5bPJUHP/28v4D5stf/vJ2VZwv7+BmePXnZg67wDnbeSm5hH+FSwJLAksClyuBm97wqsEm1oxn\nTfy9tTf5UyYtdBRKcSc1LQCMhRyjHKMYA6MJ2CJhcYAL3gxVTcxzUt4QXMWfFhM0oiOveKRabPZw\nle/hw6u8uHZVv7zqz5Ah0ilSxmwy4ry17FQEGXHRLNwy7/+B/5grf9Ypro0p+uru+Q0Of064+lwF\nj+qApRAI0cj4Co/xMg3r8PCNIfVqs7o2JMaDT4SMGzi5QnxGR740Yy1eKAwUKUbVPOMqP0/lUiTi\nsb6Fi8PblBNaYMq7D+oB+e/TEy6ewYQjOQZXOjzHwmCPlR3L80mSC+7f9a53nXzzm9/cFKfnPOc5\n2+c+/sSMgRs/U474SBbxdLl0j/Gy8n50JdA4upQE1ji7lIRW+dWWgLHZ+DT+1hi82hK++fE1PmZL\nzhonwR+Dsdby9FzrsxfL3/ve9zYjBWMJXe/Rj370yROf+MTNOMHwms4w6a/4ksCSwA9LoLn82Dyu\nzH7CV5e+APvkJz+57Q1e9apXndx2220nP/MzP/ODQwjqe0bVudrPXnNDnDdHoMfFOzjx4IOb+fHY\n3soe2l5JaJ9tb1VobrE/t5/iycKpWCdnheYj+0t07Md9cdjBH3soRlN7K4eAlDlgZb/VXgHv8SrO\nMfJ+97vf3b5YdL0DfvzBlnteH/WoR21G3fsg7/ud9WvvLF/xJYElgSWBK5XATWd4nROiRrcgtFiY\n0L3RokD+y7/8y6ZQmty7c8bCwDBnQjdZm7Q7hcj4Cp8FgIGWYZHRLZrCJuHyrlTwZ9WrTZeCUT75\nOI03+cc8mbVgzrZFtzx1yYxhkMzUsYhaVMmTm7QtgHll8Ew68RxPGVfDVZ3Kgy+UL16Ilj68cDiV\nYVGWj7dOs8Kvb/HOwAlenrRxII+jKDDUd3WCxRlPwuLgM5Ay2PNw9aaWgRovDKt48bZW6FM9Gxnl\n0YSnNm4M7H6U5Wq7NFlylRdumUd+Kg9Hsiv/SJXLygrvHt/Mv/dwpYc7lt7znvds9y2RA8XH51X+\nwCyDfnViIJzxXP4KlwT2EtiPnX35TBtXe/jyjo21OQ4rn/WVBzPpBDvzVnxJYEqgcdT4m2XHxtQs\nX/GbWwKz72tJefu5o/TljhM6zF6PoR/Rc51IY3T19VdfgdHtvMRmAHr84x+//fElHYauTHdabkng\nakig8XwMFx13P/ft0z0n+/xj+B6KvNk+7ZnPjsMdToU6jPA7v/M7W9yfzDr1evHixc2wiOfaKD6f\n+2vVZvSO0Yz2nu4+jU8ODm3OT7ydkM3AmtHV3p0RNqMsY6m9O0OtOck+y77BXMQQ20EWBtjug21f\nLzRf2WNx5jtzHHn7jw77kcc97nHbf0x4seQLRHu56ZKDNjYeT2vvrLfiSwJLAksCZ0ngYWN4bWJn\nNPMJx+c///nt3yNN7ibsThgykPmkwaTM4GayZYATmlxN0JRReCyM0uEmSBNvE/JZgr1RyvDbYmHh\nn+lji+IxvqtfGMwxuYBBh2wzaPamk/Fy1oEHbAoJfrjkG71ZZ+ZVzyLrVKlP9vVzi61y8YzrFm0G\nWHzJF1dXHG0LvbuAvva1r233uNb34WFE9SdQPnkJD9zGjzev8PN9MsMAm7EVvDEGV+3bGnvGT22d\nMik+cYCbsGD2aXnXysXLnmb5ZPvv//7vJ3fffffJ+9///k0B0l/e7vP+wMxzmaue9B5nMCtcEthL\nYI6bfdlMN6Ym/LG86lTW/CRf3r5+cOUHU374VrgkMCWwHy/Sc8zM+Ky34je/BGbf1xp5p+Wn81Re\nnf1cEw4vkzNk0GudJKMTu36LkUMe44ZDBkK6ET2H0dWd8/7okxHW+kyPXmMxia/wwUqgMbwfU9ZZ\nZY31SWfCVl/5zJ/wN0o83QGfPN49h06Z/97v/d62X506sX2GfUWu9tXm0pVfrTD8hXu8k+6M7+FO\nS8OrnpBMGGHz5iTzFbl0KtZBGPtwf5rt+hMHotSz77IPc6DF13LtsxhgxeUzztoPmruMJS+YvvWt\nb22GV//Twdh68WDkfspTnrL9qfHcg+Afj7y6aOL7Stp8mixW/pLAksCPpgRuesOrbmsy9FbfhHrX\nXXdtk6v7XBm7LhxOQrqnygRtYmZso0SaVJ2KZGDjxZ0CoIC6E8akb1G41i7+0cHT1XATpzhvAZn5\n/5+9O33WrajuB75fJJVUWT+HGE2MihcVFQRERRRkHiQigyIKiBgyWBozVF7kTaryD6RSFROrjCbO\ngiCDIA6gooCAoCiCQEChVJyiJmXUpJJK3v3Op2++sOzs5znn3nvuvefc213VT3evXlOv3U/v7rV7\n93YzEXODITe48hWuLIQ+KVjFI4PN2ZgDUuB4dUNlX/KE0Nf2gs2Vg4su9cHlNHWDfc5znjNtWbnO\nbp6RHUeoG7Snohyh6uiHTpQX9B03dTulr7jiinaWq4mAAM9ixPlLdmd60hrHK3mRaaJk4cIGQtW7\nAVZ+qv6BrSUNHdyaV56TMweDuzNC9OllBu4/5H/5kY98pH1QwETKxNJrPqeddlr7qmudZIaOrj3P\nnaH/4LlnWKD2Gy2qfaev61tccfs6ZfThAVcMLOXQVbzARjosMGcBfSV9L/3GPdI9JOXcT+boB2zz\nWCDXk8a55tG+1oEpL7ruPW7GInTy+o/5jDltdrP6mI+Hn8rmt5WHOYu5mvkSR+sBBxzQ5lMeZHNi\nmCNVfdHWMrkjDAtsqwX0o/Sl9KcKwy9w+eDKJwR/0X8leLs7paf/pfZEV/9Rmz1sRvAmmO+QOHbr\nta99bVtreJ0efiIeCdUuga1HWmXgp7xI1iL4Mj0qP/mUw4tNwNjK+GU3rIdCNkLZFGNXvnW9h0nW\nFcYuTthsgLHG86Bo35VvRhjLnN/KwWrdZ9xzvIM376TGu0MPPbR93NeRKuxdAx3owlcgyAvRtRXG\nz7DAsMCwwDZaYI9wvGqzQVE0wfQqwY033ti+rGhw5ZQzABtYOczgGbQ5Az31zxkznrLZEWBQ98Eo\nuwE4DQU3S3QG3chqFevwUwdyvHckhFfS8FIWc9PPTSVtSdtCJ40uwel5KQcPPwF/E3UT+The2dpT\nTDdSN1YhdJEBFhtXGDyxBmW4bogcqvvtt1+7xk972tMedq6SzSGaXac5C4gTNbThI6W/SdAdd9zR\nHK9uzq6/trhxuzGfdNJJ7bU7MsNHf5LHI7Hqul75apO18KTLrgrRrZcJLnJgf+UrX5kuv/zy6bLL\nLmv/MRMeu11PPvnkdu3YMCH8lHuewRnpsEBvAf2m7y/pS9JaH7ykPa+5cnilLvy2hUdoRzosUC2Q\n+7F7k5D+Kg82+hhLbM5Qx425MaNeay3MtZZWWnWVPnRSbxOlPg4L8xmv19pVJ+W84NzhzDA3Miey\nEUHKWeEBNmcFh6u5lPmy+Y++SZfo1QSNn2GBHbCAPqtfLRvb5vodOiF9Mf+BjJs7oNJOI43Otb1p\nv7nxtddeO73zne9sZ5Bapzp+68wzz2z/w7rLHE3anXS9lY6u28p3e/QhK21aRG+9aF3O+fqd73yn\njWWOELQD1lo9G3rwsVa3jrDL1ZrNut/O/Wc+85nNMeu4QY5bvoE777yzOWMPOeSQtq5z3IAxkB7R\nyfWSj+N1rj9uq50G/rDAsMCwwKZ2vGawNjhmsLRj1ROxfJXVQOypvSdiBnGTzrx6ZTC3y9FkFMwA\n70ZoZyY8DkODbQ0ZmCtsd+Zjg6SLdFGfCIe9cmORFzJ5qZOhHi88kqKrfMBN1tmdzdVZFLBpnNiR\nh1ZAE5h8H9SB42nBYEHgtRwOVwuFLSs7XbObObtP4bph0sVTUeXKu+Yjm45u7m7MN998c3O8uol7\n5c7r8G7iHLnhFR7S6Njr3pcjK2lfX8v4RkaF9/me11poeh47Uo78Xi646H92ww03TJdccsnkYHvX\niBPbbtfDDz+8TZIyuaFH+Mn3PMFGGBZYzQLpe/D0odX6Ue1zocnYvxb6Xh/80KPNuNrjjPKwAAuk\nr7hP6jP6i3vM6Debv3/040ptUcakihMYvIwfgaWfZH5mPuWBtnmLea8NBHZ12TTAyeqtLWX07q/o\n0dqMwMnqrETOBvMpMW8FZQ5V78lVb3yiU4WP/LDAtlgg/Sj9Gm36dvjsyD04PHZnqm2J/X9GW/2H\nPRS56KKLpquuuqp9i8Su1wsuuKC9XWdjR7UJXkLPa3vauCO8Qrs9cuf0D7+5dqnLGtIa3QMlTlcb\nY7KWt4bnjPU2nbHQ2GXttu/KztctK+tDa1HjJJyvfe1r00MrZ7yyqzXkiSeeOPnQr3We++6cLv1Y\nvL3tHnTDAsMCwwKbzvHqkhkY5wZodZyrBlhOU4O1aCD2ihVnLKfst771rVZ2lIDJKmcrOtEAi3/S\nDMJ4C+T2sK01u/Y37V+U0iZ6JgUL/lx96nKjV0YrZgKETlAX/N5W6N34MtlHn0VleG7l8shveD0C\n2ZpzI7RA8CTYE0xPLzldLRg4QUU3VXicrGSLQnRMe7Zy/MVfukUnOuoP+ocbuGA3iEUKeRYk2hRd\n0SYEplzhc/VgvT2DV9PoX2EbMZ/2VhvQE9x/0X/OU31HDdx1111tsnPKKae03a4HH3xwW/RV2vDD\no8KVRxgWWKsF0o+2pw+FlqxKPwcHg5NxUN6YE/ha9R14e68FzEE8BOYwcx+y69B9z8Jbf6p9cO+1\n0sZveR0fqrb1+sHJ2AAemh6n0ssHl7PGPMUcxYNifcbcVuR05ZjQn4xHzjr0cHrfFQeEh9OOXeKQ\n4GTlbDWnccyPeY05lFjnS3TLWBY96QI2wrDAjlpAnxLT95PiW/tbhe+ozF1NX9uRvPaI2QzkuxLe\nCLPhw//yDW94w3T22We3fP6P622D6MIe28q70m6LPascPJSlyUeX8A9+cIxpxj92k1rnG+s4YY2H\nHKrZ2W/twXbGNPSctu6xxkw+ATDrR2e8evvuhBNOaONixrYqm9xch21p78AdFhgWGBboLbDpHa/9\nAJ2B2SsIBlfO1bxu5YwrgzKYJ2YGbQN4eFTjBJbBd66uwnZlnk7RK/mUez3YI23p62o5OJWfPHhi\nxa/50CZVl5tX8FKXFDw6m/Tbleq1t+y+kFokiF4b8eqbhaiyHRsWpByt1REaWdE7MiIz8sArLHmp\nm7ldJPoP/s4GEnMGac8jtNqbfPRIOgevfII3l64Vb452V8HSvl5XcP9Bxwx4mv+xj32s7cCxy9X5\nrkcfffT0jGc8oy3+Km340b/Cd1V7hpzNaQFjuTHdfzevoIEJxomMM1L/16T6WP6/+p4YulgiOMZT\nr/KKHGTGCA9+vFVhgi/ATb/FK/nwGumwQCyQsY4jzTE3xkmOMw+k7Hxy3qbF4ehDsdjGTo0P/bXq\ny7nm4MlrVfDAjD94GWOMNZwL5qx2sIp2eJnHynujhOMhc1pzKfMk8yX3V9EZ9ZytxirR/Cnn3UeP\npNGFHmLmcnO6buyrMbTbyBbQn/Rx/avve/R2DzcfF9xbM98PfqvY4D/5D1Ez/+/k035lu9N9fNZR\nXDYJnXrqqdOb3/zmttnE/xRtpUeT/2MPV7ezQ2RXOWvRo6dDU2HhAZZ8ZIAFt5+vGSOt2xwnYDw0\nLlp75A1X91SOWet/to7j1RzQrlcbQV796le3b094GJUxr8qmT69T6kc6LDAsMCywVgvsMY5XDXaT\ndrM22Bp8PdnibHWey4MPPvjwky6TWgNoBnG0GegDT93cQJs6dLs6RJ+ayif2+pjY0HctOsMJ355P\nXw6/pH19Xw7f4LuxxbHJyWoXq52lW1ZeC7FIsGjI1yrtOrX4zM4MvDNhixx8xTk7RGbVoeKmvvLC\nH34mecEBSx5++IQ2aXCSBh4d+ht76jdjmjambWkDG1oQXn/99e3c3M985jPNXs519YT5JS95SbvO\nrmulDT98Kjx8RzosMGcB47+Jd5wS+p77gf5k4aafOfs5DgcwE+8s6PB0b8CHAzcBTpy0HCEcHBxl\ncPAzdtmNb4yq/2t9l+zRh2PJkfYW0D9E85XPfvaz7QvXHhT7GOjrX//66RWveEV7y2P0od5yG7Oc\neUO0W3TdMi5IheBl/LFbi7OVM8FYY0wzn9U3cr4h3Ixfxh3jWh5e+wDolpW5lIfW5lfmUMaqzGfI\ni8yqQ/SvdcmnTdE95ZEOC2yrBdLnpLlnygfOkZb7t/szZ5gNFx4qpA+TGfy+j26rPjsLP22in7w0\n+eivPeYtjuH64Ac/ON24ctTZYYcdNv3pn/7p5OxRO9RDFz3T7pTV7+pQdVir/DmaCksb5vjBCy6b\nJQ83eWOivmPeZ+zMw6q87Wr89JEub+GFRr+yCeR1r3tds7d1Z32ITifjokDWnG6tcvwMCwwLDAus\nwQKb0vFa22XwNNgaZD3VMsB6nUCap1uecFnYWCjDz43eYKqcmEE1g2yVs6vyax3UK170Ttrrqj2L\n2oRG+xNqPrC5dK14oWVzEyg3NAsAOzLswHCT47jYsrJIsFjgfAW3UHBDRIM21ww/OrvmYPIJ0anC\nUldTeGKPF/rIqjjJS5Ov9GA1BK/C4CdW+GbPp+3VHtqkz/kf+tjdlVde2T4ewDnlbNczzjhjev7z\nn9+utWtcQ/iB9Twr3sgPC1QLcFbYBeYhmw8weO3MGWDGfQs2jldjirQ6XeXTBzlW4/TIGMOhkbPW\ncsaYhRJcTg0faDj++OPb+IWX/rsn/s+rrUd+/SxgnDR38YDqr//6r9uDYv3NwymLwaOOOqr12/WT\nODjtLAvk3rXsvtXjuP7GGg98smvL+CIav4xpxjLOAk5XOMYxxx85SoBjJg+n7bw3f8rZre63xq+M\nd3276dLrE917ONo5WM9zlPduC6SPLLNCcDLXhgvmP2DjjD4vKuvD2YihLyeEh7TySf1GSqPrIp3M\nOb74xS+2s14dyWVeYcfr6aef3t72M2fBo/9vhl/gKW/UNHbo9Q08aX89A+/ptFNdrYdjTDXvY9ds\nxLIWMTfkeL399tubY99YyqnvGx7utxyw1qH6WZWFHxn0qvCNaueh17DAsMDGtcCmd7y6MZuccq4a\nTC1e7HJ107ZjwOJYMFhafLuJW9SAq/dkzBMyE98+oKmDbB3ge9wdKVcZ4TMHS91cGnw7IPpA79w4\nal1owNI26Y4GfBPdqOjk5mYx4MgAr3Z4/c1ujDhaLRjs1ghddKBP9IxufRluYJWuwiuf4CR17SM3\neMrJS0VtiTMm8sATgq+c+tTVtNJU+Fx+EZ/KYxHOHL+dAYsuvR5s9dWvfrWdXeWYAYtHZ/V6pYfz\nVZ4THn2daIUfXXueO0P/wXPPsICx3K4wbzi4FzhP2HnNdj3oR3m9NmNkxkTlTLTdT/Cxy0w+r+1y\ndMD3Cps69w9l45e+fMHKxzA4YMmoQV8efbhaZOTnLGAOcvfdd0/veMc7pg996EOt71l8O+fv/PPP\nn174whe2++gc7YBtHgsYD2rMPNSrr8YWjtU4WO34M7f1iqzooQ8Hq/N/7Yh23n0eVnuAnV2B7qnG\ns8gx/mQMAutD6no43L5uDtbTjfLebYG5PrbIIvpX8N1v7ey+995727zR/0G/dkax/r5lZXOG+yv8\n9MPQ9/10kbzdAY++5rjJ0yNz3qwprFs5Xd/73ve2eYzjuH73d393evGLX9werlTd8alhZ7U/dq6y\n1isfW9C96t/LzDwNTmwWnPCocPrBDY4yHpys+pd1iOPPzBPl9SlH+3jA6T5rnWr8rDyrnKor3iMM\nCwwLDAtsiwU2rOPVQGewtCiWF+qAl8HYzdkTrM997nPtAz5f//rX26IlNHYycbbGyWd3gKf/nK7Z\nIWuyq4znegYDd+UZ/aNblaVOTJ00MHiBh0dwwStuaJKSH1tFXs8r8CqH7sFLfV+uMqIPOja3QLCT\nNU5WjtYtKxMnuzHs0sgHsVxfNImRtVra67Ia/rJ6uq8WtkXeWvitJm8z1bONmP5Ad5NJEx3/y/e/\n//3TDTfc0K7xkUceOZ111llthyCnVXYa7m0220zXd7PoaneD+4F7gIm1+4JdDnY8CHaN6G+cHfom\nRwaHl0l2HKbKnCCctfpwHtYZrywM3TPgZDwwzvkog90pjs7g9EgIzujbscjenaY/VCvoG+CiPudB\n1Vvf+tb2uql+5kGlnThvfOMbm6Mt9+XQZX6hnFj5j/z6WsB1Ymch1zPl1SQZT8wzM/Z4C8sGAQ+L\nbBzIR2E8+IFrnmrMMqZwwpvDZh7F4eqtIc5WY1PmT0lX0ym613bIox9hWGCRBdJv9C9jT/oLuKgM\nrj64wQlPfVvI2g6u/4UHDjfddNPkSCr/BZsxDj300OYQ83ZU5ov4RR4+PX+wjRpiE/rV/yi4NzVt\nHPrABz7Q0n1XPohn3Lfr1TpKO8XYNzxii81kh9WuT7XTItxqv0U4Fc5u+p77qgda+pjzdJX1NTbm\ndLUBSN8Mf2n0CazyHflhgWGBYYFtscCGdbxqhMGuDnr94GfAtLD+8pe/3Bw8n/70p9uRAhbLFsT5\nequnphx+BlQTWQtor3EZdN3sTXwtwg3KaxlYo8ecoXv64IKnLYGhD9xNoYbgVhz50KpfFlIPP7wj\nK3wiIzwrv9BL3dDh1BjcTAbcuCwMtqw4V+3IsBuD45Xts0Dg4GB/C4rKP3n8kw//Od1St17pesrs\nea2XjhuRT65NbXNg/kucYJ7gc7zec889bXeOQ+w9yX/BC17wf87E3IhtHDptHgvocxZw+XKtL3yb\nYIPpl3HyewWNc4MDRN4k25gkuDdw4KrDz72Ec0Maxyv+nLPqLQY5XD1MsCvH+Cb4T4jk1v9Hqxw/\ne6UFMjb2jc/9Gdy8xG7tt7/97e0L1+Y4zg8+99xzpwtWdlWb06Qf176V/OhrvXXXp5xr19vXtYvt\nM0+qEo0Zxhrjhd1Wxg7jknmrVPQwx8MhvDhROVnNX0V5r1mbU4nmU9nRqh+QGZ2kyVcd5KN/D+/L\ni+h7vFHe+yxQ+5B+or/qfwnq819QH/z0qdQFz/3TQ1D/C7v9b7311nYclYcQ1mp2IXpQ77xT64n+\njbief/TYyGl0pmPsIs+W5hx2YV566aXN+co+Z5555nTeeedNRxxxRJsvw40dQ195qhdSt7W0+X7n\n2rS9rUg/jU2U2da4nIdcxlIP342t1ekambF5yiMdFhgWGBbYXgtsaMerRvUDsHJu9hbID628KuBr\nwG7aokmsCatdlSapJq4cfxbWBlQDLicrpxCHq6deJsN4GZB3JGRgTzrHq5cR3L6d4HWw7/GUE+El\nRmbFr7wDD560yulx2c3NKA4FEyUB3I3KQoHT1eJgy4rT1Y4MCwR5docDN9cs8iMnZTyrHilLheBv\nLa3/U+6ef+TUtOpa4Xtrns3EXFt2iB05tCwuL7744vbqrP/ac5/73OZ09cEYr4/pO2w67Lq39qD1\na3f6ovHV+M6BZQehxQznlXr9TOoewBkLzjEC7t4gqNN3Rbgm5JyuxjBjX14Jxhutew2Haz4UB7f2\nafz8P0YfX79rvVk56U9zIX1Tnf6i73K8XnTRRW0npPvvcccdN/3lX/7ldOCBB7ZxEy46fStzitrv\n1I+wfhbItcv/mM3lAydJ3pgiZhyxsHdkgKMCHHtivipyuDqyxHhi7HGUiTmreZQH2Dnn3vhiFxaY\nutwzycr1Tn5Ra9WLfUhbkvb1ozwsUC3QjzPK+lW9v9W+mD5X/yfy6NxfPWyw9vKGym233dZ2+3v7\n0D3U/NA91dmb8v4b4GjrfJN+m6n/xia93uBs4gxSx3K9613vaseOOHP0gpUHbi972cvaOICuzinQ\nibGJ/Gayh/Zsb9DWtYTYJP0wZbTp0+FjLK58Y8tKE9yRDgsMCwwLbI8FNp3jVSMzGOZpqRv31772\ntfZqqQWxHUqcgZ6QullbPLvJW5Cb6FrY2AnlNS83fotwNzOhDroNsMaf6AS95nty/HsZ8OdgoV3E\nL/DQ9jeRvr7nhy44qZOCsZkjGuxa9VobJzYnqht8fTpowQDPAoGjVWR7MDtcK/85edE9cqNHhYP1\n5Uw0gr+jac9/jl9ty1z93gZjM9G1kLJPYBaczuriPLj66qubE8xTe6/NHv+/HyLizI9Nk+5tNhzt\nXR8LpN/hZiyPA4RztI6L8JThqFMW0v9SH4esvm0ynr5tcVSdtu4vHu4ZH913jI3hhW9dJCmPsHdb\nIP0tVlDWX9K/9E2wa665ZvqHf/iH9iaPPuTIgbe85S1tB5T7cR4UoDMPkuqr0hF2vgUypuS6GW/M\nPb1FZW4pZq7pSAGOV/NNc0/3Rtcqc6ZsErB7PpsF8naWORTHu7LxBV36SK75stbqS+lzSdNH+nQZ\nn1E3LJA+zxLp9/rUon6Y/gYfrXuqe6f/hYcRHsbfd9997ZscHK7+Q/4TNm4ccMABLRr37PL3wCF9\nv/bb5MnYDKHapNfdOG+ccNwCxytntLcd7HjNcQPGfbZEK+Inss3eFqotl7U9do6tYq8KR59y+rly\nhe2NNl5m11E3LDAssH0W2NCOVwOkga8fCAOXmsSa7HK+elpoF0F2aUrd7OG4obm5iybAnLAWLGK9\nkUXWWsyZQbnHBadb9OzxUlfpQhNYaAJfxis0cOZCeIVHxVHnhiLGbhynFgPZvbrvyllD++yzT3Oo\ncpZxNkgtCkRl9Mt0XaRb4GhDX/Wr+R631q1nPnJ6nvQb4REL5L/i2rNZrp8JpJ3nt9xyy/T+lWMG\npBzxJ510UvsQkZ0MnFWLni4/ImHkhgXWboH0QRTydVzv/7v5j/fwSEu9cnACS1ldYPJ9gKe+4vc4\no7z3WaD2GX20v3eqN0953/veN11yySXtOCT3Zh9Z+Yu/+Iu2E4yDIiHOfXxG2HkWyHXL/zn3Pw9j\n3O/saM0HW7zt4RVqzljRznvzJA+qPczO3EpqJyuHq4fWOdakXst+DInc6JG0b3n0Ba955dAkBRth\n77VA3z/mLKGvwMt9tfbRih8ceNZX3ia0BrM2s9HFWsybhvfff3/b0a/Orm5vjjhegNN1y8obc/ke\nBznLZJG9WfpxtfOczjYIOZveBxad9WqzyxlnnNGOMjL+57iF2Bs/kX3Ce45v8Pe0NG1e1i72qGNm\nb5/YsMJrHm84PWyZzFE3LDAsMCywyAIb1vGawdANxcLCoFdvvuoNpia9FikmvCInLLgblMWJGxda\nuw7c7Dln4Xu6GhkxDrxtHVzx6ENg4ZVy8HKTTH29KcAJXH5RXeBwEtCRFfoqFyzw5KV2aFkMmPzv\nu+JgdZaSr83bfWFnDQeZek+cs/Mr8vo08iJHPViFR++qQ+UT3Aqr/Cp85HefBVxH18q1qf9LGtnV\nYBH68Y9/vDkP/O/0qVNPPXV6+ctf3ibX/p/ZtYUm131ca9YYYWdZQD9LvyUj/S39r4cFN3jqA5PP\n/0A+DxLUi7V/qx9hWKC3gP6jb4m1X3FW5MOEXj3lwOB85Xh97Wtf28bT0b96a+68smuTkLEAzPWz\ni5Wj1cN/ThNOWLv6BA+oXTfzLPPRfHcgRwpwOJlbqe/vo5EnjfzIBsvY09MFJzRwE1KX8kiHBVhg\nrq/0llnUd0KrXl6/NAfkaNB8O2QAAEAASURBVLXucqyG3a3WZv4b2fSi31qf+Q/Y2WntYYOHTR/g\nfcA7OshHrnSzjIXRWdvSltpOa13H4F133XXTX/3VX7WHbj4wdvbZZ7e5szUausTQ4lvvJXO8g7s3\npuwqsEvGSzZbZKd6nULXGIyfYYFhgWGBHbTAhnW8pl1uJkI/QCrbzeqm7pgBH9jyRWC7WQ2sJrZ2\nE7hRuZHDNzmGKzrA3eKm593LaQhLfjJAJ12C2qroljYBkCeaOJhs2EEq2CFBvzid5/hH17m6xmTl\nhzwTf85Tzq4cC2CHRY4RMPHJ624WBjlgnE55dZYseuPXy1WuOqQ+OtQUnggneMp4Syt/dMGpPEZ+\n91vAtRJyfWo/NXH0VXm7tT75yU+2vuxjWj6qxfHqzC4LUtc6Ifwqz9SNdFhgrRbQj9In06dq2o8v\n4VvpKizw8FRnrFIWU19pkq80gY10WGDOAvpR35fsDMt5fx4q609HHXXU9Md//MfTiSee2Bx5aPRp\nqTD63Jx1dxwW++KU68TWHEycS5xKdvNxwgrmcRyt3h4y91J2z4sj1u7XOGTxmRuXIjPXtI47ZKgP\nTFkIbp9vleNnWGAHLJC+lj6m/9X/godDdmx66O4hhA9meRDB6WrXt/+DNdmWld2sjhDIucXWHHZ7\nW3f4T+Bv7RF5VM5/oc4Zd6Apu4007aBA7FiVUW/d56PPb3vb29r4b+w4+eST2zEzPjaWYxfCCx/z\n77kxpPLem/PVVuygb/V9CQ5bSit+rlPq92Y7jrYPCwwL7LgFNrTjNYOfZmbwkwfndDXJfeCBB6a7\n7rqrRTd7Ow3cwJ0TdNBBB7XXV+zcNMhayMD9whe+0L6eiT6DL57bO7BWPem3KGiDaNAXyObYdGP1\nMQXOYrqnbfR1VphyQmT19ki9FF8TF5MYjlZOVpEMO1g5WbPjgvMVDqdvFgVo5+RkIjQnO7ZLHdwK\nC5x+4V3z6iu+uhE2rgVyDXPdoqnrbkf5jTfeOF144YXtg3dwTRg5XjkM/Df7HT7hh0/tK+E70mGB\ntVgg/ajvl3O0wVUHf7V+1+P3POfqwVbj2/MZ5b3HApkLzPU/D1+d9/ee97xnuuqqq1o/ct/+oz/6\no/bqKSfG6F+7pq/kwWL+y0m9Ju1Bo8i5pMwxkjeupDn72bwqdIvStKYfS5QDy5wVbmChq2lkVNjI\n710WWNY/Yom19hO8glvzxjBvEFpP2QhjA8w999zTNrhYn/lfWOPY1eoBvA8E7rfffm13q3WJtUfm\ng+EvjYxFbQhu2rEZ0tqWOf3VW+95mPPBD36wzaE90PF9hNe85jUPf2SrrtG02/hUx5fNYIvdpWO9\nBnRIeW5crddIP1eusN3VhiF3WGBYYPNaYMM6Xg2GYgbDDI4GP87Vh1a+DOuMIDd2O1lNfN18PFX1\nmrwbu9ebt6w8XbXrQDAB4Jy94YYb2scrHOyeEHkpr0eaATrtMLkwCaejJ7wcoZyg2W2qzFlq8u5m\n68mxNuaJsSfKghtsdkvEcWuyL+bDVlKRoxVfCwA7L8gXlcX6lLneVGLv2gay+zLYXOgXlOjwXEQf\n+Byv3Q2reu9uXTaK/No/qn1MwPNlVmdU6cP6ma+yOquKA9b/0/VO1Kbwk9/IfYF+I2xcC6Qf6UPG\noPRN5dRV7Wv9Ihz4oU3f7MvBUR8+cHL/qjJHflggFqh9VF9JfwQXv/GNb0yXX3552/1k3uO+7wOF\nr3/966djjjmm3b/Da6Q7zwKuRf7bVYr7nVen7fRz7BU8jiTzKs4mO1vN0TJuoE0+1xqsH08ib64O\nTAifraXVf6u81bEHxp5ggfSr1dqy1r6En3WWXZn6PWerzSEchdYs1mXWK/mOhr5vR6sjBKzJPHTP\ncQLWQdYs1jP6u0CPteqyWps2Yn29Hn07U8cW1oCf/exn21FdPrJljfiKV7xiOuecc5oD2xhTA5o6\n1+h5V9w9KR+bLWpTtUPFDRxMTLnnkzr1oV+E29OO8rDAsMCwwJwFNpTjtQ5s8mJuJm4sbvZu6J6m\nfvGLX2y7V5U5JN3cHc7+3Oc+9+HXWbxCz9no5i+YJHPUOjvtiiuuaF+NrDd8OFWHWpavIYNv8Gud\nPL3JFTme6MfhtO/K0Qd2mcpnByonbJygaL2+5qufdg56VYez2KRG+01STOjjQI0T1SQGD87WeqxA\n8KILepF+c20IjB7aVstgCbXdwamw0PZ1KeMTnMqz1ge+u9Nez92tz0aQn2vtelX7mIjb8XDppZdO\nF198cfvP2engfNdTTjllet7zntf6aaXXnpTlN2IfoNdGCtXmG0mv3a1L+pE+lLGdTn0/jZ6xY/qc\ncmAVJzzCp8qp+JUP+cbaEYYFllkg/TR9y70ZTNmZiB4UO+/P2zr6mgfKzvwTHdsy+tgy6+7cOk4o\n0RxU6lpwjmeOFemuW8aJjBGpk6oTUpfrD1brUh9e6tcaKp+10gy8jW2B2g9qnta53rUFgaUf1bo5\nWOr1bTsx7cLnaLXusj7haLXL1YfkwK1dPHSwDvGmoSMFRDv1OQ+tTThbrWHquBW9yKNH2pI0euwJ\n6Vyb+vazt4duH/7wh6crr7yy2frwww+fLrjggvbAzdox9mOvjD3hs+xa7gk2TBvS3pTn0tii4vYw\n5VofPoHFDxH4SIcFhgWGBbbXAhvK8VoXIHVgNPh5Auhc1ptvvrmdG/mlL32p7XxFw7n4/Oc/fzru\nuOPaqyz7rjg37fR0c0crwjNpsBvPQsaHfzg1M7BWefJ1IA4OI6dO6sanTt7ArOx1/ThGOUO9SpMJ\niFcDHSDP6WoCYoKOTqzyyKGvNjtuwI5eCzA7KtB42hmHqwmOowLwIzs3Yzy2N/Tt3V4+g27PskDt\nF1qmz9ZgYm4i7v9lwnjLLbe0vnrSSSc1x6vzCbes7EBfjz5a5e4J+WrbOhb0Nk5bM+6kPNJhgWGB\nzWeB/I/z/89/P/97cxYPspz399GPfrQ5+OyiNNd5wxveMJ1++unN0RH8aoHKs8JHfvdbINemajJ3\nDWv9yA8LVAukD6Xf1LK8NUQcRnACwyNrl/BTFz5gaD1MEK074nC1HjHHsxazs5XDNR+Ss/HD2saD\nIQ/bpdY+1ijWJuFLTvRpwCU/VaclaJuyKteL8tUeydtRbNfrRRdd1D62xY5nnnnmdN555zX7cnAH\nt17raow92X61nSM/LDAsMCywWSyw4R2vnuS58d97773NWeq1OztAc0ORckTa7XrYYYe1V1lMANzo\nTTpMHOx09STW62DZReoDWyYTcNwAcxPMjcwFrDIyMTFhES1+OFjJ8QTX01w7bO1m9XSXw9Xh8RzA\ndrRyjNIzu2/DLzLSYXo93FDpzwbq6Bsd5PHDQ369QnRIuhrf9ZS9mqxRv/ssMNcf0n/V2QVx++23\nt2M8PvGJT7TXz170ohdNHK8cBQcffHD7L+y+FmxcydW2bKocWLWxfMobtzVDs2GBYYFtsUD+7+6l\n8vmPe8vFfMd5f+94xzvaPMCcwNzirLPOmv7kT/6kvbprTtCHfvzo60d591kg1yYa5HqnPNJhgbVY\nIP2o7z9xnBoX1C2ao4eerDjvPEDnTPXWnSPcfDiOo9UHn7zRJFj/cPzZ9MEhmG9H2IlpHQSWdVh0\nw588uoBV2Y3pzE9oZ6o2Pai2v2+nOpHdPXDzoVrHzlnn/tmf/dl0/PHHNyd3xv3g41Nt2/Pd9EYb\nDRgWGBYYFtjkFtgwjtfcOKS5eUjdrO38tHvOLjofmcgTVraHw/Hp6aqbkgmAG3smHhyW6DlwPUE0\nmTCR8KRWXUJuUOQnVJi83aYmG2SYcOTVfk5XDtc4XZXtdoXDOZudrXhUnr2clGtKH23pJy2VV/Dh\nrmWCFfxFadWx2mMR/iKZi/AHfHNaoPYFfSR9M60xSXSMx9VXX912poMfe+yx7Wyql770pW23t/9P\nXosKHT7pc4GN9JFXBWObjAHK4z83esiwwJ5jgfy3/a/zf9c6Y+W3v/3t6bLLLpve+ta3Tj/72c/a\nXMD8wpeu//zP/7wdr8QRUunQZrzu4epG2DkWiM23hfu4PttirYHLAuln6TvGjwQwscdRDizzh8BS\n9qCHc9UGFeMOZ6uYD/0aZ+xqtZM1G0xsMnGUWt688zaedQ+nIL5kRJ/ko3d03hvTXIva9sDYzTXl\n+Lbr9UMf+lCbW1tzvulNb2oP3Rwzw85ogr/o2lcZIz8sMCwwLDAssPsssKEcr5k85OaRm7Wzg3zd\n15O/66677uEPabnpeLJqIpDzg9zsLVY8tRXxTFQn4gtHzKs0dsRyxNaIzg3NrlZyTDbI8kTXk12w\npG6IObsIvp2oVZ6bo5i21UueOrBF9RW/z6MRwr/Wg82FwENbcSoseLW+z1f8vm6U9ywLpD/kmiv7\nn3i44fgP/9Frr722Tdzt8vYlVh8F8DVb/xv/CTSVXtn/bITlFmAnURj2Wm6rUTsssJksYAzNuOi/\nnbzUh2sc38Lxevfdd7c5irnPsSsPtThePdTycDdjatqdsaKHp36k62+B2HytnMe1WaulBl61gPFC\n0H/S5/q+1MPRwAme+qyVvFXnjUAbUjxAd76oY9k4YDlirW3icHVmq2PTOF5tQjHPMx4Zg7LmMYZV\nOcn3OtQ27Y35XKOk7CSfe4A1rDHfZgZve/pY7QknnDD9zu/8znT00Ue3OTWa0FU+6R97o11Hm4cF\nhgWGBTaqBTa04zVG+/nPfz7dd999zbHjiAAfmuIw9YTVzg/RxMAkwo09zlUpJ6intKJX/e24q6/8\nw3dz4zjidFUOH/LxQIs/R2t2uuJjshFnK0drnCFufvUGmJti2pMUXAiutMLkUw7Ntqbh3dMFPsd/\nDtbTj/Lea4H0HRbQV/xfHDNwzTXXtJ1Zdqf7HznP+Pzzz29HDdiRbifEXMAv/525+r0NFvvmf1jL\nNb+32WW0d1hgT7WA8dJ/238+i25tVeYQcdSSXU/GWB+zMe848cQTp7e85S3TkUce+fCRQxkz0I6x\nghV2bYjN1yK1Xqu14A+cYYFYQD/LeJE+V+dQgcHXz4Ivtc7hTLWb0rcj7KI3xkhtcgH3ZqDdr9Y+\ndrN6m2/Lyvn8nK3KYjab1LVP9EsaPaoO8qPvb7VQ7BN79Sk7cYbfeuutbW7NAWsd+rrXvW4644wz\n2vFd5tWxac9v2Lm36CgPCwwLDAvsXgtsKMerm4aYm0hMwzFqQsDh6pgAeXhxqOZJK2esyQfHKlgc\no5yvgYWGQzUTFYsekxEOpNyo1NUIHhrw4EXf6CoFwzPtkIIlVJrwCV1N5cNDfntClVvpA6/yUz8H\nS91IhwVYQP9JH5I6fypHgTiT0H+PQ+CCla+wHnHEEW3CboIOV/9Kitfob6zwSIhdY5c6lgSr2i+w\nkQ4LDAtsLgvkfyxNPuNjWmL+Y/H9hS98YXJ2tofQHK/GV+e8HnLIIW2ugi5jBlr8hAprgPGz0ywQ\nm68mYFyT1Sw06pdZYFk/S9+CI1rXWBtxpDpure5q9YEsjlZv/AmceDaV+C6FN5TsbnWetOMEssHF\n2kqs6yC0i3SKPuYxgnJgDbCX/7Abe8zZD8z479gHb5K9+93vbkc/mFN7m8zDty0rDnFz62rX8Bp2\n3ss712j+sMCwwIazwIZxvLKMm4VYbyDgbti5AXklRgQTTSoS4HCyZmKQFD+ThPCHr9yH1M/VBRdO\nQr2p9fCU4YRvpQttxUt9TVMPFl7ygYdP6qVzIfhzdT2s8uzrRnlYIBbIf9DE8LbbbpsuvPDC6VOf\n+lR7NdbE/bTTTmuvRD3vec9rO8XTf5Pqk/Kjv8WiW1N2yf81tqm2Sv2yceoXOY7SsMCwwEa2wNz/\nPf95epvzfPe7353uuuuu6aGVr4p7CLzffvtNL3zhCx8+wqVvX8+zrx/l9bdAbL6Mc8b0ZTijblhg\nmQXSz2pfMh8T1JmTcbSKdrP6LobdrfVDWY4RUMdpx6lqV2scrfvss8/DDlc7W21YIavKq/qRqU5a\ndQt+haNbxqvy3Vvy7JPrZ14Xu2V960PQ3vZ85zvf2T4ybSOR+TXn6+GHH952H+MRunoN9hYbjnYO\nCwwLDAtsBgtsOMdrNZobkQWGNDeVOBsCC369aYHlxi5Vl7K68JKvdOBiZAQ39BWubi6ghy8GX5ob\nYuRVfcIn8oObcniBgwlJg1tlhN/2pj3v7eUz6PZ8C9hJ4bW1T3/6083x6pgBk8UDDjhgOvvss6eX\nv/zl09Of/vS2Qyt9NWn6GSsFtqdbbC1tZj8LJ7jGP4se+dhI3pigboRhgWGBzW2B+t9OSyos/3d1\nXge2CHe/tzONU8R4Mfe6Lzoh40YrjJ9hgWGBDW2B/G+XKek/DU+Uz39c2a5Wx5H4KJazWu2W9HEs\nO1s5WuHY2WrssJOVk9VDHOe2+mZF6uyqxzdrFvpEFh5Z30RPeBUuLyRdzzVKZO5JaeyUa1nbZp7t\nGjpq5u1vf/v0wAMPTAcddFCbYztywLWr9l3Gq/Id+WGBYYFhgWGBXWuBDeV4Xa3puZlI3WRSrnTV\nSQkOJ5OH/obWl4MbuvCteJFZYXP4wZMmX/mhF2t9eAaeCc+ituIXmso7+e1No2/Pe3v5Dbo9zwLp\ntxyEJvmf/OQn21EDd955Z9txfthhh02vfe1r24cA7KRw9EAC2vTxwPaWvpb/lnYvarPFEeeKYGeD\nj1cYA2qIDSts5IcFhgU2nwX6/3Jf1qKMG45ESjB+eKtHXT8+VJpF40z4jHRYYFhg41gg//VlGuU/\nnbEiTk/jg12tdkc6F9TZ0HbIe2AD13zCB7F8KNgRAhx2op2uzm/ldJ07RiC6kItP5FY94AQurQFe\nj5tyxdub89Vmde3HJursWnbczN/8zd9MX/ziF9vHzjhdHTfjzQfXrQ/Dxr1FRnlYYFhgWGD3WmBT\nOV5jqtzcU67porp6U6v425Ofk1H552YnrfAqKzhgwamwHh4c8B4PbIRhgZ1hgdrv8E/fA7fTyoT+\nnnvuma644op2zIDX15wNZqfrq171qulFL3pRO2bA7szQ4lP5Vri6jRZ2RNdKq13KeZAir+1pv8m2\n1wF9VZhdLYKyQGK/Hn+j2WnoMywwLLBzLWCMyHhBUs3vXMmD+7DAsMD2WCBzgPpfDazyq/UVHtzU\np2wssBPSw29ntHrzyENwuyE5Xu++++72XQzzNEc/cazmKIEnPelJrSy1yzUfHZ6bp0UunSK76tfn\n4fd4czwqrOexN5fZLvbLXJE9ONWdyfve9763zbd96+SlL31p2/XqrFcO9bm3oGLn8MQrMPkRhgWG\nBYYFhgV2nQU2peN1e8xTbzrbQ789NOPmtj1WGzQbxQJz/5nap032OVpvuummttv1y1/+clsEONPV\nk3jO12c961ntVXkTyEob3hW2Udq9XnqkjZUfWHanpV5qUm0i/ZWvfGXycTKwfffddzrwwAPbjhTH\nDfRhT7Zd39ZRHhYYFhgWGBYYFtiMFnA/z0OT1e7b6jM3SFtDA86R+l//9V/Tz3/+8+ZsNW/4yU9+\n0j6a9aMf/agdKeDBLRw7XDlW7W7NrlYOOo7WRHOLzEkiby7tdZrDAYuui+oHfLkFqp2rLV13b0Jd\nd9110/vf//62o/mJT3xim2ufc84507Of/ez2jZNKQ5IynqJ8X79cm1E7LDAsMCwwLLCeFti0jtd6\nc1pmkNxk1oq/jNe21kX2ttIN/GGBjWCBuf9M+rQ6E39f2L766qunq666qj2Nt7PimGOOaQf/S00M\nvQIVurQrvHt46jdrmnb1+td2wknZZNorZD6cY4eK1wOd0bZl5Uu1hx566MSJbadK/xoZHmtZLPV6\njPKwwLDAsMCwwLDAsMD6WCD3/NzTw7WHu9cL/UPoil/nBqGX2tnq4SxnqvnBj3/844cdrZytjieC\ngzeH6mMe85jpcY97XNsF6RxXbyEpe4um7mrtdY4ui9LotKgefFt5LuO1N9ZVG/e21Iec3XvZZZdN\nV155ZZs3Otbr937v96ajjz56evzjH/8L/Sv0nP6CskhG6vZGG482DwsMCwwL7C4LbHjHa70JVSMt\ngi+6mSyCV54jPywwLPCIBeb+Y/kfmQD+y7/8y2SX60UXXdSOGbAo8NT9t3/7t6dXvOIV7ZgBH2jo\nX38K3/B6ROLmzaVNUlHb4hhNHZi8SXDqLJjuv//+6TOf+cx07bXXtkXVwQcfPB177LHTi1/84umZ\nz3xm27XCMmvdMbN5rTg0HxYYFpizQMaQubrA9qTxNG0a6bDAZrSA/2v+s/6Xc//NWp82grnPmzPJ\nm2fZ5eght2OIvGHkI0scr2D/8z//0/Ae+9jHtjM/OVjtcPUAnPPV+fAcsdnViqeY+UfkjnTjWMD1\nSej7jb7hmt9www3TxRdf3OaMvp/wute9bjr33HPb/NucW6i06HLdwZVHH4iVRzosMCwwLLDrLLDh\nHa8xRb0Z1XzqpfVGU+Gr1fW4ozwsMCyw1QL1v1b/XxYEFgCOGXDmlMP+4dqlyfF68sknT/vvv3/7\nqFY/wYMn4ld5bmabs4d2ak8mudoTp3PaDAYvOL44fOONN7bdC9dff337wvCpp546vexlL2u7Xe1W\nif3wEMiI/Rpg/AwLDAvs0RbIf39ZI/eUsXRZG0fdsMBmsEC93/tf5r/pvi9UWP7bwUn77GD1Nsy/\n/uu/trNbfSTLfEH5v//7v5szlXPVLkdntTpKQMoJ+yu/8iutXpp5Cb5k9fMJsF52dKjpWnAq/shv\nvwUW9Qkcnen71a9+te169W0FDvkTTjhh+sM//MP2sJ7TvQ99v1NOP+hxR3lYYFhgWGBYYOdZYNM4\nXpkgN6O1mmNMFNZqqYE3LDBvgfqfq/8niwIfgfrYxz42vetd73r4mIHjjjtuOuWUU6YjjzyynStW\nJ/0k4Bee+FWe8xrsXmh0rVrM6czxmvZIQ9fn8THpdS6bD2DY6fq5z31uevDBB5uT+swzz5xEu15N\noH/pl36p8WLH8MRDfkycWWKEYYFhgWGBYYFhgY1jgXqvznwhsJRpCxa4snmVowQ40zzY9rEsxxDZ\n6eoNI043Oxqf/OQnT1tWjiPibN1nn33akQJ2t3K0mjNERj//IkOoMrdCVv8Nz9UxB8aOWiDXZ87m\n6vQNc0e7Xm+++eZ2pNeb3/zmNvf21pmzfYXqYK085ed476jeg35YYFhgWGBYYLkFNpXjdXlTRu2w\nwLDArrKAD2s5k9TE733ve197HW7flY9B+aAWx+uLXvSidqZYdnzSKxO/ftK3KyaAkR37rFVmdgr0\ndD195Z+60CqLXhGzW+Vb3/pWO6LBea7/9E//1OBs95KXvGTyddoDDjjg4S/UZuKMPjKSl44wLDAs\nMCwwLDAsMCyw+yzQz2lW08R9XeRIddwQp6rjA6QeyppfObrJzlY4Aqeqh7E+juVNGFHe2a3qMteK\nLnPzg8whkuILbw5X3Qi7xwL99em14Jy/6667po985CNtDu5jao73Ovvss6cjjjiifRdAf8j8EX14\njmvdW3OUhwWGBYYFdp0FhuN119l6SBoW2GMs8NOf/nS65ZZbmtPVrlc7PjkMTz/99DYBPOSQQ9rO\njLorMxO/3gi7YiI4J3stck1cEyp+zasPf/Dkk1pA2cHiNUHOascy3HvvvZPJsg9nveAFL2iviEnt\nXskHMMIXT5EuyUenkQ4LDAsMCwwLDAsMC+w+C+Re7/7cB3Vi7uGcqZyt7v+crD6O5e0hH036wQ9+\n0JytPkpqV6szW+VzbqtjBOx4taPR2Z7ObrXDdVGIPtEBXmDy0avCwEfYvRZwXRLqtQncXNBuaGe9\n2vhgLr5lZQf0Oeec0+bgBx100MO7XvHBI7SVX2SMdFhgWGBYYFhg11hgOF53jZ2HlGGBPcoCFgjX\nXXfd9I//+I/Tbbfd1tp24IEHttfknVFq4mdhUMPunPhFdtVne/NzE9eev4kxmC8Rc7jecccdbXLs\nTNxvfOMbzTbPf/7zp+OPP346duVDWuxlcVV5Jx/eScFTt71tGHTDAsMCwwIbzQIZ45bpNca+ZdYZ\ndbvLAum7tX+CmQsk+lCWt17MnxwfIPXauOMEpHYycq56iO3htdRxApyvHsjmQTYZeM/JjHwy5Xvc\n8Jij3V22G3J/0QK5NqC5nvL1muorznr1cdsLL7yw1dn44ENbRx99dNsdnWsfHvj2MHxHGBYYFhgW\nGBbYNRYYjtddY+chZVhgj7GAydtDKx96+PjHP97Od7V7U3Au6VlnnTVxvHLC/vIv//KGaXOdyG6L\nUpmwroXG+Wx2/oqOFfDV4R/+8IfTnXfe2ZyuHNR2KdilwlYmx0cddVT7iJaPYsztXKF3nWyPSfNa\nrsTAGRYYFtiMFljLOL0tY/JmtMHQefNaQP/NPdo8wDEB5gIewJoPOEqAw9U8gAPWzlfOWLtgzR8c\nGWAu8NSnPrV9of7pT3962/Xq/FYOU3OBOE5ZKfKSl0Z+6ub+L+qW1eMzwu6zgGuTMHf91DmO4oEH\nHmjfWbABws7pww8/fDr//PPbB27tmNZXcp3RrIUvvBGGBYYFhgWGBXaOBYbjdefYdXAdFti0Fsjk\nrJ/wZQJnIeHDUL6oeskll7SdGhYEJn0cr854dcA/WM4d25XGqI7KRXK1RZybmAaONm2ey4NlkSN1\nRpsdLJzSXhu0s/W+++6b7r///ra44li1e8UOV1+h5Xx11MCjHvWoxmd32Us79oTgWq0W+j69Gv6i\n+tovFuEM+LDAsMCwwLDA5rbA3FjvXh0HqLzg3pJ7OEeq44Wyo9WcgMPVg1hwTtZHP/rRzclqNytn\nq2MFxMc//vHtOAHzAscKeIAdWcssOXf/W6/73TK5o27nWqBe13o9OfYd+WUuzvH6iU98ovWd17zm\nNe2sV0dX5WF+5VH7bjSvfAMb6bDAsMCwwLDA+ltgOF7X36aD47DApreAyVkmY0k1ygTOTo0vfOEL\n7WB/57t65cmZYw73f+UrX9l2cdqxAbfS7g6j1Aln5Fe96BecXteKlzy7mPAqWzzZdWAni4WVCbBX\nv+xCsPvAbhbnu9rh+oxnPKOd5XrYYYe1VwiV7WLhmCa3Lqx6PaL3SIcFhgWGBYYFhgWGBXa9Bdzz\n3f+FPFAGE8A5W+1e/fd///fmYPURTccMcbY6z9V8wH2eQ5VzlbPVg1hzJXkfzlIHB39RPvOByE65\nCS4/i+AFZWQ3oQXSx9L/MmdUtqPaERUf/ehHp3e+853tyIqXvvSl07nnnts+1Kpv1X4RHnW+ySQV\nZxOaaKg8LDAsMCywaSwwHK+b5lINRYcFdp0FTPLrZCx5zsYHH3xw+sxnPtMme7feemtzQHIknnba\naW23q7NLfWlXCN2u0/wRSZmwVj0Ci17KonJg4eD1QI5TC6ksnDhZwUx4OV3rxzE4X71CaPFll4qv\nDrPLc57znBaf9axnTVtWPoBg0ZVdrpGViXDs3usSvJEOCwwLDAsMCwwLDAvsegtk/kAyR6u5gTmB\neYAH0vIcrHYiynsojcZDVjtb3fud4fqYxzymwaTKzm/1gDbzAPf/yMpcIOW0Wjl1YDUfnJFufgvU\n6y6vj8QJr3X6mG8IvO1tb5s+//nPNwe+t87sfPWg367XuX5VLTP6TrXGyA8LDAsMC+w8CwzH686z\n7eA8LLApLWByl0l9Jn0mbvIWG1/5ylfa+a7XXHNNe42ek9EEz2TPK/T7779/cyxqfJ3QhefONkp0\njpyqQ2DBSRocZZNaDmYLJztXffgiH79wnAA4O1hgeW3wJz/5SVt4oTHJ/fVf//XmYGWHF77whe0D\nGfvss8+sw5VcMXrQL7pE15EOCwwLDAsMCwwLDAvsPgtkbiD14JVz1W5DRwjkGAFOMPMA8yXzIg9Y\n7WR1/99vv/3aA2lOWGe5wrF7MY6xzAFWmw8ET1rnCjW/+6w0JK+3BXK9w9d1juNVXl/00P/d7353\n2wxhTvqSl7yk7Xr1vYWcDww3fWSOZ/iPdFhgWGBYYFhg51lgOF53nm0H52GBTWkBkzIxzlZ5EzYp\np+P1118/XXnllS01yXNW2XHHHTeddNJJk9ec7PJ09EANaIVM/GrdeufrpDR6Ox7Agkha6yMbzATW\nLtc4VX0I45vf/Gbb4Wtia0eLHS75GIYdr867tcD61V/91bbIsqtly8quVrtbOV6ddevcNjaqO1rI\njU2ig3RX2KfKG/l5C+TajOsxb58BHRYYFhgW2NMtkPuAdpo7uOd740U0H+B4dY5rjhaCZ+5jB6vd\nrJyu5gRPecpT2hswzmzlaOVwxbu/v1R5eNUQ3Dmc1FX8kd8zLLDa9dYvPfx3xuvFF1/cjrvS3171\nqldN5513XjvOwtxzWRj9Z5l1Rt2wwLDAsMD6WWA4XtfPloPTsMAeYQETPTGO10zKTPC8Su88qcsu\nu6ztfIXnHKmXv/zlbberHZ4+GJWFRXhUw4Rfha1nPhNVcuQ5VO1OjdOUsxScw1TKIZuzWjmWRYsq\nu1w5XqXo4eeVQPpqo8WVSS7nKjv4kqwjBiy24nBlgxqiF2evfGLFGflHLJDr+Qhk+3NsvZYQmWvF\nXwvPgTMsMCwwLDAssDks4B4gZg5jN6uHsZysjhZQ9hDWw1r3cg5V8wNvvDhqKccJeOhq12EN+NZ7\nS18ObnRIfT+XCN5I91wLuPYJ+ox5uH6Q/qPeHPeee+5p83Lzc330mGOOmf7gD/6gfXNBX0xIXwo9\neM0Hb6TDAsMCwwLDAutvgeF4XX+bDo7DApveAhYS/SSfg9IHpC688MLJR7XsAuWM9AqdV5pOPvnk\n6aCDDmqv1DOAyVydNMYo2zvJm+MVnjWt/E1SLY6yYLJDlwPWjhXOVvXycLKDVTvterWLgAOWo9aO\nVs5UTlXntFlgWUxZZMXhanILziacsuwnkkGn2DPtiH2UA4NT9a/t2t58eC+jX2+Zy2Rta91a9F8r\nzx1p5/bqsSMy19qugTcsMCwwLDAssL4WyJhvPmAO4cGzXa7mC44R4FR134+TFcyu1jx4NvbLL7sH\nRAYc+ZS1pObVZw6xWitDt0zuajxG/cawQK4lbVzP6nitdR4GfOpTn5o+9KEPTTfccMP0hCc8YTr/\n/POnc845Z3rmM5+58C208N0YrR1aDAsMCwwL7NkWGI7XPfv6jtYNC2yXBepuTAxM8Cw+br755um9\n733vdN1117VdHxyShxxySHut6WUve1lzwlp4wF806V8EX03ROslchot/5MexGscrZ2p2vtqxok0W\nUXYMCHataBPnKRinK345qy27WZRFzleLLq8XooGb9lUbBpY2KCeftihH7+Cnbm9O19MWvc0X2XVO\n5lppF/HcrPA5W2zWtmw0vbenTy27HtvDb6PYZFm7NoqOQ4+90wLmAc509SDWhzY9nHXft7PVx7HM\nGfKwtTpa/R/16/wv08fNDQKLRdWlPmnFCSz4I907LFD7QFqcvqBO5JDXJ++9997pqquumi699NL2\nppajv37/939/OvLII6cnPelJDz8Q6DdWhF/4j3RYYFhgWGBYYOdYYDhed45dB9dhgU1rgUz0MhlT\nNlGzI9QTdY7XW265pb1qx+HoIH9P1Y899ti2+9OHIwR04VGNMQer9Yvy+EW3RTh4i8GTZveq3a6O\nEeBozS5XqWjiavHEaSzVhvBRB87JaqGlzXAS83EMOkUu2up4jb7qxehZ4aFXt54hOi3jud4yl8na\n1rr11G0ttqDfnMxcu92p/7bKXg/8OVusB9/B45HxYltsseh6rLVvb4usteCuRe4inXv+a8Xr6UZ5\nWGBnWCAOKg9hM2/ghAXPWa7Z4Uq+/4I+3Pfj/EcCRx9Y9DbPSH1g4VfLyde0p6t1I7+5LdD3E9d6\nDqZP2WBgU8QHPvCB6fOf/3w7BuuNb3xjeyPNm2l1Xlv7TM1vbmsN7YcFhgWGBTa2BYbjdWNfn6Hd\nsMAut0AWGwRngudput2iV199dXuV6Y477mgOTa/W2+l67rnnTocddlh7FZ8j0kQOn4R+AbFoohd4\n5PblwPHt6wIDr3h051y1w5Xz2Jls+YiWVL3dqnG4+hBBnKn4WBApm7TCSV2OFCC3yoseFR5dK2wO\nD2xnhOhX9dgZcnYGz/XUOXZYTc85mWhDX+sDqzxT7z+QvPqar3QVXvmsRz5ydkQG2vCpOoWnuh6n\n1lWa5OfqAwvO9qa9rlW3KgNecP3PhZQjWxlN6FJO/bI0vCpN+KCr9cq1Tnku9DjhMYc7Bwt+z2cO\ndzVYeMFbxg/esvpKDzf4q9Gspt+oHxbYEQtkLuTNmRr1T/MAc4DeYbqWPlv7eNWvp83/IDjKc6Gn\nm8MZsM1rgUX9oF53fdVDgTvvvHO6/PLLpw9/+MPt7a5XvvKVbWPEi1/84nY0FprQpT+lzEJzsM1r\nuaH5sMCwwLDAxrLAcLxurOsxtBkW2K0WMOkSLSYyAZNyWH7rW99qE7qPf/zj0/33398clj4mdfrp\np09nn332dMABB7TX73K+WaVPo0zwwDP5C04mfknBxThDqgMrNKlLmYzQywcOJp+Fk7yIJ5h6iygx\nrwmGJvwqr8pbHk70Cz640NNthf5fOLwqU1lMG/EX4PQywnNZukiP0KReuedf6+bqw0Ma3PBQTr7i\nJR98ZXhz+HOwnn6ZjIpbeVWaqsciXeAEL9cl5SoD37Ql/SL1VWa9ppFZ6yvv8Auf4KdccQNLmjo8\nFvEPrnQOJ/LDq8cLferneASnpw1N4JFV8ZOvfMEqbXDm4JWnfMrowyPXNHwCl4ZGnetmnKghuGBw\nE8ATw6Ovhxv64FT65GsaHuGdusBTnkurrNTP0c3hwQ88tEnDI/Upq8//oMLm8IKrDm5icNVXHsoj\nDAtsNAvU/hrdRr+NJUa6My3gw1o33XTT9MEPfnD67Gc/Oz3taU9rGyPOOOOM6bnPfe7DR2L1Ohij\n3QPNiaX6a8bhHneUhwWGBYYFhgW2zwLD8bp9dhtUwwJ7jQXsCvUKkyfpvpjqnNfvfve7k52hznf1\nYa1TTjllevrTn/4LB/hn4lYnb3OLj1ofo4KJQu8QAZujqfBKT2bkhmfKJptgmWjiUUP4hG4ZHp7B\nwyMyKr+5PB2EuXYGP3rimRjd4AQW/NX0qLTL5FZ+aHrcyElbU5YGljS8ahr84FQ6eKmXJl/p0Yl9\nffjVejZMGY/gVH69DDiBSSt94JUXWODhn7TK6fPh3cOVw6/iVJ6ph1vhygmVNrBF6Vr4zdH29g0O\nfuFJv+g4h1/xQl/T1AdWeYSvul5mYNLoEF6hSzk40j7AITPjQGjwqPmebq4MP7LVL6NP3RwfsO2R\n3/PqZczpFhx1tT681K+GAzd4i/iEX3DZPCG2T3mkwwIbzQL5D1S95v4vtX7khwXWwwLm6zZJ+ADu\n3/3d37VvMRx99NFtc8RJJ53Ujh/o+6L+aozNpgl69DjrodvgMSwwLDAssLdbYDhe9/YeMNo/LLBi\ngX6hUJ0LPkb14IMPtjOjrrnmmumBBx5oNttnn32mF7zgBdOJJ57Yjhnw4am6E8zELQtm+dUmcnAr\n3mqL88o7FxGNhXltT5Xbw3uZ+KwmNziRWfkHVtNepnJPExzwWi9Px0XOhkoXmYtgsdciXqGXVh1S\nBkNbwxxe6vs2Bo5GFOBUvMpP3u4Lr8/lmIjYgtNf9Kqn4LgICw746MDV5/iILCh6WbEJHuiURXk0\n4py91As9v1puCCs/wVVOHt5quKGfw0td5RfYsjT4wQnvRfDgLUrRhccinB6+Fllwgod/ZASW+jre\nRE5wQhO4NHV9fq5fw43sShe+qa/8tzUfvuFZ6VMH1teri/y+Dn7q5YWKs4xuK/Yj9Ogqbeql4VNh\nfR5OQsWf46m+4oROWvErz4rT5yuNukV0PV7PZ5SHBbbVAnN9bfSzbbXiwN8eC+h75uw+tPW3f/u3\n07XXXtuOyTrttNPazlcf2nIusZA+ica8Z+5+uj06DJphgWGBYYFhgXkLDMfrvF0GdFhgr7BAXSDI\nm4iJyUt9ydduV4f233jjje2s10c96lHTs5/97Onwww+fjjnmmJYHqw4ME7mUM8Fj1MisMHD4QnRo\nhfIzRxc9C9r/yeIrcsolVBnJ4xUHno9pyKvLWW450xUeflLtq21MXdoSecGLrMClgUkFPET60kGM\nAzBp8KSVLm2NvKSL8MGF8Nha2not0i6wtEsebsp0i20DC44ULGX8Kq06EUzUtkz8OVF9FM0CwkfR\n8mE0cDjO29XffOAELbjjMEQ6gfvq9K/92q89/NVp9oQrRHZ00wZ0+EjVR04+okammCMpGqOVn9ip\ntkVdysELrJajT4X1eXwSKv4cf3iL4KnreWl7aPCvMoLbp/ArTV8/V95WmvBfxAucrvCEpPK5Jj28\nti34gS2TV/kEH2xnh+hITpUbeIXN6bJWvEobmgqbkwMv8EoTGPrAK6zC5fs6sEUh/BbVV3jPN7RJ\ng9vjBV7TteBU/JEfFhgWGBbYHRYwvnlY/f3vf78dN/Ce97ynzZ/yEVxHg/3mb/7mL9wj6WkekPlX\nHSPH2Lc7ruKQOSwwLLCnWmA4XvfUKzvaNSywxAJ1YlXzSOK0AOesMoG75ZZbpk9+8pPT7bff3hbT\n++67b9vletRRR7Vdr49//OObQ6pO0kzkwquqEnnBVa6wwCuNPBw84xTtnX5kmThGJt050nxY6z/+\n4z+aIw89/sHFN/Lw4+yzuxI+Jx4nm90BPiImcsLBx5s+4QNPAMeHjmQJcOK8jeMOD3iioF6kP51/\n/vOfNwf3v/3bv7VJNKcvR6MoTzYZeCeCJYLBoy+aOA/B0052yRea7Q6tOtBP1Ab4dAouHuSAg6mj\ni4AmOiQF0660Dx47oZGSgWccm+q13/EWP/jBD9prc8r0JRM/vLSJ3srh5/rJg7tej3vc45rz9f/9\nv/+HbZNVrwu9Yk9tISMOXHVkPPrRj2489HH8OHT1Cc5dqUj32Jw+iWDJk68sgK1HYOMawlcbk09a\n8Wq+XqfVcENX5aJRDm3NB1/a0yyCVZo+P8ej56NcdQmPwFJOGp59/RwcrMcLn6TpX/B63PCEq24t\n/ELT84o8ac8nNOrm6NRHTzjpp/KhRQdHDCx46cep91/23xTDo9LkfyYVw6chF5nKvb7hM1cHttYQ\nPknXSgev12lbaHcm7rboVdu9LXQ7U//Be1hgWGB9LeB/blz+2c9+Nt24slHi7//+76cvfelLbQ7j\nSLDXv/71be5u3jMXjA1jrJizzIANCwwLDAvsuAWG43XHbTg4DAtsKgvUSVXNpxEmXpl8WUh/85vf\nnD796U+38129vsT55AupJ5xwwnTEEUe0s10tpLMYD5+kkZHFXsq1PrDgRD44x57IIcYpGsdonH7q\n4KGJsxFvuv/nf/5nO+PKjknOVE45eHECRm7kcLzZZcnhKc+hxmnH+fbYxz62OTG1M84IeY4Ejr7I\njL6cEfiqJ4+jjjMQLrj2xFFIb7Lgal+cjlJ46ujAiYqefHLwRSvGZuoCj/ORs5D+8Mg0KddGbcUn\njsQ4aNEL2sAO7EgPvHOd2RItHLLpKKrXPrhirgu9w7fSwtFu9hHV/eQnP5m+973vTQ899FDrf2SA\nw8UbTzTag2euCTw4CfTJ9YNPXyG0aTd+7MIenLw//elPmxy82e6JT3xi2yXyhCc84WFHruvhvyBl\nZ7LiDE6/iC3I0344sYN2aJMoD1cIPE6syoueQlJthZc2kwM/vOAGJ3ZLfXDwCgx+Anitq+XIARPw\nJidtiaw5XmjSRjTyCYGHnl5kuQ7SGiK7wpKPrrUsj2+VV3lEr9DM4fZ84fZtqNej8qj5am/56BEc\naa6bVAweXLao1yA6pD+FBp/oHBnGTTrmP6UNvW3B4Fd+uRb+c/qwenL8p/x3jFvGivAlG1/4eTiR\n/g/umqpLO8Jfmv+0PD4JaUPK25KGT1K0O8JvW2TvTNy1tKG2eU9p98606eA9LLCZLeD/bkx21uuF\nF144feITn5geWplL7b///tN55503vfrVr25zGuO4kDHEeC4v4hH4ZrbF0H1YYFhgWGAjWWA4XjfS\n1Ri6DAvsRAv0i6+IqvBMtJJaRH/9619vB/VfeumlzQm2ZcuW6fjjj59OPvnk9uScU8oC3SI5E7bw\nNJFTJwWr5ZpXFzw8RPUW9RxhHIV2P/74xz9uTjFljsA4/uKkyiLfYh49HPQceRwDZGShHxlg5OOB\nHycjB4IyXJPT7DblQEgbY7+eX/hI8RbgxPEqT7c4M6MTuACufXQIPXjsUuWzuTbHURGbKoscgRyP\nnIcchNrC8cImHK/kKMcBSUfOETwF158N2c5Enj544C2QJ8+p64xfcvCIw0S9AAfftJFtRPVw8YzT\nEpw814yOuW65LnTCrzo+0UdXemqTMn3xjz7RBT49XVdt1140ZHG+Zoc0XcjKtYvjG76oTfQGhyMq\nqyPTtQoPzlk6ux7owOO00v/A4Nd2gEdXPOlS24Pe9UEDV71IH7y0H462kYc2OK4FnJSjs2uCF1ww\neKKyVPu0M3V4oIkcKVk1RIa24EFfeGL6OJmBR1cyXJ84tvEhT5DilYBeSJvQwqe3oJ6s9Em00ash\nrPyoIxueNLjw8Iv+8IObdoRHymkbXiL5Yq5BeNFXxC9y2UE/Tl/Gq+qLVn9Jn8HXNRbhosMDT7wj\nU17/1mfgwIUT3dKGXOvAUybP9c9/Bj45/jceVojGLXzR0lNfdOSHPqPMltqSutqX2Fh0vUVy4MGn\nA57asD0BbR/WymuOtue12cprbftma9fQd1hgb7eA8cq9xDzm+uuvn6644oqWGvPN3d/whje0Y8LM\n2YzHCWiMs2NsiEVGOiwwLDAssL4WGI7X9bXn4DYssGEtsNbFo4W4hS58C+j77ruvTdwuueSSduzA\nM57xjLbbNR/VetKTntRw03D0cVpYhFvki/KcZ3GgxanAWaAuzoLoaUFv4vjDH/5w+tGPftScrhxx\n6PFPMFmM8wAsDgqpADf6mFDWSSW6RQFedAnOMljPGw36nkd4Ja109DHxFRbp1usQfDTL5FU5y/Dw\n6UOVGXlg8hwlv/Ebv9G+lut1/Dh4w0M74FbnSa4H2jhyOHUEuELspoyH687Bo09yxnD2ksepgwd8\ndfqafpOorI/gg06sDiTOHYsPOsGNHOU4r+ijrXjor1WGPLw4jaTw6FMXMuTSUxToild044AiI44s\n/wl82DMObbxjRzaBwyZSdPDhaJ9Y/wPk5dqhpV94oWED9PTRdvXwgysPj0OM7aXaAg43Tmtp2hXa\ntD1ONvUZB+gdmWypLXSlT5x2rjE7pE1k0h2/tJEOgjrXlINbpKN2xd50whsO+lx/dOR7KME5SQ92\nQM/+djdrN3z6akMeYOhrcPEmhw3SL5Th048e9M31oS94+JEZG+CNL15sRWc65vpGfzByY0/jKD7S\nyESLDi5YbBHbRwf60BG+dkdW/jPs5bqzK/m5/nT2EMfDEnorC3Cq3fAVtFfANzC6xN7GE/eZfVeO\ntHnyk5/c7A4317oRb8AfdtwswXUeYbkF1nI9hx2X23DU7noL1H5r/v7Rj360zeHvvvvuNpaeffbZ\nzfl64IEHtvE8GrqP6M+jT8ciIx0WGBYYFlhfCwzH6/rac3AbFtjUFjBhEy3QBYv3e+6552HHq12n\nT3va0yZnux599NHToYce2hbHFs8cEXG4oLW4j/PAojw7oqQcCnEyWKRzGqCNw4cOyvA4W/FRlwV7\nnVgmnwmjcp04KlccuqUsLwS/wudgW7Ef+a0yA608Aksanikn7WmCF3jK8CssefCKo5ywCCdwdMmH\nZg6WOn1DhCPlXOF8f8pTntJ2vXLMcJKkD1XeaEzuXUeRYwc9Gs4oAQ54Il7y+lP6DRxOOY5XkUNI\nwJMDR3/SZ/Q7NGj10Ti8pGiScujQCy3c6CevH9YFiX7LGaZfOsJCf9aH4xSq7UVHLltoQ/L44qFP\nq9NGkT5o6K8eL/bh6ELP0YVH7Jj/CJ2iJzuwJzo0cNMuvEVy0zYyooM2qMNLvbpKgze+HJB0oi9a\nOGyQ/ztaIbK0je6uWa6lNqKBC4+sKjf9QFs4XdHiQ0c2EFOGG3nyaPQLTj/60pGNRO1Dh2ccunRj\no4w3rin99AP9xBETPkgixRMPuD486DgQ7RbIwce4qS3ota0GOGxAh1wXeuWYC9cdvVRko/BgI0Hb\n6SwK+JAnhRt7kjUXcl3ZSkwZbmDydGQ/qWstH7u5/rme2klXdvOf0xYw9WwcRy0eAvvRUTty3dlb\n1A74++2333TQQQdNBxxwQLvn4JP+RscRtlogfWJb7TFsuLrF1mLbYcfV7Tgwdo8F9N/vfOc706c+\n9ak2h/etBv312GOPnd70pje1Xa/uaWBwc7+o/X70791z7YbUYYFhgT3TAsPxumde19GqvdQCFrMm\nSplImUDVciZRmVilzFyBxXTqLKLvuOOO6fLLL58+8pGPNGeTxe+zn/3stiC2K4lDAm6cKBbceHEC\nZAdUdYJlca0erkW4NA6DyMcDvNYt0reHK1cYnhb5YOEb54S64KsTA2uZ7qfyDW7SDvUXinVSG3yw\nxOhALyG6wmUDaehSxwkVh19sFdrGpPyEdq6+1lV9qkxwsuKEYU+RY4qTSz/glOJs0UfUoQlvKR05\nVjiWtJMDijOHowx+nH0cSpx7nC14wtNP9B1OKnxCi14++pCjb8HjDEKDNo4quIlo5OnJprGnNDaO\nk4jd8KY7nvo2x5u+TQ6dyE1/TrvjLEKf9seBrEwHurErXchlhzjv8KFPdJWGFxztpI882XBdA9cF\nT21ja3XhGzqOMnl6CGlz/htkB6Y+ZTqQg3dCZOCVtlcafKpdgwe3x085NLk+kQcun3J0QKeOHdk0\nNgBzbbSfHeiv37CTVJk+xjC2FDM+uX5xvHq4YDcmPsZG118/UCYLL23Ei5zYMe1QVyN5nJSc+HHg\nogldtVHaKMUvMfDQpBxbpFzTat/AA0tZyr5syT7swF5xvEpF7dYm7fU/0B5Rv0Lvvx3Hq2sClyz6\nal/6JBpvNnjDQfDf/63f+q1p35Vdr+4zbJ+xhy65fuTTrwZy4dT/FZz819XTQyqwZW1/ymDBqfyD\nC68P6sT++qxGEz6VZ2jUVXhwF6WhC00ts7vQ6xdecBPhpP2BVV7hjzb18pV3D0+9VAi/raVHxpha\nlq96VLm1PeEVXHSByVe6wKVVX3gJFScwaeWjHLy+LvBen8B7fGVhGf+tGL/4i19o+lRdorrUBxZ5\nFR7uwa+4wQ/OjqRVZmRUGLulvEwO2oqnnFDhgUkjT34ZTnB7PDSVR+orXF4bqn7RLTKNgcknxWst\noeKHL7oKN67edttt01VXXdWODHNcl3vYm9/85un0009vc3ljaEL9PwUmrTwrfOSHBYYFhgWGBdZu\ngeF4XbutBuawwIa3QCZfJkk1T3HlOXgapT44Jl+cAj6s9fnPf366+uqrJ0/LLa4FC1qOMQtvi3Eh\njgo80Es5hfCRohUjpxH9788yvaCgEUxiE2sZPXgmjcGxuLbgFrPoT9s4zEx6ldFXXPgW+dIs0PGU\nj65pozROHU4EjsW0M3qhq/w5DdjOK8ycEia++GsnXngm4skRxIZ4i0LagwaMM0+bQk92QnSPLegi\nwA2+MjzOiepAivMHDZkcGmyjnPZxrmiLVH+AE1nRg57aQk+LATqTpe2ienXksQlHrteMnUMGjz30\nJQ4dfODXQB984JKp3nXQPu3SJvrLp16KDkybRDzSzuBKRbh4kp+HCdW5q03qqk3pg1a76A4fresJ\nlr6W/kYncLzy/8FPe8gXBfaAg6f+wTZ0Ux+b5jrBxxMfPOMg4zjEQ51AdgKdyawxdTVFI8ITklac\ntea3lVeVOydDG+Ak0I3dIoetgpM69fJpB1zXyP9VX3SmNTvrqxzXUtfYAwIxfZlN8RLyX8iCDoOR\nAABAAElEQVQ1zjV0LdC7DnZPu4a5Fr0O+EQn+bRBil8tywtpnzbWdtV8Q/zfn9BpD13JQ5sYhydb\n+I/6v+d/hVbf1yb/b+1iJ20PHtvgC5cO+iMaUZ/kFHjooYdan6YSWuMJu3PEag/dwP1H8SM//zF8\nRfqCu0dld3bGJnTqohP+ynjSKf8pOinTF00dE9glsqr9ks91gpMwB1tLXXCSRnbKSZfxD44UXnhU\n/YITPkkDh9vDUtenPd+ertanLrCU53iqE4MLJ/iBKbv+ysHvccJ7GRx9eFQ58lVWLfd4fZ1yAtmL\n+AQe3EVp9O/rQ7+ovsdXZjMhY0N4gFVdlRN6nMir8OTVpT70/XUKXBqZoU+auqSBJw1c2ofwrPDo\nNFcXnsFBl7y65Cu/2LGv63kpi8b75MM/uJVvn684VVby0QN/H9kyf/eRrRtvvLGNzaeeemr70NaR\nRx7ZHLHo8JQmVr2qvF6XUR4WGBYYFhgWWJsFhuN1bXYaWMMCm8ICmTxRVl7IhCnlBixwi2POGwvm\nOPikdh85H8rTcpFzIBOxTMwqryobvC8v0gOuOvgW1hbAFrsW+VlQxxmRhXfgcOXBBYsGET/wRPzg\nmoySw8Fhoa/dcVZZfGchLyXfYhtdYtqfxYlUwIMTAT8Ld1EdvfAgP5FOFv2cNJwJnBhw8EaDT9ob\nvnGWSeMoQwNP2fXKrrk4cOgV+/T2ZAOOBXZAi4eQNms/W5Ev0ks5dsQXj1pHHxEPeLlW6EQ8yOOs\nskuQ/fHIddZuDkkwTly73The2YjNwOHQNbqztzy4QG865PqhowuY6ytf+dA/fSV0ro2YtmgrutgG\nPjp6uB655rkW4PLkwK19U/s5pbRTHp/YiRz52Aof14YDK+3EUz089kSvDi/44Zc20zny0aqnc3TI\nbk36RtfoQ05o0h5lckV5NKFjfzBRAMdDu2JDMLwEaeUFlvbjoT4RnoBf5EkFuNEn/AIPjnLy0bHq\nuRp+6LVDv8BLn4tzDpyDj4NQPxOii1R9+mJto2vnGovpD424/KTNaSd6/PTxOA3p5JqDqw8OmWAC\nPehMDr31F2VRXa5Lrhla/UWEI4WnnizyRe3Vz8ihI9w49rWPrdTTVUSLB3nhn7x++b3vfa/t/lWX\nayTFR5QPXLvw0t7UJyXHGOu65AFXHMbK8nbq5/gI7aAHHYxRGZ+0kZMZLzTaQkZkks9W4LkOYKIA\nN/kG+N8f8D5E9x6ectrd0wYOb1FdhcNfVq7ywht+TwNvUX141DS4FSY/x3cOR//rQ9pSeSQfedI5\nvNQHH+/A5CtcuQ/BhRfc/I8qLLLRBy+81FU+FSfw4M7Rpq6ma6FbpF9PqyxW2TU/J3dZfeXvfwG3\nwlbjN4cbeUmDk7TylIdXceGJgfU4oQ+/pBUfTs8jMGlwKy1YaAJPWseMwPARwmtr6ZE+C57/iHz4\nu+dzvt50003TZZddNt16663t+JZzzjlneuUrXzk56zXjWmT1fHqZkT3SYYFhgWGBYYG1W2A4Xtdu\nq4E5LLChLZCJUiZsJlBiLdcGwLdIttD0eqcF70Mru41EZWdDZRFsAS1k8pXJWeWX+uDgL09+HALK\n0UsandHCs7C1o4wDw0LXYtgCN86BKgMvC171ggUPPFHIYrg6JCI/C35pcOPIsMgWyaZ3Ijl0rPrH\nDlmEpy5OAzrgGydeJrd4gqkDSxvYIzrRK/pqE2dJoraSxXni2nDOcRa4biJHDl54k8EGdEGHxkQc\nTc5A5YwR4KERyY49cy2rDcILjny9zmQpJ6KDQy7HMCe+fNqadsKRR8/5GacIPkLsww7amJ2j4QMv\nNncNs+ONo4W91YeWYyXtVhfHUHW81uumP8Bx7ehIppj2073aS5tFtiRXPXnsLroOriFe8JLKg+PN\nRvTUVvhpJxwBT+1RJ0VHP/V0dz3DTx374RnHK/vhCQ6Prml/+gsZcETtQ09W7RNw0cMlRyCbzdje\ndcj/CQ5aPBLBBDzoL6jTbjHjD576s0imQCe4cNhXmjaxaY3wyY4OdI2+6siHL1R48HKNXE8wvKTo\ntE876aZeIEdUD5aITnTdUs/26YPy7CCGhhzy2cA1Iovj0IMJssHhomEb5cDIYifyPKBhp9jW9VRO\n/0q7Kg1ceGLsq3301M/S18hHByfXDT86sQu96aYd2k2ntIuNXDe7Xt13yMJLgBO8Wpafu15gwU9K\nN7KrnfXN7KY1XtDHf4ONpIJrEnvXfpxro13g7lt26eNZrwdd4GqfqJyIf/QLHj3lU5c0NEkrvCF3\nP/gK8Gu+Q3u4Lrh9/aJy9E59ZCzjU3GS194+qEt9bAEHrLa/wnoefTm0PXxRudeh6lFpej37Mtxl\nsufwQxM5Pf0iXSp+aCpuYEkrfvLSShN4/ovq5uqDt9a06iBfQ/hXHPXRIXB9Rz70oYMbmHzg0sAD\nS7niyQur1VUeNR86sMC3ctz6W+sDDyzlSpe6Cgte0oojL8JPajz92te+Nn3gAx9oEfyEE06YfGjL\nh3Kd01/x8YUjgC+T3ZDGz7DAsMCwwLDAqhYYjtdVTTQQhgU2vgVMkMQsYuQzSbXYSwieRa+FsXMF\nOVi/8Y1vTPfff//09a9/vT0Zt+hUXxfGeKCvYdlkTB19LFo50LJbCL0FdpxF8nA5CSxen/rUp7ad\njmgserWDY4BzhT5J6ZIFLZw4Xyz61VlkxymQRXLsQx67wEvegtyCmZ4W0mTHSYAOnoAmURkcnohn\nZNBJHjyOlCy8wYMbWPizR/QK/8hz3US8wbRZZB9ONE5Njgt5tiJbm8gnB55ry0nL6SrlBATHD35s\npUyXyEMvCurAyc51DJ76tC82Qac+fc5Oy7RTW/qAnh76DkcGeWkzXG2jsxg+cBLQa7PryLHCqUIX\nPCxAtD1OW3Z3zcU43DlT6EwH/TJ9o/an2ABPUftiA7RxfIWXOn2TI5UO7IaO/MiK3cIbjjYGHw/4\n8ARl14A95NFFZ/LxhU+OOrbCC8/ooU6Ar8+zgVQZjSikjdpAL7xqO+Xh0AVN+l52druWeArRO+3T\nBrSxRXilb0u1GU/XQsQLDA86aZf+JcKnn3r2cN3wF+GKcIKXtuBLhgBGz9BpE/3ww1c+AQwdnaTq\nYjc42lNp1OHrOqjTR/TzfBCM/cHSzshU9n/O/0KflQcP/7QZjUgXslwXtvL/ZytRPv1Ayi7w4NNR\nHkwd3ERlttNeerKvdsd2aLRNxIcedISnvQL7xu7RFRxvYxjnJ30FPOq1oF+C9gpwxNUCe4ixE3tm\nrKePdtFbih996QdPW3ONc03Z3xjDceHDk3lYBD/tYhdtZwN00SH6gsFRL6KDo8100l76wiE/stNu\nKfy5MAePXPjJ4y+fsrroKS/Uenn11f5zskIn3Zb68Ee3LAQvKVx5ocqbgzWk7id4lb7CksdbTLni\ny8/BwapO6cfhhU4IbcXdWvOLv/CCqyb4SYMdPGlk9Thw6ZP60G5rWvVBW2WmLJ2TD15DaCtMHrzK\nSd/t8ZSrnNBUWGjmZM3hg4mRmTKei/4LcJbJVJ9Q8ebo5voMvB4ORp9cU2OyOf773//+6d3vfncb\n1/fff/+24/WMM86YDj744Db20KPqEPoKi64jHRYYFhgWGBbYNgsMx+u22WtgDwtsWAvUSZq8YLKU\nSZmFJEfbP//zP0/f/va3m5P13nvvbee42iWZ3W8We4IJl2iRZzFokW/RZ1FoEZlFpYVndgLBTYTL\nicOhoF4ejD50sagWLSwFMjhpHPxv8YqGHDrAi7MgdJkQopUPT3hkRO/obBIqsok6cAEsbaGDxbWF\nuIWzugQ8EwPLZBS9kHLSwGo5sJriuyiEtuL0+SzQTa45ntgIDK3Fuiio0wcS43iBz4bVRsoiWfio\nk48zhp3x4yiRj8yeJu0Ch4OGs1d/4+AAF8hwXeharwFYcOThRQ/89J/a7vQn10Tf48zXr9CSRzan\nDhtoi3alf8dZgj+e+hR56R9S/YaOueZw6RcHCXz1+q6oL+GfduBJruuDjnw00siRF9TDFcMfH/zo\nEVukji5o56K69BN5obaNrtrv/xyd1QtkJirTS4ze6siMLcCjZ/5LrmlsFh70dg3TRjzxgBcbVF2j\nQ1J1sSc+yWungEdsGln6gGsrhgYd2bGbfHSCjxbP1DfmKz/ka2vsVOHqqu7qelxldtc/9VPOuzwo\nYC91rrOozfqVmOtf9el5k6c+gS6xr/ZUG2hj7MIW2irCV1aX/42HJv4//vf4kBs9yIid8ZcXgiMV\n8GZf+NrlGtVrSp5xItcFHXw81Rlvcn3wCF+psljbrh19gFvpgh/6pHM44ZW6tMG1yS7k/IdcK9H/\nyv/LNYUX+eSqz3/PdVcW6B3d9YHcT41r8OHhpR+zC5vgCzd9h27K8MiKzvinja6HfP3fqRfAEypt\n6gKDV/OhkQZeYZVvhS/CBWeLvr4vh1fVB0y5wtAFFpraB8DWyjv04YdujjbXMvXwq5zo1+PBCW9p\nfx0bk5mf8JupavwCp8+cTPV4CLU90SX2qrTya9UP3zkdwz92gifM6bK1Zv43+Knt21DLcPwPont0\nAO/1AEuIjMqrh4XXMj749XSR0afBA6+2r/wjU71xwSaL22+/ffrwhz/cznrVVmPDQQcdNJ111lnT\na17zmmmfffZpYwA+oSej8lUeYVhgWGBYYFhg+ywwHK/bZ7dBNSywYSyQCZLJkaAsb8JlsczR+v3v\nf785WB9aOUbADtfvfve7bSLmle8skE04LRbzdXrOADELSY5Xiz3RhI0MCzULRYtKi8DoIIVjsWcB\nmEUgGfSzIDfxo2OiOrzwh18XgXBFdKFNO9Pm4JhkJuAhJtCLnETlHqYu7ZNXTxY9E8AS1METolOt\nD15NwwtecNEKKQc/PFOWBrfC5PGNXeGElg3k1bnecTglBVef9oYXmBA98UfD8aFvZQecfBb+8Nkv\nusRBopxIXpwFrie5nAPV6Ufn8CFfPjB64YU3erw4auiV3Xjw9WevYnNU6IvaDi9601nQd0U60A0O\nx7B24Q1GDkeQQF/8yFCXNsIR6EvX2v/1azAhuqMVwo/8ONzQwk9/kMZO2iXCp0PskesVPeDHbujV\nB6a9/mfkiHgpV/lo0Ym9PtogpB7fyAePHG2ILeAKSfGgKzuIyniQiz68G9H/0tW60CUNvbSnB3Od\nXM9cL6lrSgdwOKJy6sDjAKRH2iiNfpFV6eWF4EjpLrKH1DVgbw41Y23OfM51DX7lQVZiE7DyE53g\nJfTyA5eqQyON3bU31yK0cOGB9/+dPGxRJ7IRnDhGY0881OMZvNiU7IToHnn4xe6xL3y0dfwhM22Q\nohfRSIWkkRFY+IamIRf8lEMHT16Mjfq6XN/wzjXMfyD/h8obLH0h977ohD9e/n/+8+7DxjN9Rt9R\nxx7GLLYR8IArzZhibEUjRcO26FwveSH3XmkiuXRg29hXGZzO2ue64iXm2oKTHzypdpItjV3qtVGX\n+rQ7dkiqHq36BPLzn5YX1Gs7ufCrTHX4aQ/8SoNWXf4b4RV5aNSJYNFXGn7gaa88eOxc+w054SGN\nXPrIpxy+UoGsyE27wPFGyxbRjw1cp9ghOPCShy+wU3DxT4iO6vSLXHf1eNArOOjkwVOnHbne4Zu6\n0KpXl3o0CfglVHhg0opT4fKhmcNRF11it+ghpVdCcJOGX9pa4ewu/n/2zgPIriI7/22SyBkBQoAE\nrJBEzlGgRFxykEWG3TVLGa+3nNdpXd4q21Uul42rdr0Ytpacg0ALiCSiCCKJDCJJSCsQIJEzrP2f\n34FvfHT/b2bezLyZeTPzddVV39t9+vTp333zeO/jvL4aT5+KxtHGwXsYf4OwwBf9HPJHG4V4aMMO\ne/2tYcs9yfeOMXzO4TM+iRXs8cpWAzyvgc//+KGQ4MCWA2eccUbZZ5994v2BmOmXjeKJAf7HBEzA\nBEygywQsvHYZnQeaQHMQ4EMYhQ9H+mDGOV/EXnnllXL//feXe1qeZDq/RXTl/3qTsaQvaHxQ44MX\nmVb8xH/EiBHxc0mJrvqCJ5GHD+8c+KcwHx/8aeO8WrDTB2rOOfSBTh/qGKMPm/io+tEY1RqvudSu\n69xPH0e11Gqv2uEnt+V41Z7b8hy1+nObfKtNY7M/+qrXssu1bDryxRg4y17Xev1wnX1gJ1u1c409\nX1B4DfGFgYMv3PrywP3m9SBb7LDXl0nmoeBHX/54DfFaRBRATNCXFez02tAXTF4f+KZdPvRlU7FI\nSOCLD69dvizqywR9fAnmIDb84JsD3/hEcNWhL8waV10H45lX6xQfavlmfuJgbcxD/JkJvOjjULwS\nLYhbB2PlC1b5ix1zcVCYmzm4b6yJ8bqHXOOHOWHOufzTRzvXnHNQ5Edt+ObIRba5XeOwUz/ntMuH\nato1ln6OWkV9sq3WtfxgAxvVYqV7pNcP1xx6XXLOfedecU7J68Af8WQu+MZW9yL3w1rsYQxrrrmP\n3AsO2jRHlYHWWm2vrlnXiq9qr3bsVGhTzLX6YSIeMOFanKj1nsDfi94LsMeX7PQ3pPcO2rHRwbXa\n8Kd5iF+vYcXAPPw3TuIh53leuFKYnzG6L/jJnOnT+wZxcZ3Xr3PFpWviEy/i46BPc8ZJ+kd91Xsh\nk7xG7j++5VevB2LnfUHvFbxusIOT3n8Yw9pZo94feE0xjvcM3j/wpzGsnbXQptchNthyMI4+1s8Y\n+HBNO+9V+Gbu/D+qsMux4g97cdc8jNW6sdffhmxpgxtzclD090IMuqe8Fvgfbhyci4HWQQ0z/DIn\nB/6Ik/Vz6F7SzjlMONf9xqfaxYE+1iLOMIJFXjsx45/PXbxGGSuf9GFLPFoP/cyt1xc+dU2dxzBO\na6Jd8zMf5/SzdgR3aq2bfr1emA9mFNaBnWyJSfeHNv7HkPZE5l7CBz/U2Oq+4kt9YsXc9FOzftq1\nVubQWPphQlv2yf3DhrZaBXsKvsU3t+m1QlxwFCveP/hvPdsPwYGYeI3pNUg8lDyOc71edH+41tyw\n4W+Dz8/8jxL9veKXmLDlHug9C4GUa/ziQ2vEDv+0UxhPIX5i1f/ogBd/q8zJ3PhgPfyybX7L536E\n1kWLFsUWLvqlD35YG78w23vvvWOv13HjxsX3AfHHD4WYxTIa/I8JmIAJmECXCFh47RI2DzKB5iGg\nD3xExAc2fUBiv89HH300nmJ6+eWXx4c1+vnwxoczPhTy1PgRI0aUUaNGxbHFFluECKsPi3wwY0z+\nIMg8moNzFT6k5fZ8nj/AYV+9lg/15f7sJ9vlc9nThj3XeZz6q22yla/cr7ZqLV+0y746n8a0ZVsd\nq+tsLx/VWnOqvTqm2p/tZIuN7GjTuWypZZvb8jljsOH1x5cVviBw6IukfOiLib40ygdj+UKBH16T\n+uKlLxf05xj0OtS8mju//plDX6rox5bXMD458IG9bHLM9GFPv77UUPPFUl8Q+XLEub54UXNgQ5/m\n51y2zM8XL74U6csjsWGr9bN2feHNdsQMTx1ihC2+6CdmsSZ2nWv99MuGPl2zXvxS1yqMp49aJftR\nW626njHZRj5q+ccut2sctWJvy0bjNEbXmk819wEb+HFwrkP3WPcKZirZr9rlR33YirXuo2xpbysm\nzUGNr47sNF+2q46TDT6zneagziXbVH1lOzGj5m9Kfy9VrurT34bY6u+GvyP9TeJDf2vMLVbExDz6\nG9PfKqKbRFj8SoDQHPLL3yN/Pwgr+MIPYxEkJIRU14oPxmtO4iJW4iYWCvHpHHt8cC2GXFdLrb5q\nG9dqk3/NR43farzVeWSX2+VTcXGtc9ai90x48XoVP62JdsQe7OCBeESd55IfWOvQexg1PjjwoWvs\nJCLRznzMrbXLlpjgzJzcP+1Zzj1kHYqP/4mc/wey4sAnrxe9bnTP5JN+tYkb19x3XnPcewqvM3yy\nVtp4jRAb7+O8zoibedi3WAIb8ek9QAz0+sE/B+tSDHqdiQH3ivGM5b8D1BTsmZ/xxAor4mD91DCm\nXa9jxQszCv3KimZdzKN7iOg6bNiw+MyIWMe8zAcLYsWW9TIP5/imT6yIEU74FROtk7Xgj7H0Y4sP\nznktkBzAL69YBzFiT78OvW5Zg5hxLsasmRi5Dxysl5r/WYAgTkbo4sWLQ4DFjvm1Fuaj0K57gz/d\nC9pYK/NS4CXmiNTaOov48Uk/Y5ibz+i8JoiH8fQRMwdrYk58Mx9rJRZsdA9ZA/26z3ot0M4DCslw\nJdOVOfCPDwr2rJFft/HZf7fddisTJkwoO+64Y8ROv2yJQ5xjsP8xARMwARPoMgELr11G54Em0BwE\n+GCUP3jywYxrPujPnj273HDDDWX69OnxwYsPgnzY4mBPQR4GwsEHaj4g8uGQD7r6gKcPX6xUc6gt\nz8ucKp2xk6/sX36o1Y9PnWfb3JbHdWRfjbE6lmt8V+24Vhs2ed1c5762YsNOJfur+pJNe3VH86m/\nnljamyf3ySdt8suXkGq71qMvKdTYMCaPww+2HPkDP+2yz75pp8jHN1ff/EscHMylIt/6EkY7/mSr\nLyTY4ZOxHHyh4YsP59ioTecaj6/8hQw7rvWFlDXx98SXIr548oWHgh98MC9tfMnkwA77zAIb4qem\nr9qPPzFiDZxz1GKELUX9bdmo/xvrb/6t1ZZ9Zdt8zjiVtuZTf7WGEWM6Oy77yXErlrb80a+j6kN+\nGMs5sVHr/sgn7RT6KLTnIxpb/pG/fM25/HCOjebgmiK/nGdbrlWqNh35oV8x1rKVX9Wy55pzCuM5\nZ/065It+2njd62+IPv5e9DfG3xxFggPXjMEO3/ob0N8Yf2cSRCQmUeOfvx/5pVYctOugDR9kvCG8\nZhGEOLivFMbr/UBCHddqwwdxyp524iA25tAaOKdQ676Jua7p04Gt2jWOOhf65Zf2PDbbcZ59qS+P\nVVu11riqLevloB1GlGo88iVbau6jfHIv9H6mc4QrRCrsdA+xhyPvlbp/XMMa4QrhlZp7oTh5v+V/\nIvOZhkPvwbzP8hrJIpzun3zqdar4qfGLf+4tcbEW4iF+CmPop534mQc74tLrgWvWgg21DsYrbvxw\nrmv6VLCn0KexuU19Give+tuhnzVyYJPP6RNbxqkwFkGWz4x8TkTMhi1xsi7WTBFv4qGP/wZKHMQH\nPPTfP/3dYsec+d5obuyZl8+lzI34K66MwZdsWQe+iAXfXDMnsXCurFZeJ3qt8LeM8MpnZWpizfEw\nPz7kmz4O7iFtFM55DYo3bXDg9Ua8PK+Az92sgTUSD/HpfxZQsxbGsDYOXk/4ZS3yzTr12uecOPBD\nTaFNvtmDmy3FeJgW/omVfs3DZ35+4cax1VZbldGjR4cAyzVrxpb1aE345XAxARMwARPoHgELr93j\n59Em0OcE9AFQH4yo+cDEh8k5c+aUWbNmxZYDfIDlA9bYsWPLyJEjl9lPUB+s5KPPF9UkAeiDZ5OE\n06UwfE+7hK1Tg3id8HdIrS9lXOsLD/eALzN8idMXpOpri75mLNU424qxmV9neQ3NHCdsc6xtsa7V\nXu84Xn/1lKq/3ubG/Pz98PfEueKRcMO1RBDECey41t8d59jo75Fz+liH1sI4xCHECYRXstAQXxA8\nsNWc+ELkyAd2jJOghi1/wxJqsNV2JQhvOphTvrFF6FCmH/eFubChJk69L7AO4qKd8RS9p3CudVJz\nEI/ip7/eIjbYtzUeG/VxrjGKi7Fqz220q2Qfasu1fKqN+dSmudWnutrPtdqwYVxbY+Uj14ytZZ99\nyr6WnfqyH841vsom2+W/087GrXnx0dHYPKfiqrUWxaOYdS3/GquaGNSneHKNnWyrdrlPAisCukR0\niZMS7BEtJfLyP0/4W+bvE/GTvy/+FvU/VvT3obmJSWuirdbaa8XNmCoD7OS36ievKfvDDiEbMZRf\noCHUsi78628dG+bi4P2Pg/cFfGLH+wXr5v2LzN35LdsLkE2rORnPGITVfffdt4wfPz4eqsVcynCG\nM3Yak2P0uQmYgAmYQGMIWHhtDEd7MYE+I8CHJX1gIgg+OFH4UsiDtfg/33woI1OBTFf95IkPWvqQ\nxXiKruOig380pj2zemzaG9+VPq2/o7H1xlavv47mGwj99bKoh20jfdXLtt456/VXtdO6qzV2zK35\nVctO/VV/zXCdY2yGeLobg9h3109PjW9W3t3h1pk15XnyOJ3Tz6Frap1zT3SuGmGiaqN7R7vEVIQa\nZalLxGQsRWINQogObBFTNQZfiCGII4xDJMUn/+0lw44sNIQR/ruMD2wRjBA+EJL47zHj6ENIwR++\nJLBoDdTEg39i5xx7ibXygR/FzxgKvhB1EGFow4fiYx2yl8ij+RlHyRxyPPRpDsZIGMIfcTGuVmnr\nXteyzW16DahNsehafhWT2lXX6q/Vlu2r/dk3feoXwzyWc7goTo3VOLXrupYP+nRfuB+MwU4H14oB\nO87FXf4Vk/p1LV+6Vi1/9Oeidtqqfdmues44DsUjP/Khfo2rtitu1Rqf7cWDWq9b+mEhf/Sp4IuD\nvz/s+Vvk9cvfSebM3xN/b4qd8Xqda03MgR3vC/rb1JzYK97cxtz44VdnI0aMiM/pyowlzmzLOTFx\n6PM7NszH8xs4eJAuIjO2CM/Dhw8vI1sSLcaMGVO23XbbSLxgSzHeexS/eBJjLvhQzLnd5yZgAiZg\nAl0jYOG1a9w8ygSahkD+YJY/JPEBUF8OCZYPWvnDlsbpQyM2eTzXbRWNbatf7fXayb4RdSPXUK+v\neu0asb7O+Gg0/2ZdZ2eYNMq2FttafLDL7fWOa1ScveWn1rp6a+6O5sn8O7Lt6/5aHBsZfy3/9ay5\nkTHUmk9x1TMPtvXYaR751rVq2nVIqJTYoTG5li02iCxZ/NQ4fHOO4Mh/fxFaEV31YEuyYJkL0YNM\nV8QR/rvMemjHJ2MlyCCy0MchcUj/bcc3/si6ZQwFe8Yqbs51kP2HsKT5GIdIw5PPqblmnMQd7JVV\niG/WjKCkLF/mRkxGvEVkZhzZe/qfu8TJ2vkfwIyBC4V14Jc9O5mDOemXYMW4zFPr13iuc+GaufEL\nV3xyrXhhw1iuqeUHG+z1uUj8ZYdffGmPWASxzIMY8IGNhDDmYryY44P1MSfsuL/00677ST9z089r\nJr+u8E98zK3XCjFTGMN8Wh8+mZcx1PhjXtkwL4V+xas1c//oVx/9jCUe/sdBvn/4wD8FOxX5p0+x\n0Ee7+rhWfNgwBzFQc91egROllh1t9HNwzkEcxMdrntckP/1nv1j+Z4dioIYtNtxHMeY+wxkfmTPr\nUBzyQUziDEd48XdBzcHfB38Hen2Lh/wwF0kRynglDq0B3ypam9ZFzby8D0h4ZQ788cDcbbbZJsRW\nthOQb7KGWWtbhXlVNJ+uXZuACZiACXSPgIXX7vHzaBNoCgL6AFf90MSHMkr+ECeb6pjqdXsLk217\nNoOpT0ybcc2NvFfNvM6+YA9bMRFnXdeKRzbqa89WNv2lrq6tmeIeSJy7y7Xe+9QszGrF26jY5Lse\nf7VsEVD4byx91PrvLe1Z0EKEYQ9JxBdEEoQwxBEEEA7OKQhlHPQjGHEgrhAfhwQ+5kEIQ/iUKMYY\nbBGLEIQojOFcvhjPfAhN2DIXohCxESMiG2thHP2M05z4Y13Mw9yIgxrLz5oZT9F+lghY2CMIzW/5\n6TM/gWYcvhF/+Jkz+3YigsEKX4i/HJxjSywcxMI68CfW1CoIk4jY+FUGMRywJ07WhSDFgV+uWRu2\nEuRYJzwQzjhYJz7wqTVxDjvGUogBG+bnHrI2xrEesafGTq8H4sGGdt0r9ROX1k6cjGHtEl1hqvkZ\nz/qwodZrD3sd6qPWawu7LBjSx3qZV2uGBeshLl6zZFEinhO75iF2XkvExDnt9IsJ45kH/+JPnLBj\nDTCj6L4wNz5Ylw76OWc91PTjj5p5sh1zyZ65JaAimnP/EB45OOd/DsieWq8fav094oN1MTdxZ9bM\nrbmIgaL1S3iFJ+z426Dmf27wdyZRlvcB7jF+mZeYiA1hOM8t/8zJHBRi5lBszMl7AT7hi4jLtmI7\n77xziK+IsPCgL/sLZ+38I9t2TNxlAiZgAibQCQIWXjsBy6Ym0KwE+FBW/SCqD4eKmQ9RatMHqnzN\nOYf6NK47db2+FEd35urM2Hrjwmc9sXXGX2fibIRtPfHXO0+966xnzkb6qjf+eu3qjS37a2vN8lXt\nV7t8VPvVXq2r46r9fXVdb/y9HV+z8uptDpqvnvvUaGZdmbO9MfXEVx1fa0y2qfbTl9vas81ssUMg\nkViD4IXwhDCCyMQ54hEiCIILIhciCuNo52CshBXEFRUEGcZREKrkl3PGEK9EGWx0jQ/GISRJ1MGO\nMfhAsFFcxKG1ahy2FMWIYCShiXUhliK8EocEUNaGf4QmhDv2nGcccWThFRGONUtExp5z4mE88xCH\nxD2utV7GERtzIqIisklww57x8GdexCkJr5zDAZELsYtMSOLFL31aH7HiW5mS+Nb9Eg/mEVvamJMD\n9sSt15DuLfFwTmEc8cNVsRKjYpYfYmVeWDFfvh/5foXTb/9hXt1HMcOveGocseTXEb41Bzbc2zff\nfLMsWLAgBER8sC54ww7msMMv3HRPtC7seX0hROIP39hTM4b18tqhhr/utdiwdq0be2KVACzuzIUd\n19hynySSEx/iOkI/B+2IqxT8wYlY4Ku48MeBPxVsOcSNWvdWvlg762UtxEnN2ql5XSO8ciDGSpCl\nj/vMunWfFUd1fuyIi3g5ONd9puaa9bJf7NZbbx0PzGKLMV7D9KkQey7VddBHW27P9j43ARMwARPo\nGgELr13j5lEm0FQE9GGQoPgAlz9Y8eFJHzDVrg9VtFO4zn3R2IB//MGtARCbyIVeIx2FVI9dva+N\nenx1FE9n++uNLdvlONtqJ47cp7jyWLU1S10r3maJrZFx9MU96O9s62VWr12VR/Wa+92Wr3psa9lU\nX0PyT419W2Nkp/HZrtrHf2cRZXTIN8IK/71mLG0c+b/J9KlojOyx40Do0Vhs8YWNxnKt2HSe+xFz\nFJfG1/LHWMUnoQh75kdw04GdRCHiQ4Ai4w9xjXnoQ/hCAEMkwh7BDT/Y4oda4ipzKq44aflHaycO\n+hGqOBDdJMApXq2Nmjk4OMdOAh0iIteZBX4Rq7IYxnlmxxwctFFTGMeha9W0ETdzUFM0TmNkw9p1\nzngdste1fIezNv6RrfzJTLGID2KmYqNN9rQjGiKccx/hh08JmtxHuFAYh3At34zlGtEVAZJ21qDX\nPXPQL+Gf+WGOCIpP7ieiIfeJ1wx9zIEfYsAPrydsOJc4zWtBQqra5BM7xjIX83NwTVz417k4Ves8\nBttc1Idv+aefc7ghsvJ3QPYrYvbChQsjIxy+MKIfZvgVI+LSfceXXo+sGT5w4fVLxiz3gmxXHqKl\nbHLGEpcKvsWPc62ffs5zX3V98uHaBEzABEygawQsvHaNm0eZQNMR0IcrfZhSgLqu9SGKD4SU/MFO\nfjS+Vl3LVy07tw0sAvW8NlhxPXb1vobq8VUv5XrnrNef7BQjdZ6D8/xFRvaqNY7rPE79zVA3a1yN\nZpPvRaN9t+Wvv7Otl1k9drDgyLad4ZPHwVu+1E4tf6ppU7/adK90TS0b+ZVNZ+vsp+pLsWhe+c7X\n2UbtVZ/VcW311zO/xjJXR/PhT/aKQW18zkAwo0hI0nn2K7EKP7xvyh+1+qqx0Ecboln2TbsO+jnH\np96PsZVwx1iK7OOi5Z88l9qqtXzTzniN4VyFNpXcTlsen23ymNyu81r96lOttcpWc+dr2mChPmqJ\nm/KDaJgFcdol+iFyih/zYSchXWI84ipiOn51HxUbvhEbqRWLRFKERERXREYJjdwz5lOtuRVrXhvn\nuq7267q9WkyqPmivtnXkR76os5iNoK39WbUPNAIsfChaKwIzB2wQWsnW1jYZyubV/rX6HwTMxb2l\ncM5B3Ko1B/3Y5T7aXEzABEzABBpLwMJrY3namwn0CQF9kFJNEJzrmg+7fKjSh0XVCrZ6rfbeqomz\nUaWv19KoddiPCZhAzxLI7zt+3+hZ1p3xnu+LxtVqUx919f5xrTGqqzbV8bJTe/U6j8/n2Mu2nnZs\ns311DP4kitCnfo2hP7fpnHYKdmrL59/0/l+s2Z/6GKexautsXfVbay3Zp+xV01eNIfflsTrvyJ7+\nqg/adMiP6lq26utKLX/VOOWr2s91tu2Iofy0VeNPc0iMy7Z5vmyLDXOrTXHgA1Ew85MNNZ85sdUh\n0VXX+GUs17JlHAVRVaK4auaSyJq55Plj8Lf/4CvbybfadJ3H0JfbZZttdC67bFNtq15rLGuGB2I0\nIiy1tmNAdEWwph/frBnWHBJflQlMtivnyvClnzG6v8xfjY82tef4NEYxUssut/ncBEzABEyg6wQs\nvHadnUeaQNMR4AOdPkDpQxVB8iGOdj6EcahPttioLX9Qo92lfxPQfW3EKvzaWJZiZms2y7LpD1e+\nf815l3Rf8t8UbRy5LUevdo1VX3UMdlUbbHObfNXyUe2TTXu1fOextdrwoXb5y2PUphrban+tNtnn\nujqP+rI/2dRqw75Wu9o0Vn5lr3bZ0a422eY+tWFTq1391Vo+a42p9nX2ujqXruVH17XmVl+17mis\n+jvjs6058IE/jqq/6jU+qnNrnGrNk681RrX85Gu1VWtiyJ9XueaojtW81ZiznfrUJj9cc65r1fX4\nlA0146pFc+X2qh02fF6nRnhWljCZvxKpYZDFbV3ThsgqgRrf+iyvuTWfromFcw7Z5vjyucbmNp+b\ngAmYgAl0n4CF1+4ztAcTaBoCfKiq9aGJD3Z82FKfPozpmgXUamuahTmQLhPQfe2yg28H5tdKd30N\nlPGZrfn0v7vq+9f/7lk9Eef7mu3z32jVRtfZpq2xub2ec/nGti3/9GEnW+w6sq36y2Pp606RL/kg\nlmobfbXa24ubMfjpyAa73ipal2KqXhNHPTFrnOKWP13LD3W1r56x2U93z6vzyV81LrV3tW6Pm2LI\nc9Zq09zq4zqPUT91tlE7tmrXOdecZz+yYVxu5zr3cd1RqeW/rTHYIsJSOOfzusbnz+2KKdc6l2/G\nUXK72mjnvJbwmm3yWMa4mIAJmIAJNIaAhdfGcLQXEzABEzABEzABEzCBQUogixeDFEHrsptZvNF9\n6s0YNWcroDZOejOmNkLod831sm3kwuqZk3vp+9lI6vZlAiZgAv2bgIXX/n3/HL0JmIAJmIAJmIAJ\nmEAfE6hHjOnjEHtt+noFp3qZ1eOvXl9tQahnjlpjuztv9tnVGLKP7p7XWk+9cdUaWyueevx15Es+\nOrKrNX8ztWkdHcVUzzrr9dXRXO43ARMwARNoPAELr41nao8mYAImYAImYAImYAImMGgJ1CMU1Qun\nHl+NFp0a7a/etfa2XT1s67Eh7raY1Tu+vbW35but9vZ8dbevu+vJ42v99L9WfHlMrX7a+oJFW7G4\n3QRMwARMYFkCFl6X5eErEzABEzABEzABEzABEzCBbhCoRyiq1309vrorOnV3fL1raTa7etjWY8O6\nJCJm+3ze1bW3d2/a6+vqfI0elxnkc+ZpZPyN9NVoBvZnAiZgAoOdgIXXwf4K8PpNwARMwARMwARM\nwARMoJcJVEWo3pi+0eJUPWto9Jw9zameNdWKobrO7CefV+1q+Wqvrbvj2/Pdk31ioJq5GrmWRvrq\nSQ72bQImYAKDkYCF18F4171mEzABEzABEzABEzABE+hjAlmEqhVKZ8SkjnzhvzP+asVTbeuLOasx\n9MR1Xld3mGU/nHfHF+vs7vieYNUZn+KhupHraaSvzqzJtiZgAiZgAh0TsPDaMSNbmIAJmIAJmIAJ\nmIAJmIAJmIAJdIFATwiNXQijaYaYR9PcCgdiAiZgAr1CwMJrr2D2JCZgAiZgAiZgAiZgAiZgAp0l\nIJGqvXHO9muPTvf66uHPDL4H3ePs0SZgAiZgAgOXgIXXgXtvvTITMAETMAETMAETMAET6HUC9Yh1\nfSHUKa6+mLvXb4InNAETMAETMAETaAoCFl6b4jY4CBMwARMwARMwARMwARMwARMwARMwARMwARMw\ngYFEwMLrQLqbXosJmIAJmIAJmIAJmIAJmIAJmIAJmIAJmIAJmEBTELDw2hS3wUGYgAmYgAmYgAmY\ngAmYgAmYgAmYgAmYgAmYgAkMJAIWXgfS3fRaTMAETMAETMAETMAETMAETMAETMAETMAETMAEmoKA\nhdemuA0OwgRMwARMwARMwARMwARMwARMwARMwARMwARMYCARsPA6kO6m12ICJmACJmACJmACJmAC\nJmACJmACJmACJmACJtAUBCy8NsVtcBAmYAImYAImYAImYAImYAImYAImYAImYAImYAIDiYCF14F0\nN70WEzABEzABEzABEzABEzABEzCBfkHgf//3f9uN8/d+7/fa7XenCZiACZhA8xOw8Nr898gRmoAJ\nmIAJmIAJmIAJmIAJmIAJDCACHYmuWqrFV5FwbQImYAL9k4CF1/553xy1CZiACZiACZiACZiACZiA\nCZhAPyCAyFoVULsjvGps1Wc/QOEQTcAETGDQEbDwOuhuuRdsAiZgAiZgAiZgAiZgAiZgAibQUwSy\n0Mr5//zP/4Twutxyy8WUXOuchiykyhZRlXaOqi02lOWXX36ZsdHof0zABEzABJqKgIXXprodDsYE\nTMAETMAETMAETMAETMAETKA/E6gKprpGTFWWKm1VcTWLrlq/2mSv8fTX8qtxrk3ABEzABJqDgIXX\n5rgPjsIETMAETMAETMAETMAETMAETGAAEEAQRTAlI5XCdS5ZPMXuyy+/LJ9++mlZZZVVypAhQ1rF\nWQmz1NhRONd4ibK6znP43ARMwARMoDkIWHhtjvvgKEzABEzABEzABEzABEzABEzABAYAAWWiskWA\nRFfEUbVLPP3666/Lhx9+WN55553y/vvvl3XWWacMHTq0rL766iHaZkFVY8Gj8bRlmwGAzkswARMw\ngQFHwMLrgLulXpAJmIAJmIAJmIAJmIAJmIAJmEBfEpAoWs1KpZ1CO4Lrs88+W+bMmRPn66+/ftlx\nxx3LmDFjykYbbVRWXHHFsJUvap1bcA00/scETMAEmp6Ahdemv0UO0ARMwARMwARMwARMwARMwARM\noD8S+N3vfhcPx8pCKeLpRx99VB555JFy/fXXlxtvvLG8/fbbZc011yyTJ08uRx99dBk3blyIr8qa\nVZYrDBhPyT6jwf+YgAmYgAk0HQELr013SxyQCZiACZiACZiACZiACZiACZhAfyVANiviKKIpBYGU\na7WxxcAzzzxTrrnmmnLttdeWl19+OWwZt9JKK5UDDzywnHzyyVGz/QAli62cY4t/i6+Bx/+YgAmY\nQNMSsPDatLfGgZmACZiACZiACZiACZiACZiACfQ3ArWEUdp0LFy4sEyfPr1cd911Zfbs2fFwrRVW\nWKEgyFLY43W//fYrU6dOLYcffnhZY401QmRlvIoyaSXuqt21CZiACZhAcxGw8Npc98PRmIAJmIAJ\nmIAJmIAJmIAJmIAJ9GMCElizKKq2L774IsRWsl1nzpxZFixYUBBREV0lrJLFuskmm4To+qMf/aiM\nHDkyMmHVj18Jr2By1ms/frE4dBMwgQFPwMLrgL/FXqAJmIAJmIAJmIAJmIAJmIAJmEBvEZBAqi0G\nmJe2zz77rLz22mtl2rRp5b777itLly4tK6+8chxLliwp8+bNK59//nmIqmw5sO2225aTTjqpHHHE\nEWX48OFlyJAhsQT8aqsBagptFmADhf8xARMwgaYiYOG1qW6HgzEBEzABEzABEzABEzABEzABE+hv\nBCS2Km6JoAijnCOozp8/v9x+++2xxcAHH3xQtthiizJ69Oiy3nrrlUWLFkUGLPu9khWLP0RZxNez\nzz67TJo0qQwbNmyZLQfwm+flWvMSh/pym+JzbQImYAIm0DsELLz2DmfPYgImYAImYAImYAImYAIm\nYAImMEAJSOTU8iR20o74irB61113lQsvvLDMnTu3jBkzpuyzzz5ll112CeGVbFf2fH3wwQfLu+++\nG2Pwwd6vPGyLLQf22GOPsuaaa4aguvzyyy+z3QDzYK95FYfade3aBEzABEygdwlYeO1d3p7NBEzA\nBEzABEzABEzABEzABExggBHIwivipwRPRNdPPvmkPP744+WKK64oF198cWSuTpw4sYwfP75sv/32\nkdn67LPPlssuu6zceeedhWxYiaiMX3XVVcuZZ54Z2w7stNNOkfVKO+KriuavCq/qd20CJmACJtA3\nBCy89g13z2oCJmACJmACJmACJmACJmACJjBACEj4ZDlV8ZNsVwTVyy+/vDzwwANl5513LhMmTIgM\n1hEjRpSvvvqqPProo+XKK68sDz/8cPn000+XoYK/3Xffvfzwhz+M/V7XXXfd6GdOzZvnzOfLOPKF\nCZiACZhArxOw8NrryD2hCZiACZiACZiACZiACZiACZjAQCIgAZQ1SfhU2yuvvFJuueWWcs0118TD\ntdheAOGVbFf2dyXDddasWeWGG24ozz//fOwHy1j8cHC+6aablu9///vlhBNOKFtuueUye73W4qgY\navW5zQRMwARMoPcIWHjtPdaeyQRMwARMwARMwARMwARMwARMYAASkMiqpema+rnnnis333xzmTFj\nRlm6dGnZddddy5577lk233zzMmTIkPLmm2+W++67r9x6661l8eLFkQFbFU5XX331cuSRR5ZTTjml\njBs3rqyyyiqt+8BKnNXc1NXxuc/nJmACJmACvUfAwmvvsfZMJmACJmACJmACJmACJmACJmACA5CA\nhFYtjT1YET/ZRmDOnDnlpptuKnfffXdksyK6brfddmWdddaJ6/nz55f777+/PPTQQ3GtsRJU8c1D\ntsiQnTJlSpk6dWrZbLPNNNUyNbaMs/C6DBZfmIAJmECfEbDw2mfoPbEJmIAJmIAJmIAJmIAJmIAJ\nmMBAIFBLeOXhV5999lns28o2Avfcc0/53e9+V/bff/+y9dZbx0O1yICdO3du7PH68ssvl6+//noZ\nHPKLkErW6+TJk2PLgQMPPDDE2Nyfz6vCK33VtmUm8oUJmIAJmECPELDw2iNY7dQETMAETMAETMAE\nTMAETMAETGCwEJDoqfUictL24YcflgcffLBcd9115bbbbgth9eCDDy7bbLNNbDPwxhtvlGeeeaY8\n9dRThXNlu+JHYql8I+RuscUW5fDDDy9nn312GTZsWPjQXLJjLG1ZaJUv+lxMwARMwAR6j0CvCa/V\n/wj03hI9kwmYgAmYgAmYgAmYgAmYgAmYgAn0PAF975UYivDKNgLXXnttCK+0f/e7342tBpZbbrmy\nYMGC8vTTT0fG6/vvvx8B4kN+sEGMpTB27bXXLhMnTgzhdffddy+rrbZa6xjZkFWLLWPxw3hE28Fc\n4ACTXGq15X6fm4AJmEAjCPSa8NqIYO3DBEzABEzABEzABEzABEzABEzABJqZQBb0PvjggzJr1qwy\nbdq0qNku4NBDDy1jx44tX375ZXnxxRfL7Nmz42BbAsaqIBTKl9rZ63XTTTeNrNcTTjihjBkzpqyx\nxhoaErXGLNPYclEVHqv9A/1aDPM6a7XRj2jtYgImYAKNIGDhtREU7cMETMAETMAETMAETMAETMAE\nTGDQE5CQJ5Hzk08+KU888US59957C3u4rrvuumXcuHFl+PDhhQzXxx9/vMycObM88MAD5YsvvmgV\nXhkvH0CVX87JXuXhWocddljs+cpDtzbaaKOy0korhZ0yXRkjPzpn/GAumSMccjaxuIiZrl2bgAmY\nQHcIWHjtDj2PNQETMAETMAETMAETMAETMAETMIFvCSDsSeREwCOrdf78+eXVV18tZL+us8468WAt\nMl8XL15cHnrooTJ9+vRyxx13lK+++moZIZDxZLjKZ66ZjkxX9os99thjy3777Rfia3WPWOwkxOKv\ntwsxV0tX4hDTqq+uXOeYJLzCqBpXI+fsSpxdGZPXpvHVdandtQmYQO8QaKjwWv0j9x9479xEz2IC\nJmACJmACJmACJmACJmACJtB8BBD2Pvroo0LmK9+XV1111bLWWmuFGPrWW2+Vhx9+uFx//fXx8C1E\n2q+//joWoe/SZLEyhixXMmI52MNVdmTQnnbaaeX0008vZL5Wv5NzjS/5621CEjbz/Pm8vXiqa6l3\nXHs+1Scuio92+Vct2/5Ui5lq1tKf19Of2DtWE2iLQMOFV/2BM2H1D7x63VZQbjcBEzABEzABEzAB\nEzABEzABEzCB/kaA78P6TkwWJcIegipiKdcrrrhi1Hw35sFbTz31VOz/etlll5WlS5eGvb43UyO8\nkiW7wQYbBIp33323vPPOO5EdSwP9U6dOLX/wB39Q9t5777BhTvlQPH31cC0Jm4qHAPN5BFz5R/wq\nzR2Oq9pzLV/1zik7MdR1Ld/N2Kb1qib+/raGZuTqmEygOwQaLrxW31irf+TV6+4E77EmYAImYAIm\nYAImYAImYAImYAIm0EwEsuhFXHxHpk0imL4Tk7362muvldtvv71cfvnl5cknnwyRVv2MQawdOXJk\n2W677aIeMmRIbFHw0ksvlSVLlpQNN9ywHHjggfGwrW233TYyY8WC8ZqXNvlVf2/UzF8tHcVRaww+\nOhpXnYdr+aqOpZ0Dvu3ZRWc/+kfrzSFX1577fG4CJtDzBBoqvOo/KIStP27Vua3nl+UZTMAETMAE\nTMAETMAETMAETMAETKD3CUjU47tw/j5cjYTvz9pu4Oqrr469Xj/77LNWsRB7xq+33npl4sSJZcKE\nCWXUqFHRz76xb7/9dll55ZXL6NGjY5sBHrCVM1tzHFlkrMbRDNdZMGyPWWdilc/sT0zwQ3vmoj61\n5XGdmde2JmACJpAJ9Ijwmt+gdK46T+5zEzABEzABEzABEzABEzABEzABExhIBCTg1foOXG1ju4Hn\nn3++3HjjjeXXv/51ZLEynkKNPdsTILxOmTKljB8/vqy//vrxoC72jWULAx6yhTi7yiqrtIqJjJMf\nnVfnbibmipWYGhGn/FV9KVmMbGPYY7faaqvFPro8yEz9ZMJWxzYTL8diAibQfwg0VHjlTYuj+gZV\nve4/eBypCZiACZiACZiACZiACZiACZiACdRPIH8nrn5Hrn43JsP19ddfLzNmzCg///nPy8KFC1sf\nnCVbxMCdd965nHrqqeXII48sI0aMiGDwTR8F2/Z+Np9jigFN9A+x5aJ157bqeXvracsf7RxfffVV\n7JM7d+7c4Dds2LCyySablDXXXDMYyneumb+euHKcGp/bOjpvawztlM7G0NX5OhrnfhMwgfoJNFR4\nrX9aW5qACZiACZiACZiACZiACZiACZjAwCOQRTLOdSCa6aCNc0TARYsWlZkzZ5b/+I//KC+//HLr\nPq8S2RBXt95663LiiSeWY489towdO7amACefEM3nXONDwizX3S34V1GcauNa81PnQ7bKKNUYatp0\nLd8aq2tq+de2CrKpro9sYAp2rB87xpLpyh65Dz30UGQOb7XVVrFVw+abbx7Zr4xRLNjnseqjzgUb\nbDkozEWbYpStYtB1ta76Ub/Wgn/FRp/i4zy3cy1fVS7EoIIN/Ypb7a5NwAQaR2DQCK+8ueQ3GN5Y\n/ObSuBeSPZmACZiACZiACZiACZiACZiACSwrenb0PRTh69133y333ntv+eu//usyb968EMzgSB+F\n7608ROuII44oxx9/fNlzzz3L6quv3iqs0a95+vJ7rr5v5+/ZCMsInZ9++mmshe0Q2BqB7RNy3HRK\npNS68UdG8HvvvVfYGoCtABhLZirjaxXGMq4tMfHLL78sL7zwQrntttvKtGnTynPPPVc23njjcsgh\nhwTfXXfdNcRXYpOQqXVVBUyJoYobu1q2aiNerbkae2aGYbAjvwAAQABJREFUfb6WbfaTbbDVuokF\n5vDifKWVVmplkccrFvl2bQIm0HMEBo3wqjciat6YeNOsvnH2HGZ7NgETMAETMAETMAETMAETMAET\nGGwEqmIX6+f7KO3q+/jjj8ucOXPKn/3Zn5VnnnkmhDNxwobvrTxEa3zL/q7HHXdcmTRpUtl0003D\nRAIddvm7rsb3ZK016Hu11qP1IXIuWLAgskvfeOON2EJh6NChkb3LT/sRUSVaKk7Gso6vv/46BNdn\nn302mCDerrvuuvEgMTJ+EUu1do1VrbjoVyzyu3jx4hC5r7nmmtjeQYIuDyabPHlyZBTDd8iQIa3+\ntS7V2S9tef1VG8WUa2w48FOrqE/9usaWc0ru0zXcYE42L1nUiNNwHj58eLCOgS3/ZB+cM441yKfs\nXJuACTSGwKARXvm/UbyhcPCGwhu83uTzG1ljsNqLCZiACZiACZiACZiACZiACZiACXxDIItdtOia\n888//7y88sor5Sc/+UmIgjw0i++sHPr+ioi22267RVbmQQcdFAKkskbxQcGW0lsimtYgwU6xEoP2\nUX344YcLB2IgoiBC4N577x171m6xxRaRvYo9he/sEjFhwJjrr7++3H333bElAGLrvvvuWw488MCy\n4447hjjKOM2fzxWL+oiV7FkE7ptuuikO/BOnxiG+8hAz9tIlRrJzFQ82+Mh+8S0G4ST9o3nVlO3y\nuHwuW9XyoTlplx+No9Y5WcVsVcGD2ljbOuusU8jg3WuvvQrbKCj7VX7kP/vU3K5NwAQaR2BQCa8S\nX3mD4WcKFl4b90KyJxMwARMwARMwARMwARMwARMwgc4RQPRC/CMj9J//+Z/Lb37zm/LWW2+FEwlj\nCG+IZoiNBx98cAiPO+ywwzLCIH4k0El47UlBTb4JVMIfbTpHOEUEvPXWW8t9990XWau0kam73377\nlQkTJpTdd989hFh9L5fwio+lS5fGHqy//OUvQ3hFnEZIJCt1ypQpIZCy5QC2HBTFpBiqfXBlL11i\nQoBlCwPmkfiKD8RX/P/xH/9xxJa3NMAfjDVPLc70yUbzU+dSvc591XP8cWiMrplb7fQx59tvvx1r\nO++88woPDiPT9YADDgixntfOaqut1qqBMA/jVeRf165NwAQaR8DCawtLvWE1Dqs9mYAJmIAJmIAJ\nmIAJmIAJmIAJmMD/T0DfP6k5EM3Y5/XXv/51ueqqq8rzzz+/zAO26Ed43XbbbUN0JeNzl112WUZI\nw4YDAS0LgpqrXmEN+1qlOl5xY1sVARFQ33///RA3b7nllnL//ffHmhBP2V6A2Nk2gZ/0s23AWmut\nFXErfubip/J33HFH+fd///fy4osvxtYD/Pyf7E2EUfa7Zd9bibbEo4Px1XiJif1c2dv18ccfj31n\nYYpYOX/+/IgXAZY2RO2//Mu/jOxatjeQP/nEF4Vr1k5hbq7ZIoHMUw762IuXuHOc8qNx1KxdPujP\nNvRzrfVxLebqY8sEsqZ/9atflcsvv7wsWbIkRORDDz00eO2xxx4Ri+JlHHOq1JpTfa5NwAS6R2DQ\nCK+8qeQ3M95w9KajN7juofRoEzABEzABEzABEzABEzABEzABE2ifQP7+KTGNn+EjUF566aXl9ttv\nb816pZ9C5uWYMWMi45UHQbHtAPu+StDTd11s9T2Xc81VFe7oa69UhT/ZttXO/BLvEB/JJGWLgRkz\nZkTmKqIgP/XHBvGV+A877LAyvkWA3XrrrUOcVKzU2LPNAMIrvvDPukaNGhVC4gknnFC23HLL+CVr\nWzHhh4Ox7BGLkEv2Lf7IvN1uu+1iWQ8++GCwf+211yL7FaYIln/+538eWcZkisoXMeicwWKt9X/w\nwQflt7/9bRz0sZ0CWySsuuqqMRdjNYYGxiH4ItTyGmAtbHHAwa90c2lL8MUGoZW1/dM//VNkF3MP\nyHg98sgjy4knnhhiMj51j+SXeChtMZSdaxMwga4TGDTCq94c8xtLfsPrOkKPNAETMAETMAETMAET\nMAETMAETMIFlCfDdsypo6XupvovqmpH8FP6GG24I8RXRElGOgg+E19GjR8dP7Q8//PCy5557tu5x\nGkYt/+i7Lr51rvH5WvadqavrYKxiV59qBEKEzieeeKLceeedIbzy03eyelkTgiI/6Wf/0Ykte6qy\n9QDiK4InPhAgeajWFVdcUf7rv/4rBFvFP2LEiHL00UfHPqxky5KhShErcY3Gb9vZ4oAsYvZ2ZfuD\n9dZbLzJn2S+W89dffz36rr322siGJQaE0p/+9KfxsK2RI0eGWFpdL3MoLuYl6xTxdvbs2eWpp56K\n+zO+RVjefvvty/rrrx/3UIw0FsGV+z5v3rzy5ptvRsbsZpttVr7zne+EYJvFV7iyTubCj9aKcMu6\npk2bVs4555zYQgH/bC+A6EqG8LBhw1rt6aNoPdTy+U2P/zUBE2gkgUEjvAqa3hjzG576XJuACZiA\nCZiACZiACZiACZiACZhAdwm09b2TdsQzvo/q0FwIaI8++mj8VJxsz8WLF4cNY7AdOnRoGTduXDnq\nqKNiywH2PM2CWZ4zn+NfPjRXe7XGyqYz350Zy/rYVgDx9J577ok1ISwigGrtrJVMUrYd+O53vxvb\nDmjLAfZeJQv1sssuK4ihjFFMCIhkyvIALIRFBFLiU79i5ZqDLFvmZsuDWbNmRXYp43hAmcRrbBCG\np0+fHux5MBVc2dLhzDPPLIinxEab4s/z6Jz79cgjj0TGMnvIkulKxinbI5B9SoYyhbg0hrUyN+Oe\neeaZ8tFHH0WWLPeZPXARhpmTubWmfF/wg8jN9glsMXDxxRfHGtnegLnhxH66ZLuqyI9ioD2fy861\nCZhAYwgMOuG1MdjsxQRMwARMwARMwARMwARMwARMwAQ6TwDhiyKxK18vWLCgXHfddSGgkTWpgg3C\n3U477RSC2jHHHNP6pPpsI59qy3Weh/bqdbatp79qrzH4JfsTAfOuu+4K4ZWHhyEgkrlLzR6wCIYj\nWjJYeWAYIiE/y2csDBhHxivCrfxSkymL/cknnxzbFbCHKqJktoGB1kaWLWI2WzjAkwdysbcse8Qi\n+mJLPGwRwFzss8s+sAjDZJ6effbZkfVKnBTsdUTDt/+Qjfrqq6/Gg8AYT4Yt6yHbdJ999omtDbh/\nxMV4FbYIQKBmmwC2muCaeXkoFsIvma8UjdNYrY/YEW8feOCBctFFF5Ubb7wxbBHlTzrppDjY1kHC\nLeMZK3/4lk/OXUzABBpPwMJr45naowmYgAmYgAmYgAmYgAmYgAmYgAm0SUDCGQYSwRDAyAolM/PK\nK68MEQ2BUgXxjCzK8S0ZmAh6CGr8hJ2fo0tMqyVCarzmlNDW2evsRz7Ulmv86mFPN998c2RzIoCy\ntytZuwiQXPMTf/yQgYqYysPD2GYAwfbee++N/WERMCmKlfUinCK8ImgipGrNigGf2HOw3yrZrjx0\nim0AyJhFdD3++ONDxEa4xB6hFQGUDNsLL7wwfv7PNgZwRsAka1XZtczDGA4K83z88ceRsXr33XfH\n/UNoZk/eY489tvBgKwRjbYsQg779h/1mWSP3fObMmSE6k13LfAivZL3ygC/WWJ2TawRfHhDGvBdc\ncEH4wDWvk9NOO61MnTo1tjqgjTgZIzb4VBv9LiZgAj1DwMJrz3C1VxMwARMwARMwARMwARMwARMw\nAROoSUCCX+6UKMZen2Q/XnPNNSFAkhnKw5IQyRBZ+dk6D39CQETcW3vttVv3R2WfVIl0+ManBDZd\na078qeTz3KZ9RenHd9U/7cxRLWw1gKCIkPnQQw+FoEr2Jg+02nzzzSPjlZ/j8xAtBEn2QR3Zspcq\nP7Unc5Sx1AiTiKJaP+Ite7MihrI/LEIs66Oo1loYhx8EyfPPPz/E4A033DDEVIRb9phlfRqHgIng\n+/Of/zxipg++iJe///u/H9mn3DfstWbm4kBoJbMWARUBl7E77LBDbKPA2qrbQogXmbYwYE9fMm5f\neOGFeNAWD/9iKwS2CUCYRnwlW1ivEXHneuHChbG9ARmvZL4SI8LrD37wg8JDyFgDRWPop2jdao9G\n/2MCJtBwAhZeG47UDk3ABEzABEzABEzABEzABEzABEygfQIIXhSJeAhiEsH4yfljjz0WD9viZ+hk\nhyIk0o9gRgblIYccElmvW265ZQhz7ONJViYZpYh0HBJLNU+eSwJcnjcLe4inZHLyAChs8E02JuJn\nfugTfVnEYy7GsG/pJZdcEmIg+7mybyk/oWe7BHyzPsRG9jhFfKWNn80zJ3EzFxmtPHyK7QfYi5W9\nS3feeecQT9mnFYFSmaTEkGMhqxZ2CKlsXcDaiJ1tGtj7lId6aQx9xPzkk0/GA73YY5esXeZjD1pE\nzMmTJy+zbu6FDkRiBGbE10WLFkXcCKbjW7KTEZzZEkH3Fj4UrpkT4ZQ9WhFf2Q5B93qTTTaJrF5E\ndkRcxFe4UBQ3NVm9d9xxR2w1gGAPA7h973vfa90LV/edsfQzN76oxSzbYOdiAibQGAIWXhvD0V5M\nwARMwARMwARMwARMwARMwARMoG4CZEVSEM8QwCSmIYAhhiFAKvsVAZFMSkQ2BEhEUDJE+ek8IhsC\nIW1kv5JdicCI2InghyBLP2Ipc5A9iqiI0MlP+zknFoQ4xFrsEHnJtCUjkz58Mt+Ilr1OeeATPiUC\nSrhjDToYi6jKA58QWBGKEUoRMREkWeOLL74YP41nT1QER7ZVYF5i2GqrrUJ05Gf6PLQKQfPpp58O\nG/ZOPfzww0PEJZuTtVIkIhIXMSGG/uY3vynnnXdeefnll1sFRnyeeOKJ4YP9VImFNTIP4icP9brp\npptambAXLBmyZL3CQetmTuZhLP4RmhFu33nnnbgPrJPtEGDGvaEQowROzrkH3GPWz/qon3vuufDB\nPSO7WZmviK/c7/ygLHwSN9sUXNiyRQICMzFhQ1bw6aefHtsW6DXG3LpH1XNsXEzABBpPwMJr45na\nowmYgAmYgAmYgAmYgAmYgAmYgAm0SUAiIeKXhDgJYRqEgIYQiUCJ8IioN2/evMgKpR1hDoFN2acI\nZxJflS2K8IoAS1YogiY2CIWIrWRbSoBlLmwYjx3tZJ8ihjIGARDhb9SoUSG8YicBsiom4p8tAm6/\n/fYQMfn5PKIt+7iSvbnNNtuET4nKbKlw6623LiMAk9V69NFHx0/t8UUmJ6Io2aCIn/hiD1R+xo/Y\nLIaKBUEZEZOtDsi6RQwlLvoRbhGAeaDX2LFjgyF767IHLD/VR3RlLphQEHcRXcmSJcNWAqXmxC/7\n0kocZi74s4a99947xnCfmJtD4/ENZzggqiO4sjUChwR2RHV4IeCy7yvnG2ywQasPYtAWCQivcNS9\nZB/bM844IzJ7uae0Y6+4mZ94KLktGvyPCZhAwwhYeG0YSjsyARMwARMwARMwARMwARMwARMwgY4J\nSPBSjRgnoS+LYPSTdUpWIz9hp0YQZS9UCaeId2TBciACIsiy3YC2HJDQh1CKSIt/7BAnEXDJgMWG\ncRJe6UeMxCd+2JcV4ZVMVIRORFr5zaslXnwSJw+1QlTlp/SMI+MVwZSf3hMD/p944omw4WFibA3A\neERKBFqETrI9Weudd95ZyIxFfEZExNdRRx0VMRFPjoXYET/56T/C6w033BCZpeLLGkePHh0PriIu\nxGlYsp0BIjGCLWKm7BFbybA95ZRTIluX+Ylf9wm7+fPnF/asZSxrR+xWxiuiNQxVNI5rCa+IrQjs\nCOuIrsxP1jD3iPuCcI34yoFYjPis1w58Zs+eHXvZXnXVVRE3PBCXEV4RqIkH+zy3xuc2xejaBEyg\ncQQsvDaOpT2ZgAmYgAmYgAmYgAmYgAmYgAmYQN0EEL8kiCHgZRFM57RLKEUIlSDKVgSccyC+IdCS\noYpYhz3jEFX5OTsH14iGHIiw+NdBG+IgIp/EWcVD1iX7jZIpykObEEaV7VpdKGthLsRDfuZP1iv7\n1SK28qCoSZMmhYiIMEiMZJkiqF566aXxU3v8IYoee+yxkWXK/rWsD1/XXXddZL4yFj+nnXZaYRsA\nREixYn7ETG1jwDiyWOFAkUBL/GxRQPYoa6YfdhyMZ+34orB+MlfJekXwZasFZRkzL7aIy4jIiK88\naAtGCNXsI4twy7VixKd8wwp7hFe2K0BUpw3xmhp2ZPlyLvGVvXJ5SBkCMj6JnfFs6/CLX/wibIkJ\nOxgddthhZejQoa3za25qDpjk2IjPxQRMoHEELLw2jqU9mYAJmIAJmIAJmIAJmIAJmIAJmECHBCR+\nIXhJAMviF21ccyBQUqoCGeKaBFkyNhFfEe4QYLlGgEWoRaBV9iSCoQRWxFauqREfdc08HIiT2CJQ\nIjbycCdlbuZYiU3xUjMnmZv8ZP/BBx+MWBBQydZEDESIlHBLvGSx6uf9xLPrrrvGg8MQO5mPdSG6\nsvcq/oiNfVr/8A//MPwhnooVTFg7P/sn43bGjBmRxUo747R2YhZXxY4PzhEysUf85JpYyVolW5e9\nXtnegAxSCmOwfeWVV0IUJvNUD9fabbfd4oFcCNbYZ2aM4Zp7g2jLNgPsSUsbQi+sySomCxg+zzzz\nTGTxInwj5pLFuvXWW4dfmDEn2wycc845se0Ba9h2223jIWRTpkyJjGPWT9F6qTloz7GFkf8xARNo\nGAELrw1DaUcmYAImYAImYAImYAImYAImYAImUB8BxDdKFsQkinUkhEm4y3a0KVMS4Q1hkQMhFPGS\nfuZCYJXIynjOERcVB20ctGXbqkBHrBRsczzMRybrzTffHFmgCMCIj2wbgGDKA6I0B/GyLQA/8Sfz\nk/nI7GQLAMRe/CIaI7pedNFF4Q+hka0PfvzjH8fP6RFFiRWfFDJk2aOVLQYQdNlCgFgRMslCJfsW\nMZksUg7GMS/9zIfYScYuQihzwxBhmizTs846KzJIEXt1r6h5sNb06dPL3XffHUIq4vLkyZNjH1n2\niGU7A3xTxJlzMmxhxYO1mI+4WD+iKiIr7BBdEZx5wBqCNnMjvmqPWrZa4P6ScXvuuefGmhlHljJb\nJPCQLbY9IOtWRfxZW/W+ysa1CZhAYwhYeG0MR3sxARMwARMwARMwARMwARMwARMwgT4lgAioA1EN\nsY9aB8EhtFUPCXE5+NyWz7HhmqK5sphIxikCIcIrP71nbjJed99999gaAKEUe2JjPPZvvfVWiJy0\nb7jhhq0Zn9hUhVfmJSP0+9//fuwDi0iLcEpM+EN4ffzxx2Pv2GnTpsWeq/hByORn9wjA66+/fmwp\noKxWxiLoEiv7q/LzfsRORE/iwz9xM+cJJ5wQwi9iL/PhA1GU/VXZixYBGdHzmGOOKccdd1w8EAtB\nNRfiYU6ykxFciVfCK1stkFW72WabxRCyWWfNmhXbNjz22GMhxmLDPrg8cGvEiBERN1mz7JXLlgOI\n36yRfV4RXskiJuuWmHMhDgrcdU9zv89NwAS6T8DCa/cZ2oMJmIAJmIAJmIAJmIAJmIAJmIAJNBUB\nREEJaxL6quIa19U2xlGq7dVrLRZ7+qg5ECr56T37q5KFSd+oUaMi25U9WREls1BLbGRoImBiS+Yp\nQqfEWYTU66+/PjJeESDJ5qWfbQvOPPPMyP7caKONFE5ksSKaIkAyjqxSysSJE2OrAMRKhFvmFR+t\nTfEjnt51112xXQE/9WdOtilgn1e2ONhmm20igxR7smbvuOOOiI+MV8RUsnURPX/wgx9EpizCK7bM\nw6FzYps7d248HIusXzJrycpFpJagzJ6z8GTt+Cc7lniwQ0Qmo3attdYKgZntBnigGFsYSHhFKGbb\nA2KQ8Mr8lPy6EIPo8D8mYAINI2DhtWEo7cgETMAETMAETMAETMAETMAETMAEep+AhLzqzBLYqLPY\nWbVrxDVzcCCUIhQievITfAoZmuzZiqCoPV4l9Gmc4uOaon4EWYRUHsB14403xgOn6EPcJJvz+OOP\nLzvttFMIo7QjVCJQXnLJJSH+IkKSzfq9732vnHLKKfGze7I/mQfhkXkZpzioGcM+sWSQkrm7ePHi\n8MFWCX/zN38TmaY81Atb5uMhYueff3659957Y/34ZzuAP/mTP4lsU/ZtxZaidXLOHrc8CAxRFZGa\neMh2ZSzCKuMoxMPDt+D50EMPxdYMiNVkxSLQIrLCnYxYsm+JiS0dDjnkkMi6RXjFl7J08ak165za\nxQRMoPEELLw2nqk9moAJmIAJmIAJmIAJmIAJmIAJmECvEZCoh5jWVpGN+mXbVrvs2qo1Tn6wo42M\n15deeikeiHX//feHCMiepWSocrDfK0KohD/GcFSzMTUvduy5igCKEIoIq+xYHth1xhlnxIOv2KKA\nwvxkoJLxygO2ECERSf/oj/4oRFqyb5mfwtYCVeFV62G7AR7qhR+yXinM8bOf/SzmI3MXW201cN55\n58W8ZLFqP9m/+qu/ioeK6QFgrJP5qBmL8Pr888+HUPzAAw9E7GSw8vAs1jZ06NCwY272cWW/WrY/\nYGsCMl/JrmXvVrJxybydP39+PGiLjNgRLVsQHHTQQbEXLMIre8FWhVf8upiACfQsAQuvPcvX3k3A\nBEzABEzABEzABEzABEzABEygRwkg5HVUso3ExTyGtmyT+/K5xupn+jmDEzsyL8nO5OFW/Fx/6dKl\nIbaOHz++HHDAAfHT+Krwik/51VzEwhyIhWR3Pvvss7Fv64UXXhgZqNjzkC2EV7YA4KFZ2CN83nbb\nbeWKK64oM2fOjLaxY8fGtgRkgJIlqpiZI8/LNQf97JPKT/cvuOCCMmPGjPh5P3H/7d/+bZk6dWrM\nR2yInIihv/rVr+IBW4jE2JFx+hd/8Rch0jInYqwKc1AQXhFQEYrJ0mU/W2Jl/9YJEya07vOqGBGR\neRgZWbII0GS4Mh9r5iAzFgYcI1qEVwRc1kymMeKvxG3mlk/OXUzABHqOgIXXnmNrzyZgAiZgAiZg\nAiZgAiZgAiZgAibQ4wQk5FVrJpbAJrFRwciW63yufo3Tda7pYwyH7FQjvL722mvx83t+gv/mm2/G\nvq78fB4RkP1RJbziEx8SWOWTdvzRTtyc83N//J177rnxc3vaETTZPgDhFb+MR5gk0/Xqq6+On/7j\na3yL6Mu2BPvvv388ZAt/2OKDOSi0qZ1rxF5+1n/RRRdF1ivXFPZ4ZduCHXfcMYRMsmYRQsmMZX9V\nsn3xSxbqn/7pn8bDuHi4mPatDSff/kOsZNMi7LJNAdm62223XQimxDxy5MjWLFXipRAHDwAj65Us\nWURfHswFZ8ZTWMeIFuGV9bK3LVsksMUDMdGnIp+5TX2uTcAEGkPAwmtjONqLCZiACZiACZiACZiA\nCZiACZiACfQJAQlotSavJapl+3zOeETDegrjNDaPISsTEXDOnDmx3yjn7C/KnqX77rtvZHRWhVf8\nyId8ErfmoI/MUkRN9nlFVCWTlv1QjzrqqDJ58uQQGrFfsmRJZI+SRfrcc8+F2EjGJ9m2iKXsDZsL\nwimFOTIr2hE02W6A/VvnzZsXdmS78tAsHmwlIZPMVR4mdvHFFxe2V2Asa+TBVqeeemrZeeedY7uD\ncPDtP8SKmDx79uwQijWOGBGox7cIryNaxFOKWMRFyz+wYOsBBF8EWFizZQHxIr4S1/Dhw0PE5WFi\nHOwFy96zynrNnOXXtQmYQOMJWHhtPFN7NAETMAETMAETMAETMAETMAETMIFeI4CIlkXDzkwsAY4x\nnfHBOM2bxyE68pN3fgI/d+7cEEIRITfaaKPCXq+IiRJZmVM+OFfJQmPuZ09TxFd+Zo/ASsYrgi77\ntrKHKYWf65MFyvHGG2/ET/wRHcmIJYN0jTXW0DStwi7zaU7mIz5qBFUyUdnegG0LaJsyZUpkz5JF\nuvrqq4cv9ld96qmnYqsBslfJ+KXv6KOPLsccc0w8/EsP4xIrOC1atKg8/PDDsX8tD8Uim3WXXXYp\nhx9+eJk0aVJs0YBdVRRmUnFG2OZhZoiwiK+smb611lorWJNBy8PH4I7wKl+ZaysQn5iACTScgIXX\nhiO1QxMwARMwARMwARMwARMwARMwARMY2AQQ7igSEjmnTQfiK/uOslcqP+cnCxNxlCMLnYzLJQug\n8i2RED/4feutt6JG3CSDlYxaxF3sEC/5CT+CJCIsQuO6664bwi9i5JAhQ6KNObGvbjVAu+ZFUEXQ\nZIsDBFgKDwjj5/vsxcr88sGcTzzxRPz8HyF01VVXjQdk8WArHiiWBV/8MC8i6aOPPhpbDSC8wors\nWDJe2eOVfWvbEl6ZV+tlnWTP8nAtDgRj9pRF7GYfXIRnHtSl7Q60PuLAR76mzcUETKBxBCy8No6l\nPZmACZiACZiACZiACZiACZiACZhAUxFAWKP0pLimOVQrY5RrBMYsbiL+0Z7jqXXNmFo/i5dPBEl8\nMFe2Y9xXX30VP7lHOKUgQq6yyipRY8sYFezxSaE9x8UcCKpsWcBerPSRXTtmzJh4eBZiMoV2bbHA\nz/0XLlwYQjDCKVm5CL8IvrkwJ3u1kil75513llmzZoWYTGYuWycg8DIX8Skm1eKlPq4RnBG6yTRG\nmKaNLNsNN9wwHqyF8KvxqolHPnJbjtPnJmAC3SNg4bV7/Jp2NG+yFL95Nu0tcmAmYAImYAImYAIm\nYAImYAImYAI9QADBFEGRvVBVEFXJiq2Kq+pvq2YvVTJTETTxh5C58cYbR+YuIjLfuTmYE9t33303\nBFC+k5ONy0H2q8RhzUM/malk1JLtSuYr2bwjWrYE2GeffWI/3JEtWyPgG9v83T6LpfruTxviKz7Z\nkoFz5l1//fVDdEb4lS9ikD+N17Xic20CJtAYAhZeG8Ox6bz4zbPpbokD6iIBv5a7CM7DTMAETMAE\nTMAETMAETGAQEuD7g75DsHwExaqoSH+1rS1U2CKqImRSI7bqJ/vyr7GaGxGUQ9m1ea48N1sLsM8r\n+9G+8MILIdhusMEG8VAs9mYdNmxYzTjxgX9EZPnTHMTIwbUOib6Kj3gZ62ICJtDzBCy89jzjPpmB\nN1SK3nz7JAhPagINIODXcgMg2oUJmIAJmIAJmIAJmIAJDAAC+m7AUnrru67mROjUvBI06VMcsguj\nb/9hjGxll/1w/sknn8T+rGTVslcrWarszbrJJpu07oeLu+wfX3nuPCfnmlftmrvqg/72/Gi8axMw\nga4TsPDadXb9cmR+o9UC9Casa9cmYAImYAImYAImYAImYAImYAIm0EwEan2XVXxtfafNY9qykY/2\navxIMK21VQH9tfxr/tyX2+SXzFe2Gfj0008jExXxlT1Z2UNWY7Hl4JqDrNZq1mq2rbUe9atPsXBd\n7ZONaxMwge4RsPDaPX79brTerAlcb6yq+91iHLAJmIAJmIAJmIAJmIAJmIAJmMCgIJBFwloLrvW9\nNo+p1V/LT1ttEl6rfqrX+Tt3VRjFt2LSONkjpGpPWvrYj5ZDJY/TGPmQja5lq3bVbfWrXXauTcAE\nGkfAwmvjWDa9J705EyjnvLnqaPrgHaAJmIAJmIAJmIAJmIAJmIAJmMCgJdCWmAiQLBzqu257oOqx\n0fjqvMyV2/LcjKFPIm1H2bHyk33QpvZawq3m0BjZ0t5RbNhQNAf28vNNj/81ARNoNAELr40m2sT+\n9OZafWP2m20T3zSHZgImYAImYAImYAImYAImYAImEASq32VrYanXpl7Bsfo9WmJoHi8b4snfr2vF\nojaN51rneT25PZ9jo2tqncsHom9uU3vVN9e1+rKdz03ABLpPwMJr9xn2Gw96U6ZW4Y1Wh9pcm0Bv\nE8ivyTy3PwhkGj43ARMwARMwARMwARMwAROol0D+/qvvvJ39fsHP/ymMk+Aqv2qXz2o7/YigtebG\nVuOwU8ntOqemyF7ttOVzrim0aYxqxir+b6z+799aPv6v12cmYALdJWDhtbsEm2x8fmOthkZfPvJ/\nAPQmXh3jaxPoaQJ6TeZ5ar0ea7XlMT43ARMwARMwARMwARMwARMwgSoBvm909bsEYymM17n8y2f2\nL5vcJ3vV1T5dq1+1/KqmvepftrX6ZEtfW3PUGkebiwmYQOMIWHhtHMum96Q3Xmqd8wasN2HVTb8Q\nBzigCOj1qNdkXpxek/l1mvt9bgImYAImYAImYAImYAImYAIDgYC+D+k7UFtrwq4tm/b6uuKvrTFu\nNwETqJ+Ahdf6WQ0YS96M9abOovSmrXrALNQL6TECev004jWj16N85qDln1rnud/nJmACJmACJmAC\nJmACJmACJjAQCOh7kb/7DIS76TWYwP8RsPD6fywGzZne0FmwxCzVgwaCF9qjBNoTUasT6/VYHaPX\nZLWujve1CZiACZiACZiACZiACZiACfRnAvouRM33H30H6s9rcuwmYALfELDwOkhfCXpj9xv6IH0B\n9OCy9dpiCjaTp+jDQ1uvN8bkcTHo2380Nrf53ARMwARMwARMwARMwARMYHARaOv7QpVCW985qnZ9\nca011Iqxvb6+iNVzmoAJNIaAhdfGcLQXEzCBREAfGvJTQCWgVj9kyDYNX+a0ar9Mpy9MwARMwARM\nwARMwARMwAQGBYGOvjcIQjN/f9AamjlGcXRtAibQGAIWXhvD0V5MYNAS0IeHDIA2DoRX6uWWW671\n6OhDRvbXkW2e0+cmYAImYAImYAImYAImYAIDl0D+ntDeKv0doj067jMBE+htAhZee5u45zOBAUKA\nDz46WFL+gKMPRV9//XWsVsIrNpy7mIAJmIAJmIAJmIAJmIAJmIAJmIAJmMBAJ2DhdaDfYa/PBHqA\ngARXCay1pqCPjFeJrbmuZe82EzABEzABEzABEzABEzABExhMBPL3qZzIMpgYeK0mMNAJWHgd6HfY\n6zOBHiCQhVd9WOCDgj4sqI2Ha6k91z0Qkl2agAmYgAmYgAmYgAmYgAmYQJ8Q0Pefjiavfl/K49Sn\nuiNf7jcBE+gfBCy89o/71PAoa73BN3wSOxzQBHgN6WChEla16GpfLRvZujYBEzABEzABEzABEzAB\nEzCBtgjk76+yaSaBslZ8ijPXxCzbaq31VL9X5fE+NwET6H8ELLz2v3vmiE3ABEzABEzABEzABEzA\nBEzABEyg6QkgLkpQzMHWas+/lpMoydivvvoqtjBjGzNtZbbCCiuUFVdcsSy//PKt/jWGeRhXvc7+\ncyycZ1uuFTPtOqedgh+18/wKznUtW67zfJxTsOecWjFqPHVulz01fZTsn3N45DH4hkmtgg+Np5/r\n9uxr+XCbCZhA5wlYeO08M48wARMwARMwARMwARMwARMwARMwARPoAgGJiAyVEKg2rjlHUPz888/L\nxx9/XJYsWVLef//9uKZdRbaIsKuuumpZd911yzrrrFPWWGONEGUlSGoe/HIwTmOpKZpf52qPzpZ/\nECg1Tm2qq7bZl2yqczNGsWCjMWrXuOxbNvTJLou4tGefXOei8dmnxmc7n5uACTSWgIXXxvK0NxMw\nARMwARMwARMwARMwARMwARMwgRoEJP5Vu2hHKKUguH744YchuL755pvljTfeKG+//XaIsGS/IhZy\nfP31161i7GqrrVY23HDDsvHGG5fhw4eXjTbaqKy99tohyCI0Is6utNJKreKpxEfFIyGzGpfasdMY\nbHROu3wQv86rNtkvY4mfojVrnOajr9Z5dT7sKIrnm6u2heI8j2xdm4AJ9CwBC689y9feTcAETMAE\nTMAETMAETMAETMAETGDQE5Dol0FIXJQQiZj6wQcflHfeeacsXry4LFq0KM7ffffd8sknn5Qvv/wy\nBFcE2E8//TQyYbHH95prrlnWX3/9suWWW5atttqqDBs2rKy++uqtoiuZsNjQhgjLT/IVk+JQbFnI\nzDb0V6/JwiWWjz76KIRgxNSVV1455qKWuKqxrAF75iAOtkzAJttpfuaqzqc27Ktxw/Gzzz4rX3zx\nRfhj/iFDhrT6rvrSel2bgAn0HAELrz3H1p5NwARMwARMwARMwARMwARMwARMwARaCEgwBEYWGblG\nMEQsZGuB9957Lw62F+BASER0pR9hFuGSc2XFvvXWWyF64mOVVVYpQ4cOLZtttllsO4Cwqf1g2Ypg\n0003LZtvvnnZYIMNWrNhiUsCJufV2LJYqXNi1hjmffXVV8uzzz5byNBF0CXrdvTo0TGfMm0ZS/ys\nD1EZwRYRmLgQhBFg8YVfDhXaNC/tOT61Y4sdgi4xIEYjuLJOxGh8U7J9niM6/Y8JmECPELDw2iNY\n7dQETMAETMAETMAETMAETMAETMAEBjcBhD4JfBIQlakpMrQjSJLlisCK+IqwijCJyIoPaq5lixiL\n8MoY9oBFaGQMtgitbDOA4IlfPZwLcXPkyJFlzJgx5Tvf+U5sSyBBklhqxSehkjVwjr8cv2J88MEH\ny5133lmefvrpsNlmm23KAQccUPbYY48QVfXAK+L+7W9/W5577rmImT1piQmheK211gok2b8Yae3E\noUxdzsWW2Fg/gu7LL78cvlnviBEjQvzNWa/4xF5jNYdrEzCBniFg4bVnuNqrCZiACZiACZiACZiA\nCZiACZiACQxqAlXhUoKfRD+uESMXLlwYWaOIpDwoC0FyvfXWi4xQREPZAxOBFCFSmbBkeXJIrGVb\nAsTN+fPnx8E5WaD42GSTTcq+++5bDjzwwBBFETtpl3/iQfhUnPnmMS92zJ0FWMTfW265pVxyySVl\nzpw5IRKz5yzi61lnnVX222+/EHnxi6j8xBNPlDvuuKM888wz4QvhdZdddik777xzZOOSBYu4KiFY\noi0xURSrYsMOv6+//nr4RvxFUCbjdqeddiqjRo1aZrsBxtVan/y5NgETaCwBC6+N5WlvJmACJmAC\nJmACJmACJmACJmACJmACLQSywMe5riUeIhqynQCC5ezZs4MZe7OSkcperfxMvlYGKOM4lAmaz3k4\n1/PPP18ef/zx8thjj5Unn3yyzJs3L+YmC5Ys1GOPPbYcccQRsQ9s1T+xKc58E5kDsXfu3Lkh5CKQ\nsm0BGbbMNW3atBBUEXnxyVyTJk0qp5xySoivPPALcXjBggXlxhtvLNOnTy8vvvhibI+A+LrjjjuW\nCRMmlO222y6EWvZnVVFMXOucmrXy4DH8wA/RlXi23377sttuu4X4ykPHaMPexQRMoPcJWHjtfeae\n0QRMwARMwARMwARMwARMwARMwAQGHYEsaHKOmMnP4/mZ/l133RUipDI12RKAPUop9YqG8vnSSy+F\n6IoY+fDDD8dP+5kLAXL33XcvRx11VDnssMPKiJaf4kt4ZazmwpZ2tVGTVUuWKnESM2P33nvvyCgl\nyxbx9eabby4zZ86Mfsbwc/8pU6aUqVOnhuDLHrSIpQjCCK/4IlbmY29aRGHEV2JEeNb2AxJbI8CW\nf7BnewW2FXjqqaci0/WVV16J9e26665lr732ioxbRNfqNgPy4doETKB3CFh47R3OnsUETMAETMAE\nTMAETMAETMAETMAEmo4AAmG9wmZ3g5egiR/m5Sf7/ET+uuuui2xRthdAONxzzz1DOGTLAUpb8eEj\nF/yzXQE+EUkRQ/lpPxmwCKf4IxP0oIMOKuPHj4+9VRFYKfLFXPjJc7LHLJmsZLXeeuutkblKnIcc\nckiIr/hAjGULgcsvv7zcd999kY2LX7YcOP3008sxxxwT+7nShlB7//33lxkzZpS77747tllgfrZZ\nIC5E4f333z/EV7YNyLGQ5cteuAit9957b4wnC5ftDRBsWdsOO+zQmjWbxzK3iwmYQO8SsPDau7w9\nmwmYgAmYgAmYgAmYgAmYgAmYgAn0OQEJjdQS51T3RHDMo7k0j366f9lll0XW68Ybbxw/y2dfVARL\nMj6rYi3X+EFgpeaaAxEXgZT9TtkzFmESQZKs0DfeeCOEUPZ45Sf9CLsIp2SZUhSP1p1jRehcunRp\nbFlw5ZVXhpDLw7vYKxbhFV/sw0omK0LvtddeW6666qrYAoC4EESPO+64ctJJJ5V99tknMlBpf/XV\nVwsP5UKsfeCBB+JBYcQ/fPjw2IMW3+z7SoxsW6AMXNbHvrWPPPJImTVrVsTDuG233TayZYmLLRCY\nV6Ky1uXaBEyg9wlYeO195p7RBEzABEzABEzABEzABEzABEzABPqUgMRFgpDwqLpRgTFHWz7p+/DD\nD0Os/MUvfhGZpGwvcOSRR0bWJsIr4qF8UCOukrlKxid7w+qhWtRc44+f4HP+3nvvRWYpQiUCJD+7\n50FTY8eOLVtvvXXs78rP8FXwTyFexFaJlmSn8nP+G264IbJUaWc84vDEiRPDJ2M5sGV7g0svvbRc\nf/31reLwpptuGus67bTT4kFazIP4SpYse9Cy5cA999wTQjFiNLEi0pL9irCLYMyesqzztddeizkY\ng8CMKMu+sMTCGGxZgw7mcjEBE+g7AhZe+469ZzYBEzABEzABEzABEzABEzABEzCBXiEgYTFPprYs\njubzbNvVc83B+Owb4VE/uf+3f/u3yOAk25MHX/Gz/J122in2fGUc2a1knfJz/0WLFpUlS5bEgbiK\nyMo1IuZHH30UGa+MQZBEuCU7FeGTB05x8OAu9o5lv1cViZTEqoM+RFy2KeAn/WwNgPCJ6LrLLrtE\nNipC7hprrBEiLethLDEiop5//vmxJrJRmYtxiMo8bGtEy/6wxEcfYjEZrAi2ZLHygKy33norMmO3\n2mqr2DZAGayIsmTvki3Lmnn4GJmuxINojWDL1gTEwpokHmudrk3ABHqfgIXX3mfuGU3ABEzABEzA\nBEzABEzABEzABEygVwlkAVQTqy0Lovlcdt2pNQc+8M21asRD9jj9x3/8x/Liiy+G0Hr44YeXE044\nIbI9ETUpCJHPPfdcZIeydQCCKyIk2awIl++8804IkWTEyj9iJ6IroiWCK9mgiLlckz2qGGQfE6V/\nEFnZqoAHYT377LMhErMVAlsUIHaSWSrRNQ0LMRVxlIdskfn66KOPRqwrr7xybJ/A2hCWhw0b1iqS\nshaEYzJY2ZuWDFt4IMiSlcvetAiqYkn8CK1sm0Asm222WaxV+8FiJ1uLr/nu+NwEep+AhdfeZ+4Z\nTcAETMAETMAETMAETMAETMAETKBXCUiIy5OqLYut+TzbdvVcczBeYqfmIOOV7NCf/vSn5YUXXoh+\nHhCFOHnUUUe1/mwesfXhhx8uDz30UIihZIqussoqsSWAth8g2zXv+4rgiGhJVihZrvhlz1SySBFk\niQEbZYfm9X3xxRdl/vz5sQ0CGa/4xg8CLj/rRzRFSNV6tDZ8UYgJ8RXhlf1eWRt9xDxu3Ljy4x//\nOLYQ0MPDYMSaEGDffvvtEHrJsr399ttjr1rmETOJrlOmTIntDkaOHNkqJGeRVbHktgjO/5iACfQq\nAQuvvYrbk5mACZiACZiACZiACZiACZiACZhA3xDIIigR6FqinupGRledQ0Inc/FTfh4s9Q//8A9l\nzpw5IU6yLcDUqVML+6GOHj06BEcelIXwyk/x582bFz/TX3fddeMn/GS2MgdiKcIlBQGWc8RMCkIr\nvsh4RTglW5XsUB6KpfjCsOUfrtm+gExVsl3JOl111VVjb9i99967jGjZJgDRFTtETWpxy2In+8RO\nnz69nHvuueW+++6Lh28xH1mzP/nJT8oRRxwRD9JiXsYrDsYh+pIJzIO6EKYlKGPL3GS5/vCHPyyT\nJ0+OtcCAuWutR7Ex1sUETKD3CVh47X3mntEETMAETMAETMAETMAETMAETMAE+pQAQp/EPsS5nhLo\n8hwsWMIr5/ycH4HzZz/7WeyhSt9aa61Vjj/++HLmmWfG3qWMJwuUrFGyT9lDFdGUDFRESERHYkew\nJNMU8ZGHb7EnLFsUcNCO4MkDu8h65Wf6ZJsyrsqBGBjDnq4Ir2wBgHDLuP33379V6CR+5lKprpN4\nbr755vLf//3fIZ4iBDMf2xP8/d//fTnuuONi71nGVf0wP9m9V199dYi3n3/+eXBjLvaGJYP31FNP\njYeQbbHFFrGXrTJb83qwVzvnLiZgAr1PwMJr7zP3jCZgAiZgAiZgAiZgAiZgAiZgAibQ5wSqYmFP\nBKQ58M25hEDOyeRETD3nnHPKFVdcERmqCKkHHHBAOeuss8phhx3Wuh0A2at6eBY+EDDZSgDRkmsO\nicfs/YpAy96sZNSyZyoZsWTT7rnnnvETfTJfNVbrJiZEWh7gRZbqrFmzYt9VxGC2GRg/fnxkzDI3\ntoi0eV6uKcTB2q655pp4yBYiKvEzH4Lv3/3d35Wjjz469mbFHl+KnWuEVwTpadOmlVtuuaV1/1r6\n4DN06NAyYcKEyHhlz9kRLVm4bEHgYgIm0HwELLw23z1xRCZgAiZgAiZgAiZgAiZgAiZgAibQ4wQQ\n/ChZ9Gv0pJoDvwiT1exOfsp/2WWXlX/913+NrQew56f0J598cmw3QGYrY8ggZXwWKYmbA/GTwjn9\n2LFdAA/kYp9Ufq6PmMr2BHvttVc5+OCD42Fba6655jLCKT4Yi3D74IMPxs/9edgVGafs68o+sRI6\nEVDJPkWo1ZziyAO/Xn311RBeyXp97bXXIn72eN1vv/1im4B99923bLDBBky5TCFbl+xe9nhF/IUP\nIi5jOWDBnGThjmzZ33XUqFGxby3iKzGyLYIYicsyE/jCBEygVwlYeO1V3J7MBEzABEzABEzABEzA\nBEzABEzABAYXAYRACqKmxECJlO+9915kpf7Lv/xL7POKyIkgys/6Tz/99BBK11tvvVbBVuPlE7/y\nxTkFH2wRwL6xd9xxR6uAueGGG4bweeihh8ZDrhBi5Y9x+OTQPqtkyyLA8nAvsm0333zzyHglWxah\nk0xYxiOEklGLQKoHZCH6zpw5M7Jt2VKBudjqANGXA9EUkVRF8yLY3nXXXeXWW28tL730UmS3km3L\n9gL4IHMWMRYhGb8IsfAiNrZQ4OFhCLCItOJCjPjnmjoX2eQ2n5uACTSOgIXXxrG0JxMwARMwARMw\nARMwARMwARMwARMwgRoEEPwk+iH2SfBDqJw7d2755S9/GT+tX7JkSYiZbAtw5JFHlqOOOioejCWR\nE9fKfM0+NSWiKWIuD+F64oknYrsAajJgEScRdJXxik/FwXjFxzkP/nr66adjr9fZs2fHlgjsKctD\nuhBeEUIRcmlD6OVACCXbFdEX0fTJJ5+MbQLYEoG9WHk4F/PvuOOOkbEqQZR5iYNsVx4gdsMNN5Sb\nbrop9qklQxcGu+22W+xryxysjW0UmOONN96IucmARXTF9y677BJ70SLs4lfzcJ7XyDopmcE3Ld/8\nK9u2+rOtz03ABGoTsPBam4tbTcAETMAETMAETMAETMAETMAETMAEGkQAES8LeRLzyBLl4VkzZswo\n5557buGn/bQhVrLlwKRJk6JG5OSn/YiuZJiS+amf+We/tL/77ruxNyvCJKLuO++8ExmgZJyOGzcu\nxE+ySMkK1ViWqZg4xw9ZpewPS9Yre64ixrI9wJZbbllGtGS8brTRRrHXLNmuCMgIpxxkx/JwL+JA\n9EQUxZ45EW4Zh2BLYT0U5mZfWrJdr7322nLnnXdG+xFHHFFOPPHEEFPZ3gCBF3Ga7QtgxRoXLFgQ\nYjM+EIR5EBjsyKplP1j2f81r03zUzE9ftT8m9z8mYALdJmDhtdsI7cAETMAETMAETMAETMAETMAE\nTMAETKA9Am0Jr4xBQEVI/M///M8yffr0yOKUIIo4ilDJz+wRY8loRegk8zOLr/hBPKQPMZE+REr8\nsFXBTjvtFPu6kkGKAIuAqkxQjaXOhbl40BXbBiC88iAwBFYyZRE08aGHWjEXczMfcdLOQ7iYm9g5\nEGBpk9BZFTuZBwEaBmTpIjYjuh577LGxl6uEYuZA3F24cGEIy48//nhs18BDvOgjvh122KGMb3kY\nGMI162VeiubGjvWzRrVV48ksfG4CJtA1AhZeu8bNo0zABEzABEzABEzABEzABEzABEzABOokgNCX\ni0Q+2hFKqa+88spy/vnnR4apMkFply3jOaeNo62CoEhRtikZoBMnToz9YtkHFTFUfrDL/rnOcyIK\nI3KSVUr2LEIsYiUZqwihiKwas+KKK5bVVlsttgRAmGXvVWxoV0zMxXiKYtD8+Ec8ZWsD9nFFeD3w\nwAMjQxd/7Oeq2KhhxIPAEK3Zy/aCCy6I/WjFhgeTIb6edtppsbctsWku+cGH2hRTBOd/TMAEGkLA\nwmtDMNqJCZiACZiACZiACZiACZiACZiACZhAWwQkBqpfYh/tEgHZE/WSSy4pN954Y/zMH1GQfUoR\nLrHnQMCUKMvWAwifiKCccyB0cs04skzZ13Xs2LHxE/xNNtkkxFAETHzhR4IocSmOLEYqPjJa2TqA\nPVw5x2aFFVZoFVXxSZwSZMl4xXf2zxzMi89a52wh8Prrr5f58+fHtgZkqSIUj/z2QVwah0+dEwfx\nsE3BrFmzgh/CLZm52MFgv/32Kz/60Y9i/1fEYArjq+tXTGHw/9q7dxUptigMwJX5AgZqKCZiJJiI\nTyCCkYEgBr6Hz2IgGJhoICYaCMYmgoGJkWBiYGBgYnDOX4cFm6Knp6cvZ/bs+Rp66rZr1apvG/2U\n1f4QILAXAcHrXhgVIUCAAAECBAgQIECAAAECBLYRqBAwT5W+e/dufr/pt2/f5idD89RmwswErAk3\n80lgmHMStCbgzJOcCVor9MzY7Mt/7c9To5cvX56fck2QWaFr6qRGgtBaz7KC0VrOB//9k2vm9QV5\nnUC+eWo1wWbC1hyrELaW1WudX8v2mrUvy+xPgJr3yOb9sHmSNfeT3hOepm7G5FM9Zz378k1P+dGt\nly9fzt/ySx95Wvbp06fT3bt3p/xoWfVWwWuW+aRuW3ve6Q8BAjsJCF534nMyAQIECBAgQIAAAQIE\nCBAgsItAgsOEf3miNP/d/uvXr/MPbiUgzPtKE6ImhEz4mE+Fjdmu/+6fsDVBbM6p8DP7cjyhbAW3\nFSzWsupl2e5b7k9/dd38+Fd9Er7mWK5bgWbqZP+yRp2fY1mv62U9n9Spd9PmFQepV0/85pwan3HL\n+tmXsPbLly/Tixcvprdv386vK0jd1Hn06NH08OHD+Ye3EuSmVn1zbnpor5HzfAgQ2F1A8Lq7oQoE\nCBAgQIAAAQIECBAgQIDAlgIVQuaJz/xX/gSICTcrWE14mvUEiBU+5lJZT1hYgWeFkdVGjleoWeu1\nXWNru+pWL6mxPFZ1a3+NWdbK/vZ6WW+3M35Zo66fEDTrbc3qqWpU8Frb1VeWefL1w4cP0/Pnz6c3\nb97MP0KWcdeuXZuePHky3bt3b37tQvv6htTLJ9fMWB8CBPYnIHjdn6VKBAgQIECAAAECBAgQIECA\nwB4EKmysZUq26xVQLi/VhpEVItZ5dU7tr5pZ1nkZ2wajNbbCzvZ6GZv9Ffxmu2plme18U6Pq1Jh5\nYPMnx5f91fkZtjw/223tWk+NX79+Ta9fv56ePXs2ffr0aT4373Z9/Pjx9ODBg+nmzZvzk8B5XULV\nyTUq7K1rZZ8PAQK7CQhed/NzNgECBAgQIECAAAECBAgQILCDQBtGnsXQr+1/HcO+7y3XrcC1rZ1A\n9fPnz9OrV6/mAPbnz5/TrVu3pvv370937tyZrl69Or++YV2vjhEgsB8Bwet+HFUhQIAAAQIECBAg\nQIAAAQIETllg3yHopvU2ue02HN1k/Lox1Vdqrlr//v379PHjx+n9+/fzqxuuX78+3b59e7px48Z0\n6dKl+Z257XnrruUYAQLbCwhet7dzJgECBAgQIECAAAECBAgQINCRQIWJx7W0SQi6z1rH9XPS4+1r\nCdJnvnlVQO3//fv39OPHjykB7J8/f6aLFy9OV65cmZd5Z277eoRNLE7an/EECPwnIHj1L4EAAQIE\nCBAgQIAAAQIECBDoRuCowHOTgPCoc5c393/XWl5/1+0KWFOngteEqbU/y/xA2d+/f+dlfkzrwoUL\nK3+gbNdenE+AwNECglSyyXYAAAZqSURBVNejbRwhQIAAAQIECBAgQIAAAQIE/ieBNjRt13P5TYLS\nTds8Sa1lH6uucZJ6q87fZl/1VcvUqB8Fa/up47WvtmtZP6i1TQ/OIUDgeAHB6/FGRhAgQIAAAQIE\nCBAgQIAAAQIHFqgwMJdp17NdwWHW1302Hbeuxlk5dpRR7a9lTFa55Piq/Wfl/vVJ4CwICF7Pwizp\nkQABAgQIECBAgAABAgQIECDQCCyD03a7DV1zSl49kE8btNb4dt88yB8CBPYmIHjdG6VCBAgQIECA\nAAECBAgQIECAAIHTEaj3uy6D1Aph09Xy2FHnnM4duCqB8QQEr+PNqTsiQIAAAQIECBAgQIAAAQJn\nRmBdMHhmbuKUGi27BKrtetpZbq9qMWOWYeyqcfYRILCdgOB1OzdnESBAgAABAgQIECBAgAABAnsQ\nqIAwpYSAm4FWYFp2RwWvPDfzNIrAoQQEr4eSVZcAAQIECBAgQIAAAQIECBAgQIAAgXMrIHg9t1Pv\nxgkQIECAAAECBAgQIECAAAECBAgQOJSA4PVQsuoSIECAAAECBAgQIECAAAECBAgQIHBuBQSv53bq\n3TgBAgQIECBAgAABAgQIECBAgAABAocSELweSvYAdduXZh+gvJIECBAgQIAAAQIECBAgQIAAAQIE\nCOxJQPC6J8hDl6nQta7jlwlLwpIAAQIECBAgQIAAAQIECBAgQIBAfwKC1/7mZGVHy+A1g4SvK6ns\nJECAAAECBAgQIECAAAECBAgQIHDqAoLXU5+CzRoQvG7mZBQBAgQIECBAgAABAgQIECBAgACBHgQE\nrz3MwgY9CF43QDKEAAECBAgQIECAAAECBAgQIECAQCcCgtdOJkIbBAgQIECAAAECBAgQIECAAAEC\nBAiMIyB4HWcu3QkBAgQIECBAgAABAgQIECBAgAABAp0ICF47mQhtECBAgAABAgQIECBAgAABAgQI\nECAwjoDgdZy5dCcECBAgQIAAAQIECBAgQIAAAQIECHQiIHjtZCK0QYAAAQIECBAgQIAAAQIECBAg\nQIDAOAKC13Hm0p0QIECAAAECBAgQIECAAAECBAgQINCJgOC1k4nQBgECBAgQIECAAAECBAgQIECA\nAAEC4wgIXseZS3dCgAABAgQIECBAgAABAgQIECBAgEAnAoLXTiZCGwQIECBAgAABAgQIECBAgAAB\nAgQIjCMgeB1nLt0JAQIECBAgQIAAAQIECBAgQIAAAQKdCAheO5kIbRAgQIAAAQIECBAgQIAAAQIE\nCBAgMI6A4HWcuXQnBAgQIECAAAECBAgQIECAAAECBAh0IiB47WQitEGAAAECBAgQIECAAAECBAgQ\nIECAwDgCgtdx5tKdECBAgAABAgQIECBAgAABAgQIECDQiYDgtZOJ0AYBAgQIECBAgAABAgQIECBA\ngAABAuMICF7HmUt3QoAAAQIECBAgQIAAAQIECBAgQIBAJwKC104mQhsECBAgQIAAAQIECBAgQIAA\nAQIECIwjIHgdZy7dCQECBAgQIECAAAECBAgQIECAAAECnQgIXjuZCG0QIECAAAECBAgQIECAAAEC\nBAgQIDCOgOB1nLl0JwQIECBAgAABAgQIECBAgAABAgQIdCIgeO1kIrRBgAABAgQIECBAgAABAgQI\nECBAgMA4AoLXcebSnRAgQIAAAQIECBAgQIAAAQIECBAg0ImA4LWTidAGAQIECBAgQIAAAQIECBAg\nQIAAAQLjCAhex5lLd0KAAAECBAgQIECAAAECBAgQIECAQCcCgtdOJkIbBAgQIECAAAECBAgQIECA\nAAECBAiMIyB4HWcu3QkBAgQIECBAgAABAgQIECBAgAABAp0ICF47mQhtECBAgAABAgQIECBAgAAB\nAgQIECAwjoDgdZy5dCcECBAgQIAAAQIECBAgQIAAAQIECHQiIHjtZCK0QYAAAQIECBAgQIAAAQIE\nCBAgQIDAOAKC13Hm0p0QIECAAAECBAgQIECAAAECBAgQINCJgOC1k4nQBgECBAgQIECAAAECBAgQ\nIECAAAEC4wgIXseZS3dCgAABAgQIECBAgAABAgQIECBAgEAnAoLXTiZCGwQIECBAgAABAgQIECBA\ngAABAgQIjCMgeB1nLt0JAQIECBAgQIAAAQIECBAgQIAAAQKdCAheO5kIbRAgQIAAAQIECBAgQIAA\nAQIECBAgMI7AP98nTj9tSSMZAAAAAElFTkSuQmCC\n" + } + }, + "cell_type": "markdown", + "id": "f9abeffa-c9c8-4358-8595-dc56aed105d9", + "metadata": {}, + "source": [ + "# Recursion\n", + "\n", + "## Outline\n", + "\n", + "- Call Stack\n", + "\n", + "- Recursion\n", + "\n", + "- Time and Space complexity of Recursion\n", + "\n", + "- Mergesort\n", + "\n", + "- Multiple recursive\n", + "\n", + "# Call Stack\n", + "\n", + "## How a Call Stack Works\n", + "\n", + "- Your computer internally uses a call stack (stack ADT) to execute\n", + " functions\n", + "\n", + "- When you run your Python file, the `main` functions is called.\n", + " `main` is pushed onto the stack\n", + "\n", + " - Sounds familiar? `if __name__ == \"__main__\":`\n", + "\n", + "- As the main function executes, it may call other functions, each\n", + " functions is pushed to the top of the stack\n", + "\n", + " - The currently executing function is at the top of the stack\n", + "\n", + "- When each function is executed, it is popped from the stack\n", + "\n", + "- The function may return a value, which is passes to the calling\n", + " function (the function below in the stack).\n", + "\n", + "- The calling function can use the return value and continue execution\n", + " until the stack is empty\n", + "\n", + "## Basic Example\n", + "\n", + "- If I run `round(float(\"20.24\"))`, I expect `20`\n", + "\n", + " - The `round` function is first to be called, it is pushed on the\n", + " call stack\n", + "\n", + " - Then, `float(\"20.24\")` is called and pushed on the call stack\n", + "\n", + "- Now, we pop each function off the call stack.\n", + "\n", + " - `float(\"20.24\")` returns `20.24`\n", + "\n", + " - `round` uses the return value of the previous function, `20.24`.\n", + " It executes `round(20.24)`, which returns `20`\n", + "\n", + " - The stack is empty, so the program finishes\n", + "\n", + "# Recursion\n", + "\n", + "## Motivating Example\n", + "\n", + "- Suppose you are looking for a key in a box, but the box contains\n", + " more boxes!\n", + "\n", + "![](attachment:images/box_recursion.png)\n", + "\n", + "- 2 minutes: write down the steps of the algorithm you would take to\n", + " search for the key\n", + "\n", + "## Algorithm 1: Loop\n", + "\n", + "1. Make a pile of all the boxes\n", + "\n", + "2. Grab a box and open it\n", + "\n", + "3. If it contains a box, append it to your pile of boxes\n", + "\n", + "4. If it contains the key, you’re done!\n", + "\n", + "5. Repeat\n", + "\n", + "## Algorithm 2: Recursion\n", + "\n", + "1. Grab a box and open it\n", + "\n", + "2. If it contains a box, repeat step 1\n", + "\n", + "3. If it contains the key, you’re done!" + ] + }, + { + "cell_type": "markdown", + "id": "ccd09003", + "metadata": {}, + "source": [ + "*Which algorithm do you like more?*\n", + "\n", + "- Notice the function is recursive because it calls itself\n", + "\n", + "- Both algorithms achieve the same thing, but recursion is clearer (to\n", + " me)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bfe1c5ab", + "metadata": {}, + "outputs": [], + "source": [ + "# Write your answer here" + ] + }, + { + "cell_type": "markdown", + "id": "58070806", + "metadata": {}, + "source": [ + "\n", + "## Formula to write a recursive function\n", + "\n", + "- Since recursive functions call themselves, its easy to write an\n", + " infinite loop\n", + "\n", + "- Let’s write a function that does a countdown" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "1b65eaad", + "metadata": {}, + "outputs": [], + "source": [ + "def countdown(i):\n", + " print(i)\n", + " countdown(i - 1)" + ] + }, + { + "cell_type": "markdown", + "id": "35134324-9ff9-4c18-8ab1-531d7b6782d6", + "metadata": {}, + "source": [ + "- This runs forever, so we need a *base case* to tell the code when to\n", + " stop" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "1cf5d588", + "metadata": {}, + "outputs": [], + "source": [ + "def countdown(i):\n", + " print(i)\n", + " if i <= 0:\n", + " return \n", + " else:\n", + " countdown(i - 1)" + ] + }, + { + "cell_type": "markdown", + "id": "9b037a8c-5cbf-4b11-80ce-82f847958a9b", + "metadata": {}, + "source": [ + "## Factorial\n", + "\n", + "- The *factorial* is the product of all positive integers less than or\n", + " equal to the given integer\n", + "\n", + " - $5! = 5 \\times 4 \\times 3 \\times 2 \\times 1 = 120$\n", + "\n", + " - We define $1! = 1$\n", + "\n", + "- Let’s use recursion to calculate factorials" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "b2b9ea9b", + "metadata": {}, + "outputs": [], + "source": [ + "def factorial(n):\n", + " if x == 1:\n", + " return 1\n", + " else:\n", + " return x * factorial(x - 1)" + ] + }, + { + "attachments": { + "images/rec_call_1.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAIRCAYAAAARNlePAAABXmlDQ1BJQ0MgUHJvZmlsZQAAKJFt\nkM9KQlEQhz/LEkrIKFpUC1tVoGEqtGljFhW4uJhhf1bXq1mhdrkaUavoGSrctA1fIFzUokcIgoJW\nBUUPELgpuc3VSq3mMMzHj/mdM2egzanqesYOZHMFIzo/415ZXXM7XnEyRB9eRlQtr4cUJSItfNfW\nqNxhs+qt17rr5IiioxiP9ZSmO58P1gf/9rdEVzKV16R+SPo13SiAzSes7BV0iw+F+w0ZSvjY4nSd\nSxYn6nxV64lFw8I3wi5tU00KPwp7Ek16uomzmV3tawZremcqt7wkdUBymFnmiMhxo+AnyCRTLMiO\n/vcEa54wO+jsY7BFmk0K4g6JopMhJbxIDo0JPMJ+fJIBa9e/d9jQki8QyMpTYw1t2wWXFei9aGij\nT/KdM7hWdNVQfzZrq9jzGwF/nbvL0HFqmm9xcIxD9d4038umWT2H9gfxVj4BvCpiKJDcBBoAAABW\nZVhJZk1NACoAAAAIAAGHaQAEAAAAAQAAABoAAAAAAAOShgAHAAAAEgAAAESgAgAEAAAAAQAAAdOg\nAwAEAAAAAQAAAhEAAAAAQVNDSUkAAABTY3JlZW5zaG90nTujQAAAAdZpVFh0WE1MOmNvbS5hZG9i\nZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhN\nUCBDb3JlIDYuMC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8x\nOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJv\ndXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEu\nMC8iPgogICAgICAgICA8ZXhpZjpQaXhlbFlEaW1lbnNpb24+NTI5PC9leGlmOlBpeGVsWURpbWVu\nc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjQ2NzwvZXhpZjpQaXhlbFhEaW1l\nbnNpb24+CiAgICAgICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNv\nbW1lbnQ+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRh\nPgqWSU9DAABAAElEQVR4AeydCdxV0/7/v2nSrMiVyNCskijJlLmLCEWJkm6lAVe6989NXBlC6VI3\nivIriiiKqG6iyZyiNFJpUKK5pDnnvz7fe9dqn/Oc5zz77Oec85znPJ/v63XOXnvvNe33Pmd/91rr\nu76rUMiIUEiABEiABEiABAITOCpwSiYkARIgARIgARJQAlSm/CGQAAmQAAmQQC4JFPGm//LLL2X0\n6NFStmxZ2bVrl/cUwyRAAiRAAiRAAh4C7dq1k/POO0+PhCnT5cuXy4svvih16tSRJUuWeJIwSAIk\nQAIkQAIk4CVw7rnnRlemNlKRIkXk7rvvtrvckgAJ5BGBQ4cOydKlS7X0M844Q/DfTGdZsWKF7N27\nV6pUqSLHHHNMOleVdSOBwARWrlwpe/bskRIlSrg8ov4zixcvLv/+979dJAZIgATyhsDmzZvl+OOP\n18LffvttqVixYt5UxGep9evXl++++07Gjh0rbdq08ZmK0UggfxFo3LixzJ07Vzp27OgqTgMkh4IB\nEiABEiABEghGgMo0GDemIgESIAESIAFHgMrUoWCABEiABEiABIIRoDINxo2pSIAESIAESMARoDJ1\nKBggARIgARIggWAEqEyDccuoVLDcPumkk6R58+YZdV28GBJIFwLLli2TY489Vo477jj58ccfw6r1\nl7/8RR3l9OjRI+x4pu3EYpAJ1xp1akwmXFh+vIb33ntPPv30U5k/f75gHlOFChXkrLPOkptvvlmu\nueYaKVSoUFIua926dbJhwwY5+uijk5I/MyWB/EIgWf/B3377TbZt26YYdu/eHYZj48aNgvPYxiO/\n/vqrDBgwQD7//HNV0EWLFpXatWvLDTfcIHfeeWfYHMh48k1W3FgMklVmKvOlMk0l7WzK2rFjh+Dt\ndMKECWExfvrpJ1m4cKG8+uqrctFFF8mHH35IhRdGiDskkBgC+e0/+PXXX8ull14qv//+exiA9evX\ny/Tp03UO5KhRo8LO7dy5U/7v//5PX8q7dOkiJUuWDDvPndwRoDLNHb9cp8YP/Oyzz5bVq1drXniz\nRHcrvN38/PPP8sEHH8gXX3whn3zyiSxevFgaNmyY6zKZAQmQwBEC+e0/+Mcff2hvFRQpFGLv3r31\nZRsvBHhevPbaa7Jly5YjF/i/ENzF3n///bp3xRVXSN26dbPE4YHgBKhMg7NLSMqnnnrKKdLWrVsL\n3ia93a34o0yZMkUeeughHW9JSKHMhARIwBHIb/9BjD2uXbtW64+633vvve5arr/+ennkkUdk06ZN\n7hgDqSFAZZoazlFLQTfuoEGD9BxapHDBFm1cFOOl+ETK999/r+OrcN921FFH6QIFcLxcvXr1yKi6\nv2/fPpk9e7Z2AeGt9oILLhC8oeYk3377raBbCT5iTzzxRB3Hvfjii8OUfk558DwJpCOB3PwHMQQz\nc+ZMgc3BgQMH5PTTT5crr7xS6tWrl9RLxf/eSrVq1WzQbWFMiI+V/fv3y8SJE+WHH36wh2Ty5Mnq\n9hEHmjRpIqeddpo7F/S65syZI3hWoJcNhlaXXXaZnH/++S7fWAHYieAZgxXL2rZtGytq+p4LeWTk\nyJEhU9OQeSB7jjKYLALGeEB5g7kZF/VdjFGKoXvuucelRXr7KVy4cMi0YkPmzx2WnxlLCZnuZBfP\nxje+VEM33nijHq9atWpYGmMoEerQoUOWNEhrHhgh84YcFp87iSdgWhiOP8LpLmeeeabW17wYpntV\ntX5B/oNGeYaMAnL3xf6XsDUvtaEHHnggy7V/9dVXLr5RVmHnr776aj2H/6EfWbBggcsLaQ4fPhwz\nmVla08X31tWGH374YU0f5LqQ0Bgvhv785z9HLeOqq64KmYUPNP/sGHz00UehYsWKaXqzQILGTfcv\n6EjwMz2JrqpsmRoieSVYYcNKq1atbDDH7U033aRdv4hoHl6CViIs5WB4gHHWJ598UtAKffbZZzUv\nc7elWbNmblk9OGnGm+i0adPUwAlvotEEVsRTp07VU7fddpsgHd46hw0bJosWLdI8cQ3mjxAtOY+R\nQNoTCPIffP/999WOoVSpUoJuVYw9oqcHhoKwin/mmWfk2muv1XHMZACAPQVW5UGLGC1O2FgMHjxY\norVSUT5azC1bthQsmoDWIwStRrQCIXh+QIJcF54teB4ZRal5wCgKix2g9fyf//xHjSa/+eabbFuo\naJGaFwJt2f/pT3/SNJpRfvxyatUE2DL10kh+2Pzw9O3GrAriuzC8xZnfmX46deoUMkt0ubTmzxJq\n0KCBnjMr/4TMuIqee/fdd12anj17uvh4YzR/enfO2zI1itkdHz58uEuDgDGGcufM+rdh57iTWAJs\nmSaWZ2RuQf6Dpisz9MQTT4S2bt0alh16f8ySXPrfePDBB8POZdcqQ6R4W6ZIM2PGDFcWngdmab6Q\neeGN2VvkbaGal2FkEyZBrmvMmDHuWQAmXjHdtiHwtc+hSAam2zmEZx/qbxRpyAwjeZOndThay5RO\nG/LwDQhzSSEnn3yy71q88MILGhdrRT733HNiunVdWoxT4K0YgnESvGlC3nzzTd3iTRStViswdMJ0\nHLxNRgpM6CFYKN4o7bDTF154oeADwbxYCgnkVwJB/oOY+w2DQMwD90rlypXVMh/HrIGQ93wiw/jP\nfvbZZ2JenjVbrHv7+uuvayvZvDBrSy/e8oJc1zvvvKPF4NpN93ZYkZh5YJS+tqLDTpgdzKlFbxkM\npdAixdgz7Ebys7CbNw/vnrXaRRetX7FGBGaMQkqXLp0lGQyK0P2EbqdVq1bpefvHRteOdzFbnEQX\n7TnnnKM/Zm9mtvsLBlHWSMp7fvv27bob6c3FG4dhEkh3AkH+g95rguMEzO385Zdf9AXWtFb1NIZZ\nki1QpOgmxQsxrHoRNuOn8vzzz8uaNWu0CzhoHfxel30ZwXMnnoXrYVCJKT7ly5fPCEUKzlSmQX9t\nCUhnulUFSgtjH6ZPI6olb2QxVnll15qF8sMbM5SpVaLIH4K3R79iFTHmtt53333ZJsOfl0IC+ZVA\nkP8grnXSpEny6KOPqvVqXl47/u8YD8UHswHgjAEelszQjlrsYuw2Hon3uuxzolKlSvEUo4oUCfD8\niEcJx1VIiiNTmaYYuLc4azCAt1hMO0GXak5iu3XRjZudWAUX2Q0VK01kXtaoCF0/3bp1izzt9mFW\nTyGB/EogyH8QLgehvPA/Q8vquuuu06ko6PXB8Ih1wJJqJrfeeqtOV4NBEATdwPEo09xcVzzPFtTt\nX//6l/ztb3+TXbt2CYwvzXhull4zxMtPQmWah3cLVm9W4GMTDhtyEljhwpLWdvdGxoc3F3Q5Qex8\nU7RIYWVou2Qi00Tbxxs7unrQAsbbLoUEMpFAkP8gFAEUaa1atdSqF/YLVubOnZtnyhR1wPCPFSiq\n7ARdrJES5LpOPfVUbQjYHrPIPLPbv/zyy6Vv375ipuXofFe8sPt5/mWXXzocpwFSHt6Fdu3aySmn\nnKI1gPEAJlJHE4ypwnAI3bU1a9bUKJgGgwnnkfLyyy+7LhQ4cIDUqFFDtzAWwoC/V9DNDJP+SLFp\nUI5VzpFxuE8C+Z1AkP8gxiYhMALyKlIoqGhu/BLNCC/TeNGNJnB8YCWyp8v2NuF8tBfrINdlW/aY\nBhOtTvPmzdNuZ1sn7xZGXFb54xmEZ1e+Fq/9MafGeGmkJmz8aDrTcjP+EerVq1fIWLaFjLVbCKbq\nxjo3ZLwOaRyYw5sVIlx8M98sZMY0taKmm0WnNmFKjPlBqkm6vYKPP/7YpWnatGnIzEXVU+YPoCbp\niI+Pd2oMysYEdBzHBHXTdWWzC5mHRsi8gYdMN40r351kIKEEODUmoTijZhbvf9C0SPV/gf8lpqNB\nTI9QyKzW4v5nkQ4YIqeFeCsS79QY06oLGZ+8+v8z3s/UQQscuRjr/ZDpSdI64Dlg5np6i9Fniv2v\nm67VkPHlq88C87Ks8YJcl5mH7q4ZzwnTQtW8ME3orrvu0nN4bkGiMTAvH2F1NspX46b7V7SpMTB8\ncUJl6lCkLADF9Pjjj+s8MftDj7Y1b8BOoXXs2NH9gBHXjNuErBLFPv7k+JN5BX9Ab75IY/dN17GG\nvcoUaY3PTxcHcfFHhcckMxbrjo8bN85bDMMJJkBlmmCgUbKL9z9ouifd7x/zO/H/Ma0+dwz/lWQq\n0zZt2oSVhZde++Jr/9NDhw7NcqW4TuuhCvHwzMALPJ4/kCDXhXTwcmTLxdbMJgjbhxKFRFOmOG4W\n8giZ5eM0jek2Dpml6nA4rYXKNI1vD35Qxq9nyMwV1R8VfuT4YZrxzpCxpnWtSXsJcKRg30LtDxkK\nF380+7Zs42KLN9f27duHzHQa90M3XTShESNGhNBCRR54M40UuIWzytaWgy3qaZaNC+HNkpI8AlSm\nyWMbmbPf/yAcpaBXxvsCW6ZMGXXxaTwR6X/plltuCcsePT32/xPphtO2aPHf9SNmWlro73//e8hY\n0Lo8kTeeGcZLWQiOXbITOFIwHpFcOqSxrkyDXBfKgetS1MfMY3f5oj7GM1Ro/PjxriqxGPz73//W\n+uOl5JVXXnFp0jUQTZkWQmXNhatgABiLymKszbxF2MPcppgAXAIa70Ri/qBiPITELB0GR3DdhYnP\ndvw1VgIYTmC6Cyx9YVxkBcs3wRrRPCDsobAtzO1h9GTebuWEE04Ic6QdFpE7CSUAF3D2N4Dx7ooV\nKyY0/0RnBoMeLLyAaRpGOSQ6+5Tl5+c/iP8opobgP4HxSVja43GK/xL+u5FTPmD7YJRXlvnhcLgA\nY6Fy5cqFOWHxc7Gwo4BNA/67GL+MnEceLQ/UcbVxCwoLXDh6ifxNxXtdtgybL36neLZEm4qXHQPk\ngel8EMyTT3eBa1UYm0Fn3nHHHVpdWvOm4V3Dyix+BX9AvPz4FfzhvRaMNp3XkMIe827hIALrrlJI\noCAQ8PMfhOKKXBMUyhLTZaIJFGw0gdKNnMYWLV60Y/DRi088gjrCX292Eu912XxsvrHyzo4B8sgP\nStRea7QtrXmjUeExEiABEiABEoiDAJVpHLAYlQRIgARIgASiEaAyjUaFx0iABEiABEggDgJRx0wx\noG4szuLIhlFJgASSQcBME3DZwsFGKpwCuAIDBKyDdxjw8BkSACCT5AsCMNKC2C3CUZUpImABWgoJ\nkED6ELjgggvSpzI51MQ4HxF8KCSQyQSs1yhcI7t5M/lO89pIgARIgARSQiBqyxQmymvMPCQKCZBA\n3hLYZtbHPNsssgz51viELR+xIHXe1i5r6X+++mpZvny5DBk8WJqb1VQoySdwfYsWsmTJEnlu4EBB\nmJJ8Ai0M54VmPrW3tyiqMkVVipj5iBQSIIG8JWCX3EMtEE73/yXmGkKMe7u0r6tWNAO+jLNsXcXG\neIQg8xTdT/s7t1sUy27eFMFnMSRAAiRAAplLgMo0c+8tr4wESIAESCBFBKhMUwSaxZAACZAACWQu\nASrTzL23vDISIAESIIEUEaAyTRFoFkMCJEACJJC5BKhMM/fe8spIgARIgARSRIDKNEWgWQwJkAAJ\nkEDmEqAyzdx7yysjARIgARJIEQEq0xSBZjEkQAIkQAKZS4DKNHPvLa+MBEiABEggRQSoTFMEmsWQ\nAAmQAAlkLgEq08y9t7wyEiABEiCBFBGgMk0RaBZDAiRAAiSQuQSoTDP33vLKSIAESIAEUkSAyjRF\noFkMCZAACZBA5hKgMs3ce8srIwESIAESSBEBKtMUgWYxJEACJEACmUuAyjRz7y2vjARIgARIIEUE\nqExTBJrFkAAJkAAJZC4BKtPMvbe8MhIgARIggRQRoDJNEWgWQwIkQAIkkLkEqEwz997yykiABEiA\nBFJEgMo0RaBZDAmQAAmQQOYSoDLN3HvLKyMBEiABEkgRASrTFIFmMSRAAiRAAplLgMo0c+8tr4wE\nSIAESCBFBKhMUwSaxZAACZAACWQuASrTzL23vDISIAESIIEUESgSrZx9+/ZJ+w4dop3iMRIggRQS\nOHjggCutxz33SNGiRd1+OgZ++uknrdaLQ4fK2xMmpGMVM65Oa9au1Wt66aWX5N333su460vHC/px\n9Wqt1tKlS131oirTw4cPy4wZM1wkBkiABPKewCeffJL3lfBZg8VLlojgQ0kZgSXmwY4PJXUEtm3b\n5gqLqkyLFSsmTz7xhIvEAAmQQN4Q+P3336XfU09p4b1795ZSJUvmTUV8lvrvIUPkl19+kdatW8uZ\n9er5TMVouSHw7YIF8vvu3VKjZk05vmLF3GTFtD4JDB02TNavXy+nnXaaSxFVmaIrqfdDD7lIDJAA\nCeQNgc2bNztlet9990nFNH9YvjVunCrTG264Qdq0aZM30FgqCSSZwHuTJqkyrVy5siuJBkgOBQMk\nQAIkQAIkEIwAlWkwbkxFAiRAAiRAAo4AlalDwQAJkAAJkAAJBCNAZRqMG1ORAAmQAAmQgCNAZepQ\nMEACJEACJEACwQhQmQbjxlQkQAIkQAIk4AhQmToUDJAACZAACZBAMAJR55kGy4qpSIAESIAEckMA\n84pXrlwpu40ThkqVKsnJJ58s5cqVy02WTJsiAlSmKQLNYkiABEggOwI///yz3H333TJx4sSwKFde\neaV8+OGHYceSsQNPW7t27VIFnoz8C0Ke7OYtCHeZ10gCJJDWBDqYhUWgSI866ii57LLLpGfPntKq\nVSupX79+0us9zLjGK1++vPTt2zfpZWVyAWyZZvLd5bWRAAmkPYHvv/9epk+frvWcMmWKNGvWLKV1\nRtfywYMHU1pmJhbGlmkm3lVeEwmQQL4h8MMPP2hdjz32WLniiityrHcoFJL9+/fnGI8RUkuAyjS1\nvFkaCZAACYQR2L59u+7XrVtXChcuHHbO7qxatUo6duwoNc3KMFjV6+ijj5ZjjjlGLr/8cpk1a5aN\n5rZYRvP555+XSy+9VKCkixcvrsZMWHwAinjEiBFSo0YN/QwaNEjTjRo1yh2z51IxXusqnc8D7ObN\n5zeQ1ScBEsh/BObOnSsbN27Uin/zzTe63bJli7wXsbj3WWedJaeccoogzsiRI1XZnnjiibpds2aN\nrjuNdW4/++wzadSokeYDQyJ0FX/55Ze6X7ZsWTnhhBMERk5vvfWWDB8+XP744w/ZtGmTnt+3b59u\n0eK1x/SA+dqxY4cNcpsTAQPQiblZIRM/dO6557pjDJAACeQdAfNw0/8k/pcIp7uceeaZWt+xY8em\ne1XztH7nnXeeu6+4t9l9XnrpJa2nGVcNjRkzJmRasa7ey5YtC1WtWlXTdunSxR3v0aOHHjMt19D4\n8eNDRnHqOaNkQ6NHjw4dOnTIxUXgscce0/h33XVX2HHuZE8AOhL3zLTmXSS2TA0RCgmQAAmkkkC3\nbt2kRYsWWuTnn38u77//vi40bZRiWDXMQ1v3bber92StWrWkc+fO8uCDD4pRrHoKC7MPHTpUwy+8\n8IJaBNs0ZcqUkdtvv93ucptgAlSmCQbK7EiABEggJwLt27d3UV577TVVplWqVFHF6E5ECUDxrlix\nQhdgNy1MmT9/vsZCGPLdd99pFy7GSdu2bavH+JUaAlSmqeHMUkiABEggMAGMj6IlC2UZSzDNBlK9\nevVY0XguCQRozZsEqMySBEiABBJJoHv37qpIGzRoIGYcVA2SFi1aJP379w8rBi1SCIyZKKklwJZp\nanmzNBIgARKIi8CSJUtk6tSpmubdd98VdAdbgUL1im2Rrl69WsdRa9eu7T0dNVy0aFE9blu1USPx\nYI4E2DLNEVHwCAcOHBD8QDFX64svvpB169YJ5n+lq8B0Hqb41qQ+SD1xzdddd528+OKLQZIzDQmQ\nQASBQoUKuSN2GgsOGMtc6dq1qzuHANwPQqHiOYNxWShVK8bsVP/bkc+g008/XaPMnj07x25kmxe3\nWQlQmWZlkpAjMCrAig+wuMOcr/PPP1/ni3311VcJyT+nTDDJOx7ZuXOnXH311bJw4UJ59dVXsySF\ngcPy5ct1PhviYFWLaAKDCLhEu+eee3ROW7Q4PEYCJOCfAJQjniWQCy+8UG6++WZVmFCWXuWK83Do\ngBfZIkWKyLx58wQt04YNG6pzB7RomzRpInv27EFUJ/C6VLFiRYGyhTJGV3Lz5s2lWrVqMm7cOBeP\ngdgEqExj8wl0FhOo4bgaE6AxWdrM35JOnTqpqzA4lE624I+HPwLM5P0IJnDfcMMN+laKPys8p3gF\njrAx8Rt/TJxH6xX7cMS9du1ab1T9s/7rX/9Si8J27doJJqdTSIAEsicAxQex28iY6IbFOClezOFH\n9+2335YNGzbILbfcInPmzImMrs8ZOHnAijNIixfcGTNm6PMA/1/brWsTVqhQQSZNmqRKF63gBQsW\nyOTJk7UnLTKuTcNtVgIcM83KJNdHhgwZom95F1xwgf7YsRJEKgXdtfEIXIvBJRk8q2BMBq7HvILu\nabzx4o+IlwH8UbHm4jvvvKNm+ngD9v7p/vrXvwrGcl555RXBvDmcz+5B4S2HYRIoiAQwhSWnaSyN\nGzfWMVAo061bt2rL1LoeRIsyUurVq+eWbsPzAHHQ+sT/OJoYJxLy9ddfC5Zig2emEiVKxIwfLY+C\nfiy1T/kCQts6rkZ3jB9FihUbIscxUoVq27Zt0rt3by3umWeeUT+ekWX/7W9/0z8wxn7hjgzz3ODa\nDAJTfXT7RgqsDGFZiHODBw+OPM19EiCBAASgENFCtYrUTxZ4Sa5cuXK2itSbR6lSpbRXy298b9qC\nHqYyTcIvwDqujrUWIcY14IQaXSzWcfVpp50mffr0kd9++y1LraBsYzmuRlnWSwq6bSHwnmKPYQvD\noEhBPfCmi7jZeUdBHSP/vHiTLl26tGYX6c8TB5Hmn//8p56HI+1ob896kl8kQAIkkAEE2M2bgJsI\nx9IzZ850OdkBfoydwrDHClZ6sGsVwtXX0qVL3VgkJmXj8+STTwpM4bFQsBU/jqvR/WPLtengpNrb\nMrbKz57HFmMxkDvvvFO3fr8wHovy0CXctGnTqMkwZtqrVy8de/n000/loosuihqPB0mABEggvxOg\nMk3AHcS0FxjwRApamV6pVKmSrtyAY/CnecYZZ8g555yjUaCY0PJ86KGHdNwS4xaID0E3LKarYMkl\nrPjQsmVLgaEAWrBYZaJkyZIuX8RHKxKtU3Q3wwAqO4HZPLppER955iQ//fSTWg9iPPThhx/WMu69\n915B11A0QX1hKYg5cjBwoDKNRonHSIAEMoEAlWkC7iK6UJ966imXk1mFQfbu3atOqO0cLpz0tgzR\navMKFOL9998vzz77rKCbGI6roUyT6bjaTtKGyTzGYmLJt99+K2effXZYFBhY/eMf/wg7FrkDwwYo\nU+98t8g43M88AjBamz59euZdGK+IBAwB2+PoXaKOyjQBPw2MdaKlaeXll19W5YFxxUsuucQezrLF\nWCO6gtevXy/oyoXY8c5UOK62Vr8wNshJ0Mq87bbbBMZSMMvHlBfUHQsaf/TRRzptJloeMH6AoFVL\nKTgEYBX+wAMPFJwL5pUWSAKLFy92101l6lCkNtCvXz95/PHHs0y6jqyFbT1aN2GR53OzbxU4WsU5\nCV4YzHqKLhpazHC8DaVq1k/UeWzupCeA+aiQyPFcTxQGM5AAemH8vKRl4KWn/JLwAg4DP9hHeL0l\npbwiBahA2KjA25t3GiGVaR78ADDGijFHCMZVMbka1q+Q66+/PqxLNJmOq22r0bZQtQI+vzAW27dv\nX/WaFMsxg3UcEWvs1meRjJaPCHTs2FHatGmTj2qcf6sKuwvM/cbLLnqPKMkngHm/eO41atTIFUZl\n6lCkLmA9BMGCFq1TK3i7jJxUbVuk8Tqu3r9/v/oFjqXErIsyeDFCt3K8jhVsy9YaStnr8G7tWOlJ\nJ53kPcwwCZAACWQUAc4zzYPbabtivH410YK75pprVAF6q5Qbx9UYu0VXRHaC8U5M14FVMNyNxSOw\n6LVjYvDpm5188MEHegpWvRQSIAESyFQCbJnmwZ297LLLdH7n2LFj1XUXXPFhHiYsgNEy9SpA7MOx\nAhSWdVwNJViuXDmd+mKNl8qUKeOuBIZP6EZ+4403BMoMbgBhdQbjIW+XLNLAkQPmmr755pty1VVX\nuTy8AdQX4zJwJYgWL4yJ7MA7/PQ+/fTT3uguDAtguB3E9cFxNoUESIAEMpUAW6ZJuLO2u9RuI4uA\nv1r4r8X5WcYnLqYQoDsWrvrgvDpS0KqLx3E1Wox///vf1SEEumKxisvnn3/uLIW9+d9xxx26+/rr\nr6ty9p6zYcxXxfJMsNDENBesHoPpQAMHDtSXgOwMmB599FHNonXr1qr8bX7ckgAJkECmEWDLNAl3\n1PrmzS5rWN3BQQNadD/++KMcf/zxctxxx2l0KFOsUxgp8TiuRksQvnHhaxfTWNAiRUvWGjl58772\n2mvVAAoKvWfPnrpahPc8wrAohhMJWOSiNYux1uxeFGzaadOmqaMGOHTIruVq43JLAiRAAvmdAJVp\nHt5BjFfCC1K8Yq1wc0qHsVk/hj/oRoayRgsWfnTRavaKdX7tPRYrDAX+l7/8RaPAexOnSMSixXMk\nQAKZQIDdvJlwF3N5DVj7FGuWQvnCCxNc/wUVGDOhtQuFivVOvc4sgubJdCRAAiSQ7gSoTNP9DqWo\nfhg7hStDGBphfDWooIsb3cLw/IR5b15H+0HzZDoSIAESSHcC7OZN9zuUwvqhVVq7dm3585//HLhU\nTCD/+OOPpU6dOmHeQQJnyIQkQAIkkGQCW7Zs0VW7MJMCQ2P4xNsQoDJN8k3Kb9nHmjPq91rOP/98\nv1EZjwRIgATyjACc1aABgSl8XoEyfeSRR3SxEu/xWGEq01h0eI4ESIAESCBjCWBYa9WqVbpgR82a\nNXU+Pty9Yv4+pjDCtzim9vkRKlM/lBiHBEiABEgg4wjAKQ5W77JTE3GB6OrF7AbYf2Caol9lSgOk\njPt58IJIID0JDBgwQJ191KpVS+CO0itoCeABBmcgmJ5FIYFUEfAqUpQJBWud2UDR+hUqU7+kGI8E\nSCBXBLBUH5x9wNq7Xbt26kzEZtipUyd1UYnzCFNIIC8J2AU6mjVr5rsaVKa+UTEiCZBAbgjA7eS4\nceOkRIkSsnDhQrHuJocPHy7wmIXj8BMNJyEUEkglgZ07d8q6devU/zncsb7yyivqbKZ9+/a+q8Ex\nU9+oGJEESCC3BLBIw+DBg9VKEu4usSpSr169NNshQ4bolKrclsH0JBAvASjNSGc1GG6wS2D6yY8t\nUz+UGIcESCBhBNCNe+utt8rhw4fVuANes9DtiwXFKSSQFwQuvvhiXVgdy2BWqVJFqwAPbph771eo\nTP2SYjwSIIGEEcBbv50UX7x4cUGrlEICeUUAvSPw2DZ58mR13oBuXvw+n3vuOZkzZ46valGZ+sLE\nSCRAAokkgAUQMMcPgjVy+/Xrl8jsmRcJBCYAH+XoJWnUqJHm4V0DOlamVKax6PAcCZBAwgmMGjVK\nRowYoZa98DIDwfjphAkTEl4WMySBoASwFjSkUqVKvrKgMvWFiZFIgAQSQQBWvN27d9esoEj79u0r\n3bp10/0OHTrowvOJKId5kEBQAvv27ZM+ffrIsmXL1MK8adOmvrKiNa8vTIxEAiSQWwKYftCyZUvZ\nu3evNGnSRNDVCxk4cKDMnDlTFemNN94o6FbDIvQUEkg2gTfeeEP69++v02Awdr9582ZZunSpbNu2\nTZekRA+KnzWhUU+2TJN9t5g/CZCAEujatav6QS1durS6aStcuLAex/xSPNTgeWb58uWu5UpsJJBs\nAnv27NE5z1OmTJGJEyfKp59+qmP5eOlbsGCBtG3b1ncV2DL1jYoRSYAEckNg7Nixgk80adCggRoi\nRTvHYySQLAIwNLr22mu1JQqDOLRCy5cvH6g4KtNA2JiIBEiABEggvxPA9BcYGPk1Mop1vezmjUWH\n50iABEiABEjABwEqUx+QGIUESIAESIAEYhGgMo1Fh+dIgARIgARIwAcBKlMfkBiFBEiABEiABGIR\nKBQyYiPAM8mdd96pi/RitXEKCZBA3hKAM/iVK1dqJapVqyZ2Okne1ir70tesWaNWuSeeeCLnimaP\nKaFn1q5dK3A0ACOasmXLJjRvZhadgGV+7733usXso1rzwkQYC/hSSIAE0oeAVarpU6Psa/Lzzz9n\nf5JnkkJg48aNgg8ldQQwT9VKVGUKTxAvDR1q43BLAiSQRwSwPNnf/t//09IHDhggcHiQzvLYE0/I\nhg0bpNNf/iKNGjZM56pmTN2eNIsErPvpJ+loehUbn3tuxlxXOl/IU08/LWtMj0CtWrVcNaMq0yJF\niuhEVheLARIggTwhsHXrVlfulVdeKRUqVHD76Rh43iz8DWV6tnHCgMnwlOQTGPLCCyJGmZ511llk\nnnzcWsLQYcNEjDI97rjjXIk0QHIoGCABEiABEiCBYASoTINxYyoSIAESIAEScASoTB0KBkiABEiA\nBEggGAEq02DcmIoESIAESIAEHAEqU4eCARIgARIgARIIRoDKNBg3piIBEiABEiABR4DK1KFggARI\ngARIgASCEaAyDcaNqUiABEiABEjAEaAydSgYIAESIAESIIFgBKhMg3FjKhIgARIgARJwBKhMHQoG\nSIAESIAESCAYASrTYNyYigRIgARIgAQcASpTh4IBEiABEiABEghGgMo0GDemIgESIAESIAFHgMrU\noWCABEiABEiABIIRoDINxo2pSIAESIAESMARoDJ1KBggARIgARIggWAEqEyDcWMqEiABEiABEnAE\nqEwdCgZIgARIgARIIBgBKtNg3JiKBEiABEiABBwBKlOHggESIAESIAESCEaAyjQYN6YiARIgARIg\nAUeAytShYIAESIAESIAEghGgMg3GjalIgARIgARIwBGgMnUoGCABEiABEiCBYASoTINxYyoSIAES\nIAEScASoTB0KBkiABEiABEggGAEq02DcmIoESIAESIAEHIEiLuQJHDp0SN4YO9ZzhEESIIG8IPD7\n77+7YidMmCAlS5Vy++kY2LFjh1brs88/l92euqdjXTOlTtu2b9dL+eKLL2Tfvn2ZcllpfR1bt23T\n+v36669H6hnyyMiRI0PmTKhOnTq6RZgfMuBvgL8B/gb4G+BvIOtvoFOnTk6DRm2ZHnXUUXLuueca\ndhQSIIG8JHDw4EH59ttvtQoNGjSQokWL5mV1cix78eLFsmfPHqlataoce+yxOcZnhNwT+PHHH7VF\nWrlyZSlXrlzuM2QOORJYsmSJoNeobNmyLm5UZVqiRAn56quvXCQGSIAE8obA5s2b5fjjj9fCp02b\nJhUrVsybivgstX79+vLdd9/JE088IW3atPGZitFIIH8RaNy4scydO1fOPPNMV3EaIDkUDJAACZAA\nCZBAMAJUpsG4MRUJkAAJkAAJOAJUpg4FAyRAAiRAAiQQjACVaTBuTEUCJEACJEACjgCVqUPBAAmQ\nAAmQAAkEI0BlGowbU5EACZAACZCAI0Bl6lAwQAIkQAIkQALBCESdZxosK6YiARIgARLIDQHMK165\ncqXs3r1bKlWqJCeffDIdMeQGaArTUpmmEDaLIgESIIFoBH7++We5++67ZeLEiWGnr7zySvnwww/D\njiVjB958du3apQo8GfkXhDzZzVsQ7jKvkQRIIK0JdOjQQRUpXLledtll0rNnT2nVqpXAo1SyZdiw\nYVK+fHnp27dvsovK6PzZMs3o28uLIwESSHcC33//vUyfPl2rOWXKFGnWrFlKq4yuZfiApuSOAFum\nuePH1CRAAiSQKwI//PCDpsfCAFdccUWOeZllSmT//v05xmOE1BKgMk0tb5ZGAiRAAmEEtv9vPdK6\ndetK4cKFw87ZnVWrVknHjh2lZs2aUqxYMTn66KPlmGOOkcsvv1xmzZplo7nt4cOH5fnnn5dLL71U\nV+8pXry4GjNh8QEo4hEjRkiNGjX0M2jQIE03atQod8yeS8V4rat0Pg+wmzef30BWnwRIIP8RwIoj\nGzdu1Ip/8803ut2yZYu89957YRdz1llnySmnnCKIY9abVmV74okn6nbNmjUyY8YM+eSTT+Szzz6T\nRo0aaVoYEqGr+Msvv9R9LBN2wgknCIyc3nrrLRk+fLj88ccfsmnTJj1vFxRHi9ces5Wwi73bfW5j\nEHArm5qAXRzcrGXqPcwwCZBAHhEwD7eQ+fvqB+F0F7MkldZ17Nix6V7VPK3feeed5+6rvb/Rti+9\n9JLW04yrhsaMGRMyrVhX72XLloXMurGaT5cuXdzxHj166DHTcg2NHz8+ZBSnnjNKNjR69OjQoUOH\nXFwEHnvsMY1/1113hR3nTvYEoCNxv0xr3kViy9QQoZAACZBAKgl069ZNWrRooUV+/vnn8v7778tp\np50mRimGVcM8tHXfdrt6T9aqVUs6d+4sDz74oBjFqqd++eUXGTp0qIZfeOEFtQi2acqUKSO33367\n3eU2wQSoTBMMlNmRAAmQQE4E2rdv76K89tprqkyrVKmiitGdiBKA4l2xYoVAaZoWpsyfP19jIQzB\nwuzowoUxU9u2bfUYv1JDgMo0NZxZCgmQAAkEJoDxUbRkoSxjCabZQKpXrx4rGs8lgQCteZMAlVmS\nAAmQQCIJdO/eXRVpgwYNxIyDqkHSokWLpH///mHFoEUKgTETJbUE2DJNLW+WRgIkQAJxEViyZIlM\nnTpV07z77ruC7mArUKhesS3S1atX6zhq7dq1vaejhosWLarHbas2aiQezJEAW6YxEM2bNy/HbhVv\n8gMHDgh+kJib9cUXX8i6desE870oJEACJBCUQKFChVxSO40FB4xlrnTt2tWdQwDuB6FQ8dzBuCyU\nqhVjdqrTZSKfSaeffrpGmT17dlzPO5svt/8lQGWazS8BFnGYt4Uf56RJk7KJdeQwjAiwwgMs7DDH\n6/zzz9f5YV999dWRSAw5Ahs2bNB5b+4AAyRAAlEJQDni2QK58MIL5eabb1aFCWXpVa44D4cOL774\nohQpUkTQGEDLtGHDhurcAS3aJk2ayJ49exDVCbwuVaxYUaBs8bxDV3Lz5s2lWrVqMm7cOBePgdgE\nqEyz4ePtPvGGo0XHhGk4qsaEZ0yONvO1pFOnTuoaDA6kKUcIoMUOrywnnXSSVK5cWTgp/Agbhgom\nASg+iN1GUkA3LMZJ8aIOP7pvv/224GX0lltukTlz5kRG1+cOnDxgxRmkhcUvnDvAAhjK2Hbr2oQV\nKlTQBgOULlrBCxYskMmTJ2vPWmRcm4bbrAQ4ZpqViR655557BEoUbrugKGPJkCFD9K3uggsu0B83\nVn6ghBMAy4ceekinAHjPwIyfQgIFmQCmsOQ0jaVx48Y6BgplunXrVm2ZWteDaFFGSr169dzSbfB8\nhDhofaLlGk2MEwn5+uuvBUuxwTNTiRIlYsaPlkdBP0Zlms0vAN0jcNPlR6yjanS/UJFmJYa3aLhF\ng+IsVaqUXHLJJfrmmzVm9CNIR67R2fBowSIAhYhPPAL3g34F/09071LiJ8AmVAQzjBlYbyN2Cz+a\nscQ6qkba3MiAAQO0bHTnRHYtr1+/XvC2iTpZx9S5KSuVadGdC4fcMJZYuXKlPPzww76Kh0NurO2I\nt+nWrVvr27WvhIxEAiRAAikmwJZpBHCM4dkBejtXC90qXoEj6ZkzZ7pDNj7GTnfu3OmOo4s4nrUJ\njU9NdWYN12Dt2rXTbhc7ZoEx2MWLF6tBAcL5TbyrT6xdu9ZX9cHTcoYhBBYvxosGhQRIgATSjQCV\nacQd8T7ojdPuLC1ERIcRzQ033BCRUqRPnz5hxypVqhSXxWrJkiXVeg7+OBcuXCiPPvqoPPnkk7rK\nw7Rp03QcA4YI6IqJR+CjE5Z9seSiiy7SJZ7iiRsrv0ScQ3cTlo5CCxWGXPF0VyWifOZBAiRAAn4J\nUJn6JeWJh67Wp556yh0xqy7I3r171em0nbOFk6VLl3Zx/AawpuHgwYM1r2eeeUZN1Xv16qXJYehU\np04dv1m5eHCiDWUcSzAmifUS44kbK79EnIMpP6YWffrpp3LVVVcJlpKikAAJkEA6EqAyDXBXsLoD\nVmqw8vLLL+vkaFjkwbgmt4JuXJiym2WsdKwQ+aHbF8ouiAwbNkx+++23mEmtUUM8cWNmmKCTGIfO\n7Vh0gqrCbOIggHnaWNGEQgKZSMAO7aGX8o477tBLpDJN0zsNIyMs5AtLVnR1olUaVE499VTfSeOJ\n6ztTRixwBA4ePCi7d+8ucNfNCy5YBLzepKhM0/Te9+7dWxUpqocxw379+snTTz8dqLY33nijfPTR\nRzHTotULBR5P3JgZ8mSBJgDr6/xmdZ5fbxhsK7CqDJzFwMMRJfkE7rzzToHPZEz5s0Jlakmk0das\n3i4jRoxQjyhQqhiTxfgpDJNuuummuGsKDycwhool5cqV09PxxI2VX6LOYZI6PLLg2m0dE5U380ke\ngT/96U/qjjN5JTBnSwCejZYuXaprmMIFKiX5BKwRqNcuhso0+dzjKgFWvFhuCfLII4/onEwoFIxB\nwRPTGWecEff0kFdeecV3HeKJ6zvTgBExNQnXi23VqlV1ahCmG1FIgARIIN0I0GmD547AnRbcatnP\n8uXL9WzPnj3dMRgFJUswR7Vly5ZqGYzuGrRKIQMHDlQFCiMidMPmZEyUrPrlJl8408bUH3yaNm3q\nsoKPXnvcepKyJ9EitXN9V61aJfhQSIAESCAdCbBl6rkr8GEZbZUX7zp/9uHuSeYcVGfnqNobN1YY\nHoKgMNB1gOWVrO9N+Ml84403VKFDwaPlivP5SQ4dOqQvCZF1xpQiK96lpnAMXVaYavTjjz/KOeec\no96fbFxuSYAESCCdCFCZeu5GixYtArmsi2xRebKMK4hWb3YtXyyLBEOk/CqzZs2Ku+oYI8UgPxxv\nYwmq3L6sxF0BJiABEiABnwSoTH2CYrS8IYAxUszrpZAACZBAOhPgmGk63x3WjQRIgARIIF8QoDLN\nF7eJlSQBEiABEkhnAuzmTee7w7qRAAmQAAkknQAMS+H44sCBA4IZBvjEu4YylWnSbxMLIAESIAES\nSEcCmGVQu3ZtXWfZWz8oU8zzj8e/NJWplyDDJEACJEACBYYAfJ9jOiJW66pZs6ZgPWs4r1+/fr10\n6dJFV6qCa0w/QmXqhxLjkAAJkAAJZByBYsWKyaZNm+S4445z14au3nr16gmmPGI+v19lSgMkh5AB\nEiCBZBIYMGCAOt6oVauWLFq0KKwotATwAMNawXSQH4aGO0km4FWkKAoK1i6rBkXrV6hM/ZJiPBIg\ngVwR6NGjhzregEcxrM+LZdqsYA3fxYsX63mEKSSQlwRWr16txTdr1sx3NahMfaNiRBIggdwQgA/m\ncePGCdxjYkEHLB0GGT58uEybNk2Pjx8/XuyKHHqSXySQAgLwi75u3TqZN2+ePPDAA4IFPypXrizt\n27f3XTrHTH2jYkQSIIHcEoChx+DBg9VKEssK1q9fX3r16qXZDhkyROrUqZPbIpieBOImAKU5adKk\nsHQYbqhevXrYsVg7bJnGosNzJEACCSeAbtxbb71VDh8+rMYdWAUJ3b5YoJ5CAnlB4OKLL5bbbrtN\nrrnmGqlSpYpWoVWrVnL//ff7rg6VqW9UjEgCJJAoAnjrt5PiixcvLmiVUkggrwigd2TMmDEyefJk\ndd6Abl78Pp977jmZM2eOr2pRmfrCxEgkQAKJJIC1ejHHD4LVkPr165fI7JkXCQQmgKUg0UuCJSAh\nc+fO9ZUXlakvTIxEAiSQKAKjRo2SESNGqOUuvMxAMH46YcKERBXBfEgg1wR27dqleVSqVMlXXlSm\nvjAxEgmQQCIIwIoXi9tDoEj79u0r3bp10/0OHTrI8uXLNcwvEsgrAvv27ZM+ffrIsmXL1MK8adOm\nvqpCa15fmBiJBEggtwQw/aBly5ayd+9eadKkiaCrFzJw4ECZOXOmKtIbb7xRu9XKlCmT2+KYngRy\nJPDGG29I//79dRoMxu43b94sS5culW3btgm6e9GDAj+9foQtUz+UGIcESCDXBLp27ap+UEuXLq1u\n2goXLqx5Yt4pHmrwPIOWqW255rpAZkACORDYs2ePznmeMmWKTJw4UT799FMdy8dL34IFC6Rt27Y5\n5HDkNFumR1gwRAIkkEQCY8eOFXyiSYMGDdQQKdo5HiOBZBGAodG1116rLVEYxKEVWr58+UDFUZkG\nwsZEJEACJEAC+Z0Apr/AwMivkVGs62U3byw6PEcCJEACJEACPghQmfqAxCgkQAIkQAIkEIsAlWks\nOjxHAiRAAiRAAj4IUJn6gMQoJEACJEACJBCLQFQDJKw0/v/+/vdY6XiOBEggBQT2mDmZVh4zDg4w\njSSdZePGjVo9THX5Zv78dK5qxtRtw4YNei2wlF5opnNQkk/gJ7NcG2Tt2rVHCgt5ZOTIkSFzJmSW\nQdItwvyQAX8D/A3wN8DfAH8DWX8DZgUkp0GjtkyLFCkiN9xwg2FHIQESyEsCB4wT+ClTp2oVrrn6\nailmvLSks8yYMUPg07RRw4ZS2afnmHS+nvxQt1mzZsmOHTuk4TnnyEknn5wfqpzv6zh79mzZvn27\nVKxY0V1LVGWqSyKZBXwpJEACeUtg69atTpk+/dRTUqFChbytUA6lX9msmSrTO42f3euvvz6H2Dyd\nCAJXmzU4oUyxwPVNxh0jJfkEml93nSrTmjVrusJogORQMEACJEACJEACwQhQmQbjxlQkQAIkQAIk\n4AhQmToUDJAACZAACZBAMAJUpsG4MRUJkAAJkAAJOAJUpg4FAyRAAiRAAiQQjACVaTBuTEUCJEAC\nJEACjgCVqUPBAAmQAAmQAAkEI0BlGowbU5EACZAACZCAI0Bl6lAwQAIkQAIkQALBCFCZBuPGVCRA\nAiRAAiTgCFCZOhQMkAAJkAAJkEAwAlSmwbgxFQmQAAmQAAk4AlSmDgUDJEACJEACJBCMAJVpMG5M\nRQIkQAIkQAKOAJWpQ8EACZAACZAACQQjQGUajBtTkQAJkAAJkIAjQGXqUDBAAiRAAiRAAsEIUJkG\n48ZUJEACJEACJOAIUJk6FAyQAAmQAAmQQDACVKbBuDEVCZAACZAACTgCVKYOBQMkQAIkQAIkEIwA\nlWkwbkxFAiRAAiRAAo4AlalDwQAJkAAJkAAJBCNAZRqMG1ORAAmQAAmQgCNAZepQMEACJEACJEAC\nwQhQmQbjxlQkQAIkQAIk4AhQmToUDJAACZAACZBAMAJUpsG4MRUJkAAJkAAJOAJFXMgTCIVCsn37\nds8RBkmABPKCwI4dO1yxCBcqVMjtp2Pg8OHDWq3ff/+dz5AU3SAyTxFoTzGHDh3SvYMHDx45ahSn\nk5EjR4bMmVCdOnV0izA/ZMDfAH8D/A3wN8DfQNbfQKdOnZz+ZDev+YVQSIAESIAESCA3BKJ285Ys\nWVI2btyYm3yZlgRIIAEEtm7dKnXr1tWclixZIhUqVEhArsnL4vLLL5elS5fKsGHDpEWLFskriDk7\nAjt37hR0N5YpU0aKFy/ujjOQPAJXX321LFiwQBo3buwKiapMMS5zwgknuEgMkAAJ5A2BwoULu4Ir\nVqwo+KSzFCny30dKuXLl+AxJ0Y3iszpFoD3FFCtWTPeKFi3qjrKb16FggARIgARIgASCEaAyDcaN\nqUiABEiABEjAEaAydSgYIAESIAESIIFgBKhMg3FjKhIgARIgARJwBKhMHQoGSIAESIAESCAYASrT\nYNyYigRIgARIgAQcgahTY9xZBkiABEiABFJGYPPmzbJy5UrZvXu3VKpUSU4++WTBNCNK+hOgMk3/\ne8QakgAJZDiBn3/+We6++26ZOHFi2JVeeeWV8uGHH4YdS8YOfCnv2rVLFXgy8i8IebKbtyDcZV4j\nCZBAWhPo0KGDKtKjjjpKLrvsMunZs6e0atVK6tevn/R6w1tV+fLlpW/fvkkvK5MLYMs0k+8ur40E\nSCDtCXz//fcyffp0reeUKVOkWbNmKa0zupbDVj9JaemZUxhbpplzL3klJEAC+ZDADz/8oLU+9thj\n5YorrsjxCswyJbJ///4c4zFCaglQmaaWN0sjARIggTACdu1oLGjg9cXsjbRq1Srp2LGj1KxZU+AX\n9uijj5ZjjjlGsLDArFmzvFE1jDVOn3/+ebn00ksFShoO8GHM1KZNG1XEI0aMkBo1auhn0KBBmmbU\nqFHumD2XivHaLJXPpwfYzZtPbxyrTQIkkH8JzJ07163M9c033+iFbNmyRd57772wizrrrLPklFNO\nEcQx602rsj3xxBN1u2bNGpkxY4Z88skn8tlnn0mjRo00LQyJ0FX85Zdf6n7ZsmV10QEYOb311lsy\nfPhw+eOPP2TTpk16ft++fbpFi9ce0wPmy7s4vT3GbTYE3MqmJmAXBz/33HO9hxkmARLIIwLm4RYy\nf139IJzucuaZZ2pdx44dm+5VzdP6nXfeee6+2vsbbfvSSy9pPc24amjMmDEh04p19V62bFmoatWq\nmk+XLl3c8R49eugx03INjR8/PmQUp54zSjY0evTo0KFDh1xcBB577DGNf9ddd4Ud5072BKAjcb9M\na95FYsvUEKGQAAmQQCoJdOvWza33+vnnn8v7778vp512mhilGFYN89DWfdvt6j1Zq1Yt6dy5szz4\n4INiFKue+uWXX2To0KEafuGFF9Qi2KbBeqe333673eU2wQSoTBMMlNmRAAmQQE4E2rdv76K89tpr\nqkyrVKmiitGdiBKA4l2xYoVAaZoWpsyfP19jIQz57rvvtAsX46Rt27bVY/xKDQEq09RwZikkQAIk\nEJgAxkdbtGihyjJWJphmA6levXqsaDyXBAK05k0CVGZJAiRAAokk0L17d1WkDRo0EDMOqgZJixYt\nkv79+4cVgxYpBMZMlNQSYMs0tbxZGgmQAAnERWDJkiUydepUTfPuu+8KuoOtQKF6xbZIV69ereOo\ntWvX9p6OGi5atKget63aqJF4MEcCbJnmiCjvI/z444+CP5T3A0fYFBIggcwnUKhQIXeRdhoLDhjL\nXOnatas7hwDcD0KhYp4pxmWhVK0Ys1OdLoNzXjn99NN1d/bs2Tl2I3vTMRxOgC3TcB5puVevXj3Z\ns2dPWN3gduzqq68OO8YdEiCBzCMA5QiHCz/99JNceOGF0rRpU1mwYIGuLgMHDl7B/osvvqjPhnnz\n5glapnAGgZVn4Glp/fr16tAelr1W4HWpYsWKAreCUMaY21q5cmVZvny59OvXT2655RYbldsYBNgy\njQEnXU7B/B2m9PhgAjaFBEggcwgUKfLfNo3dRl4ZumExToqpMFB4b7/9tmzYsEGV3Jw5cyKjq0tC\nOHnAijNIC4tfOHeABTCUse3WtQkrVKggkyZNkoYNGwpawVDUkydPlnXr1mWJa9Nwm5UAW6ZZmaTd\nEbgFs/Lpp59K5DiJPcctCZBA/iOAKSw5TWNp3LixjoFCmW7dulW7cq3rQXTfRgp6s6wrQHg+Qhy0\nPiNbsjadcSIhX3/9tWApto0bN0qJEiVixrfpuD1CgMr0CIs8C+GHDvde9s+RqIpgbAT5Rr6JRssf\nq0b4iYe0yBNLRVFIgARSSwAKEZ94BO4H/UqpUqWkWrVqfqMznocAn4geGKkOoisFXTFwWI0f8dln\nny3PPfecKqugdYGxEtZGxDgLnGHjTbR06dI6DhJpePDbb7/pgsQYV4EjbIyT3HjjjTopPFr5WKkC\nay0iz9atW+vbbrR4PEYCJEACBY0AlWke3fGBAwfKddddJx9//LG+CZ5xxhmycOFCuf/++3VlhyDV\n+vXXX6VJkyby6quvCsKYk4ZxEChq5O0VdOXAVRlcjmFO2kUXXaRrGsL0HgYIMF6IFDjTnjlzploK\njhs3TmhKH0mI+yRAAgWVAJVpHtx5tB7/8Y9/6GA/VomAgQAMBqBYcPyvRgAAL9xJREFU0UKEscFH\nH30Ud82M02Vd9eGcc87RcQ+sTIFxEChWKE9vN/LDDz+s1npYwgn1gVn82rVr5YYbblDL4fvuuy9L\n+ej+Qf0g5cuXl3i6j7JkxgMkQAIkkEEEqEzz4GZi/UCMUd52223aOrVVuOSSS6Rdu3a6C8fX8cre\nvXs1iR0r9aY/4YQT3C5aolC8ELMqhVgzeRgdDBkyRI+jFWrXWdQD5guTxb/66iuNgy0tiy0ZbkmA\nBAo6ARog5cEvwFrjwjm1VWq2Gtu2bdPgypUr7SHfW3QbY14YTNsxERsrRGAxYFgCemXp0qXaVQvl\nibUQ8fEKjItgZIQ62DUS7XnMQ8OHQgKxCMCSFDYBFBLIRALozYNg7q4VKlNLIoVbOK2GmDUf9aM7\nEV9BPByhe3fChAli1jPUOWKYUoMPjJGgZFu1aqWl2PLRkr3zzjsjSj6yG6QOR1IzVJAJYML/F198\nUZAR8NoLAAHvYupUpnlww2HaDjdfZjFeuf7666PWwDqsjnoyxsHmzZur9xOMub755psyceJEtc69\n+eab5Z133pGbbrrJmdbDyvett97KNjcYIlFIIAgB9Ghg2IKSfAJYdg3zQ/HSfNxxxyW/QJagRp6Y\nvwvPVFaoTC2JFG6xCDCMg+Dx5Jprrkl4yTA0atasmX4w1QZGRTAwQqsVyhTlQ9AyxXQc73hqTpXB\npHF0I8MSGC7KKCQQjQCsyjHEQEk+AfRIwYCxU6dOaoeR/BJZAoxFoUxPOeUUB4MGSA5F6gItW7bU\nwmD888EHH2Qp2DpxyHIihwO7du3KMvcTc1itWGveGjVqCDykwFCpY8eOWQyNEN8uNmzTYgvDJUzh\nueqqqwR/YK/TbW88hkmABEigoBFgyzQP7jjGLjGvE4Y/MBpC6xCOE+AXE86sMScU3bRQWJjacs89\n97haYiwK0rNnT+nbt6+G//rXv8qtt96qBkfw1YnuWXT37NixQ12Q4Q0KeVtLYRgYDRgwQNAljKWd\nMOUF7sTQQoUBFOaPossI03a8ghapXSdx1apVgk+dOnW8URgmARIggQJJgMo0D247FBuUJZThK6+8\nol006Kaxgq4DO10FihDTUCLF6zDBKrhKlSpp1y26dK2gLDhuePzxx9UBtj2ObmAYiEBRo2ysQmOl\nZMmS2vq0+3aLcTBYCcOSDYoeLVwKCZAACZCACJVpHv0K4JLvySef1A9ag1gFAgoULUoYBllp0aJF\nlq5bey5yi25jzBNFXnAVCEUKF4FwsBBNoGShUNGlC4ModPsiLgykovnexRgp1lSFAwgMvGe3ykW0\nsniMBEiABDKZAJVpGtxdLIGETyIEzupPPfXUuLKCUkS3rh+Bv19rwOQnPuOQAAmQQEEgQAOkgnCX\neY0kQAIkQAJJJUBlmlS8zJwESIAESKAgEKAyLQh3mddIAiRAAiSQVAIcM00qXmZOAiRAAiSQ7gQw\nIwJuVg8cOCAnnXSSfqIZYca6DirTWHR4jgRIgARIIGMJYCYD5vhHLiwChfrII49I586dfV87lalv\nVIxIAiRAAiSQSQSwOhacz9StW1dq1qypjm4wXXD9+vXSpUsXXWaydevWvi6ZytQXJkYiARIgARLI\nNAKY74+VX7wLBKCrF+5Wsbza6NGjxa8ypQFSpv06eD0kkKYE4MISXrNq1aoldk1fW1W0BPAAw/lB\ngwbZw9ySQNIJeBUpCoOCveOOO7Rc7xJrOVWEyjQnQjxPAiSQEAJYZxcOQuAKE36iDx486PLFiieL\nFy/W8whTSCAvCcAjHARuV/0KlalfUoxHAiSQKwLw+Txu3DgpUaKELubw6KOPan7Dhw+XadOm6fHx\n48dLqVKlclUOE5NAvAR27twp69atk3nz5skDDzygPtPhirV9+/a+s+KYqW9UjEgCJJBbAjD0GDx4\nsFpJPvPMM1K/fn3p1auXZgu/0lyFKLeEmT4IASjNSZMmhSXFcINfN6tIyJZpGD7ukAAJJJsAunGx\nZCAWVoBxBxZlQLcv1talkEBeELj44ot1YfVrrrlGqlSpolXAUpn333+/7+pQmfpGxYgkQAKJIoC3\nfjspvnjx4rraUaLyZj4kEC8B9I6MGTNGJk+erM4bsDQmfp/PPfecYI1oP0Jl6ocS45AACSSUQO/e\nvQVz/CD79++Xfv36JTR/ZkYCQQlg6Ur0kmD9ZsjcuXN9ZUVl6gsTI5EACSSKwKhRo2TEiBFquQsv\nMxCMn06YMCFRRTAfEsg1gV27dmkelSpV8pUXlakvTIxEAiSQCAILFy6U7t27a1ZQpH379pVu3brp\nfocOHWT58uWJKIZ5kEBgAvv27ZM+ffrIsmXL1MK8adOmvvKiNa8vTIxEAiSQWwKYftCyZUvZu3ev\nNGnSRNDVCxk4cKDMnDlTFemNN96o3WplypTJbXFMTwI5EnjjjTekf//+gmkwGLvfvHmzLF26VLZt\n2ybo7kUPCvz0+hG2TP1QYhwSIIFcE+jatav6QS1durS6aStcuLDmiXmneKjB8wxaprblmusCmQEJ\n5EBgz549Oud5ypQpMnHiRPn00091LB8vfQsWLJC2bdvmkMOR02yZHmHBEAmQQBIJjB07VvCJJg0a\nNFBDpGjneIwEkkUAhkbXXnuttkRhEIdWaPny5QMVR2UaCBsTkQAJkAAJ5HcCmP4CAyO/Rkaxrpfd\nvLHo8BwJkAAJkAAJ+CBAZeoDEqOQAAmQAAmQQCwCVKax6PAcCZAACZAACfggEHXMFAOxX335pY/k\njEICJJBMAtu3b3fZfzN/vhxzzDFuPx0DsI6ErFyxgs+QFN2g33///b/MV64k8xQx3717t5Zkt7oT\n8sjIkSND5mDIrNygW4T5IQP+Bvgb4G+AvwH+BrL+BsyiDU6DRm2ZGmhy9NFHY0MhARLIYwLwyALJ\nD//JAwcO6Dy9YkWLylH/m0eax/gyvnjLvKhhbufuZvxF5/EFWuZ2sQZUJ6oyxeK8K3/4IY+ry+JJ\ngAS2bt0q9c0cTMhcM/RSoUKFtIZyZbNm6obtebPaxvXXX5/Wdc2Uyl1tlg1btHixDHz2WbnJeJCi\nJJ9A8+uukwXGNeb555/vCqMBkkPBAAmQAAmQAAkEI0BlGowbU5EACZAACZCAI0Bl6lAwQAIkQAIk\nQALBCFCZBuPGVCRAAiRAAiTgCFCZOhQMkAAJkAAJkEAwAlSmwbgxFQmQAAmQAAk4AlSmDgUDJEAC\nJEACJBCMAJVpMG5MRQIkQAIkQAKOAJWpQ8EACZAACZAACQQjQGUajBtTkQAJkAAJkIAjQGXqUDBA\nAiRAAiRAAsEIUJkG48ZUJEACJEACJOAIUJk6FAyQAAmQAAmQQDACVKbBuDEVCZAACZAACTgCVKYO\nBQMkQAIkQAIkEIwAlWkwbkxFAiRAAiRAAo4AlalDwQAJkAAJkAAJBCNAZRqMG1ORAAmQAAmQgCNA\nZepQMEACJEACJEACwQhQmQbjxlQkQAIkQAIk4AhQmToUDJAACZAACZBAMAJUpsG4MRUJkAAJkAAJ\nOAJUpg4FAyRAAiRAAiQQjACVaTBuTEUCJEACJEACjgCVqUPBAAmQAAmQAAkEI0BlGowbU5EACZAA\nCZCAI0Bl6lAwQAIkQAIkQALBCFCZBuPGVCRAAiRAAiTgCFCZOhQMkAAJkAAJkEAwAkWiJdu7d6+0\nbNUq2ikeIwESSCGBg4cOudI6dOwoRYtE/cu6OHkdWLt2rVbhX889J6++9lpeV6dAlP/j6tV6nYMG\nD5bXX3+9QFxzXl/kipUrtQqLFi1yVYn6z/zjjz/kq7lzXSQGSIAE8p7AN998k/eV8FmDlatWCT6U\n1BFYZXjjQ0kdgZ07d7rCoirTYsWKyWDzlkMhARLIWwK7d++W3r17ayX69esnpUuXztsK5VD6008/\nLT///LN06NBBzj777Bxi83QiCCxcuFDwO6lRo4ZUrFgxEVkyjxwIDBw4UNALU61aNRczqjItWrSo\n3HPPPS4SAyRAAnlDYPPmzU6ZdurUKe0fliNGjFBl2qxZM2nTpk3eQGOpJJBkAmPGjFFlesIJJ7iS\naIDkUDBAAiRAAiRAAsEIUJkG48ZUJEACJEACJOAIUJk6FAyQAAmQAAmQQDACVKbBuDEVCZAACZAA\nCTgCVKYOBQMkQAIkQAIkEIwAlWkwbkxFAiRAAiRAAo4AlalDwQAJkAAJkAAJBCMQdZ5psKyYigRI\ngARIIDcEMK94pXFVBycMlSpVkpNPPlnKlSuXmyyZNkUEqExTBJrFkAAJkEB2BOA16u6775aJEyeG\nRbnyyivlww8/DDuWjJ3ff/9ddu3apQo8GfkXhDzZzVsQ7jKvkQRIIK0JwP0iFOlRRx0ll112mfTs\n2VNamcVG6tevn/R6Dxs2TMqXLy99+/ZNelmZXABbppl8d3ltJEACaU/g+++/l+nTp2s9p0yZInDF\nmEpB1/LBgwdTWWRGlsWWaUbeVl4UCZBAfiHwww8/aFWPPfZYueKKK3KsdigUkv379+cYjxFSS4DK\nNLW8WRoJkAAJhBHYvn277tetW1cKFy4cds7uYGm1jmY925o1awpW9Tr66KPlmGOOkcsvv1xmzZpl\no7nt4cOH5fnnn5dLL71UoKSLFy+uxkxYfACKGAsSYJUZfAYNGqTpRo0a5Y7Zc6kYr3WVzucBdvPm\n8xvI6pMACeQ/AnPNetEbN27Uitt1ards2SLvvfde2MWcddZZcsoppwjijBw5UpXtiSeeqNs1a9bI\njBkz5JNPPpHPPvtMGjVqpGlhSISu4i+//FL3y5YtK1jdBEZOb731lgwfPlywZvWmTZv0/L59+3SL\nFq89pgfM144dO2yQ25wIGIBOzM0Kmfihc8891x1jgARIIO8ImIeb/ifxv0Q43eXMM8/U+o4dOzbd\nq5qn9TvvvPPcfcW9ze7z0ksvaT3NuGrILPsVMq1YV+9ly5aFqlatqmm7dOnijvfo0UOPmZZraPz4\n8SGjOPWcUbKh0aNHhw4dOuTiIvDYY49p/LvuuivsOHeyJwAdiXtmWvMuElumhgiFBEiABFJJoFu3\nbtKiRQst8vPPP5f3339fTjvtNDFKMawa5qGt+7bb1XuyVq1a0rlzZ3nwwQfFKFY99csvv8jQoUM1\n/MILL6hFsE1TpkwZuf322+0utwkmQGWaYKDMjgRIgARyItC+fXsX5bXXXlNlWqVKFVWM7kSUABTv\nihUrBErTtDBl/vz5GgthyHfffadduBgnbdu2rR7jV2oIUJmmhjNLIQESIIHABDA+ipYslGUswTQb\nSPXq1WNF47kkEKA1bxKgMksSIAESSCSB7t27qyJt0KCBmHFQNUhatGiR9O/fP6wYtEghMGaipJYA\nW6ap5c3SSIAESCAuAkuWLJGpU6dqmnfffVfQHWwFCtUrtkW6evVqHUetXbu293TUcNGiRfW4bdVG\njcSDORJgyzRHRIxAAiRAAnlHoFChQq5wO40FB4xlrnTt2tWdQwDuB6FQMc8U47JQqlaM2alOl8E5\nr5x++um6O3v27By7kb3pGA4nQGUazoN7JEACJJBWBKAcsXoM5MILL5Sbb75ZFSaUpVe54jwcOrz4\n4otSpEgRmTdvnqBl2rBhQ3XugBZtkyZNZM+ePYjqBF6XKlasKFC2UMboSm7evLlUq1ZNxo0b5+Ix\nEJsAlWlsPjxLAiRAAkklAMUHsdvIwtANi3FSTIWBH923335bNmzYILfccovMmTMnMrq6JISTB6w4\ng7Sw+IVzB1gAQxnbbl2bsEKFCjJp0iRVumgFL1iwQCZPnizr1q3LEtem4TYrAY6ZZmXCIyRAAiSQ\nMgKYwpLTNJbGjRvrGCiU6datW7Vlal0PokUZKfXq1XNLt8HzEeKg9YmWazQxTiTk66+/FizFBs9M\nJUqUiBk/Wh4F/RiVaUH/BfD6SYAE8g0BKER84hG4H/QrpUqV0u5dv/EZ7wgBdvMeYcEQCZAACZAA\nCQQiQGUaCBsTkQAJkAAJkMARAlSmR1gwRAIkQAIkQAKBCHDMNBA2JiIBEohFAOtvTpgwIVYUniOB\nfEvArkELYzArVKaWBLckQAIJI4CpFX369ElYfsyIBNKRgF2tB3WjMk3HO8Q6kUA+J4C5i35c2eXz\ny0yL6h84cECnvmCeqp0ukxYVy+BKYOGBvXv3SsmSJd1VUpk6FAyQAAkkigDWzWzTpk2ismM+MQic\nc8456vjeLB4ut912W4yYPJUoApj3O3fuXDn77LNdljRAcigYIAESIAESIIFgBKhMg3FjKhIgARIg\nARJwBKhMHQoGSIAESIAESCAYASrTYNyYigRIgARIgAQcASpTh4IBEiABEiABEghGgMo0GDemIgES\nIAESIAFHgMrUoWCABEiABEiABIIRoDINxo2pSIAESIAESMARoDJ1KBggARIgARIoqATgSeqbb76R\nlStXyuHDh+PGQGUaNzImIAESIAESyBQC8+fPlwsuuEDKlCkj8CZVvXp1Of744+Xll1+O6xLpTjAu\nXIxMAiRAAiSQKQQmTZokN998s6BVWrFiRXUPuHz5clm7dq3cddddUr58eT3v53rZMvVDiXFIgARI\ngAQyjkCTJk2kSpUq0r9/f/n111/lP//5j3z//fdy+eWX67U+/fTTvq+ZytQ3KkYkARLIDYEBAwZI\njRo1pFatWrJo0aKwrNavXy/16tXT84MGDQo7xx0SSBYBtEbREv373/8uhQoV0mKKFy8u9957r4aX\nLl0qf/zxh6/iqUx9YWIkEiCB3BLo0aOHYJkwvPm3a9dODh486LLs1KmTLF68WM8jTCGBVBGItmxd\niRIltPijjjrKKdmc6kNlmhMhnicBEkgIAaz9OG7cOMGDauHChfLoo49qvsOHD5dp06bp8fHjx0up\nUqUSUh4zIYGgBKZOnapJzzzzTCrToBCZjgRIIHkE6tatK4MHD9YCnnnmGVWuvXr10v0hQ4ZInTp1\nklc4cyYBHwS+/fZbefHFFzXmfffd5yPFf6OwZeobFSOSAAkkggC6cW+99Vady9e6dWv57bfftNu3\nY8eOicieeZBAYALr1q2TG264Qfbv3y8tW7YU/D79CpWpX1KMRwIkkDACMDLCeBQEBh9olVJIIC8J\n/Pzzz2rFC4V67rnnysiRI+OqDpVpXLgYmQRIIBEEevfu7awk0Qro169fIrJlHiQQiAAU6aWXXqre\nj84++2wdw4cTh3iEyjQeWoxLAiSQawKjRo2SESNGqOXuI488ovlh/HTChAm5zpsZkEC8BDZs2CCX\nXHKJ/PDDD9KoUSP56KOP5Jhjjok3G6EyjRtZeib4/fffZcmSJbJr1y5fFYTHD0xR+PDDD+WLL74Q\ndG0E8Ufpq7AERMKb41lnnSVffvllAnJLbBb48zVs2FC2bt2a2IwzMDdY8Xbv3l2vDIq0b9++0q1b\nN93v0KGDzvnLwMvmJaUpAcxvhiJdsWKFnHfeeTJ9+nT1ehSkuhmhTFetWhXk2jMqzRtvvCGwlJw9\ne3aO1/Xaa6/JySefrJPnmzVrJueff76ccsop8tVXX+WYNhER4r1fO3fulKuvvlqnU7z66quJqEJc\neezevVt++uknwQtLNBk4cKDAv+c111wjiEuJTgD3EUYde/fuFXieQVcvBPzgyAGGSDfeeKNuo+fA\noySQWAJwJALH9hC8qKNFCucN3g/89vqRfK9MoRSqVasmv/zyi5/rzag43333nfbt46LgQxJy7LHH\n6vb111+XNWvWaNj79dlnnwlaAJs2bZITTjhB/U/CuvKKK65weXjjJzoc7/2C9xFY1+FaL7zwQnn+\n+ecTXaVs84NifOKJJ+Skk05Sl2MPPfRQ1LijR4/W3+DcuXPl9ttvjxqHB0W6du0qeJEqXbq0gJmd\nLI95p3gZLFasmLZMbcuVzEgg2QTsbzBWOdZQLlYcnMv3ju7R/VdQBS6v0BL9y1/+Itdee61iQPdt\nixYtBA6c27ZtK1CqXoHVZCgU0lUS5syZ4ywqvXGSGY73fmFsbdasWXLiiSfKu+++q5afyawf8oZB\nzLBhw9QoBi8dVrJzK3bcccfJ5MmTpUGDBvLee+/J22+/La1atbLJuP0fgbFjxwo+0QTswJ1CAqkk\n8K9//UvwSYTkWcv00KFDOdbf624sx8hJjOCnrige8aCoUiVQNO3btxcYdNx0001aLFqY8N4BBfv4\n449nqQoG2SFYKcHPGxfuQV6NpW7bts11BcJAxba6s1xUgg/89a9/FUzWhiJFdyRa0zkJfM4+8MAD\nGg3p2d2bEzGeJ4HMIpASZYoHDdaJg+CNv3HjxtrCQPcZutG8b/wYN7n77ruldu3aGqdy5co6joIB\nYiv169dXh9jI16bFvCDs2891111no6txSM2aNSWyVYRuOcT3xsW+n7pi7A5xseYdVhqAcQy6qWBO\njfG9aF2srkLZBOJ1BI7ubdTD2/UJxYcuNCja008/PUtJ27dv12NgmJ3A+wfMxCtUqKDXdPTRR8tp\np50mffr0iTqehTJRB6SBwsO8QSigNm3aaGsj3vtl64V6wKgH9zZa92m8vGy+OW3RosfvBdaln3/+\nuW+vPHCWjd8rfmdwm0chARIoQARMS8qJmaSKZlXIPLzcsUQEkKdRNCHj6FrzNz46Q2agV8M499JL\nL2kx5iEUMoYIetx0nYUuvvjikPHq79J8/fXXGq9SpUqhcuXK6Qfp8TFKzB3DOdNt5KpuyzKrA7hj\nCJjuQ01rFLc77reuRnloWvPQDZnB6pDpew+hXrY+xrrT5ek3YAxcQqgL8jAKKGS6bF1SYyjk6mpa\nPXp8ypQpIfNiosdxzUhnFKBuTQs1ZLpxQ8boI2S6R93nT3/6k543LzHuGM6bFwJX1hlnnKFxypYt\nq/UxY1q6j/zN+KWLhwDyN1Zw7jzSmCWNQsahuR4z1sXKJZ77ZQswfjE1j6FDh9pDYdt4eYUljmPn\nz3/+s9bjnnvuyTGVUaga97LLLssxrp8IpnWs+YE9wuku9p6Z7tx0r2rG1M/Mi9TfyJgxYzLmmtL9\nQqAj8Z80vYKuquiWdJJMZYqC8THjeaEtW7aE8CA0rpr0mFXepmtS981aciE8hCF79uzRBzjSGqsq\nV1cbMF2Vmmbjxo32UJZtvMrUT12tMkVcYwkbMgYyWu5bb72l9cFxswpGlrrkdMAsTRWyystYO2p0\n0/rVPHHcm2fz5s1Dxil4yHiTCZkxO42DFw6kgzIzXZWqJO31xNriRcCKsfYNzZs3z+7qvXryySfd\ndeGlx4p9QQJj46Q8ZHoK9BTun2khh0zXt42qWz/3CxF//PFHLQ8vKbGUSDy8wioSx048ytRYRGu9\ncZ140citUJnmlmDmp6cyTf09znNlev3114dMl6C7cqt48CDfvHmztu7wwDemyi4OAmYukHuQm3G0\nsHN+Hs5BlGmsuqICVpmiBe2tL5SJbR1+8MEHYXX1u2NW0XCKBIzQ6gaXV155JSyL1atXh0x3sh5D\nSwBx0NqGGGfNIdOlq0rpqaeeCtmPVdSdO3d2x3Du3//+t6bL7stMZwgZi2Et4+OPP9ZoeIGx/I2h\nU3ZJw47b+LFefpDAjPtqWaZ7OSx9tB2/vKKl9XMsHmWK37dtlUPR51aoTHNLMPPTU5mm/h5HU6Yp\ntebFahHmYWqe+f8VjLHBkqpo0aKCRVgx9mYe9vLJJ5/ox8bDFukwPoo5QfBSkWyJVVdv2TD4qVq1\nqjuE+UmY7wlL2ezmJbrI2QQwVWXGjBlq+WgdLWP9x0hH4KeeeqrLYceOHRo2LXndYgwXYl4k5MEH\nH9QwvjDGa5SwWvpisnJ2Yh7igmk0mNRsHUHY8WlrkIXpKjiGcVKMMyZSMO4IwRhkTuKXFyxuMR4f\nTWApHGscOVqaaMfwOzVd6QKvKpibit9CQRT4NbUGWQXx+lN5zXZaIAzf7NzdVJZfEMuyzE1PoNxx\nxx2KIKXKFAsDewWrnPfs2VMPwZEABBO677zzTg1H+0qVlWSsukarl/eY94XBezyeMByBm1apKis/\njsBNS1Pnj8JYKLcCP6mwBN63b1/MrOBBCVK9evWY8YKctAoca2D6ET+88HKTnWFY0BefaHUz48aq\nTO2LTbQ4mX4MhoTwqkVJHQEY69ELV+p4oyTvdK5w7ZbaeoSVBsUKwYRuKJHsxLa4sjufKcfxhmlb\ngtYR+NNPP53t5WHysZ8JyNlm8L8TcC348MMP6x6sd6+88kq16sUB0/Wtrdr/RXVTVcwYuD2UsC3m\nlUJsCzWnjP3wgtU2WovRxJYX7Vy8x+xbK5xiFFTBXOd//vOfBfXyU3rdy5YtE7y4oacqVdPHUnqB\naVgYegHQmPCuv5s2yhRTLyBomcJrv98HEbqIoWxwYdmlQcsOguk1mPJgxVjD2mBabTFv1DoCh5J4\n7LHHBPMsTT+9m0+arAqj2x1KHL0D3nmqZlRCp8l4y7UtUnQb4w+N6Uw5iZ/7hTzs3M61a9fq/N3I\nngJvOX55YQgB07GSKXCZZ6cfJbusZF5HbvOGe0q4qqQknwA5J59xZAlmdoIesp7nsHNkADMydor3\nMWezXr16Om6KsUH7QPJWw47VeY/ZuZQYC4T3n2hipmroYXgFglKA9O/fXz+6k0Zfee0IHGO+EG8X\nL1pa8Dtru3UtLowxQqFirBvOI6BUrYAzfF3inFf83C/Ex1gjuqzRXYjx4+wkr3lF1ssYnekhzAGG\nQqGQAAkUDAJpo0wxzohJ+GiBwIMPHkZwkQdPPnB+beY+qpPsyNtiDV/g2xNdxUgDx8RoxVmBb1eI\nsfpUh9roKoZxxPHHH2+jpMUWrZq8dgRu5kcqC7h9g4HYVVddpc4f4JgCTim8gn04VsA9M1NptGWK\n1VPM1Cb1ZQvvQZHjhn7uF8qA8wvrTOPNN9/0FuvCyeI1c+ZMwVit/WBlHYiZ7+qOWaMDV5n/Bayz\nBvxmKSRAAgWIgNeoOFnzTI2iRHMwZFo43uKihjFPEk4A4OQBaewHjh5MP3WWNHBsgInycBZg42Jr\nvBi5uJjTah7i6lwB5+BkwTzsQsaCWNOYfm8X129djbWvpjWeeVxaGzBWsnrunXfesYd8bY3HIE1n\nxo3Dptsg8TfffOOYRCvTVwEmkmlJahnGYjpqEkztAGejIDUeeGF6CqbooFzsT5s2LSwt5tiasdUQ\n6o3z+CC9cUwfwpQar/i5XzY+phYhL/wWTKvYHnbbZPEyytRdh72eyC1+T5GCubn4/eDaIx2ERMb1\nu8+pMX5JMR4JpI5AtKkxKXHaEOQSjU/YkPEjGzJjcaqE8ZCPJWacL2SMS3RepbFoixrVdBmq0wPM\naaXEJgAlaNZH1fm/sWOGnzVTQnResBnHDj8RsefnfiEJlDQUmelmjsghvXZxPaYlrnWN9tIXtLZU\npkHJMR0JJI9ANGWaNgZI5oEZJug6tAYuYSey2cFYX04GH7AU9lpfZZMVDxsCGK9E13q84tcq1s/9\nQtnoRsZYOozFMP0FVnTpKFjkGpbQGDp49NFH07GKrBMJkEASCaTNmGkSr5FZ52MCGDvH4ghQvvff\nf78uLZdul4M50lCmGGOFkRscZVBIgAQKFgEq04J1v/Pl1cLY59lnn9UpO1jFJd0EFrzoSYHxEVZE\nopAACRQ8AmnbzVvwbgWvOBYBtEoxj9X4yY0VLU/OYck7KHlYP1NIIDcEjD2HukyFpzfjs1znW9s5\njbnJl2mTT4DKNPmMWUKCCGCd2HQUOAWhIk3HO5N/6gRPX/AbPXHixLBKwwOZnZoVdiLBO3CnCRee\nUOCUYATYzRuMG1ORAAmQQMIIdOjQQRUp5ttjrjd8lrdq1Sohiy/kVEnYJMCTD8b9KcEJsGUanB1T\nkgAJkECuCcCz2PTp0zUfWK2n2j0gupbNVMRcX0dBz4At04L+C+D1kwAJ5CkBM59ey4eTeizpmJOY\n2ZNhq5XkFJ/nU0OAyjQ1nFkKCZAACUQlYP2Qwx91dis/rVq1StczxkIdcOOJeeCYggXXnbNmzcqS\nL3xiP//88zqWDyWNcX0sHmG8hqkixkIa8IeOD+ZvQ7BghD1mt6kYr81S+Xx6gN28+fTGsdokQAL5\nl8DcuXNl48aNegHGVahusZThe++9F3ZR8COOBRMQBwuuQ9nCMQq2a9as0UUgjGtQ+eyzz6RRo0aa\nFoZE6CrGQhMQrK+LFbVg5ITlLeGjHCtDGe9aet4uaoEWrz2mJ8zXjh07bJDbnAh4HS4lyzevtwyG\nSYAE/BOgO0H/rPJTTPgfN8/mHD8vvfSSXhZ8U48ZMyZkWrHuMuFqtWrVqppHly5d3PEePXroMdNy\nDY0fPz4EV5cQo2RDZhpXyKy+5eIiYJZ41Ph33XVX2HHuZE8gX7kTzOklgOdJgARIIL8S6Natm2AB\ndQjmKL///vuCNZ2NUgy7JLv6le129Z6sVauWdO7cWR588EFdTxjnsFwiVjeCvPDCC2oRrDvmCysx\nmcUq7C63CSbAbt4EA2V2JEACJJATAaz/awXuKKFMse4yFGMsgeJdsWKFKk2s7zx//nyNbtd6Nis4\naRcuxkntcoex8uO5xBGgMk0cS+ZEAiRAAkkhgPFRtGShLGMJptlA4lkkJFZ+POefAK15/bNiTBIg\nARLIEwLdu3dXRdqgQQMx46BqkLRo0SLp379/WH3QIoXAmImSWgJsmaaWN0sjARIggbgImHWFZerU\nqZrm3Xff1e5gmwEUqldsi3T16tU6jgp/1jlJ0aJFNYpt1eYUn+ejE2DLNDoXHiUBEiCBtCCA5Qet\n2Gks2McCC127drWndFu/fn3t4sU8U4zLQqlaMbapOl0G57xy+umn6+7s2bNz7Eb2pmM4nACVaTgP\n7pEACZBAWhFAaxMOFyAXXnih3HzzzaowoSy9yhXn4dDhxRdf1CUB582bpystNWzYUJ07wMCpSZMm\nsmfPHkR1Aq9LFStWFChbKGN0JTdv3lywljCWFaT4I0Bl6o8TY5EACZBAUghgLVyI3UYWgm5YjJNi\nKgz86L799tuyYcMGueWWW2TOnDmR0dUlIZw8YMUZpIXF74wZM9QCGMrYduvahBUqVNBF7aF00Qpe\nsGCBTJ48WdatW5clrk3DbVYCHDPNyoRHSIAESCBlBDCFJadpLFh03jhpUGW6detWbZla14NoUUZK\nvXr13NJt8HyEOGh9ouUaTYwTCfn6668FS7HBM1OJEiVixo+WR0E/RmVa0H8BvH4SIIF8QwAKEZ94\nBO4H/UqpUqW0e9dvfMY7QoDdvEdYMEQCJEACJEACgQhQmQbCxkQkQAIkQAIkcIQAlekRFgyRAAmQ\nAAmQQCACHDMNhI2JSIAEYhH49ttvdcmvWHF4jgTyKwEsKACBVbUVKlNLglsSIIGEEcAam1988UXC\n8mNGJJCOBLxOMahM0/EOsU4kkM8JYEHrcuXK5fOryB/VxwLeWDUGS6wVL148f1Q6n9cSL4o7d+6U\n8uXLuyuhMnUoGCABEkgUAaxw0qZNm0Rlx3xiEDjnnHPU8b1ZPFxuu+22GDF5KlEEMO937ty5UqdO\nHZclDZAcCgZIgARIgARIIBgBKtNg3JiKBEiABEiABBwBKlOHggESIAESIAESCEaAyjQYN6YiARIg\nARIgAUeAytShYIAESIAESIAEghGgMg3GjalIgARIgARIwBGgMnUoGCABEiABEiCBYASoTINxYyoS\nIAESIAEScATotMGhYIAESIAESKAgEtiyZYusWbNGDhw4ICeddJJ+jjoqvrYmlWlB/OXwmkmABEiA\nBNQNY+3atWXlypVhNKBQH3nkEencuXPY8Vg7VKax6PAcCZAACZBAxhL4448/ZNWqVVK3bl2pWbOm\nwM8x/O6uX79eunTpImXLlpXWrVv7un4qU1+YGIkESIAESCDTCBQrVkw2bdokxx13nLs0dPXWq1dP\nfvjhBxk9erRvZRpfp7ArjgESIAESiI/AgAEDpEaNGlKrVi1ZtGhRWGK0BPAAw/lBgwaFneMOCSST\ngFeRohwo2DvuuEOLhKL1K1SmfkkxHgmQQK4I9OjRQ4oUKSLff/+9tGvXTg4ePOjy69SpkyxevFjP\nI0whgbwkYNcpbdasme9qUJn6RsWIJEACuSFQsmRJGTdunJQoUUIWLlwojz76qGY3fPhwmTZtmh4f\nP368lCpVKjfFMC0JxE0Aa5OuW7dO5s2bJw888IC88sorUrlyZWnfvr3vvDhm6hsVI5IACeSWAAw9\nBg8erFaSzzzzjNSvX1969eql2Q4ZMiRsfcjclsX0JOCXAJTmpEmTwqJjuKF69ephx2LtsGUaiw7P\nkQAJJJwAunFvvfVWOXz4sBp3/Pbbb9rt27Fjx4SXxQxJwA+Biy++WBdWv+aaa6RKlSqapFWrVnL/\n/ff7Sa5xqEx9o2JEEiCBRBHAW7+dFF+8eHFBq5RCAnlFAL0jY8aMkcmTJ6vzBnTz4vf53HPPyZw5\nc3xVi8rUFyZGIgESSCSB3r17C+b4Qfbv3y/9+vVLZPbMiwQCEyhUqJCgl6RRo0aax9y5c33lRWXq\nCxMjkQAJJIrAqFGjZMSIEWq5Cy8zEIyfTpgwIVFFMB8SyDWBXbt2aR6VKlXylReVqS9MjEQCJJAI\nArDi7d69u2YFRdq3b1/p1q2b7nfo0EGWL1+eiGKYBwkEJrBv3z7p06ePLFu2TC3MmzZt6iuv/9/e\n/bxEFUUBHD+gkxuFZqFJCG7cCamJiP9CrgYXmf0Drv0LCoLAMAKhrRGkEKSrBiJQoXHjyjSEfrko\nmoTJMaMcGhf27oXzGug18zijzYx9Lwz3Ou+dd+/7+Mbje/N+cDZvLCZmQgCBagXc5QdjY2NSKBRk\nZGRE3KFeV2ZmZmRlZcUn0lQqJe6wWltbW7XdEY9ARYH5+XmZnp72l8G47+5zuZxsb29LPp8Xd7jX\nHUFx9+mNU9gzjaPEPAggULXA5OSkvw9qa2urv01bU1OTX6a77tT9UXN3nnF7prrnWnWHLACBCgKH\nh4f+mud0Oi1LS0uSyWT8d/nun76NjQ2ZmJiosITfk9kz/W1BCwEETlFgYWFB3CuqDAwM+BORoqbx\nHgKnJeBONBodHfV7ou6EOLcXmkwmTd2RTE1sBCGAAAIINLqAu/zFnWAU9ySjcuvLYd5yOkxDAAEE\nEEAghgDJNAYSsyCAAAIIIFBOgGRaTodpCCCAAAIIxBD463em7r6ZFAQQqK1A6efQnSBR+nNtR1a+\n9+Pj44YZa/k1aZypjbR9NI5q9Ejd9v1HCd4My9zcnJvjuLe319euzQsDtgG2AbYBtgG2gT+3geCh\nDWH+5DBvsIVQEEAAAQQQqEYg8jCvu4j6zu3b1SyXWAQQOAGB7z9+yM1bt/ySbgS3OKv3B2ffDZ4G\n83l3V64Hj1jrv3TpBARYRCWBe7Oz8imblWtXr8rl/v5KszP9BARm79+XDx8/yuDgYLi0yGTqrr25\nGPPmvuGSaCCAwIkLfAue9aml88KFur/NXiKR8MNNnj/P3xD9xZ1yjfkpA0csXs3djqcWDvOqBDUC\nCCCAAAJGAZKpEY4wBBBAAAEEVIBkqhLUCCCAAAIIGAVIpkY4whBAAAEEEFABkqlKUCOAAAIIIGAU\nIJka4QhDAAEEEEBABUimKkGNAAIIIICAUYBkaoQjDAEEEEAAARUgmaoENQIIIIAAAkYBkqkRjjAE\nEEAAAQRUgGSqEtQIIIAAAggYBUimRjjCEEAAAQQQUAGSqUpQI4AAAgggYBQgmRrhCEMAAQQQQEAF\nSKYqQY0AAggggIBRgGRqhCMMAQQQQAABFSCZqgQ1AggggAACRgGSqRGOMAQQQAABBFSAZKoS1Agg\ngAACCBgFSKZGOMIQQAABBBBQAZKpSlAjgAACCCBgFCCZGuEIQwABBBBAQAVIpipBjQACCCCAgFGA\nZGqEIwwBBBBAAAEVIJmqBDUCCCCAAAJGAZKpEY4wBBBAAAEEVIBkqhLUCCCAAAIIGAVIpkY4whBA\nAAEEEFCBZm2U1sViUR4+elT6Fm0EEKiBQPHoKOz18ZMnkkgkwp/rsbH/9asf1otMRt6+e1ePQzxz\nY8rn836dMmtr8n5n58ytXz2u0Je9PT+snRLvyGR6FHyAnz1/Xo/rwJgQ+G8FlldXG2bdX25tiXtR\n/p3A5qtX4l6UfyeQzWbDziKTaXNzs6RSqXAmGgggUBuB4s+f8jSd9p2PXrki51paajOQmL0uLy/L\nwcGBDA0NSVdXV8woZqtG4M3r13JYKEh3d7ckk8lqFkVsTIHV4B/b/f196ezsDCMik2lL8IFdXFwM\nZ6KBAAK1EcjlctLR0eE7n3vwQNrb22szkJi99vX1yebmpkxNTcn4+HjMKGZDoLEEhoeHZX19XXp6\nesKBcwJSSEEDAQQQQAABmwDJ1OZGFAIIIIAAAqEAyTSkoIEAAggggIBN4BfTPIXA4FYHUAAAAABJ\nRU5ErkJggg==\n" + }, + "images/rec_call_2.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdIAAAIPCAYAAADHKF9aAAABXmlDQ1BJQ0MgUHJvZmlsZQAAKJFt\nkM9KQlEQhz/LEkrIKFpUC1tVoGEqtGljFhW4uJhhf1bXq1mhdrkaUavoGSrctA1fIFzUokcIgoJW\nBUUPELgpuc3VSq3mMMzHj/mdM2egzanqesYOZHMFIzo/415ZXXM7XnEyRB9eRlQtr4cUJSItfNfW\nqNxhs+qt17rr5IiioxiP9ZSmO58P1gf/9rdEVzKV16R+SPo13SiAzSes7BV0iw+F+w0ZSvjY4nSd\nSxYn6nxV64lFw8I3wi5tU00KPwp7Ek16uomzmV3tawZremcqt7wkdUBymFnmiMhxo+AnyCRTLMiO\n/vcEa54wO+jsY7BFmk0K4g6JopMhJbxIDo0JPMJ+fJIBa9e/d9jQki8QyMpTYw1t2wWXFei9aGij\nT/KdM7hWdNVQfzZrq9jzGwF/nbvL0HFqmm9xcIxD9d4038umWT2H9gfxVj4BvCpiKJDcBBoAAABW\nZVhJZk1NACoAAAAIAAGHaQAEAAAAAQAAABoAAAAAAAOShgAHAAAAEgAAAESgAgAEAAAAAQAAAdKg\nAwAEAAAAAQAAAg8AAAAAQVNDSUkAAABTY3JlZW5zaG90vqQDmAAAAdZpVFh0WE1MOmNvbS5hZG9i\nZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhN\nUCBDb3JlIDYuMC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8x\nOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJv\ndXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEu\nMC8iPgogICAgICAgICA8ZXhpZjpQaXhlbFlEaW1lbnNpb24+NTI3PC9leGlmOlBpeGVsWURpbWVu\nc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjQ2NjwvZXhpZjpQaXhlbFhEaW1l\nbnNpb24+CiAgICAgICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNv\nbW1lbnQ+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRh\nPgrGtvXZAABAAElEQVR4AeydB5iU1fX/D7DUpSsGkCIdpEtXo9LCT0NEIgiiFAltAWOQx0di4S8k\nokBUUKqsDwT4SWSRKhDAoIAUaVKlruAKQijSy9Lmf78neec37+7szrzTdmb3e55ndt5777nl/byz\nc+a2c3O5jMyYMUNeeOEFadq0qbw0cKBQSIAEspbAxUuXJOHFF7URUz76SIoUKZK1DfJR+5/ffFNS\nfvpJBickSItmzXxoMzkUBF7/f/9Pjv74owzs318eatEiFEWyDB8Eho8cKck//CCwmT179nRr53Zf\n8YIESIAESIAESMAxgTjPHDdu3JCZ//u/nlG8JgESyAICN27edNc69/PPJW/evO5wNF6cO39em7Xu\nm2/k0OHD0djEbNemX375Re/pm/XrtZeU7W4wCm/ozNmz2qofTK/UU2yG9Kb5512xapVnOq9JgASy\nmMDqr7/O4hb4X/3O3bsFL0rkCOzas0fwokSOwM8//2yrzGZI4+LipGPHjjYFBkiABCJP4EZqqixd\ntkwr/u0TT0i+/Pkj3wgHNa5evVouXLggTZo0kXLlyjnISdVACRw8cECuXrsmFStWlBIlSgRaDPM5\nIPC1+VF77tw5KV26tC2XzZDmN/+s8+fPtykwQAIkEHkCp0+flnvuuUcrnm4WNpQqVSryjXBQY/36\n9WXXrl3y8ssvS9euXR3kpCoJxA6BZmYh3ebNm6Vq1aq2RnOxkQ0HAyRAAiRAAiTgjAANqTNe1CYB\nEiABEiABGwEaUhsOBkiABEiABEjAGQEaUme8qE0CJEACJEACNgI0pDYcDJAACZAACZCAMwI0pM54\nUZsESIAESIAEbARoSG04GCABEiABEiABZwRs+0idZaU2CZAACZBAKAhg3/Bh41rx8uXLUqZMGSlf\nvrwUK1YsFEWzjAgQoCGNAGRWQQIkQALeCMDV3ODBg2XBggW25LZt28rKlSttceEIXLlyRS5evKjG\nOxzl55QyObSbU54075MESCDqCPTq1UuNaO7cuaVVq1YyZMgQ6dSpk8BTVLhlypQp6lpwxIgR4a4q\n25fPHmm2f8S8QRIggWgkcMD4yl3130NClhm/yu3atYtoMzGcjINKKMETYI80eIYsgQRIgAQcEzh4\n8KDmueuuu6RNmzY+87tcLkk1hxlQoo8ADWn0PRO2iARIIAcQwCkikDp16kiePHm83nFycrL07t1b\natSoIfny5ZMCBQpI8eLFpXXr1oKTSNLK7du3Zdy4cdKyZUuBgcZBJFi4hIMEYIQTExOlevXq+ho/\nfrxmn2EORbDirPdIzM+mbXsshzm0G8tPj20nARKIKQI4OeTEiRPa5u3bt+v7mTNnZNGiRbb7aNCg\ngR6PBp3p06eroS1btqy+Hz16VHBs3bp162S9OdQbR9dBsGgIw8ObNm3ScNGiRfW4Lyxo+uyzz2Ta\ntGly584dOXXqlKZfv35d39HTteI0wvw5/9+D2q0w330QMBBd5kG5jJqradOmCFJIgASymID5YtP/\nSfxf4jrapV69etreOXPmRHtTs7R9zZs3dz9XPNuMXlOnTtV2mnlU1+zZs12m9+pu9759+1xVqlTR\nvP369XPHDxo0SONMj9WVlJTkMkZT04yBdc2aNct169Ytty4uRo4cqfr9+/e3xTOQMQHYSDwz04u3\nKbFHaqhQSIAESCASBBISEqRDhw5a1YYNG2TJkiVSqVIlMQbRVr35wtawNdTqmVizZk3p27evDBs2\nTIxR1aSTJ0/K5MmT9XrixIm68tfKU6RIEXn++eetIN/DQICGNAxQWSQJkAAJeCPQo0cPd/TMmTPV\nkFaoUEGNojvBywWM7qFDhwQG0/QsZdu2baqFawgOVcewLeZFu3XrpnH8EzkCNKSRY82aSIAESMAR\nAcyHogcLQ5mZYCsNpFq1apmpMS1MBLhqN0xgWSwJkAAJBEtg4MCBakQbNmwoZt5TsPho9+7dMmbM\nGFvR6IlCsHCJEnkC7JFGnjlrJAESIAGfBPbu3SvLly9XvYULFwqGgC2BMfUUqyd65MgRnTetVauW\nZ7LX67x582q81Zv1qsRIvwiwR+oXJiqRAAmQQGQJ5MqVy12htVUFEWYFrgwYMMCdhgu4FIQxxT5S\nzMPCoFpilpfqlhikeUrlypU1uGbNGp9Dx575eJ2eAA1peiaMIQESIIEsJwDDCGcKkIcfflg6d+6s\nxhKG0tOwIh3OGiZNmiRxcXGydetWQY+0cePG6rgBPdkWLVrI1atXoeoWeFMqVaqUwNDCEGP4uH37\n9lK1alWZO3euW48XvgnQkPpmRA0SIAESCDkBGD2I9Z62Agy9Yl4U213gF3fevHly/PhxeeaZZ2Tt\n2rVp1dXNIOZQcXIM8mJlLxw3YKUvDLE1lGtlLFmypCxevFgNLnq/O3bskKVLl0pKSko6XSsP370T\n4Bypdy6MJQESIIGwEsA2FV9bVZo1a6ZznjCkZ8+e1R6p5U4QPcm0UrduXffxa/BoBB30OtFj9SbG\nQYRs2bJFcJwaPC4VLFgwU31vZTDO/BgiBBIgARIggegmAGOIlxOBS0F/JT4+Xod0/dWnnp0Ah3bt\nPBgiARIgARIgAUcEaEgd4aIyCZAACZAACdgJ0JDaeTBEAiRAAiRAAo4IcI7UES4qkwAJZEYAR3l5\n7mHMTJdpJBBrBKyD1dNuP6IhjbUnyfaSQBQTMMdLiTmWK4pbyKaRQPAEsFfX83POod3gmbIEEiAB\nEiCBHEyAPdIc/PB56yQQagJwsg4nAJTwE3jsscdk586dYg4BVycN4a+RNfz6179Wz1EPPvigDQYN\nqQ0HAyRAAsEQgJeeAgUKBFME8/pJ4ObNm+oqEA4ayNxPaEGq5c79n0Fc690qjkO7Fgm+kwAJkAAJ\nkEAABGhIA4DGLCRAAiRAAiRgEaAhtUjwnQRIgARIgAQCIEBDGgA0ZiEBEiABEiABiwANqUWC7yRA\nAiRAAiQQAAEa0gCgMQsJkAAJkAAJWARoSC0SfCcBEiABEiCBAAjQkAYAjVlIgARIgASyB4EbN27I\n9u3b5fDhw3L79u2AboqGNCBszEQCJEACJBDLBLZt2yYPPfSQFClSRBo1aiTVqlWTe+65Rz7++GPH\nt0XPRo6RMQMJkAAJkEAsE1i8eLF07txZ0BstVaqUPPDAA7J//3758ccf1Rl9iRIlNN3fe2SP1F9S\n1CMBEiABEsgWBFq0aCEVKlSQMWPGyL///W/55z//KQcOHJDWrVvr/b377ruO7pOG1BEuKpMACTgl\nMHbsWKlevbrUrFlTdu/ebct+7NgxqVu3rqaPHz/elsYACYSLAHqh6IG+8sorkitXLq0mf/788sc/\n/lGvv//+e7lz547f1dOQ+o2KiiRAAoEQGDRokMCZPX7xd+/eXeBs3ZI+ffrInj17NB3XFBKIFAE4\n+08rBQsW1Cg4pbcMbFodb2EaUm9UGEcCJBAyAoUKFZK5c+cKvqRw7Ndbb72lZU+bNk1WrFih8UlJ\nSRIfHx+yOlkQCQRCYPny5ZqtXr16NKSBAGQeEiCB8BGoU6eOfPjhh1rB6NGj1bAOHTpUwxMmTJDa\ntWuHr3KWTAJ+EPjuu+9k0qRJqvmnP/3Jjxz/p8Ie6f+x4BUJkEAYCWDo9tlnn9W9el26dJFLly7p\nUG/v3r3DWCuLJgHfBFJSUuSpp56S1NRUefrppwWfTydCQ+qEFnVJgASCIoAFRdahyFjcgd4ohQSy\nksDPP/+sq3VhTJs2bSrTp0933BwaUsfImIEESCBQAq+99pp7NSR+/Y8aNSrQopiPBIImACPasmVL\n9WqEvaSYs4eDBqdCQ+qUGPVJgAQCIjBjxgxJTEzUFbrDhw/XMjBfOn/+/IDKYyYSCIbA8ePH5bHH\nHpODBw9KkyZN5Msvv5TixYsHVCQNqRdsW7dulV27dnlJ8R4F7xhY2r9y5UrZuHGjYIggUJ+N3mtg\nLAnENgGs1h04cKDeBIzoiBEjJCEhQcO9evXSPX2xfYdsfSwRwP5lGNFDhw5J8+bNZdWqVQJvRoEK\nDWkacpMnT9ZfJ/Xr1xe4kfIlM2fOlPLly+tm83bt2smDDz4oFStWlG+//dZX1hyZjl+BGE6h5BwC\nFy5c0AUc165dE3iUwfAu5L333tP/Gyw66tixoy4+yjlUeKdZSQBOQuCkHrJp0ybtiWLfqOcLfnj9\nFRrSNKQ8Pa94XqdR0+D69esFv6ZPnTolpUuXVh+NWJnYpk2boH7deKsr1uPQU8dcRLly5eTee++V\n8+fPx/otsf1+EhgwYIAkJydL4cKFZdasWWJthMe+0k8//VTy5cunPVKrx+pnsVQjgYAJWJ/BzAqw\nFsVlpmOl0Wm9ReK/7y+++KK6MStQoIAayTTJtiBWHLpcLj1BYO3ate7ViDalHB7Aj5HXX39dlixZ\nYiPhxP2WLSMDMUdgzpw5gpc3adiwoW458JbGOBIIF4H3339f8AqV0JCmIVmrVi1Zt25dmljvQUxS\nQ3CKgJNfL95Ly36xGMZt0KCBrtKE1xrMSSxdutTvG4WxJVe/cVGRBEggiwhwaPe/4DEnCsfanq/N\nmzdn+ljOnTun6cgbjGRXp94YwsVpChjaw3zEm2++6RcmbIto1aqVDvlhYzR6/RQSIAESiFYC7JH+\n98lgzu7q1asaOnPmjL6fPXvW9twuXrwoX331lTvO0sdcKRZUWIJhYSw88lfg1BubgPft26eeXrZs\n2SJ58+bV7JZTb/SUY9GpN1YyW4Kz/vwR8LQ4w0crVnji5BAKCZAACUQjARrS/z4Vzy95OCz2ttAI\nC2bgRiqtvPHGG7aoMmXKOFqZajn1hlcNy6n322+/LcE69Z44caJgK09m8utf/1rgos2JbmblhSKt\natWqAq836JliSXrZsmVDUSzLIAESIIGwEKAhdYAVw77vvPOOO8fIkSMFS/r79u0rlStXdsdjdaJT\nsZx6oyxsUsdwcbBOvbHAB546MhPMQcKQOtHNrLxQpOHAXWwf+uabb+Q3v/mNFC1aNBTFsgwSIAES\nCAsBGlIHWCtVqiTDhg1z5/j444/lyJEj0q1bN11I404I8AJDt6tXr9YVjpbTZJzfGKhT7ylTpvjc\nm4cDbiFOdAO8PUfZ8EMi2LlnRxVSOSQEvvjiC/nHP/4RkrJYSOYEsKUI8sEHHwiOoaOEnwAcOEAw\nDecpNKSeNKLgGk69P/vsM13pGqxT7/vuu8/vO3Ki63ehVMxxBH744Qf17pXjbjwLb3jbtm2CFyVy\nBNKun6EhjRx7v2ry5tT73Xff9StvWiV4i4H/yMwEvV0Ybye6mZXHtJxNAJ69nnzyyZwNIUJ3j/UP\nly9fFixE/NWvfhWhWnN2NTiv9KeffpK0HQ8a0ij6XHg69YZBxRws5kuxCOn3v/+945aWLFlSsPAp\nMylWrJgmO9HNrLxQpZ0+fVp27Nih9261MVRls5zwEWjcuLF07do1fBWwZBLIQgILFixQQwoPbZ5C\nQ+pJIwuv0zr1xp5LGBP4/oUbwvvvv9/xFpBPPvnE7ztyout3oQEqYvsR7hfvVapUkT179gi2FFFI\ngARIIBoJ0CGDeSrYt4kTAKzX/v379VkNGTLEHZeRi7NQPNTs7NQbfoexvQevRx991I0Lv+iseMtD\nlJWInqi1lxcLKqxFFVY630mABEggmgiwR2qeBk4j8XZaC45Gs8T6YrfCeI+L+w8+690zzcm1L6fe\nMPAw7nDqDaffsSS3bt3SLUJp24xtQ5bgxAVPwdmA2E6EhSuNGjVSb1Oe6bwmARIggWgiQENqnkaH\nDh0CckOXticV6IPNzk69v/76a8dYMCe6d+9eOXHihB5RF+wPFccNYAYSIAEScECAhtQBLKpGjgDm\nRLFvl0ICJEAC0U6Ac6TR/oTYPhIgARIggagmQEMa1Y+HjSMBEiABEoh2AhzajfYnxPaRAAlkewLY\n6oajBuFgAXu/y5cvL9w/HTuPnYY0dp4VW0oCJJDNCGDHwODBgwUb/T2lbdu24nkEoWdaKK+vXLki\nOB7Sl+OWUNaZHcvi0G52fKq8JxIggZggAGcrMKI4hQmH2WPveqdOnSJyYAMOqsAxhTjvlxIcAfZI\ng+PH3CRAAiQQEAHsU1+1apXmXbZsmbRr1y6gcgLNhOHkmzdvBpqd+TwIsEfqAYOXJEACJBApAtY+\n9LvuukvgAcyXuFwuPezelx7TI0+AhjTyzFkjCZAACci5c+eUQp06dSRPnjxeicA9Jk5oqlGjhuTL\nl099ThcvXlxat24t3pyd3L59W8aNGyctW7YUGGgcxYiFSzhIIDU1VRITE9VTWPXq1fXUJ1SKwzIQ\n9nxFYn7W6w3HaCSHdmP0wbHZJEACsUdg8+bN6rELLd++fbveANyPLlq0yHYzDRo0kIoVK6rO9OnT\n1dCWLVtW348ePSqrV6+WdevWyfr16wUuNSFYNITh4U2bNmm4aNGiUrp0aXWBijOOp02bpuccnzp1\nStOvX7+u7+jpWnEaYf6cP3/euuS7PwQMRJd5UC6j6zLHdSFIIQESyGIC5otN/yfxf4nraJd69epp\ne427y2hvapa2z/jNdj9XPNuMXlOnTtV2mnlU1+zZs12m9+pu9759+1zmVCTN269fP3f8oEGDNM70\nWF1JSUmuO3fuaJoxsC7jo9tl/F67dXFhjmlU/f79+9viGciYAGwknpnpxduU2CM1VCgkQAIkEAkC\nCQkJ6tsbdW3YsEGWLFmirjCNQbRVjzOIIdZwq2dizZo1pW/fvjJs2DAxRlWTTp48qUcuIjBx4kRd\n+WvlKVKkiDz//PNWkO9hIEBDGgaoLJIESIAEvBHo0aOHO3rmzJlqSCtUqKBG0Z3g5QJG99ChQwKD\niROVtm3bplq4huzatUuHbTEv2q1bN43jn8gRoCGNHGvWRAIkQAKOCGA+FKdTwVBmJtaRj9WqVctM\njWlhIsBVu2ECy2JJgARIIFgCOIMYRrRhw4Zi5j118dHu3btlzJgxtqLRE4V4OzfZpshAWAiwRxoW\nrCyUBEiABIIjgDN5ly9froUsXLhQMARsCYypp1g90SNHjui8aa1atTyTvV7nzZtX463erFclRvpF\ngD1SvzBRiQRIgAQiSyBXrlzuCq2tKogwK3BlwIAB7jRc1K9fX2BMsY8U87AwqJaY5aW6JQZpnlK5\ncmUNrlmzxufQsWc+XqcnQEOangljSIAESCDLCcAwwpkC5OGHH5bOnTursYSh9DSsSIezhkmTJklc\nXJxs3bpV0CNt3LixOm5AT7ZFixZy9epVqLoF3pRKlSolMLQwxBg+bt++vVStWlXmzp3r1uOFbwI0\npL4ZUYMESIAEQk4ARg9ivaetAEOvmBfFdhf4xZ03b54cP35cnnnmGVm7dm1adXUzCCcPODkGebGy\nF44bsNIXhtgayrUylixZUhYvXqwGF73fHTt2yNKlSyUlJSWdrpWH794JcI7UOxfGkgAJkEBYCWCb\niq+tKs2aNdM5TxjSs2fPao/UcieInmRaqVu3rvv4NRzRBh30OtFj9SbGQYRs2bJFcJzaiRMnpGDB\ngpnqeyuDcebHECGQAAmQAAlENwEYQ7ycCFwK+ivx8fE6pOuvPvXsBDi0a+fBEAmQAAmQAAk4IkBD\n6ggXlUmABEiABEjAToCG1M6DIRIgARIgARJwRIBzpI5wUZkESCAzAseOHfN6TmZmeZhGArFCAEfV\nQS5cuGBrMg2pDQcDJEACwRCYP3++vPLKK8EUwbwkEPUE0nqWoiGN+kfGBpJA7BAoVKiQ/OpXv4qd\nBsdwS815o9p67AH19IIUw7cU9U3/5Zdf5ObNm+m2E9GQRv2jYwNJIHYI9OnTR7p27Ro7DY7hljZq\n1Eid2JuDv+W5556L4TuJnaZjX+/mzZvFOi/WajkXG1kk+E4CJEACJEACARCgIQ0AGrOQAAmQAAmQ\ngEWAhtQiwXcSIAESIAESCIAADWkA0JiFBEiABEiABCwCNKQWCb6TAAmQAAmQQAAEaEgDgMYsJEAC\nJEACJGARoCG1SPCdBEiABEiABAIgQEMaADRmIQESIAESIAGLAB0yWCT4TgIkQAIkkKMInDlzRo4e\nPSo3btyQcuXK6St3buf9SxrSHPWx4c2SAAmQAAncunVLatWqJYcPH7bBgDEdPny49O3b1xbvK0BD\n6osQ00mABEiABLIVAfgpTk5Oljp16kiNGjXk/PnzsnHjRsHpRf369ZOiRYtKly5d/L5nGlK/UVGR\nBEiABEggOxDIly+fnDp1Su6++2737WB4t27dunLw4EGZNWuWI0PqfDDYXS0vSIAESMA3gbFjx0r1\n6tWlZs2akvb4KfQA8OWF9PHjx/sujBokECICnkYURcK49uzZU0uHkXUiNKROaFGXBEjAMYFBgwZJ\nXFycHDhwQLp3767HUFmF4LSYPXv2aDquKSSQlQSOHDmi1bdr185RM2hIHeGiMgmQgFMCOKN07ty5\nUrBgQdm5c6e89dZbWsS0adNkxYoVGp+UlCTx8fFOi6Y+CQRF4MKFC5KSkiJbt26VV199VT755BO5\n9957pUePHo7K5RypI1xUJgESCIQAFnV8+OGHuhpy9OjRUr9+fRk6dKgWNWHCBKldu3YgxTIPCQRF\nAAZz8eLFtjIwxVCtWjVbnK8Ae6S+CDGdBEggJAQwdPvss8/K7du3dSHHpUuXdKi3d+/eISmfhZCA\nUwKPPPKIHor+xBNPSIUKFTR7p06d5OWXX3ZUFA2pI1xUJgESCIYAfu1bG97z588v6I1SSCCrCGBU\nZPbs2bJ06VJ1zIChXXw+P/jgA1m7dq3fzaIh9RsVFUmABIIl8Nprrwn28EFSU1Nl1KhRwRbJ/CQQ\nEgK5cuUSjI40adJEy9u8ebPf5dKQ+o2KiiRAAsEQmDFjhiQmJuoKXXiPgWC+dP78+cEUy7wkEFIC\nFy9e1PLKlCnjd7k0pH6joiIJkECgBLBad+DAgZodRnTEiBGSkJCg4V69esn+/fsDLZr5SCAkBK5f\nvy5vvPGG7Nu3T1eSP/roo36Xy1W7fqOiIgmQQCAEsMXg6aeflmvXrkmLFi0Ew7uQ9957T7766is1\noh07dhQMpRUpUiSQKpiHBBwR+PTTT2XMmDG61QVz9adPn5bvv/9efvnlF8EQL0ZO4HfXX2GP1F9S\n1CMBEgiIwIABA9SvaeHChdX1Wp48ebQc7CvFFxo8yqBHavVYA6qEmUjAAYGrV6/qnuZly5bJggUL\n5JtvvtG5e/zg27Fjh3Tr1s1BaSLskTrCRWUSIAGnBObMmSN4eZOGDRvqoiNvaYwjgXARwKKi3/72\nt9oDxeI39D5LlCgRcHU0pAGjY0YSIAESIIFYJIAtLlhM5GRBUWb3yaHdzOgwjQRIgARIgAR8EKAh\n9QGIySRAAiRAAiSQGQEa0szoMI0ESIAESIAEfBCgIfUBiMkkQAIkQAIkkBmBXC4j8Djywgsv6AG7\nrv+678osE9NIgATCS+CWcexuOSnAgdhx/90yEt5aAy/9cHKyYEN7ebP6sVixYoEXxJx+E0g2zK8Z\n5lhxWpzM/eYWjGLyDz/ofuiXXnpJxo0b5y7KtmoXy4D37t3rTuQFCZBA1hOwDGrWt8R3C346dkzw\nokSOwDHDGy9K5AhcuXLFVpnNkOppDB99ZFNggARIIPIELl++LMP+/GetePQ770i8cWYQzfLOu+/K\n8ePHpbdx9/dAo0bR3NRs07bRxjPPTz/9JD3NmZqWo/Vsc3NReiNj//Y3+fHHH6VGjRq2FtoMaVxc\nnDzVoYNNgQESIIHIEzh79qzbkD7++ONSsmTJyDfCQY0TJ01SQ9q4cWN58sknHeSkaqAEpk6dqoa0\nkfnhwu/tQCk6ywfXgTCkpUqVsmXkYiMbDgZIgARIgARIwBkBGlJnvKhNAiRAAiRAAjYCNKQ2HAyQ\nAAmQAAmQgDMCNKTOeFGbBEiABEiABGwEaEhtOBggARIgARIgAWcEaEid8aI2CZAACZAACdgI0JDa\ncDBAAiRAAiRAAs4I0JA640VtEiABEiABErARoCG14WCABEiABEiABJwRoCF1xovaJEACJEACJGAj\nQENqw8EACZAACZAACTgjQEPqjBe1SYAESIAESMBGgIbUhoMBEiABEiABEnBGgIbUGS9qkwAJkAAJ\nkICNAA2pDQcDJEACJEACJOCMAA2pM17UJgESIAESIAEbARpSGw4GSIAESIAESMAZARpSZ7yoTQIk\nQAIkQAI2AjSkNhwMkAAJkAAJkIAzAjSkznhRmwRIgARIgARsBGhIbTgYIAESIAESIAFnBGhInfGi\nNgmQAAmQAAnYCNCQ2nAwQAIkQAIkQALOCNCQOuNFbRIgARIgARKwEaAhteFggARIgARIgAScEaAh\ndcaL2iRAAiRAAiRgI0BDasPBAAmQAAmQAAk4I0BD6owXtUmABEiABEjARiDOM3Tr1i1JSkryjOI1\nCZBAFhC4fPmyu9ZFixdL4fh4dzgaLy5cuKDN2vTtt5KamhqNTcx2bTp3/rze07ebN8tt891NCT+B\nX375RSs5deqUvTKXkenTp7tMrKt27dr6jmu+yICfAX4G+BngZ4CfgfSfgT59+sB0usXWI82dO7c0\nbNjQcKOQAAlkJQGMDu3evVubULduXYmLs/2rZmXTvNa9f/9+uXbtmtx3331SokQJrzqMDC2BH3/8\nUa5fvy5lypSRokWLhrZwluaVwIEDB+Tq1atSpEgRW7rtv7NgwYLyrRmaoZAACWQtgdOnT8s999yj\njfjXv/4lpUqVytoG+ai9fv36smvXLnnnnXeka9euPrSZTAKxSaBZs2ay2Qyl4/PuKVxs5EmD1yRA\nAiRAAiTgkAANqUNgVCcBEiABEiABTwI0pJ40eE0CJEACJEACDgnQkDoERnUSIAESIAES8CRAQ+pJ\ng9ckQAIkQAIk4JAADalDYFQnARIgARIgAU8CNKSeNHhNAiRAAiRAAg4J2PaROsxLdRIgARIggRAQ\nwL7hw4cPC1xDwsFC+fLlpVixYiEomUVEggANaSQosw4SIAES8ELg559/lsGDB8uCBQtsqW3btpWV\nK1fa4sIRuHLlily8eFGNdzjKzyllcmg3pzxp3icJkEDUEejVq5caUbhnbdWqlQwZMkQ6deqUznNO\nOBo+ZcoUdec4YsSIcBSfo8pkjzRHPW7eLAmQQLQQgN/WVatWaXOWLVsm7dq1i2jTMJx88+bNiNaZ\nXStjjzS7PlneFwmQQFQTOHjwoLbvrrvukjZt2vhsqzlqhEfU+aSUNQo0pFnDnbWSAAnkcALnzp1T\nAnXq1JE8efJ4pZGcnCy9e/eWGjVqSL58+aRAgQJSvHhxad26tXz99dfp8ty+fVvGjRsnLVu2FBjo\n/Pnz68IlHCSAc2ITExOlevXq+ho/frzmnzFjhjvOSovE/Gy6xsdwBId2Y/jhsekkQAKxRQAnh5w4\ncUIbvX37dn0/c+aMLFq0yHYjDRo0kIoVKwp0zHnRamjLli2r70ePHpXVq1fLunXrZP369dKkSRPN\ni0VDGB7etGmThnG0WunSpQULmj777DOZNm2a3LlzR6xDqXEEGwQ9XStOI8yf8/89NNwK890HAZxM\nah3s3bRpUwQpJEACWUzAfLG5zL+uvnAd7VKvXj1t65w5c6K9qVnavubNm7ufq/V8vb1PnTpV22nm\nUV2zZ892md6ru9379u1zValSRcvp16+fO37QoEEaZ3qsrqSkJJcxmppmDKxr1qxZLnPGrVsXFyNH\njlT9/v372+IZyJgAbCSel+nF25TYIzVUKCRAAiQQCQIJCQnSoUMHrWrDhg2yZMkSqVSpkhiDaKve\nfGFr2Bpq9UysWbOm9O3bV4YNGybGqGrSyZMnZfLkyXo9ceJEXflr5cEh1M8//7wV5HsYCNCQhgEq\niyQBEiABbwR69Ojhjp45c6Ya0goVKqhRdCd4uYDRPXTokMBgmp6lbNu2TbVwDcGh6hi2xbxot27d\nNI5/IkeAhjRyrFkTCZAACTgigPlQ9GBhKDMTbKWBVKtWLTM1poWJAFfthgksiyUBEiCBYAkMHDhQ\njWjDhg3FzHvq4qPdu3fLmDFjbEWjJwrBwiVK5AmwRxp55qyRBEiABHwS2Lt3ryxfvlz1Fi5cKBgC\ntgTG1FOsnuiRI0d03rRWrVqeyV6v8+bNq/FWb9arEiP9IsAeqV+YqEQCJEACkSWQK1cud4XWVhVE\nmBW4MmDAAHcaLurXr6/DuthHinlYGFRLzPJS3RKDNE+pXLmyBtesWeNz6NgzH6/TE6AhTc+EMSRA\nAiSQ5QTQy8QpMJCHH35YOnfurMYShtLTsCIdzhomTZokcXFxsnXrVkGPtHHjxuq4AT3ZFi1ayNWr\nV6HqFnhTKlWqlO4jhSHG8HH79u2latWqMnfuXLceL3wToCH1zYgaJEACJBByAjB6EOs9bQUYesW8\nKLa7wC/uvHnz5Pjx4/LMM8/I2rVr06qrm0E4cMDJMciLlb1w3ICVvjDE1lCulbFkyZKyePFiNbjo\n/e7YsUOWLl0qKSkp6XStPHz3ToBzpN65MJYESIAEwkoA21R8bVVp1qyZznnCkJ49e1Z7pJY7QQzZ\nppW6deu6j1+DRyPooNeJHqs3MQ4iZMuWLYLj1OBxqWDBgpnqeyuDcebHECGQAAmQAAlENwEYQ7yc\nCFwK+ivx8fE6pOuvPvXsBDi0a+fBEAmQAAmQAAk4IkBD6ggXlUmABEiABEjAToCG1M6DIRIgARIg\nARJwRICG1BEuKpMACZAACZCAnQAXG9l5MEQCJBAEAXP8l+CEEwoJZEcCly5d0tvCma89e/Z03yIN\nqRsFL0iABIIlkJqaykOhg4XI/FFPwDp1x2ooDalFgu8kQAJBE4D3nb/97W9Bl8MCfBN4++235aef\nfpIXXnhBsN+UEn4COAf2+++/F3OQva0yGlIbDgZIgASCIVCmTBl58MEHgymCef0kAI9FcF5/zz33\nkLmfzIJVK1y4sBZRtGhRW1FcbGTDwQAJkAAJkAAJOCNAQ+qMF7VJgARIgARIwEaAhtSGgwESIAES\nIAEScEaAhtQZL2qTAAmQAAmQgI0ADakNBwMkQAIkQAIk4IwADakzXtQmARIgARIgARsBGlIbDgZI\ngARIgARIwBkBGlJnvKhNAiRAAiRAAjYCNKQ2HAyQAAmQAAnkJAI3btyQ7du3y+HDh+X27dsB3ToN\naUDYmIkESIAESCCWCWzbtk0eeughKVKkiDRq1EiqVaumXqI+/vhjx7dFF4GOkTEDCZAACZBALBNY\nvHixwC80eqOlSpWSBx54QPbv3y8//vij9O/fX0qUKKHp/t4je6T+kqIeCZAACZBAtiDQokULqVCh\ngowZM0b+/e9/yz//+U85cOCAtG7dWu/v3XffdXSfNKSOcFGZBEjAKYGxY8dK9erVpWbNmupk3TP/\nsWPHpG7dupo+fvx4zyRek0DYCKAXih7oK6+8Irly5dJ68ufPL3/84x/1Gie83Llzx+/6aUj9RkVF\nEiCBQAgMGjRI4uLi9Bd/9+7d5ebNm+5i+vTpI3v27NF0XFNIIFIE8uTJk66qggULalzu3LndBjad\nkpcIGlIvUBhFAiQQOgKFChWSuXPnCr6kdu7cKW+99ZYWPm3aNFmxYoXGJyUlSXx8fOgqZUkkEACB\n5cuXay6cN2r1VP0phobUH0rUIQESCIpAnTp15MMPP9QyRo8erYZ16NChGp4wYYLUrl07qPKZmQSC\nJfDdd9/JpEmTtJg//elPjoqjIXWEi8okQAKBEsDQ7bPPPqt79bp06SKXLl0SDPX27t070CKZjwRC\nQiAlJUWeeuopSU1Nlaefflrw+XQiNKROaFGXBEggKAJYUIT5JwgWd6A3SiGBrCTw888/62pdGNOm\nTZvK9OnTHTeHhtQxMmYgARIIlMBrr73mXg2JX/+jRo0KtCjmI4GgCcCItmzZUr0aYS8p5uzhoMGp\n0JA6JRZB/R9++EH27t1re12+fDmCLWBVJBA6AjNmzJDExERdoTt8+HAtGPOl8+fPD10lLIkE/CRw\n/Phxeeyxx+TgwYPSpEkT+fLLL6V48eJ+5rar0bORnUdUhbC/7urVq7Y2LVu2TB5//HFbHAMkEO0E\nsFp34MCB2kwY0TfffFNOnz4tkydPll69esn999+v+0yj/T7YvuxBAPuXrZ5o8+bN1SFDsWLFAr45\n9kgDRhf+jH379pWEhAR9FS1aNPwVsgYSCAOBCxcu6AKOa9euCTzKYHgX8t5776nxxKKjjh076uKj\nMFTPIkkgHQE4CYGTesimTZu0J4rtLp4v+OH1V2hI/SWVBXrjxo3T5dhYkl2xYsUsaAGrJIHgCQwY\nMECSk5OlcOHCMmvWLLE2wmNf6aeffir58uVTLzNWjzX4GlkCCWROwPoMZqZlLYrLTMdKoyG1SGTB\nu8vlCvjYnsyai6OAPL3HZKbrrx7KcOIyK7M6mZazCMyZM0fwWUfPs0qVKrabb9iwoW45QDqMLIUE\nIkHg/fff188kPncZvdatW+d3U2hI/UYVOsWlS5dK27ZtdTgB3lywWuyDDz4IylBhYRLmmnAUUIEC\nBfRXPnoADRo0SGes8YU2ePBgqVWrlm5BuPfee3Vo7dChQ15vEqsrW7VqpWVifxU+eBQSIAESIIH/\nEKAhjfAnAfNCv/vd7+Rf//qXVK1aVRdZYCHGyy+/LF27dg2oNTi9AHNPf//73/UkA/zKb9y4sbpc\nQ9mecuLECd0rNXHiRDlz5oz8+te/1t7rwoUL1ehu3brVU12v169fL1999ZUaZLh6wykJFBIgARIg\ngf8QoCGN4CcBvcY///nPOqG9aNEiwcGyOJkdRhWb0+FvFEuwnQq2FZw6dUoPp4Wh3Lx5s2zZskWN\nKsKe8wFYLYlTD3BcENqzZs0aPYMPXj2wQtibaywYfLQPgnP6ypYt67SJ1CcBEiCBbEuAhjSCjxZe\nXTAn+dxzz2mv1Koae5ngKg2yZMkSK9rvd6yGhGBuNO08ZunSpd3loAcKowuZOnWqe+MxFn1YHmbQ\n+zx37pzqWH9wbt+3336rOnjnCmKLDN9JgARIQIT7SCP4Kdi9e7fWduvWLbdBs6r/5Zdf9NJakm3F\n+/OOoWJ4iNmxY4dUrlxZnn/+eR0mbtasmS07ztiDsYXhxER62sl0rFKDIUYbsEHZU+rXry94UUgg\nMwL4ocWh/8wIhS4No00QOLQI5HsjdC3JOSXBiQME7gRtYhaOuIxvQawecRk/gwhSwkSgUqVKyhms\nM3o98sgjXms3zhk0j3HI4DXd9GRdpudoK9csPHKZ4WK3vplDtaVn1IbVq1e78/AiawiYoXr3s8J1\ntIs5dkrba+bq3e3O6PPF+Iz//8kmNtiYAxhs/5LskZpPbqQEp7IfOXJE+vfvL08++aTXau+66y6v\n8b4i27dvrx6PMMf6j3/8QxYsWCBYhdu5c2f5/PPP5fe//72gfghW83722WcZFomVvhQSCIQAVo2X\nK1cukKzM45AARrjgMhTM7777boe5qR4IAaxnwehhWt40pIHQDDCP6ZHqQqC4uDh54oknAiwl42xY\nVNSuXTt9YTsNFhBhMRGGfmBIUT8Ec6rYcuM5f5pxqf9JgTs3DB3jdIRgXGn5qofpsU0A7isDXX0e\n23fO1ucEApguw2LOmjVr2m6Xi41sOMIbwDl3ECz0+eKLL9JVZsYK0i0WSqfkJeLixYvp9nZ6Ol+2\nVu1Wr15d4L8X86Q4AzLtoiIUjfnbtIJFSvCF+pvf/EZXBl+/fj2tCsMkQAIkkGMJsEcawUffqVMn\n3beJRT5YIIReIZwiwL/jTz/9JNjziaHZRo0a6faVF1980d06bFmBDBkyREaMGKHXL730kh6UjMVF\na9eu1X2gGHI4f/687Nu3T3BEEMq2VgRjMRF8TGIYePny5bqPFQ6b0TPFcAUWiWCYCFtzPAU9URhT\nCFy94VW7dm1PFV6TAAmQQI4lQEMawUcPowZDCUP4ySef6B5S7CO1BP50rbPwYASxAjKteK6ItIxb\nmTJldLgWw7iWoC44ZfjLX/4ibdq0saJ12Hfjxo0CI426cZqMJYUKFdJepxW23rGCF6uBse8URh49\nWwoJkAAJkMB/CNCQRviTAAfdb7/9tr7QC8RyahhP9CSxCMiSDh06pBuutdLSvmOoGPtAURbc/8GI\nwu0fnCd4ExhYGFMM42LxE4Z6oYvFSN4cNWNOFOeiYrl9+fLl9TxJb+UyjgRIgARyIgEa0ix86iVL\nlhS8QiF58+aV++67z1FRWPSEoVx/BP57rcVK/uhThwRIgARyCgEuNsopT5r3SQIkQAIkEBYCNKRh\nwcpCSYAESIAEcgoBDu3mlCfN+yQBEohaAtinDTd/cLCAxYNYi8D92lH7uNI1jIY0HRJGkAAJkEBk\nCGB1Ps4GhicyT8F5xStXrvSMCsv1lStXBPvQYbwpgRPg0G7g7JiTBEiABIIi0KtXLzWiWC3fqlUr\n3SeO/eaROCBiypQpulrf2pce1I3k8MzskebwDwBvnwRIIGsIYE/4qlWrtHLs54Z7z0gKhpNxrCMl\neALskQbPkCWQAAmQgGMCBw8e1Dw4qMLTaUpGBcGFaGpqakbJjM9CAjSkWQifVZMACeRcApav6zp1\n6ojlDzstDbjjhF/sGjVqCJy5YD83/Gi3bt1avv7667Tq6lxl3Lhx0rJlS4GBzp8/vy5cwkECMMKJ\niYnqmQzeycaPH6/5Z8yY4Y5DPF6RmJ9N1/gYjuDQbgw/PDadBEggtgjg5BDrQG7LPShcfab1b42j\nDOEyFDrmvGg1tGXLltX3o0ePijkzWOCze/369QIXnhAsGsLw8KZNmzRctGhR9aONBU04NnHatGl6\nKIY531bTrcMn0NO14jTB/IG/booDAjidlAd7gwKFBKKHQKwe7D1nzpzogRiFLTGHRPh18Llx+6mt\nN/OortmzZ7tM79V9N+ZACleVKlW0nH79+rnjBw0apHGmx+pKSkpy3blzR9OMgXXNmjXLZVyCunVx\nMXLkSNU35yPb4hnImIA5RlKZmV68TYk9Ugc/OqhKAiRAAsEQSEhIEPjRhmzYsEGWLFmirjeNQbQV\ni3N/IdZQq2cizsLs27evDBs2TE95QtrJkydl8uTJqjZx4kTByl9L4MsbJ0RRwkeAhjR8bFkyCZAA\nCdgI9OjRwx2eOXOmGtIKFSqoUXQneLmA0T106JAaTBw2sW3bNtWyzg/etWuXDttiXrRbt25eSmBU\nOAnQkIaTLssmARIggSAIYD4UPVgYyszEOl7R30MoMiuLac4JcNWuc2bMQQIkQAIRITBw4EA1og0b\nNhQz76mLj3bv3i1jxoyx1Y+eKMQ6o9iWyEDYCbBHGnbErIAESIAEnBPAGcDLly/XjAsXLhQMAVsC\nY+opVk8U5wubxUhSq1Ytz2Sv1zh6EWL1Zr0qMdIvAuyR+oWJSiRAAiQQWQK5cuVyV2htVUGEWYEr\nAwYMcKfhAi4FYUxv374tmIeFQbXELC/VLTFI85TKlStrcM2aNT6Hjj3z8To9ARrS9EwYQwIkQAJZ\nTgCGEafAQB5++GHp3LmzGksYSk/DinQ4a5g0aZLExcXJ1q1btUfauHFjddyAnmyLFi3k6tWrUHUL\nvCmVKlVKYGhhiDF83L59e6latarMnTvXrccL3wRoSH0zogYJkAAJhJwAjB7Eek9bAYZeMS+K7S7w\niztv3jw5fvy4PPPMM7J27dq06upmEA4ccHIM8mJlLxw3YGsMDLE1lGtlLFmypCxevFhgcNH73bFj\nhyxdulRSUlLS6Vp5+O6dAOdIvXNhLAmQAAmElQC2qfjaqtKsWTOd84QhPXv2rPZILXeC6Emmlbp1\n67rd+8GjEXTQ60SP1ZsYBxGyZcsWwXFq8LhUsGDBTPW9lcE482OIEEiABEiABKKbAIwhXk4ELgX9\nlfj4eB3S9VefenYCHNq182CIBEiABEiABBwRoCF1hIvKJEACJEACJGAnQENq58EQCZAACZAACTgi\nwDlSR7ioTAIkkBkBnHl54cKFzFSYRgIxS8Dai2u9WzdCQ2qR4DsJkEDQBMzxX9KrV6+gy2EBJBDN\nBDZu3KgHrltt5NCuRYLvJEACJEACJBAAAfZIA4DGLCRAAt4J/OEPf1AnAt5TGRtKAjhjdP/+/fKX\nv/xFHn/88VAWzbIyIADPT3BcYZ0Xa6nRkFok+E4CJBA0AexHvPfee4MuhwX4JnDx4kX1WgQnCmTu\nm1coNCzHFta7VSaHdi0SfCcBEiABEiCBAAjQkAYAjVlIgARIgARIwCJAQ2qR4DsJkAAJkAAJBECA\nhjQAaMxCAiRAAiRAAhYBGlKLBN9JgARIgARIIAACNKQBQGMWEiABEiABErAI0JBaJPhOAiRAAiRA\nAgEQ4D7SAKAxCwmQAAmQQOwTOHPmjBw9elRu3Lgh5cqV01fu3M77lzSksf9Z4B2QAAmQAAk4IHDr\n1i2pVauWHD582JYLxnT48OHSt29fW7yvAA2pL0JMJwESIAESyFYE7ty5I8nJyVKnTh2pUaOGnD9/\nXuCI/tixY9KvXz8pWrSodOnSxe97piH1GxUVSYAESIAEsgMBuPg7deqU3H333e7bwfBu3bp15eDB\ngzJr1ixHhtT5YLC7Wl6QAAmQgG8CY8eOlerVq0vNmjVl9+7dtgzoAeDLC+njx4+3pTFAAuEk4GlE\nUQ+Ma8+ePbVKGFknQkPqhBZ1SYAEHBMYNGiQxMXFyYEDB6R79+5y8+ZNdxl9+vSRPXv2aDquKSSQ\nlQSOHDmi1bdr185RM2hIHeGiMgmQgFMChQoVkrlz5wpOKdm5c6e89dZbWsS0adNkxYoVGp+UlCQ4\nOYZCApEkcOHCBUlJSZGtW7fKq6++Kp988omepNOjRw9HzeAcqSNcVCYBEgiEABZ1fPjhh7oacvTo\n0VK/fn0ZOnSoFjVhwgSpXbt2IMUyDwkERQAGc/HixbYyMMVQrVo1W5yvAHukvggxnQRIICQEMHT7\n7LPPyu3bt3Uhx6VLl3Sot3fv3iEpn4WQgFMCjzzyiDz33HPyxBNPSIUKFTR7p06d5OWXX3ZUFA2p\nI1xUJgESCIYAfu1bG97z588v6I1SSCCrCGBUZPbs2bJ06VJ1zIChXXw+P/jgA1m7dq3fzaIh9RsV\nFUmABIIl8Nprrwn28EFSU1Nl1KhRwRbJ/CQQEgK5cuUSjI40adJEy9u8ebPf5dKQ+o2KiiRAAsEQ\nmDFjhiQmJuoKXXiPgWC+dP78+cEUy7wkEFICFy9e1PLKlCnjd7k0pH6joiIJkECgBLBad+DAgZod\nRnTEiBGSkJCg4V69esn+/fsDLZr5SCAkBK5fvy5vvPGG7Nu3T1eSP/roo36Xy1W7fqOiIgmQQCAE\nsMXg6aeflmvXrkmLFi0Ew7uQ9957T7766is1oh07dhQMpRUpUiSQKpiHBBwR+PTTT2XMmDG61QVz\n9adPn5bvv/9efvnlF8EQL0ZO4HfXX2GP1F9S1CMBEgiIwIABA9SvaeHChdX1Wp48ebQc7CvFFxo8\nyqBHavVYA6qEmUjAAYGrV6/qnuZly5bJggUL5JtvvtG5e/zg27Fjh3Tr1s1BaSLskTrCRWUSIAGn\nBObMmSN4eZOGDRvqoiNvaYwjgXARwKKi3/72t9oDxeI39D5LlCgRcHU0pAGjY0YSIAESIIFYJIAt\nLlhM5GRBUWb3yaHdzOgwjQRIgARIgAR8EKAh9QGIySRAAiRAAiSQGQEa0szoMI0ESIAESIAEfBCg\nIfUBiMkkQAIkQAIkkBkB22IjuOyCA18KCZBA1hJINZvDLYHjAux1i2bBUVQQ+M5dsmRJNDc127TN\nOjtz0qRJgm0clPATSE5O1koOHTpkr8xlZPr06S4T6zJHGek7rvkiA34G+BngZ4CfAX4G0n8GzElG\nMJ1usfVI8+bNKwP69zfcKCRAAllJAO7KZvz979qEXj17SoECBbKyOT7rTpo3T86ePStt27SRKlWq\n+NSnQvAEPv/8czl95oy0btXK8fmZwdeeM0uYb5w3nDp1Kp3XI5shhYeRN15/PWcS4l2TQBQRgFGy\nDOnLQ4ZIyZIlo6h16Zuyxhw5hTZ3fOopefLJJ9MrMCbkBNavX6+GtEOHDvJ742KREn4CmzZtUkN6\n33332SrjYiMbDgZIgARIgARIwBkBGlJnvKhNAiRAAiRAAjYCNKQ2HAyQAAmQAAmQgDMCNKTOeFGb\nBEiABEiABGwEaEhtOBggARIgARIgAWcEaEid8aI2CZAACZAACdgI0JDacDBAAiRAAiRAAs4I0JA6\n40VtEiABEiABErARoCG14WCABEiABEiABJwRoCF1xovaJEACJEACJGAjQENqw8EACZAACZAACTgj\nQEPqjBe1SYAESIAESMBGgIbUhoMBEiABEiABEnBGgIbUGS9qkwAJkAAJkICNAA2pDQcDJEACJEAC\nJOCMAA2pM17UJgESIAESIAEbARpSGw4GSIAESIAESMAZARpSZ7yoTQIkQAIkQAI2AjSkNhwMkAAJ\nkAAJkIAzAjSkznhRmwRIgARIgARsBGhIbTgYIAESIAESIAFnBGhInfGiNgmQAAmQAAnYCNCQ2nAw\nQAIkQAIkQALOCNCQOuNFbRIgARIgARKwEaAhteFggARIgARIgAScEaAhdcaL2iRAAiRAAiRgI0BD\nasPBAAmQAAmQAAk4I0BD6owXtUmABEiABEjARiDOM3Tnzh3Zt2+fZxSvSYAEsoDA+fPn3bUePHhQ\nihUr5g5H40Vqaqo26/jx4/wOidADun79utb0888/k3mEmF+7dk1runLlir1Gl5Hp06e7TKyrdu3a\n+o5rvsiAnwF+BvgZ4GeAn4H0n4E+ffrAdLrF1iM1wCQuLl0UoikkQAIRJnDr1i2tMRb+J2/fvi3m\nW0Xy5MkjuXLlijCpnFkdmUf+uVvM037GbVYzPj5ebt68GfnWsUYSIAEbgdOnT8s999yjcRi6K1Wq\nlC092gL169eXXbt2yezZs6Vr167R1jy2hwRCQqBZs2ayefNmeeihh2zlcbGRDQcDJEACJEACJOCM\nAA2pM17UJgESIAESIAEbARpSGw4GSIAESIAESMAZARpSZ7yoTQIkQAIkQAI2AjSkNhwMkAAJkAAJ\nkIAzAjSkznhRmwRIgARIgARsBGhIbTgYIAESIAESIAFnBGz7SJ1lpTYJkAAJkEAoCGDf8OHDh+Xy\n5ctSpkwZKV++fNS7hQzFfWeXMmhIs8uT5H2QAAnEHAE42xg8eLAsWLDA1va2bdvKypUrbXHhCMBn\n7MWLF9V4h6P8nFImh3ZzypPmfZIACUQdgV69eqkRzZ07t7Rq1UqGDBkinTp1EniKCrdMmTJFSpQo\nISNGjAh3Vdm+fPZIs/0j5g2SAAlEI4EDBw7IqlWrtGnLli2Tdu3aRbSZGE6mS9jQIGePNDQcWQoJ\nkAAJOCKA4/Egd911l7Rp08ZnXhwKYB1X51OZChElQEMaUdysjARIgAT+Q+DcuXN6UadOHT01xxuX\n5ORk6d27t9SoUUPy5csnBQoUkOLFi0vr1q3l66+/TpcFp5OMGzdOWrZsqQY6f/78unAJBwnACCcm\nJkr16tX1NX78eM0/Y8YMd5yVFon52XSNj+EIDu3G8MNj00mABGKLAE4OOXHihDZ6+/bt+n7mzBlZ\ntGiR7UYaNGggFStWFOiY86LV0JYtW1bfjx49KqtXr5Z169bJ+vXrpUmTJpoXi4YwPLxp0yYNFy1a\nVEqXLi1Y0PTZZ5/JtGnT5M6dO3Lq1ClNtw4GR0/XirMa4XmwvBXH90wI4GRS62Dvpk2bIkghARLI\nYgLmi81l/m31hetol3r16mlb58yZE+1NzdL2NW/e3P1crefr7X3q1KnaTjOP6jJH07lM79Xd7n37\n9rmqVKmi5fTr188dP2jQII0zPVZXUlKSyxhNTTMG1jVr1iyXOd/WONdQ3AAAKUFJREFUrYuLkSNH\nqn7//v1t8QxkTAA2Es/L9OJtSuyRGioUEiABEogEgYSEBOnQoYNWtWHDBlmyZIlUqlRJjEG0VW++\nsDVsDbV6JtasWVP69u0rw4YNE2NUNenkyZMyefJkvZ44caKu/LXyFClSRJ5//nkryPcwEKAhDQNU\nFkkCJEAC3gj06NHDHT1z5kw1pBUqVFCj6E7wcgGje+jQIYHBND1L2bZtm2rhGoJD1TFsi4VL3bp1\n0zj+iRwBGtLIsWZNJEACJOCIAOZD0YOFocxMsJUGUq1atczUmBYmAly1GyawLJYESIAEgiUwcOBA\nNaINGzYUM++pi492794tY8aMsRWNnigEC5cokSfAHmnkmbNGEiABEvBJYO/evbJ8+XLVW7hwoWAI\n2BIYU0+xeqJHjhzRedNatWp5Jnu9zps3r8ZbvVmvSoz0iwB7pH5hohIJkAAJRJZArly53BVaW1UQ\nYVbgyoABA9xpuIBLQRhT7CPFPCwMqiVmealuiUGap1SuXFmDa9as8Tl07JmP1+kJ0JCmZ8IYEiAB\nEshyAjCMOAUG8vDDD0vnzp3VWMJQehpWpMNZw6RJkyQuLk62bt0q6JE2btxYHTegJ9uiRQu5evUq\nVN0Cb0qlSpUSGFoYYgwft2/fXqpWrSpz58516/HCNwEaUt+MqEECJEACIScAowex3tNWgKFXzIti\nuwv84s6bN0+OHz8uzzzzjKxduzaturoZhAMHnByDvFjZC8cNWOkLQ2wN5VoZS5YsKYsXL1aDi97v\njh07ZOnSpZKSkpJO18rDd+8EOEfqnQtjSYAESCCsBLBNxddWlWbNmumcJwzp2bNntUeaJ08ebRd6\nkmmlbt267uPX4NEIOuh1osfqTYyDCNmyZYvgODV4XCpYsGCm+t7KYJz5MUQIJEACJEAC0U0AxhAv\nJwKXgv5KfHy8Dun6q089OwEO7dp5MEQCJEACJEACjgjQkDrCRWUSIAESIAESsBOgIbXzYIgESIAE\nSIAEHBGgIXWEi8okQAIkQAIkYCfAxUZ2HgyRAAkEQWDBggV67mUQRTArCUQtgf3792vb9uzZY2sj\nDakNBwMkQALBEPjpp59k48aNwRTBvCQQ9QTSHnxOQxr1j4wNJIHYIdCyZUvp3r177DQ4hlu6YsUK\nMQd+C/aC3nfffTF8J7HTdBwWgBN5zMHqtkbTkNpwMEACJBAMATgE6Nq1azBFMK+fBBITE/U0GBwK\n/txzz/mZi2rBEJgxY4Ya0jJlytiK4WIjGw4GSIAESIAESMAZARpSZ7yoTQIkQAIkQAI2AjSkNhwM\nkAAJkAAJkIAzAjSkznhRmwRIgARIgARsBGhIbTgYIAESIAESIAFnBGhInfGiNgmQAAmQAAnYCNCQ\n2nAwQAIkQAIkQALOCNCQOuNFbRIgARIgARKwEaAhteFggARIgARIIKcRuHz5ssC95ZUrVwK6dRrS\ngLAxEwmQAAmQQKwTgAH961//KuXKlZMKFSrI66+/HtAt0UVgQNiYiQRIgARIIFYJpKamypQpU2TU\nqFFy6tQp923cuXPHfe3kgobUCS3qkgAJkAAJxDyBl156SaZOnar30aJFCzl27JgO7QZ6YxzaDZQc\n85EACfhFYOzYsVK9enWpWbOm7N6925YHX2BwdI/08ePH29IYIIFwEejWrZvUqFFD5s+fLxs2bJDa\ntWsHVRUNaVD4mJkESMAXgUGDBklcXJwcOHBAj1i7efOmO0ufPn0EhyQjHdcUEogEgUceeURwSHfH\njh1DUh0NaUgwshASIIGMCBQqVEjmzp0rBQsWlJ07d8pbb72lqtOmTROcqYn4pKQkiY+Pz6gIxpNA\nVBOgIY3qx8PGkUD2IFCnTh358MMP9WZGjx6thnXo0KEanjBhQtBDa9mDEu8iVgnQkMbqk2O7SSDG\nCGDo9tlnn5Xbt29Lly5d5NKlSzrU27t37xi7EzaXBOwEaEjtPBgiARIIIwEsKMqd+z9fO/nz5xf0\nRikkEOsEaEhj/Qmy/SQQQwRee+01sfbqYS8f9vFRSCDWCdCQxvoTZPtJIEYIzJgxQxITE3WF7vDh\nw7XVmC/FFgQKCcQyARrSWH56bDsJxAgBrNYdOHCgthZGdMSIEZKQkKDhXr166VaEGLkVNpME0hGg\nIU2HhBEkQAKhJHDhwgV5+umn5dq1awIvMhjehbz33nvqpAGLjrCfD+8UEogEga+++kqwLct6rVy5\nUqudPHmyO65nz55+N4WG1G9UVCQBEgiEwIABAyQ5OVkKFy4ss2bNkjx58mgx2D/66aefSr58+bRH\navVYA6mDeUjACYFcuXLpDzv8uMPLmre/deuWOx7X/gp97fpLinokQAIBEZgzZ47g5U0aNmwoWHRE\nIYFIEnjsscfE5XKFrEr2SEOGkgWRAAmQAAnkRAI0pDnxqfOeSYAESIAEQkaAhjRkKFkQCZAACZBA\nTiRAQ5oTnzrvmQRIgARIIGQEuNgoZChZEAmQwA8//CALFy4kiAgQOH/+vNaybds2npwTAd6o4ty5\nc1rT2bNnbTXSkNpwMEACJBAMgS+++EJef/31YIpgXocEPvjgA8GLEjkC+/bts1VGQ2rDwQAJkEAw\nBEqUKCHVq1cPpgjm9ZPAzz//LDdu3JBSpUqxR+ons2DVUlJS5Pr163qGrmdZNKSeNHhNAiQQFIHu\n3btL165dgyqDmUkgWgk0a9ZMNm/eLI0aNbI1kYuNbDgYIAESIAESIAFnBGhInfGiNgmQAAmQAAnY\nCNCQ2nAwQAIkQAIkQALOCNCQOuNFbRIgARIgARKwEaAhteFggARIgARIgAScEaAhdcaL2iRAAiRA\nAiRgI0BDasPBAAmQAAmQAAk4I8B9pM54UZsESIAEQk7g9OnTcvjwYbl8+bKUKVNGypcvL8WKFQt5\nPSwwPARoSMPDlaWSAAmQgE8C8E40ePBgWbBggU23bdu2snLlSltcOAJXrlyRixcvqvEOR/k5pUwO\n7eaUJ837JAESiDoCvXr1UiOaO3duadWqlQwZMkQ6deok9evXD3tbp0yZInDpOGLEiLDXld0rYI80\nuz9h3h8JkEBUEjhw4ICsWrVK27Zs2TJp165dRNuJ4eSbN29GtM7sWhl7pNn1yfK+SIAEoprAwYMH\ntX133XWXtGnTxmdbXS6XpKam+tSjQuQJ0JBGnjlrJAESIAH32ZZ16tSRPHnyeCWSnJwsvXv3lho1\naki+fPmkQIECUrx4cWndurV8/fXX6fLcvn1bxo0bJy1bthQY6Pz58+vCJRwkACOcmJiop/PghJ7x\n48dr/hkzZrjjEI9XJOZn0zU+hiM4tBvDD49NJwESiC0CODnkxIkT2ujt27fr+5kzZ2TRokW2G2nQ\noIFUrFhRoDN9+nQ1tGXLltX3o0ePyurVq2XdunWyfv16adKkiebFoiEMD2/atEnDRYsWldKlSwsW\nNH322Wcybdo0uXPnjpw6dUrTcRwYBD1dK04jzB/r0HArzHcfBAxEl3lQLqPmatq0KYIUEiCBLCZg\nvtj0fxL/l7iOdqlXr562d86cOdHe1CxtX/Pmzd3PFc82o9fUqVO1nWYe1TV79mzXuXPn3O02h0q7\nqlSponn79evnjh80aJDGmR6rKykpyWWMpqYZA+uaNWuW69atW25dXIwcOVL1+/fvb4tnIGMCsJF4\nZqYXb1Nij9RQoZAACZBAJAgkJCRIhw4dtKoNGzbIkiVLpFKlSmIMoq1684WtYWuo1TOxZs2a0rdv\nXxk2bJgYo6pJJ0+elMmTJ+v1xIkTdeWvladIkSLy/PPPW0G+h4EADWkYoLJIEiABEvBGoEePHu7o\nmTNnqiGtUKGCGkV3gpcLGN1Dhw4JDKbpWcq2bdtUC9eQXbt26bAt5kW7deumcfwTOQI0pJFjzZpI\ngARIwBEBzIeiBwtDmZlgKw2kWrVqmakxLUwEuGo3TGBZLAmQAAkES2DgwIFqRBs2bChm3lMXH+3e\nvVvGjBljKxo9UQgWLlEiT4A90sgzZ40kQAIk4JPA3r17Zfny5aq3cOFCwRCwJTCmnmL1RI8cOaLz\nprVq1fJM9nqdN29ejbd6s16VGOkXAfZI/cIUvUrwlYl/OCx990du3Lgh+MfBPrGNGzdKSkqKYO9Z\ntAqW7mMrgLWkP5ra+eWXX0rjxo3l7Nmz0dQstiWbEMiVK5f7TqytKogwK3BlwIAB7jRcwKUgjCn+\nlzEPC4NqiVleqv8/af/PK1eurCpr1qzxOXRslcV37wRi2pBis3JOl08//VSwoRv/DL4EixtwqgRW\n/WG/2YMPPqh71b799ltfWUOS7vR5XbhwQR5//HHZuXOn/P3vfw9JG5wUgpM4fvrpJ8GPFW/y3nvv\n6aKPJ554Qk/t8KbDOBIIlAAMI/5fIQ8//LB07txZjSUMpadhRTqcNUyaNEni4uJk69atgh4pfuTB\ncQN6si1atJCrV69C1S3wplSqVCndRwpDjOHj9u3bS9WqVWXu3LluPV74JhCzhhQfMDxwrGLLaYKF\nBytWrNDbhtNpiDVH8r//+7+CBQppBRu34SAbG6+xSdvsHZM+ffqoazKrjLR5Qhl2+rywcfypp57S\nX8r4EoG3lkgJDOhf//pXKVeunH4Jvf76616rRs8An0Fssuf2Aq+IGJkJARg9iPWeVhVDr5gXxQ9f\n+MWdN2+eHD9+XJ555hlZu3ZtWnX9X4YDB5wcg7xY2QvHDfiOxP+QNZRrZSxZsqQsXrxYDS56vzt2\n7JClS5fqKFVaXSsP3zMggF2lseiQwZyWoBtjjZcQ28bYnBB49NFH9d7/8Ic/uObPn6/XX331levJ\nJ5/Ua7P8PR0G4yJM0x566CGXGeJJlx7uCKfPCxvSzUfWZby5uMwCinA3T8s3v/JdxmC77rnnHq0b\n9eP14osvZlg/NswXKlRI9bAJPlRChwyhIpk9ysHnAY4Y0jpVyOzujNF1HTt2zGVcA2ampmnmx6PL\nbK/xW99ngdlUISOHDBHvkVr7njKw6xodLScS+NNWNBh65nOT2S2FNA3+MjG8M8P4yPz973+vZWOY\nBgsTjHGVv/zlL+nqsxxkY3gIRzb5EjyDtHMqvvKEKv2XX36R1157TYsbPXq0u7cdqvIzKuell16S\nP/3pT9prx1CYNayWkT7isWH+1VdfVRXkR2+WQgKhJoAhWPRMM/LJ660+uBS89957ddjXW7pnXHx8\nvI6u+KvvmZfXIr6/UYOghC+ZRo0aaQk4+65Zs2bqRBlDZhg6w/CdJZcuXdIDbjG2D0fLeKAdO3bU\nTciWDsbxLU8fVl54ALHi8P673/3OUtchCzh7xoIVT8FQXFpdhP1pK+bqoPvxxx/LP//5T10Ig/kJ\neA/BfJ63YVXPur1djx07VsvEP0ra1XjmF6XUrVtX0y0n0xhORDs8hzth9DDUCCNrLSLwrMu4GNNg\nZuccYo4Fzq4x5GM5yIbXlTfeeEPwfNIK6szMQbbT52WVj3ZgAQ+erbchU6e8rHJ9vWMjOz4vppcv\n2ABfu3ZtX1k0/ZVXXtHPKz5nnFvyCxmVSCB7EUAPPFxDu4aUy3whuywfkBgCgx9IxONl+ZM0X0Au\nY0Q07u6773Y98sgjLvMLTMPIs2XLFh0oKFOmjKtYsWL6ssowBswdhzQzYa66+GPVtX//fnccLsyp\nCVq2MdrueH/biqE/6JovXJeZV3CZX4gutMtqj5ngd5fp74VZzOJCW1CGMT4us7LWndUsCnK3FcMv\nEHN2ocv8KNF43DPyGeOn76Zn6jLzJy6zUMdllsy7X7/61a803fyAccch3fwYcNd1//33q45xdq3t\nKViwoIZRvpmvdOvhAuV7+g1FHrOowWXmezQP/Hs6fV5WBZbfVuPyzIqyvTvlZcvsIPA///M/ei+Z\nDe1axRljqrrmcGYrKqh3Du0GhY+ZSSAsBDIa2sWQZFgNqWVgjHcOnevCl2CXLl30SweNgmCuD3pm\nhZkLX8AQs8JMv7wRj3m9tOLPnJtTQ+pPWy1DCl1zOoPLLPzRppnTFfQeEL9nz560zfUZNj1Rl2W4\nzLCm6pter5aJeM8yzco6lxmKcZkeqsssDlAd/NhAPhgyMzypBtK6n8zeYewsMat6XWbFnxV04Vm9\n/fbb7vvCDx5LrB9H/jrI9ud5oewffvhB68MPFBiTjMQJr4zK8BXvxJCalc/abtwnfmQEKzSkwRJk\nfhIIPYEsNaRYBOO5wMUyOvgSN6vRtFeHL/vDhw/b7hwT5ZYRMPNmtjR/vpgDMaSZtRUNsAwpes6e\n7cVJC1av8IsvvrC11d+AOebIbUTACL1t3P8nn3xiK8LsEXOZIWSNw2kb0EEvG/Ldd9/pSREwSO+8\n8477ZRlp4+zaHYf0jz76SPNl9OfatWsus6pX6/jXv/6laljgZfE3q4QzymqLt/R9LQ4z87xalxlS\ntuX3FvCXl7e8/sQ5MaT4fFu9cRj5YIWGNFiCzE8CoSeQkSGNiGejDz/80LbABfNw77//vi7H/v77\n73VRi/mi1/P1cMaep5gvYJ1LNUbLfe6eZ3qorzNrq2ddWNxjjjJyR2H5OPZzYlm66cm5451cYDsK\nlqsb4yim165Zu3fvrgf7epZz3333uYPWuYHWHjE4L4CYHxE2R9iY08UmbcwDPvbYY6rj7Y/5Atcz\nDjE3azl5sOajrcVX4XSQjXlGCObIfYm/vLCkf/DgwV6Lg8eYzOaNvWbyEonPqRk+1+0J2HuKz0JO\nFCyA+/Of/5wTb533nAMIWGfJYq9uz5493XccEUOadp8UVqANGTJEGwEnARDT85EXXnhBr739idRq\nyMza6q1dnnH4Mg1WsKAIh/DCeGHR1YQJEzItEscpYX9ogQIFMtXzJ3HUqFG64jftZu+0eS2XYpZb\nsrTpwYQt423mxv0qxh9e+GGT0SKwQH/0eGscDlLGPj/rR403neweh+eXEevsfu+8v5xDIO13ZEQM\naWZ4YVQhhQsXVgOSka7V08ooPbvEY9uH1QM0+78Exu3dd9/N8PawHN7JkviMCoK7wDfffFOTsUoX\nm7qxehdihrttLscs5w/hcJCNJfsQq2eqgUz++MMLK7nRS/QmVn3e0pzGWc5B4PAipwo+K9bnKKcy\niNR9YycE/k+efvrpkIyqRKrdsVwPtsdhK2HaFf1ZbkixvQKCHukDDzygXnf8AQ3PGzA06B1l9MWF\nHh0E5/hhW4MlZtWrdRlV7xgWw/YV9IphIMwJ9oJ9lGZc3r1fNFwNxlA7DDhGBTz3oZpZhnT70Kye\nKIaKcbAwtiz5En+eF8qw9m7++OOPuj837QiBZz3+8sK0AbZchVPgztDaYhTuusJ5H8GWjWkHbAOj\nhJ8AfvDCkxG+3Mk8/LxRw1tvvaUVpfUGF/xYpBYb+B/sycQ+SexJ7N27t/vLyLNEa27OM87aK4m5\nPzhi9ybWaQlwgwWDAMHxQ2mPIPKWN9Jx8CeLI5Mgw4cPlxEjRkhCQoKGMXRrtvDodbj+WA6yPYcs\n0MOCH1lrKNeqG3OKgTrIzux5oXzMLWKYGvtWMV+ckWQ1r7TtMgvMNAp7fM1q7rTJDJMACWRjAllu\nSDGviA326HnAMw++iH7729+qhx44ZDB7G3XoIu0zsE6Bh9N2DA8jj9kmo703Sxe+WiFmdad6BcHw\nMLzQGBdwlkpUvKM3g+EZ9MrhUQe9UQicosNJA4wKWHhzihCqGzD7H7UoLHTCYrDf/OY36tgBTifg\nnMFTEHbqINuf54U64NjCcqrxj3/8w7Na93W4eBk3i4K5WeuFE3IgZj+rO85zgYG7QebCcsSA50Qh\nARLIYQSwQDhcDhmMkdStDKZng2oyFeyDxAZ/OHAwj8D9gkMG43otXV44LcAmeDgC8NQ33oncutgH\nab7A1XECdOBAwXzRucxKYc1jxrnduv621azq1bzG4447r3VhVsNq2ueff25F+fVu+cE188S2LTXI\nbIZu3Ey81elXBUbJ9CC1bWZVtNcs2L4BzuYHjeqBF7agYBsO6kXYOMq35cUeWjOX6kK7rWeA/MZB\ntgvbZjzFn+dl6WP7EMrDZwG+bNNKuHgZQ+q+D+t+0r7j85RWsPcWnx/ce1rnH2l1/Q1z+4u/pHKu\nnpkK08/r7Nmzcy6ECN95RttfwuqQIZB7ND5eXWYyVx00wwB77j/1Vp6Z13OZhSS6kd+4lfOm4jI9\nOXVogD2rlMwJwACa8011f2/mmvZUfx1k+/O8UDIMNIyYGVq2VxRlIdyPGUXQtnr7wRdoc2lIAyWX\nc/LRkEb+WWdkSLN8sZH5srQJhnitxSy2hAwCmNvztbgDK4LTrrLKoLgcH435SQynOxV/V7/687xQ\nN4aOMXeOhWHY4gKH8NEomMvGimdMF1gLEaKxnWwTCZBA+Ahk+Rxp+G6NJccyAcyVY3k/DO/LL7+s\n5yZG2/1gDzQMKeZUsaANTjAoJEACOY8ADWnOe+Yxc8dY2PO3v/1Nt+XgNJZoE6zUxQgKFhrhZCMK\nCZBAziQQdUO7OfMx8K4zIoDeKPapGr+3GalkWTyOrYOBxypnCgmQQM4lwB5pzn32MXPn2GyOId5o\nEzj8oBGNtqfC9pCAMwLwQwDHFvDnDn8GgQgNaSDUmIcESIAESCCmCWzbtk19D2Dvutk2qYtcsWgQ\nTmOcCod2nRKjPgmQAAmQQEwTwOLAzp07q1c8OPSBe1p4j4Nr0v79+wtcACLdX2GP1F9S1CMBEiAB\nEsgWBOBBDi5k4S723//+t8CDG1yhtm7dWu8vs4NCvAGgIfVGhXEkQAIhIwAXoPCpDXeX5tBzW7k4\n9xb7hZGO/cIUEogEAfRC0QM13vHc6y+w5uGPf/yjVo9zsnGIh79CQ+ovKeqRAAkERGDQoEG6TQi/\n+HFQvfFe5i4Hh7Pv2bNH03FNIYFIEfB2/CROioLAB7yTBY40pJF6aqyHBHIoATiswF5bfEnh1B7L\nAxQOkzD+mzU+KSlJ4uPjcygh3na0EMDBKZB69erRkEbLQ2E7SIAE/kMAx+OZAx80gDN2YViHDh2q\n4QkTJtCFJz8oWU7gu+++U9ekaAjOeHUi7JE6oUVdEiCBgAlg6PbZZ5/VvXpdunTRYwEx1ItziCkk\nkJUEUlJSBMdupqam6pGW+Hw6ERpSJ7SoSwIkEBQBLCjC/BMEizvQG6WQQFYS+Pnnn3W1LoypOd1F\nzLGijptDQ+oYGTOQAAkESgCH1lurIfHrf9SoUYEWxXwkEDQBGFF4J4NXI+wlxZw9HDQ4FRpSp8So\nTwIkEBCBGTNmSGJioq7QHT58uJaB+dL58+cHVB4zkUAwBMwZyvLYY4+JOf9amjRpIl9++WXAJzjR\nkAbzJJiXBEjALwJYrTtw4EDVhRHF8XMJCQka7tWrl+7p86sgKpFACAhg/zKM6KFDh6R58+ayatUq\n9WYUaNE0pIGSYz4SIAG/CFy4cEEXcFy7dk3gUQbDu5D33ntPnTRcunRJOnbsqIuP/CqQSiQQJAE4\nCcFwLmTTpk3aE8W+Uc/XQw895HctNKR+o6IiCZBAIAQGDBggycnJUrhwYcHRc9ZGeOwr/fTTTyVf\nvnzaI7V6rIHUwTwk4ISA9RnMLI+1KC4zHSuNTustEnwnARIIC4E5c+YIXt6kYcOGuuXAWxrjSCBc\nBN5//33BK1TCHmmoSLIcEiABEiCBHEmAhjRHPnbeNAmQAAmQQKgI0JCGiiTLIQESIAESyJEEaEhz\n5GPnTZMACZAACYSKABcbhYokyyEBEpAdO3boQclEEX4Cp06d0kpwKPWZM2fCXyFrkJMnTyoFeETy\nFBpSTxq8JgESCIrA2rVrZePGjUGVwczOCMyePVvwokSOwA8//GCrjIbUhoMBEiCBYAhUqFAhIF+l\nwdSZU/Pu27dPrl69KpUqVZKSJUvmVAwRve9vv/1W4GCkRIkStnppSG04GCABEgiGAI6i6tq1azBF\nMC8JRC2BZs2ayebNm9Odn8vFRlH7yNgwEiABEiCBWCBAQxoLT4ltJAESIAESiFoCNKRR+2jYMBIg\nARIggVggQEMaC0+JbSQBEiABEohaAjSkUfto2DASIAESIIFYIEBDGgtPiW0kARIgARKIWgI0pFH7\naNgwEiABEiCBWCDAfaSx8JTYRhIggWxN4PTp03L48GG5fPmylClTRsqXLy/FihXL1vecnW6OhjQ7\nPU3eCwmQQEwRgM/WwYMHy4IFC2ztbtu2raxcudIWF47AlStX5OLFi2q8w1F+TimTQ7s55UnzPkmA\nBKKOQK9evdSI5s6dW1q1aiVDhgyRTp06Sf369cPe1ilTpqiruxEjRoS9ruxeAXuk2f0J8/5IgASi\nksCBAwdk1apV2rZly5ZJu3btItpODCffvHkzonVm18rYI82uT5b3RQIkENUEDh48qO276667pE2b\nNj7b6nK5JDU11aceFSJPgIY08sxZIwmQAAnIuXPnlEKdOnUkT548XokkJydL7969pUaNGpIvXz4p\nUKCAFC9eXFq3bi1ff/11ujy3b9+WcePGScuWLQUGOn/+/LpwCQcJwAgnJiZK9erV9TV+/HjNP2PG\nDHeclRaJ+dl0jY/hCA7txvDDY9NJgARiiwBODjlx4oQ2evv27fqOQ7kXLVpku5EGDRpIxYoVBTrT\np09XQ1u2bFl9P3r0qKxevVrWrVsn69evlyZNmmheLBrC8PCmTZs0XLRoUSldurRgQdNnn30m06ZN\nkzt37oh1IPj169dVDz1dK85qxPnz561LvvtDwEB0mQflMrqupk2bIkghARLIYgLmi03/J/F/ieto\nl3r16ml758yZE+1NzdL2NW/e3P1c8Wwzek2dOlXbaeZRXebQbpfpvbrbbc4hdVWpUkXz9uvXzx0/\naNAgjTM9VldSUpLLGE1NMwbWNWvWLNetW7fcurgYOXKk6vfv398Wz0DGBGAj8cxML96mxB6poUIh\nARIggUgQSEhIkA4dOmhVGzZskCVLlujB3MYg2qo3X9gatoZaPRNr1qwpffv2lWHDhgkO94acPHlS\nJk+erNcTJ07Ulb8aMH+KFCkizz//vBXkexgI0JCGASqLJAESIAFvBHr06OGOnjlzphrSChUqqFF0\nJ3i5gNE9dOiQGkzTs5Rt27apFq4hu3bt0mFbzIt269ZN4/gncgRoSCPHmjWRAAmQgCMCmA9FDxaG\nMjPBVhpItWrVMlNjWpgIcNVumMCyWBIgARIIlsDAgQPViDZs2FDMvKcuPtq9e7eMGTPGVjR6ohAs\nXKJEngB7pJFnzhpJgARIwCeBvXv3yvLly1Vv4cKFgiFgS2BMPcXqiR45ckTnTWvVquWZ7PU6b968\nGm/1Zr0qMdIvAuyR+oWJSiRAAiQQWQK5cuVyV2htVUGEWYErAwYMcKfhAi4FYUyxjxTzsDColpjl\npbolBmmeUrlyZQ2uWbPG59CxZz5epydAQ5qeCWNIgARIIMsJwDDiFBjIww8/LJ07d1ZjCUPpaViR\nDmcNkyZNkri4ONm6daugR9q4cWN13ICebIsWLeTq1atQdQu8KZUqVUpgaGGIMXzcvn17qVq1qsyd\nO9etxwvfBGhIfTOiBgmQAAmEnACMHsR6T1sBhl4xL4rtLvCLO2/ePDl+/Lg888wzsnbt2rTq6mYQ\nDhxwcgzyYmUvHDdgawwMsTWUa2UsWbKkLF68WA0uer87duyQpUuXSkpKSjpdKw/fvRPgHKl3Lowl\nARIggbASwDYVX1tVmjVrpnOeMKRnz57VHqnlThA9ybRSt25d9/Fr8GgEHfQ60WP1JsZBhGzZskVw\nnBo8LhUsWDBTfW9lMM78GCIEEiABEiCB6CYAY4iXE4FLQX8lPj5eh3T91aeenQCHdu08GCIBEiAB\nEiABRwRoSB3hojIJkAAJkAAJ2AnQkNp5MEQCJEACJEACjgjQkDrCRWUSIAESIAESsBPgYiM7D4ZI\ngASCIPDRRx/5XIkaRPHMSgJZSsBaKf3NN99Iz5493W2hIXWj4AUJkECwBPBFY33ZBFsW85NArBCg\nIY2VJ8V2kkAMEMC5l4mJiTHQ0thv4pAhQyQ5OVmGDh0qjz76aOzfUAzcQdeuXQV+jh944AFba2lI\nbTgYIAESCIYAvOXcf//9wRTBvH4SwEkvMKRFixYlcz+ZBasGhxWQQoUK2YriYiMbDgZIgARIgARI\nwBkBGlJnvKhNAiRAAiRAAjYCNKQ2HAyQAAmQAAmQgDMCNKTOeFGbBEiABEiABGwEaEhtOBggARIg\nARIgAWcEaEid8aI2CZAACZAACdgI0JDacDBAAiRAAiRAAs4IcB+pM17UJgESIAESyCYEsBf36NGj\ncuPGDSlXrpy+cud23r+kIc0mHwjeBgmQAAmQgH8Ebt26JbVq1ZLDhw/bMsCYDh8+XPr27WuL9xWg\nIfVFiOkkQAIkQALZisCdO3fUK1SdOnWkRo0acv78edm4caMcO3ZM+vXrp96iunTp4vc905D6jYqK\nJEACJEAC2YFAvnz55NSpU3L33Xe7bwfDu3Xr1pWDBw/KrFmzxIkhdT4Y7K6WFyRAAiTgm8DYsWOl\nevXqUrNmTXX47ZkDPQB8eSF9/Pjxnkm8JoGwEvA0oqgIxtU6Gg1G1onQkDqhRV0SIAHHBAYNGiRx\ncXFy4MAB6d69u9y8edNdRp8+fWTPnj2ajmsKCWQlgSNHjmj17dq1c9QMGlJHuKhMAiTglABOypg7\nd67g5IydO3fKW2+9pUVMmzZNVqxYofFJSUkSHx/vtGjqk0BQBC5cuCApKSmydetWefXVV+WTTz6R\ne++9V3r06OGoXM6ROsJFZRIggUAIYFHHhx9+qKshR48eLfXr19dzNFHWhAkTpHbt2oEUyzwkEBQB\nGMzFixfbysAUQ7Vq1WxxvgLskfoixHQSIIGQEMDQ7bPPPiu3b9/WhRyXLl3Sod7evXuHpHwWQgJO\nCTzyyCPy3HPPyRNPPCEVKlTQ7J06dZKXX37ZUVE0pI5wUZkESCAYAvi1b214z58/v/ZGgymPeUkg\nGAJDhw6V2bNny9KlS9UxA4Z28fn84IMPZO3atX4XTUPqNyoqkgAJBEvgtddeE+zh+//t3b9PGmEY\nwPGHGDYcHLSwu2gnB2OwTWxnJsJGO2jSAfgbWFgcTJisnUhgkg2GJqwsxMFWwyQuWFJHEgfqD4wD\nvedNMblW4e48DKbfNyGK73vPi5+cPtzx/tBye3sr29vbTw3J8Qj4IhAIBETvjqyurpp4h4eHjuOS\nSB1T0RABBJ4iUCqVpFAomBG6unqMFv28tFKpPCUsxyLgq0Cv1zPxIpGI47gkUsdUNEQAAa8COlo3\nk8mYwzWJ5nI5SafT5vnm5qacnp56Dc1xCPgi0O/3JZvNSqvVMiPJNzY2HMdl1K5jKhoigIAXAZ1i\nkEgk5ObmRqLRqOjtXS35fF7q9bpJovF4XPRW2uzsrJcuOAYBVwL7+/uys7NjprroZ/XdbldOTk7k\n4uJC9Bav3jnRdXedFq5InUrRDgEEPAmkUimzrmkoFDJLr83MzJg4Oq9U/6HpijJ6RTq8YvXUCQch\n4ELg+vrazGmu1WpSrVal0WiYz+71DV+z2ZRkMukimghXpK64aIwAAm4FyuWy6OOhsrKyYgYdPVTH\nzxCYlIAOKorFYuYKVAe/6dXn3Nyc5+5IpJ7pOBABBBBA4CUK6BQXHUzkZkDRqN+TW7ujdKhDAAEE\nEEBgjACJdAwQ1QgggAACCIwSIJGO0qEOAQQQQACBMQIk0jFAVCOAAAIIIDBKwDbYSHcI/+By2O+o\n4NQhgIA3AV0+b1jS1vQRnes2zUW3otLyeXdXvv61m8Y0v+6X/No6f/bO/LK3JzVrrVjK5AXa7bbp\nZLhv6X2PA6sUi8WB9YOBtZWR+arf88CAc4BzgHOAc4Bz4N9zwNrJSFPnfbFdkeou9u9dLItkAVMQ\nQGACAnd3d9I4ODCR366vSzAYnEAv/oX8Zm2MfHl1Ja+Xl2Vhft6/wER6VOD70ZH8uryU5aUlebWw\n8Gg7KvwTODo+lp61/V84HLYFtSVSvX30aWvL1oAnCCDw/AL6xzpMpB+tPTynfem89tmZSaT6Rjy6\ntvb8YP9hjz86HZNI31l7ar6xll6kTF7g5/m5SaSLi4u2zhhsZOPgCQIIIIAAAu4ESKTuvGiNAAII\nIICATeA3Zyhxs9Qtb74AAAAASUVORK5CYII=\n" + }, + "images/rec_call_3.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAJ1CAYAAACCUxrDAAABXmlDQ1BJQ0MgUHJvZmlsZQAAKJFt\nkM9KQlEQhz/LEkrIKFpUC1tVoGEqtGljFhW4uJhhf1bXq1mhdrkaUavoGSrctA1fIFzUokcIgoJW\nBUUPELgpuc3VSq3mMMzHj/mdM2egzanqesYOZHMFIzo/415ZXXM7XnEyRB9eRlQtr4cUJSItfNfW\nqNxhs+qt17rr5IiioxiP9ZSmO58P1gf/9rdEVzKV16R+SPo13SiAzSes7BV0iw+F+w0ZSvjY4nSd\nSxYn6nxV64lFw8I3wi5tU00KPwp7Ek16uomzmV3tawZremcqt7wkdUBymFnmiMhxo+AnyCRTLMiO\n/vcEa54wO+jsY7BFmk0K4g6JopMhJbxIDo0JPMJ+fJIBa9e/d9jQki8QyMpTYw1t2wWXFei9aGij\nT/KdM7hWdNVQfzZrq9jzGwF/nbvL0HFqmm9xcIxD9d4038umWT2H9gfxVj4BvCpiKJDcBBoAAABW\nZVhJZk1NACoAAAAIAAGHaQAEAAAAAQAAABoAAAAAAAOShgAHAAAAEgAAAESgAgAEAAAAAQAAAdOg\nAwAEAAAAAQAAAnUAAAAAQVNDSUkAAABTY3JlZW5zaG90mkgXewAAAdZpVFh0WE1MOmNvbS5hZG9i\nZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhN\nUCBDb3JlIDYuMC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8x\nOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJv\ndXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEu\nMC8iPgogICAgICAgICA8ZXhpZjpQaXhlbFlEaW1lbnNpb24+NjI5PC9leGlmOlBpeGVsWURpbWVu\nc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjQ2NzwvZXhpZjpQaXhlbFhEaW1l\nbnNpb24+CiAgICAgICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNv\nbW1lbnQ+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRh\nPgqfi1kPAABAAElEQVR4AeydB5yU1dX/D52ldwEpLx1CV2rkr9JCVJSgNBEBCW0XEkWSV4JKgNcY\nRTGA0lwMBIiEEpoBAig1INKkdwLSpUjvZf73d8wzmbaz88xO3f2dz2d2nuc+55bn+8zOmXvvuedm\nchiZMmWKvPLKK9KgQQN5NSlJKCRAAtElcOXqVUn81a+0ERM+/ljy5s0b3QalUvvv3n5bjh0/Lv0T\nE6Vxw4apaPNyKAi8+fvfy9HvvpOkPn3kscaNQ1Eky0iFwJDhw+Xwv/8tsJndunVz087qembsqpy/\ncME1icckQAJRIHDt2jVnrT/88IPcvnPHeR6LB/fu39dmXTU/AvgdEpkndO/evR+Zm88KmUeW+e3b\nt70rRM908uTJDnPFUb16dX3HMV9kwM8APwP8DPAzwM+A92egZ8+eMJ1uktmAopAACZAACZAACaSB\ngNswb+7cueXSpUtpKI5ZSYAEQkHg/PnzUrFiRS3q8OHDUrhw4VAUG7YyHnvsMdm9e7f8+c9/luef\nfz5s9bDg/xK4deuWPHjwQHLkyCFZsmT57wUehY1A8+bNZcuWLfLTn/7Uqw43Y4qr+fPn91JiAgmQ\nQGQJ3HGZI4XzUaz/X1pf5gkJCTHf1sg+yfDVFuufifDdefRKtj7nmTN7D+p6p0SvnayZBEiABEiA\nBOKSAI1pXD42NpoESIAESCCWCNCYxtLTYFtIgARIgATikgCNaVw+NjaaBEiABEgglgjQmMbS02Bb\nSIAESIAE4pIAjWlcPjY2mgRIgARIIJYIeC2NiaXGsS0kQAIkkBEInDt3Tg4dOiQII1miRAkpXbo0\nlxjF2YOnMY2zB8bmkgAJpB8Cp06dkv79+8u8efPcbqply5aybNkyt7RwnFy/fl2uXLmiBjwc5Wek\nMjnMm5GeNu+VBEggpgh0795dDSmCADRr1kwGDBgg7dq1k9q1a4e9nRMmTJCCBQvKsGHDwl5XRqiA\nPdOM8JR5jyRAAjFHYP/+/bJ8+XJt1+LFi6VVq1YRbSOGlu/evRvROtNzZeyZpueny3sjARKIWQIH\nDhzQtiHucosWLVJtp9miRHxu/ZVqTipEggCNaSQosw4SIAES8CBw8eJFTalRo0aKgeqxyUGPHj2k\nSpUqkj17dsmZM6cUKFBAEHB91apVHiWK3Df7yo4aNUqaNm2qmyMgCD6cmTp16qSGeNKkSVK5cmV9\njR49WvNjo2srzXqPxHytV+PjPIHDvHH+ANl8EiCB+CGwceNGOX36tDZ469at+o4dghYsWOB2E3Xq\n1JGyZcsKdMx+02psS5Ysqe9Hjx6VFStWyNq1a2XdunVSv359zQtHIgwVb9iwQc/z5csnxYsXFzg5\nzZw5U5KTk3WXmbNnz+p17DoDQY/XStME84e7h1kkbLxjd1Nrc/AGDRrglEICJBBlAubLzWH+jfWF\n41iXWrVqaVtnzJgR602NavsaNWrkfK7W8/X1PnHiRG2nmVd1TJ8+3WF6sc52792711GhQgUtp3fv\n3s70fv36aZrpuTpmz57tMNuz6TVjZB3Tpk1z3Lt3z6mLg+HDh6t+nz593NJ5kjIB2Eg8L9Ob91Ji\nz9SQoZAACZBAJAgkJiZKmzZttKr169fLF198IeXKlRNjFN2qN1/aem4Nu7perFq1qvTq1UsGDRok\nxrDqpTNnzsj48eP1eOzYseoRbOXBFn5dunSxTvkeJgI0pmECy2JJgARIwJNA165dnUlTp05VY1qm\nTBk1jM4LPg5geA8ePCgwmqaHqRtUQw3HkB07dugQLpyZOnfurGn8E1kCNKaR5c3aSIAESCBgApgf\nRU8WxtKfYJkNpFKlSv7UeC2MBOjNG0a4LJoESIAE0kIgKSlJDWndunXFzIOqQ9LOnTtlxIgRbsWi\nRwqBMxMlOgTYM40Od9ZKAiRAAn4J7N69W5YsWaI68+fPFwwHWwKD6ipWj/TIkSM6j1qtWjXXyz6P\ns2XLpulWr9anEhMDJsCeacCoqEgCJEACkSOQKVMmZ2XWMhYkGM9c6du3r/MaDhB+EAYV60wxLwuj\naolxO9XlMrjmKuXLl9fT1atXpzqM7JqPx74J0Jj65sJUEiABEogqARhHBFyANGnSRNq3b68GE8bS\n1bjiOgI6jBs3TrJmzSqbN28W9Ezr1aunwR3Qo23cuLHcuHEDqk5B1KWiRYvqOlMYYwwlt27dWipW\nrCizZs1y6vEgMAI0poFxohYJkAAJhJQADB/EevcsHMOwmCfFUhjE0Z0zZ46cPHlSOnToIGvWrPFU\n15CECPKAHWeQd8uWLRrcAR7AMMbWsK6VsVChQrJw4UI1uugFb9u2TRYtWiTHjh3z0rXy8D1lApwz\nTZkNr5AACZBA2AhgCUtqy1gaNmyoc6AwphcuXNCeaZYsWbRNGL71lJo1azq3bkPkI+ig94meqy8x\nQSRk06ZNgq3YEJkpISHBr76vMpj2IwEaU34SSIAESCDGCcAg4mVHEH4wUMmdO7cO7waqTz1vAhzm\n9WbCFBIgARIgARKwRYDG1BYuKpMACZAACZCANwEaU28mTCEBEiABEiABWwRoTG3hojIJkAAJkAAJ\neBOgA5I3E6aQAAkESQBLK7hGMUh4zBbzBLDZAMTarce1wTSmrjR4TAIkkCYChw8flq+//jpNZTAz\nCcQ6ASxT8hQaU08iPCcBEgiaACLtPPPMM0HnZ8bACXzzzTdy9epVqVGjhhQvXjzwjNQMmsCECRPk\nxIkTUrZsWa8yaEy9kDCBBEggWAL169eXTp06BZud+WwQePTRR3UXmZ49e8pLL71kIydVgyWAiFEw\nplaYR9dy6IDkSoPHJEACJEACJBAEARrTIKAxCwmQAAmQAAm4EqAxdaXBYxIgARIgARIIggCNaRDQ\nmIUESIAESIAEXAnQmLrS4DEJkAAJkAAJBEGAxjQIaMxCAiRAAiRAAq4EaExdafCYBEiABEiABIIg\nQGMaBDRmIQESIAESIAFXAjSmrjR4TAIkQAIkkOEIXLt2TY4fPy7Xr18P+t5pTINGx4wkQAIkQALx\nTABG9J133pFSpUpJmTJl5M033wz6dhhOMGh0zEgCJEACJBCPBG7fvi2Is/vuu+/K2bNnnbfw4MED\n57HdAxpTu8SoTwIkQAIkENcEXn31VZk4caLeAzZnQLxdDPOmRTjMmxZ6zEsCJJAqgQ8++EAqV64s\nVatWlZ07d7rp40usZs2aen306NFu13hCAuEi0LlzZ6lSpYrMnTtX1q9fL9WrV09zVTSmaUbIAkiA\nBPwR6Nevn2TNmlX2798vL7/8sty9e9epjh1Pdu3apddxTCGBSBB4/PHHZd++fdK2bduQVUdjGjKU\nLIgESMAXgVy5csmsWbMkISFBtm/fLkOHDlW15ORkWbp0qabPnj1bcufO7Ss700ggLgjQmMbFY2Ij\nSSC+CWAD6zFjxuhNvP/++2pcBw4cqOeffPJJSIbZ4psQWx/vBGhM4/0Jsv0kECcEMIz74osvyv37\n96Vjx45y9epVHfbt0aNHnNwBm0kCKROgMU2ZDa+QAAmEmACcjDJn/vFrJ0eOHIJeKYUE0gMBGtP0\n8BR5DyQQJwQGDx4s1lo+rPXDOj8KCaQHAjSm6eEp8h5IIA4ITJkyRSZNmqSeu0OGDNEWY/4UyxMo\nJBDvBGhM4/0Jsv0kEAcE4MWblJSkLYUhHTZsmCQmJup59+7ddZlCHNwGm0gCKRKgMU0RDS+QAAmE\ngsDly5flhRdekJs3bwqizWCoFzJy5EgN5ABHJKz3wzuFBCJBYOXKlYIlW9Zr2bJlWu348eOdad26\ndbPVFBpTW7ioTAIkYJdA37595fDhw5InTx6ZNm2aZMmSRYvAutPPP/9csmfPrj1Tq+dqt3zqk4Bd\nApkyZdIfd/iBh5c1j3/v3j1nOo7tCGPz2qFFXRIgAdsEZsyYIXj5krp16wockSgkEEkCTz75pDgc\njpBWyZ5pSHGyMBIgARIggYxIgMY0Iz513jMJkAAJkEBICdCYhhQnCyMBEiABEsiIBGhMM+JT5z2T\nAAmQAAmElAAdkEKKk4WRQMYmcPLkSVmzZk3GhhChu7927ZrWhK3EyDwy0K3lW1ju5Sk0pp5EeE4C\nJBA0gb///e/ym9/8Juj8zGifwDvvvCN4USJHwHOTe9RMYxo5/qyJBNI9AawdLVKkSLq/z1i4QfSO\nsAMP1u9irS4l/AQuXbokWH+aLVs2r8poTL2QMIEESCBYAr169ZJOnToFm535SCCmCTRs2FA2btwo\nePcUOiB5EuE5CZAACZAACdgkQGNqExjVSYAESIAESMCTAI2pJxGekwAJkAAJkIBNAjSmNoFRnQRI\ngARIgAQ8CdCYehLhOQmQAAmQAAnYJEBjahMY1UmABEiABEjAkwCNqScRnpMACZAACZCATQJcZ2oT\nGNVJgARIINQEzp07J4cOHRKECCxRooSULl1a8ufPH+pqWF4YCdCYhhEuiyYBEiABfwROnTol/fv3\nl3nz5rmptWzZUpYtW+aWFo6T69evy5UrV9SAh6P8jFQmh3kz0tPmvZIACcQUge7du6shzZw5szRr\n1kwGDBgg7dq1k9q1a4e9nRMmTJCCBQvKsGHDwl5XRqiAPdOM8JR5jyRAAjFHYP/+/bJ8+XJt1+LF\ni6VVq1YRbSOGlu/evRvROtNzZeyZpueny3sjARKIWQIHDhzQthUuXFhatGiRajsdDofcvn07VT0q\nRIcAjWl0uLNWEiCBDE7g4sWLSqBGjRqSJUsWnzQOHz4sPXr0kCpVqujOMDlz5pQCBQpI8+bNZdWq\nVV55sIvMqFGjpGnTpgIjnSNHDnVmwuYDMMSTJk2SypUr62v06NGaf8qUKc4061ok5mu9Gh/nCRzm\njfMHyOaTAAnEDwHsOHL69Glt8NatW/X9/PnzsmDBArebqFOnjpQtW1agM3nyZDW2JUuW1PejR4/K\nihUrZO3atbJu3TqpX7++5oUjEYaKN2zYoOf58uWT4sWLC5ycZs6cKcnJyfLgwQM5e/asXr9165a+\no8drpWmC+YOtxig2CRiQDvOwHCabo0GDBjilkAAJRJmA+XLT/0n8X+I41qVWrVra3hkzZsR6U6Pa\nvkaNGjmfK55tSq+JEydqO828qmP69OkO04t1tnvv3r2OChUqaN7evXs70/v166dppufqmD17tsMY\nTr1mjKxj2rRpDrMPp1MXB8OHD1f9Pn36uKXzJGUCsJF4ZqY376XEnqkhQyEBEiCBSBBITEyUNm3a\naFXr16+XL774QsqVKyfGKLpVb7609dwadnW9WLVqVcG+sYMGDRJjWPXSmTNnZPz48Xo8duxY9Qi2\n8uTNm1e6dOlinfI9TARoTMMElsWSAAmQgCeBrl27OpOmTp2qxrRMmTJqGJ0XfBzA8B48eFBgNE0P\nU7Zs2aJaOIbs2LFDh3AxT9q5c2dN45/IEqAxjSxv1kYCJEACARPA/Ch6sjCW/gTLbCCVKlXyp8Zr\nYSRAb94wwmXRJEACJJAWAklJSWpI69atK2YeVB2Sdu7cKSNGjHArFj1SCJyZKNEhwJ5pdLizVhIg\nARLwS2D37t2yZMkS1Zk/f75gONgSGFRXsXqkR44c0XnUatWquV72eZwtWzZNt3q1PpWYGDAB9kwD\nRhV6RawJo5AACZCALwKZMmVyJlvLWJBgPHOlb9++zms4QPhBGFR8p2BeFkbVEuN2qstlPL9vypcv\nryqrV69OdRjZKovvKROgMU2ZTZqv7NmzR7799lu3chDC64UXXhB42OGXIRZfU0iABEjAkwCMI3aP\ngTRp0kTat2+vBhPG0tW44nr27Nll3LhxkjVrVtm8ebOgZ1qvXj39fkGPtnHjxnLjxg2oOgVRl4oW\nLSowtjDGGEpu3bq1VKxYUWbNmuXU40FgBGhMA+NkWwuRS6pXry6PPPKILpq2CnjjjTdk7ty5kjt3\nbsHOECdPnrQuxd07ful++OGHkidPHv1hcPXq1bi7BzaYBKJFAIYPYr17tgM/tjFPiqUw+BE+Z84c\n/b7o0KGDrFmzxlNdQxIiyAO+V5AXHr8I7gAPYBhja1jXylioUCFZuHChGl30grdt2yaLFi2SY8eO\neelaefieMgHOmabMJk1XcuXKpR9IhPPCsSX48EK+/PJLQRixeBX84/3yl79UhwjrHjyHkax0vpMA\nCXgTwBKW1JaxNGzYUOdAYUwvXLigPVMr9CB6lJ5Ss2ZN59ZtiHwEHfQ+0XP1JSaIhGzatEmwFRsi\nMyUkJPjV91UG034kQGMapk8CNvhFSC78GrR+ESI2Jv4hcB7PhhRD11hUjtBkWGz+6aefhokiiyUB\nEgABGES87AjCDwYqGCnD8C4leAIc5g2eXao5v/rqK+evRKwTs3qlGNbBcApe+MXpKYcOHdJYmtbC\nbOs65kn+/ve/O8u00iP9jm2bnnjiCUGcURP2LNLVsz4SIAESiDkC7JmG6ZGg1/bcc8/pfAiMz//+\n7//K0qVLtbabN2/qRD9OsEGviY3p1opvvvlGw39hLhLhwkqVKqXXsYnve++9Jz//+c/lZz/7mVse\nnJw4ccLv/oRweipSpIgO6XgGtvYsDE4L1nCS5zX0SjFMTSEBEiABEviRAI1phD4Jv/vd79Qx4De/\n+Y1ui2Rtf/T00097tQDzKBg6hZPBa6+9po4Hu3btkpEjRwq2YBozZoxXHjgZWJ5/Xhf/kwBHBhjn\ngQMHptqj/Nvf/iYdO3ZMqSimkwAJkAAJuBCgMXWBEc5DDIvC9RzGFM4Anr1R17rhWYfhU7irY1h3\n8eLF8u6772qvc8iQIT5DhhUsWFAQRBu94JTEmhN56qmndD1aSnpIhyMDhQRIgARIIDACNKaBcYq4\nFnqR2BXCbJOksTkR0PonP/mJYGmNL4HXMNaZBSKI9WntXBGIPnVIIFACGNH44IMPAlWnHgnEFQEr\nWhRWM3Tr1s2t7TSmbjhi62Tw4MHy2WefOdeiYk2n5Rnsq6V37txRD1tf15AGxye8MJ8LXX+C4WQK\nCdglgLl4a9Nru3mpTwLxQuDatWteTaUx9UISOwmY3/z++++dDcJwL4ZofQm8grEcx99aT7OBs2zf\nvl3nYT/++GNfxTjTEFiibdu2znMekEAgBFq1aiVmk+pAVKmTRgII6ID/e0Qywr6nlPAT+P3vfy8I\nyFOlShWvymhMvZDERgKMYs+ePXXvwk6dOulSGQzjvvzyy7rG07OVWCf27LPP+p0ztf7hHn30UXnm\nmWc8i3A7dw2q7XaBJyTghwC+ZPB5pYSfwEcffaSjANhZ5qWXXgp/haxBnT9hTH2t+aUxjdEPCLx9\nsc4UjkAIbJ0vXz718IXjEiKWeIYgQ5SlefPmBXQ3GOv3HO8PKCOVSIAESIAEfBJg0AafWKKbiB0f\n3n77bW2EFbz6j3/8o2DPQkx8jxo1KqoNxHpWBMRG79a1h4sA/jj33NEiqo1l5SRAAiQQAQLsmYYJ\nMpa3oPfo6siDIAiZM2f26lV6NgHLYLDDQ/fu3TVANa4jKDW8JBEPF9dff/11LcszbyTOf/jhB43e\n5FkXgmpDfM0neOrynARIgATSEwEa0zA9TRhTT48vzGtiZxUYVH8yfvx4DdCAoV1XeeWVV3Q+CvlT\nK8M1X6iP4cjkK8h2qOtheSRAAiQQLwRoTMP4pLD201Ncd5DxvGado0fraUita9jVgUICJEACJBBb\nBPx3kWKrrWwNCZAACZAACcQkARrTmHwsbBQJkAAJkEA8EaAxjaenxbaSAAmQAAnEJAEa05h8LGwU\nCZAACZBAJAggtCpCYGIfaX8R5FJrC41paoR4nQRIgARIIN0RQFCcxx57TLDPM6LCVapUSYoVK6bB\ncYK5WXrzBkONeUiABEiABOKWwMKFC6V9+/a64QdCAz7yyCOyb98++e6773R7TGxpiet2hD1TO7So\nSwIkQAIkEPcEGjduLIg/PmLECN1M5J///Kdge7XmzZvrvb333nu275HG1DYyZiABErBDAJG7sMkC\n9ujduXOnW1aEpkT8aVxHPGoKCUSCAHqj6In+9re/FQTYgSAuwK9//Ws93rNnj9/tLFXJ4w+NqQcQ\nnpIACYSWALZkQyAS/PLHrkd37951VoCdkXbt2qXXcUwhgUgRQHhXT7GC4iDCnGVkPXVSOqcxTYkM\n00mABEJCAFG/Zs2aJfiiwn66Q4cO1XKTk5Nl6dKlmo69ORFuk0IC0SSwZMkSrR4hU2lMo/kkWDcJ\nkIBPAjVq1NC9IHHx/fffV+M6cOBA1f3kk0+kevXqPvMxkQQiReDbb78V7NIFee2112xXy56pbWTM\nQAIkEAwBDOO++OKLupavY8eOuukDhn179OgRTHHMQwIhI3Ds2DH5xS9+Ibdv3xZsJYnPp12hMbVL\njPokQAJBE4CTkbXjERw+0CulkEA0CZw6dUq9eGFQGzRoIJMnTw6qOTSmQWFjJhIggWAIDB482Okl\niV4A9ualkEC0CMCQNm3aVKMfYa0p5vARxCEYoTENhhrzkAAJ2CYwZcoUmTRpknruDhkyRPNj/nTu\n3Lm2y2IGEkgrgZMnT8qTTz4pBw4ckPr168uXX34pBQoUCLpYGtOg0TEjCZBAoATgxZuUlKTqMKTD\nhg2TxMREPe/evbuu+Qu0LOqRQFoJYH0zDOnBgwelUaNGsnz5ckHUo7QIjWla6DEvCZBAqgQuX76s\nTh03b94URJ7BUC9k5MiRGsjh6tWr0rZtW3VISrUwKpBACAggkAgC20M2bNigPVIshXF9IW6vHaEx\ntUOLuiRAArYJ9O3bVw4fPix58uSRadOmibVYHutOP//8c8mePbv2TK2eq+0KmIEEbBKwPoP+slmO\ncv50XK8x0L0rDR6TAAmEnMCMGTMEL19St25dXY7g6xrTSCBcBD766CPBK5TCnmkoabIsEiABEiCB\nDEmAxjRDPnbeNAmQAAmQQCgJ0JiGkibLIgESIAESyJAEaEwz5GPnTZMACZAACYSSAB2QQkmTZZFA\nBieAPSLhsUsJP4EffvhBK/nXv/7ljCoV/lozdg3nz59XAGfPnvUCQWPqhYQJJEACwRJYtmyZfP31\n18FmZ74gCEyYMEHwokSOAKImeQqNqScRnpMACQRN4KGHHpJ69eoFnZ8ZAydw5MgRuXXrlpQsWVLy\n588feEZqBk1g7969cv36dV0z7VkIjaknEZ6TAAkETQBbV3Xq1Cno/MxIArFMoGHDhrJx40apU6eO\nVzPpgOSFhAkkQAIkQAIkYI8Ajak9XtQmARIgARIgAS8CNKZeSJhAAiRAAiRAAvYI0Jja40VtEiAB\nEiABEvAiQGPqhYQJJEACJEACJGCPAI2pPV7UJgESIAESIAEvAjSmXkiYQAIkQAIkQAL2CHCdqT1e\n1CYBEiCBkBM4d+6cHDp0SK5duyYlSpSQ0qVLMxBDyCmHt0Aa0/DyZekkQAIkkCKBU6dOSf/+/WXe\nvHluOi1bthSEZgy3IJrPlStX1ICHu670Xj6HedP7E+b9kQAJxCyB7t27qyHNnDmzNGvWTAYMGCDt\n2rWT2rVrh73NiOdbsGBBGTZsWNjryggVsGeaEZ4y75EESCDmCOzfv1+WL1+u7Vq8eLG0atUqom3E\n0PLdu3cjWmd6row90/T8dHlvJEACMUvA2nmkcOHC0qJFi1Tb6XA45Pbt26nqUSE6BGhMo8OdtZIA\nCWRwAhcvXlQCNWrUkCxZsvikcfjwYenRo4dUqVJFsmfPLjlz5pQCBQpI8+bNZdWqVV557t+/L6NG\njZKmTZsKjHSOHDnUmQmbD8AQT5o0SSpXrqyv0aNHa/4pU6Y406xrkZiv9Wp8nCdwmDfOHyCbTwIk\nED8EsOPI6dOntcFbt27Vd2w4vWDBArebwK4kZcuWFehMnjxZjS22WoPRPXr0qKxYsULWrl0r69at\nk/r162teOBJhqHjDhg16ni9fPilevLjAyWnmzJmSnJysm4hbG1tj+zYIerxWmiaYP5cuXbIO+R4o\nAQPSYR6Ww+g7GjRogFMKCZBAlAmYLzf9n8T/JY5jXWrVqqXtnTFjRqw3Narta9SokfO54tmm9Jo4\ncaK208yrOqZPn+4wvVhnu82emo4KFSpo3t69ezvT+/Xrp2mm5+qYPXu248GDB3rNGFnHtGnTHPfu\n3XPq4mD48OGq36dPH7d0nqRMADYSz8z05r2U2DM1ZCgkQAIkEAkCiYmJ0qZNG61q/fr18sUXX0i5\ncuXEGEW36s2Xtp5bw66uF6tWrSq9evWSQYMGCTarhpw5c0bGjx+vx2PHjlWPYD0xf/LmzStdunSx\nTvkeJgI0pmECy2JJgARIwJNA165dnUlTp05VY1qmTBk1jM4LPg5geA8ePKhG0/QwZcuWLaqFY8iO\nHTt0CBfzpJ07d9Y0/oksARrTyPJmbSRAAiQQMAHMj6InC2PpT7DMBlKpUiV/arwWRgL05g0jXBZN\nAiRAAmkhkJSUpIa0bt26YuZB1SFp586dMmLECLdi0SOFwJmJEh0C7JlGhztrJQESIAG/BHbv3i1L\nlixRnfnz5wuGgy2BQXUVq0d65MgRnUetVq2a62Wfx9myZdN0q1frU4mJARNgzzRgVFQkARIggcgR\nyJQpk7MyaxkLEoxnrvTt29d5DQcIPwiDinWmmJeFUbXEuJ3qchlcc5Xy5cvr6erVq1MdRnbNx2Pf\nBGhMfXNhKgmQAAlElQCMI3aPgTRp0kTat2+vBhPG0tW44joCOowbN06yZs0qmzdvFvRM69Wrp8Ed\n0KNt3Lix3LhxA6pOQdSlokWL6jpTGGMMJbdu3VoqVqwos2bNcurxIDACNKaBcaIWCZAACYSUAAwf\nxHr3LBzDsJgnxVIYxNGdM2eOnDx5Ujp06CBr1qzxVNeQhAjygB1nkBcevwjugGUzMMbWsK6VsVCh\nQrJw4UI1uugFb9u2TRYtWiTHjh3z0rXy8D1lApwzTZkNr5AACZBA2AhgCUtqy1gaNmyoc6Awphcu\nXNCeqRV6EMO3nlKzZk3n1m2IfAQd9D7Rc/UlJoiEbNq0SbAVGyIzJSQk+NX3VQbTfiRAY8pPAgmQ\nAAnEOAEYRLzsCMIPBiq5c+fW4d1A9annTYDDvN5MmEICJEACJEACtgjQmNrCRWUSIAESIAES8CZA\nY+rNhCkkQAIkQAIkYIsAjaktXFQmARIgARIgAW8CdEDyZsIUEiCBIAl8+umn0r9//yBzMxsJxDaB\ny5cvawO/+eYb6datm1tjaUzdcPCEBEggLQQQTABLOCgkkJ4J3L171+v2aEy9kDCBBEggWALt2rXz\nCsIebFnM55/Ae++9J8ePH9cekrX/qf8cvJpWAth3FnvI1qpVy6soGlMvJEwgARIIlgDWNiLaDiX8\nBBBkAVuzPfTQQ2QeftxaAzZah+TLl0/fXf/QAcmVBo9JgARIgARIIAgCNKZBQGMWEiABEiABEnAl\nQGPqSoPHJEACJEACJBAEARrTIKAxCwmQAAmQAAm4EqAxdaXBYxIgARIgARIIggCNaRDQmIUESIAE\nSIAEXAnQmLrS4DEJkAAJkAAJBEGAxjQIaMxCAiRAAiRAAq4EGLTBlQaPSYAESIAEMgyB8+fPy9Gj\nR+XOnTtSqlQpfWXOHFwfk8Y0w3xseKMkQAIkQAIgcO/ePalWrZocOnTIDQgM6pAhQ6RXr15u6YGc\n0JgGQok6JEACJEAC6YbAgwcP5PDhw1KjRg2pUqWKXLp0Sb7++ms5ceKEIP4uwgV27NjR1v3SmNrC\nRWUSIAESIIF4J5A9e3Y5e/asFClSxHkrGOqtWbOmHDhwQKZNm2bbmAY3OOysngckQAIk4J/ABx98\nIJUrV5aqVavKzp073ZTRE8AXGK6PHj3a7RpPSCCcBFwNKeqBgbX2KIWhtSs0pnaJUZ8ESMAWgX79\n+knWrFll//798vLLL4vrXpA9e/aUXbt26XUcU0ggmgSOHDmi1bdq1cp2M2hMbSNjBhIgATsEcuXK\nJbNmzZKEhATZvn27DB06VLMnJyfL0qVLNX327NmSO3duO8VSlwTSTODy5cty7Ngx2bx5s7zxxhvy\n2WefycMPPyxdu3a1XTbnTG0jYwYSIAG7BODoMWbMGPWSfP/996V27doycOBALeaTTz6R6tWr2y2S\n+iSQZgIwmgsXLnQrB9MNlSpVcksL5IQ900AoUYcESCDNBDCM++KLL8r9+/fVuePq1as67NujR480\nl80CSCAYAo8//ri89NJL8vTTT0uZMmW0iHbt2snrr79uuzgaU9vImIEESCBYAvjVby2Kz5Ejh6BX\nSiGBaBHA6Mj06dNl0aJFGrwBw7z4fP7pT3+SNWvW2GoWjaktXFQmARJIC4HBgwcL1vhBbt++Le++\n+25aimNeEggZgUyZMglGSerXr69lbty40VbZNKa2cFGZBEggWAJTpkyRSZMmqecuosxAMH86d+7c\nYItkPhIIOYErV65omSVKlLBVNo2pLVxUJgESCIYAvHiTkpI0KwzpsGHDJDExUc+7d+8u+/btC6ZY\n5iGBkBG4deuWvPXWW7J37171MH/iiSdslU1vXlu4qEwCJGCXAJYfvPDCC3Lz5k1p3LixYKgXMnLk\nSFm5cqUa0rZt2wqG1fLmzWu3eOqTgG0Cn3/+uYwYMUKXwWDu/ty5c7Jnzx754YcfBMO9GEFBnF47\nwp6pHVrUJQESsE2gb9++Ggc1T548GqYtS5YsWgbWneJLDZFn0DO1eq62K2AGErBJ4MaNG7rmefHi\nxTJv3jz517/+pXP5+NG3bds26dy5s80SRdgztY2MGUiABOwQmDFjhuDlS+rWrauOSL6uMY0EwkUA\njkbPPPOM9kThEIdeaMGCBdNUHY1pmvAxMwmQAAmQQLwRwPIXOBjZdTLyd58c5vVHh9dIgARIgARI\nIAACNKYBQKIKCZAACZAACfgjQGPqjw6vkQAJkAAJkEAABNzmTLE56ttmnQ2FBEggugTgbWjJe++9\nJ7mM52ssy/dnzmjzsDvMbrOlGiX8BE6dOqWVYMedfWZtJCX8BLD/LuT48ePelTmMTJ482WGuOMzO\nDfqOY77IgJ8Bfgb4GeBngJ8B78+A2bQBptNN3HqmWP+F6PkUEiCB6BK4Y+LWfvnVV9qIFi1a6FrM\n6LbIf+1r164V7AJTt04dKVGypH9lXg0JgXVmbeRlE/qujtnOrqTZg5MSfgLr162TSyYISZEiRbwq\nczOmOXPmlE8nTPBSYgIJkEBkCVy4cEFqmzWYkI8+/FAKFSoU2QbYrK1lq1Yahq2X2Wbtueees5mb\n6sEQeMp0fHaaIXWsmXzeRJCihJ9A62eflW0mNGbVqlW9KqMDkhcSJpAACZAACZCAPQI0pvZ4UZsE\nSIAESIAEvAjQmHohYQIJkAAJkAAJ2CNAY2qPF7VJgARIgARIwIsAjakXEiaQAAmQAAmQgD0CNKb2\neFGbBEiABEiABLwI0Jh6IWECCZAACZAACdgjQGNqjxe1SYAESIAESMCLAI2pFxImkAAJkAAJkIA9\nAjSm9nhRmwRIgARIgAS8CNCYeiFhAgmQAAmQAAnYI0Bjao8XtUmABEiABEjAiwCNqRcSJpAACZAA\nCZCAPQI0pvZ4UZsESIAESIAEvAjQmHohYQIJkAAJkAAJ2CNAY2qPF7VJgARIgARIwIsAjakXEiaQ\nAAmQAAmQgD0CNKb2eFGbBEiABEiABLwI0Jh6IWECCZAACZAACdgjQGNqjxe1SYAESIAESMCLAI2p\nFxImkAAJkAAJkIA9AjSm9nhRmwRIgARIgAS8CNCYeiFhAgmQAAmQAAnYI0Bjao8XtUmABEiABEjA\niwCNqRcSJpAACZAACZCAPQI0pvZ4UZsESIAESIAEvAjQmHohYQIJkAAJkAAJ2CNAY2qPF7VJgARI\ngARIwItAVtcUh8Mh169fd03iMQmQQBQI3Lhxw1krjnPkyOE8j8WDBw8eaLNu377N75AIPSAyjxBo\nl2os5vfv33dJ/c+hMaCOyZMnO8ypo3r16vqOY77IgJ8Bfgb4GeBngJ8B789Az549YTrdhMO85pNC\nIQESIAESIIG0EHAb5s2VK5ccPXo0LeUxLwmQQAgIXLhwQR599FEtaevWrVKoUKEQlBq+In7+85/L\nvn37ZMyYMfLcc8+FryKW7CRw7tw5uXfvnhQoUEASEhKc6TwIH4E2bdrI9u3bpX79+l6VuBnTTJky\nSdmyZb2UmEACJBBZAvhha0mpUqWkaNGi1mlMvmfPnl3bhXbyOyQyj4icI8PZtRbLd8F6d73GYV5X\nGjwmARIgARIggSAI0JgGAY1ZSIAESIAESMCVgNswr+sFHpMACZAACUSGAOY/Dx06JNeuXZMSJUpI\n6dKlJX/+/JGpnLWEhACNaUgwshASIAESsE/g1KlT0r9/f5k3b55b5pYtW8qyZcvc0sJxgrgCV65c\nUQMejvIzUpkc5s1IT5v3SgIkEFMEunfvroY0c+bM0qxZMxkwYIC0a9dOateuHfZ2TpgwQQoWLCjD\nhg0Le10ZoQL2TDPCU+Y9kgAJxByB/fv3y/Lly7VdixcvllatWkW0jRhavnv3bkTrTM+VsWeanp8u\n740ESCBmCRw4cEDbVrhwYWnRokWq7TThdgThGimxSYDGNDafC1tFAiSQzglcvHhR77BGjRqSJUsW\nn3d7+PBh6dGjh1SpUkWwljdnzpwapKF58+ayatUqrzyIGTtq1Chp2rSpwEhjPSScmTp16qSGeNKk\nSVK5cmV9jR49WvNPmTLFmWZdi8R8rVfj4zyBw7xx/gDZfBIggfghsHHjRjl9+rQ2GJGtIOfPn5cF\nCxbosfWnTp06GvwCOiZ2uhrbkiVL6jui1K1YsULWrl0r69atc0bjgSMRhoo3bNigxeTLl0+KFy8u\ncHKaOXOmJCcnCwK1nz17Vq/funVL39HjtdKs+i9dumQd8j1QAojUawW6b9CgAU4pJEACUSZgvtyc\nm03gONalVq1a2t4ZM2bEelOj2r5GjRo5n6v5jk7xeOLEidpOM6/qmD59usP0Yp3t3rt3r6NChQqa\nt3fv3s70fv36aZoJL+iYPXu2wxhOvWaMrGPatGkOE3rQqYuD4cOHq36fPn3c0nmSMgHYSDw305v3\nUmLPNNBfHdQjARIggTQSSExMFMR3haxfv16++OILKVeunBij6Fay+dLWc2vY1fVi1apVpVevXjJo\n0CAxhlUvnTlzRsaPH6/HY8eOVY9gK0/evHmlS5cu1infw0SAxjRMYFksCZAACXgS6Nq1qzNp6tSp\nakzLlCmjhtF5wccBDO/BgwcFRhPB7bds2aJaOIbs2LFDh3AxT9q5c2dN45/IEqAxjSxv1kYCJEAC\nARPA/Ch6sjCW/gTLbCCVKlXyp8ZrYSRAb94wwmXRJEACJJAWAklJSWpI69atK2YeVOCQtHPnThkx\nYoRbseiRQuDMRIkOAfZMo8OdtZIACZCAXwK7d++WJUuWqM78+fMFw8GWwKC6itUjPXLkiM6jVqtW\nzfWyz+Ns2bJputWr9anExIAJsGcaMCoqkgAJkEDkCGB/aUusZSw4N5650rdvX+uSviP8IAwq1pli\nXhZG1RLjdqrLZXDNVcqXL6+nq1evTnUY2TUfj30ToDH1zYWpJEACJBBVAjCOCLgAadKkibRv314N\nJoylq3HFdQR0GDdunGTNmlU2b94s6JnWq1dPENwBPdrGjRvLjRs3oOoURF3CZu4wtjDGGEpu3bq1\nVKxYUWbNmuXU40FgBGhMA+NELRIgARIIKQEYPoj17lk4hmExT4qlMIijO2fOHDl58qR06NBB1qxZ\n46muIQkxp4odZ5AXHr8I7gAPYBhja1jXylioUCFZuHChGl30grdt2yaLFi2SY8eOeelaefieMgHO\nmabMhldIgARIIGwEsIQltWUsDRs21DlQGNMLFy5oz9QKPYgepafUrFnTuXUbIh9BB71P9Fx9iQki\nIZs2bRJsxYbITAkJCX71fZXBtB8J0Jjyk0ACJEACMU4ABhEvO4Lwg4FK7ty5dXg3UH3qeRPgMK83\nE6aQAAmQAAmQgC0CNKa2cFGZBEiABEiABLwJ0Jh6M2EKCZAACZAACdgiQGNqCxeVSYAESIAESMCb\nAB2QvJkwhQRIIEgCZuswwc4oFBJIjwSuXr2qt4U9Y7t16+Z2izSmbjh4QgIkkBYCt2/fFm4snRaC\nzBsPBKzdelzbSmPqSoPHJEACaSKAKD0ffvhhmspg5sAI/OEPf5Djx4/LK6+8IliPSgk/Aewju2fP\nHqlVq5ZXZTSmXkiYQAIkECyBEiVKyE9/+tNgszOfDQKIbISA98WKFSNzG9zSoponTx7Nni9fPq9i\n6IDkhYQJJEACJEACJGCPAI2pPV7UJgESIAESIAEvAjSmXkiYQAIkQAIkQAL2CNCY2uNFbRIgARIg\ngXRG4Nq1a+rMhYD/wQqNabDkmI8ESIAESCCuCcCIvvPOO1KqVCnd9/XNN98M+n7ozRs0OmYkARIg\nARKIRwJYDz1hwgR599135ezZs85bePDggfPY7gGNqV1i1CcBEiABEohrAq+++qogWhekcePGcuLE\nCR3mTctNcZg3LfSYlwRIIFUCH3zwgVSuXFmqVq2q6yJdM+BLDBta4/ro0aNdL/GYBMJGAJuyV6lS\nRebOnSvr16+X6tWrp7kuGtM0I2QBJEAC/gj069dPsmbNKvv375eXX35Z7t6961Tv2bOn7Nq1S6/j\nmEICkSDw+OOPy759+6Rt27Yhq47GNGQoWRAJkIAvArly5ZJZs2ZJQkKCbN++XYYOHapqycnJsnTp\nUk2fPXu25M6d21d2ppFAXBCgMY2Lx8RGkkB8E6hRo4aMGTNGb+L9999X4zpw4EA9/+STT0IyzBbf\nhNj6eCdAYxrvT5DtJ4E4IYBh3BdffFHu378vHTt2FGxnhWHfHj16xMkdsJkkkDIBGtOU2fAKCZBA\niAnAyShz5h+/dnLkyCHolVJIID0QoDFND0+R90ACcUJg8ODBYq3lw1o/rPOjkEB6IEBjmh6eIu+B\nBOKAwJQpU2TSpEnquTtkyBBtMeZPsTyBQgLxToDGNN6fINtPAnFAAF68SUlJ2lIY0mHDhkliYqKe\nd+/eXZcpxMFtsIkkkCIBGtMU0fACCZBAKAhcvnxZXnjhBbl586ZGm8FQL2TkyJEayAGOSFjvh3cK\nCUSCwMqVKwVLtqzXsmXLtNrx48c707p162arKTSmtnBRmQRIwC6Bvn37yuHDhyVPnjwybdo0yZIl\nixaBdaeff/65ZM+eXXumVs/VbvnUJwG7BDJlyqQ/7vADDy9rHv/evXvOdBzbEcbmtUOLuiRAArYJ\nzJgxQ/DyJXXr1hU4IlFIIJIEnnzySXE4HCGtkj3TkOJkYSRAAiRAAhmRAI1pRnzqvGcSIAESIIGQ\nEqAxDSlOFkYCJEACJJARCdCYZsSnznsmARIgARIIKQEa05DiZGEkQAIkQAIZkQC9eTPiU+c9k0CY\nCGCpC0MEhgmuR7GHDh3SlN/97neCSFKU8BPAEi/It99+K57rUGlMw8+fNZBAhiFw/vx52blzZ4a5\n31i40ePHjwtelMgRuH79uldlNKZeSJhAAiQQLIGnnnpKXn311WCzM58NAjt27BB8qVeqVEmKFCli\nIydVgyXw1ltvCUYEqlat6lUEjakXEiaQAAkESwBf7NirlBJ+AuQcfsaeNXz00Uea5OvHCx2QPGnx\nnARIgARIgARsEqAxtQmM6iRAAiRAAiTgSYDDvJ5EeE4CJEACESZw7tw5nYu7du2alChRQkqXLi35\n8+ePcCtYXVoI0JimhR7zkgAJkEAaCJw6dUr69+8v8+bNcyulZcuWYm0L5nYhxCdwYLpy5Yoa8BAX\nneGK4zBvhnvkvGESIIFYIYCN0WFIM2fOLM2aNZMBAwZIu3btpHbt2mFv4oQJE6RgwYK6UXvYK8sA\nFbBnmgEeMm+RBEgg9gjs379fli9frg1bvHixtGrVKqKNxNDy3bt3I1pneq6MPdP0/HR5byRAAjFL\n4MCBA9q2woULS4sWLVJtJ/bf5N6vqWKKmgKNadTQs2ISIIGMTODixYt6+zVq1JAsWbL4RIHwdT16\n9JAqVapI9uzZJWfOnFKgQAFp3ry5rFq1yivP/fv3ZdSoUdK0aVOBkc6RI4c6M3Xq1EkN8aRJk6Ry\n5cr6Gj16tOafMmWKM826Fon5Wq/Gx3kCh3nj/AGy+SRAAvFDYOPGjXL69Glt8NatW/UdIRgXLFjg\ndhN16tSRsmXLCnQmT56sxrZkyZL6fvToUVmxYoWsXbtW1q1bJ/Xr19e8cCTCUPGGDRv0PF++fFK8\neHGBk9PMmTMlOTlZHjx4IGfPntXrt27d0nf0eK00TTB/Ll26ZB3yPVACBqTDPCyH0Xc0aNAApxQS\nIIEoEzBfbvo/if9LHMe61KpVS9s7Y8aMWG9qVNvXqFEj53PFs03pNXHiRG2nmVd1TJ8+3WF6sc52\n792711GhQgXN27t3b2d6v379NM30XB2zZ892GMOp14yRdUybNs1x7949py4Ohg8frvp9+vRxS+dJ\nygRgI/HMTG/eS4k9U0OGQgIkQAKRIJCYmCht2rTRqtavXy9ffPGFlCtXToxRdKvefGnruTXs6noR\ncWF79eolgwYNEmNY9dKZM2dk/Pjxejx27Fj1CLby5M2bV7p06WKd8j1MBGhMwwSWxZIACZCAJ4Gu\nXbs6k6ZOnarGtEyZMmoYnRd8HMDwHjx4UGA0TQ9TtmzZolo4hiDoPYZwMU/auXNnTeOfyBKgMY0s\nb9ZGAiRAAgETwPwoerIwlv4Ey2wg2GiAEh0C9OaNDnfWSgIkQAKpEkhKSlJDWrduXTHzoOqQhP1i\nR4wY4ZYXPVIInJko0SHAnml0uLNWEiABEvBLYPfu3bJkyRLVmT9/vmA42BLPDditHumRI0d0HrVa\ntWqWaorv2bJl02tWrzZFRV4IiAB7pgFhohIJkAAJRJZApkyZnBVay1iQYDxzpW/fvs5rOED4QRhU\nrDPFvCyMqiXG7VSXy+Caq5QvX15PV69eneowsms+HvsmQGPqm0tUU7FQO73KyZMndd1ber0/3hcJ\nhIoAjCN2j4E0adJE2rdvrwYTxtLVuOI6AjqMGzdOsmbNKps3bxb0TOvVq6fBHdCjbdy4sdy4cQOq\nTkHUpaJFiwqMLYwxhpJbt24tFStWlFmzZjn1eBAYARrTwDhFTAv/PPgww2svPcnXX3+tUVlKlSol\nDz/8MBeFp6eHy3sJigAMH8R69ywEw7CYJ8VSGMTRnTNnjuDHaIcOHWTNmjWe6hqSEEEesOMM8sLj\nF8Ed8F0CY2wN61oZCxUqJAsXLlSji17wtm3bZNGiRXLs2DEvXSsP31MmwDnTlNlE5QqilaQnwdzO\nm2++qUsAXO8LbvwUEsjIBLCEJbVlLA0bNtQ5UBjTCxcuaM/UCj2IHqWn1KxZ07l1G75LoIPeJ3qu\nvsQEkZBNmzYJtmJDZKaEhAS/+r7KYNqPBGhMQ/RJwHqvlH5hWlVghwbPX4fWtUi+B9JWtAd6+Md1\nnbux0078ikZYNBjO3Llzy5NPPqm/fO2UQV0SIAFRAwejaEcQfjBQwf8nRsQowRPgMG8Q7BCV5NFH\nH9Wc2BMQvx4RUBpDmO+8844aD6vYq1ev6ua/mMOADoY427ZtqwuwLR3MV1iRTqweGyKgWGl4f/bZ\nZy11HZZB4GvPXizifnrq4jyQtv7lL3/RvJ9++qn885//VCOIX7OInvLUU08J1rvZFdwrAnLDWeLQ\noUPy9ttv2y2C+iRAAiQQFwTYMw3iMSESCQxN//79BaG7cuXKJQgqjZ4YDEaxYsU0PBiGTbDh7759\n+6RIkSLy//7f/9MhG7i5Y1cGeNHBSQBDOJ7OAQg0jQ2DLcmTJ491KHBQwnUYale5efOmGmnXHnKg\nbUV50P3oo48EW0OhbgTJxj3AuML5AcNBdsV194nvvvvObnbqkwAJkEBcEPjvt3VcNDd2Gnnnzh01\npIhOggl7GNKOHTtqAz/77DN9h2GFIUXv7N///rcaTxiUX/ziF2o8X3vtNdVDDxPGzNWAwqBZaXi3\ndpgIhkAgbbXKxZozeP99++23zt0mcA0eglj3RiEBEiABEvAmQGPqzSTglOeee07mzp2r8TDRO33+\n+ec17/HjxzUSidlZQM/NDhA6XIoTTPB/8sknmo7tk6w9DTUhjH/8tdW1WvSgv/rqK4EjAwQ9Unj9\nQYIZ6tWM/EMCJEAC6ZwAh3nT8IDHjBnjNhSLDXkxTAonoz179ugCahhP7DuIl6tgGBXzo5hLtPYj\ndL0e6mN/bXWtC2vPzPZOziQ4H2HzYrjiw+OPQgL+CGCpBYIKUEggPRLAiCEE3++eQmPqScTGuevc\nJLLB227AgAFaAnaEgGAe85VXXtFjX3+uXbvmKznkaf7amlplrnO3qenyesYmgNELrCmmkEB6JvDD\nDz943R6NqReS0CRYbuxwHMIu9ykJlo5QSCC9EEBwAGu6I73cU6zeB0a7Ll++rJGL4DlPCT+Bjz/+\nWH1ksAetp9CYehIJ0bkFGz3TRx55RD1jAykaQ8S3b98WOALBm9aXYIkNBN63WCJjyeLFi61DvpNA\nVAjgs96pU6eo1J3RKp0xY4Y6JmKj8Jdeeimj3X5U7hcRqeBw6uvHCx2QwvRIsL4TTjwILt2jRw+f\njkbWxr6uTbCCT2O9J7xwfYm1ewTmp6woKNiSyXNbJl95mUYCJEACJBB6AjSmoWeqJWKe8YMPPtCo\nSNhGCdFFnnnmGfnlL3+pQRt+8pOfyAsvvOBVuxVe7PPPP9c5WOR57LHHBEEcLMHSGkhycrLG7cRQ\n8RtvvKHrWy2dWHmHQxM8nfF64oknnM1CgAsr3ZrUd17kAQmQAAnEGQEO8wbxwCxPXE+nHs+iWrVq\npc4Yv/rVr3Q4xnUYFobkZz/7mWcWNYpXrlwRLKfBu5XHimKEDFifijWfGOaBIYLHLaIq/eEPfxAY\naVeHoUDbauXxd0/+rnndyH8S0PvGULenuKYFG67Qs0yekwAJkEC0CNCYBkHec19Af0UgwhG8G2FU\nsMcg8hYsWFB7nZYBc82POVMM177//vsaCALxfPPnz+9c6wldGOK//vWvanARBOKhhx7SCEu4Zg37\n4hgSaFth8PHyJStXrvSVHFDaqlWrAtKjEgmQAAlEgwCm03bt2qVR7ODrYm0kYLctNKZ2iQWpj14d\n9icMVNBbw1CoP4GncPXq1f2p8BoJkAAJkIAPAtii7te//rVGd7P8UxCg5o9//KOGg/WRxW8Sjalf\nPLxIAiRAAiSQ3gjAeRPR3WBEsYwRXugI/YqRvj59+ujoIa7bETog2aFFXRIgARIggbgn0LhxY41B\njim177//XjfzwHJExFGHvPfee7bvkcbUNjJmIAESsEMAXu1YKla1alXBZvGucuLECV1ChuujR492\nvcRjEggbAfRG0RP97W9/69yvGev3MewLQbhAazvMQBtBYxooKeqRAAkERaBfv366RAy//F9++WWB\nU50lPXv2VOcP+BTgmEICkSLgy9EIsdQhcA61u8qAxjRST471kEAGJQDv81mzZumOSdu3b5ehQ4cq\nCayTXrp0qaYjskzu3LkzKCHedqwQQEwASK1atWhMY+WhsB0kQAL/JYCdh7BzEQTLvmBcBw4cqOfY\nkpBe6YqCf6JIAHs4jxs3Tltg7TVtpznsmdqhRV0SIIGgCWAY98UXX9S1zx07dpSrV6/qsC/CbVJI\nIJoEEG8XkeUQFx2R6fD5tCs0pnaJUZ8ESCBoAnAysoKVwOEDvVIKCUSTwKlTp9SLFwYVYVsnT54c\nVHNoTIPCxkwkQALBEBg8eLDTSxK9gHfffTeYYpiHBEJCAIa0adOmcujQIV1rijn8vHnzBlU2jWlQ\n2JiJBEjALoEpU6bIpEmT1LN3yJAhmh3zp3PnzrVbFPVJIM0ETp48OcnZTwAAQABJREFUKU8++aTG\nN69fv758+eWXUqBAgaDLpTENGh0zkgAJBEoAXrxJSUmqDkM6bNgwSUxM1PPu3bvrmr9Ay6IeCaSV\nANY3w5BiT+hGjRrJ8uXLNepRWsqlMU0LPeYlARJIlcDly5fVqQM7BSHyDIZ6ISNHjtRADnBEwq5H\neKeQQCQIIJAIhnYhGzZs0B4p1pW6vrD1pR2hMbVDi7okQAK2CfTt21cOHz4s2Jhh2rRpzl05sEAe\n+/Zmz55de6ZWz9V2BcxAAjYJ+ArY4FmE5SjnmZ7SOQPdp0SG6SRAAiEhgH138fIldevW1eUIvq4x\njQTCReCjjz4SvEIp7JmGkibLIgESIAESyJAEaEwz5GPnTZMACZAACYSSAI1pKGmyLBIgARIggQxJ\ngMY0Qz523jQJkAAJkEAoCdCYhpImyyIBEiABEsiQBOjNmyEfO2+aBMJDYOXKlbJq1arwFM5S3Qgg\nlizkz3/+s6xdu9btGk/CQ+Do0aNasLVG1bUWGlNXGjwmARJIE4GdO3fK119/naYymNkegRUrVghe\nlMgROHPmjFdlNKZeSJhAAiQQLIE6deoI4pxSwk9g69atcu3aNY0iVaxYsfBXyBpk5syZ8v3330vJ\nkiW9aNCYeiFhAgmQQLAEHn/8cenUqVOw2ZmPBGKaAEIPwpiWL1/eq510QPJCwgQSIAESIAESsEeA\nxtQeL2qTAAmQAAmQgBcBGlMvJEwgARIgARIgAXsEOGdqjxe1SYAESCDkBM6dO6dbgsGhqESJElK6\ndGnJnz9/yOthgeEjQGMaPrYsmQRIgAT8Ejh16pT0799f5s2b56bXsmVLWbZsmVtaOE6uX78uV65c\nUQMejvIzUpkc5s1IT5v3SgIkEFMEunfvroYUe2c2a9ZMBgwYIO3atZPatWuHvZ0TJkyQggULyrBh\nw8JeV0aogD3TjPCUeY8kQAIxR2D//v2yfPlybdfixYulVatWEW0jhpbv3r0b0TrTc2Xsmabnp8t7\nIwESiFkCBw4c0LYVLlxYWrRokWo7HQ4HN1JPlVL0FGhMo8eeNZMACWRgAhcvXtS7r1GjhmTJksUn\nicOHD0uPHj2kSpUqkj17dsmZM6cUKFBAmjdv7jMG8v3792XUqFHStGlTgZHOkSOHOjMhkMbt27dl\n0qRJUrlyZX2NHj1a65wyZYozzboWiflanzccx4kc5o3jh8emkwAJxBeBjRs3yunTp7XRCAcIOX/+\nvCxYsECPrT8Iy1i2bFmBzuTJk9XYIoQdjC6CrSMWL4Lbr1u3zhm+EY5EGCpGlB5Ivnz5pHjx4gIn\nJ4TBS05OlgcPHsjZs2f1+q1bt/QdPV4rTRPMn0uXLlmHfA+UgAHpMA/LYfQdDRo0wCmFBEggygTM\nl5v+T+L/EsexLrVq1dL2zpgxI9abGtX2NWrUyPlc8WxTek2cOFHbaeZVHdOnT3eYXqyz3Xv37nVU\nqFBB8/bu3duZ3q9fP00zPVfH7NmzHcZw6jVjZB3Tpk1z3Lt3z6mLg+HDh6t+nz593NJ5kjIB2Eg8\nM9Ob91Jiz9SQoZAACZBAJAgkJiZKmzZttKr169fLF198IeXKlRNjFN2qN1/aem4Nu7perFq1qvTq\n1UsGDRokxrDqJexiMn78eD0eO3asegRbefLmzStdunSxTvkeJgI0pmECy2JJgARIwJNA165dnUlT\np05VY1qmTBk1jM4LPg5geA8ePCgwmqaHKVu2bFEtHEN27NihQ7iYJ+3cubOm8U9kCdCYRpY3ayMB\nEiCBgAlgfhQ9WRhLf4JlNpBKlSr5U+O1MBKgN28Y4bJoEiABEkgLgaSkJDWkdevWFTMPqg5J2IB9\nxIgRbsWiRwqBMxMlOgTYM40Od9ZKAiRAAn4J7N69W5YsWaI68+fPFwwHWwKD6ipWj/TIkSM6j1qt\nWjXXyz6Ps2XLpulWr9anEhMDJsCeacCoqEgCJEACkSOQKVMmZ2XWMhYkGM9c6du3r/MaDhB+EAYV\n60wxLwujaolxO9XlMrjmKtYG16tXr051GNk1H499E6Ax9c2FqSRAAiQQVQIwjtg9BtKkSRNp3769\nGkwYS1fjiusI6DBu3DjJmjWrbN68WdAzrVevngZ3QI+2cePGcuPGDag6BVGXihYtKjC2MMYYSm7d\nurVUrFhRZs2a5dTjQWAEaEwD40QtEiABEggpARg+iPXuWTiGYTFPiqUwiKM7Z84cOXnypHTo0EHW\nrFnjqa4hCRHkATvOIC88fhHcAR7AMMbWsK6VsVChQrJw4UI1uugFb9u2TRYtWiTHjh3z0rXy8D1l\nApwzTZkNr5AACZBA2AhgCUtqy1gaNmyoc6AwphcuXNCeqRV6ED1KT6lZs6Zz6zZEPoIOep/oufoS\nE0RCNm3aJNiKDZGZEhIS/Or7KoNpPxKgMeUngQRIgARinAAMIl52BOEHA5XcuXPr8G6g+tTzJsBh\nXm8mTCEBEiABEiABWwRoTG3hojIJkAAJkAAJeBOgMfVmwhQSIAESIAESsEWAc6a2cFGZBEjAHwE4\ns2APTgoJpEcCcOqCHD9+3Ov2aEy9kDCBBEggWAJff/214EUhgfRM4LvvvvO6PRpTLyRMIAESCJaA\n2WdTSpQoEWx25rNBABt6Y9cYs3+p5MqVy0ZOqgZLYOXKlWL2lhUrFrJrOTSmrjR4TAIkkCYCzzzz\njHTq1ClNZTBzYAQeffRRDXxvNg+Xl156KbBM1EoTAaz73bhxo0aY8iyIDkieRHhOAiRAAiRAAjYJ\n0JjaBEZ1EiABEiABEvAkQGPqSYTnJEACJEACJGCTAI2pTWBUJwESIAESIAFPAnRA8iTCcxIgARIg\ngQxB4Pz583L06FG5c+eOlCpVSl+ZMwfXx6QxzRAfGd4kCZAACZCARQBLirDn66FDh6wkfYdBHTJk\niPTq1cstPZATGtNAKFGHBEiABEgg3RB48OCBRuqqUaOGVKlSRS5duqTBRk6cOCG9e/eWfPnySceO\nHW3dL42pLVxUJgESIAESiHcC2N8VQS+KFCnivBUM9WI/2AMHDsi0adNsG9PgBoed1fOABEiABPwT\n+OCDD6Ry5cpStWpV2blzp5syegL4AsP10aNHu13jCQmEk4CrIUU9MLDdunXTKmFo7QqNqV1i1CcB\nErBFoF+/fpI1a1bZv3+/vPzyy3L37l1n/p49e8quXbv0Oo4pJBBNAkeOHNHqW7VqZbsZNKa2kTED\nCZCAHQKIGztr1ixJSEiQ7du3y9ChQzV7cnKyLF26VNNnz54tuXPntlMsdUkgzQQuX74sx44dk82b\nN8sbb7whn332mTz88MPStWtX22VzztQ2MmYgARKwSwCOHmPGjFEvyffff19q164tAwcO1GI++eQT\nqV69ut0iqU8CaSYAo7lw4UK3cjDdUKlSJbe0QE7YMw2EEnVIgATSTADDuC+++KLcv39fnTuuXr2q\nw749evRIc9ksgASCIfD444/rJgFPP/20lClTRoto166dvP7667aLozG1jYwZSIAEgiWAX/3Wovgc\nOXIIeqUUEogWAYyOYNedRYsWafAGDPPi8/mnP/1J1qxZY6tZNKa2cFGZBEggLQQGDx4sWOMHuX37\ntrz77rtpKY55SSBkBDJlyiQYJalfv76Wia3W7AiNqR1a1CUBEgiawJQpU2TSpEnquYsoMxDMn86d\nOzfoMpmRBEJN4MqVK1qk3U3uaUxD/SRYHgmQgBcBePEmJSVpOgzpsGHDJDExUc+7d+8u+/bt88rD\nBBKIJIFbt27JW2+9JXv37lUP8yeeeMJW9fTmtYWLyiRAAnYJYPnBCy+8IDdv3pTGjRsLhnohI0eO\nlJUrV6ohbdu2rWBYLW/evHaLpz4J2Cbw+eefy4gRI3QZDObuz507J3v27JEffvhBMNyLERTE6bUj\n7JnaoUVdEiAB2wT69u2rcVDz5MmjYdqyZMmiZWDdKb7UEHkGPVOr52q7AmYgAZsEbty4oWueFy9e\nLPPmzZN//etfOpePH33btm2Tzp072yxRhD1T28iYgQRIwA6BGTNmCF6+pG7duuqI5Osa00ggXATg\naPTMM89oTxQOceiFFixYME3V0ZimCR8zkwAJkAAJxBsBLH+Bg5FdJyN/98lhXn90eI0ESIAESIAE\nAiBAYxoAJKqQAAmQAAmQgD8CNKb+6PAaCZAACZAACQRAwG3O9N69ezLyww8DyEYVEiCBcBK4fv26\ns/jx48bF/I4qWFoAWfSPf8hJs0cpJfwEvv/+e61ksQmFd+b06fBXyBqcnH3ud+owMnnyZIfh5DA7\nN+g7jvkiA34G+BngZ4CfAX4GvD8DZtMGmE43ceuZwsOpfLlyhh2FBEggmgSws8p3Zp9FSFmzm4W1\nNjOabfJX94mTJ+XOnTtSrFgxycN9Sf2hCtm1k4b5bTAvWlSwhpcSfgInT53SpVy+gou4GVMsoh70\nnz0Gw98s1kACJJASgStme7LEX/1KL//ut7+N+chAv3v7bTl2/Lh0MIveGzdsmNJtMT2EBN78/e/l\n6HffSbvnn5fHTGQpSvgJDBk+XA7/+9+6H69nbXRA8iTCcxIgARIgARKwSYDG1CYwqpMACZAACZCA\nJwEaU08iPCcBEiABEiABmwRoTG0CozoJkAAJkAAJeBKgMfUkwnMSIAESIAESsEmAxtQmMKqTAAmQ\nAAmQgCcBGlNPIjwnARIgARIgAZsEaExtAqM6CZAACZAACXgSoDH1JMJzEiABEiABErBJgMbUJjCq\nkwAJkAAJkIAnARpTTyI8JwESIAESIAGbBGhMbQKjOgmQAAmQAAl4EqAx9STCcxIgARIgARKwSYDG\n1CYwqpMACZAACZCAJwEaU08iPCcBEiABEiABmwRoTG0CozoJkAAJkAAJeBKgMfUkwnMSIAESIAES\nsEmAxtQmMKqTAAmQAAmQgCcBGlNPIjwnARIgARIgAZsEaExtAqM6CZAACZAACXgSoDH1JMJzEiAB\nEiABErBJgMbUJjCqkwAJkAAJkIAnARpTTyI8JwESIAESIAGbBGhMbQKjOgmQAAmQAAl4EsjqmnD/\n/n3Zs3evaxKPSYAEokDg+s2bzlr3HzwouRISnOexeHDr9m1t1omTJ/kdEqEHdOvWLa3p5KlTZB4h\n5jf/8395+fJl7xodRiZPnuwwVxzVq1fXdxzzRQb8DPAzwM8APwP8DHh/Bnr27AnT6SZuPdNMmTJJ\ngQIFDDsKCZBANAk4HjyQy1euaBPy58snmTLH9ozM1atXBSNbuXLlkuzZs0cTXYap+9q1a07m2bJl\nyzD3Hc0btT7nvj7jbsYU/wgXL16MZltZNwmQgCFw7tw5KVasmLI4eOiQFC1aNKa51K5dW3bs2CGf\nffaZdOrUKabbysaRQLAEGjZsKBs3bpQGDRp4FRHbP3e9mssEEiABEiABEog9AjSmsfdM2CISIAES\nIIE4I0BjGmcPjM0lARIgARKIPQJuc6ax1zy2iARIgATSPwHMkR8yc+NwKipRooSULl1a8ufPn/5v\nPB3dIY1pOnqYvBUSIIH4InDKrBHt37+/zJs3z63hLVu2lGXLlrmlhePk+vXrcsV4jcOAU9JGgMO8\naePH3CRAAiQQNIHu3burIc1slj41a9ZMBgwYIO3atRN4R4dbJkyYIAULFpRhw4aFu6oMUT57phni\nMfMmSYAEYo3A/v37Zfny5dqsxYsXS6tWrSLaRAwt3717N6J1pufK2DNNz0+X90YCJBCzBA4cOKBt\nK1y4sLRo0SLVdppwO3L7P2EbU1WmQsQJ0JhGHDkrJAESIAFxBsipUaOGZMmSxSeSw4cPS48ePaRK\nlSoaWSpnzpwapa558+ayatUqrzyIQjVq1Chp2rSpwEjnyJFDnZkQSAOGeNKkSVK5cmV9jR49WvNP\nmTLFmWZdi8R8rVfj4zyBw7xx/gDZfBIggfghgOg5p0+f1gZv3bpV38+fPy8LFixwu4k6depI2bJl\nBTomdroa25IlS+r70aNHZcWKFbJ27VpZt26d1K9fX/PCkQhDxRs2bNDzfCYMZfHixQVOTjNnzpTk\n5GR5YMJUnj17Vq9bgfLR47XSrEZcunTJOuR7oAQQqdcKdG9CJOGUQgIkEGUC5svNudkEjmNdatWq\npe2dMWNGrDc1qu1r1KiR87ma7+gUjydOnKjtNPOqjunTpztMmFdnu/fu3euoUKGC5u3du7czvV+/\nfppm4qs7Zs+ebcI7P9Brxsg6pk2b5rh3755TFwfDhw9X/T59+ril8yRlArCReG6mN++lxJ5poL86\nqEcCJEACaSSQmJgobdq00VLWr18vX3zxhZQrV06MUXQr2Yr9ag27ul6sWrWq9OrVSwYNGiTGsOql\nM2fOyPjx4/V47Nix6hFs5cmbN6906dLFOuV7mAjQmIYJLIslARIgAU8CXbt2dSZNnTpVjWmZMmXU\nMDov+DiA4T1o9rWF0TQ9TNmyZYtq4RiCTQYwhIt50s6dO2sa/0SWAI1pZHmzNhIgARIImADmR9GT\nhbH0J1hmA6lUqZI/NV4LIwF684YRLosmARIggbQQSEpKUkNat25dMfOg6pC0c+dOGTFihFux6JFC\n4MxEiQ4B9kyjw521kgAJkIBfArt375YlS5aozvz58wXDwZbAoLqK1SM9cuSIzqNWq1bN9bLPY2tD\ncatX61OJiQETYM80YFRUJAESIIHIEciUKZOzMmsZCxKMZ6707dvXeQ0HCD8Ig4p1ppiXhVG1xLid\n6nIZXHOV8uXL6+nq1atTHUZ2zcdj3wRoTH1zYSoJkAAJRJUAjCN2j4E0adJE2rdvrwYTxtLVuOJ6\n9uzZZdy4cZI1a1bZvHmzoGdar149QXAH9GgbN24sN27cgKpTEHWpaNGiAmMLY4yh5NatW0vFihVl\n1qxZTj0eBEaAxjQwTtQiARIggZASgOGDWO+ehWMYFvOkWAqDOLpz5syRkydPSocOHWTNmjWe6hqS\nEEEesOMM8sLjF8Ed4AEMY2wN61oZCxUqJAsXLlSji17wtm3bZNGiRXLs2DEvXSsP31MmwDnTlNnw\nCgmQAAmEjQCWsKS2jKVhw4Y6BwpjeuHCBe2ZWqEH0aP0lJo1azq3bkPkI+ig94meqy8xQSRk06ZN\ngq3YEJkpISHBr76vMpj2IwEaU34SSIAESCDGCcAg4mVHEH4wUMmdO7cO7waqTz1vAhzm9WbCFBIg\nARIgARKwRYDG1BYuKpMACZAACZCANwEaU28mTCEBEiABEiABWwQ4Z2oLF5VJgAT8EcDWXYcOHfKn\nwmskELcErCVJ1rvrjdCYutLgMQmQQJoIIHg7dkahkEB6JoC1vGbrOrdb5DCvGw6ekAAJkAAJkIB9\nAuyZ2mfGHCRAAikQ6N+/vyA8HSX8BB577DENtDBp0iR58cUXw18haxAwx7pcvHsKjaknEZ6TAAkE\nTSBz5syMnhM0PXsZEWv37t27giAOntGN7JVE7UAJWPGSrXfXfBzmdaXBYxIgARIgARIIggCNaRDQ\nmIUESIAESIAEXAnQmLrS4DEJkAAJkAAJBEGAxjQIaMxCAiRAAiSQPgjcuXNHsNsO1kd77vlq5w5p\nTO3Qoi4JkAAJkEC6IIAt6uCVmzdvXnn00Ud1R55ixYrJp59+GtT90Zs3KGzMRAIkQAIkEK8EsI8r\nNltHrxS78TzyyCOyb98++e677zQYQ8GCBfW6nftjz9QOLeqSAAmQAAnEPYHGjRtLmTJlZMSIEfL9\n99/LP//5T9m/f780b95c7+29996zfY80praRMQMJkIAdAh988IFUrlxZqlatKjt37nTLeuLECcGG\n1rg+evRot2s8IYFwEUBvFD3R3/72t2KtGc2RI4f8+te/1ir37NkjDx48sFU9jaktXFQmARKwS6Bf\nv36SNWtW/eX/8ssva6ABq4yePXvKrl279DqOKSQQKQIIduEpCQkJmoTgI5aR9dRJ6ZzGNCUyTCcB\nEggJgVy5csmsWbMEX1Tbt2+XoUOHarnJycmydOlSTZ89e7bkzp07JPWxEBIIlsCSJUs0a61atWhM\ng4XIfCRAAuEjUKNGDRkzZoxW8P7776txHThwoJ5/8sknUr169fBVzpJJIAAC3377rYwbN041X3vt\ntQByuKuwZ+rOg2ckQAJhIoBhXARkx1q+jh07ytWrVwXDvj169AhTjSyWBAIjcOzYMfnFL34ht2/f\nlhdeeEE/n4Hl/K8Wjel/WfCIBEggzATgZIT5KAgcPtArpZBANAmcOnVKvXhhUBs0aCCTJ08Oqjk0\npkFhYyYSIIFgCAwePNjpJYlewLvvvhtMMcxDAiEhAEPatGlTjX6EtaaYw0cQh2CExjQYasxDAiRg\nm8CUKVMEe2/Cs3fIkCGaH/Onc+fOtV0WM5BAWgmcPHlSnnzySTlw4IDUr19fvvzySylQoEDQxdKY\nBo0uNjJev35ddu/eLVeuXAmoQYj4gcXJy5Ytk6+//lowtJGWeJQBVZoGJfxyrFOnjmzYsCENpYQn\nK/756tWrJxcuXAhPBemoVHjxJiUl6R3BkA4bNkwSExP1vHv37rrmLx3dLm8lxglgfTMM6cGDB6VR\no0ayfPlyQdSjtEhcG9PDhw+n5d7TRd7PP/9c4Cm5evXqVO9n6tSpUrp0aV0836pVK/npT38qZcuW\nlW+++SbVvKFQsPu8Ll++LE899ZQup/jLX/4SiibYKuPatWty/PhxwQ8WXzJy5EhBfM+nn35aoEvx\nTQDPEU4dN2/eFESewVAvBPwQyAGOSG3bttV33yUwlQRCSwCBRBDYHoIf6uiRYl2p6wtxe+1I3BpT\nGIWKFSvKmTNn7NxvutDdsWOHju3jZqxfU4ULF9Z7++tf/ypHjx7VY9c/69atE/QAzp49K8WLF9f4\nk/CubNGihbMMV/1QH9t9Xog+Au863GuTJk1k1KhRoW5SiuXBML7zzjtSqlQpDTn25ptv+tSdNm2a\nfgY3btwoXbp08anDRJG+ffsKfkjlyZNHwMxaLI91p/gxmD17du2ZWj1XMiOBcBOwPoP+6rEc5fzp\nuF6L20D3GP7LqIKQV+iJ/vKXv5RnnnlGMWD4tk2bNoIAzp07dxYYVVeB16TD4dBdEtasWeP0qHTV\nCeex3eeFubVVq1ZJyZIlZf78+er5Gc72oWw4xEyYMEGdYvCjw5KUwooVKVJEFi1aJHXr1pUFCxbI\nnDlzpF27dlY2vv+HwIwZMwQvXwJ24E4hgUgS+OijjwSvUErEe6b37t1Ltf13795NVScSCoG0Fe2A\nHgxVpASGpmvXrgKHjueff16rRQ8T0TtgYP/v//7PqymYZIdgp4RAfnHhGURrLvWHH35wDgXCQcXq\ndXvdVIgTXn31VcFibRhSDEeiN52aIKbsG2+8oWrIz+He1IjxOgmkTwJhNab4osE+cRD84m/YsKH2\nMDB8hmE011/8mDfp37+/VKtWTXUefvhhnUfBBLEltWvX1oDYKNfKi3VBOLdezz77rKWuziFVqlQR\nz14RhuWg76qL80Dairk76GLPO+w0AOcYDFPBnRrze76GWJ0NSuHAbiBwDG+jHa5DnzB8GEKDoS1f\nvrxXTRcvXtQ0MExJEP0DbuKFChXSe8qZM6eUK1dO3nrrLZ/zWagTbUAeGDysG4QB6tSpk/Y27D4v\nq11oB5x68Gx9DZ/a5WWVm9o7evT4vMC7dP369QFH5UGwbHxe8TlD2DwKCZBABiRgelQOs0gV3SqH\n+fLCacgEZRpD4zCBrrV8E6PTYSZ69RjXJk6cqHWZLyGHcUTQdDN05nj88ccdJqq/M8+mTZtUr0SJ\nEo78+fPrC/nxMkbMmYZrZtjI2X6rLrM7gDMNB2b4UPMaw+1MD7StxnhoXvOl6zCT1Q4z9u5Au6z2\nGO9OZ5mBHhgHFwfagjKMAXKYIVtnVuMo5Gyr6fVo+uLFix3mh4mm456RzxhAfTc9VIcZxnUYpw+H\nGR51vh566CG9bn7EONNw3fwgcNb1k5/8RHXy5cun7TFzWnqO8s38pVMPByjfeME5ryOP2dLIYZY9\naJrxLlYudp6XVYGJi6lljB8/3kpye7fLyy2zjZOf//zn2o5f/epXqeYyBlV1mzVrlqpuIAqmd6zl\ngT2OY12sZ2aGc2O9qemmfWZdpH5Gpk+fnm7uKdZvBDYS/5NmVNCrqRieDKsxRcV4mfk8x/nz5x34\nIjShxDTNMt5maFLPzV5yDnwJQ27cuKFf4MhrvKo0zfWPGarUPKdPn3ZNdju2a0wDaatlTKFrPGEd\nxkFG65w5c6a2B+lmFwy3dgRyYramcljGy3g7ahbT+9Uyke5aZuvWrR0mKLjDRJNxmDk71cEPDuSD\nMTNDlWokrfvx944fApYYb1/H5s2brVN9Vn/4wx+c94UfPZZYP5DA2AQpd5iRAr2E52d6yA4z9G2p\n6nsgzwuK//73v7U+/EjxZ0Ts8HJriI0TO8bUeERru3Gf+KGRVqExTSvB9J+fxjTyz9ifMY2IA9Jz\nzz2nQ2fWXB3m+Yzx0WUHxsDq3J/5whfTU3VGn4CnH5xm4HwCT1QMU1qeq9ANl/hrq2udcD756quv\npEKFCpqMuUism8N8H4Z67QbutgKB9+rVSzBPiCHSlAKBf/zxx+rCjWUtf/vb37R+LN8whk/nRP/n\nf/5Hef3xj390Nnn48OG6NAHluw4Dw8PSEsRJdRXs9vH666/Lhx9+qOXt3btXjPFVD2rTa1TVsWPH\nujndYLjb19Csa7n+jrEGFoKNe7HnYEpih1dKZYQyHetNEYwA8+dYu4v2ZUTB0D8diiLz5I0p0Yrg\n30DmkWFuTS9a7661RsSYYrcIy5CicsyxwZMqW7Zsgk1Y8Q8I47l27Vp9uTYQ+dBwrAlClIpwi7+2\nutYNhx/LkCId65PwBQpPWRi2YARLVVasWKGejwgEDvEVCBzG0pJLly7poenJ6zvmcCGmxyiDBg3S\nY/zBHO+RI0fU0xeLlVMS0yPSHy9Y1GwFgrA+OJZDFparIA3zpJhnDKVg3hGCOcjUJFBe8LjFfLwv\nwY81f/PIvvL4SsPn1AylC6KqYG1qRjWm+HGVlh9TvtgyzT+BV155RfCiRI4AfCo8mUfEmOIXu6ug\nxzFgwABNQiABCBZ0ezZOL/znT6S8JP211bU9vo5dfzD4uh5IGgKBo9cOYxVIIHD0NLF+FM5CaRXE\nSYUn8K1bt/wWZfUeK1Wq5FcvmIuWAUevOBAJhBd+3GC0wJcE+8PHV1lm3liNqfXDxpcO00iABNIn\nAXcrF4V7tIbyMNwII5KSWD2ulK6nl3RfgcDfe++9FG8Pi48DWYCcYgH/uYDQgm+//baewXu3ZcuW\n6tWLBAx9o1dribVUBUP0oRasK4VYPdTUyg+EF7y20Vv0JVZ9vq7ZTbMCiCAoRkaVbt26iXGIyai3\nH9H7Nv4igiFe/D9yY/XIoMcUJUJjYlrHU6JuTLH0AoKeKaL2B/pFhCFizBOgl5RSHvTsIFhegyUP\nlhhvWOswpt6Nh5gzEDiMBOY5MX9qJr2d60nD1WAMu6M3jNEB13WqmJfB0h9XsXqkMLCYR8VyptQk\nkOeFMqy1nd99953OP3qOFLjWEygvTCFgOVY4BSHzrOVH4a4rnPeR1rKN97bbnHxay2P+lAm4+j6k\nrMUroSRg2RRfI4FhXWcayE1gzWbNmjV13hSbBFtfSK55rbk61zTrg4S5QET/8SVwYoEgKpA1WT9i\nxAjBK9Yk2oHAMecLcR3iRU8LcWetYV2LGeYYYVAx143gEa69VnBGrEtcc5VAnhf0MdeIDyrWHWP+\nOCWJNi/Pdv3jH//QJKwBhmMYhQRIIGMRiLoxxTwjFuGjB4IIPvgyQog8RPJB8Guz9lGDZHs+Fsvx\nBbE9MVSMPAhMjF6cJYjtCklOTtaA2hgqRrSaYsWKWSox8Y5eTbQDgZv1kcoCYd/gIPazn/1MexgI\nTOHZM8U5AivgmZmlNNozxbCHWdqkXriIHuQ5bxjI80ID4A1sBdOwPJU9H1K4eK1cuVIwV2u9sLMO\nBJ7LVhqGMX2JFawBn1kKCZBABiRgehJhW2dqDCV8tx2mh4Nq/ArWSSIIAII8II/1Ml9iDhOmzSsv\nAhtgoTyCBVi6eDdRjJy6xrnEYb7ENbgCriHIgvmycxgPYs1jlq84dQNtq/H21bzGY9GZ1zowXrJ6\n7e9//7uVFNC7iRik+cy8scN4Lbvl2bp1q5OJrzrdlP2cmJ6k1mE8pn1qmZ6kcjYGUvXAywzBO7B+\nFvXi3Gyc65YXa2zN3KoD7cZ1vJDfBKZ3mGF7N91AnpeVwfTytCx8Fkyv2Ep2voeLlzGmzvuw7sfz\nHZ8nT8HaXHx+cO+eAUI8dQM95zrTQEmlDz08b+Mh6jA/4BxYQ2289NPHjaWzu/C3zjSsQRuC4Wgm\n1B0mjqzDzMWpEcaXvD8x83wO41yii/1NCDqfqmbIUIMenDt3zud1Jv6XAIyg2R/VYZeVWRLiMMtp\nHGYe+7+F+TgK5HkhG4w0DJkZZvZRSuwk4X5MT1zb6utHX7AtpTENllx85cP/DX7ge/5ow+c/EoKo\naq7BWCJRZzzX4c+YRt0ByXyI3ARDh5aDi9uFFE4w15eawwc8he0GUUihunSfjPlKDK3blUC9YgN5\nXqgbw8iYS4ezGJa/IIh8LAo2uYYnNKYOhg4dGotNZJtimACWtWFjakx3mZEtXfMMz3PXteThaj7i\npWMHKviq4JiSNgIxZ0zTdjvMnV4IYO4c/+DwLkYUJnh9Y4lOLAnWSMOYYj4VTm4IlEEhgUAJwLEP\nhhSCH40mDnegWUOiZ0afdGlNSApjIRJ1ByQ+AxJIiQCcfRDKEEt2EHEk1gQevBhJgfMRdkSikIAd\nAta2iFgniohqqYkZHmXYwNQgRfE6jWkU4bPq1AmgV4pf7a5xhlPPFRkNbHkHj19rg/bI1Mpa0gsB\naxkgloOlFHjl8OHDOgyLdfLwosc0DEZA4Dm/atUqLxRYkuZvW0Rs0YjliHhh+gSC9dpWmvVuebJ7\nVcCEFAlwmDdFNLwQKwSwT2wsChZwYxkRhQQCJYC9lBG5CGI89fUdkcQWLFjw/9s7E2irqvqP/xBM\nEBAhRRE0TRkcytCIUBeUs0KDgSMJQvoEtHBYLFtGLjGHxJk0S3FJilCgQCIgZJFoETgEajiEYoAp\nY4jyEBzO//f99d+nc++5w9l3fu9991r33XP22dP5nPvu7+69f4Mduz8w44O9MspoiEwTttBLgNCF\na0zYYMOXOYKAOJ/lcMWJpWLYeSPBvSUc2sCbGLzLwUQQqzzwv43kbMox43V5dkH/OJ/f7pzvCQhA\ns0oflmmTQVOJiQRIoPoEqM1b/WdQjhFEYwDr13NMi9fluVjPMA1DvFKdxYbDgaWDBtmwunV1dWG+\nb1hE9bBmbVx88cVhGzzITaBBafMmkP8sQgIkQAINkgDCNGpsZxs79ABmz55tynUqFFPuR7+07dwt\nu0Yv9ujRQxDgAlGh4M4TCd7KyhUWMdo3j7MT4DJvdja8QgIkQAIlJQD3my5BGxzCFG5Po+ES3fXo\nOwQvfIxDaMK96gsvvGCXnavVcoZFjI6Dx9kJUJhmZ8MrJEACJFBVAtgfxUwWwjJXcv6zfWz0c7XH\na/4EqM3rz4w1SIAESKAiBEaNGmWCtGfPnjJ9+nRTSFJ3g7FgHeUMi1iRG20EnXBm2ggeIm+BBEig\n8RFQt54W/AN3NmvWLFsOdncJgRpNbkbqGxYRbbhZbbQ9HvsT4MzUnxlrkAAJkEDZCbiwiOjImbHg\nGPbNI0aMwGGYigmL+PTTT+ddRg474kFWAhSmWdHwAgmQAAlUjwBmm/vvv78NQCMxyZlnnml+y6HE\nFBWuKFBIWER4XUL4SjUGMZ/AWEoeMGCAhcF0IQWrd/cNr2cK04b3zDhiEiCBRkAAriiR3Hv6Le26\n6662TwpTGPjRffTRR0WjzMhZZ50lixYtSi9uLgnh5EEjzgjqQuMXzh2gAQxhjLxo6tChg/mURixi\nzIKXLVsmc+bMkdWrV8fKRuvxODMB7plm5sJcEiABEigrAY2NK3jlSvD5DFtSCFMNMWkzU+d6EDPK\n9IRIS84VIDwfoQxmn5i5ZkrqREI0lrRo7GfzzNSqVauc5TO1wbz/EqAw5SeBBEiABGqcAAQiXj4p\naVhEtNm6dWtb3vVpn2VTCXCZN5UHz0iABEiABEjAmwCFqTcyViABEiABEiCBVAIUpqk8eEYCJEAC\nJEAC3gQoTL2RsQIJkAAJkAAJpBKgAlIqD56RAAkUQQDBp0ePHl1EC6xKArVLwAV0X7JkiQwdOjRl\noBSmKTh4QgIkUAyB+vr6WKDpYtpjXRKoRQIff/xxbFgUpjEkzCABEiiUwMCBA+Wmm24qtDrreRC4\n9dZbZc2aNXL++ecLHC8wlZ8A4tHC7hf2vOmJwjSdCM9JgAQKJtC5c2fp169fwfVZMTmBK664QpYv\nXy5jxowh8+TYiirZtm1bq9+uXbtYO1RAiiFhBgmQAAmQAAn4EaAw9ePF0iRAAiRAAiQQI0BhGkPC\nDBIgARIgARLwI8A9Uz9eLE0CJEACJNBICGzcuFHefvtt2blzp3Tp0sVeu+xS2ByTwrSRfCh4GyRA\nAiRAAskIfPLJJ3LooYfKypUrUypAoF5zzTVy0UUXpeQnOaEwTUKJZUiABEiABBoNgc8++0zefPNN\nOeKII6R79+6yZcsWWbx4saxdu1bq6upkjz32kLPPPtvrfilMvXCxMAmQAAmQQEMngPiu69evl732\n2iu8FSz1wn70jTfekIcffthbmBa2OBx2zwMSIAESyE3glltukW7dukmPHj3k5ZdfTimMmQC+wHD9\nrrvuSrnGExIoJ4GoIEU/ELDORSAErW+iMPUlxvIkQAJeBC655BJp0aKFvP766+atJ+qK7cILL5RX\nXnnFruOYiQSqSWDVqlXW/SmnnOI9DApTb2SsQAIk4ENg9913l2nTpkmrVq3MY8+1115r1e+//36Z\nP3++5U+fPl1at27t0yzLkkDRBN5//31ZvXq1PP/883LVVVfJAw88IPDiNWTIEO+2uWfqjYwVSIAE\nfAlA0WPChAmmJXnzzTfLkUceKVdeeaU1c/fdd8vhhx/u2yTLk0DRBCA0H3/88ZR2sN3QtWvXlLwk\nJ5yZJqHEMiRAAkUTwDLuueeeK59++qkpd3zwwQe27Dt8+PCi22YDJFAIgb59+8rgwYPl9NNPlwMO\nOMCaGDRokMDvsW+iMPUlxvIkQAIFE8CvfmcUv9tuuwlmpUwkUC0CWB2ZPHmyzJkzx5w3YJkXn887\n7rhDFi1a5DUsClMvXCxMAiRQDIGrr75aYOOHtGPHDrnxxhuLaY51SaBkBJo1ayZYJenVq5e1uXTp\nUq+2KUy9cLEwCZBAoQQmTZokEydONM1deJlBwv7pjBkzCm2S9Uig5AS2bt1qbXbq1MmrbQpTL1ws\nTAIkUAgBxN0cNWqUVYUgHTdunCDQMtIFF1wgr732mh3zDwlUi8BHH30kY8eOteDf0Dz3jctLbd5q\nPTn2SwJNhADMDwYOHCjbt2+XPn36CJZ6kW677TZZuHChCdIzzjhDsKzmgi83ETS8zSoRmDJliowf\nP97MYLB3v2HDBlmxYoVs3rxZsNyLFRT46fVJnJn60GJZEiABbwIjRowwP6ht2rQxN23Nmze3NvDr\nH19q8DyDmambuXp3wAok4Emgvr7ebJ7nzp0rM2fOlGeffdb28vGjb9myZXLeeed5tijCmak3MlYg\nARLwITB16lTBK1Pq2bOnKSJlusY8EigXASga9e/f32aiUIjDLLR9+/ZFdUdhWhQ+ViYBEiABEmho\nBGD+AgUjXyWjXPfJZd5cdHiNBEiABEiABBIQoDBNAIlFSIAESIAESCAXAQrTXHR4jQRIgARIgAQS\nEKAwTQCJRUiABEiABEggF4FmgSZ4Jhk2bJgF6YUtGBMJkEB1CcAZvIuteNBBB4kzJ6nuqLL3vkbD\nWO3YuVP23WcfadO2bfaCvFIyAmvWrDFN6H2UOe1zS4Y1Z0MIZg/nDpdddpn5740WTtHmhYrwypUr\no9d5TAIkUGUCTqhWeRiJun9v3ToRvJgqRmCd8saLqXIEPvzww1hnKcIUniBG1tXFCjGDBEigsgS2\n66/fSQ89ZJ0O05iLLVu2rOwAPHub9thjsmnTJjnphBPkkIMP9qzN4oUQmK4+jTdu3CgnHn+8dD3k\nkEKaYB1PAo/NmiXr16+Xbt26xWqmCNMWLVrIccccEyvEDBIggcoS2KqxPp0w7a1RLGp9GW/OvHkm\nTLvrl0yf3r0rC6uJ9jZv/nwTpt00kPWx6qaRqfwEFjz1lAnTjh07xjqjAlIMCTNIgARIgARIwI8A\nhakfL5YmARIgARIggRgBCtMYEmaQAAmQAAmQgB8BClM/XixNAiRAAiRAAjECFKYxJMwgARIgARIg\nAT8CFKZ+vFiaBEiABEiABGIEKExjSJhBAiRAAiRAAn4EKEz9eLE0CZAACZAACcQIUJjGkDCDBEiA\nBEiABPwIUJj68WJpEiABEiABEogRoDCNIWEGCZAACZAACfgRoDD148XSJEACJEACJBAjQGEaQ8IM\nEiABEiABEvAjQGHqx4ulSYAESIAESCBGgMI0hoQZJEACJEACJOBHgMLUjxdLkwAJkAAJkECMAIVp\nDAkzSIAESIAESMCPAIWpHy+WJgESIAESIIEYAQrTGBJmkAAJkAAJkIAfAQpTP14sTQIkQAIkQAIx\nAhSmMSTMIAESIAESIAE/AhSmfrxYmgRIgARIgARiBChMY0iYQQIkQAIkQAJ+BChM/XixNAmQAAmQ\nAAnECLSI5nz00Udy+4QJ0SwekwAJVIHAJ598EvZ67/33S4sWKf+q4bVaOdiwcaMNZe6TT8riJUtq\nZViNehzrN2yw+5s3f74see65Rn2vtXJz761bZ0N59dVXY0NK+Q/99NNP5aWXXooVYgYJkED1CCxv\nQP+Tb61aJYIXU8UIrHr7bcGLqXIENm3aFOssRZh+7nOfk9E/+lGsEDNIgAQqS2D79u1yn85Ikeou\nukhatWpV2QF49vbIlCmyUWenp516qnTr1s2zNosXQmDFihWyrb5eDj7oIOnw+c8X0gTreBL43e9+\nJ5idHnjggbGaKcJ01113lTvvuitWiBkkQAKVJbBBl/CcML3+hhtk7733ruwAPHtb+Oc/mzAdMnSo\nnHPOOZ61WZwEGgaBxX/7mwnTLl26xAZMBaQYEmaQAAmQAAmQgB8BClM/XixNAiRAAiRAAjECKcu8\nsavMIAESIAESKDsBLOuvXLlSPvzwQ+nUqZPsv//+0q5du7L3yw5KR4DCtHQs2RIJkAAJeBH497//\nLZdeeqnMnDkzpd5JJ50kCxYsSMkrx8m2bdtk69atJsDL0X5TapPLvE3pafNeSYAEaorABRdcYIJ0\nl112keOPP14uv/xyGTRokBx55JFlH+evfvUrad++vYwbN67sfTWFDjgzbQpPmfdIAiRQcwRef/11\n+cMf/mDjmjt3rpxyyikVHSOWlj/++OOK9tmYO+PMtDE/Xd4bCZBAzRJ44403bGyfVxvRE088Me84\ngyCQHTt25C3HAtUhQGFaHe7slQRIoIkT+M9//mMEjjjiCGnevHlGGm+++aYMHz5cunfvLnCq07Jl\nS9lzzz3lhBNOkD+rbW96ghe7O++8U775zW8KhPRuu+1mykyw/YUgnjhxojnVgGONu/7fp8CkSZPC\nPOTjVYn92vSxN/RzLvM29CfI8ZMACTQYAkuXLpV3333Xxvviiy/aOzxH/f73v0+5h6985SvyhS98\nQVDmwQcfNGG733772fvb6jrwT3/6kzzzzDPyl7/8RXr16mV1oUiEpeK/qWMBpD322EP23XdfgZIT\nPPfcrx61PvvsM1m/fr1dhy92JMx4XZ5l6J8tW7a4Q74nJaAgA31YgZYPvva1r+GUiQRIoMoE9MvN\n/ifxf4njWk9f/vKXbbxTp06t9aFWdXxf//rXw+eKZ5vt9etf/9rGqfuqweTJkwOdxYbjVifrwcEH\nH2x16+rqwvxLLrnE8nTmGkyfPj1QwWnXVMgGDz/8cKDBE8KyOLjuuuus/MUXX5ySz5PsBCAj8cx0\nNh8rxJmpkmEiARIggUoQGDlypHznO9+xrv7617/K7Nmz5SD1ratCMaV7/dK2c7fsGr3Yo0cPuUj9\nNf/4xz8WF73kvffek3vvvdeK3XPPPaYR7Oq0bdtWvv/977tTvpeJAIVpmcCyWRIgARJIJzBkyJAw\n66GHHjJhesABB5hgDC9kOIDg/ec//ykQmgjP98ILL1gpF6oP0b6whIt90vPOOy9DC8wqNwEK03IT\nZvskQAIkUCAB7I9iJpsvNCbMbJC6du1aYE+sViwBavMWS5D1SYAESKBMBEaNGmWCtGfPnqL7oKaQ\n9PLLL8v48eNTesSMFAnKTEzVIcCZaXW4s1cSIAESyEngH//4h8ybN8/KzJo1S7Ac7BIEajS5Gekq\nDcyOfdRDDz00ejnjMUJuIrlZbcZCzExMgDPTxKhqsyB8a+KfDmrxSdLOnTvtnwd2ZIsXL5bVq1cL\nbNNqNUGtH2YCTt2/lsb51FNPyVe/+lXZtGlTLQ2LY2kkBJo1axbeiTNjQYZq5sqIESPCaziA+0EI\nVPwvY18WQtUlVTu1/5/0//MvfvGLVuTpp5/Ou4zs2uJ7dgINWpjCoLmppylTpgiMvvEPkS9B4QHR\nKKANCHu0Y445xmzZlixZkq9qSa77Pq/3339fTjvtNFm+fLn85je/KckYfBpBBI81a9YIfrBkSrfd\ndpspgpx++ukW7SNTGeaRQKEEIBzx/4p03HHHyZlnnmkCE8IyKlxxHQ4dfvnLX0qLFi3k+eeft5kp\nfujBuQNmtH369JH6+noUDRO8LiHoPIQthDGWkgcMGCCHHHKITJs2LSzHg2QEGqwwxYcMDx3abU0t\nQRlh/vz5dttwVI3k9kweeeQRgdJCeoJxN5xqwzgbhtxqWyYXXnihuTFzbaTXKeW57/OCZuJ3v/td\n+8WMLxJ4dalUghC9/vrrpUuXLvZF9JOf/CRj15gh4DMIQ3yaHmRExMwcBCD4kNx7elEsw2KfFD9+\n4Uf30UcflXfeeUfOOussWbRoUXpx+1+GkwdEnEFdaPzCuQO+I/E/5JZ1XcUOHTrI448/bqsrmAUv\nW7ZM5syZY6tV6WVdHb7nIADL04botEGjLJjxrHoTwS00qdSvXz+79x/84AfBjBkz7HjhwoXBt7/9\nbTtW1fgYD3UnZteOPfbYQJd7YtfLneH7vGC0rh/bQL2+BKpUUe7hWfv6az9QoR107NjR+kb/eP3w\nhz/M2j+M6nfffXcrB0P5UiU6bSgVycbRDj4PcNaQ7ngh192p4A3Wrl0bqBvBXMXsmv6ADNT0JnH5\nvA020gK5nDZUfGbq7KJyyPeaiWSQZKy4D5TTz06uWyrpNfjXxFLPJPWp+b3vfc/axpINlBVUwMrP\nfvazWH/OqTaWihDuKV9CNIn0PZZ8dUp1ffPmzXL11VdbczfffHM46y5V+9naGT16tFx22WU2e8ey\nmFtiy1Ye+TCqv+qqq6wI6mNWy0QCpSaA5VjMULP58M3UH9wPdu7c2ZaAM12P5rVu3dpWWZKWj9bl\n8X8J5P9WLYIUvmiOPvpoawGx83r37m2Ol7F8hmU0LOW59MEHH1iQXGihwTkzHuoZZ5xhhsquDNb1\nnUcQVxeeQlwe3r/1rW+54rZ8AQfRUGKJJizLpZfFeZKxYu8OZe+77z558sknTTkG+xXwMoL9vUxL\nrNG+Mx3fcsst1ib+WdK19PSXpXzpS1+y684xNZYWMY7o0icEH5YdIWidYkG0L+dUO1ecROy5wEE2\nln+cU214Zxk7dqzg+aQn9JnLqbbv83LtYxxQ6sGzzbR86svLtZvvHcbu+LzobF9gJH/44Yfnq2LX\nx4wZY59XfM6415QIGQuRQOMjgNl4uZZ5lVagX8qB8xmJ5TD4jUQ+Xs7/pH4JBSpILG+vvfYK+vbt\nG+gvMTtHneeee84WDTp16hS0a9fOXq4NFWJhHq7pJrqVxR/X12uvvRbm4UCjLVjbKrjD/KRjxTIg\nyuqXbqD7DIH+UgwwLjce3fQP20x6oAouAcaCNlQABapxG1ZVRaFwrFiKQdLYh4H+MLF83DPqqQC0\nd52hBrqfEqjyTqDq9OFrn332sev6IybMw3X9QRD2ddhhh1kZdZBt42nVqpWdo33dvwzL4QDtR/2M\noo4qOgS6/2N14A/U93m5DpyfV3WP5rJS3n15pVT2ODn11FPtXnIt87rmVKBaWQ3w7LKKeucyb1H4\nWJkEykIg1zIvlifLKkydkFEvHrb3hS/Cs88+2754MDAk7P2hnGqeBfgSRlLNM/sCRz72+dJTkj04\nX2GaZKxOmKKsRnUIVBnIhqZRGewekP/KK6+kDzfvuc5IAye8dInTyuvs19pEfrRN1bgLdFkm0Jlq\noAoDVgY/OFAPwkyXKk1IuvvJ9Q6B55Jq+waqCehOAzyrG264Ibwv/Ohxyf1ASupUO8nzQttvvfWW\n9YcfKRAo2ZIPr2xt5Mv3EaaqEW3jxn3ih0axicK0WIKsTwKlJ1B1YQrFmKjSixM8+CJXLTWb3eEL\nf+XKlSl3j81zJwh0Hy3lWpIv50KEaa6xYgBOmGIGHR2vLjuHs8MnnngiZaxJTzREUihIwAizbtz/\nAw88kNKE2pAFupxseYjSgTKYbSP9/e9/twgTEEo33XRT+HKCWh1kh3m4/otf/MLqZfuzffv2QLV9\nrY8//vGPVgxKX46/ag9nq5qS78rnUxjTfV/rS5eXU+pnOknKK1PdJHk+whSfbzcrh6AvNlGYFkuQ\n9Umg9ARyCdOKeECaMGFCitIL9uVuv/12U9VesWKFKbrol73F50OMvmjSL2HbW1XBFcbti14v9XGu\nsUb7gsKPhkEKs6BaDntPqKzrjC7M9zmAqQpU2VVAis7erer5559vwYGj7Rx44IHhqYs76GzI4OAA\nSX9IpDjPxh4vDLmxL/iNb3zDymT6o1/iFiMRe7XOEYTbn3YKWeV0qo19RyTsmedLSXlB3f/SSy/N\n2Bw8y+TaR85YKUMmPqe6lG6mC7BNxWehKSbYO2O/mYkEGiOBf/3rX3ZbOlmJ3V5FhGm6HRU00y6/\n/HIbDBwJIOkMSIYNG2bHmf5USksy11gzjSuahy/UYhOUjBDIFwIMilh33313ziYRign2oy1btsxZ\nLsnFG2+80TSB0w3C0+s692POhVn69WLOnQDXvfJEzSThhR832RTDCv3hk2lwCMYMO0D3wyZTmcae\nBwcb8KzFRAKNmYD70R+9x4oI02iH6ccQrEht2rQxIZJ+3Z27GZc7b6zvMAlxM0G1DxMIuJ///OdZ\nbxeq8j7q8tkawhfgT3/6U7sM7V0YfkOrF0mXvlPckzkHEeVwqg11fqRMH1a7kPYnCS9oeGO2mCm5\n/jJd881zDkTgFKOpJmieN5X/1Wo/Y3gUww9frOJgJYqp/AQee+wxM53TLcpYZ1UXpjC9QMLM9Kij\njjLvPLFRZsiAhw4IG8ySsn15YWaHhDiAMHlwSbVh3WFNvcNuFKYtmB1DSFx33XUCO0tdpw/tScs1\nYCy7Q4hjdSBqp6q7DjE7NTcjxbKxj1PtfM8L9+ZsO7GcgmXl9JWC6P0n5YUtBJhjlTPB9aEzPyp3\nX+W8j2LbxhaOOggpthnWT0AApnzweDR58mQZPHhwghosUiwBeJXCVlh0i8+1Wfy6pGupwHfYbOLX\nLGwWhw8fHn4hRZtze3XRPGdLib1AOG/PlFyUBbjMglBAQuii9PBFmepWOg/LYwi3hHTNNdfIuHHj\nZOTIkXaOZVw177Hjcv1xTrWjS7yYacHvrFvWdX1jj7FQp9q5nhfax14jlqxh14r942yp2rzSx6VK\nZ5YFG2DV8k6/zHMSIIFGTqDqwk8e0PkAAAc0SURBVBT7jDDCxwwEHnzwZdS/f3/z5AOnDWr7KAMH\nDow9BhdNHo7esVSMOmpCY7M4Vxi+XZFU69O8h2D5Cd5q1F2cK1IT75jV4B4xO4fnHcxKkeBIHY4c\nIFjAIpPjhFLdgNpHWlNQfsLs4uSTTzbnD3BMAQcO0YRzX6faSZ4X+oDzC+d447e//W202/C4XLzU\nJaNgr9a9EFkHSe1dw7yhQ4eG44geOGcNeE5MJEACTZAAlIfL5bRBBaWZOegMB93kTLCThBMAOHnQ\nxxC+4LRB3bTF6sKxAQzl4SwgWl6XPsKysJPUL3FzroAycLKgX3aBahBbHfVwE5ZNOlbV9rW66pkn\nrOsOVEvWrum6ustK9O785uq+cYq5DSrrMk7IJFOfiTrQQjqTtLGptnTGKjDtAGf9UWPlwAvmKTDR\nQb84V+f6KXVhY6t7qwHG7Z4B6qtT7QAmNdGU5Hm58jAtQnv4LMD3bXoqFy8VpuF9uPtJf8fnKT3B\nNhefH9x7uoOQ9LJJz2kak5RU0y2n22L2edVl3qYLocJ3nss0pqxOGwq5T/UJG6gfWXPqDCEctU/N\n1J7u8wWqXGLG/uqCLlORQGd05vQANq1MuQlACGp8VLP/zV0y9WpSp9pJnhdahpCGINNl5tSOauwM\n96OrCTbWTD/6Ch0uhWmh5JpOPQrTyj/rXMK06gpI+oWZkrDc6xRcUi5kOcFeXz6FD2gKJ/WzmqWb\nJpON/UosrfumpFqxSZ4X+sYyMvbSoSwG8xc4ka/FhL1taEJj6+Daa6+txSFyTCRAAlkIwCIBZnPQ\nu4EcwQtbj4WkwmoV0hPrkIAHAeydIzgChO8VV1xhcRc9qlekKGykIUyxxwolN5onVAQ7OyGBoglA\nqRWTNujb9OrVy/RtoDiIF3RsCkkUpoVQY52KEICyz6233momO7XoVQcavFhJgfIRIiIxkQAJNAwC\nMAOEnS6sB6D8qX7h7UcxPL/V1dXl9HmQ7Q5rbpk320CZ3zQJYFaKsHzqJ7fmACDkHYQ8tJ+ZSIAE\nGg4BWCTAXlR9rIeDxlIvtpYQ+xn/286la1ggzwFnpnkA8XL1CSBOLJZ7ay3BKQgFaf6nUq74s/l7\nZgkSyE4gKkhRCgLWmb5B0PomClNfYixPAiTgRUDD9dlyOJx/IHCDauyH9RGsQMML2nUcM5FANQnA\nqxuSxpH2HgaFqTcyViABEvAhAAUt7CvDrSM8VzmtZyh6qO2y5U+fPl00Rq9PsyxLAkUTgAOY1atX\ni9qKm0MfDXdpvo6HDBni3Tb3TL2RsQIJkIAvASh6ILwhohzB3zRcUl555ZXWDCIj0XTNlyjLl4IA\nhCY08aMJpng+5pmuLmemjgTfSYAEykoAy7jnnnuu+eGGcgfcY2aK11vWQbBxEogQ6Nu3rwUJgA9y\n58t90KBBZo4XKZbokMI0ESYWIgESKAUB/Op3RvFJ4vWWok+2QQLZCGB1BFF35syZY84bsMyLz+cd\nd9whixYtylYtYz6FaUYszCQBEigHgUzxZ8vRD9skAV8CsBhA5DI4cUBaunSpVxMUpl64WJgESKBQ\nAtH4swgziIT90xkzZhTaJOuRQMkJbN261drMFAA8V2cUprno8BoJkEBJCNRa/NmS3BQbaVQEEMt5\n7Nix8uqrr5qGeb9+/bzuj9q8XrhYmARIwJdArviziCGLwPeIA4tlNcSzZSKBchNAHOzx48ebGQz2\n7jWimGhoTtm8ebM5iJk4cWLeACrpY+TMNJ0Iz0mABEpKYMSIEeYHFdGb4KatefPm1j7sTvGlBs8z\nEKijRo0qab9sjASyEaivrzebZ0Slmjlzpjz77LPmAxx+epctWyYatzhb1az5nJlmRcMLJEACpSAw\ndepUwStT6tmzp+zYsSPTJeaRQNkIQNGof//+NhOF03uEXmvfvn1R/VGYFoWPlUmABEiABBoaAZi/\nQMHIV8ko131ymTcXHV4jARIgARIggQQEKEwTQGIREiABEiABEshFgMI0Fx1eIwESIAESIIEEBFL2\nTBEaCerCTCRAAtUlsG3btnAAcARf6xFVYFqANHv2bIvCEQ6eB2UjsG7dOmv7iSeekHfeeads/bDh\n/xF499137WTt2rX/y3RHgaYHH3ww0PNAIzfYO475IgN+BvgZ4GeAnwF+BuKfAQ3aANGZklJmprD/\nGjBggLJjIgESqCaBnTt3yoIFC2wIJ598stliVnM8+fqGU3C4YTvqqKNkv/32y1ec10tA4JlnnhE4\nxIB5UefOnUvQIpvIRwD2qFu2bJEOHTrEiqYI05YtW9oyTawUM0iABCpKAMumHTt2tD4R1WLvvfeu\naP++nSE+6UsvvSRjxoyRc845x7c6yxdA4Oijj5YXX3zR4sIOHjy4gBZYxZdA7969zVPXYYcdFqtK\nBaQYEmaQAAmQAAmQgB8BClM/XixNAiRAAiRAAjECFKYxJMwgARIgARIgAT8C/wc9TG/r/uxsZwAA\nAABJRU5ErkJggg==\n" + } + }, + "cell_type": "markdown", + "id": "55a43d42-3613-44d5-a622-898e39f4af52", + "metadata": {}, + "source": [ + "- Let’s examine the call stack when we call `factorial(3)`\n", + "\n", + "## Recursion and the Call Stack\n", + "\n", + "![](attachment:images/rec_call_1.png)\n", + "\n", + "## Recursion and the Call Stack\n", + "\n", + "![](attachment:images/rec_call_2.png)\n", + "\n", + "## Recursion and the Call Stack\n", + "\n", + "![](attachment:images/rec_call_3.png)\n", + "\n", + "## Multiple Recursive Calls: Fibonacci Sequence\n", + "\n", + "- In calculating the factorial, each recursion only calls itself once.\n", + " This doesn’t have to be the case\n", + "\n", + "- The Fibonacci Sequence is a sequence of numbers where the first two\n", + " numbers are 0 and 1, with each subsequent number being being the sum\n", + " of the previous two numbers in the sequence.\n", + "\n", + " - Notice how the problem is defined recursively" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "4dd0e144", + "metadata": {}, + "outputs": [], + "source": [ + "def fib(n):\n", + " if n <= 1:\n", + " return n\n", + " else:\n", + " return fib(n - 1) + fib(n - 2)" + ] + }, + { + "cell_type": "markdown", + "id": "5daa1db5-0554-4389-8138-ab87872bc79e", + "metadata": {}, + "source": [ + "## 2 minutes: what is its time and space complexity?\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "07b4591d", + "metadata": {}, + "outputs": [], + "source": [ + "# Your answer here" + ] + }, + { + "cell_type": "markdown", + "id": "ba524b85", + "metadata": {}, + "source": [ + "\n", + "# Time and Space Complexity of Recursion\n", + "\n", + "## Time Complexity of Recursion\n", + "\n", + "- Generally, recursion doesn’t have performance benefits compared to\n", + " loops (in problems like finding a key in nested boxes)\n", + "\n", + " - However, it is simpler to understand\n", + "\n", + "- The time complexity of recursion depends on the number of time the\n", + " function calls itself (branches)\n", + "\n", + " - Factorial: the `fact` is called $n$ times before reaching the\n", + " base case so its $O(1^n) = O(n)$\n", + "\n", + " - If a recursive function called itself twice, then its $(2^n)$\n", + "\n", + "- When a recursive function makes multiple calls, the run time will\n", + " often be $O(branches^{depth})$\n", + "\n", + "## Tricky Example" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "ea244039", + "metadata": {}, + "outputs": [], + "source": [ + "def recursive(n):\n", + " for i in range(n):\n", + " # Something happens\n", + " i += 2\n", + " if n <= 0:\n", + " return 1\n", + " else:\n", + " return 1 + recursive(n - 3)" + ] + }, + { + "cell_type": "markdown", + "id": "1deffe46-9bd9-436c-adea-abc5d6db88f2", + "metadata": {}, + "source": [ + "- Loop takes $n/2$ steps, because we increase `i` by 2\n", + "\n", + "- Recursion takes $n/3$ steps **and** the loop is called recursively.\n", + "\n", + " - In other words, for each recursion, run the loop.\n", + "\n", + "- The time complexity is $n/2 \\times n/3 = \\frac{n^2}{6} = O(n^2)$\n", + "\n", + "## Space complexity of recursion\n", + "\n", + "- Notice the call stack takes up space in memory. How much depends on\n", + " the depth of the recursion\n", + "\n", + "- Think about the maximum amount of space the call stack will need\n", + "\n", + " - Factorial: $O(n)$, when recursion reaches the base case\n", + "\n", + "- Even when you have multiple branches, it’s possible only 1 branch at\n", + " depth $n$ is in memory at a time\n" + ] + }, + { + "cell_type": "markdown", + "id": "0712a264", + "metadata": {}, + "source": [ + "## 2 minutes: to find the key in nested boxes, what is the memory complexity of the recursive approach versus the loop approach?\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2906e615", + "metadata": {}, + "outputs": [], + "source": [ + "# Your answer here" + ] + }, + { + "cell_type": "markdown", + "id": "e3095511", + "metadata": {}, + "source": [ + "\n", + "## Live Coding\n", + "\n", + "Given an list of positive integers and an integer x, we want to find all\n", + "unique combinations in the list where the sum is equal to x. A number in\n", + "the list can be used multiple times.\n", + "\n", + "### Example" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "b31da01e", + "metadata": {}, + "outputs": [], + "source": [ + "# INPUT\n", + "lst = [1,2,5,6]\n", + "x = 6\n", + "# OUTPUT\n", + "[1, 5]\n", + "[6]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bd660dc1", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "b17e5971-fb5c-48a4-a92e-87a720633a26", + "metadata": {}, + "source": [ + "# Mergesort\n", + "\n", + "## Divide and Conquer Algorithms\n", + "\n", + "- Divide and Conquer (D&C) is a general method to solve problems\n", + " utilizing recursion.\n", + "\n", + " - Figure out the simplest case and use it as the base case\n", + "\n", + " - Figure out how to reduce your problem to the base case\n", + "\n", + "- Let’s start with a trivial example: how would you sum a list of\n", + " integers?\n", + "\n", + " - Solution is obvious with a loop\n", + "\n", + " - Let’s do it recursively\n", + "\n", + "## Divide and Conquer Algorithms\n", + "\n", + "Step 1\n", + "\n", + "- What is the simplest array to sum?\n", + "\n", + "- Arrays with no elements or 1 element\n", + "\n", + " - sum of `[]` is 0, sum of `[8]` is 8\n", + "\n", + "Step 2\n", + "\n", + "- How can we reduce all arrays to empty array?\n", + "\n", + "- Notice `sum[2, 4, 5]` = 2 + `sum[4, 5]`, but the second version\n", + " reduced the problem\n", + "\n", + "## Divide and Conquer Algorithms" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "62e23418", + "metadata": {}, + "outputs": [], + "source": [ + "def rec_sum(lst):\n", + " if not lst:\n", + " return 0\n", + " else:\n", + " return lst[0] + rec_sum(lst[1:])" + ] + }, + { + "attachments": { + "images/merge_sort.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABfQAAAVOCAYAAAA0EbgIAAAMP2lDQ1BJQ0MgUHJvZmlsZQAASImV\nVwdYU8kWnluSkJCEErqU0JsgnQBSQmgBpBfBRkgChBJjIKjY0UUF1y4WsKGrIoodEDtiZ1HsfbGg\noqyLBbvyJgV03Ve+N983d/77z5n/nDl35t47AGgc50kk+agmAAXiImlCeDBzZFo6k/QUUIE+UAd0\n4MrjF0rYcXHRAJaB9u/l3XWAyNsrTnKtf/b/16IlEBbyAUDiIM4UFPILIN4PAF7Nl0iLACDKecuJ\nRRI5hhXoSGGAEM+T42wlrpbjTCXerbBJSuBA3AqAGpXHk2YDQL8EeWYxPxtq0HshdhELRGIANJgQ\nBxQUjBdAnAGxHbSRQCzXZ2X+oJP9N83MQU0eL3sQK+eiKGohokJJPm/y/5mO/10K8mUDPmxgpeZI\nIxLkc4Z5u5k3PkqOqRD3iDNjYiHWhviDSKCwhxil5MgikpX2qDG/kANzBvQgdhHwQqIgNoY4TJwf\nE63iM7NEYVyI4QpBJ4mKuEkQG0A8T1gYmqiy2SAdn6DyhTZkSTlsFX+WJ1X4lfu6L8tLZqv0X+cI\nuSp9jF6Sk5QKMQViq2JRSgzEdIidC/MSo1Q2w0tyODEDNlJZgjx+K4gThOLwYKU+VpwlDUtQ2ZcX\nFA7MF9uQI+LGqPDeopykCGV+sFY+TxE/nAt2SShmJw/oCAtHRg/MRSAMCVXOHXsmFCcnqnQ+SIqC\nE5RjcYokP05lj1sI88PlvAXEHoXFiaqxeEoRXJBKfTxLUhSXpIwTL8nlRcYp48EXg2jAASGACWSw\nZoLxIBeI2nsae+CdsicM8IAUZAMhcFIxAyNSFT1ieE0EJeBPiISgcHBcsKJXCIoh/3WQVV6dQJai\nt1gxIg88gbgARIF8eC9TjBIPeksBjyEj+od3Hqx8GG8+rPL+f88PsN8ZNmSiVYxswCNTY8CSGEoM\nIUYQw4j2uBEegPvh0fAaBKsbzsJ9Bubx3Z7whNBBeEi4Rugk3BonKpX+FOUI0An1w1S5yPwxF7gN\n1PTEg3F/qA6VcT3cCDjhHtAPGw+Enj0hy1HFLc8K8yftv83gh6ehsiO7kFGyPjmIbPfzSLoD3XNQ\nRZ7rH/OjjDVzMN+cwZ6f/XN+yL4AtlE/W2LzsH3YGewEdg47jDUCJnYMa8LasCNyPLi6HitW14C3\nBEU8eVBH9A9/A09WnslClzqXbpcvyr4i4ST5OxpwxksmS0XZOUVMNvwiCJlcMd95KNPNxc0dAPn3\nRfn6ehOv+G4gem3fudl/AOB/rL+//9B3LvIYAHu84fY/+J2zY8FPhzoAZw/yZdJiJYfLLwT4ltCA\nO80QmAJLYAfn4wa8gB8IAqEgEsSCJJAGxsLoc+A6l4KJYCqYBcpABVgMVoA1YD3YBLaBnWAvaASH\nwQlwGlwAl8A1cAeuni7wAvSCd+AzgiAkhIYwEEPEDLFGHBE3hIUEIKFINJKApCEZSDYiRmTIVGQ2\nUoEsRdYgG5FaZA9yEDmBnEM6kFvIA6QbeY18QjGUiuqgJqgNOgxloWw0Ck1Cx6DZ6AS0BJ2DLkRX\noTXoDrQBPYFeQK+hnegLtA8DmDqmh5ljThgL42CxWDqWhUmx6Vg5VonVYPVYM3zOV7BOrAf7iBNx\nBs7EneAKjsCTcT4+AZ+OL8DX4NvwBrwVv4I/wHvxbwQawZjgSPAlcAkjCdmEiYQyQiVhC+EA4RTc\nS12Ed0QiUY9oS/SGezGNmEucQlxAXEvcRTxO7CA+IvaRSCRDkiPJnxRL4pGKSGWk1aQdpGOky6Qu\n0gc1dTUzNTe1MLV0NbFaqVql2na1o2qX1Z6qfSZrkq3JvuRYsoA8mbyIvJncTL5I7iJ/pmhRbCn+\nlCRKLmUWZRWlnnKKcpfyRl1d3ULdRz1eXaQ+U32V+m71s+oP1D9StakOVA51NFVGXUjdSj1OvUV9\nQ6PRbGhBtHRaEW0hrZZ2knaf9oHOoDvTuXQBfQa9it5Av0x/qUHWsNZga4zVKNGo1NincVGjR5Os\naaPJ0eRpTtes0jyoeUOzT4uh5aoVq1WgtUBru9Y5rWfaJG0b7VBtgfYc7U3aJ7UfMTCGJYPD4DNm\nMzYzTjG6dIg6tjpcnVydCp2dOu06vbrauh66KbqTdKt0j+h26mF6NnpcvXy9RXp79a7rfdI30Wfr\nC/Xn69frX9Z/bzDEIMhAaFBusMvgmsEnQ6ZhqGGe4RLDRsN7RriRg1G80USjdUanjHqG6AzxG8If\nUj5k75Dbxqixg3GC8RTjTcZtxn0mpibhJhKT1SYnTXpM9UyDTHNNl5seNe02Y5gFmInMlpsdM3vO\n1GWymfnMVcxWZq+5sXmEucx8o3m7+WcLW4tki1KLXRb3LCmWLMssy+WWLZa9VmZWI6ymWtVZ3bYm\nW7Osc6xXWp+xfm9ja5NqM9em0eaZrYEt17bEts72rh3NLtBugl2N3VV7oj3LPs9+rf0lB9TB0yHH\nocrhoiPq6OUoclzr2DGUMNRnqHhozdAbTlQntlOxU53TA2c952jnUudG55fDrIalD1sy7Mywby6e\nLvkum13uuGq7RrqWuja7vnZzcOO7Vblddae5h7nPcG9yf+Xh6CH0WOdx05PhOcJzrmeL51cvby+p\nV71Xt7eVd4Z3tfcNlg4rjrWAddaH4BPsM8PnsM9HXy/fIt+9vn/5Ofnl+W33ezbcdrhw+Obhj/wt\n/Hn+G/07A5gBGQEbAjoDzQN5gTWBD4MsgwRBW4Kesu3Zuewd7JfBLsHS4APB7zm+nGmc4yFYSHhI\neUh7qHZocuia0PthFmHZYXVhveGe4VPCj0cQIqIilkTc4Jpw+dxabm+kd+S0yNYoalRi1Jqoh9EO\n0dLo5hHoiMgRy0bcjbGOEcc0xoJYbuyy2HtxtnET4g7FE+Pj4qvinyS4JkxNOJPISByXuD3xXVJw\n0qKkO8l2ybLklhSNlNEptSnvU0NSl6Z2jhw2ctrIC2lGaaK0pnRSekr6lvS+UaGjVozqGu05umz0\n9TG2YyaNOTfWaGz+2CPjNMbxxu3LIGSkZmzP+MKL5dXw+jK5mdWZvXwOfyX/hSBIsFzQLfQXLhU+\nzfLPWpr1LNs/e1l2d05gTmVOj4gjWiN6lRuRuz73fV5s3ta8/vzU/F0FagUZBQfF2uI8cet40/GT\nxndIHCVlks4JvhNWTOiVRkm3FCKFYwqbinTgj3ybzE72i+xBcUBxVfGHiSkT903SmiSe1DbZYfL8\nyU9Lwkp+m4JP4U9pmWo+ddbUB9PY0zZOR6ZnTm+ZYTljzoyumeEzt82izMqb9XupS+nS0rezU2c3\nzzGZM3POo1/Cf6kro5dJy27M9Zu7fh4+TzSvfb77/NXzv5ULys9XuFRUVnxZwF9w/lfXX1f92r8w\na2H7Iq9F6xYTF4sXX18SuGTbUq2lJUsfLRuxrGE5c3n58rcrxq04V+lRuX4lZaVsZeeq6FVNq61W\nL179ZU3OmmtVwVW7qo2r51e/XytYe3ld0Lr69SbrK9Z/2iDacHNj+MaGGpuayk3ETcWbnmxO2Xzm\nN9ZvtVuMtlRs+bpVvLVzW8K21lrv2trtxtsX1aF1srruHaN3XNoZsrOp3ql+4y69XRW7wW7Z7ud7\nMvZc3xu1t2Ufa1/9fuv91QcYB8obkIbJDb2NOY2dTWlNHQcjD7Y0+zUfOOR8aOth88NVR3SPLDpK\nOTrnaP+xkmN9xyXHe05kn3jUMq7lzsmRJ6+2xre2n4o6dfZ02OmTZ9hnjp31P3v4nO+5g+dZ5xsv\neF1oaPNsO/C75+8H2r3aGy56X2y65HOpuWN4x9HLgZdPXAm5cvoq9+qFazHXOq4nX795Y/SNzpuC\nm89u5d96dbv49uc7M+8S7pbf07xXed/4fs0f9n/s6vTqPPIg5EHbw8SHdx7xH714XPj4S9ecJ7Qn\nlU/NntY+c3t2uDus+9LzUc+7XkhefO4p+1Prz+qXdi/3/xX0V1vvyN6uV9JX/a8XvDF8s/Wtx9uW\nvri+++8K3n1+X/7B8MO2j6yPZz6lfnr6eeIX0pdVX+2/Nn+L+na3v6C/X8KT8hS/AhisaFYWAK+3\nAkBLA4ABz2eUUcrzn6IgyjOrAoH/hJVnREXxAqAe/r/H98C/mxsA7N4Mj19QX2M0AHE0AJJ8AOru\nPlgHzmqKc6W8EOE5YEPC18yCTPBvivLM+UPcP7dAruoBfm7/BRvEfHmMGP5tAAAAimVYSWZNTQAq\nAAAACAAEARoABQAAAAEAAAA+ARsABQAAAAEAAABGASgAAwAAAAEAAgAAh2kABAAAAAEAAABOAAAA\nAAAAAJAAAAABAAAAkAAAAAEAA5KGAAcAAAASAAAAeKACAAQAAAABAAAF9KADAAQAAAABAAAFTgAA\nAABBU0NJSQAAAFNjcmVlbnNob3TemSctAAAACXBIWXMAABYlAAAWJQFJUiTwAAAB2GlUWHRYTUw6\nY29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4\nbXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cu\ndzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9u\nIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29t\nL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4xMzU4PC9leGlmOlBp\neGVsWURpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjE1MjQ8L2V4aWY6\nUGl4ZWxYRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpVc2VyQ29tbWVudD5TY3JlZW5zaG90PC9l\neGlmOlVzZXJDb21tZW50PgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8\nL3g6eG1wbWV0YT4KpujTXQAAABxpRE9UAAAAAgAAAAAAAAKnAAAAKAAAAqcAAAKnAAJex6Mnd/0A\nAEAASURBVHgB7J0HYxTHtq3bBJGTyCCMhETOJtnH9vnx9zhiTA4ig8k5iJx817drSjQCCWk0UVp1\nX50SCtPdX9XUPK+9a+1v7ty5+2/hZgImYAImYAImYAImYAImYAImYAImYAImYAImYAImYAIm0NIE\nvrGg39Lz45szARMwARMwARMwARMwARMwARMwARMwARMwARMwARMwgSBgQd8LwQRMwARMwARMwARM\nwARMwARMwARMwARMwARMwARMwATagIAF/TaYJN+iCZiACZiACZiACZiACZiACZiACZiACZiACZiA\nCZiACVjQ9xowARMwARMwARMwARMwARMwARMwARMwARMwARMwARMwgTYgYEG/DSbJt2gCJmACJmAC\nJmACJmACJmACJmACJmACJmACJmACJmACFvS9BkzABEzABEzABEzABEzABEzABEzABEzABEzABEzA\nBEygDQhY0G+DSfItmoAJmIAJmIAJmIAJmIAJmIAJmIAJmIAJmIAJmIAJmIAFfa8BEzABEzABEzAB\nEzABEzABEzABEzABEzABEzABEzABE2gDAhb022CSfIsmYAImYAImYAImYAImYAImYAImYAImYAIm\nYAImYAImYEHfa8AETMAETMAETMAETMAETMAETMAETMAETMAETMAETMAE2oCABf02mCTfogmYgAmY\ngAmYgAmYgAmYgAmYgAmYgAmYgAmYgAmYgAlY0PcaMAETMAETMAETMAETMAETMAETMAETMAETMAET\nMAETMIE2IGBBvw0mybdoAiZgAiZgAiZgAiZgAiZgAiZgAiZgAiZgAiZgAiZgAhb0vQZMwARMwARM\nwARMwARMwARMwARMwARMwARMwARMwARMoA0IWNBvg0nyLZqACZiACZiACZiACZiACZiACZiACZiA\nCZiACZiACZiABX2vARMwARMwARMwARMwARMwARMwARMwARMwARMwARMwARNoAwIW9NtgknyLJmAC\nJmACJmACJmACJmACJmACJmACJmACJmACJmACJmBB32vABEzABEzABEzABEzABEzABEzABEzABEzA\nBEzABEzABNqAgAX9Npgk36IJmIAJmIAJmIAJmIAJmIAJmIAJmIAJmIAJmIAJmIAJWND3GjABEzAB\nEzABEzABEzABEzABEzABEzABEzABEzABEzCBNiBgQb8NJsm3aAImYAImYAImYAImYAImYAImYAIm\nYAImYAImYAImYAIW9L0GTMAETMAETMAETMAETMAETMAETMAETMAETMAETMAETKANCFjQb4NJ8i2a\ngAmYgAmYgAmYgAmYgAmYgAmYgAmYgAmYgAmYgAmYgAV9rwETMAETMAETMAETMAETMAETMAETMAET\nMAETMAETMAETaAMCFvTbYJJ8iyZgAiZgAiZgAiZgAiZgAiZgAiZgAiZgAiZgAiZgAiZgQd9rwARM\nwARMwARMwARMwARMwARMwARMwARMwARMwARMwATagIAF/TaYJN+iCZiACZiACZiACZiACZiACZiA\nCZiACZiACZiACZiACVjQ9xowARMwARMwARMwARMwARMwARMwARMwARMwARMwARMwgTYgYEG/DSbJ\nt2gCJmACJmACJmACJmACJmACJmACJmACJmACJmACJmACFvS9BkzABEzABEygjgTev39fvHr1qnj5\n8mX0f//9UMer+aVNwARMwARMwARMoL4EZsyYWcyaNSv69OnT63sxv7oJmIAJmIAJmMBnBCzof4bE\n3zABEzABEzCB2hF48+ZN8fDhg+LBg4caHxbv3r2r3Yv7lUzABEzABEzABEygwQQWLVpYdHYuLhYv\n7izmzJnb4Kv7ciZgAiZgAiZgAhb0vQZMwARMwARMoI4EyMy/fv1ace3a9eLGjesFAr+bCZiACZiA\nCZiACbQrgZUrVxZdXWuKNWu6ikWLOtv1MXzfJmACJmACJtC2BCzot+3U+cZNwARMwATagcDz58+L\nS5cuFhcvXtR4KTL0p02bVnBEferUqe3wCL7HBhPApomTHLnn9cI4ZcqUBt+NL9cOBPJaYfzw4UPs\nL6wX+jfffNMOj+B7bCCBf//9d3B/Yc2wRvJ6YXQzgaEE2FfyPvP27dti7dq1xbp1vUVvb2+xdOnS\nob/uf5uACZiACZiACdSZgAX9OgP2y5uACZiACUxuAkMF/Y6OjmLBggXFwoULdUx9zuSG46f/IgFO\ndTx+/Lh48uRJ8fTp01grrBfWzYwZM774N/7m5CYwMDAQa4Z1g9jGesndQaDJvTa+9PSIs3mPYUTE\nz59L8+fP/9Kf+HuTnACnC1kred2sWbPGgv4kXxN+fBMwARMwgeYSsKDfXP6+ugmYgAmYwAQnMFTQ\nRzRZvXq1jqp3yXt28QR/ej9eNQQQTG7cuCGrpuvFnTt3BtcL62buXHsVV8N0ov/N7du3Y82wbggI\nsb/kfcYZ1xN99sf+fGRa5z3m5s2bBYHmvF5WrFgx9hf0X0x4Avz/ZfhMYt3Q2WOcoT/hp90PaAIm\nYAIm0MIELOi38OT41kzABEzABNqfwFBBH7Fk48aN0fkPYjcTGEoAEf/s2bPRL1++PLheWDeLFi0a\n+uv+twmEnVdeM8+ePftkzfhUhxfIUAJkW+f1cu7cuWLWrFmDawYLFTcTGEqAQHNeM4wEgCzoD6Xk\nf5uACZiACZhA4whY0G8ca1/JBEzABExgEhIYKuhTSG7z5s3RObLuZgJDCZBtfebMmejUXWC9bNq0\nKcbOThcfHMrL/y6iRkdeMwj65TVjQd8rZCgBBP3+/v7YYxgR9PPnUl9f39Bf979NoHj06NHgemHN\nrFq1yoK+14UJmIAJmIAJNJGABf0mwvelTcAETMAEJj4BC/oTf45r/YQW9GtNdOK/HkW3LehP/Hmu\n1RNa0K8VycnzOhb0J89c+0lNwARMwATag4AF/faYJ9+lCZiACZhAmxKwoN+mE9fE27ag30T4bXpp\nC/ptOnFNum0L+k0C38aXtaDfxpPnWzcBEzABE5iQBCzoT8hp9UOZgAmYgAm0CgEL+q0yE+1zHxb0\n22euWuVOLei3yky0x31Y0G+PeWqlu7Sg30qz4XsxARMwARMwgaKwoO9VYAImYAImYAJ1JGBBv45w\nJ+hLW9CfoBNbx8eyoF9HuBPwpS3oT8BJrfMjWdCvM2C/vAmYgAmYgAmMkYAF/TEC86+bgAmYgAmY\nwFgIWNAfCy3/LgQs6HsdjJWABf2xEpvcv29Bf3LPfzVPb0G/Gmr+GxMwARMwAROoHwEL+vVj61c2\nARMwARMwgcKCvhfBWAlY0B8rMf++BX2vgbEQsKA/Flr+XQhY0Pc6MAETMAETMIHWImBBv7Xmw3dj\nAiZgAiYwwQhY0J9gE9qAx7Gg3wDIE+wSFvQn2ITW+XEs6NcZ8AR8eQv6E3BS/UgmYAImYAJtTcCC\nfltPn2/eBEzABEyg1QlY0G/1GWq9+7Og33pz0up3ZEG/1Weote7Pgn5rzUc73I0F/XaYJd+jCZiA\nCZjAZCJgQX8yzbaf1QRMwARMoOEELOg3HHnbX9CCfttPYcMfwIJ+w5G39QUt6Lf19DXl5i3oNwW7\nL2oCJmACJmACwxKwoD8sGv/ABEzABEzABMZPwIL++BlOtlewoD/ZZnz8z2tBf/wMJ9MrWNCfTLNd\nm2e1oF8bjn4VEzABEzABE6gVAQv6tSLp1zEBEzABEzCBLxCwoP8FKP7WiAQs6I+Ixz/8AgEL+l+A\n4m8NS8CC/rBo/INhCFjQHwaMv20CJmACJmACTSJgQb9J4H1ZEzABEzCByUHAgv7kmOdaPqUF/VrS\nnByvZUF/csxzrZ7Sgn6tSE6e17GgP3nm2k9qAiZgAibQHgQs6LfHPPkuTcAETMAE2pSABf02nbgm\n3rYF/SbCb9NLW9Bv04lr0m1b0G8S+Da+rAX9Np4837oJmIAJmMCEJGBBf0JOqx/KBEzABEygVQhY\n0G+VmWif+7Cg3z5z1Sp3akG/VWaiPe7Dgn57zFMr3aUF/VaaDd+LCZiACZiACRSFBX2vAhMwARMw\nAROoIwEL+nWEO0Ff2oL+BJ3YOj6WBf06wp2AL21BfwJOap0fyYJ+nQH75U3ABEzABExgjAQs6I8R\nmH/dBEzABEzABMZCwIL+WGj5dyFgQd/rYKwELOiPldjk/n0L+pN7/qt5egv61VDz35iACZiACZhA\n/QhY0K8fW7+yCZiACZiACRQW9L0IxkrAgv5Yifn3Leh7DYyFgAX9sdDy70LAgr7XgQmYgAmYgAm0\nFgEL+q01H74bEzABEzCBCUbAgv4Em9AGPI4F/QZAnmCXsKA/wSa0zo9jQb/OgCfgy1vQn4CT6kcy\nARMwARNoawIW9Nt6+nzzJmACJmACrU7Agn6rz1Dr3Z8F/dabk1a/Iwv6rT5DrXV/FvRbaz7a4W4s\n6LfDLPkeTcAETMAEJhMBC/qTabb9rCZgAiZgAg0nYEG/4cjb/oIW9Nt+Chv+ABb0G468rS9oQb+t\np68pN29BvynYfVETMAETMAETGJaABf1h0fgHJmACJmACJjB+Ahb0x89wsr2CBf3JNuPjf14L+uNn\nOJlewYL+ZJrt2jyrBf3acPSrmIAJmIAJmECtCFjQrxVJv44JmIAJmIAJfIGABf0vQPG3RiRgQX9E\nPP7hFwhY0P8CFH9rWAIW9IdF4x8MQ8CC/jBg/G0TMAETMAETaBIBC/pNAu/LmoAJmIAJTA4CFvQn\nxzzX8ikt6NeS5uR4LQv6k2Oea/WUFvRrRXLyvI4F/ckz135SEzABEzCB9iBgQb895sl3aQImYAIm\n0KYELOi36cQ18bYt6DcRfpte2oJ+m05ck27bgn6TwLfxZS3ot/Hk+dZNwARMwAQmJAEL+hNyWv1Q\nJmACJmACrULAgn6rzET73IcF/faZq1a5Uwv6rTIT7XEfFvTbY55a6S4t6LfSbPheTMAETMAETKAo\nLOh7FZiACZiACZhAHQlY0K8j3An60hb0J+jE1vGxLOjXEe4EfGkL+hNwUuv8SBb06wzYL28CJmAC\nJmACYyRgQX+MwPzrJmACJmACJjAWAhb0x0LLvwsBC/peB2MlYEF/rMQm9+9b0J/c81/N01vQr4aa\n/8YETMAETMAE6kfAgn792PqVTcAETMAETKBoNUH/33//jVlh/PDhQ/Hu/fvi/bt3Q0Z978P7+PmH\nD+n3+P3UPxTffDOlmDqVPjX6lCn6esrUIsZpU4vp06cX06epT5+m3/0mrpfHeiyJ8jO953nU371T\nf/9Oz1YZ9b38e1+6h28K3afuldudwvPpOaZVni8/JyPPmJ8lj196vfF8r5UF/Vg9g2vh3+D8Xpzh\nHWOF/Qetn5Ea7KKLe1pL0z5hPm2a/i3eY2HM/H6o3NuHuI/KutbXrdRiXen5GKfQMwsWX5VtIgr6\n77U/MY/sUyO+d0v8BtdV6XtVIv3kz7gHOvcUewx7ZmVviftjn/yXn2lPffe2ePv2nfrbWNtpLaf5\n/mbKN7GHfNxj9H32Gq0H1kLsNaU95pObqOE/mi3owww+wUm8qm1wm07XZw7sat1Yd+nzRJ8lWovR\nWQt8rfHfyrwz8n/DtSn6fIx5Zo4r7/2pU9Pc5zXLh0/1O8BwV67d9y3o146lX8kETMAETMAEakHA\ngn4tKPo1TMAETMAETGAYAq0m6IfgiRAhoeLNm7fFy1cvi1evXhUvX77S+DLGl/o3gs87iVYhumgM\nAaMiYkyV4DRjxoxi5swZGmeGmNKBiK8+a9asYu6cOcWcuXNi/Ea/WwvBchi8IaH8W3kenu31q9dD\nnknPVnmufyW4DdcIUiDWc6+IRDNnzozni1HPyvPSp3d0DD4Pv1+P1tKCvhjnNYSg+en6YR1pDWn9\nvH37ZgQ0FVGzwjutJXjP1PpJY3ytf4+WcYj5WgdZcHv9+nXxqnIvr7QmWqnxjLNmzipmapzBekLk\nE4vxCJITTdBnPtl73iD6ap9CAB6uIZITUCQwVGY51oDQcK/P98v38vqN9hjWlvoL9XcS7wke8n5g\n33z27FkEcp8/f1F0dKQ9kX1xpvYP9pbcWeOzZ8/Smp8d6z7vMbEm6rS35GdstqDPvD5/9rx49jyx\n0nRX1WbPnl3MrXzWwK/WjXXHfsZnJJ195bXm+M1rde1xzHkOiI/0+TJ9eofe8+xvWgelfY59AKG/\n/DlZ62eo1etZ0K8VSb+OCZiACZiACdSGgAX92nD0q5iACZiACZjAFwm0mqAfWa8SKUKokBj1dGCg\nGHiqrpGvn1a+fvHyRRIvEDDUk7gvgV/ZlGTfz5Fon4WUmYiTFZFi/rx5RWdnZ7F4cWeMCLKIlYxj\nybb+IswvfDMLuTwP/dnz54PPFM9WeS6ecaSs8bhPCasIggQn5uk55s2bW8ybOy+eczbPq44gg+jP\n79frmVpZ0M+cGRG28rqBb6yfynoiODRcYx2QsRrZyOI9Z87sQdbBPNjPK1hLoxW5WQexRiNz+l0I\nqqzlpwNPQzgc7l6a8f1583m2+cV8jbO1nkLgJSAmsbfaNhEF/RBSFWgkaIRwOlxjf5mm00BwJKiY\nBXN48h6tRYugJ6Ku7oc9/cnTp9GfamR/JDiKSP7ixYvi4aNHxcOHD2NkfufPn18sWDBf63xuBHA6\nFMShsw4W6vsLFiyI35kjcZp9lXG0677aZ2u2oE8wJHN68PBRoQhzVY+ycOGC+JzhM4f9udaNAGH+\nHGGve675ZY5fvEgBHTi+1ty/1TiSoD9T64DPFPY0etoD+IyZl4J6lc+TWq3XWnPg9Szo14OqX9ME\nTMAETMAEqidgQb96dv5LEzABEzABE/gqgVYQ9BE7aZH1Wsm6R/wcUCbpI4kpCCv8x/rjx4/19eMY\nyTLN2daMKVOWrMS3IXiHSCWhihEBCsGbcdGihcXy5cujr1i+LAS2oZYI4xX2eY7oeqZsrfK2IuQ+\nfvJEz/I4nofx8WM9m56LrxFnhmsIaNkKBbFtkYSihQsXqi8YFNwW6Fnnzp0bAQ0ExLJgON5nKt9X\nqwn6g+tHN8m6eUfWtEayk1k3D7WGGOH8GPYaWffDNVhNk90EtkZwR9heJNYLxJpx0aJFRefCRbGW\nmIvB4IlEr+EsKbhHxLXour8nWgf37z8o7j94EPc23L004/tLFi8uFi9ZXDDy/iGAlEXeau9nIgj6\ng+tMc0nACAF1YOBZ8VR7EYLpcA0BP53ySKdoYBnZ7hqrFcZjf6nsM9wL2fbsl+yLrK0sRrPueR9E\n5raEfe73zt17xd27d4u79+6FQL+4U+tZgjP7B4FPMvVnaGStdyrwuVg/69TvIOwv1O8wEphIga/6\nBEKbLejD8eatW6nfvBX7+XDzO9L3l+szZtXKldHZr8fb+KTkxFcELjX/rLuYa/Y39Qh4696fsxa0\nx8W86wTQK809fzNcI1DDfC/U52Pe4/is7NReR5CY+ebzZBrzXnmRWn6mDHdfY/k+z3/mzJmiv78/\n+qpVq4p163qL3t7eYunSpWN5Kf+uCZiACZiACZhADQhY0K8BRL+ECZiACZiACQxHoNmCPiJDtiFB\niI3M0idklz6R2C3xW+LrEwRvfc29IrQgVJCJGtYCFZE0WUpgK/EuMmBnyyYCuwMsI2bKdieJVDMk\neM+TUCmBqiJUIVpkAYPfz9Yi1QptcA77C+5Lz0Ow4ePJAj2Xno2sWfoTZWjHM1WeayTBBdE46gDI\ntoMTCHOVNR7ZsrJzSBmVEtoktuVs2wXzEfrnR3Ylz0KvVXZlKwn6CJuxfip2S4lr4oywmdcPgaDn\nss94ho2G+qvXr4Z7S4RQmU5tJJsUBC2yawkKzdepiEUInIj6EjnhHfyVyUrACJEr9/IFuM+wxZCw\nhsh2V6LqtevXi2vXrqnI8J3yrzb9666u1cWaNV1FV1dXiPohRkvkReyttk0EQT9OWOg9jdiMQMoc\n3kEY18j7fLiGdVGIpQSDFBQiEz6fHkLcr6ZxL9iQRVBT10bUJTj04MHDCHgOPBuIvRIBn/tlT6Lz\nNwQVHz/Rvqq9iH0xTvsoEDhbewrCbbIn64h7zCdSFkrEX6wAz5II9CyJEyuxv2qfxdqs1q3Zgj48\nL1y4WJy/eFHjhfCir+YZu7vXFn19vcX63j4FkZdV8xLxN+UADgGa2Me0n3HyKM07c/8gfTZWTmqw\nx6VAN3MvW7oRLN14b7PHsS5Zn5zMmEfwRp2g8aJKAJNgTvkzspVEfQv6VS8v/6EJmIAJmIAJ1IWA\nBf26YPWLmoAJmIAJmEAi0GxBn6K3ITZVRDKyIhGMb926HUIFoizCflhH6HdSpqkEKlnrDBaUld1F\nBAYqmYsI13hDd8gXmHGaBPCwu1CGIeLsfGwksBWRWIFouSb66hBpIxNRIhuiVrUNweWFRHrsDxDP\n7ty5W9y+cyfGAVmsJDHmeVgj8DyIV6/leTyS4JJ8/rHRSXYwM2YkWwz8rMnKD2FZz0OAYuWKFcXK\nlSsiKxTRP4t0MKhFayVBn3kP0aoiWN4R55taO7e0hu4pA/mJ1k4SMJ9E/QL8xWHN+hmuUfoxioOq\nbgGCVawlcYb1LIn2OaOZzOVly5YFa5gjeGa7IzyncyYr1+E+ywIsYv658+ejX7nyz3C30pTvr1/f\nW2xYv75Yr75K64j3THSJftUKeBNB0CeAmN/XZOdfufpPcfXq1RgJ2g3XCPiQpZ3fk2RBdyLuKyhU\nbZCEfYNgVZz20ch+eauSUY6dDgGHtFdiR0aB1FQwNYv6BAKo4UDGNaI+QRuCCzn4x8gek4M5iP4r\nViwf3FuWLFkSmfu8B9h7at2aLegTqDl2/IT68eLYseN6/1ZnubN586Zi547txa6dO4pv16ypCtPQ\nrHyCDfc4ZaH9jWAS+9y9+/djZF45nZQCOOVCuSMXXSdIHPPdobWgAE0S9+dGrZnl2uP4jOzqWl2s\nVtZ7/jxhrFWQuCowQ/7Igv4QIP6nCZiACZiACTSZgAX9Jk+AL28CJmACJjCxCTRb0Ed4CPFJWYVk\n3l+4eKm4dOlSjIgqOeOaTFNE0bAbwGqCr/k/qR05e5GZ4uucIY34TTHZ/O8szqbsfYmUEmc3b9xY\nbNq0sdisjiiLwIbAVa3Qxj0g7nGqACEZ0eXKlavF5StX1K+GTQfCLqL/G4luiPiIRTzb15q0ZbWU\nAR4Cv0RjnnHObGWOVwIU1AboC5uBnqJ33bqw5cnPU2028ND7aiVBn+z8cuY7nPMaun7j5uCJCE5+\nUBySgrmxjlg4I7SEOknyH1mnQNGSTlnScMJDAv7ab79VBu66sHVYs3r1YNFThK6y+M01sUV5/kKB\nHo0XtcaTWHii6D93boQ7afyPdmzfVuzasaPYISFy7bdrYn1RR4CM7PIzjeXOJoKgz3s2BRix/sLe\nQ9YeZ88Wp8+cjX8PxwPRu3ddj+w/0ntymew/li1T10jArZqGT/otneyI4KfGFFhgn7kqK6f7scbz\n3jK4P7L2K+uf9ch7h3VaXt/sMQS0NNHpZxFAnKJaCrMlSHeFKJ1ObyDuqq9eVSyVuF/r1mxB//qN\nG8Vvf/xZ/P77H8Vv6tR2qabt+W538Z/vvy/+88P3xXpl6lfTmL+YL90DFm4ELK8okMSc/3PtegSK\n+ay8c/dOBCvTfPNZySfkp5+Pw12f93VeCwRzBoN4OuGGmL9Fn48b9Vm5YX1fCvJUPif53VZpFvRb\nZSZ8HyZgAiZgAiaQCFjQ90owARMwARMwgToSaIagj+BAY6R4X9jrSPzG6/zS5cvF5UuXi4saEabK\n2exkBOZM+6nKNs9H/4dmCfK6YcNSEa3KvuoIF+FfXck+Xd/XF9nIGzb0FV0SZPE5zvYYCF20r4mY\nSUD5KBQj4pORj5XKrVs3JbrckL3KtRBfEOLIEH+jTPH37z8kb2I9F8+WbF6+XMw2CTo6iaC/4VRD\n+ZkQ7OfMTUVxuf91Pd1FT3d30a2OaJieaUFYa+RnyWM84Bj/p9mCfqwezTEjQRECJ9iHILZelsh1\nSeuHdcRpj+dY7HBaQp11ktcP4xTZF2FjNFSUYj7J4H/3liLLKcuVgsXMF6+B/UiuXdCzdm2xfsP6\nWEPda79VMEgBIWW4EhAqr0vmL98Hgj7Z+YePHCn+PnxUgvCZMc5AfX99966dxXe7d6vvinVEtm7Y\nO0nUr3bdtKugn9/bjASFOG2DcIqYfl5zeP7CxZhLThEN18hm3yghdL06Jx+wXlmhOh4rlq8Ii5Ph\n/m7o9+M9r/c+gSnW+z+ya0LQZbwhAfr6de0zGqk1wjyx/hjZW/A/jz1m2tSKYF8R7nWReEZGrdHy\naRfWLD9jJBjIaY180oBA1lqt97Xfro2TB+Gvrizv6ardUe0aKT9vswV9mP7vl9/Ufyn+T533fjXt\nwL69xc8//VT89+cfi40bNlTzEsE/gpbhhf8qrLoussepX/3nn7BZevAw2S0RIM+NeYj9rvK5mT/P\n+HkI/ZpX5jaCPKwrfc3nJnOeToBxcqMjsvLTiZ2+oq83BYnDpk6fNR367PmGF9S1YuTrJjUL+k0C\n78uagAmYgAmYwDAELOgPA8bfNgETMAETMIFaEGiGoI+AEBn2Gsl0xS4C8RXLCLKqb9xUlzCFaJWs\nI+QF/OZtRVREuMa3eVaIDTNkETA08/z9+3chmmd7FZ4xd8RwRKdsw9OlDFOEfDJNV2tcI1uBbMOD\nwI4okvtwvBFFBkV2iW3/SGQJwUWi8nVZq+BrfV82GIwI+fgZI87xutm/mhFLlxDfdH9TVZS13BBq\n8vMg7uRMb56L+8QmATEZ4TVZY0gw1IkDnqtrNbZCq6MQcGTj6rplsbl8ndF83XRBX+smryHE8Vg7\nt28VN1W8Mq2dtIYoOouP9OtKUchZEtmTMC0/fGWesm4iuKORkxy5sX7g+kzBF8ZX+nsCB1iuMNf8\nba7RQNZyr0QuCi8i6CP2R/FQiV2InLnxdxb0z0TRSupgbN68WSdjNsXIHLRqy4FBMqOxNcFmh+xo\n3uOxV7Ffaa9ibodrtRL0sVMJOy8FQfFLJ2gVAdDLV8KeDKudBwqK8nsEqRBz6dk+ZZ6suWbJz5+1\nnk4vfZPEfN5PHxTE0h7D3FBcl/727ZsUOJRlD/tF8lJPAU/sYzhx0NPdHVYsvK9y4GdogGw4LiN9\n34L+RzoEFQnSZPs5gg1x4kvzzkkCTq/leWO95sac5TlhfsrzgmgfASIFLnl9eKdAc6q3kNcOn5WL\ndSKJz8n0WZI+H7v0eULmPq+PvVj+XMnXbsZoQb8Z1H1NEzABEzABExiegAX94dn4JyZgAiZgAiYw\nbgIIlpcuXSzIoMXqZqW8nhHb6Guq9Pz92k2RCRiZgRoRh7FIietLoLonERYh9v6D+5G9TzYqYjkC\nRC5E2rmoUwX7UhHSsAKRHUS5vZEQ9SLsTV6E0PZIIheBAzpiOEJH7lEUlwKn8rVG2MdWAPudzRIb\nEUBy1jzi+3ANESUEEYkiIUTJhuPkyVPFiVOnZIvwT/JO13UR2vjd/OwIythV5E5RyvCzlvA81MP/\npf6e7H7mC7EN8YITDTwT2eMEALhfggILVMQwZ5EjuGEptEnPtU5f5+dmHOmZhntWvt9sQT/zYyQ7\nnyxpLGwuaOR0BCc7WENPVa/gHf7hYs46mi+xPa8h+FDEFqEL7lNKgj5ZysH30cNgDO+8nvAlzxnP\n+I+TscyJCPq3ylpeHpnXZF8vi2ABvGjcqwX99hL0P4qe6aTGTQUa+8+eC5uds+fOVzzsH4WPPeti\nuFYrQT8VDE81RagRcf78hUodhguVwJP2GO0T7AfsLanPiJoPS6KgLcVs58UeMFWnU6bodAqB1bwf\nv9bfUmCVwAUj+1UWelm/nDyZUSkwngJZvZGx3a1TKhSI7qwUi+b9Md4W+2h/fwSA+jViAZM/l/r6\n+sb78l/9+1bK0Gdt3R6sw3IngkkElhD1CYbzeUfA+y0BR31O5oYon/c7xumqKZPbv7J6Q8DPtRZe\nvsQOjM+XFzHv5c8JCuVS74GsfIoiZ5u6TRs3xedm+Xfz6zdjtKDfDOq+pgmYgAmYgAkMT8CC/vBs\n/BMTMAETMAETGDeBRgv6iGQhsEpkRai/+s+14qSE75MnTxZn+s+Gxzwe9E+fDgxmsSM8T5NYTeY5\nNhXLNSJQUGwSYZ/M03JDAKFo5RO9xoBsMgbFEFllPFM2Y87uZgzP/IpFCoI+NiP4HmM5gjDFdRHK\nES2Ga2Q65uxZRoopHvr77+KvQ4dDdCn/XWQyVgIKZHqHD/WqlZH9yPPMUnCC7w/NWkbMhwlsyNbM\nhXax9uF54YroBqts+cKzYSmUnmdXBCniecjc1TO1q6DP+mHtMCI+EjxhDZ3QiKgDowGxQtzMgQue\nlcBJWJ1o/SCyzp83VwLn/Kg/UJ5feN4NT+p7sle5G4It2bH0nIkNbzoFI7+VzzwZy/jNI+qTqY8l\nCSJkZszcIJblkxUXFEA7cvRYcfTYsaJf677eLSw2JOL9q0zsWP+V+8/Pke+TsWy5g1ibTjUo+DHJ\nPPRhg+iZTsa8juz8EycolHqiOHn6dLzv8ukP1iK/T8tjntNaCfoEqu7eo98L2xXWDR7+7JtcP88h\nQi57COuPugeseQJPWOYgzEagsrKvsS75Wzr2Z/mk1E2deCHzm+8lm7AUsMjPxokf9pY++cKv6+lJ\nxXJ1Iog9eujelTmMZWy2oH9N9kW//v578dtvvxe/qHNCIzdmGW6wyKP+MehXn3+PcbyWO1yDzxSs\ndRDxk29+xWpJn53sT3neGel5zyO4i73T8mXLo2ZDeV4I5LA/8tp0gpZhW/b0Scw7183Px+dg/pyk\nAPsefTburnxOYuk2TcHkabJyYl01s1nQbyZ9X9sETMAETMAEPidgQf9zJv6OCZiACZiACdSMQDME\n/VwElxH7ilOnTocYizgVAlJFZECYQERElOJo/0oJ30mYWhlZ6LMrghU2EuX2VtmKYU2h10GMuiPR\n+w4FJCV+kNWe7QkYOzrwfSabdXqcTti9c2cImrvkI87rI4KQNY9INlxDfCJTPHm5PylOnT5TnDhx\nsjgm8e/ateuf/BmCyIJKAVuCEtjiZJGZ5+R6+BYPzXJFOMx2GwQr8PHGo59neyxrIp6FjkhDZi5/\nzzNRGHfXzh3FThU5JVMf2xk6Ak21AkyzM/QR3HNmKYIWQv6piqCPmP8SEVJzj9gW9jjiyjpC2FoV\na2hFsViCfqwfzTHFkbEgyQ3rkUePHkcGNsGTexJQ79xVV5YsJyKY79wJwiylyOnSJeElvl4e6Xhl\nb5SvPoGmENcqwSAyoLHv4d6xl8qWKXif17tx6uCl3gtpDWkkG7ci1iLmRvBKaxyLjfQe2BXvAwIU\nESDifaA1U21rRw991g/z/0j++I+fPI7g41ntUWTpE5AhOJKFTxhiXcLaIcBXbrUS9LFXYT/5RzZe\n/0jMvUKhbe2fV1QIl/vIQj1C/tIliyObmmsvWZxOAfE1ew9rMneCOzwnnT3mgWx7HuLHrjEHDwhu\nwQEfeZ6T36Wo71oFsQhksUbw0yf4w8j+Mt7WbEGfEz6n44RAf9S4gG9uZMOXP0MGi3Lr/c0aKLdq\nBf3BoLNYI7ZzIuSsimef13hTpzPuKbDDvsSpjfJ7l+Abe1L0+fPj1ARBnJSh//HkBM+T9jDZicXn\n19OwccLK6YH2OPaH1F/qcf7VNdJnJJ9RO7dvj4LZOzSuVAAnAkcKRA/9HC5zaMTXFvQbQdnXMAET\nMAETMIHRE7CgP3pW/k0TMAETMAETGDOBRgv6iEHZegRRBNuAkxVB/6yEMoRHvJsRTRBj8e9dvLhT\notTi8LjHu5dM+gUSK7JozVhuiE7xOnoNxAqy2BG+06iiltgXSBBnzCIYGYbYpezakcQKBHAE2fAg\n1ki243ANER3Ri8xZRJZzssLgWc5I/MMSodzImFy9Sn7E6iuVMYsYTOY4mY6I+QQO6FhilBsiIUx4\nrsEgBc9UCVTwLIj8CNH5mRh7utcW27dtU98aQjOWG4g9nGwoe7yXr/W1r5st6LNm6awjxK1TEvSx\nN0LYR8xPc/+moHByXjuLZQeCmJ/qJawOsbNDItV0BT2wN8pZrjw766ecTU/W8jX5Vv/zz3UVQ72t\nnxE8SdcneBLrZO6cyPqH9Y7t9O3hOV4+4cEc5voJFILG1gThELG03g0hH4/15LOe6jlQ04Fimqwr\nxLhZqksxU+MurX0CWgSC8MkuFzyt9j7bUdBnHTD3N/UeJgCDDQvi+SXtWayHEDm1dlhDZHC/fJks\nbxB4y61Wgj62UthLnb9wIay8WIvsL4zsF+yDdGo4lE+MIOZGXQd9H0E2nRJK2dw5IEFwAjE6AoO8\nt7Q3EzygODmBJ+pTEKzIHasyApGcUMFbnaKpGyrFoQmejbc1W9Bnb4m9NfbY2xEwyc9E0JnPkjjF\no32XQO5TCet0PgvKrVpBn7VH5yQSBZePKzh8XEFiToiwb7D/IPQT3ERQjyCt3rvLliyNzxU+W5Zp\nbnKNFgLJfK4MNgn671QrJCzJNO8PHz9S0Fufi3dux+ci1yCowx7BnOfPFIJ6W7dsrvQtEWCntgIW\nZvP1mdzMZkG/mfR9bRMwARMwARP4nIAF/c+Z+DsmYAImYAImUDMCjRb0ESmiuB8Z7RIyEYxOnVSG\nvgRZshDx9qVAI0LTQnn2rulKAj4Fa/FtRqjC2x+7lHJxxzKQsBdR4CBnn2ZhBlEfkSplRl+JMdsU\nMC5VlvWOivi9TQJ4WQhDNBmuwTCyZ5VpTYFMghSXVLCQ65BJWW7YU2zauF59Q9EtT/vsO43gTKHe\nuB9li3/MF09/DY+ctYmIk22EENexY7gc17sSRWHLzwSvLVs2FVtVE2H9+r64HteiI0ZX05ot6H/0\nEn8chUnDsqkSFEIIJGgELzLwcwCIEXGatQMTvKAH7Y809+XG3yJivVHx4rfv3kY2NCLqBQVqrog1\nwhGBE7L1sa4gcIDgtWDB/GLfnj3Fvn17i/179wTjLLIipsUcVu4NIS0CV7rO0Izu8r3U6mvsNKJg\ncKXgNOuUoq5YiyBAz9P7KQITCvaQgZtPdaxWEKQWRS/bUdBnXhDRo8C1xn+0d4TAL3GbkyF4i8+d\no6CfRnzosfNCZEUML7daCfqnzujkj4JWJ9U52VReh5zGCX972YdxvVQHJNUCQWjNJ50iMKn1/umK\nxyZINjLae9O6T8L9+fPnZS90MsRkOMTJGGXxM1K7BE919miE/Rw0JHCIeDze1mxBn88pimDnYtjl\n5+G9FJ8hl1KwIwdy2euZ/3KrVtBPwb80DwjrBw/Jwu2vQ7Jx+zuy8kPw1/rUB0blvTuvmKv3cLdO\nS7DPY4eE7VecMIvaBzOiHkz53tiPckfA56TQNZ3+YE9I+4P2CH1NMJDG5wr7GZ9dm3QKaYM6n89x\nQkknNgi6N7NZ0G8mfV/bBEzABEzABD4nYEH/cyb+jgmYgAmYgAnUjEAzBH3+w/shVhYaEb/JZu/v\nPxfiWfnBFksgCD9yrBzkT57sUmS7o+z20WaBIljgs07mPCNFavv75Ttdsc7g57kh8m7bsqXYtnWL\nRPDNIVAguCN+k9k6XEPEQWDD35jXxw7jKhnd6lj8YG+B4MuIFQuiFwED7HA4aZDtEfid0TRENzK7\n76lwMGOIpbKHOH2mXzyvfvISZM8m8WW9Clj2RtYmWbWcFMBKqJrWbEEfgQs/cQooI0D167mzPUbZ\n8gKueHyv13P3akScpugztk2IkcM11gRBATpCLde4cOFi9CtXr0QwJZ2IuBsnQPLrIIjvR8zfv0/e\n2fsiQISAiqhWbfAkv3Y1YxbrGMm0vXj5ozhNxjWZ5wjUiIdLdAom1rrec1s3b9L613tAI2JtLVq7\nCPoIpfCgk219TqL2uXOp+CwBkTjVIPGTrGxO1iCeEwjk7xB0oyCzfl5utRL08e1PWdonI4hHljb7\n9zOdGEHMJ4A1S6eaOO2TC3szcsqoQ2uQdTjSqZyh6/7cufPF0ePHVefhuArwnk8nq0onU9LppTnB\ngZoj1B+h874bb2u2oD/S/T/SZxdszooJhYk5IZFPgFHnpNyqFfQJmoS/vdYgAYNDEvIR8+mcHsgN\ngZ31lwurd+tEFvs8+963CmBSuJs55/cQ5IdrPFM+8XHz1s3i0iWCFQpKaySAGnuh1jifYVEEvLu7\n6FZwms9lTj11SdhnX21ms6DfTPq+tgmYgAmYgAl8TsCC/udM/B0TMAETMAETqBmBZgv6ZAAi6pNh\nTgZsuSGwZ19mhINsv4PAPhY/b/5DH8GCrGqy2clyPaEivFj9IGLlRgBhy+aU1YqYuVT2BdwDYgne\nxMM1fNtzxibPwjNFVxY0wh9CGsJux4wOZTdu1CmArcX27duimGSIcAhx6oglo2mIjVwz2TwMhLcy\nhTpDeFMmebmtlEd/77qeYp2CBz093YN2P4jbI506KL/G0K+bLehjd5HFJ6xPsCHB05wRNrmRPbxd\nwRmCJwRpmM/OzkVRGBQxcqQWgr7WBhn4t2RrxLqhcz1OeRCsYb0ivOVGZvJeFVTeu+c79T3hMw5j\n5ngs6zW/3nhHROYsxMGMgM9pZXmf0ZhrBPDeQPRLNlApWMZ6IdjEyHuiFq1dBH3mkz0Ry6WnA0/j\n1BAWWgj7d+/eUwb2QGTiI/aTAZ0LIb/TSQ4KfKc1MnQfW1JsXK+saXWsaQimRd0MFfgmu3+0jeK3\niPqntW9dV3CBkxXcL3UZWGdzlTXPPkUAYZ3mrq+XOVwXdixZ2B0paFg+2cS6j9NTuhY1QXh/pT00\nnU5hryIgOEPZ3+zLEcjax8mUvXFSZbTPNNzvTXZBnzWIkE6AgGDBsUpghT3+ufztc2NfKa9DTiF1\ndWHptlp2SEsHrXKY95EEfa6HtQ9zTLb+Ofn1s+Y5NUcAleLQzAl7SuwVChR3KbBOzQQ+W9gr+Kxu\nZrOg30z6vrYJmIAJmIAJfE7Agv7nTPwdEzABEzABE6gZgWYL+ogVN5QtfEP2H2Q9l1sI+so4RCjA\nJiUsLiSaIsaScTjaFjYYA8kOA8HtyNGjxZEjx4ojx459KugrULBRdgIUNcVWAOGNbNfwItZ1h2sI\nLwheF0JYviS/6ZvJmkMZ0NhvkN2PRQWnCjZv2hQFBbE1wd8+C21YsowkuJSvjUgbhRgl6L2UmHem\n/0xkbh6UJQOibblx/yH4SHjJ4mMWgEY6dVB+jaFfN1vQx94oBPUQUCWicjJC84q/OZ7TuSFG75O4\nvicE9u/C5zllMav4sAIsIzUCPTnYwykIMtkJImBFceHipTTfGsmizY11uVve82Qp71JfoZMQiPx8\nv1rW+bWrGQlucGKBkVMGR45qzR/R2tf46nWlQK/WEHY7vT3rJMx1K8i0LjzRo9aABDtshGrR2kXQ\nJ/v5kU7VPHzEKRAJmxI1s6D/QN9H1KSzNrbovUyhad7TfO8MRVQlulO8tNxqlaGPuBoni3QN3oOs\n9ffMr0bWWLJMmhsni7ok7CLuYlPGXjlFgu5UifBf22PK6573FNckG52AJQENrIbo7EGIxOxb+On/\n+P33xQ8/fF/8RyOe6uNt8OyPorRnYiRgsVm2YfQ+2ck0syF61ztDn0BwFKjVyRr2HoIqBOMYy3sO\nnyusv9Q3qkitCn5r36N2CKe/CLww518LFr99+zYCQ+wLAwoWc51TCh5RsJ75JojwQkEuCnqnkykU\nXV4Sn80Ev+kEq5rZLOg3k76vbQImYAImYAKfE7Cg/zkTf8cETMAETMAEakagKYI+2fLqj5UdTPYf\n1imIZ/wHebnhyUsG4FoJ+nj1Urx0OpnuCFQSKkbbEEAQwMmqRaT66y+sC+RH/PfhQdGW18IzPxV2\nTJm0K1Ysr2TSLo/igsNdj5oAZ8nilfCF1zoCTLZgoIBi2OpIGGXcIkFqhwrvUny32oxGRLeceY0l\nDCcOfvv9j+LX334Pv+vyfSLudJFNiS2COpm7+PiTUTnSqYPyawz9utmCPvZG2Q7iH83nR2/4m2GR\nk++XYMaPEhlDaPzhBwVUdAqiImyOZf0groWVSkXYR7hN2e79UaA4Xw+eO7erIC5FZXduj7WDfznz\njrDf6BYe4AjQyq69LKuggwf/Kv5Q/1OdlsVdBDoEuU0SBhkJpC1ZLDsZiYLVrpGhz9rqgn4O3pCl\nHKc/JJhjS3Th4oU4+cHpD4ROmNHZgwjc7N6lrpH95e/DR4rDR47ESZny89dK0B8siqu9BvuwcmN9\nLVCh63nz5usUysIoVkuRb+y1RsrKL7/G0K8JskZR3EuXFSxL9Tmou0BADcGdBgsK7v73px+Ln+k/\n/hgC/9DXGuu/J7ugT5Y8+yyngwgiYu1zTp8tBJdYazTYU/R2j9ZftjzCzz6Cx9qLKJRbTePUBye+\nKMTLyP5K3QAC1xQEZ43N11rDWonPkp07td9pz+MUFPfUrGZBv1nkfV0TMAETMAET+DIBC/pf5uLv\nmoAJmIAJmEBNCDRa0EeIJguWzHXGAVkKYG3xRCNFJcsN0WCZbAPIkF8qYZpsUAqQTpMoOxZBdtSC\nvjL0N8njnmJ/eN1ji8G1EcXIYh6ujSTov3z5KixeOpXFukgBAyx3ED7w0efUQTVt0BpDLOGJoP/r\n778Xv/z6Wwgw5ddEnI1isJWM3Z6ebp0MoK+tWqxttqBPdv4V1SogIx9xkczhu/fuxqjynlobykae\nOiUylXeXvL0RuFg39LEIT9gbpaztR/LPvxO8T6mI8wllr/L+yY0s/Dy327ZulV//ivDqJ1CEsN/I\nhkCNxzrvs1zjITL0OZ2iDH1EXjgwchJlu+6Xe9+qcaEEWjLzCUTUyiqolQV9bESi6710V9nI2H9h\nnUXg6ObNVGeAIB2/wykbghzsTVujzsBmjZuDMSdkCBQi7JdbrQR9Ag2p9sGtEFjL15g1Sx76ujdO\noCDukyWfi9aOZa8sv+ZIgj6nPniP8V7jOj/+54fUFUDD6mq8bbIL+pxWu3bjeipUe+261qQ87bUm\nCWSSTZ/Z817ds4f6BbL6+u67yMznPYsdUrV1O2BPTZJ+nQThxAn2cQSQCGpSCHy2AqOzZ82Oeg34\n6e/RtQlqceos9lb2WAn7Y9ljx7te+HsL+rWg6NcwARMwARMwgdoRsKBfO5Z+JRMwARMwARP4jECj\nBX2ERjIAo0s4yJnzryR8871yQ5hASCcLEZEqBMgqBNnRCvp48yO4Y7tDMckIJmC5oz5ShvVIgj7+\n1pw0SFnPi+MEAPYIW5Wp36VTB9W2yNIXS8YTJ04qO/+34n+//BZFLMuvSfb1t6o/QPAA+w1OO3Ay\noBtBXwJgNa3Zgn6y3JGPvSx3EDkRcuhRgFgiI0UgsTJaLL98LDqSJcTmsNlBZMp9tM9O4Ik5JksV\n+4nIXpWnNSM/yw2hi7nleox4Ted5r4XIma8zmpF1AQ9OwDxUJwByWhYaeLBjp4ENS+rTopjlTp0Y\n2S5BjkxbMnwRhhGIx2JtNdJ9taqgDycE0tyvSbwM6xxZV5EN/eTpk6iDwdzPUA0M3k90An1RfLRS\ngJT19/sffxa///lngbBfbrUS9MmQZh1yYoT9styYJwTcjo7pUbMjrKUkurImqxVWRxL0CSROn56K\nrRKo/M+BA8X336sf2B8BofK9VfP1ZBf0CdxwqoYi5xRavy7LLGp2UMODU1ll9mErJjGfuh3YH8X+\nN226AuCjK7I+dH54L2ArxomQS+pclyx97on9r7zWCA7v27snro3dGMF2goQE3hH1G9ks6DeStq9l\nAiZgAiZgAl8nYEH/64z8GyZgAiZgAiZQNYFGC/rcKGJQ7u/f87UyZCvfKz8Ins85I5/sfNpYxVj+\nZtSCvixGshcxI0I+YtzSpUvCo5rX+lIbSdCnmCAZ/gQHGNf39VZOAGyQ4LvySy836u8hRtKOS9An\nO///fvnlM7uP8NCv+Ofjnf9tpZAnX1fr695sQR9hiaKgkTl6714UCI5MdGXSI3TN6FB2qsRXhEYE\nJ2whyCTN4vRYBU5sk3Km+11dL/vQH1a2O9/PDZ9vTnakrvmV1RFzTu9UsKiRjbVBsOO2LDsYEQWp\n8YBtB7ZQFGqeqYKmjASWvsM6ptIRhWGFMFitXcvQZ21lQZ+gIsFE/MERMZnfw+onFfh4h9iPT706\nmei5/gTvozWVIBmBsjs6JcJ7kMDabxL2y61Wgn7URHjLvbz9xFqKa0VGdGRGpxMoZHCHsCpxtdo2\nkqDPSZgo9q31g63XgX0qiLtvn4vi6qRZucHl559+Kv77849Rm6X8s5G+RkTnfcr7BlE/anioJsst\nnRTRh6DYd6jPDFusLKgzcqomsuQrgcuRrjHcz1hnnIK6di3VKsn1STixQi0OXj+vN/bVA/v3Rd+j\noAJ7Ruwd2j/4vUY2C/qNpO1rmYAJmIAJmMDXCVjQ/zoj/4YJmIAJmIAJVE2gGYJ+1Tdb5R9GUVws\nftQRJw5TELdiPZJFcV6azFtsR7L1CBn7ncryxjJlJPGbzFnEF3y2EU0piouIeksCDL79ZOgjepGt\nvWF9X5wCIIsbT/scoBiLyMw903NQJCx35J//i8REssbLDdsgRJcedTLzEW+7VlMwc3WBAF1Na7ag\nf+/efVnspAKdjx49joANQRs6gn7KVO4o5skWZdWKlWF9s3LlysgereZ5X6ggJGtoYOBZWLKEdY0K\nKjMOFfQppry5csqDDH08rQnmsIYa0fJ6Zm2w1q9eVdFgRnWye6/qVANiHSdOKDJNIVWEaWo6UNth\npzL0CZ7l0zBjWZcjPV+rCvpw4v37NPpAFDs+ptMXR4+diEx9RPHMAk/6yMpXUK533bqwKsoBGwTX\n/ymg9r9ffpX91R+foKiVoP/Ji9bpH/DIewvibRSA1p52RXYv2E3h6X77zm0FC6alIrxaQ6zxwXoC\nytLGW328bbJn6GP5hN0NnSx5LG/Y9+7dv6d9bFoxW7ZPnKSBPZY38N/73e44zTZe9gj6rOeb+vwi\neIqQz/uXtcDX5YZ124H9+yuC/u7BYCpFx2sVDCxfb6SvLeiPRMc/MwETMAETMIHGE7Cg33jmvqIJ\nmIAJmMAkIjDRBX3EKXx/s/UImcpYjpyqWI9kAZQpR5zbRYG/6DvDRxy7n/kqAkg283ANj3Uyey9e\nks+xOkUMyW4lixzBF9EU66C5c+eFHcv27duieCoCe7lI62jFU+4ZW4Q36oyn5OX+x8GDxR9/HJSv\n+6lPbnOVTgFs6Osr1iuQQEHclctXFBT7XbliRdX+6M0W9J8qCxYBFiEWyxvEv9wRkRCkyRQlYIHV\nDTYUZFdXmzHKHD6mKKSsThA1ORFx/ISKRip48qnljjz05ae+VUEh/NVXKYgQASEFhsicrXdjXeSO\n3zuWMamfDzGfWgNYZtAX6zQKASs6lkxREFenUjYr0MTJGFjlYFMt7rtVBX3ES+aUkwyMCNeZG+Il\nwSHESU58EKDZuIH6Ghvi/YR/OV71jFj1tLugz9qBR3StnyvKDD977lx06gqwh0Z/8DDsujora4i9\nhDoCW7TmsRIjUDTeNtkFfYLDJ06ejHodFySmE7iMQvIqJo8VXdS40Lpboc+sZJfFZ8r2CNSNl/3g\ne0I+/uz1rAPeEwStL8nLv9y6dfpr/969xT6dRCCoMFOnBsLDX/dYreVP+fXH8rUF/bHQ8u+agAmY\ngAmYQP0JWNCvP2NfwQRMwARMYBITmAyCfrYdIbMUQR+xJGfUI2LltkLCVPgR7/lO454ofpm8xGcN\n2rXk3y2PZG7jd4zwcVUiIBnQWCZcU0eECUGwIgpSfHSPMimxJ+jrXRfiMwI0fbSCPlm05doDFDD8\n69DfUZDztLy/y42CuNQD2Lx5o+x++pKFkE4icBoBy4xqWrMFfWyMch0GghqI17lPmfJNiNEI0oj6\nWVxiHC3foUwIHhAUwpOekxcnFUAhiHLy9CkVxX0x+Ot1TfEhAABAAElEQVQUS0VUI9OdjHfWE8VT\nF8xfUBORc/BCw3zBWmZt0N+JCSc3TirAc1Ij2dbJfz0FJgg2ULQXMXatBP1eecH3aj2SgZ4LWlbL\n60u316qCPusnCo5KsL4iMZ+6DNcUkMPOCYE/6gmolgD1JqhDkWsybNy4oZg9c5aCRjMjcHRF+0q7\nC/qsG4T015UAGUHKM9pPTp05E8VYBxRIG1DwkgAmAbK8fjj1w7phf2FPG+k005fWxpe+N9kF/f6z\nZ4vDOgHESbJz587HCaFc5JrTNUsIpujUF+/jzQrCbVEgZatG9qDxNvZSgn6cgiIISDAnB3bI0i83\nLKj26vNyj/runTujZkOuv8FnWiObBf1G0va1TMAETMAETODrBCzof52Rf8METMAETMAEqibQboJ+\nWYDnoZMe/1GUzyDiO/ohv4/AjtUIliPxtcQ3/o0NSc5CZkQc+f4AfsDJQmCmBO/pCPHyAx7JPoAM\nbgR8XjtsTfT6ZPci8t1/8CDuId8X2ZTJc3h/eK0Piv26TgioeB/nXx4y5mdHcAlx5zk2Qs+L/rPn\niqMSfvB0Pyvxh5bFWDIotymIsG3b1rgevvKIcYw8VzWt2YJ+Nfc8nr95rKBMWF7I9gILimSF0R8j\ndjy5kZn83S6CNckCgxMfCGyIwtXaG+XXHs2IIJsDG2+UaX348BHZSx0p/tZIIWEKNBMIomOVsVZr\ng1MiUVdBYvUaecEjWue1M5prjvZ3Wk3Qz+8lWJySaH1ap3bO9J8Rp5vFA2Wgk4lOICcyoRWQYaQe\nA6cveD9hrcSeEHU+NHI6p1UF/fyszFX566Fzx9oJ6yoxYSTwGQEhBa/IzI46A5U1xNpmb4maAhpT\nPYFUeJvg2XjbZBf0KV79l4orH1SgFnE/vW/T+5f9e/nyZQV2aqtl27Z+fZ+s3FS7Q2Mtgimsg/v3\nHxT3HtyPkYAXgWL2PQLh5cZ+sUeZ+btl+7Nr5/bKfjcnas7kmiXl36/n1xb060nXr20CJmACJmAC\nYydgQX/szPwXJmACJmACJjBqAu0i6CNEYS+TOxnIORuZkZ/r/8X4XmJmzjJ9/eZ1eNlTTBBPe7Ju\nc+YhY7LUka2OMqnxtA8PfYnfiHYI3jl7fiS7FsSvbGVyV5mNiHsXJIYhiHE9BJIstiK8bOf11SnW\nih3PXNnxMMb1dE0yy4cGELBB4NnJKOZ6D7G/qAiPFE2MEwfnZa2izOLkIT9dr9cRwu1WBH0Jkfj3\nh3e6RGbGajMoJ5ugj7iVPKVVjFd8scBI/VLMRX6zwZSTHRSnpONvHRncEjirPQ2RX3s0I+vjhdYG\n6+O5Ag3UU8AW6JjsgVj7iKT5/UPhXtYiwjSWO8uXLR8s3DzRBf03b94OBjbINkcwpZ9VYOyObEb4\nHpno1L9YxSkGTjNwkkHCNe/ZXllXrcUuS6dAOM3A2EqCftoLP57WyHPO3sE+Um4fVJScvZQ96o32\nylRPYCBGrMM40UTgk6K/tG8qf4yVVy42TUCIOhEU4Kaz/4y3TXZB/7jsdv78UzZq6me0NuHBumWk\nHke9BX3E8Yey+eFk0iV9nhHY4VRSvyyYyo0TYLtVNwGbuh06nYS13DxZyzHWYh2Ur/W1ry3of42Q\nf24CJmACJmACjSVgQb+xvH01EzABEzCBSUagnQR9sqERKhkRNsLr+d37GD/8K1H/QxKxXr1+Hd71\nZM7Tya6+XykqiAUOFjkDzxDtnkVWPuLUanXEiR4Jdj3KxO3p6Y4iqoh1iOsjiZzcy2P5q5PJzYjf\ncL9scE6fORuZ0e/e5UDEuyhK28s11L9VRjRe5p3yMcc+AVsPsltnqQ8VQ8jQ5LkRbBHdyBRHZCZQ\nkUYVMNTXj2QLM0eZ4mSGz1VHdMPfGk/3PhXzRFimc/pgpCDFSG+DySboY9mEqHlFHUuWfzTyb8RO\n1lpuBIcO7NtbHDiwv/hepzyWLFkc88gpjEZkqyJAY6sT1jqPnwzWiSDbF+sMRFveMwSXdmzfpsDS\nthgRqsMPPjzhF+bHqenYShn67Hnp/fpEQbEHg3UGzut9S2Z+ZENrXuEVRXBlI4OVTJf2B4R9rGbI\nUGdPiI6gLyuSVsnQR9APkV5zzTO8eEGA53nYQxHgLLcIEsrCij3suX4PHveVmZ2DhRE4FBOspagj\nkj3S2bvYT+BDlj4B0fmqE0FB3GoDheX74n7YQ8/I7oeREy7YHdH7ZO3TzMZnyLlz54uzCqCyZrDh\nuqPALcFb6nuUG/vBzz/9VPz35x+j9kL5ZyN9fVSFmX9XcWUKLJMd//49tQ1S4KXegj77Q9pHnhaP\n9VnD2o6aIQoMDrV0IwjOqTNsxrCT4yQL62CB9hL2vUY2C/qNpO1rmYAJmIAJmMDXCVjQ/zoj/4YJ\nmIAJmIAJVE2gnQR9RLgQGiQyvETUV8YpWYtvJf68H7Qb+SDx6bmKCJJhSH8ooT2J7QgxiFspEJCK\nP25QpjLZyhuVrUym6XIyTSXW0UfrJY549ioyo2VV8eqlrAn6K4VTT4bwm60qGJdIuCe7EmFwuSwT\nUgZwygKmcCpZ3mTrD7VoofhqFmux8SEr/4o8vxkRIfG3fjrwVLYYb8JSJxeDJZs4ilVK1O9bt27Q\nXx4xf6QgxUgLarIJ+tjVXLhAVv4l8b4ymK1PUAXhMTfEzB++P1D88MP3xX/UmetplSK9Q09c5L+p\n5ZiDV/fu3Y9TKFgxkXXef+5sCLQ5c5trcoIA72tGBFnWG4GkoeuuVvfXSoI+gbfbysQnG58gGKct\nEC3xjCdY9uEDwukHCdNTix3bJFQq+EEAhKK4FMFFrCwXOeZ9xNpoFUEfQTay8iunerAOij3wCfvf\nR4so5hYbJk50vHz5KiyGEKej60QH32d9s8/SykWAe3q6iw0qDswpD2owEIDM9mHVBgq5Rm6TXdA/\ncvRY8b9ff9Wa+i0Cc/m9y0gh63pm6LN+BirBcEbeG4ePHC2OHjsW9UPyHDHynti+faveJ9v0ObM5\nFSHH0k29EaeSyvdiQb9Mw1+bgAmYgAmYQPMJWNBv/hz4DkzABEzABCYwgXYR9BEZBjPtlW1PJmQS\nopIYlUU4hP3IwJVoh6DPf+ST1U+G6QtlqfI6iE/RZUmD5chGdUb8iBHq6GQZjlbwDgGtIp4RLCBD\n/7QySxH2yeQOv3udBkBwRTAlkxtLAkSPFSuWh7CPuL9AWa4I+nPnIOh/6kPNMyU7jKfKoH2YvPor\n2eIEKd5XREg8vZcupejt0hjxSM+ZtGTV1qJNdEEf0Yw5pbOeyMRPtiznokAkGczY8OT6CFgkkYFP\nEGU/Gfr798VInQLmA4GzFiLn1+aOgBc2KfjAM+J7fkl2GRc18n5BoJ46Vfeq+92n+6QA9L69e8M7\nn/vPz/G161Tz82YL+nk+P+gUzz1ZbcUJC2pq6D107RoFrDWqcDBBt1w3Az9yso9TBvKO8Cyn4GcE\nP4a8P1tJ0CcrH0E8245hLUbwgixyxP1yC0FfJzsISGIzdFuWYfl3P+h9MH06Bbunx37EnrKMvUWd\nIBCnjDgBxAmn8jof7b5Zvo+hX092QR8B/f9++aX4v//9GoJ+mU8jBH0+L/nMIZBMwItaHNwThbbL\njboz27amE2AU5+1cxImzRRF0qEUthfK1vva1Bf2vEfLPTcAETMAETKCxBCzoN5a3r2YCJmACJjDJ\nCLSLoE/G7M1bEipv0m8VD5Wl/kQi5YAEKuxzEOoQ7bDdwQYlixGMiOxvZXvDOKNjhgrCpqKwnRqj\nIKgsR7olUC1ZsiSKCiLajaW4IAIwIlr2or4hQRXBkCK5N3W/CL8P7j8cFICzwDtjRsdg1itZv7Nm\nqXgqthbKlJ6uYEO5ITS+eElQ4mUEBnhNbIQQlgsZW2cbHax2yP5fEX35oEXIqhUrwwKm/JrVfj3R\nBX3WUVkQxR8d649Tp8+ESB6WTRI/8VqHe9iNzJsfYmfK5k4iMIEhxE3muxYi59fmC7sUxHtE/EuX\nr4Soz1q8fvNG8VqZ2LNVnJd1PWf2HPle75BQvUPe1ztDkOUkQRR51ViP1kxBn/dn9pF/+/Zd7CEE\n3ag7cVms4r3Ee1QnXWCAbQjZ6IiTmzZtjGDfpo0bdeKi82MwUEHBcms1QR/bICyYEOwJVlymSLdO\n87BnlFtY7pCFr5NOnC4Ku6YnT2Mk4z4CjAoywoPgI3ZDsbcoAEkQcoVOG2EB8w1Bq8paL79+tV9b\n0G8PQZ/Pmi0S8jdv2hSBcWzGlupzlNNJ9TrtM9yasqA/HBl/3wRMwARMwASaQ8CCfnO4+6omYAIm\nYAKThED7CPrvw14Gy5OrEqduydccARMRjv+QR7RLvQi/4Sgg+FZFQCVUTZn6MUsaYQov7DVdq6MI\nLtY6+GFT1BEBdloVmcr52hFQ0H1wMiB5UD+IYpK3CEKQNa2RjEfsLV5JPCMAgCf1jPCmnhFZ3lGE\ntyKulpcg/skEJZIAR2HcJO5joYFQi6hGX7J4SbG68mxdGsmWxAqGjthfizbRBX2CM7lWAyM+2SdU\npJLsVLLe38jWKGc/I/6yfujYT/Sp8DD2TVg5UcMgC/l5rAX/4V6DzOrTOhWC5zh2O4MnWu7dL1Qv\nOgWyFqZ1slVZtVvkR05tBew7sr1UvU4SNFPQ532JsB3e+BK52UNOqsDnKdUWOHvufCokrHmmPgWn\nZ8IGSwEwiuGu6+mO3qOR/SEHPYZaKLWSoE/gkmch+Mc+QfCC00Jn5MXOHlRuBEpZ75zweadgR9iD\nKXgIK9Y2+0nYhGl//LivdMXpIk4ZIfgTJKJYLmu8Vuvcgn57CPorFNTJp9ywX4rCyBXbOgLjjWwW\n9BtJ29cyARMwARMwga8TsKD/dUb+DRMwARMwAROomkC7CPrZyiYVIjwfNhkUIUTExFICUX24FoVm\nZZHBiACxUWJr8n/uG/TDRqyrlUUAJwTCU1+iGEUlyZa+TOa0+l2Jq1nsJ9O7Fo2TBV0Sk1evpq8u\nsNmh0Gm3OqJyFiFrJdZOdEGfoEm2N2Ls7z9bHDt+IjpzWG6sJzhn5mtka/Ttmm918mNNeNKXf7ee\nX7P+OblyTMU0jx47HgEI7FWw2mHs0GmQlFHNqY3lxXqJb+tVXHSjAhAUZK53a6agj2j9/LksrxRM\nw/7qnIqZYh9y5OjRT4p8IkYT2OtVrQl6j4pjE6RZvZqi2atGPLXTSoL+Wwn67Ot0npdAFM+KbQo1\nN3Ibac/kdxBnY0/RsxMExWaHtc7egoif9xXsdmrdLOi3h6BPIHOD9pD1dO0n7If05dpjKPLeyGZB\nv5G0fS0TMAETMAET+DoBC/pfZ+TfMAETMAETMIGqCbSLoE8W6QUVrbx4EUuRS5Fpek/i+L3798J2\n5o2y8aNArkYEvHJLnvnTwy4DG41vv0V0XSPv8DVhk4Igjk0A2bkdZOhXevk1xvI1TLFjQbDn/rBs\nuaTCgtz/o0ePw6uan1MDoBYN73a8rZctXRa2GAiR3d1r5XGdsoqxhaHzbLVoE1HQR9wkkxvfcIIx\ntxQsuq1TILfv3A7ffARbvKRvqVgogZGpcepjqk55KCu/tzfqFMA9svWV8b582XIx/9SWpRbsh74G\nBUsJQNCvywOewMPxEyck4p6OAqjZponTGRQvJdCwVgEHRFkEWkZOrdS7NVrQz2I1I2w4rUAwDf/8\nywqwURPh7DnVRJDAHadipuEVP03Z+StDoCTbeJ0KSpOdzv7AOFMnaYZrrSToE/yMEyb4oOvkAc/K\niYSTp05FzQAE/3dx2ued1nwqABxrX+u/3FgXBHuwGuIkU5xsioBVl9bMwkoB7znFLGfoR30CAswE\n0MrtwL69xc8//VT89+cfFUjeUP7RiF+3i4e+Bf0Rp9E/NAETMAETMIFJTcCC/qSefj+8CZiACZhA\nvQm0k6B/RcVJr8huJ1vukP1OtjvjcxW8fVYp5IeAV265GCgjFhFLlXkaxR0l1KUMXGXhKgu1s7Mz\nMk+Tz3j12YX4UKeCvI9lDXRbQYgkBp+/cDH877P1B2JsLRrPtHDhgrDBQHykUGVYhUiQ5JnmSnBD\n0K2Vp/FEFPTDdgTrEfUBFS+OUxVXLof4i00JQj5zSUAmBXxSIVxEcfyjN8trvbd3XYjjBFgQPCko\nWs+GWI3lUrJXeRE1G06cOClB/2QIuCnIlQJd1I0ggza6smnJ0o9sWnlgz9P6qXdrhqCfAzTYyERN\ni0oRaWpb/HONQrjXFbC5EycpZnKCR/ZXnLBgLvHMhxW2MvPmpiLWzPtwrdUEfdbES1nuENAhoHhe\npxKwF7quYslYfuGXz/gWWzJZ7bBnsvbLjf2CEz5z586J9UzxWzL2V61arbWzLIrjksVPcW976BP8\ns6DvDP3yO8hfm4AJmIAJmMDkJmBBf3LPv5/eBEzABEygzgTaSdC/fv1GcU1ZyNc0kmn76PHj4nGl\n83X8W4Irljfllr2dGclUz97PCJlkVff0KJtdI8Uesd6hQC1jtX7QePtjA0S/Lu/8Cyq+iQ/7OY14\neSOcfSkjtnzPY/kaq6A58tGn2OnCRQuKvnW9Epd7wjYEwY3nIdsW4b8WbSIK+mQ1k7mMsMmawl+d\nIrgnNVJ4eADrGp2qIBiTTzww9knE37F9W7F927YQgGdJGEYInaU5GeqzXgv25ddA0Cd4hC0QIwEv\n7FVOyu//lPzS8xpjJJN269YtxXZ1RuotLKrUXahVoKd8b0O/brSgn5/9vZ6doAc1Bc4qU/2M7JNu\n3ro1aHtFRjXvC/YChOtu7QPbtqi2gBiRpZ9O93SomHZHnMwY+lz53y0l6Gt/CcsvRH2tVwIYFMTl\nNAKBqYFnaS0PVNbza2pCaM8cGghl/cbpBY1k4RMEygW3CXzECQ8FtCiWG6dWdHKFsdp9M7NktOWO\nLXfK62E0X9tyZzSU/DsmYAImYAIm0DgCFvQbx9pXMgETMAETmIQE2kXQR6DDL//OXXWNZMAjSCFO\nMT5+/GRQ4EfE+vdDtlD5EMUeU0HZdzHDiFTT1acpgxrrnWQ/siay9JNlijyAJYAOilMKBHwzwtpA\nWEUQpsjte43c4035mSMcEoC4KqEVMY3TBTxHWSibqlMD06ZOKxjxop4yZerH6+qaKvXL/6hGgOxg\n8jPpNbIAzch9hvCmZ5oze1YIbVirfCuxDREOKx68wRFx+d3cqxXeJoqgz7zlhv0R9iTPdcoDe5Yk\n6GNTclpi+dMQPBE9mYd58+YX8+enQsO9veuisCzFZXt1IoJ1lS2bquWb7+lrI2uJeyW4xcjJFQRr\nOtnYeZ4ZOYGyc8f2wY6InYVsROt6t0YL+ojTUctCATRqCJw+cyb88hkJtD3TKQz85ZnTZKuzOOxl\nemRVtVHZ+RT6xEcfdul9ObJQ3UqCPgFDnosOA/ajOGEiMZ918nHffJYKBfO74oSIzt/mHnZO+h4j\nHDInCuWyZ8IHW6Iu1e3AXioCXV8JfIx2nVnQbx9BHyshioDjpZ8+P1ORcE66NbJZ0G8kbV/LBEzA\nBEzABL5OwIL+1xn5N0zABEzABEygagJtI+iTjSzRnkzkx+rcNyIs4n2IsRJiX1Rsd8iiDsFbQhTC\nHgJW8rSXb71+9v7de4nv70K4QpxaunRxeOivkuiZ7GqSZQ0ieQh6ylAdSZzlWmQBh2+1xhvKyr+q\nrNhr6nyNiHb3bsrYx8ceoeNjnxXFA/k3glj2++faCM7RJeQnAT89Dxm1WZDEHgbbDIIJ7/RcU6Z8\nE8+S6wLg8U6tAAR+/MF5fbKNGXm2atpEEfTxy/9XojiMOd1BJj5zlW2SLqrmAUItBVWzLQnBGDKS\nk12NCuIqaLJOwiZiPgWJp+nn/A59pDVTDfehf4OgT8AIGxV6BI7kD49dEMGj8lx3da2uiPk7YuRU\nB52TBKy1erdGC/oUwOWkRZ7X8/mUjE7KPHr8KAnZErFhSFDvW2Wcx/uk8l6h3gD7wRQF83ifMJcj\nzWcrCfo8E/tePnHCnhknmHR6ieAGeyAZ/OyTrxHso78t3kjYD6sefZ899akCWXHqSRwJDFBjZL46\nIxn62HpxsomvOdE0n9NN6rVYTxb020PQZy/cTAAsbKo2RL2JZUuWhh1TI07+lPctC/plGv7aBEzA\nBEzABJpPwIJ+8+fAd2ACJmACJjCBCbSLoI/oGhmniFESlyiAmws7InbjF/5W3yObdPD3JNghWpGh\nek+dzFwEKjJzeW5EvzklcX21PKKxTtm2bWvYqCC+I07RRxK/uV4SzB6FxzpianiwX76sLP3b4e//\nolKgkqxoPKfxNF+0ENuT/PXCYo4sP0Lon5XEfYS53BG4QoiT9/Vz3f992fogQNOfDjyNzHKe582b\n14PBAp4NsXIj2ZPKouzp6R58Xn6G6FxNmwiCPusJQT/zJYM5easTiLmuQMyNKLyMZRJrKP8eQReE\nTAR8gj+I+HiLEyyhsDKiL2tlpPVSDfMv/Q2Z1DnoQKHoq/KI52TIjVvJ87+8tgnopAz9JOjHCZVR\nrO0vXbea7zVa0H/48FFx8/atyEynBsJVLGf0vsR6hgBfKgz7LgIwSYzcqMz8DZFtzjwuVZFpTrRk\nIX8kMR8erSTox9rW3sH6YN1i88UaxjefYGDsm9oz3+Gdz1jp/A72TU8rQVOKQhOQvC5+iKURCNT6\nJxufEx+cZuheuzYCIWRmUzh3uU4CEUgab7Og3x6C/sqVK4qtm2VRJZsq3keLOznp0lkpIj1zvMtg\nTH9vQX9MuPzLJmACJmACJlB3Ahb0647YFzABEzABE5jMBNpF0B/LHCEGIW5jn0ImOwUxyV7+RyMC\n+4OHEsJVTBev+3JDmP3hwP7i+wMH1Pd/zJiXsD+S+E1W6x2JXxRFpFP8NjzzVYiSf5fbkiWLJXop\nwzuyvJdFpvey5Snje5EK2+YsV7Ib8f/OohwnAOKZ9DycUKCeQGRmV+oJPFBhYJ6JbNxy6+npLnbt\n2FHskN3KFgku+fUZRyryWX6NoV9PFEE/84Xx5StX5LF+LrzWLysQA08KLhM4QfDMjSKhBHy2q2/b\nuiXmL3vRk7ncyMapjNOnz4Q90Bl55lPoNa9txK2wBapkTvdIeGUNsBYQ9hvdGi3oc8ri0qXLxUXN\n5eXLVxXo4P1yMwI1BMZy45TCnt27iz3f7S5279pVIFAyxxSRni37qtG2VhL0R3vP/B6CP+uf9wJF\ncu/dl30TFk737isoebk4pxMN586dj+BW+XXZvzidkuzKvg17L041EECE6XibBf32EPT5zNy+Ne2H\nmzdvGqzNwZ44U8GfRjYL+o2k7WuZgAmYgAmYwNcJWND/OiP/hgmYgAmYgAlUTWAiCvoIsCmbHWuJ\nlKF/W777d+8q41QZzAj7ZDMj9JcbWaa7d+8MYW/3rp0hflMsk05mdrmRBRsO7BrJ+L2igAGZ+bw2\nwirZ3mR6Y/vRUclqndExIwrvYoNDZjeiWKcy9BdWMvUREsnQJ7OaLNdyBvnHUwevQthHcMMe5r7G\nm8rIvn79ZnHtxvWw9slBAMQ6MsfxNl6vAp8Uyg2rmEoAoVrhrV0F/fKcYUmSbJiexYg9EgImIjDC\n74BOPVAwld/hhEYUu505K05UbA57iWQzga84py7osxWEqXcbFGAlwpJtfUIFcE+eOhXFcMlEz/dM\nIKvsZ43wSpFX/K45sdHoVm9Bn7nNmeaMFM4+p4AagjRzSvAuTrVoJNueueK9RsFoAjNb1bepDgLZ\n+bwvZs4kE/3T9/xIzNpZ0M/7DCI6AUFqRjCyP14Uu/SeuCE7HmzNXoa9GNzIxicrf7X2mPWVPWZD\nX1+cNCpbFY3EbbifTXZB/+ix48Wvv/1W/PLb71H/4f37j6e1ODmyfHkKBvM5Avt4b2tkTY+3sccM\nDDyr1Kd5ptMnF4sjR48Vx44fj5oi5ddfrc+yndu3x4k23kMUX89F2Mfy/im/ZrVfW9Cvlpz/zgRM\nwARMwATqQ8CCfn24+lVNwARMwARMIAhMREEfQTv7RyPcZoEKOwk8x8lmpjgmxUMRAnNDnN0i64At\nyjTcIhsBxL1sH0DGbrll/3VGRPt+ZXefO3euOCsRkaK9ZLneldiOjUXynlZgAO/pri5ltWJVoYK1\nygZGgKEj4iOAIOTTsUTJ18hiZfhi63mwHMp1ARBwCSLEqQD5hBOoCEsN7DT0u9w/11zTtTrGnp7k\ne4339dBnKj/fSF+3s6CPWAVXPMLvxImKu3GKIix2ZLODEEy9g2RRooCQ5m+urJA6F3UWnZ2LVGB4\nabG+r7fok3DZpxHPcDJR89yNxK0WP0OsRuzE+xxxFZHt2PETxfETJ8JeJgeyCACxxvJaiyLJa/Tv\nShZ1Le5lLK9Rb0GfeWWu8rwRYDuj9/hpvdcvqg4Cp1ui7oRGxHze64vVCXogiDKX6zWn2GFNV7Fs\nTq8QyBlta1dBn72FznuCgt68L8JHX4FQAkQEKTnddF37Zj7VdP/B/aJjekcxr1IYeqneE5xYSadW\ntsZ7YqrYRS2JKut0THZBn/fz73/8Gf20PqfYy3nvMzZC0I/PTOyXnj4pLsjO6/ixE8Ux3RPvp3Lr\n0ufKbk797NwRdnWpWHgqGl4L66Xytb72tQX9rxHyz03ABEzABEygsQQs6DeWt69mAiZgAiYwyQhM\nREE/BKoPCFUpqxFxEwGUEcH70KG/i4OHDhWH/j78iaC/UGJeHwVOlclOoVMy6VetVDa9bAXIOiy3\nyJRGHFa/r0z5LKoiejxS8clnkeH4LF4fm52li5eoYOBi+dj36PXXFet7e0PQjyKqEr8Ys/d6HnmO\n3LIQTRFXAha5mCVZ2mRQkql9/MTJyErme/HMel5E+yUS9bN4idcxQQt8j7Hdqaa1q6BfnjMCImTk\n5wxknokaC4j51EOIUw4VKxLmDc/w6FoTBEO65R+OjQ3BmCkUwW2Qbz5CZwiuEvMpiHz46NHi6JFj\nxZFjxyJAwX1jn8La2bRxg3ryhkfIR3glIEFvdKu3oM9zI9jDBPH+woX0njhx4pSCXReSGCpBFFGU\n9wJFcL/tWhMFXb/FOoZAhzqnZPL772u++WWG7Sro8wx5nwlRn/Wj4trwJOBFgIsgaBRf1pjqTFzX\nz1V/YNr0CH6wb+7bs6fYu+e76NitEBDJdRrKnEb79WQX9E/o1M3Bg38Vf/51SMHis4P7OXs7Qad6\nZuizfxCkzkWl2SNP6rOFeyIIXm4URP5OVlXYVWHlRfCT00qcaqvW0q38+mP52oL+WGj5d03ABEzA\nBEyg/gQs6Nefsa9gAiZgAiYwiQlMREF/6HQiUHyQQIWgix3O73/+Wfz558HiDwkmCHwhgurnCBE5\ngxlxL7KbKz7RZEWWG/7l/C0dEfjvI0eKw4ePxIiwmAV1RI0cFFhFIckeCqquK/ok6mN/U01LAQsJ\n+zyXOoI+Fg3H1BF/Uv0AMpKfK5N2ejF3XrKEWdzZGcLLd7IVQoRBiKumtZOgDx940QmCkMHN3DyU\nxzwi7AWJvYi/2LEg5D9WMOa56hWQpU2GNqLlKp2kWFtZB2vkEY7FSBTC1XxSKLSRDZ/zp8qc5bQJ\ngaOUoZ+y9HmGXMSV7Ggypnds3xYj981pgmyJ0ch75lr1FvTf6kQKmeMwwF6HrHyyiTmJQ4HqcuPk\nDV7v9C6dXkniqAq6ysakWhsqAoV/ESQ8dDj2gPL12DsoIJsDQUt0fTr3gQAamewEhdR5v4YYrpF/\nN7PBkmLR1COgZgf7DLVBCJCU6xDM18mjA6o5cmD/vuLAvn0RuCQ7m/dGtaLuZBf0WbuHDh+Oz5R+\nnfyihgqdujC8h5dhd7RUdkerV8pCS0E72WgRwCPAON7G5yH740PVEaG4NHUoTp06HbU6zp47/8nL\n8zm597vviu+oQaEs/XzabPbsObGHfvLLdf6HBf06A/bLm4AJmIAJmMAYCVjQHyMw/7oJmIAJmIAJ\njIXAZBD0s6jLePPWLQluR4sjEt/Jbka8zb7QiHld8iTGngZv4nU9sqdRX9fdE9Y1Za4ITnREYgrf\n/s3r6XUPS9hHeEFgxB6B4rbdsj7JYh4iYljgKLMR249qG8+SLXnCXqSf4qj9IVAnMeZRFHZF4MUP\nnGcjs3Pf3r3qe4r9+/aGdUM1128XQR8RP4IuEqiwE6GYMALVw0cPizsKwkRhYbKPFeRBIH/+IhVS\n5m/KNklk5uNBTyZ3l76OIriy30GoHYstSzWsh/4NGej37qX6CVg79Z/tj6zZfmXO8nyIwNwTQuou\nZcySNbtDQhvrei7WTspAr9Zqaei9jOXf9Rb0CdJE8WvZTzH+I4E9/n31WgjS5XtFgA5RXe8/3oML\nVIw6+X6rUHSVARrm5KKsSQgkcPKj3Mj6zwLssmVLtLbmx/paIMuaOXNUe0HFdxFCGRcuoKbGggi2\nzdJ7tpmNDO1791V7QCeQqD1ypp+1pi6xmVMiufFeYT/ZX9lbYDursudUa7sy2QV96j8cPS4rLXUC\nKMkCJ9U3IPDMuqVj24Y93GbZxG1Vr8V7G0H/PvNeCZBRJDwFx87GveR5Z2Rf3M/pDH2mkKWfa40w\nNnpvtKBfnhl/bQImYAImYALNJ2BBv/lz4DswARMwAROYwAQmg6CfM7QxsEEEzUVET50+rSznR4OZ\n2fg+U0Q2sq81Yo2DBU+f7HGwXSm37NVNxvQtBQkQ8v8+LEH/6BH5UL+KzHlEd8SXDetT0cINyqLk\n9bNdApmW1bbBZ5Jojdd1zjYnGxnB/dbtOyFkIk4jrNDxN/7P998XP3x/IEb89atp7SLowz8HXhjJ\nNMZCJPzyJVDeu0edg2SzQ8bx27cEad5KFJ8S2a9JhF0aWdyc3CBLf+WKFUm0UqCGYA32LI1snCK4\noaK91+X3z3NcuiTbIAluzDsnQxBQOzqmy9N/pk5hUOB5Z7FLnaAEGdN4/Te6WCV86i3oE5Q7raAW\nwiPe+TeVWY4QTZb548dPPpkinp+aFVlEJ9g1U7wIfFWbFU9gkIzmBwoYsaeUG3OC0Dp3Tgqo5Dlg\nROwn0LZAfdGihTFP7D8Ejqq1xCpfezxfEzxK1itP4r1z4qSKL8t6BX93nje3eToBtFei7j5Z7uxR\ntvbSpUtUp2B2MUsBCupLVNMmu6CPzQ2fT5wwIUh0n7UVp08exr7DWmHdsB9xEmfr1lTDgPU03oag\nz6mz2Bvv3S0ua2+hRsxZnRTgc6bcumU7xskMAjp7lKWf1zbzXu17qfz6Y/nagv5YaPl3TcAETMAE\nTKD+BCzo15+xr2ACJmACJjCJCUwGQb88vQh82AacVwbkOdlHkF2fi6MikmODs0LWG8s1IsSvX78+\nxqG+42ThJ2ubFyGoH44M/ZSlT9Z+btjabNu6JTrCCz7mCDGdsr+phfjCde7cvfsxI7mUnUzmPkUu\nc+N6//35p+Lnn34s/qtOJm01rV0EfYSpXCQWDojeuXAxGdzZuobsV8R/5p+WT1UkX3X81cnOl6Cv\n0xXLVESVNhZ/9fiDGv3PPYnUiPiXrlwJoQ1RH3H/ukT+169fxUkMBGrE6j27d4cVBiOZvAhseP03\nWmjj0est6BPMOHjob9neqP/9d5xiePXqZQTXyN4f2vL8fcMPdIolt9KX+VujGlk6ef3ksfyHg9cb\ncgECfrHfLFsegb71BP9UnHeD9p2hQcTy6zXia94zscfJuos95ohONHG6ib2O7+eGXzqWK6yz3bt3\nRY0G9hqCGGRqV9Mmu6DP6RI+p8jUR1BPn1OpgDcBIoKzWGhR1HmXTuDs0EmcXSpOy3oabyMIXL7e\nFe01fFbSh54+4eTZD9gtqVNDIQKK2EbpHtlrGtks6DeStq9lAiZgAiZgAl8nYEH/64z8GyZgAiZg\nAiZQNYFGC/oIp+EFLEGc8dUrCta+Lt6o2N/bd29VHDZ7l08LYZXsTywdaiV+YyWAJ/HZSsYhmYiI\nVXfVkXOzmI+wP2pBX2JqZOgrSx/bHcSo3BDvEfK3b09e5vhmI/Lz/VrYI3AdMimvXUsFK69du1Zc\nuXK1uCwx/8rVK2EnlO+F6/38439C0EfU516GExrz33xpbGVBn/VFR8znFAUZ0ylz+qEsdq7LhuWa\ngh//SLC6+8k6zNnSMGJuuiq2S9gvsRZytn61dQe+xHG038vBBkZOGfT3ky17NgS/sjUGr5esYxbE\nM2zTutumzF36MmVN52KvjT5VwH3VW9AfGBiImhh/RG2Mg5HNzPuQExdYX7VqQ4DNJ3aG7jlYqlCr\ng7VModqBZwMKQqkPPI19s/xMc5T9j7DO6xGQoiAttkuczMnv8fLvj+ZrbHUIlNA52XTkqIovS9Rn\njxtW0JftCu8VC/qJ8AFlrv/8008KpP4on/sNo8Eev8NJomzhdOXq1Qga39RJLKyPeP9mr3qCPljd\nIOp/t3tXnOrIBbqrfZ8j6FNrhv2SYsgEhhH1L+s++JxhTeW+ToL+Pj0jGfqcCMrfZ6z2+qOGNOQX\nLegPAeJ/moAJmIAJmECTCVjQb/IE+PImYAImYAITm0CjBX3EArKMEaHv3bsfdhjPJFQhyGHjgFVI\n9l9eLEEL+wnsQhC7atG49hn5jeM5TgFZ7uHu/XQvvH7NBX1ZI+zYti0yKClQikiHKIzwiu1HLRrP\nQJY24ss1CS5kdF6WAEMWN0GT3BD9fvrxR/X/REfQn6KMYYSXsYh+rSzos74QcN9qJAMfYQwuiFME\nbbKVBNY1BJE4TYHw2ylPfLJdOZnBWsPKgqx2Or7m+K4TWMLnvNFtUNSVsEvA5tjxE2F9clKWHIit\nA8qgZiQzn2fIa3i9Mr3Xryfbuy9OhDDHzPdY5rpWz1pvQf+p9o/ffv9jsD+QRcn79xStToJ4rZ6j\n1q+DAD+coE+NBtZmXqPZaonaD4+fPP7kVmLeWbPqWGkh6s+ma4+pdr7ZO+A6MCBB/+6dKLydRP1j\nKs46TIa+Bf1P5qVaQZ9aLwRmEdPJ1ud9/w9dAUlqpyRrrY7Yt+IkjsR8LG8IRuZADqJ6NY39E8sf\nsvHxz+eanADC2o3M/WRRNSPGnp7uKIrLtXcqqBDBhMpJoGrXXTX3zN9Y0K+WnP/OBEzABEzABOpD\nwIJ+fbj6VU3ABEzABEwgCDRa0Eegiow/ZfshWNy+g9f1wyjA90RFPRG4yO5kXLOmq9i0caP6hvCx\nr8WU4ZueCvylAo/ZZ5vijwgQWQwdmi07ouXOSBn6EuV2bt+WipPKEoGMSqwS6IhttWg8Qwguug/E\na4QYOqLMJ4K+rvejxPwf//ND8ZM69j/VZHO2sqDP+nolixVsVvCc7j8n2wqdyMADGj9wAkdPJVBi\nJ1LO5qdQce+6nmKdaiZgsZMz8hkpTopIRm+0XQ32LeUgBfN6SLYyh/4+HBnT8TMFLxgJEmWvf4ov\nU8Q3/q3Claw3WqNFtry+6y7oK3jzv19/K35R/9+vv0rcezxoo/QlC5x8X80eRxL0Cfy9VG0AMuVf\nvnwRgchTp6kTcEZ1Mu58cusU8M7Bmy6tZeYbD37GajOl+WxA0CcwhpBLIOnosePRLeifL87KDue8\nbGg4NZNs2+7ECYryxFQr6HMiIgK0OUhLhrwCtQRpEdyZUzp1WLC62aNODQOC4NnHvkP7VTWNPTR7\n5jNGMLRSa4RAWXxGz02f0ay73Tup1bErTqKxv+RezbXH8zcW9MdDz39rAiZgAiZgArUnYEG/9kz9\niiZgAiZgAiYwSKDRgv5rZUWfv3ghhJDzFy5ItLgxWMQVARaxYN6gWNAjIXyHMv+2F1s3bx4UMcaa\nUY6glzv2OidPnY7CuKc0kqmN+Pfo8SO9/tRixQplZ5OlrUzX9X296snPmkKP5UYRzucvnodgjg3C\n4cOHi0Pylv5bHUEkNzImsT4J2x2NYbkjkb9T3x+v5U4WKrPlDgIQ2ZRYNKSgyZXwEM8CC9f78QcV\nxVX/8QcE/WTDkkX9fM9fG1tJ0IdBFuYZWc/YgYRNyN17cQqD0xhndBrjmTLZEfrp2Jgg0FNAtmN6\nR9HdvTZ8y/Eu52uyo8naZ6w20/VrHEfzc56PIssv5QePhRBFKf86dGhQ0C+/BvO5oW99CLsUcl6p\ntcw6ZhzvWitfp5qv6y3ok0X+x8GDxZ8H/1I/qAz2TwvhVnPPX/ubfz983Fc4RREnQzgdol5u7Fes\nodSnxj6TMpmnKHg5N/YE5o6aFusUVOrtIbDUE6dCOLX04vmLOL1Edvzf2mfYY3ivl9sGncLYvGlT\nsWXzRq3f7jgJxOtxIigHocYazEHMz3sj7/kTJ7Vvnjyp8dSnRXG1Z5OhTd8tH32Cn5wGYs0RDKum\nhajcnwoc92vkxMFmfQbQ+7QnN7PxmXFOgcJ6CvpYaREooFMn4/z5iwWfl+fU2Qdyw5IOMX33zh1R\n/HrZ0mUV66U5gwHj0cx73kOzVRmBozPiznhTn298PvLcvM/4TKMoLwEnBP1tOoHG59sWrb9mNgv6\nzaTva5uACZiACZjA5wQs6H/OxN8xARMwARMwgZoRaLSgj1BD5jj+wJfU8erlKD8dOxQEoJkqpMix\n/u61awtsanZsR9DfNJh5SAZiFqlGA4LsZYQKRLdbsjIg05R+/MSJEHmj8KNEYDIaV65cGTYrqySE\n9krQRxhF2EeILzdEFbK8EVtv6DXJmqYg5yEV5CwXxSVDduMGFdaVf/JGnTTgdSmsulyZ32RUV9tC\nyK4EKhBcyNzGHuGyTj3gtYxlA4EGeCMkwgvx54cDB4rvvz8QI6cF2t1yh3nNIj3cySBNvvIPirvK\nKsamInzzNVKvIYuu8ECwX9zZGeOaLhW9JaNd2eyrtAbmVoJKnBYZy1qrdj6H+zuENsRp+pPHT4qL\nmuMTWrcnTpwqTilTu9ywW6EA89YtWyR8bhp8NgowVyusll9/PF/XW9Ani/3MGU7dKHgjIbKcQT6e\n+x7pb9lXkqXPuwgiJfH7cZwEKf8d+xX+9rkeyEz9ewb7nEYE/fkL5ivTWhn12g9Ye6tk87Rq5aqw\nd8p7DAGdvw8fjf2FfYZ1XW6sXYIACKxpDa+SVVmyK+P9n4N6oxF38+s+VP0JAqB09ucoKH32fNQg\n4b5y49kiS/w7ZYpL1EfQ5/QR9lTs49W0yS7o834nwE0R95s3b8epDE5mILCX2cOZE2wbKd6ucbXW\nDyevCBAtUjAyzzv7/EiNWhN8ptEJ5HAtTrKd0cj8PyOopM/I1/r5MorGx2fYMq21ten6+ozjs7KZ\nzYJ+M+n72iZgAiZgAibwOQEL+p8z8XdMwARMwARMoGYEmiHok0GO8HxF9gGIrdlaABuJnMlKUcc1\nsg3ZsZ3s9m3KPN2UjvpX7HjIrh5tQxyKrsxZ7AMo6hhdBR7xUX+j7/NzskARwRDT8O7vlf1Kb++6\nok8j4ne5ZREZexfE84MHDxUH//qrOCixjZ/lhtjV09NdrFPWbI8yb7HD6OpaVaxZ3RVe1/n3xjJS\nvBeh9191RoIiZyu2MgRJqBOAqM3IzyMLvaMjLDi+37+vOEDft7/olNd2CD56vbEIfa2UoY9ATzZ+\nzspnLqgngN842a0PHmDn9KB4IB4UXX7/PjFD4MaSpnttsqaJQA6nMySKL+5cXHTM6Aif6hniNhY2\nY5nH0fwuAQsENfz/GbGpYq7PKkOYbP1y61q9Ogpj5iKZH4MSc2MNlH+30V/XW9Dn/ZsCgwpkae7L\n78F6PKty84u3uiYnjggkPXz4QD7nqtdwQwFKXb/cCAoNWjhJbJ1bqcdAXYbZymTPfvezFMhEhI3T\nIRrxSY+i4dpP2GewWYo95q9D2jf/KV8iTmFQa2T1au0tCk5xyqQn9pzuCFRySmCsJ5tYb/j1R30O\nBRAuUZujYvsyNEt83549EvX3yPolCfr5mQhmVNOYTzLzEZQnY4Y++xlWRxRBxu4Iq6Pjxyt2R6W6\nKDNnziiw18IyjM/Lb79Vr4zYxuV5/1rtDAJi+XoUEQ8xX/wZH2htI/gzJ3yexLW6VsdnGYGkvM6w\n92pms6DfTPq+tgmYgAmYgAl8TsCC/udM/B0TMAETMAETqBmBRgv6CLCRMS1BKrKnK0X/rmhEkKNl\nAbVL4lTY1WzdGhnH6aj/ojjyPxah6GUl8xARiusckmUJWa5/SSDLtjWMiO+rJYpyXcZ1WF/0dIe3\nOt7E5cZzIHAQDEBE/vPPg8UfdFl+lMVEMigRWvNr9uj1EPfJpiXLsZrGvb5HzJfYy0h2ftgIyQrj\nnHydEWae0J88DUEH0YdMWSwS9u/dU+zbu7fYv29vCIfVXL+VBH1YJ9ukZAmB6Ih4zCkQ5iVlOKeT\nFIhRuS1QRjSZ7DmjnRMTIaYqm511kBp+0PkvmjOSBU7AJhfFRMglIHZV65jvl1u3Thd8v39/ceDA\nfs3xnhCEOXWCMNzMUwbcY70FfQIf5QLBnMapa9N7MNaW9hRGRHyKbNMJtpQb+1Y6/ZHEVk5MxMkQ\n7SkUxmZupk2bGiNCOMEmRsRY9hcCB4xYLcUeo32GfazcCAIQdMRih71rgzKmI3NbJ4M4CTClUqiU\n1xxtYz++pPcR7ykCSTduJnEfkb98Coli0WlfSaI+2eFx0krPMZZ9unxfk13QZ1/L6wtLtXwCjM8t\nxP7cCGzneWfu+VzZqDnnRBj7wWiL1JKVz4kAaslQD4BTLnHaRYJ+tq/ic4eAO5+LUW9EI8EDgkh8\nxlFAvJnNgn4z6fvaJmACJmACJvA5AQv6nzPxd0zABEzABEygZgQaLegjUJJxGF0Z+VeUpX9OhQXp\nl/V1uSFUkP2HAI6NRLKqScf98WeeWhHBpkmsKjeEhw8f8Lf+f/be8z+S4zrbnkVOTGIUk7ikFUgl\nSn5sObz//fvIH2xLtkSJyqIkJpGUmBY57VNXHZzpmllgFwsMgAlX76+2qid2X9Xo6b7r1H0iGrta\nlhS7EmpmA/y6iBRvnwgWvDYXEgzevl2+rwgVfC/R9C+VaPoXSzT9448P2uOE3UYkIyWStfrnlwEC\n/K0RXKrYX4Q4tq16WZd9efrJp3qv3P5aRP6XqH/sNRarh3tJuFpE1zaKMgc1cttin0pUftlexMpI\nlln8tYuYiNj2m5K8EDERcb/13UbMf+zRx6q9D0IbCXq/973vlvq7F7b8uWlBH/YHpRwWkfNOic4n\nEp/ZHR+VBMvYDGWkNtH52Q/UCKcIYJQnSn+SH+HrX48cCV8pntAbG49UWxTE1FEsiF9E+COoP8yM\nknpEln6mrxk4IhIfi6rfl4GKd4uI/+GHf+198NcPq0UVgulymU1A/crLX+v98Idvlij9H/TeLJ7a\nzHJhGygPI+SOYt+HP+OqBX0Gaxiwq4N3xQaLga4rXUrf8Le3XZLVkk+Dfvnl22/3yMvBuaVdENtv\n347zGJHzeT54qpwPiN7vR1HPz8UgTDlecmZInmc43mtS2jKr6Kf/87MyKPrnsq8lcv9ksJLZGI8+\nEklwmQ3AbKBM8swAFdH/a+W45ljk3FLPL9TNhsIw/l4OqmDP39GfyjmZ2VTMbMpZP8x4YeGzmP3z\nxONP9H745vd7b/4AL/fvVwurixz3zabU7ZjlCP0cMI7ZH5/WGWXkUPif0v/8juV5rRyGZebVIyd9\n/0j9zeK3i+OMgZ1q71TODdR1UK90eP628B0HB+VcWuovvvyisyor1nd/yQH3MoOOxOrz5djkOKXP\nyTOCxc/Xy6ARQj4WSzUHxNCgd9uf19FW0L8Oyn6HBCQgAQlI4PwEFPTPz8pXSkACEpCABB6awHUL\n+kTStolo/1DESqLL3yrJFocjWxGiavRh8a/Hw/7FF2Oa/0ulfvyxx0PIXFqu9ijtjiNM8T2UbgCh\n2JaUgQT87t8r4hvJeIcTSxI1+61vfrN63b/+rW/WAYRnigiOYEGy3nbpf0f5LoQu/Pij/KImkryz\neacmEDw6OqzvZV/4DMSWf3it2PgUv2H2Z714aCPqrRdBDvH/VhFNWmE/v5PvQ8hnn/b7Uekk8/28\nii9EpFfBtwhviD1YgVAj9qTfMbYy+PkTwUnB0/siy00L+hl1j6CKZz4DGn8uUetErv+9+H5/Xph8\nXgZwNrc2q8c5xwDcmKVARDSzJhBZX375xRJh+nK1qUAQXVkmd8NyEd+XLoLlnvcwMJC+6XzveZc6\neFOUOiyVEPTwhkckRuDE/oSBitxP8jBU//UyaENE7re//Ubvu2VGCxZVCHiIcNQp4p13G0b9uqsW\n9HPwo0a0F4GShLVXufB9deCMpLWlMHMi//45n7UL55XXyt98CuzPcD4ronskjy2CPsJ66Sf6qA7A\nlP6iZp3jNs81vy6DdultzvchYOLb/2mpGdCJyP6YiYMtSp4vOdaZJfA4g1blXMPn1kGEWyVavwi8\nufB3QtLTmOmwWQfGSLKNuPtBGUTKx6n5Ps5pHN+cm79TbNEy8TfHJOcy9qGKyPkFD1Fz7pplQT9/\nu+gTBHwSEUf5RbUQ2yz9dKdE1WPF1M3qWKn++QwUEy3PAPgjJ4OU5GpYXIyBvbm5W2WwsFePW45d\njmPOmX/jvFIGa6pFWWljvcP5lW2gL3n/6spqPbeQnJhzDN/VnYMefYgeHv1LFfRHz9RPlIAEJCAB\nCVyGgIL+Zej5XglIQAISkMADCFy3oI84hRCbEeZE5v/kpz+t/tAIFu2CgLCMyFrEIxIsvlqi2nO6\nP0L/+tp6P/li+z580ok6pOwf7Fd7EsRerH6wE0Ds/fyLEH3b9yGwfb9Er5OElyh2RDCsWRAsEMva\nBUEvC6J6m5ATi4RMzIpgEmJIiQwvogiRkzUy/B9eqzYcT5TErFVwK6Ib9ihVaEPUL6VdEPOJSGef\n4EdEeo1ML/vz7rthycL+MfMhrXhgTTTw14otAv7GeCyTxBDhl4KwfZHlpgV97CHC7/nLyiBmJ8QM\nBaKl6XMEQaJPs49ggWc5tkPMtkBkJZL52Wee7T1bkjwSeYr4mCL4RbgMv4fBFGwwKHzveZfjcmzR\nh2wzgt3/Fu/sn/+cRM4/rzMQEFQ3N7eqJUcO1lC/XPq0Rs9+4x/qgBHCbZbzfvdVve6qBX22G15Z\nECyvcglBf6skCo1koUSxEz39s+J1/rMyuNcu9D+Jtf+BGSGlrn1WE4s+WwfyqqZOX5U3pdie/ZbH\nLzUzmBi4I08Gf+tt8mten8dvevb3j42SG4JjHE91jsP5OY5zzjEM9HRbik96irkIuzUfRRkgZOCT\ncxp/T4i7nIMeLcm+2a8nSx4O8k4wAPqtb32r9/o3v1EHLtv96L7h/K1ZF/Tpb45lamYhYX9TBzhK\nzTme3xf6iHNh9juDKCRYrnZO5fxG0m9+W2JA54k6CDNX+p3X87lflIECymfl9xAxPMV8Bomw/Kml\nnEfpy5wJxMy4mqieAZzvfqceU3VAoQxeDv9Gnr+3R/NKBf3RcPRTJCABCUhAAqMioKA/KpJ+jgQk\nIAEJSOAUAtct6CMkVLH9RBgiqvynxaYGy5q33vpFeEafCNcIGrkgQuBnj6D/yiuvlKjQIugT2V7K\nsDBNdGP9jvI5CEOI+VXQL77TCFYIFZlsMqNIqb9ahK83i2XE94tdCdYR8dmrxapirVpL5LYM14gq\nf/zjOyG2Fcsb/LQ/+PCDGuGKOMI+Z2F2AVH6t8u+YOmT4gvCGKLJ4gKWMCeRrbyvfFkyI1qb6Hws\nfbBdqdYrZcYBgxRV4C+WM5+WCPV2UIAISpL6vloihPne50j8WoQ9aiLWL7LctKBP1GiKT4iNv3o7\nItiJXkZ0PGt5rIiQT5QoZSxCqBH2ETgZuOH4GvWC4Pli6W/6GXH1vAvHb0aaIxgjFP/vz37W++n/\n/qz2897ebp2BwQAPiX1rUsyXXqy2VK+cDNjw2Dgt1yHoX+f+8jfJ3yHnT/oIqyvstqKvfj6wKQyq\nffPrnb1TiuvPPftcEb/XB157vxUEds4tWOFw3DMzBZGfGksezpccOwxOcUzHsf54/Vt/rojuFKyl\nEPKrCMygYRFrcyFBpmjpwAAAQABJREFU+Cd//1tJIB1Jtf/60cdFPC7nmTJ4iFiagwzUROWTOJzz\nC9YuzD4giTge7lj7XHaZdUG/5ccgJcdXlvh94fz/Yf09y0Esas7pdTZYmTnBAGb9fXniKz0GjhkY\nz4Gc8qtSZ3flbCb6N2fOkX+lXfhMZpcxGwNbuu+UGUDf+U7MBOLYThszBqxvclHQv0n6frcEJCAB\nCUjgXgIK+vcy8REJSEACEpDAyAjchKCP6EQh6pwEi3i/E4H4u9//rgrSaSOB8J4LInUX2fpMFSuW\ni9CACI5Q0S74Z2N1c3gYljuflOhSIkwp2BQg+qbgX4WKE7ECcerbb7xeEvC+XmuEjBqZWAQyBP+z\nFqLwPyg+7lVkL3UKbe8UEeaj4kec+0vdRYY/UyNcN4pIgi0CNUJYRjviQZ1CDfsDi0ySuF1ExE/L\nQEEVYU6EGIQZBBnExcqERLhldgMexxkdjKCPyNefEVD8ry+y3LSgT4Qq4ia8SRb7u9//ofrMMzhE\nBPFZCwM/1d6oDAJFvVYHbWgPz4g46zMe5vFMToq9ETMizrvQ1/xdbpa+JIL258WO6hel/LwMeH38\nyd/KPsZMDfJE0LfM+MDCiRkYzxerDew2iMYep0VB//KCPhYoaYvC8Z/R+tR4+ccg5W7tdgYjsVmh\nJl9EDmRh7XWrWO1wvJMwtV0YFLhTxNyYAXPnZBZTd15hECCT92LfdbsMHpHbhEGlF55/PsT9IvJz\n/rnsoqDfEeR8wDmPgRXq98tgTk0oX2ZpMJDLLJ49cimUmt8p8iXw28VAdP6+MXCE8J6DvQxIxWBU\nDEjl4BQ1v2ftwmyM+O19up5XONe89lrYxiHwz5fvZHbAVQyKttvxoLaC/oMI+bwEJCABCUjgegko\n6F8vb79NAhKQgARmjMB1C/rgTaEaa5G/lWjQd98tAsV7eDVjHfOXaieBdzPiQi5EhSJOIEwgVCHi\nI15QSI7bLogVfAce5IjhIY5GNC3e8gjrPE9NMj+sdihEUyNWpCUOAsj8PN8RXuTtd7RtxCdsfD4r\nNj5flPq3v/99SVJbBimK5/X7xfMcK4uDagNzUAX73Ad81ZdIaFryAJDYlP1DPHmkRFYi7tdBibKN\nDEzsFMGu7kexWsHzOH3kd0oCUNqZEBRBu/q2l0ECIjRfLlY7+OZ/vSQxRNBH1OZ719fXLizA3LSg\n/5dyvOAhzqyLmryxHCspcNGnZy30J9HL/YSdNSFxJK3l+Br1Qq6EN0uy0B/+4M1iRfLNc388gzKf\nfY4/+me9T4q1xq/KzAM89N8uXvqIulhKsZ94YX/7jTdqeaMMQr1covRrRG6Z7cGgzTgtCvqXF/Q5\nLsgLwXmAgcLflfPM70v5XbEtI6oaIR4PfM5HeYxzvK8UgRfvc4Re1ttI+/YY4Zy4R6JdBOJS4pxS\n7NHKOYbzSvz9xN8QM0Da80q1djmxeOF1l10U9DuCsP/yy2Izdqf0cak51/2xDOKQKJuZGgxS0+/0\nPwv8+V2krsdB/Y0plmJlZkb2PXO/+F3CnuygHC97tJkBVgqD3e3CbIzbt18pvx/Fro1ku2XwppYy\nWJyDoXzuVQyKttvxoLaC/oMI+bwEJCABCUjgegko6F8vb79NAhKQgARmjMBNCPqJOG0rMvnex0Wk\n+uXbb9fEj7/85a9qxHm+lrqKBkU4IIFkrte6rnX/Ddtn8z21FMEqn2OdBWEKf3mEbyJNv5alRJ6S\nrJKF773fgriKEIIlDkIYwit+5z/7+VvVEoPIWcQxCkuKKm3N40Q7piCLUHJQI7FjNgH9FL7xd6qg\n39+nk33j/TxGlGT9jOKhTH379is1ye+3vvmNIsi8EpGUDISU1z1ov/jM05abFvQRsojK/93vftd7\np9gosT1EqhK9ej9BP/e3rWvPPqB/T2Nwnse+U8T2/+/f/7WUf+/9oAj7510QZ7FR+qhYnpAngWTR\n7OtvEG5LxD4LfY1ox2DBD958s/fD8vlY+0REblhRnff7ruN1CvqXF/RrUuwi7lJjO0XuCAYOSZZb\nPdWxoiqFc8XAMc45sxZ6ujuXda04AuKMyLkyjq96juT8wrvK+4n6jrJcBz5JgsuAEgNX7eyiUURq\nK+hHn/A//YCoX/OolJrBTPqc/mcWGH2O1Ro1Ynzb97w/+n64t+sH176t/XzyPbw+12mzvPjC8ycD\nh6+XPAnfLN788dvCIA6zMfL74tU397+C/s2x95slIAEJSEACpxFQ0D+Nio9JQAISkIAERkTgJgV9\ndmGniNybRBiWxH/YxlQbCfyC//hOtZXZ39/rRw7WiEKiCEtUIVHr/Uj/ItTfbyEqNUpEl9b2Yjz2\nwgvFA5qIwxJtiIc+1gLPlEJ9XqGC7aiCC6JLKX8svtYhOP++9977RFCW6MkSWUkkJaI+oj/i/3Ak\nJCI+EfqUtRJNmwJOjdDf3eltlwhdovNzYCD3mSjMlWrXU7yOy2fga0xU5VNPPVn3KwYtXq5WLNVy\noYhz1Ofdv/yerG9a0M/koH/4Q4lQLdH6n+D5Xby/iWY/Pj47Qj+3/7rqb33jm70f/fM/9f7lR//U\n++53vnPfr0VEq4JqqcnzgGhH4tPhGQiZZBnRlFkqCPqUN4uo/0KxO0FwJTkl9TgtCvqXF/Tb8x3R\n2ERqM1vl3XKckFMCQZfCuSairbvzTNqMPWjAq854KscWNQVfdGqE2zrzp8z6YQYRs0Fu3y6++bdf\nqeeYdkbAKCK1FfS7v17ODTVRdvmd4Rhg8PIvJzPZ8NP/9FMS5Ebf89tAX/M7xO9LPQ5OZofx3lw4\n9xPBT/9SY5uDv35Y5yyczByL30jsu8iRQH4EcnTQ//j0U/PecVkU9MelJ9wOCUhAAhKQQBBQ0PdI\nkIAEJCABCVwhgZsW9BEdECEoiNUkYozo5I+qoI/YX60kiuC/WQrCPzVR7+ElHuLF/RClAFGjl6tn\nfST4Yx3h/ulit0P9lWIZkYI6djXnFbwRXBDKEEyoPype/SQs/KB4vH/88cchtiC4FdHl8xJhTaQ9\nUdjDXsWIZtVDv4ixDDogTmMZdFwsVhjEIGnlaQMBbGuNmixWK0995cne08+EhRB1FfZLclbEfRJl\nsk+Uy4huNy3oI2T+6U9/KdH5f66cEXIyoWMrWt3vmLiO54hc/v73v1ei59/sMUPifgvbncIdUfm/\nLVH5vy1R+b8vMxFq/ocye+XjTz6uQt1yyY2AmI8/OpH/2PqQxJlEx0uIdCflft933c8p6F9e0M/j\nAysxBkJzZhPR2bRrKX8LDIzWc2a1aYkZPZxrKFiOnbVwTqgR+OXYWi45OMKmh6TgkRSVc0yeZ6pN\n2cl5hkjtHACgPu9586zt4HEF/UE6eX7gGOA3hBkZDGKSU+Gzk4EcjgN+G7eLBRs2bPQ3g8n5m4nI\nnwt9nfZr1Culv/nNYWCG3DT8pkRy3UdqAvpni6hPMmf6PQcMOVZGMRsjt+mytYL+ZQn6fglIQAIS\nkMBoCSjoj5annyYBCUhAAhIYIHDTgn6K4AjhJGXcPBEg7mzeKR7in9fo67/XCOwuCpFoVPz1EaeI\ndkf8OWtBXMJ65klE7SJ4U0eb+islWeQT1W8cUYqEkSmIIm48zILQkgVR5cu6H3eKyPZZtYTJhLnY\nqCDM4oGd9in5PYgjFKIk50q0ZPnI/mcmJ2pKu5AH4KUXXqw5AJhpgPDCAAWRlY88Gn78DBQgAqfY\nlnX7Oedt37SgT1Qq3tHvloTKDJhU8bIM/DADgkSx47Jg4/TG698q5fUa4Xq/7YqBmxgUIur6Z2+9\n1XurJMF9+9e/KolKY1CLyGuEOGZhcKw+VmZyvFmE/DfLoMGb3/temVnydH2e11DGaVHQH4GgT4dy\nninVUTlX1pk+J+dABrQ+/ayIu0XQZ+CQ2SrkJ2H2CgI/OT4QgocHEdtjBDG+JtOteUrWawQ2x9ij\n5Rzy+ONP1AEjzinPPfdcFXxDEC7nlSLsYoOGRdmojjsF/bZnOhscfmPo9xTt+R3kN6b2O7MzSh/X\nfArlXEGfM9snZ2+0v5P8zmDx9nhJmEzN4Da/ETW/Sun/p56MGV7M9nrssZLXpeRkQeDnvJO/UdSX\n+R0Z3MPLrynoX56hnyABCUhAAhIYJQEF/VHS9LMkIAEJSEACQwRuWtBvNwexgoh9hH1qBCgEW7z1\nP/mklBOBCqGKyMOavLFE6iNwnLUgOCB4E6lOJH6NWD9JhMvjaR1ATYT8KJbcfvYBcf8DovU/+GuN\nJif6OsT9D+uARQ4C3FMPbQj7gWBGfaskQ63/TtaJnnwF7//i+/9S8VHvR+gTTVmiaxHZ5kco8t60\noP9ROSbSMx8xC5GyJg3e3qkDIEPobmyViPlXb79Syu3iQ/3CfbeDAa0q6pfBGmYgvPWLXxRB/5e9\nX5VkuBzfeawvLi4U8Q3bk40qtH27DBa88UYppWbgalyXaRT0Oe62yzFH/efSZ7+gz37xy5IH5FcD\n3UBUex4Ht2+/UqKcT85F5e8TAXUUC7N+OF8ySPj38jeR503qT5nBUsqnZYCU8/1ZC4J+JNQuycdL\nhDZiPmIugu8TZR+wJPtqEfMR9Gt09sk5ZVQifrtd4yzof/HFl70/nNjCvfOnd05+n/7W+/hvn9QB\n6XY/mEHzz9hulfLaq6+2T124XQd3TwZ24ZSDNV8wcFP6n3WOA/q9/mae/HYywysXEsk/UQZpvvLE\n43VQm35ngIbBQsR9BgefeRr7uXKMlsdy1g8WPeO6KOiPa8+4XRKQgAQkMKsEFPRntefdbwlIQAIS\nuBYCYyXolz0m8hRxE/94to1oQ8QJRJQv75RSIg/vlMewnKji/34MAJwFi1SAjyBM1UjTiDZFpMJa\nh8dq5HqJMKUelViR28++sJ3MNEhRjejZsMr4e92X9rXsM+85LPkBjoa84Bfm8ToOv+OFhcVicRHR\n/ERJMsvg2RMBJiMq6/6W/WSmQUbOjiqa8qYFfY6Hz4g4LgIWdhL9SOWSb6FOazjrYLjmxx8vFkfP\nMVuiDLg8SGyvMy/KgBY1dhrhof+X3vvvvx/HOQNdxRub/kZMxQYFAY5EuC8VP3MGchiUGtdlGgX9\nTIKNUIpwSp/9pfjZM3ukXTZKVPOzz4RlCTNn8m+TelSDiERsb5fzJbZlDCJ+Xs6X/J0g8G6VdSK5\nNzeZ1XT24CeDfuTiyONrtRxfDDhwnHFsPY74W45pzjcIvKM+r7TMxlnQZwCnbw1XBkxgzW8Sv1XD\n+U1uv/K13te//vXeN77+D3XGVLuPF20z+JvnC2x0+J1km7bIsXJyDESb3C1sV/xmMtCcC4MwCPWP\nlGNzfZ3o/JV6LIbt20oZyHnsZEDnsTqzC4/98Nefz48Yu1pBf+y6xA2SgAQkIIEZJ6CgP+MHgLsv\nAQlIQAJXS2CcBH32tAoVJ9GHCPYI4ogkNUq5ROPv7kUbcRMxnNdT329BoMJuBl/oFfzHqctjiBc1\n8rCIFVWgKiLHKJYUW/C6rvuws9tZJBRxLT2NYb+PUEui35MSIiFJfw8GNmVpCU9rBh7Y7pXe4lIk\n+MXzeH29RFaWqG18jxEP2ce6r+X11RahfFKN7C8R/aNYblrQ53jYKUx3SqJgxNRMHsxxgNg1LguD\nRPQHYiii6P2WdoYGoiyDFdioMJBVcymUPArsH0IcA08LRVDFHgrhjQhqBqlGJQ7fbzsv+ty0Cfpw\nQEytg29HiKrbtb+qvU0R0duFfsnjgOjnOBfFOYmo+FEsnGfyXMI5hL+R+ndSav5GOL/weOujPvy9\nHFtsTx04LIOGnBOXynlmsSQQX15eOvHUj8HPuRO7Fc4ooxoobLdnnAV9ODNokvZw/CaR04XfKPqh\nXbByI38JA62jGnDrnyvKF/FbE78f9H/+jjD4R/skP03Zrr1yHDADKBf6rCYyLv3KoO9iHSQmATIJ\nkRfrb03kUVipx8SoLZVyO0ZZK+iPkqafJQEJSEACErg8AQX9yzP0EyQgAQlIQAJnEhg3QZ8NTVEW\naRZRvC9gFLEWvba6SNOOF/P/fZcUs0+reWM+ft8PucCTuR/HbOvJfiAG7SOwILCVOgcsan2SzBCx\nejiSNsThYoVRBEEiK1dPBiUYmEB4q0JcEePS1zj3iXrUy00L+oPHA8dEiPhZj3p/L/p5t27hZR++\n4g/TD+2gFu3h4zw+C/ulXhX4EWIpD/MdF92ni75vGgX9PN7qOelu5LbIvhvgVDqqi2ann7pzzqj6\nrNuW+Htg/d7CVsXfysD2tStl4/oifdNmO4dL+7ZRt8dZ0E+u0deDnIf58nfJOTn/RkfN6bR+5zty\nG9t6+LvrsVf7OM4lHJjZ921f87762uEPGLN1Bf0x6xA3RwISkIAEZp6Agv7MHwICkIAEJCCBqyQw\njoL+Ve7vTX92RPUS2Rt5AqqwX8T9KvIXgb96pZeI2uFIT6J6EfXX1rDEWO1HVy6XyH38kKtgVAQZ\n6qteblrQv+r98/NHT2AaBf3RU/ITk8A4C/q5jdbjRUBBf7z6w62RgAQkIAEJKOh7DEhAAhKQgASu\nkICC/hXCPeWjierEOgX7A+phgT+E/rATat+ODcZSsb6o9gjFBoOI/Cwp5mdUZfu+q2gr6F8F1en+\nTAX96e7fUe+dgv6oiU7/5ynoT38fu4cSkIAEJDBZBBT0J6u/3FoJSEACEpgwAgr619thrQUC7Wrb\ngD1GEfizTc1z7TKHfct8sW9IexXqjMhvrBLa91xVW0H/qshO7+cq6E9v317FninoXwXV6f5MBf3p\n7l/3TgISkIAEJo+Agv7k9ZlbLAEJSEACE0RAQX+COmtMNlVBf0w6YoI2Q0F/gjprDDZVQX8MOmHC\nNkFBf8I6zM2VgAQkIIGpJ6CgP/Vd7A5KQAISkMBNElDQv0n6k/ndCvqT2W83udUK+jdJf/K+W0F/\n8vrsprdYQf+me8Dvl4AEJCABCQwSUNAf5OGaBCQgAQlIYKQEFPRHinMmPkxBfya6eaQ7qaA/UpxT\n/2EK+lPfxSPfQQX9kSP1AyUgAQlIQAKXIqCgfyl8vlkCEpCABCRwfwIK+vfn47P3ElDQv5eJj9yf\ngIL+/fn47CABBf1BHq49mICC/oMZ+QoJSEACEpDAdRJQ0L9O2n6XBCQgAQnMHAEF/Znr8kvvsIL+\npRHO3Aco6M9cl19qhxX0L4VvJt+soD+T3e5OS0ACEpDAGBNQ0B/jznHTJCABCUhg8gko6E9+H173\nHijoXzfxyf8+Bf3J78Pr3AMF/eukPR3fpaA/Hf3oXkhAAhKQwPQQUNCfnr50TyQgAQlIYAwJKOiP\nYaeM+SYp6I95B43h5inoj2GnjPEmKeiPceeM6aYp6I9px7hZEpCABCQwswQU9Ge2691xCUhAAhK4\nDgIK+tdBebq+Q0F/uvrzOvZGQf86KE/PdyjoT09fXteeKOhfF2m/RwISkIAEJHA+Agr65+PkqyQg\nAQlIQAIXIqCgfyFsM/0mBf2Z7v4L7byC/oWwzeybFPRntusvvOMK+hdG5xslIAEJSEACV0JAQf9K\nsPqhEpCABCQggSCgoO+R8LAEFPQflpivV9D3GHgYAgr6D0PL10JAQd/jQAISkIAEJDBeBBT0x6s/\n3BoJSEACEpgyAgr6U9ah17A7CvrXAHnKvkJBf8o69Ip3R0H/igFP4ccr6E9hp7pLEpCABCQw0QQU\n9Ce6+9x4CUhAAhIYdwIK+uPeQ+O3fQr649cn475FCvrj3kPjtX0K+uPVH5OwNQr6k9BLbqMEJCAB\nCcwSAQX9Wept91UCEpCABK6dgIL+tSOf+C9U0J/4Lrz2HVDQv3bkE/2FCvoT3X03svEK+jeC3S+V\ngAQkIAEJnElAQf9MND4hAQlIQAISuDwBBf3LM5y1T1DQn7Uev/z+KuhfnuEsfYKC/iz19mj2VUF/\nNBz9FAlIQAISkMCoCCjoj4qknyMBCUhAAhI4hYCC/ilQfOi+BBT074vHJ08hoKB/ChQfOpOAgv6Z\naHziDAIK+meA8WEJSEACEpDADRFQ0L8h8H6tBCQgAQnMBgEF/dno51HupYL+KGnOxmcp6M9GP49q\nLxX0R0Vydj5HQX92+to9lYAEJCCBySCgoD8Z/eRWSkACEpDAhBJQ0J/QjrvBzVbQv0H4E/rVCvoT\n2nE3tNkK+jcEfoK/VkF/gjvPTZeABCQggakkoKA/ld3qTklAAhKQwLgQUNAfl56YnO1Q0J+cvhqX\nLVXQH5eemIztUNCfjH4ap61U0B+n3nBbJCABCUhAAr2egr5HgQQkIAEJSOAKCSjoXyHcKf1oBf0p\n7dgr3C0F/SuEO4UfraA/hZ16xbukoH/FgP14CUhAAhKQwEMSUNB/SGC+XAISkIAEJPAwBBT0H4aW\nr4WAgr7HwcMSUNB/WGKz/XoF/dnu/4vsvYL+Raj5HglIQAISkMDVEVDQvzq2frIEJCABCUigp6Dv\nQfCwBBT0H5aYr1fQ9xh4GAIK+g9Dy9dCQEHf40ACEpCABCQwXgQU9MerP9waCUhAAhKYMgIK+lPW\nodewOwr61wB5yr5CQX/KOvSKd0dB/4oBT+HHK+hPYae6SxKQgAQkMNEEFPQnuvvceAlIQAISGHcC\nCvrj3kPjt30K+uPXJ+O+RQr6495D47V9Cvrj1R+TsDUK+pPQS26jBCQgAQnMEgEF/VnqbfdVAhKQ\ngASunYCC/rUjn/gvVNCf+C689h1Q0L925BP9hQr6E919N7LxCvo3gt0vlYAEJCABCZxJQEH/TDQ+\nIQEJSEACErg8AQX9yzOctU9Q0J+1Hr/8/iroX57hLH2Cgv4s9fZo9lVBfzQc/RQJSEACEpDAqAgo\n6I+KpJ8jAQlIQAISOIWAgv4pUHzovgQU9O+LxydPIaCgfwoUHzqTgIL+mWh84gwCCvpngPFhCUhA\nAhKQwA0RUNC/IfB+rQQkIAEJzAYBBf3Z6OdR7qWC/ihpzsZnKejPRj+Pai8V9EdFcnY+R0F/dvra\nPZWABCQggckgoKA/Gf3kVkpAAhKQwIQSUNCf0I67wc1W0L9B+BP61Qr6E9pxN7TZCvo3BH6Cv1ZB\nf4I7z02XgAQkIIGpJKCgP5Xd6k5JQAISkMC4EBgW9J977rneN77xjd43v/nN3gsvvDAum+l2jBGB\njz76qPfb3/6295vf/Kb3pz/9qX+8cNw88cQTY7Slbsq4EHjnnXfq8cJxs7m5Wc8veZ5ZWloal810\nO8aEwMHBQf944ZhZXV3tn2deffXVMdlKN2OcCHz++ef93yWOGa5fXn31td5rr73We/rpp8dpU90W\nCUhAAhKQwEwQUNCfiW52JyUgAQlI4KYIDAv6jz76aL0R5mb4ySefvKnN8nvHmMAXX3zRe//992tB\n3OdYybK+vj7GW+6m3RQBjpM8ZnZ3d/vHC8fNwsLCTW2W3zumBI6OjvrHC8fN8vJy7/nnn6/HDYPO\nLhIYJsC1TJ5jPvjgg96LL76ooD8MyXUJSEACEpDANRJQ0L9G2H6VBCQgAQnMHoFhQX9xcbH3+OOP\n9x577LGe4uzsHQ/n2eOdnZ0eoj4RkXfu3KnHSh4zCG8uEhgmwHHC8cJxQ/R1Hi/Uc3Nzwy93fcYJ\nHB8f988xHDMM+vCbRGHQ2UUCwwSwacpzDMfMSy+9pKA/DMl1CUhAAhKQwDUSUNC/Rth+lQQkIAEJ\nzB6BYUH/8PCwiicIKApts3c8nGePEds4ToiibY8Xjplbt26d5yN8zYwRyGOF4+Xu3bv9c4zR+TN2\nIDzE7nKsZOG8wrFCmZ+ff4hP8aWzQoDzSh4v1F/72tcU9Gel891PCUhAAhIYSwIK+mPZLW6UBCQg\nAQlMCwGird97771a3n//vR5Rbi4SkIAETiNQNLMqyJf/ewzsZDk6on3UX+fxdmFwcG5uvoixc3XQ\nB4Gf11C3C8Itr0W0jffwvnjv3Nyt+l5e48BRS822BCQwTOCrX/1qtd158cWXzO0yDMd1CUhAAhKQ\nwDUQUNC/Bsh+hQQkIAEJzC4BBPxPP/20X46ODmcXhnsuAQncl0CI8CHkc67g/IGFDnXbJkKWhQEA\nxP/FxaXig05ZrgL93t5eb2+P9+zVAYIU6BHvSZJLwf4ratYX63on8s8XUZ/PdpGABCRwLwHsvL7y\nlSdL+Yr2gffi8REJSEACEpDAlRNQ0L9yxH6BBCQgAQnMMgEiZElSubu709vZ2S3i2mBk7Syzcd8l\nIIFBAoeHRzWqPsV8ZvicVhD3WbDBQNRfXV3tra2tVWGN6Pvt7a3e1tZ2KVt9QR+BHkuVlZWV+lre\nQ1lZiZrBgLRcoVbQH+wb1yQggY7A8vJKPZdwDmFw0EUCEpCABCQggesloKB/vbz9NglIQAISkIAE\nJCCBGSWAAM9yVk3kPRH51Ht7u31RPgR6RPooRODzUfE5d4uQv9F75JFHakJTxPgvv/yyJlQmWS5R\n/4jzROnz3Nraenl9iP8k5qbwWApzvAaBrrXeyQj/4XpGu9HdloAEJCABCUhAAhKQwI0SUNC/Ufx+\nuQQkIAEJSEACEpDANBOIKHoi6aMg1reFaPx2/UHtg4PDKtKH53144BN1jyBPlD62ORnVv729XV6L\nnz7fzeygLvlpCPeRCJV2W+bnB9fb52jzHSn4p8g/zX3ovklAAhKQgAQkIAEJSGCcCCjoj1NvuC0S\nkIAEJCABCUhAAlNFACE/E9RSh789Hve7tb27G23qEPex3TmsAwCRvDaS3XZt1ueLAE8dwjsR9emJ\nj8CevvsZ7d9+Lgl2I2ku39O12c74vPjc8ORfqb78DBhgyUOhHduSCXXnpqq/3BkJSEACEpCABCQg\nAQmMOwEF/XHvIbdPAhKQgAQkIAEJSGBiCaSYj4hO9D1R8+lx31rp8DjP8zrK3Nz8SdQ9Hvdr/Qj8\n8L1fGUhum8lsM2qe78yBBET9FPgZTCB6n+9q652d7Zp0F6E+C9/TWvJ07bU6eBCDChGtP7Gd44ZL\nQAISkIAEJCABCUhgAgko6E9gp7nJEpCABCQgAQlIQAI3SwDBPBYi8CMKHyG9LSnOp1BPTZLsLjqf\nhNkZqU/S7M6aB8EcCx3EfOpoh60OUfJLS0tVWE+/+7No8J0k0UXUR9CPAYVW0GeAYbs+lwMC1EtL\nEY2/skJkfiTAzDbfifVOK+rnoELWPJefx7bRdpGABCQgAQlIQAISkIAELk9AQf/yDP0ECUhAAhKQ\ngAQkIIEZIxDiOwL+3RJRj2jeRcJnRHxGxx8eRqJb/O9LKttGuI/EtjE4cLeI3p2NDZY6iOoI91jd\nUGe7FdRTOD8LfzuogLiPqI/AT+nae1Xwbwcj8NtHg+9EedajpJCPqM+2UHL7sp2P53sQ+l0kIAEJ\nSEACEpCABCQggcsTUNC/PEM/QQISkIAEJCABCUhgxgh04vdRFfN3d3dOktHu9pPSYmuDaI6gj5hP\n3QnfIdDnOnWK4IuL4Y2PcE7BfifbWSOUZzT8/dAzWNBta3jmp8hPTdJc6sPDoyrqMwjBdjJAsb/f\nif85CEDN9y4sIOQj6C9VOyAseoYLMwna7aTtIgEJSEACEpCABCQgAQlcjoCC/uX4+W4JSEACEpCA\nBCQggSklEJHzsXNdmwj7XhXBUwxHtN/a2uptbm7VmnYWLHUyQp8I+bW19d7Gxnrxp9+oHvUbGxtl\nPdqZdJaa6PfrXBD92Y8ssT+bZT82y35Rs39Rs11sH6I+AxH46+c+pNc+NTZBOQDBIEBG6/P+Vtxv\n2zznIgEJSEACEpCABCQgAQmcTUBB/2w2PiMBCUhAAhKQgAQkMGMEUrinRoDPElHs7XrX5jURgR9R\n+Nkm2h2hPD4zBgKIWh8umei2i9BfrEL4daJnG1urIIR9Zh0wIEHZ2Ymax7AZ6ux4iNYP652oQ+jv\n2jnbIOoYCKDNrIPusbPE/utk4HdJQAISkIAEJCABCUhgEggo6E9CL7mNEpCABCQgAQlIQAJXTgBR\nuy0hakfS2oxcz4S26Y9PzXvCFic98BGraUeNcJ2R6inapwjerudrqK/bc559aK14YpAi8gKkZVDu\nc7zusP96Bi2OjsgngH1PV/OZ7N/SUuezT4LdmIlAst0sK5VPivpG7F/5oe4XSEACEpCABCQgAQlM\nMAEF/QnuPDddAhKQgAQkIAEJSGB0BFLMT895bGa2t7f79jnb21jpbJfHtmpS2fSVR3xv/eOxmsl1\novFTuCbJbVrPZI143bZTzM56dHv34E/K/W/rnGFw924kAOa5g4NIqJuDHOQK2N4mh8B2P38A63jw\nY8nD/lPDJK14ssaCiDbCf8viwVvrKyQgAQlIQAISkIAEJDCbBBT0Z7Pf3WsJSEACEpCABCQwkwRS\nrD+tzgh1niNCnWj83V2sZ9JuJmoeDysekskeVssZxGqE/LW1rGmvFXud1b6gj7A9DQuR+inmw4JB\nj64g7iPsb1duncXOQuUQAxzYDi1X6yEi9nkMQT9nKDDAkSVnK+Q6tYsEJCABCUhAAhKQgARmmYCC\n/iz3vvsuAQlIQAISkIAEZoQAkeUsnZXMfokgD0sZIu3TTiZrXkdU+mC0emfJg4d8Se1ao8oRrSMS\nfanU2Mh09eLiUhWr02KHd036wsAHnMKKB3EfliTUHazh2+sFs9jn4EUkfkTjd+vYEqX9UFvDlfWs\nabPcxAyG2Af/l4AEJCABCUhAAhKQwM0SUNC/Wf5+uwQkIAEJSEACEpDAFRNIMZ8a8Z7ErtjEkOg1\n6ljPqHPEaV6HiBxCMnWKyvlY+MIjMCPWZ3Q5dSR8jaSvRJSnn/60RJcPzm7ANz/K4WHXTp/9HDSJ\ngZIYRIkBlME2bMKaJ3z107Ioa6L4s52Hi6J+krCWgAQkIAEJSEACEpglAgr6s9Tb7qsEJCABCUhA\nAhKYYgIp3Ocu5jp1Fuxz8Mbf2tqs9eZmtKmxigmbnd0q6OPtvrGxUctge6MvLiMyI+i73EsA4b8d\nMAnuW73Nzc1aWKdNXyDOI9pjUUSdvNuaNoXXZslvbcX9tp3PW0tAAhKQgAQkIAEJSGBaCCjoT0tP\nuh8SkIAEJCABCUhgRgkg1hMRjk1O1rRjnTqfOyxWMaxjtXNafdg7PibKnASwx0W0D3/3FJpjPQRn\nIvcz2StR+S73EqBfmPVARH7OfmBABZF/MC/BTuF9d2iWQ1rwLJQBE2ZDdDX2PAyiRImZEMPt9N6/\nd6t8RAISkIAEJCABCUhAApNNQEF/svvPrZeABCQgAQlIQAIzTyCF4xSNu3q3EZTD353XYu8yNzff\nJF7NJKyIw/EcdXq5h6DcWey0NjsIydNipTPqAwnW7SBL5icI/30GVyKHAfXREYMxDKR0Ayq0W3sf\nnievQeYpaC16SLIbj4dlD8850DLqHvXzJCABCUhAAhKQgATGgYCC/jj0gtsgAQlIQAISkIAEJHBh\nAoi+2OVQsHGJNlY60W5tXxDf04sdexfaa2tRRyT+Som8JzJ/udi6IO5j79LWc327l7R90eLl7K5D\n1Kd/qNt2Ppb1wQG5DXb7pe2zts1r1tbWTvptrbZZx4qHOkq0M4Hu2VvnMxKQgAQkIAEJSEACEpg8\nAgr6k9dnbrEEJCABCUhAAhKYCQIpACP6hvAbNfYs+Rg1NjutGBztztali9jfrzYtnfCbAnDWYaeT\nPu4zAXlMdpIo/bDiiQTFOUAzXPMaou+z5CBM2iK16wj63YBMzsIYrBmMcYbFmBwEboYEJCABCUhA\nAhKQwLkIKOifC5MvkoAEJCABCUhAAhK4bgLhg9/ZsiD67u+zvt+3a2EdT3xE/ogCR/SnHVHhtHu9\nfK5XBf3l5aW+PUt64cdjS8Vmh+eoF697d2f6+7DcoS/x24+yV+ySwiYpBmSyvX/PDIkQ7YdnUtwq\nljvhw7+0lHZJ0a/Zv9gl0c/29Uwfeu68BCQgAQlIQAISmDgCCvoT12VusAQkIAEJSEACEpgNAgi7\ng5H3Eb29s4M1C+2oeV0KsyHIdwJuiLkp5C5WkXdhIRKp4rFOQdjNNjUR29Qu10cgZ1qkhz4CP8mM\nmX0x2D6qAzoxsBODOznIk4M76c1PP4atEhZKYauUiY2xWiLKPyP6r29P/SYJSEACEpCABCQgAQlc\njoCC/uX4+W4JSEACEpCABCQggUsQIKr+rAUxP3zwww9/c3OzR+GxrGkTwY2HepaNjY1elvX1jf7j\nPI947zK5BDhe6PMseUy0xwPPbW9v1Z2kzzkWujqOjTxW0n7prDwIZz0+uQTdcglIQAISkIAEJCCB\nSSegoD/pPej2S0ACEpCABCQggQkigCAbUdcZfX1UIrEP62PDNZHW2OlkxPXBAVHb964fHR33I62J\nuO6isCMym8cyGtvI+wk6WM7YVAZ68NJnICd89yOZbrb39mIdu6XFxc5WZ2EhZ25kvVAGeKLdztrI\nGRvUlJyxkbM3ztgsH5aABCQgAQlIQAISkMC1EFDQvxbMfokEJCABCUhAAhKQAASwVsEiJ/zw96so\n2yWt3SvP4Z0eheB9IqQjcWkkL0VcvbfMn1juhHibIm1nw5OibYiz9sRkE+gGeBjwOWwGfNrBnoNq\n1dMlTx5MpJw5FiLvwt1+ToVMttvWHEf47lMcEJrsY8etl4AEJCABCUhAAtNAQEF/GnrRfZCABCQg\nAQlIQAITQoDo/Iywpt7e3j6x1dmubaxSeIyCcL+8HNH1CKz4nnfR912bCPwQ/ef6Ne8dfiwHByYE\nlZt5BgFEeoT4th5us47wn1H71NGOOgeNGFyindY7Ua/317HmiVkfq7U2ge4ZneLDEpCABCQgAQlI\nQALXRkBB/9pQ+0USkIAEJCABCUhgegm0Amu2EVWHhdYU9FNQbcX9LtFtJLvF7gQRPxOaDoqua9UX\nnccQXF0kAAGOvVwQ63NwaLDe6gv9HH8UBo5isKizaYpjr7NrYlAJQb8dLMrZIu3gUbZzO6wlIAEJ\nSEACEpCABCQwSgIK+qOk6WdJQAISkIAEJCCBGSWAUI/9ydkWKGGzgw9+Cv3Hx0elfbeIsAj/GXEd\nbR5D0F9aWu7bnSCoYnvS2qGkFcqMYne3TyGQoj7HZA4cZSR+ux7WT/vVAipF+Fu3sHTC5qmr5+dp\nzxe7nblSOk/+1tJpaWmx+vGn7z7WPHymiwQkIAEJSEACEpCABEZNQEF/1ET9PAlIQAISkIAEJDCD\nBBBHW9E0I+/T8iSj7w8O9qsPOYInpRVFFxeX6jriKI8jjiKgRh2vz3bW+TkziNxdvg8BRH1KJlpG\n3D86YsApkjHn41F3Pvz7++nDnwNQePEz8HRcayLyc8ZIa8WT0f0xwBQDTwr69+kgn5KABCQgAQlI\nQAISuDABBf0Lo/ONEpCABCQgAQlIQAJJoBXwsTfZ3Nzsl60t2lvFK3+ziv4IoVnwKN/Y2Kj2OdTR\njhrRHlE0S36XtQQuSyAF/7SE2traqsdrHKvdsctxnFH91Czr63F8Dh636/UYDrE/bHsQ/10kIAEJ\nSEACEpCABCQwagIK+qMm6udJQAISkIAEJCCBKSGA6Bn2OEQ1R4RyF+XcRTsTwUwCUsrhYUY4HxTx\nvmvn81jppE0OdjoR5RwCaJfwNtZb2xKjnafkoBqT3UhBP+v00s+ZJG2ds0+oef3grJKYTdI+trAQ\nj3H8tjNJsk2d3vtZjwkWN0MCEpCABCQgAQlIYAIIKOhPQCe5iRKQgAQkIAEJSOAmCCDmh0AfliT7\n+3slWnm/RixHu1tPYTS3M4TK9CJv/cix2cFGB9Fz2I88LHdSHM0IZ8X8pGo9SgLtMZsDTl3dWe6Q\n9yH/DhjQGs73EFH+x1Xsj2M1ZpVgHcWgVZvzYXk5ckCkpRR/Bwj/LhKQgAQkIAEJSEACEjgvAQX9\n85LydRKQgAQkIAEJSGDGCGRS0RTvsdLJsrXVtXmMRKJEHlMQK1dXV0+i76NOKxIEzvS9p0a0RwTN\nSOV2XSF/xg64G9hdRH0W6piNgjDfJWnmsfDfD+99ckDs7Oz2iOAPm6lo8xgR/Aj+vB6vfmafrK2t\n9cv6Om2sedaqyJ8Jn/l7cZGABCQgAQlIQAISkMB5CSjon5eUr5OABCQgAQlIQAJTQiAjk7PuhMxB\nURNREjE/kt3uVxEzxczhmuS1YaWzWMVKhEz88VtBEzGTaOVWvJ8SpO7GFBPIvw9q/hZyUGt7e6tp\nb1ehPyP8iejn7yEHsrKOga7V8new1LeeIko//ybawa1sU2eZYszumgQkIAEJSEACEpDAOQko6J8T\nlC+TgAQkIAEJSEAC00KgjTg+PAw7nRQi2xpRsvPOP6oRzBG9TARzlhgEiMj8tNAJW5G0F0HET+sR\nopFboXJamLof00sgo/ep+XshOW7OWkkLqnhsvz7P3xB/O91xjuXUYJmfn2tmquTfzb1+/Py95EwW\naj7TRQISkIAEJCABCUhgtgko6M92/7v3EpCABCQgAQnMIIFWtEeY7KLtB21E8A5HPwwR8dY9nveZ\n/BPRMe12skZ8XFiYL2IkNjxdPTfXiZKKkzN48E3gLiPks6Swf1piaIT+sNrBbz9K/p2F/36XIJpk\n0fmZfC7ifiSHbm2q0qpqpW9jlYNhvMdFAhKQgAQkIAEJSGB2CSjoz27fu+cSkIAEJCABCcwoAaKJ\ns+zs7PQ2NzdLuVPrra2tk/XNHoJkCPQh2GOhs7GxUa10qKPgCb5effMR6zOaONEq2icJ62kk0Arz\ntFPUp8aSZ3Nzq7e1xd9Xlvj74m8rZsowaHbr5G8p/6b4G4s2f1tY98Qsl6Ua6T+NHN0nCUhAAhKQ\ngAQkIIHzE1DQPz8rXykBCUhAAhKQgATGlkBGD2fdCov3tokWDqsdooeJGCbZJyJj2z4+vnsi6Icl\nCFHEGUncJb3lsdUq5BNpHElt58aWkxsmgasi0P7tYUlF0lyS53YzYHZLm/WdfhQ/0f68b3ERT/20\n3Blsh51VNwuGQbMsPJdtagYH4m9Qa56r6mc/VwISkIAEJCABCdw0AQX9m+4Bv18CEpCABCQgAQmM\ngAACYivcZwR+JLRNz+/96v3d+d8fFzGxVwRAkm4ixkcdoiDCILY5WOZEwfKDQsRw147HUsjnvRQX\nCcwaAYT5FPWp03Inav72OtsdBtJIOp1WPZGbgveTmyLq+Dz+PvHbj8EyhP9IqLvcj9onep8yLO7P\nGn/3VwISkIAEJCABCcwKAQX9Welp91MCEpCABCQggakmgJifAiIi/vb29j1lZyceA0QK74iARNhH\n5H1E4Oc6wmF44Iegj7DYlhD+Myo/RHzF/Kk+zNy5BxBAhGcJMT4SRrcDaNnOwbecIRPR/G1Ef7T5\nW26X5eWV3tra2qmlHWjj79pFAhKQgAQkIAEJSGA6CSjoT2e/ulcSkIAEJCABCUwJgdMEQh5DGOzq\n4xrtG5Y5YZ2T1h7UYfvRWX+EKI9tx1yNtl9bCx98hEI8u1MwRORPOw8Fwik5oNyNsSCQgj51DsCR\nv4KBuKzx4OfvN//O+ZtHtA+7q9Va084yLOjzd56DbsM1EHjMAbixOBzcCAlIQAISkIAEJPBQBBT0\nHwqXL5aABCQgAQlIQALXSwARD9GPGnsOInojEj888DMqP6w7eP6ovP6wvp73xPujzvWFhfTgDm/8\ntOwYrrHVQRRE1Kd2kYAERkMg/i67v+u0yBquEfv5+49zwFH58vDIj0G5wRkz/J0y8BZ/3/G3ndZY\nbc1r2vcr6o+mT/0UCUhAAhKQgAQkcF0EFPSvi7TfIwEJSEACEpCABC5AIER8hPrDGsnbWnPQzoSb\nJLlt/bcXFvC2D1Ev21F3yTVD/OsEwFxPYTBFPyN5L9BxvkUC9yFA1H0beY9gn3/r2WZgLh/Luk1m\nTbsd4OPr0mufv+G0zsoE1pnUenjmjYL+fTrKpyQgAQlIQAISkMAYElDQH8NOcZMkIAEJSEACEpBA\nEiBCN6Pwsd/Y2trsbW5uVlsO6mzzuk6Yu9Xb2FgvZaNa6GCjs76+UR+jzmhdBHyEP5buvfHNw+vx\nqP9LQAJXQQBxv11ynbo9B4QlT/z9Y82Tf//UDATk3y1/1/H3z999lDgPhL0W5wD+/qmdfdOSty0B\nCUhAAhKQgATGn4CC/vj3kVsoAQlIQAISkMCUEUCky5LWG4hxgyXsczIyNyNx9/ex3Nnvi3yIfTxG\ndH5G1FMTnbu6ujLkt03S29Uq5LVR+FOG192RwNQQ4DzRnQMOe1jynJYXg8d4XZ5XALC4uFQ895mp\nQ71UxfusQ8xnds5iHdRLmx7OC23hXMIgQZapAeuOSEACEpCABCQggQkmoKA/wZ3npktAAhKQgAQk\nMJkE0ss+BfwQ5feKWIc4HzXCHY/na7DfIIh3bq4T127dyqSX4as9P9/Z5xB5m2LecBuRDtEuxbrJ\npOhWS2D6CSDQt+cLRPsuYj9m7+QgX+bPyHNGvDcHDyOJdgr+MTsnzhcI/svLiP7LTb1cBwF4HeeJ\nLNNP3D2UgAQkIAEJSEAC409AQX/8+8gtlIAEJCABCUhgyggg0HVRtwc9bDS2t3dOatpRdna2T8Q8\nRLnjKsK3PthtGzEO4T5KiHAI/inEtXVG26Y9x5ThdXckMFUEUoRPcT9yZZDouhP785wSs3cicfbu\n7k6vy7mx228zINBG4ZMMe21tbaCsrsY6Ef3ta6cKrDsjAQlIQAISkIAEJpSAgv6EdpybLQEJSEAC\nEpDA+BFAcMulE99CdEtRDuGNCFoE/dYbH/EN2wwK4j5iPmIcS34u4tra2noV3vDDRoTLGnG/E/QX\nczOsJSCBGSGQ55SY8bNf82xsb2+d1Nv9mkTaOdOHgT7OKyTOHSxrdZ3niNJPS554X84MyppZQ3OV\ncnHnKUv9b0aou5sSkIAEJCABCUjg+gko6F8/c79RAhKQgAQkIIEpJYBYn8J9imuI9m0713mMgpXO\n0RHRtkc1Gr9t83ltZD1+10TTDpcU84mkDSuNSHQ7pZjdLQlI4BQCabWT5xYGBLHuGi7YesWAY8z8\nYaZOnGfwz89ZPWHJhZAfgj6ifiTR5TzUDh4uLvLcYt9nP2cAnbKJPiQBCUhAAhKQgAQkMAICCvoj\ngOhHSEACEpCABCQgAQggqGUEPlGyrd1FJLIM24sU9eP1RyeCGSJZCGODdQhpCGYp1qfAlgJ+Pt4J\ncxEta69IQAKzQyBEegYHYxZQzgTKgUM89rN9cBADipFsO9p5XuoeOyjwbp2cl0LMD5uv1ZJcmwTb\nJN2OmjaDAmnzpZ3X7Bx37qkEJCABCUhAAtdPQEH/+pn7jRKQgAQkIAEJTCEBxLQ2QhYxf3Nzs5at\nra2BGrE/IvOPaqQstjlRNk7qXF+v0fjYXlAQ8Fuh7Kz2FOJ1lyQggYcgwPkol+E2623UPjk72nMU\n7SibdXCAaPyMzt/Y4By10aOO9nqp43zF+Wlujij/wfNUboe1BCQgAQlIQAISkMBoCCjoj4ajnyIB\nCUhAAhKQwJQSSDGMmpKi/Wl1Wl1QE+2aXtaRqHK/rMdj2OuE3na3CvR4V6+sDHtYRxRsa21BBKyL\nBCQggcsQ4DyW5ydqBh8zf0fMJCKHRzzGeW7Yb39xMQYYc6BxaWnxZMCR2UQI+l2NuD9c8jzWDkhe\nZn98rwQkIAEJSEACEpg1Agr6s9bj7q8EJCABCUhAAg9FIIV8bCwoRLYi1GfdtkPQD8983odglQXr\nimwjaIXIFTUCGcI9Atlw3YphCmAP1XW+WAISOINAWO+EBQ9tzmOtyJ/rPBfnvqMymBk5Qkqa7jq4\nmefGqHuNZRjnMgr5PhD/l+u5jdwfnOOI9s9zoee0MzrIhyUgAQlIQAISkMB9CCjo3weOT0lAAhKQ\ngAQkIIEU8qkRt4hgxaJiuPA4zyOK4UGNEJ8+09SIWbmeka0R6brYT0iJ0D9cWuFL8cvjUQISGAUB\nzmcpyLfnuMH2UTmfhdiPwE+JRLuRC2R3d69Z36tifZzbFuu5bm1trUdZXY0613kN5zLOdZ7TRtGb\nfoYEJCABCUhAArNGQEF/1nrc/ZWABCQgAQlIYIBAilpZt0LX3bskl2wTTB4UIR87CgqifrajDhue\nSDCJaIUvPiJWeuRnG2E/olcjYnVgg1yRgAQkMCYEGKQMET/E++1t/PU596XPfra36+yisAhbqAOY\nIeRjJYaov3oi7q9W4X9+nsFLPPdjEDMHLlPkT8F/TDC4GRKQgAQkIAEJSGCsCCjoj1V3uDESkIAE\nJCABCVwXgRTw+T5EK6LqiUbNCPuuHc/Faw6rwI8Hfgr92WYggKUEntYFYYuo/OXllRKtSh3tsJ0g\nyeRiFcCwn3CRgAQkMI4EGKTknJglxf29vd1qO0aUfibYjXNfnADx3WeWUiTJDfG+sxnDY3+hsehh\nPc6Hi4tdO6154GIk/zgeHW6TBCQgAQlIQAI3RUBB/6bI+70SkIAEJCABCdwogTYSP60kEKt2d3dq\nRGq0d6vNBMlsSWyLuIXIFAVRPkWpfCzEqO418/3XR6LIeF0IXeGfT0SqiwQkIIFxJJAWPDH7KDz3\nj45iFtLhYefBnwOeg3XkE2FwNAdNqRHnw5onPPbTiqytYyB0pb42o/fHkY/bJAEJSEACEpCABG6C\ngIL+TVD3OyUgAQlIQAISuFECGZ2foj72OZubWEhslrJV2l2d0afUvH5tbb1Y6KSNzkZvY6Oz1UGQ\nSiEK0Z4lI0uH6/a5+kL/k4AEJDCGBDhf5pLt02oGQbEjoybHCOfSPKdGO2x6OI9yrsSGhxpLso2N\njYF6fT3W04KH789zaG6LtQQkIAEJSEACEphVAgr6s9rz7rcEJCABCUhgigmkYE9UKeJRRpe2NZGi\nsU7Sx4OTSPxI/JgJIKmJRs33gQwR6rSyshLe0MvLS9Uf38j7KT7A3DUJSOAeAu3gZ4r7kW8kc41s\nV8Efu7KYxRQzmCJan/NmnDvbdQZGFxbmi33PQrXwCdse1sN/P9c9397THT4gAQlIQAISkMAUE1DQ\nn+LOddckIAEJSEACs0ggI0cR4VthnjaCUz6GhU5Y6Rz0eE/YOkDs1kAbL+hbtyJxI4kcFxdTeMLz\nebDdWe0sGE06iwef+yyBGSbAIGnkIImac22eZ9s2r4tB1+My4Er0/92yXv6vMwEG2905Ns+1UUcu\nku4xzr0uEpCABCQgAQlIYFYIKOjPSk+7nxKQgAQkIIEZIJBiPjWiUUaHYv9AwVon6p0moeNuiQBd\nHEhcG0lsI5nt0tJyjRxFQCLRLaI+iR6JCM2SjzEowGMxOHCSHXcGuLuLEpCABNLCjDoLA6vZzgTi\nnJtjcJWEuvvVoiei+8lhwmNdwl3Oxcx+SouetbW1YnsWJWdKsU5Uv4sEJCABCUhAAhKYFQIK+rPS\n0+6nBCQgAQlIYEoIRGQnUZxRUkRiPdvUh4cHRbwPq4cU8VPUR+gPAYko/b1qkYMvfvjj45EfBaEo\nRaPwx1+eEoruhgQkIIGbIYCgn+dkzsXpr89jXXurvgahfljQ55yc5+assTpjJlUOpmadM6xyndpF\nAhKQgAQkIAEJTDoBBf1J70G3XwISkIAEJDBjBBCDKK21Q9uO5w/qa/BqTv/7iA49KutEjxI1yoDA\ncR0YIPKeZLZE4adwn+30c+Y1FBcJSEACErg4gbRDSws0ajz3Y5B1sI0AHzOgYmYU7fDPDx/98NDn\nsYVyfl6os63iXJ3tqLVDu3h/+U4JSEACEpCABMaPgIL++PWJWyQBCUhAAhKQwH0ItOIPItBwSVGI\nZLatiHO/NmLQWc9n0kWeN/HifTrGpyQgAQmcgwAzqHKgNQdoh2vO38OPnb5+VF9H4D2DsWcVBmij\nrJjf5Bx95EskIAEJSEACEhhvAgr6490/bp0EJCABCUhAAkMEWluGtGfY3NysVg08lwVBCOscLBmi\nvtdKJ+0aiPrMZLh8XdozZLutabtIQAISkMDFCWCRxtLWbTufy7wncd7n/L7V2PK053HRbVYAAEAA\nSURBVPuj3sbGRt8urW3n+Z/zPcWB2Yre/yQgAQlIQAISmGACCvoT3HluugQkIAEJSGBaCCDkZPLE\nqMMaJ6M4W7uc/X1878P7noSKbfvgYL9a8ezvHxQ0d/v+9+mDH3X44qe1DrUCz7QcSe6HBCQwTQRi\nBha5UHb7Sc4R+TPhOY/v7u6UKP2jEoG/VJPjksj89PZSseVZqrOxMpF5zsBq1/k9yDJNLN0XCUhA\nAhKQgASmh4CC/vT0pXsiAQlIQAISmFgCWDCkUI8ffor01K1ozzqBnV1ew1sn7agj4SHt8F1GvFla\nwvs+hZ5uPT3xqeN9E4vPDZeABCQwlQT4PWCglkHarPkdGG4j6DOIG4H/w3Wgid+NWzUXSuZGyRo7\nHtrt7wI2ay4SkIAEJCABCUhgHAko6I9jr7hNEpCABCQggRkjgDcykZhd1OVOtc7JSMy00eF5BJcQ\nX8ITeWUlvZGpI7Etz/O6SJ4Y0ZYZgUnkZfu40fkzdrC5uxKQwMQQYLA3SiY0j/Wc0RWzt46rj/7e\nHtH6e/3kurm+v7/XHxBggIAI/rW11TqDK2zXwoonZ3Lx+8HMLQR+FwlIQAISkIAEJDCOBBT0x7FX\n3CYJSEACEpDAlBDASuc8BUF/WMxHxG/9k2N9p4r26+shwOCN3JbwSA7ffEQZFwlIQAISmF4C6bvP\nb0jmVMk6fPfDc7+z7tnpC/qtmB+/HZ0dWwr6mU9lbi5mfsU6OVe6XCvO8Jre48s9k4AEJCABCYwr\nAQX9ce0Zt0sCEpCABCQwBQQQWYikpKYQHXlvOx6L1xGFOVziM/JxoiYzEj+i81dKNOVgdH5G6E8B\nQndBAhKQgATuQwBRnyh+RPu9vb1T69bGDQG+886fL+2FgfWFhXiMemEBy7aFWmPBw8wvagqfkbWi\n/n06yKckIAEJSEACEhg5AQX9kSP1AyUgAQlIQAISSALhgd9ZILSCS7SxSNitIv7cHCJK2OEgsHSi\nSrRDOAkhhXaILN06wguP5/sQW1wkIAEJSGD6CSDo52DxcN0OJPPc0REDzDHQHO1unc+5exdbn7s1\ntwqDxUTrUxhIjnYMIKfnPrXWbdN/jLmHEpCABCQggXEioKA/Tr3htkhAAhKQgASmjAA2OmmVQ725\nuXmPLcLW1maNrgyhBF/jleJvjKUOdjpZh40O9joIJ2F7cKvSynZGSOb6lKF0dyQgAQlI4D4E0t6N\nl2Q76xDqI5I/f5ew5uF3aXs7bHm2trZLhP9uTcpOpD/vbS3d1tc3BtZT6Kd2APk+HeNTEpCABCQg\nAQmMnICC/siR+oESkIAEJCCB6SaAyIE4kgUrHNppiZNtkhWGzcH+iUBCTbT+frVFyOh9HmOJ6MeI\nhozkhOFnTDu8jiOJoYL9dB9f7p0EJCCBURPgdynFfcT6LmcLgv5OzdfCYzzHbxS/S0dHx+V3aal6\n7lNj5UZC3XwM+x2i85eWSMAeFjyZdB2BP9vUUfDhD//9Ue+fnycBCUhAAhKQwGwRUNCfrf52byUg\nAQlIQAKXJoAwkhYG1J1ov9e04/EUUKhLzOTJd0dkPSvFyrgu2O2EOIJfMQJJiCRdOx9bqtH58S7/\nl4AEJCABCTyYQP4W8cr2d6ttI+KzfnAQ+V6w42GpP1+1Vdf6LcT5SJY7Vy3g4ncL0b/7vaLd2cMh\n/GsF1wdoQwISkIAEJCCBCxNQ0L8wOt8oAQlIQAISmE0CeBBHFGN44+/sdBGObaQj0Y7haR8+9wj2\nRDieVnguIhrx0Y/SRjdmtCOPpbXObNJ3ryUgAQlI4CIEYmC5d+rsspxZljPN0oe//a3LNsI/A9nx\nWmarHVURf3A2GXZxzCpbq0nbU+znt85FAhKQgAQkIAEJXJaAgv5lCfp+CUhAAhKQwJQQSLEjIxnb\nmuh6ohR5jAjGNrltehBHjbifZaeK9yQVRMRH7Bj0I8YXH5/89fp8Wuko2E/JAeVuSEACEpgwAgj7\nWRD18dk/rTCQjagfEf4H1XYncr8g5A8WPPZjIHulCv/5WweabLd1Pj5h6NxcCUhAAhKQgASukYCC\n/jXC9qskIAEJSEAC40wgIxOpMzox6rAgGHzssEYn8li877C856i08/Foh91A2A+EB/FKiVakIPJ3\ndUYtpqgxzpzcNglIQAISmE4CDFoj6FPz29YOXmebxLlE64c9T/w+8tu1sJAzzJiVNthmtho++8Oz\n1nKd30Da7cw0PtNFAhKQgAQkIAEJnEZAQf80Kj4mAQlIQAISmDECGXmfAkVYC+wWMWPvRNDo2ogc\nIbwDKUWMFDC6GpscBIrWP/i0dR7jtfXTFDAqB/+TgAQkIIHrJ8BvIUsK+zmQzW9jtqMeXo9B7BzY\nbms+K38z8d3vBrQjcj8GuaMdv5GduH/9BPxGCUhAAhKQgAQmgYCC/iT0ktsoAQlIQAISuGICCA6I\n+BmBiJ3A5mZaDWyeWA5s1xq/4IUFktdGWV9PewEsdLIddeuHn/73IWzc6nvh5/oV76IfLwEJSEAC\nEjg3AX4XKSzZbmtmpIVwH5H8WPN0lnPxe8k6gwEMhPPbyfsHrec2+uv8fmLNk0l1c6D73BvsCyUg\nAQlIQAISmBkCCvoz09XuqAQkIAEJzCIBxIO0D0hf4BAWjvsCw9FRtBEdOk/g/YHEtyQBjKj9/YLx\nbhHzl6qgv7S0WJP+DSYDXK3CPo8h1iPkp5g/i33gPktAAhKQwHQRyN9Wflf5TeX3EfGeZPCUbKeg\nH/Z0h/X3eGkpk8NjR5dt6vhdzcFyLHrm5/n9HEwUz2NE+s/NMTBuovjpOrLcGwlIQAISkMD5CCjo\nn4+Tr5KABCQgAQlMJAHEhhASwhcfwf60cnCwX4WGFP0RK85aEBfCRocI/YV+NGHrl58Rhhl9n/VZ\nn+njEpCABCQggUki0P5e5oD4ab+vrVUPUf1nL7caAX+uzoTL39Lhmt/eFPqN5D+bqM9IQAISkIAE\nppWAgv609qz7JQEJSEACEigEEBJaoWE4ejDWt6vVTojuEfWHpU4ksWX6f0YQLlU7AKIHI7kfUYPh\nf5+J/BAWst1G5fPZLhKQgAQkIIFpIcDAdw5+Z6T+4Ay4iN5vBX3aRPPnrDcGAGL2G48xAy5+K/nJ\n5LcWGx5muw3PgsOaJ6zvyFuzOC1I3Q8JSEACEpCABM5JQEH/nKB8mQQkIAEJSGCcCKSIwDalqJCP\nteudeBCiwaDHLx7529UaYHd3p4gCCANRSNIXPr+dvy/rGxvrNSI/hPuwARgnLm6LBCQgAQlIYJwI\nIPKnqM8Ae/wOZ46arZN8NZv1tzij/o+P75bf2hD0+e3N/DTZ5jc6rHnCpidnweXg+fA6PPK5cWLj\ntkhAAhKQgAQkcDECCvoX4+a7JCABCUhAAjdKIKMAuflPoWCwPiiR+YfF25ekfZG4j7pL4pfJ/LIm\n0W0n6DO9H8EgC9GA0Y6oQKLvs9woCL9cAhKQgAQkMMYEMno/f6/39nbLrLhMQk871nk8c9rwG48A\nv7AQM+Hamt/qmCXX/Wa3v9+0EfvzsZwtl/UYo3LTJCABCUhAAhI4JwEF/XOC8mUSkIAEJCCBcSFA\nBH4r3jNNH0EgRYK2Pjw8OongP66bT2R9FISAbKdgMCgOpE/+sDjA+0+L/hsXPm6HBCQgAQlIYFwI\n8JuNmJ81v99E6ne/4zEA363HQDwD8BHdf1TrbkD+qO5aJMydq7/py8sr1RKPgfduAD7a3e9+WOKN\nCxe3QwISkIAEJCCBixNQ0L84O98pAQlIQAISuBECiAKZeA9RYHsb25xu+j7T+bMgIiC+ZzR9Tttv\n69XVtTqdP6P5qDOSrxXus81OhyW+vvg3cgD4pRKQgAQkMFEE+N3OhfZpJSL4Q9znt52B+vh9D2u8\nto34n7/Jc3O3ym/4+olNXlfzO49FT0brU/Pb7iIBCUhAAhKQwOQTUNCf/D50DyQgAQlIYEoIDN/g\np61O1sfHROlFkj1u9iPC76BE5rdJ9fZqgj2m8xOpzzI3RwT+XJ1+zw1+JNhDxCfRXq6vnkTuz9fX\nIRS4SEACEpCABCRwfQTidz0i9EmWi4jfJrPPdV4XgwQxOEBUfpSIyu/WscnrLHgyWh9hn3YO9g/P\nvPMa4Pr63G+SgAQkIAEJXISAgv5FqPkeCUhAAhKQwBUQIDqvE+0PT6LwD5po/P3SDiE/p+Ij9sdA\nQG5QRAFmMCA365337kJNaIs/PmV5mWR60WY9b+ypvZlPntYSkIAEJCCB6yHAb3oO4iPa52y8tkbo\nJ0I/XhcD/WxdNw4fA/I5k667BmDAfnHgOoDffiL3qXN2Xl4LXM8e+y0SkIAEJCABCVyEgIL+Raj5\nHglIQAISkMAVEODmPDx0Q7Tf3t45icxrI/R2agR+iPjhyctN+NIS0XmI82293J9qz2sow9F5GaE3\nHJ13BbvnR0pAAhKQgAQkcB8COVMvBvgZ5I9Zea3QP3itEH78+/vMymPQ/966+92fr8L98Oy8mLW3\nWiP887XULhKQgAQkIAEJjC8BBf3x7Ru3TAISkIAEpohATI2PHcobdtbaNmL+wcF+tdIhGi988Ft/\n/PDRxVeXJfxzez2S4K2vbwz4525sxDrT7hHy00O3vtH/JCABCUhAAhKYWAKI+m3U/tbWZj93DtcO\nm5vd+q1bc2UGXuTSIRIfX/303E+ffWquJXLwn5olrjMy4v9Wf/aes/gm9tBxwyUgAQlIYEoIKOhP\nSUe6GxKQgAQkML4EiLBDuM9IuxDuD8p0+fDJjaj8s9oRtd++Fh99PPFjWnxE3HEjTkHAzzY1Qr4R\nd+N7bLhlEpCABCQggYclwPVEXktQM9BP3hzy59Du1nf7gQNchyDud6I9+XVi9l732PnWU+jP+mG3\n39dLQAISkIAEJHA5Agr6l+PnuyUgAQlIQAL3JcANNJF0KeYTURc32nHTjRdu3oRzU57T6nlfK8Qj\n4LfrefOdN+MZgT9c8570xKd2kYAEJCABCUhgsgm01xZcX2Qy3awPD7HuI1DgoJQuMCCvMU6rIYLH\nfl5fZIDAaXX67Of1xWTTdOslIAEJSEACk0dAQX/y+swtloAEJCCBCSLATXcbgb+zszMwLX57e6u/\nzuuOjyOSn6g3psBT8LfNdnjfrtbIexLaZgR+RsmdVoOLx10kIAEJSEACEpgOAlxfsFCfXY5PvPXx\n14+Agu3tsPKj5poka65BWkE/rHnWBuz8eIySAQYp7E8HUfdCAhKQgAQkMDkEFPQnp6/cUglIQAIS\nGCMCwzfSx8dHJbo+Eti1baLgWkE/IvK7qPx2HTE/F26WU8jPuktkh8/t4omov1Cn0Of7rCUgAQlI\nQAISkEASSK99oveZIbizE/l4trd3ajtFfa5Vwm8/LP2Wl5eKjV9Y+bVR+rQzij+F/bABjBmBbTtn\nBhpUkL1hLQEJSEACEhgNAQX90XD0UyQgAQlIYMYIIOgzzT2tdLhR5qaZpLZx85zrTHfHSic88iOK\nDlhE1EVkXbYz0i1vkElex40zdRZusInMz9dQe6M8YwefuysBCUhAAhI4J4G4BonggrhWIaggr1Wo\n9+p1C6+L6xquT45PPj0S4cYkP9o8fKsK+ouL+O1HcMHS0mK9TuH6hHbUS/V17czBc26yL5OABCQg\nAQlI4AEEFPQfAMinJSABCUhAAqcRSCGfmhtkIt6IcssSkW875aZ5ry/oE61PVFuI88tFrO+E+qWl\n5ZOI+7g55nUp2iP0Z5s6hX9ukjP67bRt9DEJSEACEpCABGabANcpw0EIrYd+zipE0CcogWsaSoj+\nIfYTqNCu57UMtn8EHjCTcLCEXSDXO1yneL0y28egey8BCUhAAqMnoKA/eqZ+ogQkIAEJTAmBsNVp\nI+kzor5Xk9dm1BvRbVtb4Um7tdV54vMYAn/cLEdi3JWVleI/u9Hb2AgfWtrpSctzGZHPTbKLBCQg\nAQlIQAISuA4CzCTc3d2rtjx7e7s1v8/m5mY/z0/bJrgAsZ5rlbiuWa+5fvJ6Zm0trnF4LoMQUtjP\nWYUZuc++5WPXsZ9+hwQkIAEJSGAaCCjoT0Mvug8SkIAEJDAyAmGJEwnmQrAPq5zDw0EvfJ47TyEK\nLqeos5FE5XODmwV/2mxzY5yFm2UXCUhAAhKQgAQkcB0ECD7Y3yc6P6L08ds/q2C7E1H3MVMwPfWH\n6/l5bHnOV1LUz/o69tnvkIAEJCABCUwqAQX9Se05t1sCEpCABEZOIMX8nJ4eCWt3q20OUWu5Tvvw\nkJteRP2D6jk7Nzd/YotDMrmuHVY53MzyWNzUhmhPGwE/68X6fiLY0lZn5DvoB0pAAhKQgAQkIIFT\nCHANFPl+jk5mIXbXOVzvYMOT1z68joAFgh1yFuLR0XF9LC18MqAh/fSJ6GcWYhaCGdo21z8sCvqn\ndI4PSUACEpCABIYIKOgPAXFVAhKQgARmlwA3s603/vZ22uhkjZ1OtCMBbvjMQmxtLfxiV1fXSnu1\nWV8t09LTL3+58ZIlui18Zbl5bQuf5w0tFFwkIAEJSEACErguAhnYMFgfl2ujmLmYjxPgQPR+1Ds9\n8gZxzRR5hLhOIqfQdhX8V1a4BgrxHkserpfSmqddJ5ghr32yvq799nskIAEJSEACk0ZAQX/Seszt\nlYAEJCCBCxHgJpSFGtG+Fe7b9UgUR+T90UBEPn6yEaUfU9DjdXzOURXpU8iPGlE/hH2SxEUSXBLg\nLvdvVi+0E75JAhKQgAQkIAEJ3DCBmLEYoj7Cfor5EQiBsB+iPhH9MRsxZiSmsJ/R+WE5GII/1jzt\nLMXhNutZbnj3/XoJSEACEpDAjRNQ0L/xLnADJCABCUjgqglkRBnfgxCf0fVtne2cTk6d72MsIAYE\nMkItIuiJIJubu1UtchDrU7jPxLb45TPVvPWPNersqnvbz5eABCQgAQlI4CoJkEMIC54sCPxcR1Ha\ndlxLsSVcP3HtlDMQc2Zit44FIddMmUsok+62NW2uqVwkIAEJSEACs05AQX/WjwD3XwISkMAMEMio\nfGpuPokmi2nhTAnvClH4eUPK64gqS5G+q+Ox9qaTm9DONz/987s6I8qoXSQgAQlIQAISkMAkE2hn\nNuaMx5i5GP772Q7hH6Ef8T8E/7zOGqwPak6hiNhf6VEzw5GyshJ1rhM04SIBCUhAAhKYdQIK+rN+\nBLj/EpCABKaEQETQx85kO+u88aTmBnJrCy/8rTpFfHNzs7/OFPH2BpObx/X1jd7Gxkbf75U2JW86\neQ3RZC4SkIAEJCABCUhAAh0BhP2w48GCZ7teb+V113DNtRTXVJmTiOuv1ms/27yGpZ3xmO2sh5+v\nb/A/CUhAAhKQwBQRUNCfos50VyQgAQnMKgGEe6LAuHGkHi6Djx/U5w8O2tcRORbvv3s3/PVJAEcU\nWAr3bc3NZDsF3Onfs3rkud8SkIAEJCABCZxFgECK9NunZoZkV3aa9m4V6EmMyzXV/PxCrZkBGbaF\niyfrUcdjzITM56Pu3h+f0wr8Z22jj0tAAhKQgAQmkYCC/iT2mtssAQlIQAKVQEbgs8INYnvTmDeO\n1G3UPYJ9WOBwI0iCtbbubHK4KYwbSRK5dTeS6e3K83njqJWOB6QEJCABCUhAAhIYJJABFxFoEcET\nkaso2tgbZu6itOk5Psa2h+CKe2sGCPDiJ+Aiy8pKJNXNdWqCLqi9PhvsD9ckIAEJSGB6CCjoT09f\nuicSkIAEZo5ACvrUaaHT1tnOaDA88lmIsB8sa/11bgCJxs8bQW4GifCitO18LOuZg+8OS0ACEpCA\nBCQggQcQCBGepLhZEOuj3T5HAEbmNdrd7fIb5WNZMwiwtrZe7HjWqj0PVjzdOu24pqMm8MJFAhKQ\ngAQkMI0EFPSnsVfdJwlIQAJTQoCbP272Ti8ZuRVRXLu7w1O5idiPqd2RjC0Sst26NVdu9tKjNW4G\nuenLG8C01kHQR6x3kYAEJCABCUhAAhK4WgIp6Ifn/s6A9z5iPo9TEPTb4Iu8botgjEioy/MUrHkI\nxrhfyYCNq907P10CEpCABCQwWgIK+qPl6adJQAISkMAICTD9mhs3LHOoDw72S5t6uH0wEPnVRYFF\nBFi7SURrLS1xo7dUp2RHO6Znpy9+2uoo6LfkbEtAAhKQgAQkIIGrIZDXe61NYmebuFeCNLgGjOvB\nnB15Wj03x6xKRPxbJ777S9U6Ma/xsm7tFBH+XSQgAQlIQAKTREBBf5J6y22VgAQkMGMEuLkjKgvL\nnJxqHdOwibzPxyMKnxu0paXFE5Gem7duPdvU3LSl/3144OOFH48RwcVjWc8YbndXAhKQgAQkIAEJ\n3AgBZmOmj/79avz4I8AjgjxyACAfi+fx5j8s13yLJ5aKRO4P2i2mvWJG89/ITvulEpCABCQggQsS\nUNC/IDjfJgEJSEAClyNAFH0uZ7WJzMIH/96yWaddp0c+U7A3NjZqwUuV9vo669FOSx1qRH0XCUhA\nAhKQgAQkIIHJI4DYz/Xf5uZmLdne2or1DADh2pAofK4Lo3BtGG2uD/HdJ58SNoyI/SzhtNjZLbYz\nNdv25FFziyUgAQlIYNoIKOhPW4+6PxKQgAQmgABRUxl9Fe3DEkl1VKOpjo66Ns8dHmKvQzQW0VbR\npo7neD5KRF6Fd2r4qRKJ1XqpRqJbp1VPwAHiJkpAAhKQgAQkIIFTCBDJz8zNnL0Z7Zi1GW3seaIg\nwi8uLtRI/XvrxRNLnqhzBif1wkLM3ox2+PDn7E6F/VM6xYckIAEJSODaCSjoXztyv1ACEpDAbBMg\nGj+mR6cfatx0kdQ2b8Cy5qatTWQ2P98mNuNmK9fnaxRWeN8v9NtMte48UuOGjs9zkYAEJCABCUhA\nAhKYPAJcR0YupcyplAEf9waAEDxyfEw5ruXoKGoe43NisigzRm/V3EppvxN1BILQjuvLsHX0OnLy\njhm3WAISkMA0ElDQn8ZedZ8kIAEJjDEBbqB2draLZc7OSU17u06fHq6JgiLaninRUa/VqPvV1ajT\nD5XnuMHi9ffWkRyN57KMMR43TQISkIAEJCABCUjgPgQQ6LmePK1O8Z6aAJG04IkcTFx77tRr0P39\nvX6SXWZ7hj0jljxrtY09D7Y8PB4zP2PWJ5H6LhKQgAQkIIGbJqCgf9M94PdLQAISmBICwzdW7Q3V\ncHtvj6nSROTHlOmcOj1cI85zIxUep3GDhZgfN13d4zzvIgEJSEACEpCABCQw2wQi8p7o+7tV0CdY\nJAJJIoCEdQrXnDkjlIj/VrQfbi8tLdcIfmpseLg+bUsGlAwHlcx2T7j3EpCABCRwlQQU9K+Srp8t\nAQlIYIYIMK2ZCKfwuqfeL5FPOR16vz7OOv73IfBnZBXTn+PG6+7djLhi/bhY6iz0lpaW+jdRy8tL\nZZ2bquX6eDwX7RlC7a5KQAISkIAEJCABCZxCACGfhZprUmweEe6JyN/b49o067g25XqVXE1zczmT\nM2d8djM8w+IxrB7j2hRLx6UBK560eGy9+E/ZPB+SgAQkIAEJjISAgv5IMPohEpCABCTATVNGOp0+\nxZlo/J36mkwyxk0RN0BLS3FjhEDfrpPALJKQZT3fT1SWycmytgckIAEJSEACEpCABCSQoj4BJEdH\nhyWY5KjUbYnHCESJ5w8HglAiICUDU/b7gSgEm3AN21o+Mks0rSGJ7I/rWAJQluwICUhAAhKQwJUR\nUNC/MrR+sAQkIIHpI5A3SO2e5WNEQMW0ZrxJ8cTf7G1ubp3Um9Ujf2trq3qX5s1P2udsbGz0suBZ\nmm1uiliYyuwiAQlIQAISkIAEJCCBURDg+jWS5iL6H5Vr1rhWjZpr2Chcu3KNm9H+CPrr61y34re/\nUUp33doK+8wmZTntGva0x0axT36GBCQgAQnMDgEF/dnpa/dUAhKQwEMT4GYnopu6qKaIZgp7nbTZ\niRp7HSKeoubGhxLr3XNESXGTk6X1KW1vhGgTfe9Nz0N3m2+QgAQkIAEJSEACErgPgbzGTWF/OI8T\nyXPjsZ16PZvXtVyXLiwws5Sy0LQXa/R+9xizS3keqx7qmG2as1SHPfjvs6k+JQEJSEACEriHgIL+\nPUh8QAISkIAEkgA3ORmRlHVrq9N5ku5V4T/eh+dobyBZWN603Lo1V25q5k65+ckbo8EaQd9FAhKQ\ngAQkIAEJSEACoyTANW5bUrAfrjNQhYCWDGqJXFDkgBosbB+Cf5YMXiEHVLRX+gEtKexTc53sIgEJ\nSEACEngYAgr6D0PL10pAAhKYMQLcqCDaZ9QS0UpMPcZSJwqWOtFGxI9oJTzxl/r+omGvs3Kyzo3M\nSo285+YFwZ6aG5+2zjaPu0hAAhKQgAQkIAEJSGDUBBD0c+Gal/WoEeq7dnrwI+hjvxPR+zu13tmJ\nHFE8hvf+8fFR/Yyjo+Nix7PWW1ujYM8zWHOtnMUAluwFawlIQAISOC8BBf3zkvJ1EpCABB5AgJuA\nSRGg24ikjC7Km5hcj/qoCPr7VdTnBianHsfNCzcwcRNDjQjPjUlGI3HzEjcxeTMTNQJ/Ri5l/QC0\nPi0BCUhAAhKQgAQkIIEbIYC1JIVrYwJd2sCWrr1dn8tIfgYBVlcJaInS2Uqu1sdCzGdm6lK148lg\nFuq25LVy1jcC4CG/lHsKFrbZRQISkIAEroaAgv7VcPVTJSCBGSKQF63UeeGa9bhiyBuTvOlopxdn\n4i8eY5oxEUZEG1HfvRsRS6fVRBdFhD4RR0Tpdz75KfRnJFLelIw7p3HtP7dLAhKQgAQkIAEJSOB6\nCGSwC9f6XB/v7+81AS+0Y/3gYL/a8sT19VER5rHfQaC/t+a6OQu2Owj7OdOVmmtmap7jdYj81OO8\nTOI90TjzdNskIAEJ3I+Agv796PicBCQggXMQ4OI1y6QI1SngI96npU4m/8p6d5epw/t1kCKihubK\njQU3HOlz3914IODHDUck/cqbD248TmsnVgX9JGEtAQlIQAISkIAEJDCOBPI6nxpxn8AYRPs2QCYf\ny2AZ6rzejnq/WvJku8Svl2vsiGLnWnllZbVE9Ef0flsz85XnKVyDj/PScspr/Lw3GuftdtskIAEJ\nTCIBBf1J7DW3WQISGBsC7YUr7bxozXpsNnRoQ1LExyoHAR9f/M3NzX7Z2oo2r8soISKFsNDZ2Nio\nZX19vWlv1Eiidorw0Fe6KgEJSEACEpCABCQggaklgNjfCvrttXXb5jo7o/6pudZeX+f6Gq/9uM7O\n623E/ZzhSp1C+ThCzAGPSbonGkeObpMEJCCB8xBQ0D8PJV8jAQlI4AwCRNngnYkoTo3gzYU39XVH\n0eRFdN4gRNTQYbmxCN/PjCTqbjQOSuQQzzN1mHZXeIx1PoP9yEJC2/ADJYooEt3iDco+53TgiObX\nM/OMQ8aHJSABCUhAAhKQgASmkMDgNfjRSfLcCJ7JIBpmwNLO6H4sLYnUj2vtbvZrXnszO3ZhIWbC\nZqR+zIDFsofnoh6+Dr9u4Z/7EAKBcvYv3ZvbS52WQWzndW/bFB5q7pIEJCCBnoK+B4EEJCCBSxBA\nyP/000/75Stf+UovCyL3dS5cSCPCp2CfF9Th89l5fXKxzQ0HPvi8hyX8PcPjM+11Mto+biTiZiIs\nd0672VisF+o5M8EL9evseb9LAhKQgAQkIAEJSOCmCWRwTdZtsEy0O9udo6MIuuG6nVxVMRgQlj6R\nq4q8Vcdll24V4Z5rdIT7uZMcVUs9rHgobc4qxPIsXMdf58K2trMQ+O7YPnJrRWGQgvZ1b9t1cvC7\nJCABCVwXAQX96yLt90hAAlNJ4Msvv+x98MEHvffff7/34Ycf9p5//vlaXnjhhd4jjzxyrfvMhTQi\nfhZmDETZOqljHXsdFi6muegnaiaj7Ls6PDxZz9dQp8hPjWif6ynk87mK+VBwkYAEJCABCUhAAhKY\nNQIZLJOiftZcp7dthPwU/Ll2J3J/Z2d3qN6pgTqI+um3v7q6Vmx51upsYGYEr62t99sZ1c+1Pdft\n17mwP5999lm/8N0EN2Xp7jHi3uI6t83vkoAEJDCNBBT0p7FX3ScJSODKCeTF+t///vfeH//4x94f\n/vCHWr/66qu91157rUdNpH6K21lfZMP4rvy+4ZuB9saAqbvcEHBzEDcGeVMQU3sz2S0125PTYImU\nyRuC4RuEFPRTzL/Mflxk332PBCQgAQlIQAISkIAEpo1ACvrUzJ4dDsLZ2iIQZ6te0+e9AHUrjCOW\ns54JdUPQ7yx65uYYCCC6PwrX8RmUk9f0WV+WL/vx8ccf9z755JNauGfJWQTYdD766GOlPFoL2+ki\nAQlIQAKXI6Cgfzl+vlsCEphBAimiU3/00Ue9X/7yl6X8ovf222/3Xn/9jd63v/3t3htvvNF79tln\n+xfQXDxfdOGCGLGeOi/+c9puRvakF3765TONl9cfHw9P3Y31jLpH1MdGJy+422m7y8tY68S02OGL\n/4vui++TgAQkIAEJSEACEpDArBPoPPSP6vU9on6Wzi5z7ySnFdf05MQ6LvcWrUifAn0I9umnn0E7\nGbHf1gTy8HyK+5e5R2n7kHuSv/71r/XeiJp9YeF7+D7ui5577rlaMwjhIgEJSEAClyOgoH85fr5b\nAhKYQQKtwP7ee+/1fvKT/+7993//pPfTn/6k98Mf/rCUf6z1iy++2Pex5EL2ogsifhYi7yPSvpuW\nG0m2dssF/34/kp/BBr6zvYBv24PJte5NqsV7Ef0pXIhnueg++D4JSEACEpCABCQgAQlIIAi0AUIp\n7nO9H+3w1+989iNHFgE8XTDPwUD78PCgXK+HnSZe+1z3E7l/WkQ/gTx5nZ9BO5ftF7YLC1KsSCn4\n6cfAxH7Zrl7vlVdul/JK7/bt28UyaP2yX+f7JSABCcw8AQX9mT8EBCABCTwsgbzopn7nnXd6//f/\n/v+l/N/ej3/8496//du/lfLvteaitRXRH/Z78vVcICPkp5i/tbU5kHQKT3wumomE4aI8CzY66+sb\nvY2NKFw8Zzujc1K4z++yloAEJCABCUhAAhKQgATGgwD3G3kfQJ3X/Vz7xz1B3AfQZsn7AO5B8rq/\nvR/gMax6uAfIQuDOZRe27d133+0R7ET96aeflvuTO707d+7UwCRmLzOTmRrrHRcJSEACErgcAQX9\ny/Hz3RKQwAwS4EI6y5/+9E7vP//zv3r/9V//WaL0/7v3L//yL71//dd/LeXfahQKETBExlC3C1E5\n94/MYVptROdEdD5ROKwj7mdETvrlxzpTcbtom/nyvXx3JKMajs5JIZ/Xc+HvIgEJSEACEpCABCQg\nAQmMF4G03OR+gCCfmJnb5sfqZu1itdnrcY+BsH/rJLAIC83F3tLSYqmjzXqK+VHHbN28jzjtPuFB\ns3UR9P/0pz/1/vznP9fyyScf9xPk8tz3vve9Ur5f68wzloMP40XcrZGABCQwGQQU9Cejn9xKCUhg\nTAggwhNxQjJcaiL0f/azn/V+/vOf9d56663eP//zj4qo/6Pej370L3VKKREwkXB2bWAP+Jw20p8L\n3UHfzFhnqmq8LrwzeV8ktwr/TC6uuRimZnrt/HxG28wPXMTnTAEi82nnBXS+d2DjXJGABCQgAQlI\nQAISkIAEbpxA3jOk5WdrucP9Q7tOMBD3DeTU4vV370Y+reGanWoFfe4PMp8Wda5TZ/DPg+4ZuI/5\n4x//WO+NqD/88IN+glzsQv/xH//xpPyf3lNPPdX/fj7fRQISkIAEHp6Agv7DM/MdEpDADBPgohpf\nyPSIRND/9a9/3fvNbyi/KYL+P/f+6Z/+udavvvpq9Yh85JFH6pTXFltG23ARTsTN9vb2GWWrRvLz\nvZS5ufkyTXalRt4TdR+R91GT0DaF+4ysScF/WMDPKBtqFwlIQAISkIAEJCABCUhgPAnkfQA19xBZ\nhte5r0iRH4GdaP7d3YjmbyP7ufeIe4UIBCIAaX197SQIab3WGZSUgUAp7J9FaG9vt/e73/2+9/vf\nU35XbXc+/PDDIux/WK1BmcVMIeiJBLkMFlD4fBcJSEACEnh4Agr6D8/Md0hAAjNKIC+m//CHP9QI\nlIxCiemlMcU0ok/+T41AIenTI4/gX/9IqR+pgnxEy0R0fkbUcFHdJrrt2jGFlqmzKcCTzDYuuONi\nG1/8nAGAuM/FORfG1Ir1M3qgutsSkIAEJCABCUhAAjNHgHsLhPyc+bu9vVUDhra2CBzq2swAJkiI\n2b0E/XTWnGHVmcFDrdd+2vFkpH4GC3G/QZvv/e1vf1MCnH5b67/85S81AIogqDt3NouQT8ATs5h/\n1Hv++edr0BP3NKurg7OYZ67T3GEJSEACFySgoH9BcL5NAhKYLQIp5iPI//KXv+y9/fbbteCh/9FH\nH/X++te/9j7++OPe97//Zu/NN9/s/eAHb/Zefvlr9WKV5FMI7+l9GVH5ROYzJZapsZQu2iajbrLm\nIjkuuOerUN9OiW3bCPl5sU2toD9bx6h7KwEJSEACEpCABCQwuwS4r8iS4j5CexaE/N3dvWrTk/c2\n1Pjth0AfubVSrKdeWOD+I4KFFheJ6MeL/97C9/7qV78qM5cpv+4h6HN/lBH6rYf+Sy+91HvyySer\n9c4TTzwxux3mnktAAhK4BAEF/UvA860SkMBsEGgvePGl/MlPftL76U8pP63Jn7744svel19+UcqX\nve985zu97373u7W88MKL/Wh6IlBiqmtMfSWxLZ9FIlvquDjO6Pq8SM6L5qiJuo8SiatoI9xnTZsL\n74yUmY3ecS8lIAEJSEACEpCABCQggQwGoub+goLQTvAQgURZh+h/UIT9GADIYCPqKDwebe4vOgF/\nacD6kwj+tADlO99+O4KeCH567733atATAU+bm5u9b3zjG/3yta99rffiiy+V8mLvq1/9qh0nAQlI\nQAIXIKCgfwFovkUCEpgtAgj6XKRScwH84x//uPcf/0H5jyroM601/Spff/313uuvv9F7443XywXq\n8+WiN6aurq2t1ovZra2tWhMp0150E8GfkfxZr69j17PR95jMxFSnRd6f9ths9ZJ7KwEJSEACEpCA\nBCQgAQkkAe5dhpe8rwl//d0avb+1tVnuT7Z6UW+WmvuVWCdYCEGf+xBmBnNvkiXvVVhneeutt3q/\n+MUvSnmrCvp/+9vfehQ+j6h8yssvv9wjz9jXv/71Ur7Re+WVV+p7/U8CEpCABB6OgIL+w/Hy1RKQ\nwAwSIFIlE0mRvPY///M/a/mv//qvcrH6bhX5I9LlsF6UvvLK7d7t26/0nnnm2eqhH0lxHynkGBgg\nue1xpYgInyW9KyPShUGASHzLOhfRGZ1PlIyLBCQgAQlIQAISkIAEJCCBixAgqCiDkahJnEsOr52d\n3YG8XjzOAMCgBc/gfUnagh4c7JekuL+rSXGpicz/4osvauE+6umnny73Rs/U8tprr/W+/e3vlPLt\nGrXP/VDOMqbtIgEJSEACDyagoP9gRr5CAhKYcQJc4H7xxee9zz//opTPev/zP//T+9///d9a8IYM\n65yY2vrss89WIf/ZZ5+pvpCPP/5E74knHu9RZ/JaaiJcUqSnjsgXrHaW7mkj4lPyYnrGu8Pdl4AE\nJCABCUhAAhKQgAQuSCBnHaclT1rtpMiPOM9jnUUoub6w7DmuVjwEMmHXgyc/s47x5Se6H5sdyrvv\nvluFfCLzCYbicx977LHeo48+WgvR+T/4wQ9K+WEV9fNeh1pB/4Kd6tskIIGZI6CgP3Nd7g5LQAIP\nS+DOnTslyuSj4gP5cSl/rUlxMzHuJ598UiNXuDCmEI2fhSRPTz31VI1Ieeqpp2tNdAqFi9pIaLtU\nprAuDwj2mZjq1q25gWiVjOZ/2O339RKQgAQkIAEJSEACEpCABJJA2oly/9LagA63EfYR7SOSf7dY\n8dzpcW90585mCXT6vPfZZ5+V8mnv008/LfY6f+/9/e9hs0NAVA4QMHDAfQ/3PNT46f/oR/+PvfNg\naCPZlvCsc845gm2Mc/amu+/P37t51znbGOeIc8776jutlsesAUkIEFL1e70thJBmasZX51TXqfNd\nTIj9LG5iRcDkYQSMgBEwAiMjYEJ/ZIz8CiNgBDocAYLUa9euFdevX4+1r68vykkvX74cQWwZnhSs\nJo9JiH0I/TSXF6tWrYrGT6xLly5Vw9y51aa5ZVudHMhaoVJG1o+NgBEwAkbACBgBI2AEjIARGGsE\nymQ/Cnua2jKfPXtWIe8TiZ898lkfPnxYIfoT4c9GQHlzYMqUz9XGKPTLhH7uOcYKqe9hBIyAETAC\nIyNgQn9kjPwKI2AEOhQBFCsMPCDPnz9fXLhwQfN8cfv27eLWrVuxolApj7LChKCU0lKIfdbFi5cU\nS5akiXp/0aJFYcezcOGiL16Hn35W45vUL6Prx0bACBgBI2AEjIARMAJGwAiMFQLkP7k3GCsK/ETc\nD8SKEj9PPPIh+ZNi/3nFh/919B7jb8sbA5898qcUGzduLPbu3Rtz165dyocWV3MkxFEeRsAIGAEj\nMDICJvRHxsivMAJGoEMRyIQ+XpDHjyff/BMnTkQQS3BLMEuTp/IgWM1+98kXf2Yxa1YqL0WRP2fO\n3GLevLmy3Fkkr/3UHCo1iVpZ4L/PZAOA98mz/P5+bASMgBEwAkbACBgBI2AEjIARGAsEIOGx2Mnz\n3r178sW/IV/8mxIz3Yr8BzU+eRAe+fl12V4n+esndX7OpVizWKkovinWrFld9Pb2am4rUOuvWbOm\nWLt2bUx6jXkYASNgBIzAyAiY0B8ZI7/CCBiBDkSgHIBevXq1+O23XzV/K/74449Qn0Dk4w1J0Pq1\nkZX15RX1/rRpNL6dFor8HLiyolTp6urW7Ao7nrwpwOphBIyAETACRsAIGAEjYASMgBEYawTwuyfH\nwWqHieVoX9+l4tKlvuLq1SthrQOhz4TEZ5TzpvLP8cuv/Ac70o0buyr5T1exefPm6qSq2cMIGAEj\nYARGRsCE/sgY+RVGwAh0GAIEpQSo796hTnlXXLlypfjzzz80/yr+/vuvIPEJdjOZn4h6yPppoc6H\nhE8z/TxtWvp5xowZIvNpgjtDhP58KfRXxFy+fIW89VfJY391+OzTMDer81k9jIARMAJGwAgYASNg\nBIyAETACY41AVugjXkJ9nxT6N0Olf+fOnbDgefw4NcMlV8o5EWt5kid97Weepxp5xQoqk8mBVhfb\nt+8odu7cWezYsSPsd8qCqLE+X7+/ETACRmCyImBCf7JeOR+3ETACY4YAhH72gmS9cqW/OHr0aHHs\nWLLdyUEmB4CtDp73TDzzIetTY9xkszNzJgR+epxek147b9688NBftCh56UPi58n7QOTzOeXPGrMT\n9hsbASNgBIyAETACRsAIGAEj0PEIkAfR0BbinRWPfOx1Hj9mPo6fnz59pvWplPxvKgKotyGGyvY7\nrIij8s88ZoMgzyRuos/YAlUmLyn27dtfHDhwoNi/f3+Bep/8J+dCHX9BDIARMAJGYAgETOgPAYyf\nNgJGoHMRQJmSSkkfqPnTw6K//3Jx6tSp4vTp08WZM2dCiZ9V+ZDvqEyYkPR45M+dO0crE8/8/HiO\nns+/Y02/yyuB7YwZ2PHMiPfP6JvQz0h4NQJGwAgYASNgBIyAETACRmAsEYDQZ5IPMSH1s1qf9cWL\nF9X56tXLqjVPtujBVz8/Zs0/57/jZ96fXAphFPnTd999X/zww/fF99//EP3EXKk8llfY720EjEC7\nIGBCv12upM9jWARyKSBKAwITDyMwHALcIwMD9zUHivv3B+QdeU2+kXhHXpKHZF+o8BMBPyOIech8\n/B6ZidBPhH0i8L98DMHP81nNn9/HxP1wV2Ty/Q7LpbIF0+Q7Ax+xETACRsAIGAEjYATqR8B5V/2Y\ntfJfZIKfY+TaQtLjsc9MZP3LWHk83KTqGVKflU2C/L5UNh8+/G3x7bdpYklKHA2pz+phBEZCIOdd\n5F7cNx5GoFMQMKHfKVe6w8+T4OL5c0oDn0cQ0uFw+PRHQIAA88mTJzGfPn0SxD6ekXfv3g0fSdQk\nWVVCEAo5z4Ss52esdVhnzsReJ63p+c/PQeTzHmlOH+GI/OvJhsC8eXOjjJhNHu4NDyNgBIyAETAC\nRsAIdAICmbTFqgXS12OyI4Bin3NIqv1kpZN7jdFv7O0XCv6v/cxzeRMAlX8W2SGigozt6ekptm7d\nGuvChYv03BQRs4nUn+zo+fjHHgGqPMi5ENk57xp7vP0JrYOACf3WuRY+kjFEAPsUGvpAyD558ngM\nP8lv3Q4IQOi/fPlKmz+pZJQNIZKTrDoh8MwzE/uQ/Jnoz0T91KmZsGdNiu3PvyNIzeoTKwna4b4p\nn8PSpcvU4JhmX6uiV0L5d35sBIyAETACRsAIGIF2ReDBgwfKu+4q77pXIIzxmPwIZEKfHClVYNAA\n90MQ8x8+lB/n5/69ln35eY88qVLGN3/58uWxzp49p0LoQ+o7R5r8d8/YnwH3zsqVKe+iJ52HEegU\nBEzod8qV7vDzvHXrlhqbXonmppD6HkZgJAQIOvMkeC03ZyK45Ofy5P34+WurfqPfxa/+9Zr0rP/b\nbgisW7eu6O7epNkdAWa7nZ/PxwgYASNgBIyAETACX0Pg5s0b6j+V8q779+9/7SV+bpIjQG6UR348\neOX3g5/LP2cyH6U+j7PgiZU8qzzz53g1AkMhsGHDhsi5yL0g9z2MQKcgYEK/U650h5/nzZs3FVj2\nR3NTAstyo1Lv/Hf4zfGV0yfYxN8xT4h6SvnyHEzkf+Ut/FSHIUAyUm4Atnbt2mLTps2am6TUX9Vh\naPh0jYARMAJGwAgYgU5F4MaN68XlyynvQq2fe0eRfznv6tS74svzxmqHSfwMqY8NT7bkgdTnniHv\n4p7xMAKDEeCeKeddEPrkXORe9GDwMAKdgoAJ/U650h1+nmVCH/sd/oeeyQ4uNikeRqCMAAFm9stn\nxV4nlfGtjPtmsBK//Ld+3JkIkIikJsqpmfLq1atN6HfmreCzNgJGwAgYASPQ0QiUCX16UuWcixWy\n1sMIIJ7KpD7kLDE0mz+s9BnjXiH3worHwwgMRoDNn5x3IdZcv369Cf3BIPnnjkDAhH5HXGafZJnQ\nf/r0aaUkqztWGph6GIEyAqhFUkUH6qL+SD7Srv+moqurq/rSTOxXn/CDjkWAHgvJ1osS8yuRhFih\n37G3g0/cCBgBI2AEjEDHIlAm9ImPiKGJn1khaz2MQLbeYcXitBxDk5tzr2BbuXHjRoNlBP6FAA23\ny/dMqoy2Qv9fQPmJtkfAhH7bX2KfIAiUCX1sVLZt21Zs3749Vpfy+R4ZjACE/rlz54rz58/HShVH\nvl96e3sHv9w/GwE1fXtavV+4b1AWmdD3jWEEjIARMAJGwAh0GgJlQh8lbY6hWWfOnNlpcPh8R0Dg\n3bt3X8TQs2fPrubqPT09I/y1f92JCFD5Q66e8/U1a9bEJpAtdzrxbujsczah39nXv2PO3oR+x1zq\nppyoCf2mwNhRb2JCv6Mut0/WCBgBI2AEjIARGAIBE/pDAOOnv4qACf2vwuInh0HAhP4w4PhXHYWA\nCf2Outyde7Im9Dv32jdy5ib0G0Gts//GhH5nX3+fvREwAkbACBgBI5AQMKHvO6EeBEzo14OWXwsC\nJvR9HxiBhIAJfd8JHYGACf2OuMxNO0kT+k2DsmPeyIR+x1xqn6gRMAJGwAgYASMwDAIm9IcBx7/6\nFwIm9P8FiZ8YAQET+iMA5F93DAIm9DvmUnf2iZrQ7+zrX+/Zm9CvFzG/3oS+7wEjYASMgBEwAkbA\nCBSFCX3fBfUgYEK/HrT8WhAwoe/7wAgkBEzo+07oCARM6HfEZW7aSZrQbxqUHfNGJvQ75lL7RI2A\nETACRsAIGIFhEDChPww4/tW/EDCh/y9I/MQICJjQHwEg/7pjEDCh3zGXurNP1IR+Z1//es/ehH69\niPn1JvR9DxgBI2AEjIARMAJGwAp93wP1IWBCvz68/Gor9H0PGIGMgAn9jITXtkbAhH5bX96mn5wJ\n/aZD2vZvaEK/7S+xT9AIGAEjYASMgBGoAQEr9GsAyS+pImBCvwqFH9SIgBX6NQLll7U9Aib02/4S\n+wRBwIS+74N6EDChXw9afi0ImND3fWAEjIARMAJGwAgYASv0fQ/Uh4AJ/frw8qut0Pc9YAQyAib0\nMxJe2xoBE/ptfXmbfnIm9JsOadu/oQn9tr/EPkEjYASMgBEwAkagBgSs0K8BJL+kioAJ/SoUflAj\nAlbo1wiUX9b2CJjQb/tL7BMEARP6vg/qQcCEfj1o+bUgYELf94ERMAJGwAgYASNgBKzQ9z1QHwIm\n9OvDy6+2Qt/3gBHICJjQz0h4bWsETOi39eVt+smZ0G86pG3/hib02/4S+wSNgBEwAkbACBiBGhCw\nQr8GkPySKgIm9KtQ+EGNCFihXyNQflnbI2BCv+0vsU8QBEzo+z6oBwET+vWg5deCgAl93wdGwAgY\nASNgBIyAEbBC3/dAfQiY0K8PL7/aCn3fA0YgI2BCPyPhta0RMKHf1pe36SdnQr/pkLb9G5rQb/tL\n7BM0AkbACBgBI2AEakDACv0aQPJLqgiY0K9C4Qc1ImCFfo1A+WVtj4AJ/ba/xD5BEDCh7/ugHgRM\n6NeDll8LAib0fR8YASNgBIyAETACRsAKfd8D9SFgQr8+vPxqK/R9DxiBjIAJ/YyE17ZGwIR+W1/e\npp+cCf2mQ9r2b2hCv+0vsU/QCBgBI2AEjIARqAEBK/RrAMkvqSJgQr8KhR/UiIAV+jUC5Ze1PQIm\n9Nv+EvsEQcCEvu+DehAwoV8PWn4tCJjQ931gBIyAETACRsAIGAEr9H0P1IeACf368PKrrdD3PWAE\nMgIm9DMSXtsaARP6bX15m35yJvSbDmnbv6EJ/ba/xD5BI2AEjIARMAJGoAYErNCvASS/pIqACf0q\nFH5QIwJW6NcIlF/W9giY0G/7S+wTBAET+r4P6kHAhH49aPm1IGBC3/eBETACRsAIGAEjYASs0Pc9\nUB8CJvTrw8uvtkLf94ARyAiY0M9IeG1rBEzot/XlbfrJmdBvOqRt/4Ym9Nv+EvsEjYARMAJGwAgY\ngRoQsEK/BpD8kioCJvSrUPhBjQhYoV8jUH5Z2yNgQr/tL7FPEARM6Ps+qAcBE/r1oOXXgoAJfd8H\nRsAIGAEjYASMgBGwQt/3QH0ImNCvDy+/2gp93wNGICNgQj8j4bWtETCh39aXt+knZ0K/6ZC2/Rua\n0G/7S+wTNAJGwAgYASNgBGpAwAr9GkDyS6oImNCvQuEHNSJghX6NQPllbY+ACf22v8Q+QRAwoe/7\noB4ETOjXg5ZfCwIm9H0fGAEjYASMgBEwAkbACn3fA/UhYEK/Prz8aiv0fQ8YgYyACf2MhNe2RsCE\nfltf3qafnAn9pkPa9m9oQr/tL7FP0AgYASNgBIyAEagBASv0awDJL6kiYEK/CoUf1IiAFfo1AuWX\ntT0CJvTb/hL7BEHAhL7vg3oQMKFfD1p+LQiY0Pd9YASMgBEwAkbACBgBK/R9D9SHgAn9+vDyq63Q\n9z1gBDICJvQzEl7bGgET+m19eZt+cib0mw5p27+hCf22v8Q+QSNgBIyAETACRqAGBKzQrwEkv6SK\ngAn9KhR+UCMCVujXCJRf1vYImNBv+0vsEwQBE/q+D+pBwIR+PWj5tSBgQt/3gREwAkbACBgBI2AE\nrND3PVAfAib068PLr7ZC3/eAEcgImNDPSHhtawRM6Lf15W36yZnQbzqkbf+GJvTb/hL7BI2AETAC\nRsAIGIEaELBCvwaQ/JIqAib0q1D4QY0IWKFfI1B+WdsjYEK/7S+xTxAEWpXQ/+eff4phJwfPaypr\nLJXH33zzTZGnHhTf6Hl+5vGUyu+mTJkSP/O78Rj5OIc7p2GPo3IevCafW14Hn+NYntNkIfQDZ2H1\nBd6fPt9T+s0wcHOvxP/HazLOX1uHeZN//YpjyYNGgkOgAABAAElEQVTHnyr3OPdxq4zB55iPi+cb\nHSb0G0XOf2cEjIARMAJGwAi0EwLtSOjn+DavI16vUk7Da0cTYw7+rHwMrP+evPpz7vgp8oJPEY+T\nLX4z5XP+mKJefv533lWOlQd/frN/nmhCv4zhp0+fGj49MCP3ztg1/EbD/GH5WD8/5g/SvRCPUkI+\n5Lvk4/vamvPtIf+4RX5hQr9FLoQPY8IRMKE/4ZfABzAeCLQSoR9fvjrpWBU0EMS8e/e+sr4r3vLz\ne557V0Asf/ygyarXEmTkOX369GKGJitz6rSpxbSp04pp06YVs2fNKmYxZ88qpuvn8hf2WOD9OaAQ\ngatjjHOI80rnkc/vw4cPw348QeaUb1IgNH36NJ3fjGL6DJ3nDK35XHU+5WCJc2v2aHVCv4z3u/ef\n7510L33GnNcNNcr3xNSpU4Ux99OMtIK3ZuAuvGsdfF6+P8EwHw/3A8+3ykjnm85vps6T+ynPRu8n\nE/qtcnV9HEbACBgBI2AEjMBEItCOhD45TJ6IVYYaxJE5pkRgVX1cIXqH+rt6nv8Q+WE6nvfKAyLv\neksO+TbljB8/KW/8WHx4/6F48+ZNzNdayQlnzJxZEPuSX02dMrUgJs55wEz9jtg/fp/zLq2Nxsa1\nnhP5wvnz54tz587FOnv27GLbtm3F9u3bi56enlrfpuHXcV0zTm/evM3bIXW/H/jlHJy8tdmD++59\nKb9+r+v7/sP76n0ZfEHl2g+n6ZomzoDr/LU5tbQhMdbXfTT4mNAfDXr+23ZCwIR+O11Nn8uQCLQa\noR+kp76U+eJ9+fKl5qu0vuLx558hwt9XyH2+tD98JHiD4P9QzJk9p5gzZ7ZI+9kRPBBExJwxs1i4\naEGxaMHCYuHChcVskfrfQFhWgsohQRrFL0KFXdlseK+gKJ3D53N5Eef0snjz9u2QnwItP4WgskKu\nEszNnaNznDsnVn7Oc5pelwPksQg2WpnQz2R+vodevarcO/keEtaBt54fjkRn42Tq1ERkE3SWsZ47\nd278zMrGUK2Dz4tkR/f1ByUY+bq/ePEynq/1fcb6dSQx8zhHTVY2waZq5vuqkc83od8Iav4bI2AE\njIARMAJGoN0QaDdCn9j7LYS58hgmecJQg/wki6zSKsEVcWYldxnq7+p5HgI/H8vr12+KFy9eKObW\nVLwNOU4sjuAHkvrZ02fF02dP1evpmWL6mYp95xXz580tZivHIv7P4rCIieel383VOkfxf867OKex\nHBNN6IMl+GSchhNEDYfD/PnzlXsviPx7jvLWZo/gDXLep/XN69cFGzVcZ84hCH5ddzZ5htt0miXO\nIHK9yLFTPpRyonRPcL0zd9Dsc2jW+5nQbxaSfp/JjoAJ/cl+BX38NSHQSoQ+X7CfUFZUyE++kJ48\nfVo8ecJ8UjzWfMpjPccX9Os3r/WFrS9qBWiJ3NcXtQK1BQoaFixYEOs8BV5zRe7PFskPMbtixfJi\nueaK5SuK+fPnJZK8QpbXBFidL4LIjQoCnRfHyTnk84n1Kef0RMHmqyHfGaH9VFUYEPCiIJmnYJMN\niUWLFlbPk0CJSfBZJv+HfNMGf9HqhH7GmvXZs2cJa2EM1p/vnydKOIZWxROs5QRj1swZgXXgLcwX\nCvNFYK/JvVXrQDFEEBlqIQWW6T7QPf34SShKan2fsX7dTCUpixct0r21qFi8eFE1mSGx4f5rZJjQ\nbwQ1/40RMAJGwAgYASPQbgi0I6EfAhqRqK9evQ7RylDXjPwkiHKJR1irs0LqD/V39Tz/WkTuyziW\nV8Xz5y8UZz8uHmkSd0PysvmAiOqlSP77Aw+KgYEBrQPKEecWSxYvjth3oXLImSL4Z86cFYIw8q2l\nS5bod+n35FsLlAOwNhob13pOE03oc23B5/79gWLgwUDxj2yKGhlLly4tli8n/14WuWsj7zHc37BR\nE5yBOALy6uds5GgThw0dzgFSn+vO9R9O1DVHXAHXO3KhyLXJici5F8W9wPXOArvhjmcif2dCfyLR\n92e3EgIm9FvpavhYxgyBiSb0+VLNKna+bF8p2CIgfClFPmQnX0oEYklF8SxI2mfPnxdvVfb35m3a\ndSfYKZfWQbQy50tpMVc77LNnQehjszM7Aolly5ZFUMEXdKiR9eXN7nvsulfU+o2q21EuEFRAfDNR\nBxBccl6o8xOJn4KNpyKcnz17HudEsDHU4FgigCCI0OSc5s+XymHB/GKegkkCzwWoHrRyHigfCEhQ\nkOfqA96j0XMqH1erEfr53uE+YjMHHPM9FBtCun8I5sEdvJ8/R2XyPDaOyudVfkzCgSIdrNkgmS+c\n2SRiXbyIYH5xBP2Q/Ch6ZingZ+XvqKb4Gs7cn+9U7sumDsd45+694u7duzHZnGqVwf2zatVKzVXF\nak2UKrkEmU2ORoYJ/UZQ898YASNgBIyAETAC7YZAOxD6IVZSjhOVp4q9ydMePUrEObYsQw3sahAl\npTxNSvhcYax8BXK/kcGxoLh/H5Xb70NJnnOtFPs/VQ6ZxGDkmRC65I2Q/g8fPioePnoYK5XdWbwz\nXznkZ4udmZX4H1GPxC6QvYuXRB6wZMniqAQPG06sehqMk4c774km9Mmdrl27rnmtuHb9hmxxhxZE\nDXcea9asKbo2biw2bthQLFu2dLiXDvu7XCHAmkVSObd6+OiR7kOu6aPipYj8qPLXdSYPf0cVia47\neHLPDDW4J0MUqJyavBohF9d84cJFIQREHJhzbXiDzB18Lfcb6jPG+nkT+mONsN9/siBgQn+yXCkf\n56gQmEhCP5PfERAqMERR/eDBw+LBQykmtEIERlAmUpZddr6QUeWzVkvnKv54mUBHeR0kq4JDiNYU\nkH32QGeHPauPUQusXLmiWLliRbFKcxpqEQVjEJd8QTcyOI5UPZDK/CCTCSweKGhEMcBmBIqR51oh\nnl9r84LzIcgYaqDQj6BBVjCsnBMbFEyIewIPgo75mihIlum8CJYgnjmXfE7NCDZajdDPyQQrG0H5\n3nnw8GHxhA2hijq/ijeYa9IIa6gxhX4FBGnCG/wy1rO0MVRW6SypYL106ZLAHeI7N10ejDUBJEkO\nGzwvXjwv+q9cLa7EvBL2O0Mdy3g/TzLT3dVVbNqk2d2dki3+LY0i2TKhP95X0Z9nBIyAETACRsAI\ntCIC7UDoQ6TmXAeRyq3bt4tbt24XNzURLw01IEKXh6gKYdWyJEiq5DDkNo0MyHxi/BfkVoqv799/\nUNy7fz/mE+VgSeRD9cCrEP7kvAFiH/V2UnK/CM90ciqIfbzeif9zDgXJm35HzjU/8sblyhtXquIb\nJXfOwzi/Zo+JJvTJp86eO1ecPSsff3n5D0eGD3fuPVs2h+//jm3birVr1wz30mF/x+fDHyDo4roj\n/nv8JG0oPXjwoMojcL25xmzigGG67qqWVr6YNwW+9kH0TUMYl6851fy5Cp68b1WFN+A+zvcIa6O8\nwdeOYbTPmdAfLYL++3ZBwIR+u1xJn8ewCEw0oc+XbCgmtA4MPCiu35AKQAqAGzdvJs8+Sufk3fdG\nRD5fxu/lk8/6SQ2N+FL/JAK/qtLWlztf0qGuJhCrqKxRWvNFy1pWhkDkb9q0qdisuWVTt8ortQFQ\naYTDl3MjgyCXACOIewWKt2/fUYB7s7h581aUK+YyUFQDvDadU1L0D/V5WfUNSczkPGjawzGiCsmB\nJOua1auKDVI/bNiwXo9Xp/NRkMx5NSPYaDVCn/sn7iGtBDDXb9yI++e67iE2U1CWQCiTYGSsWXWb\nDDnYQAmspbcHsxSwJbwhvNk0YVI6Cs7gvXH9+kgCeH2e5Q/4XH3yKu7n02fPFufOnivOaD6Rf2er\njOXaDKLR1s4dOzS3x7+XSGIU3HKvNTJM6DeCmv/GCBgBI2AEjIARaDcE2oHQh8zPuQ5x9qW+y0Vf\nX1+sxHxDjUVSOW/YsK7YsD7lKSFAUtyJMIZYs5GBT/5AELmIwR5EvnVDucAN5V2IfCL2p9eaBGDY\ncWIZQ/5IPsNmADkE+VjKrT6LoIjlwytdIh/ygOnTsAiaFurstVKbr127tlgnYnrVypUShzFXhGq/\nkXMY7m84volsintH1cR//X2k+FvzryNHo6HwcMc71O/27t5dHDp0sDh88EAIhoZ63XDPB5FP7q8k\njmuIFRAbSWwo3VG+nayB7sfKPco1xvIUO1+EXMEbqMJguByQHmrpeuuaS+jHfUll/BxZMpFjZ96g\ne+OGagUz+RH3T6sME/qtciV8HBONgAn9ib4C/vxxQWAiCX2+WNlBzyQ3yo5Lly4VFy/1FZf7+ytq\ndinaZZHCjnomtL9YQQkGtjT4wo/dd1b9H1/i+TmUxij48UVcrS/mXSItd1QITMh+PBT54q6XvIzP\n0zHgz/dQaoaYUuZToni5/0px+cqV4s6du6HSJshgMkLRTdAIWc8TrOkBP6UR51FUzyGfCysBZ9jB\n4Oco1cgGEctbe7YUW7ZsKbq7NqayQIIRTQKU0Y5WIvTh5FHbv6LprSyaCOQvkVDo/uEegtDPFRG8\nLoLzwDdtjHzGOx5VoUn4KmCs3Df8ImMO1ig0KLMliO/durXo7dXc2hMbKzkIHBzYoc7PDZEpTT56\n7Jjm8eKIVsqUW2VwTgf27yv2799fHNTK+c7l34VUR2wKNTJM6DeCmv/GCBgBI2AEjIARaDcEJjOh\nTyzMIJ6l+phch9gbcQoqbtbhYlosT7cqP+lRnkKuEhaPijuJPbHhqXXkmJwVhf2tW7eiOgBy9+rV\nq0W/5tWr1+LYyK/yGJwH8HzOBRTox8uy3occtfw5/JKfySPJtdLGhFY9xkYGgQ/nkXNUPqsZY6IJ\nfQR2//3fL8X/fv65+O/PvwRJ3sh5fXf4UPF/P/2k+Z9im/KmRgb4wwewScO8qet++XJ/5NlXlW/f\nr1Rm4PcPbuXBdcnXv/x8fsx7M/I1z89n3oB1/fp14g2S4In8L6x3Kjl2o5ZR+XOauZrQbyaafq/J\njIAJ/cl89XzsNSMw3oR+fFHq6Fg/6suYQJCJ1Q477Nevf1boY0cTtjQiY4nHwkIHQl6Kc1QSfHlC\noE6d8nlXHAL/g5QY76XEwJYHK5u3EOgi2iHRKaWbPn1GrBCzkN5dG7uK7u6NUUKJan+FJv6JOSgr\nB4NfA7baiFUKAALLGzduFtdv3ihuakXZcPfevfBMh2B+Fx6PqMrfx6ZBLuuj1BTVfShE1AC3/Jmf\npCbgXFCXxDlxLuofAElMQBPvoRJRVlQi69et1VwX6hGaAOdzIhghcM3n9bVzGem5ViD0c7DFGnZG\nlXsIX3ruH9T517RyLfI9xHFz31CFwYYO3vjTKmqbacK7PLhnEr70aFCZppQ7BJAoeLDfmT9Pfvq6\nP5ZIUUQJKZsnrFg40ZOBpIRrUR4m9FWqq2QPlRH/vjZt2hwqF7z6PYyAETACRsAIGAEj0AkITFZC\nP9TNqKM1aTALmQqRDol+ReQ5BPqVa1ejN9hQ17FZhD5kba7ufixRDGQucf9Veb3fVS5wT3nXXZG7\nVBGQV6G6nqJckTwobDRloYlwi9yymhOJz835BapuhEC5Dxq5FudNLkHeWbUN0gbFehH65JLd3V0F\nyn1y1Wz92gxS34T+57sJ/Mnt2FDCLokqjP7+K7IxvRK5d7ZZpTku1ywPrkM5B/yCN4CP0Pvmyd9l\nDoHn4Boyd4DFUndXV9EV3MFG5TOfc2zyvnwvlXP4fAzjuZrQH0+0/VmtjIAJ/Va+Oj62piEwEYR+\nBIX6An2vgOxqELA027lR3L5zW+T3/QjGBlRGF02O3ifyG3VwbvyKtQz+htFMSSvBVR7sr78pBWEv\n9KVPOWhuqpsCu0Sc44sHubhS1il8KXd3d4f9zmbZ71AGGqWWlR39/P5fWyF680R9ff7CxZgXL15M\nDX2x4FGVAdUIOWBghRTG5z75L86P4DJ5/ssehyizMtgwyIHlG5WWojqn3wDnxXvmQAOSmuY9HDvB\nZiJOOafuKG/k80KdoMCm/P75c2pZOe5MzLIS6GDRsk2eiL29vbW8xaheQ7BdtljCyoggnsnjCOIJ\n5HUfsYGTrss7BVlTvvDqDI9MBV/cR4OrMar3DPeNsAbzHNRj4zQzKjxmSr2+IGELvpqrVq6q9i9Y\nJGue8jChb0K/fD/4sREwAkbACBgBI9B5CExWQh+ikxwAsptYu+8yNjuXowIZRXRSRw9EvjLUVW0W\noU9fNYhdelLd02dzLP1SavdpQuZmOyDIcPKUPBcuXFAslu0PvdTmqRq7mhMpL4r8orJhQQPVx9GD\nC3/2p9o8yPlE8l9HuDNf1ausCKiwYdmyeZPU+utUrUsD1dTbrJyfDoXJSM+b0P+MEFjg6U8zY+yU\nrks4d5V+ZNpMQhQYVdtwAJpwDXmQ+9NrLixqdW3K14XrXhbbIejCxgkuATEgr83cAdc18wZUlyTe\nIHEHvH/cTzXwBvm4xmo1oT9WyPp9JxsCJvQn2xXz8TaEwHgT+kHmo3LQhHClwc65cxdivX3nTqg+\naGYKWc1r+aJlonzGs5wmSpDVkPHzpJReoJVArTyi6ayCPFaa5Qw8UKA5oEoAbRLk3XNezybBXAVj\nyVd/brFn165itzz+9u7ZHSqLqRDfmnyRDzdQifClz4oaHyuVY8zjJ8JO6ONH1PXJ8z+fD+uyZUuL\n1VIoMwlyUY2E2l5EM5+bBwH0M51LNG8SwYwqnXPhnPjSrgYQCiJm6T0oAWTi875H57Nn9644JzYO\npqBUqZxXfv961lYg9KsVEbo/sNg5d073kO4jlDngkRokPYnEI99DkPYrqvfPcgV284t52BTp/kGx\nUx4ojwYq9wtYl+8n3g+8mWwodW9UhUcoNTYU6xTUr8NTUxUSfFZ5mNA3oV++H/zYCBgBI2AEjIAR\n6DwEJiOhT84SAhnUyxIx3RCReurM6eLU6TMRg0Owv3hJnvIyfj/UVSXXaYblDhXPD6XMf6QYnUoB\nhFQXJKI6f/5CVGZTAc7GAzkfQqlktTozYnNscVZKgLNYAqhE1KY8j/j+o/qykedQHf5ZIHRPinAa\nrH6ujM4ELytV0fmcUG/nXJU8YLBgaChchnvehP5ndOANsOe9dRuLJQm6JAbE2jZVZtwNboHrmHO/\n/JfwBNWqCl2XsoUoIjGEW/TqQ7yF+j/lfakSIPMGupXCrjdxBvMKhFs5vybX5t4mv+aeKOfw+RjG\nczWhP55o+7NaGQET+q18dXxsTUNgvAl9AiyU+ajv8c4/fToFhASFBE8pKHwZu+sozqeLiCUgWrJ4\nkbwWE/mdvBYTaQ1xzevyQKGfSvFean0RAR+qEYh2yjBTiSbk+7vYKCDQmzmTz5hZ7Nu7R/7he4v9\n+/aFJyIBAO89UkAWX/6hFJGPo5ryHDueyHwIfT4vD77ko9xTBDIrVQE0rsXLn0AAtXguB50iRXke\nBJeoxpkvFSxjUZQCzfvhX5k3E/gsPoPj5bxQEuzft1fnxTntlXp8mYKYdD6DN0HyZ420TjShT5AW\nlRuVe+jchQu6h85EUnFVCo249uCkmbHgGs4TcZ83T7iPIPS5d1DXUIZZHqh78AVFBfJAKhAekzTw\nGIyzSon3p0HSal1D1i6R+5s3pybLkPsEgdEjQSsBebaPolrjrDYgzivxwIKGzauxHqhP3qna5T1r\nYJcqX3jMeRB8sq6W4oT7f7/88/HQByM2LthoavSesYf+WF9dv78RMAJGwAgYASMwGRCYrIQ+oqKc\ni1yTgObs2bPF6bOyUlQcjmiJ2DjHx+QKnz5hY/JZJc21aRahT06HCIzeZNhsRrVApWIA0Q8x7RQ1\nsyW3g3gNxbxWSHaa165csTKenyIrnhA5Kf79B0IfMljH/FrkblQdhHhqIHpyIfZ5IrU+OGTCmJUc\nblNXd1juIPBB2APJzzpYMNTI/TnRhH4WqmWx2kdd1zy4zuRFKQ/9bFGa74P8OtZGPfTLQjh4g+SZ\nj29+f5D63AO3NcnTci6DxRLXPqyPZIFEb7xowKxcGzFdOa+nSXK2seVcqIDnWrNpxPUmd4ocSvkS\n7595A/KjfXv2FPsiz94T/RNm6jMTp9BYz7EyXqN5bEJ/NOj5b9sJARP67XQ1fS5DIjDehH4mNrGK\nwc4EIj+T+qiiMzmNAiRK41TCFiVuCsLWyJtw7RoI8NUVLzx9WeuLGiKyPPhifit/ed6LL7V7sl/J\nSgsscWjYxMoXN178lNPhp75XSnZI/b2aG9TgCBIzK+YhZ4cafPETSFACiGKAplBnFOie1Yofex4E\nAVWFgIKKsvce1jtp8yB5/Jc/j4AxB0yoEyCYsZThnNisKJ8Tr+V8OC/I6r0VhT7qgRUKYudVmv5C\n0jYyJprQJ0jMxDj3EIkE9xCToD7uH2HESlUH9w73Ef723Dv4W3If0SQ4/PR1TQYT1QSMBHTcn090\nn7BJc0eJAytlvAT6lGOCBVUPi7XZRPku1kapwfL2KL/NSQIrrw0iXYQ6x09p6O3KfKleEWM9nut8\nwnpKxx92TU/5+WnxVCtKlRnCgSB0zeo1IvT3JFJfQSrJCL9nYw27oUaGCf1GUPPfGAEjYASMgBEw\nAu2GwGQk9Ilhc78zqp6vQaL3yXJHJPoVNaBNBDok+lQR4iJ5lfuQtxD3lkezCH1sNq+E1cpVKbSv\nh5f6zVs3YyVdm6reWORC5EEIbrJ4ispl+qctUc7F7zjuEN9ohTjORD3HjbiH+JXYmc0DbD3J8aiQ\nTpsXaRNjqfppkVswEfOQC2yWBc/mzZsihyyffyOPORbEP9nulPwNm1PsTnt6ehp5y7r+BgywtOE6\ns4JRHlzjx+S/ldwaMVXMVy91/b+89o0S+nwe9x+bLeQvNF+mMptc+55yYKqyyfXJ3ZKgTaI2NnIq\nFrTkf1yjhbJCwrqXDR7ujfKAcwixmNanIvHv6xpznbnnyZPIl7Du5Rhyjj1LfRh279xR7N61s9il\nyT3GPUWfNVT8EzlM6E8k+v7sVkLAhH4rXQ0fy5ghMN6EPr524QEvYhES/MwZyNizQchib5LtaTjh\nVagoVBqJIn+NyFgCJVQPBE00Mp2qJrKs30iFUR4fUYpUbG6ePX8WhP7dSnPaHJDduHlTgcHzUhA6\nJX0xi/jeu2dXsVGE/nwsWUQGL9BaJtjLn8VjSHUast65eyfKUC8pyMUKhmCXACEPdvM3dXfFjLJM\n+feHYkDBBsQzTXqyWkQfmP8sgsx8TgQ1bBygmIDQp+ku58T50ByI4IoAFXXCnNlzil0KNnbs2BEr\nKpJF4R2poEbn1Mjg83NQOREe+gS23D/ZH5Og7nTcQ2fi/HOZLfcRFQkocbh/OPd0/6R7CKKajSDu\nHzAvDz4Dixw2hgjkaLZ0lUBWyQMq/SDEFVRyL1ebLIkQ39qzRRUeSd2+vbe3mKbKgAj8FDiSKEQp\nr5QtNG0O+yTUTpo03B3Toc8m6E2VKnmlz0CqWpmjzQ3UK3O12bNO/76S4kSqE1V2sMmUFfzcV40M\nE/qNoOa/MQJGwAgYASNgBNoNgclI6ENgX79xIzzLIfNv6DETD3PI7qgwluXnbJGcKPMhV7GpQXhT\nHs0i9C9euqRK11TlSnUuxOvAgKbWacoNIXaZEPdbtmyWv/3mINkheSFcsW3lWCO3U7oVq2Jl/X+h\n/xbkXNE7C4GQRDz9iv/P83kXL8QGAnkCE9KaPDH1LpONqkjdbdt6Q9yzY/u2EBaVz7+Rx3zORBL6\n5JXE8U8qxDYY5UEOQ/4Jl3Djxq2whEXZ/ujxo7j++XWsjRL6VPanDZQPIWCjUuC4KuFZQ5xXEfCR\nn5bzGTZyNqpyeuNGWaKuXaNqY/KcOXrN7Mhr8rFxPmwaREWJVkR/CK6ymCsLAsmZyA3JhZiIoMj1\nYnNF15z8qbxhlN9/IlYT+hOBuj+zFREwod+KV8XH1HQExpvQZ+eeL2C+8Am8zpxJJZuntfIFlAcB\n2cYN8ifXFzFfxhvWry/Wq9kQzYcoY6x1EGxAZmZF+4WLl4pLCgQvaD548PCLt9m5Y3sQ37t27iwo\nm0Q1TzDIHI7QvyU/v2s3aMyq4JYGrVKLpEatN0TeitAXOc/f0zAn7+TzGSvUD4DPSM2Zat/NBzvO\nicqDWwqkab7LeTHBNw9I6+0KMlLA0VusFW65QoBzamRMNKFPYMnGT6pKeBQBNvfOaVVEcB3Kg+Aq\ne9yzQbNe9xANq7iHBqvyy38XahAFdZwr98954XsJfOXRyQZKWPHo3kG9Ux7bercW33/3bfHdt9+G\nr2IkFBXLpkbJ8PL7N/KYjQTGVXlMck9e1b1JJUMkZtyrepxLkVGt8O9s9271XNDGFlUdbAyNdpjQ\nHy2C/nsjYASMgBEwAkagHRCYLIR+tjoBc0hl8qZLl/oKyHTI2ywUISaGKE/WNguDHE0EcKoCLV+z\nZhH6xP3HT54sTmqiGkegFWIfiW2oOCX/oS8ZldC7lW8hbtopcRNCrfidfj9cHhAiHEhe5QGoss+J\nzD927Fhx9PiJ8OpH0EOlbgh79F4LZOOJUIqGqfvUh20vVqd798Tnlc+/kccTTegPd8zk7Re4J5Qj\ncV8k8VyyuUX8VB6NEvrv37+Pig9wgDf448+/ij81f//zz/C6z5+BgCruwcq9iIAuk+2I6LjeiJRY\nh8vJqIK/HhsUaaOCDaMr4dN/TTnhyxBo8ZmInXq0WdSzZUus5JjZ2hUx2UQOE/oTib4/u5UQMKHf\nSlfDxzJmCEwkoU8Q2NeX1Oyo2gnI8kB9jyd5IvQ3RinbSgVKBGeQ0rUO1CEQwDGlrj6rEj3K9XKp\nXvl9IL93qoRxu4h9PhfFBaV6rMMR+ihUrl5DwQ1pei3UCgS7qBYY0xVkoNZesmRxpfHuLq07g8yn\nPA9rGALMWsdzkcyQ+pQZElAn2yJVOpw5/UVwg8VPOdhAoZ6DDZoLNzImmtAneM6bGaxUQqTNjIvR\nI6F8TpS8ck0h2ru7u6OhcjTG1f0zuNyy/Hc0SMJLE2IflRHKnCg1lVKfaojbst5hI+WBAsvy2KrS\n18OHDhbfHj6o5GFnNWng2g62hSr/3Vg8JhkJxQmrEpLA6NLFCLq5X6OUVGomykr5d5U8RVfIamq9\nKg16it6tWzV7hg16az1uE/q1IuXXGQEjYASMgBEwAu2MwGQh9CFSs40l3vkQthD6ELj4lj95+tlT\nnipqLEeY5Amo9omVEcGUR7MI/bOqzj2l6twzp2W3qUqBz1acqpxVzE3VKUrs5cuWR/XsVsWzEK8o\ntKM3m3Ky4fKAiKFLucAlWQudPHU6enaRd+RKXap4eR8+C4tWzu/ggf3FoYMHi8MHD4R6v3z+jTzu\ndEKfvC/3brgvIdvRysbK0aPH4vmMKSIqrFXjPtSKQAmFPgI9nuM6YR3KOlxOz8YQ+R2bB/RRyBX3\n8BRY7H748F6Nnz8EsR+fobyJ3Amr3i5NPhPx2EQOE/oTib4/u5UQMKHfSlfDxzJmCEwkoQ/Jnks3\nUQ3zhZ0HX7hlQh/SESUxu++UN9Y6CEYj8FLQ9UweeCdOnqrOwYEmBGYigHvjCxkF/XJ590MCD/fl\nj+q5/4oa9FyWNYt28bM/OuV6ELmoRCjthETfI/Uzyue9UnCgFIF0D49yBZe1Dnz0UeK/UDkrSgKC\nmyMKbJjlBqsEN5ukSiCY6dK6UQFHVDisWxvEfq2fV37dRBP6nDceljelxme9KrIdS5zLmpTblgfl\nrtjGgDUltwvm46efVDTDqTOyKomVktts08TnUX1xFfsdXWcSmvLgMw7t318cUDC/Q5tCJA7YLDEb\n9Z8vv389j6PKQElVLlU9eepUcUrJCAkJG03Pnye7HzaHPgekCkQJRnWfUBXD4+FwqvV4TOjXipRf\nZwSMgBEwAkbACLQzApOF0IdIjd5LUlpTFXtRRH5W6BNv83uIdIh/LG0QELHyM976EKDE5+XRLEL/\ngipnz4jUx3YTexTsTSG++WxsVxBKIZjCO538J6p1FdeSc02tELsjxbch7oHU10TUg+UOSv1+NWPN\nlbqs/D5X5CLcokqXal0mOetoR6cT+hDsENSI2MjbT51mYwWr3tMhusr40lsg3YebYqVfWrZdxQqH\n653ncDk9OXZsICg/oinuOfoXxLwQeSZ5ITZMkPpwE9i6rly1IjgLBFHMLZs35cOakNWE/oTA7g9t\nQQRM6LfgRfEhNR+BiST0CRCTF3yyjyE4zKNK6AcZvVG2N0uSR+OsVEqZXzfSSnCHSh+lNevfIr3Z\n1f/7yNEg3st/j3oDUp8JmYl/f1YuDxf4oeBOO/h9UfqJn3727MdjLzXImVesWrUySjH37JE/uUhm\ngs5agovyMfIYL0F81zk31AK//f5H8fsff8bKl3gelBZWbYqkzoekpeywW5jWY1uU3491ogl9vPNT\nc6ZrQaxDTt+4cVPlkTfC97B8rPtF5n+ngPq7bw+H4nzGDJVbapMDXIYL5ngPAnQGgXQqKx6IlUA+\n2xuhCioPGmGxgbBPTWW3q2EV5bfRh0Er9/N4Dq5Tvkc4h7/+PqL5d6z0WuD3ud/A1p4tFVV+TyhM\nIjit9B4YCadazsmEfi0o+TVGwAgYASNgBIxAuyMwWQh9iNRczUmuBqHfR1WslPpPRK5iRUMsSR4T\nNo3KaxAtEXMinkJIgjVOeTSL0GezAFKfif0oIhbidlaI/CzeoQFuVmyHSpv4XwdEbFtLfJtzAXKN\nPn3mZeUA9NO6LUEPfdNYycXAgPfDQvWnH38ofvrPjzEX6+fRjk4n9OEKuA9Ry9/U5s2FCxfCAvWc\nbFDLvAGbOHviHkyiOch2BICIAfldvt55Heq6cA8hhiJHwlbp5OnPgig2FBBCIYris7m+ixYvihWL\nn52qzt6za5d6KGwb6u3H5XkT+uMCsz9kEiBgQn8SXCQf4ugRGG9Cny/ArPhgZcc928cQtOSBdze7\n60ya4BKcYV2D91095Cjkd+ym63NZ/xSxeUSTFcV1eWRCn911yO/clJegYHhC/0oEupSjYruTG+jc\nu38vGtMuDD+/RQoqV0WwuxuFvoLeemx2ysdJsJEnGP78y6/FL7/+VvysCZZ5gBVNhCHvmRtF5KPY\n7+7uCqV+fl09K8H7RDbFJcEgmE4WOFdj4yQ1JL4b99WUSpBOo+S92jjBs/GQbHB6pBqKzRNVTExV\n4F3rIFDPdk2sJDPYNTE5hvJgo4RkZrcmljUE9oulzmHlWozniI0s7nnNV69eF38d0X2vTSyIfQJS\nAtqcgBB44i1KDwnu+8WL6BuhYx+hd0St52NCv1ak/DojYASMgBEwAkagnRFoZUKf3CIT48S8WTSD\ncCb1Bkt9wsinQiAjoQzK6Nx3CUI1xFOKN/9W3Enj0vJoFqGPdeQ1fM3VC+qxmpiWRyj056Xq2IWK\nwbFNTRaqSxq2v6RHF5XA/f2VSuxSpXAi9NkgmBK9BH76MZH5kPom9D9fmUY99CHzsTnFwon7kE0V\nZt/lfjUlTk1qyWkQUWF3dPDAgVi55rMrVkhUZjQy4CXYlAp7J61U4NM0l6a/2C3N0302b+68Yq5W\nCH2EZPv27Yscn2PKs5HPHs3fmNAfDXr+23ZCwIR+O11Nn8uQCIw3oc+XY/Y6hGykrC3sY9RoBvI9\nD8hGGrdGY1qVMM6WJyL2NXnm14201kPoQ+Tjtw4ZC7G5Un79NDjCcqdRQp8v+iUq+aTcD2+/HSJO\ndwV5ukOEfmMBRgTbUqLg854JfUj9/2mWCX0U6evXJZsdlPpJoU9fgsms0H/xRVKBxyG2QzQ4fvnq\npe4PeSSq/wIWN729vVWCPexjKsHVcNdy8P2Eyp3AiLJLVpRJWNfQt4CAsjz4DEhxZo/uJUp9ue5M\nEp/xHJSM0rQXMp1jRymF3Q6qKTBjUwycwItGzbERIVUJPpDzdc+icCJQJRgd7TChP1oE/fdGwAgY\nASNgBIxAOyDQqoQ+uUW2aUSdjA8+SniU+VSnEjsSa7MinkGsQjNcKqh7lTvl/AmbUxqX0rQUEUl5\nNIvQJ+4fqBzLCymmywPylvxq1sxZ4W0fVdLz56laet6wuVz5PQY/Ho7QR+gUeYfiagQxP3z/XfHj\nD98XP37/feAz+L3q/bnTFfqIkLDlvaaq6OvawMH6lM0l7G7J8XM+w+bNoYMHikMi9Fm5L/OmU6Oi\nKjZryPsuXkzNoOFMqFZh8m+hfK9B6LOhcECfT0Nk+AryTdZm5FL13Dcm9OtBy69tZwRM6Lfz1fW5\nVREYb0KfwIcvYL4ksyXI+3fyPtTPKEPy4MsPEh8V+yx50KPO5zm+HOv5YqyH0E8e+tsiKKWpTa0e\n+nhEEvB+TaFPuR9NmXivtVLJbxPJjE8/s1HFAEE3gxXF+v9+/qU6KU3Mg0AGP3Q80iFqIZwh9Vmp\nemhkTLRC/4U2fkIxpKAKpQaWQ88graWUQKmRbHVkrTN9RlQiQKxTeUF1hG6caqltrefO/QPGWP3Q\ntPm8yntPnDhZHNfEZqk86E+Qm/Di45j7L9A7odFrXX7/eh6zUYaqZWAgNb7F95MyVVYwS0Gu7Id0\nj+zbuztZBUlZwsbPrBnq6xDJUGMbToOP04T+YET8sxEwAkbACBgBI9CJCLQyoQ95/FaTlZ5gp06d\nCa9ymtC+fo11afLNx8IkW9msVsPRsPPs7ooq4AePHha/qmL4l19/D1K/fI2bRejn6tNXOqZ3yiHL\nA0HPVIQ9yhvJHcvxbj35Y/k9hyP0//nnU/UzsPj57vDh5KEvu09I5tGOTif0qabv71d1hHJtLFdv\n6Wd61PE8eXC6vtNDBHhYFdnRkFgr/QuyCLAeIVf5epED8plXmdeuxsYC1SHYvFIxkDcTEEdB6PP5\n36oy/ID6qXHvpd9Pa3gjqXws9Tw2oV8PWn5tOyNgQr+dr67PrYrAeBP61Q8epwdsHFAaSvDHRC0S\n1iNHsNy5/cVRQLZjP7JdExX7smWpTHP5smXDbiJkQp9mUdiw5N17rHcWLVxU9eGH0GfTYKsqAFhn\nNVgCyEFnUr9K6P/v5+K/IvYHE/pdIvA5F4j8DRD6IvchbQnEGxkTTei/VCPg23duRzBHMIUyh/4I\nVHmgKIKInilVzmyta1QRsZ7zFdFO6WUjg/NlEyE1IX4ZhPgxNSE+evx4eOmX33Pt2jVFrzYQqPTY\nvHlTtRkTnvTjTehTCkqwSxLCekWBcC4Xxv+REulo1qx1/769EXwe2L+vWK97dArJUEVVUj6/Rh+b\n0G8UOf+dETACRsAIGAEj0E4ItCqhj6gq50pUUiNa+fsIPceORIUn1yAT4lQub960qdjE7O4KkRAx\nN5XI5EAIjf6rvOSX337/4tI1i9D/4k3H8Ieca5EvUqVAvge5i/UKz7GCScTTs2YXS5U3HkYlfvBg\nkLsLJeoa7eh0Qh9FflLJXwr86ZlAbzPusymyV50l3MGfPA9CPebBQ2HVO1rsIfTZPOA639b1xuKJ\n+wC7H6oEyoNNre+1iUPvNo6Bfm1sNlAdwMbCeA4T+uOJtj+rlREwod/KV8fH1jQE2p3Qx3oEcjPs\nR57JeuRkxXrk1Cn5r9/7AsddNLOR/zmzS37o7O5DyFNSmoPYL/6g8gMqFr7cL2vymDJVyGbWOfLv\nS++RPPR37ZRXueauHTsjAEE1UG/VASQz88OHj2GpQsD862+/af4e6ut8jJDIW0Qs06yVdZ3sdyLg\nFpmPlVAjY6IJ/Tdv3sq/8FHytdf6Rg2L3rzV1PMfP32MAIrgCaX+0iXakNFmDAp5vBUbGaHQfyZ1\n/vNnsjd6Ho2YTpw8KesaFPqXv3hLKiHYEGJSFZA2hJbFSlA31oPEI6Y+iHLk/lC0XA1roDu6FwlI\nCUzfv38XqiHub/o7YAHFvb9L1jurV62KUup8XzbjmE3oNwNFv4cRMAJGwAgYASMw2RFoVUKf+P7h\nQ+Jr2Vhqhbw+d1Y9o86di3g3q42nT58WsSLila09WyRg2Vz1qIdUJdac7IQ+sTRNfz9V8i3sXhBt\nUY19VcKt+6UK2JkzZ1Rj6pUrV0RT1D3qlUY/AWx+Rjs6ndDH3pQKkTNnz6qPWX/cn7m3GbnVfOyU\nlOOxyZQ87PeGUKkZ2PNvIjVAVhNkNUCmbwMbXeR/g/uoIZ5Dnc/Exx/RXq52NqE/2n8F/nsj0BgC\nJvQbw81/NckQaHdCH2X1fdmOYD9CAHZetiMXLlwszmnFjqQ89snzjjI5lMrstKdmN6mx0nCE/nUF\nerlRK4T+zZu3ihtSRbMSAM9BDS1if+XyFWqWkwINVNGUrPIlz2sgUGsdVB28fUtZ7NtoKvyHfCrx\nq/zjr7/CLz2/D8FEb2+qBqAqgAa5EPkrFfQsHYVifSKb4mLT9ErXFKU+nvlh3fReFk56np4ClNnm\nEst5c9SsSME017HRBsTv9d6PnzwOXOlPQDB/6vRpNUnCQ/9KhjpWmuLulg89E9wX0wxZHqM0xWrU\nv/GLDxjhh2iUDKkvHFCvYK9z/vz5WEnSKINm5V4j8F2hHhH0iSAp61HFCNUF2ARVGwtLddSMYUK/\nGSj6PYyAETACRsAIGIHJjkCrEvrE01R03rghS0vZWuJRTk5DfsPzYYMqJTTrOixEt6miWfahxJDE\n2kGsaiUnmuyEPvF05BfKLVhjcyOsKy/G49xXC7EYxDHxNPkVFQrkW/QT2KZ1rvK80Y5OJ/RR59P/\n66SEVORg9I6jTwNiPRogp357i4pVEiTtRjBXESiRY492QOhTEXBXORVV91RnYK97Qfarg3NA7Gyj\nOkPqfHiE2VE5kKoHyPPHc1ihP55o+7NaGQET+q18dXxsTUOg3Ql9vvjx24vSSK0EZf0KTlEvl+1p\nAJQv4m/lffjtt4eC0I/ddXbYNYcj9Al0Kb3LjXqieY9+Jqj9+FEkMxYmmihX2Lk/rPmdJooCiF4m\nno+1DrzisZnByxIl9pGjR1USq6mVACcPSOxdatC6ozLxzc9NWiGaGxkTrdBHNUPTro+qTuBY8K78\nFCQ2fQU08cmvzPDRbGDDpIwLgfwDYRyqJa2oMs5KrcTEV7E8KD9mo4a5XYkO15dAnyRnPIK5qppI\niQgKKXz+CYBZc/NpNrgoT2VzByuidVq7tHnFZgSbWATGjOHu9/I51/LYhH4tKPk1RsAIGAEjYASM\nQLsj0KqEPsRxtja5cPGSREk3QxwCoYkiOkh7xbSs2HlSbbxTFZ7bROqHvUhUx84I5XI7EPpUeJNv\nvdEk9kchzoTIfRWiomT3SW4XMfX6ddGzjArv6CmgmBp7y9GOTif0UeeT3x45eixEedHHIXLgVwWW\nRmymIEZiM6VX1rmxmaJ1rsj+0Q7yzIEB9SJ7kHqSXVV1BmIpZt/lf1dpp6a4+6NSgM+fO3dObDqM\nh6irfK4m9Mto+HEnI2BCv5Ovfged+2Qh9FFLVAnLIHIr9iKQuUyuWWWF7P3w8UMQvqgoINwzqY//\netjhyHrklQKC5LmeSHtK9fZrV/3APnmJKzALsl276iN9EePjl212wJNgL28cEIhx7BwjFifs2ucq\nAEh1LHkI+Ng0wLc8W52UCVX+lqAiMNCKB3q2EaLy4PSZFGSe0QrRH6p/EdkoQ7D4STY/2KmslKfg\nggiACMgbGRNN6DdyzKP5G64f1zd7NlL6eVGJDioRNmzKA5udQ+GdeSCSHCozUI9wjbkmYz1yIzOO\nGXXV8eMngsw/duJEquhQUkJyQgC8WRZMyY5pU9gwrdFmz1pZMXF/NHuY0G82on4/I2AEjIARMAJG\nYDIi0EqEPjE91pJUo75S1WsiK1NlJ3kNCnTyqJfKO7CwDCtJ+cRjL5KV6FtkuUPuknMY8p9WIvQj\nRyQ/rORSnDNiq08SBJUH1a2fPv0TzyPmyb2zXqqP1hWsVqTMhtgnvs55Jtanq2SzA4GPOIZ+ZWtW\nr0oNgxVTN6N/VqcT+qdUEf3XX39HJfpZEenkMe9UoU6lOnk0+K9UrzJEa1vpU6eKkd6eLZF/la9v\nI4+5V7K9DyvVKme1qXNaVlQo9csD3iDzCHsrdkvk2kw2vMZzmNAfT7T9Wa2MgAn9Vr46PramITBZ\nCH0sVd5KLYFSAtVENSAjMKsQ5qHWVjBGUycaOrE+fvKkGIjmOTTRuRcWNVinPHr8pPhGKObGt9Go\nSQEAASoNaymdzMT4SGQs78cXPUpuNgsoxUPdwpf9a3m8EywzIdhRDvTyGVpRdeDPD9GPmhsvwJnM\nQRUBEPmcM+cOBnzWvfsDFeWMSgBVFouvHyu4UA7LJsHChQuCzN+BR7omXvI8D9HcqAUN7z+RljtN\nu/FrfCNwjxJk2SdhoZTLj/FOJNkpD+6bqPBQ9cVu+dFzHWepQe8sNegl2RnLQaJC894XL1/Ehs8N\nbTacOn2mOK1JMEyylpK297JbWlLs3L5dmw6peoNeAzzH/cgGRLOHCf1mI+r3MwJGwAgYASNgBCYj\nAq1E6BPjvhBZ/1zxIyQguUvKYS4WDx48qNhbvgrbmQ0b1hcb1Stqg6xF6BkFgclz60SkfoMg6ZtU\nIdtKhH6Q+BD1lVzxrfptRT6l834n0r48Uq72PuLl1/o9uR055BOt2FjioX5HAp/Hyh+nTUt2qdMl\n+lor+yEqdBHKbBQeSxYvKZYsWRwVryMJwsqfP9TjTif0T6jn3R9//Fn8+vsfUR2d8pl0nRarqngs\nCX3y77gHdB881sZWf/+VsF3FepXNr/Kg4nnfnj3FXs09u3eGQGrB/AXRnJf8fjyHCf3xRNuf1coI\nmNBv5avjY2saApOF0IfMfvH8eZCVBJ98ob//kL7QP4osD/V6BG2fiidqfvsMVQnNcPUlnJuoshKk\n0UiVFX+9pKrYECtBGb6Qa9euiV3/HJyORMZmFQfHhZobpfzpKM08FyQrwRiTHXoCYKxOWFdq04CN\nA8oFscKBTE0lenO/IIAh0Z9Xzh11PkElhO31GzfDWgXbnWQL81BB5vQIHggi2KwI0lbkLYT+4sWL\nimk6BgLQRi1gOo3QZ1MIiyYIfJQZqPIh+CH36clQHniJfv/dd8UP338XjZWjwqOC90j3UPl9GnlM\n0sL9jY0UGz7Xrt8ozqtMlV4R5+Sjn6o7UB99UvC7UpUoWANRLbIvbIGyioQNpWYPE/rNRtTvZwSM\ngBEwAkbACExGBFqJ0Ce3ePAg5RCQ1ijQ+zRp/En+hFKdiZ0lMe52LE1kKQl5ubyi2F+i/AWBVLa7\npJK1VRT6xLxZVIVdJ3nas2fKJXXer9+8/uL2eSfFdxKNKd/U6+4P3C/uSzx1X7g81d8gmEE4Ax6p\nx1rq0YV3Os2Be6QMh9BPlbmqzpV4aiRB2BcHMMQPnU7oYxv6y6+/FT//+qssj85FHsN1ZY4Hof9M\n90q+Z7i3OZ7jqnzmWMoD7mCPeqjt2b0rfPwXVgR7iPaaUalR/qyRHpvQHwkh/75TEDCh3ylXusPP\nc7IQ+ljJJGW9FBMiLaMpLIp1ld19ELkP0cyk/BFyG2UJk5318pcxlzsHnSjWd6t5DqT3TlnTQKrT\nwJQAoR7fQ4I7lB6sAwMPiuPyLT958lSBqoDGPZDCKPUZ2cN+iRTRlGXmDQTKBRdIpZ8tccpBINUJ\nWSnCClnbr6Ci73J/lH6+keLk7VttVGhlk4KGt8v0/qtksbN92/Zi+/beYodIfd5/tKNTCH0Icgb3\n3cWLqdoCm51bt25HpQcWPJDn2RqJdcf2bcWPP/xQ/Pjj96HSgMTnOlKGnF83WvyH+nuO987du8Xd\nu/c07+oeuR62QCRnJGaMfAzr1q0tvv/2W20+pIlyhM0HNpzK991Qn1Xv8yb060XMrzcCRsAIGAEj\nYATaEYFWIPRTiIsQ5HHFlvR25BMIV1DYX9aE1CZuZCL2wC6UHlGsa+RXTr6RPcLL16nVCP0QVSk/\nYyUnpCfWI+WJCKTKA+U+/uzE/YjCbqoX1W1N4n5yvMBCfzBdWFDRyqS6ddOm7lR5reprKhbCeqiJ\nsX+nE/pHjx0v/vvzL9ok+jksZsvXjM2ksVbov6RfgvqP0YuMexsv/6PHjkUVdPlY+DeBxS28Ar3r\n4BKiYa94hUar4svvX89jE/r1oOXXtjMCJvTb+er63KoITBZCn93x8DKXbQ4qElQS+BryBYuX3if8\nECs79jTChUhnJTCLEkvIf5He8+bOK+bOmxuBKCR6KpPsLraoXBLbm0aUyqg+sgIE8hIS9bKa5fTp\ni5/AkS9WPCgJFrFfmVmxYeGLHvKduUTq+dnyWp8zOzXQKSu6IdEJrKOxaahGBmT3otJPWb6gxp4y\nJZHGU6ZOiQ0Jzgv1P575uTQ2q0aqF77BB51A6HOObM5wTbmHKKs8H0r3C8V9Efm5/JJ7CwVOum6z\nw67poBTvJDs0CeMaxqwkRA1CXtOfce9HY2Zt9rBerzRppqKADSDUIXnSvCsaN+k4WXPFBlUb5fuu\npg+u4UUm9GsAyS8xAkbACBgBI2AE2h6BiST0EX8Q45K34ANPXtXfn/p+Xb16TT8rt6gIQz7ptbly\nGLERZCXiINYVakIKSZlymplfXLNWIvQ519zYlpUK59xXjfypPN6/e5+sTfU6CNwHyt8ePnoYeRwk\nfTrfWVHVuhLfdiqsteLdTuX1OlVeg0uzY38T+pOD0F8tkR7CLixNqWJBWBc5vmxNZ8+eVb7Vxvyx\nCf0xh9gfMEkQMKE/SS6UD3N0CEwWQh819A1ZzNCMiImHYSLKnwRRTpBK8PkPHvoqo8zWOtjy8Ls8\nCcBiKghbvUqNi2gGGnN1BGuZ9KzHkiZvJODlTxCYlNIpKL6nYJl5V0Qwx0sFAQEmky94fPUp3YTI\nRykdU0pp/Cjz4P0JRPN8/uJ5NMWlMS7nOn9e2oiYP39eBJPpnFYXq9WQCfUIVQEoSZrh4cdxt7uH\nPs1l31BVoQ0Y7juaDkcTpDPnwtYm+jOIzCchAlsUIkvll7l586ZIdkh4NnV3xTVE0YN101gP7hEq\nCFDj07vhukj8UOvHvXev4uVIBch82T2tj7LQ3SoL3SOvf1T5U5qoJhp8rib0ByPin42AETACRsAI\nGIFORGCiCf3IJbAClcUMoo8sWunruxwiliyIgsBertyBHmPkTVu2bI7ZoxX1MWIQqjsH50utROgT\np6cq6VQpjX1mn+LkS4qX2cwoD/IzhDzkjWATIirldKxUIixauCj6ntF3CjU2uSMr9qbZN5+Nj1zV\n0KzY34T+5CD0sTPFlqoXW6reHvWtWx62VKyIv8ZzmNAfT7T9Wa2MgAn9Vr46PramITBZCP0B2edg\nMUOgiJpkQP7leJhjcfPq9auikENKmKSIvIdYh3j+9OmjAqspYSUyfYa84xV4blZpJL75lEiuWb2m\nQsiqLE6kbKNlkmwWMFgpy3xOhYA89/BoRAly7Zr87qWYhuhP1QMi5PUaaN6pCohprhSkqo41Kzvi\nDav/SeeUqxBSwKmgU581Zco3CrSTIh/FCGQ+anwaVq1WoJmbss6SQrsZdiqdQOi/EllPKW7y0Bwo\nTp46XZzSTBZKz6sbMiQx6+SZGLZJwr2ra2PR3d0tMr87no/Lhzq/eh3H7gGEPk1waYB7RhNCn8bP\nj59gUfWkElQui8SMe4MKArxQCT5z8sE6FsOE/lig6vc0AkbACBgBI2AEJhsCE0noEytiK0PexEpO\nhSc4NqH0XPqgvAKbT/IMqoiJF7GR+WLVcwiIiBnJWQbHji1F6Os8qKZ9hW2K1rPqLXVSdqhM+pCV\nxz//fApRGOIwcCLfAQdWmtxC2DIRS5XxAAvEYORZWTg1GJPy59T72IT+5CD02fTq3dqjam3NLVuK\nqJavVHJQ6TKew4T+eKLtz2plBEzot/LV8bE1DYHJQuhD3vf1yQ9cpH6/7GzuQejLeoeGRagnCLjy\nLIMD6Tpz5oyq3QhkK+rpTOgTpBG0MiG8s1q5UWUFwR8qfQJH1ux3f7n/SjRSffIUkjVZ8HC8ox1s\nUlBpgL3OKq0EfL1UCQAAQABJREFUmRDLXRs3RnNffh9TOBB4j3ZwzO2o0M8VHKxPZJuUGw3flq3R\nuXPJcodEAKVPSmK+KWbPmh33UdxPkPiysonqCG0U0Z9hrAcJR0462Nw5roTslJIUVv5dY0uVm3jl\nXg2s3CPc/2xubZLV1NjQ+J/P3oT+Zyz8yAgYASNgBIyAEehcBCaC0M/CI1TokH3kIczLyqlOn5Zo\nRUIQqjynyroTG0/yBfpw9WzerOpTTcWK2WYGz/Lh+oy1HKEfZL7yMq1nz50rTqjP2YkTp4qrEloh\n/PpYsmwt5wLlO5Rq3Hz+5FxhZ8pGhyZ2rZD5VDTQayCPZpH6JvQnD6HfIyK/p2dLNEnOG0AQ+1R4\njOcwoT+eaPuzWhkBE/qtfHV8bE1DYLIQ+jS6pVkT5ZJX5PMYhCuNb/U8/vr404fNjtbyIChNpDZK\n+OnRiBZ1BQ1p8bvjC5cvW9bZBGOaBGaDS0jL7znc43fyYHz67KkscdLkWKOyQJsQt9RcKZrrvEqB\nJWTsaAfHia1ONGdSwLleHo6oxLu7uuJxeLzrnAi+rdD/OtoE8EGMQ5Brw+KuNopu3KjYO6kcGbU7\nZcmsKJfAEdyxSurtqagxtHI/pSZZS1Wau/DrH9bEZ9k84r5/IzsmNhpOQOgrMaOi4PbtO3o+NUrm\nNUHec19oUsEBsR9TmxBjPUzojzXCfn8jYASMgBEwAkZgMiAw3oR+maSGHL4loQoxIn24rl67rqpn\nqp8lOlJFcbb+hJheqwrUXjV6ZWK3s1jNPRctWqi56AviejDmrUboR0UCKn1VJbBpgcXQufPnI85/\nqx5s2OuwElMnW1RU+V/mZ/RXI65fqAm5j4CHflRrFUvjk75YfdCWLFpcrVz4Rrlno8KwwXia0Deh\nP/ieGOlnE/ojIeTfdwoCJvQ75Up3+HlOFkIfL/NMrEK28vNjTVYazj57TiPcZHNTvqRJTT0lKe8V\nYBF0EZSyYlWTSknXhWoZlcV8BW0EbpRPNjLwpmST4cEDNVJSM6V+Bck0ycXbHLU3TZew5UFRTZA9\n2gG5vIDjljc66zo1ZtpSUV5D3MY56Xl+Bwk92tGOCn2uA4F8LjOmqeyFi5eKi5psILF5RPMsGhxj\n7ETCM336DAX2ahK2Y0exc8f2YofWFVLlc+9wD41HeSX3WrYGwsIJW6DTUlmdPHVGjaPvRWLCeXHN\nsNZhYrWzYf2GqCBYLl9UGniN9TChP9YI+/2NgBEwAkbACBiByYDARBD6WJEiXEHggcioTyIjiPyb\nN2+FlzyNcB8pzp0zZ3bEr8SwGzdsUNyoJp+Kcbf2bAlhUIiEJBAaLp9oLUL/s4c+/a+uXrsW5w0G\nSWSVBFYvJbQipkaUBYFO7FwexP2IvWbOmhl9y9YgDFujPmxaQyRW6cVGvwGEZDGx3GyClaUJfRP6\n5Xuxlscm9GtBya/pBARM6HfCVfY5hjUHQV1//+XwfKcz+/ZKh/bxICVrvQSQ9gRfqEogxiEJsUZh\nhdh/ILIVAv3Ro8eVt6QR7r/ffZaCMcoio9mTCNgtKiXdolLSzZs3heqCRk/Y7zRy7hDDVAmkZqR3\ni3sKkPuELc2XUIXgoZ/HUEHeUM9DJH/tfHh9Ph9WPN236Fwoke2W9Q7nks8pezvmY2hkbUdCnySH\nTRaCZuYFNZU9KU/R4yrLZTPm9WuU7mmSxFDtANbYNe3bs6fYu1dzz+7AegYWRxD+Tdg8Gen64PWf\nN7bYcDgtD/3TZ89qPVvQcyIP7pF9lWPcq+NlE2uhGnfRvIt1rIcJ/bFG2O9vBIyAETACRsAITAYE\nxpvQjwpUCTuI318oboxYMWx2zka+QhNcRFEo2SM2lFiFFYvSnTt3FLt37QyVPgIieo2xDp2rFOHL\n/7+ffyn++7+fi19++/2LSwLhjb94jzYI2CTA1idbkyCIafbgnKN6W2Q+KzkkFbc3ZEtJrha5pM6f\nlUrXN4r3ed1QoivyPHKpz9XdKwpsTrEkIo+k8rVWnGo9VxP6k4jQr9zXWO/k+9qWO7Xe6X6dEWg+\nAib0m4+p37EFEZgsCn386FFIZ6U0agrsa15pffb8RWxG0ISW+aESuH6UV+RbEbQEaXkWYRge/4nS\nyLDekR8iKgvU7amMcl2o+FFYELSyDjcItlB2vFXZJnY7KF4oXb15iw2I28UtrWxGsAGB8j9N+frP\n+PyYABGyGCI4lC/63FDwK3ikQdNHSkEr58VnQTATdFIqWj6npSKZs6VQUpBU1CM6v3lz58Z78/7x\nGcOd1BC/axdCH2xzE2XI/KfaMOL60OOgX9ZOFy5cLM5fvBBVIVmxw3Wm4gGLI0puCdZSAyRKknuq\nVRBgS0A/1oMkDFUVG0WUTlMF0td3ubioSXLCccT9pE2GfXt3x+bDHhH6lAmzYTVXs5GNq3rPy4R+\nvYj59UbACBgBI2AEjEA7IjDehD65wosXL6Kv0uMnj4vzim8vqAHuhQuXJIZ6EEQ+fb9QpaeeXMmS\nFIV+9FsSUc1jciFsZHJuNNS1aSWFfgh2FLsTvzMfSPwyMPAgRC9PJAYr26BGHle14NHrlV/lv4u+\naJW88+PHD7IdkliKam/NDRvWxeYHPanIIYmt5yrfYm1GLsAxnJdFUO5fhqgoi+96ZPc5kQMl+AVE\naxdV1Swx1F3lI3fv3Y+qD3KU8vju8KHi/376SfM/xbbereVfDfv46LHJQejnnLC3tzdywhUrlkcV\nNJXQ45FrlUG0Qr+Mhh93MgIm9Dv56nfQuU8WQp9AC1L/Bc2NtPIzQQ6E/dsKuf3mjYhu+YanIIzH\n7yKIDWseKfcfPX4UfuNv43VvRXhODT/ERahR5Iu4tWdrBBkEGnSrn1ohZqeNQM4SKD/TRgKWPw+k\njKakk3lN3pRsQFBdwJcrx7ogrHEWBDGMDQ4/QxLjx46HP8pvfPzZSCAQRZYPic5mAR6PrM+lpMnv\n+VSfGQS/zpvzmjV7VtXncZmI503dm1LjVtnwEHhWP6NBS6F2IvTBl82SN9rwuR2keCLGr9+4qWun\nayjrHRQ8nHO2rqHZ7Xpt/DA3rNeU2h0LGx7PUQCPeimSnhE2gZrxPzGUR+N/mu636/IDrXj9a0Vp\nla8190SuJGBds2Z1KIzwSG1G1cZI52JCfySE/HsjYASMgBEwAkagExAYb0L/6dNnQWBTuXnv3r1Q\n0OOZ36+JkCWT1uQdm6XK3ywCH8U55HQSCK1WTrQ88hJegz98kkV9/Wq1EqGPeIf4PQRRWl8ofwyr\nSgnBIOkjj6zkk9kO9f17VezquWRpqbxTOR7Wm/fvDxT3Bwbi+bAmmp1EMfQa6O7qUo+qrsgFlkjw\ng+iHSQ+30Q4T+pOD0GczDGvTHdu3hb0pPdWoSGEdron0aO+Pr/29Cf2voeLnOhEBE/qdeNU78Jwn\nC6EP+RpBmVT3H6SOCDJWTYtYP376qGamaYV8jQZIqPIVrEGoU2KJQp4Juch8ogD3vQj21DBXNikK\nuvbv21scOLC/OLh/fxC1qJvz74e7NSBWB+SZD5lPs6k+KaQvy58Sux2OheCQz5qqDYRlS/Xlri/4\n5cvSFz3rUv2Msp5y0+zBjuw+zlHnhrc79iq812s1dUJdcldBOWQzAWY6n3Re6M7zMfNenz3et8cm\nRf4MlCONjHYh9BO23DOfIlgnAbksT02SHNTu91CYyIf+8eMnUSnB60kMNqxfr02fnig/Ro2D8mK5\nJv75VF6Q7DDy2gjGtf7NPTXvRRUTfv9SxvDzfU2OnX8r+VrPnz9PlkB7qrY7BJ1504F1rIcJ/bFG\n2O9vBIyAETACRsAITAYExpvQHxAJjVAlrGZC+KHH1yUAuXkjBFKfPqkSWDEulpHY6+zatavYs3uX\nxB9rQiBEI9yyPeNI8W0rEfrcDzl+r5L7EPxM5Ys5F2DNDXF5nipoLFzJ71gRzFxB6HP1WsTaKO8R\neyH8Wi3boK6NGwusdzaokoHq6LUSzqwVfo32Yyvfxyb0Jwehz3Wn38SunTtkXbxNtqza1Fm8JOxZ\nEeuN5zChP55o+7NaGQET+q18dXxsTUNgshD69ZxwkN8i9CHACcaCzA/bm1sia6XCrtiUYM9THhD5\nhw4dKA4dPBhKi2j+pC9hdtYHB7AEhnnwnjdvy2JHVjsEzVeuXNG8WvSroSpBYgR+IvPnzplbtcNB\n9QIJHLv3IvX54scSJzfl5fP4WwhnAs9E6IvU13kFoU9Zo84jE/uxiuQnCOXYmASS0bBVgcUOBRkE\nl0tRDOizFkmt38iYzIR++ZpFVYMqGl6rsuGJSHvsavDL79OKiolg6LEqK6gGYYMk7GumTwsVDpgS\nrNF/gSSH6g7WRm2M6rkO3BOcByu9JM6cPReNcM+eO1855iexTpkyNTaJIqBUpQYbOzTu3aVjZwNi\nPIcJ/fFE259lBIyAETACRsAItCoCY03o5xiRODHHisS3iFb6lZ+EYEX5wj2JVt6//xBEPnEuIhCI\nfAQg9IVauXJFMUcq9NlqlEvFZ62j1Qj9Wo8740XeRY6QyXxWKmEjR5BYCzvVEGoh1tIkr1oHgS+l\nPtatqPXDqqi7O1mtUNWggxicR9Z6XJ1O6B87fqL45ddfi//9/Gv0CeP+/ucf7u1/IndepfsUn3py\n3K2yP90qG6Leni1NsbnhnnjxIlVpULHBvc3xYAN0+syZLy4hn8+GGJPeE1TFk2szaag8nsOE/nii\n7c9qZQRM6Lfy1fGxNQ2BdiT0saV5hz2NVPHPVVaZfPcfxprV85cUlOHJXx7squ+RMmWXAtpuqS1Q\npfBFzJdyORCDyv9HX/IpqPgnbE+ywhurlqp9i0h3VP545zGT1+L6Yj1WLVJ6897Y7syX7Q5kftUi\nRYFzJvSxhPkktUhYC1XKQp/KlxAbIdTjVAVc0cbBFalGWAk82ACAeGcjYVN3VwSXSTmiz1awSdMm\nVNqNjMlM6BOY5WtGmTH3BYH6PVU5XJe9DhZJ17RSnpx7NIAllkgLpHJnpdEwwSJzox6z6RPXV2sz\nvDKHuybcdx8qCQRJGE29Tqmx2clTpxVYno3Nh/D51CYEx0VyQYDJSjXBZtkuUU5Nk+TxHCb0xxNt\nf5YRMAJGwAgYASPQqgiMB6FPzgARzLwmNf75CxeKi/LOp3L4c8+opyFYycIUbDrx/8Z2FOsQBCHJ\nmnGm7Blrt46ZrIR+dSNEeRdEPVY7YfWqFbHW1UquhXiLfmnkCsS35ABLVGW9RLE1TX63b8NyRUIq\nCX8QaZEb5KrYRu7JTif0T5w8Vfz2++/RYBkRE3loznPJZ8aa0E+WumocLYtb7u0TJ08Wx0+cDEFV\n+XqSW+/do+oWbYhB6se/K4m9FixYKIHdjPJLx/yxCf0xh9gfMEkQMKE/SS6UD3N0CLQjoR9f9vrC\nj6a4IsEzOct6Ql/CBAd8GdNMtDzoSk9zUyZlk6hTaHKDn37ZmqQc9EESX7h4sTirIINAA1I9yHYp\nvPlCnTt3ngjUtCnA+3SLUN3E3NQVJH40yK14maPwzjMfV3yWgkua4ubzQoWfLXge6zPOnTtXoNA+\nq6ZJfGYK4t+H//5KBZecAwFPd1e31Atbip4tPUFM58+oZ52shH7GMStwaNxEgA4pfksNjKNyI6o3\n7qoK4pUskuShqYCe6851o7kRHqIbtdET10/XcJ2I8mxvxFre9KkH01pfyzlEnwhdf+4BPP65n7mX\nT54+VT3m9+/fxWYRFQRb8ELVjAbJqgqhhJoEYzyHCf3xRNufZQSMgBEwAkbACLQqAmNN6BPnIu7I\nlb1YSZ45e7Y4c+ZcVKO+UV5EDIkKHVHR6tVqgiuRz+rVEn90S10eszt6fEFG51krnpOZ0I/aa3Iu\nYZg3RFjJEbAswqoIQp/8MU9ifwRZVHMv1abIvr1YXO4NG1eEXDmva1T00+mEPsKlP/78q/j9zz8j\n131HflbZrBoPQh8BGH3ryGUuq8Ll1KlT4hFOF+eUc5cHgrm49rLv3bt7t0RgSQhGzjUe/crKx2JC\nv4yGH3cyAib0O/nqd9C5tyOhX758BLYEZhDRzF9/+13zN5Xv/R5q7PJraXDatXFDsXHDRk01O600\nPOXxYEI/3q/yvgQblN8dPXas6FNJK4Ey8/XrNxHcxaaASHV277f2bImSwF4pvBv1VoxzqpzPMylH\njh49VhzRZ7NiF5M/Hz/IaMKLLYxmz5bNoRyglHa7VDiNjMlM6Of7gIoH7JAuSK10XhPVzQM1vKJi\ngxXlRx4E6RvjntB9UVnTfbE+Nkry68ZjhdBPjaFfan0VpdP5voPULw/uud27ZLGjqpOdO3eGKh/1\nEMFvPaXT5fds9LEJ/UaR898ZASNgBIyAETAC7YTAWBP6xOlU8j7TZL14qa84KVUxYiZ6LpUHViVU\nb27q3hREfni/K1ehupPGr42MyUroD3euNMO9Fdatt+WnfzPib86TzRJyrjwWKNf6/tvDxXfffVv8\noIkdD70Jpku4RcV2I6PTCf3T2oz6++8jxZ+aVJqQW+c8l0r3sVboP4qKePVT0NovO90zsto5dfpM\n5I/l60nl/YH9+2KyoTN37pwQ7s1VBT6ir/EcJvTHE21/VisjYEK/la+Oj61pCLQ7oR/KbBHvocwW\nIfrnX38Xfx85Wvz1999B6L+TPU+2s4Fw3yA7nGyJ09WFXc1Gza4vCH3ei3JMFNysWJ4cO368OCJC\nHX/KpBxICgLKLzesq9jsxIYB76fmSVJ6N7pjHzY8lXOC4GVDgeCCFW/MKANVEI86J9n9zJZ//5yw\niTl44EBxUI1/IXobGZOJ0M+bORD4XCt6JmDB9PzF8wjIsSmCzKdp8rPnqZyS0krUNFlts3DhAm3u\nbIiKDQj91Up+UOvjQ4/yZjwH50P1B0ElTbo4flRX+DhSocGmUy7tRZFP6WdubhbWTtg7aVJCPZ7D\nhP54ou3PMgJGwAgYASNgBFoVgbEm9MlBbkfF6Z1QllM53NenHlGyGqUytTyIY5NCf3XYxSylkSe9\ntpYtbThWRLlOXHrq9FnFpufKHxfiorId5OJFCE1UxSyxybx5c/WZsveRPQkrecsckaKsjeZLX3z4\nKH4g5r53/35xXxadt9Qz7cKFS1GdfV4V2q9fv66+M7H2t4cPFYcPi9T/9lCxfOmyEG9hudLoOXQ6\noY/w6tiJE8Vx5dlsSOFl/yJyuReR0yxftkw52bKoRN4mqyjsorA94r4Z7SDnrdr2SvSFGCxX5F+8\n9OXmGLniIeXXBw8eUHXGvtgQowcFG2PkleM5TOiPJ9r+rFZGwIR+K18dH1vTEOgEQh9SP8/jUqic\n1MQDD790CNxM9FJymgNNVNibs++41rJCny94SlbfqqnqGzVVhdDPSml27z9+/CCVd6oIYHNgC+8j\n2xNI/DU0TpLyBcK10R37fC6sNMkNpbmCyouat0ROD0hJcn8gNXYlgGRC4vb2bg3lyLdSj+yTx18j\nYzIR+ijt2XB5r5WNDxoHs+FBUJ6aI6dk58GDh6miolJZQVKxZPGS8MQkUITIR3lBsIZP5vx5EOPz\nYrOkEQwb/RsIfRo6YxfESr+G1My3LypDkv0Ptk3T1ZhrbbFfZb94Oe5TRQalwHk2qhJq9LhN6DeK\nnP/OCBgBI2AEjIARaCcExprQf61Ytq+vr7ikimFWLGLo7XVXJD9VvOWB6AfhyiL5fC/QSj8v5lzZ\nhDRKQhLz3bp9W2IZTX1mecyePatYtBACPzULDdIe4l4TJXPuK0acvUIkbRbQcEwTOah2eChSH2L/\nzt070bcqCWrOhngqHxuimcMidA8fOlgcOngwiObZs4i/ZzVcld3phD49705LtMYmEY2Js60tfeRy\n/4KlytkQ0EVV8o5Uncz9NNpBzsu/GfJq1ivK8c+fv1CcU6UAx1Ie5PhcdybCuVmq8I45c2bD/5bK\n71/PYxP69aDl17YzAib02/nq+tyqCLQ7oc+JQnzHqv+ck5L5HF/G8r6D0KepLDYrkLp4pWcvSYh4\nPPXznDp1SrwH/4EofvXqdfKnlN86XnpZoX9VJCufB/nKyqYAjZF2bO8N//xlKAk0l0kB02iwzDHk\nc8JT/crVK1EGiArnhtQ3N+UJTwAPcc1xsxnB3N67rfjpPz8UP/7wQwQbvE+9YzIR+gTBsfGizReC\nGzZbrqiCApwGtOGB0p0AnQ0dzgslP7Y8KJOimWyloWwo9IPQXy+1kEonpbSYpvLJafIWHc/BMdLc\njPs2ppr43pCnJ176XPfox6DAkZUNqQNSiOyXl+N+lYByzInwn15M1b0wnsOE/nii7c8yAkbACBgB\nI2AEWhWBsSb0EbAcr1jsYMeImAVCmqae/K48iGNzbMhKXpLnN1O+Kb+05sf0oEK1/vqNpuxRyoMq\n0mxBw8pn8dy0aVOj5xjx93LNpVK2Q5BGRbOqmrGMnMiBzSWVvFT53hOe4HpcqvFjWsuY4pcOmZur\noVeomjdXGUDuNjI6ndAnZ0OlT+7eL5sjBGsDD0SwayXfWbRwYWxKYR+1d/euYrf861nnzRt9vzDy\nriwEu3f/XnFVldFUCdA7D7ul8uBe/Y7KjO8O6/of1LElMR2iukb7J5Tfv57HJvTrQcuvbWcETOi3\n89X1uVURGG9Cny/HbFXzQerpD5ColclBZfKZFVV5Vpg368uQL2LK5PgyviZCFNI7f1kTeBEQ4D8O\nob+VBrnyusf3vvz5798nxTdB3AvNsNyRhz4+9hD65bFVf79H3e53aW7evClsWigtpcy1/J7lv6nn\nMXZBNGmiWRPkLkTv1auaOo7bd+588VY7VIL400//Kf7vpx+lIDmYfqdmTvWE7FwrmvCe14YIKwnA\n9u3bi216794Gffm/OMhR/pA3Utjw4Nqk6ovnoazoV/BFjwNskWgmnEs2CZY5j5xkrMYmSQT++pjr\nRO6rmWyloex429UAB+fCZCMJRQh+qCjzud7cuyRr+HsmVZXUVQpi2YRAmY9Cn54JkPhTlDSxjnXz\n3sGX0IT+YET8sxEwAkbACBgBI9CJCIw1oY8lCU1EsRb946+/gvikAe5bWYwS77bqIIZdqfg7+o5J\nYEX+RB5GDoYIijg4x/jkPu84J63lvlecW8TzlfwRMUvOK0eTc7FB8eJFyvnuK29MVdmpdxq5Rh4Q\n+slHfb/W/VFhELG5rIOokm1kdDqhT35L7ka1CcKsVGGdmhKzIUXOw8R2JzUjTk2JqfYg38mzEey5\nt8ilqX6n4uSqeAM2FbCv4nG+t1ix58Vu6TtVwR9SlQb3YRZT8fvxHCb0xxNtf1YrI2BCv5Wvjo+t\naQiMN6H/Ur7ufNFEx/iKzzuBEn7vDBoHQZqy604Ah1qDtVFlw2CgaKjDTj8T8hs/xGRRM6DyzuYT\n+r0KRvfsRjGwK9T6EPk08UFRMJrgMp8XgR7q7Os3bxY3NNmkuCo1A/7qlLyWB76CP/3nP5o/hs9f\nBDkQvQp4ah2tTOhn0js2iRSEUR4J2X0X0lvlxnjlpxLgO0H256ZKyhFC/ZN9PMN6CRJfCn0eswGD\nOgi7HdRE4zk4JzAniSFxOXP2nBoynQ3vfCox+Hf0ROXNqK/4d7J0afI/hdAPL0ltsrByjb+pXGsT\n+uN5Bf1ZRsAIGAEjYASMgBFICIw5of/8efHr738Uv//xZ/HbH39EBfKHD/T8wg70Q8tehuEIfbz9\ns4UmYrABVVVnKxSI9vIgll+i1y9VzE6T2lnKJ3MFa6PxLzlqeLdrswQh2LFjUucfZx6PfCJ/vgl9\nWTtVhEbkJeXxncju//vpJ83/FNt6t5Z/NexjmhHjXY/dDWI1KtBTJfrNgvp7ep7BEZD/4F2fG9OS\nZ+cKkEbzbf698JmQ99icIqC7pg0GVoh+hGAID+EuNnV3BZGP1dIBVUfzmTHZVKojzx4WjBp/aUK/\nRqD8srZHwIR+219inyAIjDehj80JX86QzZCsj+SB91QEP4ppRm7iym57d3e3drw36kuyO3wV4wWj\n/M9ZKcvxv6OJ6HUR+gSE2O2wjgWhT9CyV+V/u6WS3rJ5k8oCF6byQAWZjQYYZQgg9LPFzg0RvBD6\n2MqgQr8pnMtjm8hdyPz//Jgsd6rKgoqCofzaoR63MqEP6Q0eeRJ09fcnix02O/Bb5P7DfxGlEoEa\nc8aM6cX6SuPi9evWicRfWa3UYEMpN8hFXTPeKgvOKR8nvqgkECiDSCLYoKCHAxsTNHem/wObENgF\nQejz76a7uyuCTJKYPIe6tmP1vBX6Y4Ws39cIGAEjYASMgBGYTAiMNaGPtc7Pv/5a/Pbb71p/i6ae\nWRhCTNmqYzhCn+a5Od4Nq1HlOJdDKd0f1qnlc6KHFDEw/a9Q+2cFN+/faAyPGO25cKXvGtYrYbkD\nof8Vyx0r9FPlcLMIfZosX0e4ppw9bEch16lGF8FOfoQKHuIesdyhg6qMOHBAorUDIcKKKn+U8pqN\nDDaRUq+yVB0NZ8LxMAcGHlQ5C5rfQuhz7bE5Je/POfZE5F4m9Bu52v6bdkTAhH47XlWf078QGG9C\nny/BsAyR7Q0ldMnyJqmoObgFC+aHogJFNFYhe/SliHXIUqmPmzFQOEPmnz13NsjvB+pa//DRw+Kh\n1rEh9HtVAig/P1mfQOijFlmoydosQp/NkdgkEYF/RQEOJDaBLkR/ebC5AJkfHvoKOMKCpU4bllYm\n9Dk2SG8Ibqo+sFU6dZpGSmcj8MPL803F07Oc1BDs75CKHdsgqhhWSZVPnwN8PNmAYRCQTcTgnGKD\nQkElCqHfVUb9h1RXKK+oPmCg4idw3LypO0h8iPwNSmbWieCPXgBaJ3KY0J9I9P3ZRsAIGAEjYASM\nQKsgMPaE/rPivz//UvxP878//xyNXFvl3Ic7juEIfdTWyeb0VawnTp6SSv5YcUTiFvLY8ti2tVc2\npzuKHWqOCskaVbYie1kbJfSx1Ul9CJ6FAv0EPQrw0ddxDPbQN6HfXEKfSvrIc5XrUpGO5c3l2NC5\nEvlevvZY7Bw+fLD49tCh4pAa01K1HOp9ibEatUsl/4IzgDvAZpa8OvruiTMgt6EJ8sIKb0HutUd8\nxT7l+7tlszuRw4T+RKLvz24lBEzot9LV8LGMGQLjTehDQvbJBzx7mVOyxrwjtTFWKXPlM4hKH9I7\nKdt3ad0TPoTZi64e25OwLJEihYankLgnT58uTovkxfceX74UoCXVRTTFFZm7Sgpt/NPxbRyyKa4I\nYwhWmuMS2B05eqz4+8jRaLhavliQ+DvkMU9j3E0iXJMtClZCyxpuqso5MVhp+npV9jq5HBBf9bDf\nUdAD1mwaZJUAhP4P338Xk7LEeF5ENWuthHWrEfqoM3IZLiQ+9jNh5/T0SeDSR+CnDY47usfevXtf\nVe+jtid5gMynTDPIcDUwpokxpb0LF7LxsjDux/L1HO/H+J7mMl/OiyZc4d2pJAZ1SB5cQzYjqMJg\nblRT3OWykIqNCflKTuQwoT+R6PuzjYARMAJGwAgYgVZBYKwJfQhmlONBOCtmRFU+pkMpyUfyrE/0\nRJM9pOJWjiGm8qTyII+bNXuWiNbZYZMSPuMVBTUxOdaWMUW+k4dtUCy7USuxes65XinWp0qVnItJ\nLlceEKvkb8yNaqy7cuWKqi8/+WPkO1Stlv9ohMfkFlRzP3z4MHLWsyJ3kzjsXOSB+c8/N8VNjXGJ\nw+cqpyW3bdQ6FlI59y1jJX8JAZJyyx71GZjIAXF8QX29Ll5M/emovG+25Q6V1ZD69ApDvHYB61wJ\ntrDOJe/LY67un107d1Tmzrjm2UoV4p3rXYtaPueV9Pt7pWbIZ3StIfPPiNjn/KiAgTugaoOcPlsD\nd3V1qafctmKnZu/W2i2F8vE3czWh30w0/V6TGQET+pP56vnYa0ZgvAl9mgnR1IbddYjoW9rtZsf7\nhjzxCFooj2MnfY6Cn+hWvyv5z+NlThAzR5O11kGQid9iJn2Pq0TyuAh4Vkr4Qs1dUXTzGdH8VA1Q\nN2xYpya2m6Wq19yyOZqJ5s8sK8H5e2xQ/j5ypPjzryNhdZNfx0rZZ4/+nvfCPmj16vQZq/UZBLaN\nDIh8NidYCWxplEpJIA2DCHaiUapKQh89ehxliClgnhYBxvfffVt8d/iwqgb2VAMbvNVrDWxbjdBH\nkf+ajRXhAHGcA8l72sygGuTu3bRis/Phw8coz+QcqPjAWodrzjVZt3ZtsU52O6zz58+Le4z7rFFV\nRyPX9Wt/gyqIBAJFCL0eIoE4S2B57gvV1dSpU2Lja/dubYBJIUJT37wpwTqRw4T+RKLvzzYCRsAI\nGAEjYARaBYGxJvTJS8izrsh3vF+CFuLjsR3/hD9/5FnKt4j5UvX1/SBhy59NXE0Fdvjca0XABRGb\n1/nz5hZzRd5D7kOGUzm9YsXy8MHHaodzYx6ROv+vv8m7/g77lfJnEMfnjQDW2BhQTLx+/brwPCfn\nib5SdVTePpAt6+07yWqFvLmPvEuNUVnJQ/Igf8DuhaaoBzVXLFtezJ6TclcT+o156LMhBUGNbSp5\n3akQ5p2NFVI9D9T4COdStfKmig2p+qEp30bcVL3uI+S8COXyhhQbOeRdEPqsCKmiElz/pt5LUBa8\nAT3X9BldsnjKvAGVIRM5TOhPJPr+7FZCwIR+K10NH8uYITDehD5e9fjeoSjHD4/GMqgr8MVDfZEV\n5TNnzlDJ2q7YaWfFHzxb1VBWV+tgp51moihGmKg5jqKmP3o0NhEgd/PkCzlblECIpsBgU1jloIDO\ng9ez+ZDe950I/WPFH3/+rflXWN3k17HynuHlqKASGxQ8HbO3I810GhmQ+Uw2K15KPYBSJAcbBDvZ\nK/65gqDcCAo8UQzQlOiwyhEpC8wkfq3qfI6Vc+ezslqEzYLtUomgFumVMny8B+f4VEoJ1BL3dW/R\nQ4DGRdxf9GXIJbKvXr2ODZC8GcI12NrDZs2WoksbLQTdy6VkJ4GAxJ86FU/GVN0w3udU/jxU+bfu\n3A6/fDa/qDa4LKuqvv7LSpo+N5zi381hlZhGIqF1gxIXEqfs/19+z/F+bEJ/vBH35xkBI2AEjIAR\nMAKtiMBYE/oQjQhBsBJFDEJ16tgOVQuLbH8bPZ3eBpkftiiKV9lUKA/sRlOuJRJUROiihYvkfb5Q\nApRFIvHnhKgrfM8Vh0OOo6wm50NZT85Fv6i371Iu9//svQl7W0lyrgnu4r6Tkqhq19KL3XYvtq/v\nPDP3zv+faXu83O727b3aXVWSuO87KU28EQjwUBQpggQI4Jzv1JOVEIjl5JsHQMSXEZG/MJ+LMpT4\nlMUDW/75EnthLVmgzoqLrARWEaCFfe/ZyWQvNyHo41u5f1Gv4x713KOmO75lHpzvP5mQz8ao2OSc\nS9rh+GMPOaoeoU8UPsFNiOwsFP3rv/577V8tQ+NfbVGnuCEy140HadWDtcjO+OorK0Vqmdcs8jDv\nAyzmIOjfMfe8D/v7EQjG5yf9a/bgw79OzQAfGp/+8+/9Ve17dd8+F5K47jp5SNDvJH29dzcRkKDf\nTbOhc2kbgacW9Ika/+41UfnUfQ+BkgiSP379p9r+/kFjnBhvCNA/+uH3vV+xH+NMa6MkCj/G8aPM\nD3PjaX4D0daL0liPAXhwcOA/+geHB56CSu1FNjTCQCsebIhKqRKEdwR9VtsxCOh5rzwQ0zPin54I\nfSJF/vmf/8WE1j81fuz50ScqgE2ZKOPDhqWUdMHAoMfIcwOjXhaH17/NyPAx2Xg4eE9SATHySP37\n9X/+p4v61PgjeoDxUqaFKJYJol0s0oV01R+aeM1mPf9g5Xb+9sd/46/V7P86LeinIJ+LGptbWz5m\nFoquDO4Q9FnsyIUcFnaCNcbcgEdwUKLmb2wh4osvPvfFIurl01qxtwGXJK+T7bZ5vY0/4+QgxReH\nKFpktLDBLxktuQDGZ4WNfbNuJE4ExqtnZtjf6Dt5SNDvJH29twiIgAiIgAiIQLcQaLegj318VZ7m\nyHyS9m6Ei72K6EomAP23Zp8SaIRP8hsrj1I8qGOPT0XG8ufmX5Etm6VI8VXINk2/KAOSnpkQzn3u\nd5nvw4IFpSfxu/7FGnuHYeNnw46f9Zr5My7weunUH3zfs60pfzM8NOw2M7Yzx8fsc8YEt0svI3Tp\n2c9kPfzZ7HE2ZCX7l7KmlGChXGza+mTE/uPfR7kdNmhlfJw/Y0FwfshRdUHfA+hs0YTIeTIl/sWC\n8iIw7988aCsFdq4RL7HD3NsmyojtZNizmEOWxtAgm+Oav2Q+EdH6IR3w/8h6j7JR7/w118334r0o\n9fMHMjHq2Rj41lwvNF6LRaIfWON9Pnv1mfv6+PuU8O3kIUG/k/T13t1EQIJ+N82GzqVtBJ5a0Cei\nGvEVoZKVdk9ls1VveoS/PDCOVuppbAjhRHJ4uZrnL/wHM8rIxM71AybQXh1mhJkx+65uiLHSzgo7\n0Sr8QBM18qc/fW3C+9dWsmTr6ml2i3r3P/gqjD4MgSzHQo+hkAeGHoYjRgSGHJuu/ofVqUTYJ4I6\nDVsMaiJMiEDBuFyyH/iv7D14H4wAok6iluSz2rAZexgIH0sD5f1SwGZsvC4cSUNkDL+nfqG333v0\nQG4My/mx+EGN+Pm5eV9I8Hr+JuZjgDzk6LSgz/unSM9izevXb2xx6Ft3INiLgQUN6izSTi2SJx0A\nxupGtS2i0BPBTp3NLyw9k+uMdF9P+bW+ONcPYcRz+vv662m2vO6oG/v3fS3m2+fcehyG31mtyN/9\n7vdeVsnHZgbmqjVYkJaME8R15hsx+YZMP/FFpAFzVgbriwr3fe92PE6Cfjuo6jVFQAREQAREQAR6\njcBTCPohgkY0O/5DOw8zVesLCFH+kr28fvmrX3tJFET94jFnPgnlSL7C/ra+sdeTBT+NWwAStnNf\nfwRsFYNSEGAvC34Xr/vLX/7K3uOXnpFLQNj+wb4HhpGdmrbxgvk/GZhFsBZi/1Q98p+gKhd2676X\nSfuNU8W+zgUKfDo2ZSX7lyh9AtJ2bJ8usoDJosVfpRwsPgTj+9lPKX35Uy9/ie+X/mouIDTe5J43\nqi7o42+nL0eEPGVz/9cvf2n71/2yRlDXsWVgM1c8zgPY6n4RZVWj3NIr1w9GR8MfG7OeuXB/2641\nrl/PLrEFg1PLNMn9EjY2Q6tg0eZNvXwr/ifzzfNZpGFvuti77IdWSWDFy0nhd7Ow0MlDgn4n6eu9\nu4mABP1umg2dS9sIPLWgf3x84kZXiNHbDSH830wQJ3o/j377kZ2cnHLRe8p2kCfKHaMMoZ3o+Uxh\npCbhh0bSxcV5I1IDg4u68tTpxyDzjXXYXMcWE0jhKx5sXPu3P/6xt88temTeN2dCDI+MgHxsQ3Bl\n4cDab01s/ZVFyf/ahH0iOPghpfHeGHKcK8I9dSNjk90o9cLrT9nGq0R0EDWCkJwt34ue9/PIEzMw\n6XlthGsWRlgU+dqjRv7Lo7iJHvDHGoM+M4wpIcRiCP3nnn7Ixq9fOMPie9z3dqcFfYw65i2yLg58\nzH/4Q2yyzPwSlZ+1D1ls4XyZI9IsJ+068vTdCbue6hkTiPlkfgxZxA5z5ZEbZtw/9sDgw6Cb8UiR\nMOjv+5q5eEP/rY3pV+YY/erXv24semFs7poTMWjnmws2C/MLsSmuZR382LIOGBOOCgZrKxYo7nvu\nH3ucBP2PUdF9IiACIiACIiACVSPQbkEfnwHbl32jLi8v3IdoJ2Pej1rm2N8EHFHy8j/Yq8wyoal3\nXjwIMPr+l/hA+CJfeiQzwU7UyZ8YnzC/5Wrj0n6zo7Hdsac53tn7vK/7XX+w0pO//b1txGr+13/9\n5b9q62tXwTw8Psv2EDj10vbJYt8y+gVbOKCRPY1PkCVYwk6+sv3xNRDtsbWxufEjPTvWFisItIk6\n6raHl2VCI+Qj3FM6aNlK/fztj/+69mMLnMKf5P15bc7pobZ41QV9fKH05SixymIOZXB+ZT2+fPjb\nu7aB7WFtyLIgcu7xubmuaMy3l+21BZ0Z87vJamY+ck4IksN/ZmGITXi3LAjQgwFNl2Ch6MDu5+/v\n379zf5HnM+/M8U/+1nQDay8s4JCseDZGZmGhkwflgrI0Lj2BkZQe+vLLrzy4sJPnpvcWgackIEH/\nKWnrvTpG4KkFfcRmjxyx6Gp+HP+f//cXtV/84hfW/7ML1EUQRKxnI33thz+I6Hmi2ykh481+ND9M\nY+T1z86tWY/w/UeLyo+6438yYzNSQom4wGArHmwU+w9/T0mav68h6PPDnO/Bedx28PpEyCPs/9nS\nMdmYddU2pV2znoh6Dp7Pj/wPf/CD2g9sHIyFRYoF6rZjaFDqpWD0Fd8PYznGFJv7YsBQciU2FLbF\nCrvNggWNMjscPIdakewDQCQ6jUiFV7YXAfsR8N4POTCqMKTSUEAEf8oa+kRHsFCCsUL/m9/81jMk\nyJJg/DZwL7fE+Dmyh8WcZyrEAg1psDgWpPoi8udR5J73PaRnkQnG1PCkb6Z2Joy5buhJ7f3/LL30\n3yy9+D8sIoUFsZMTrmErp2TXfi7WEBkSG0FZOaevvnTn4iHn3Y7nSNBvB1W9pgiIgAiIgAiIQK8R\naLegnzzS/s1/t6vnfQikOagH1FAikvrm1Donmrp4EGxC+c8fmC+UftCy2cjPzVbG3/rwuM0m/+ab\nb2t/9nr2sR8btjJ7srEfG7ZzPo+gL+x83pfebWazl/GFiKZHaPdmmd75HM4BX4OAKYLA6N94NnAE\nhhFMlWzpKSPE+eOnIpz+8Ic/qP3Ixvcj6xF9i6/74fju82/8v/S56MlAYN8yfC84dvJATP8tGeLm\n//7OFliIZscHZtGDPcyKB3u4/d//839a+x8e2V78231ux3V2ZO9nWcv19ySQa9V97jX3C5M1HvuY\n+UgEzCHkE1wV14Et6Nh1wHWRc2+eome7b5p4v729Vd97gn7T/UzeNxs+L8999mzEfXrPxDDt4OeW\nHc117IsJBIeZz9nJQ4J+J+nrvbuJgAT9bpoNnUvbCDy1oI+hFRHkF54iR9rc/7K0SRqGQERfH3qU\nR3HQRD+8ehVGGAYT6Y0YNc+s3YjQP7f0PItQJz0T0ZdSLPzof/fdmxDGEfyt8cMfP8zPLIp+xDbg\n/VvbiJf2d/5eHlnvP9yWlnmHoP+dGXrffMvmvt+6QUm6KRv98m/e553XYHzn7/UZhqSNI1Pzpi2i\nY8bEfERlNq4dGY5ai7zdu3dhRMDs5BQh12oImmBP9MCGLVSsW1mZLF+0Xk8NfGePxeCgESHA4gcC\nLz2GLIsHGLZELjzk4Fw6KeizEINxnQbc7/8QCym/tbI01LS87YAHmR4eoUHmh90mcoYIHa6jVh/D\nNo+kFftiii2qkIFxnwOjkTnOskkZ6fQfFulEFogv7Pj1e+4G6peff+5py19YH5+PFavjuHJtkeI+\n79vOx0jQbyddvbYIiIAIiIAIiECvEHgqQf+peITQiqDPxqVHnqnsgr6J+kTpFw+i40PQrwc2WbYs\nQS+0jwn6xecWb1N+MvyAVQvmeW2ZyrYB79f/Ze/9tddaPz+PACgCpdiIN9qki7lsVBsR+lMRPW9i\nvkdqowLXj3PbSBixGn+LnmhtSsVSV50Mcx6fDSH/s89eme39yst5Ejz1V1behz3Z8DEfe0jQvyKI\nf/QX20eMQDZ87AhsiwA3Fl+Yd/aYo8enZkFlfCxKkyLu429PW4Q+kfy5XwOC/v5elLFlX7q9/T1f\njNi122SDFw/8avznOcuwx5dmr78suUPGNHpEtuLznvq2BP2nJq7361YCEvS7dWZ0Xi0l8NSCfpYT\nQRimBnpGz9OT0sjGpgizGGvFgx/lOSthwkY3pDXGKriVSbG0t4/V0Of12cyI2nqI+pmSx2ICf6Pn\nNfw17ceZBYMfsgnvj+zH2XpKsqQwThmWuw7q2K+7sbdhCwdvan8wkfn3f/ijNwRoSgCd2yIDxgPn\nTzQH70v0gNddZHHCxjdpGQEYC+MWpYJdGWOIDXiPSWe1RoaBb3prBiWpgWQ55Ca4Bwf79h6D9hoY\nMGMWmWBj+oFFwng0zPdrS4uLDRGb6O6HHJxTJwX9g4NDWzxhU1gMOovQsZqWGPFEBLG4cdtBJEax\nTNOolUDC0Oa+dkRS8NosDv0dC0S2UIQzcZ+DzwdRLRiSGJV//vN/+abHZCCwuRgp1HkN45Rwrf7o\nRz9yo9JTS+0+5pnPS7ccEvS7ZSZ0HiIgAiIgAiIgAp0kIEGfCP3HCfrYyTu7ZitbORyiwdm01DOx\nrd83/8j9JVtcoPQmQTth/z/zRQOypScsoIf7KO9KeVKCtvgvjwsrVRQbC4fvhe+R/haiMv4hwi0b\no76yQC3KB7E/GqVhscHDHl9siX8hQT9npeZC/cbmVj2ifstFfTLj2d+gUXbVfeUjX3DBvyNDmyxp\nvw7sWsDvHhwkI4NFmaih75nPNq8eUGUZ0ARV4b+TqVE88N8JmmLOCaJiX4bPWbyxcsD4ecVM++Lz\nnvq2BP2nJq7361YCEvS7dWZ0Xi0l8NSCfqat0SNOvl0lPW/VRXx+kFMIR6AtHhhO+cM8PDLsP9RZ\n+/DD6PkP3wNjiMUDeurfZeR7lix5abUVqa/4xRf1iOovvrAojjl/j4zAKJ7Lh7cx+ohKOTg6tIiR\nVa+lHzX1/7cbgBgEZ2enJtC/c8OCDXAxMGIVn3TPQROXRzziOuswsjlTZjJw3hioGJOI+Kf2WkQf\nXJCJYD3ZCCwYcBshlwUPohCIQPFFCtI/rWGIYNTw3g8VsTst6GPEs/Ew7U9f/8kjc4jQYDGIhZvb\nDq4R3yDWjDh4I/DnhrEemXPbEx94P4sq/8d//+/W/snbfTMiKLVDBFC0zdrX9pn4rQn5v/nN72q/\nN0cFwT+vb67bn/7k76z9xBcPKNuUESjNlPh54BDv/TQJ+vdGpQeKgAiIgAiIgAiUmIAE/ccL+vhV\nJ9boCeah5Onv6zX1I6qe2vc7Xp4S8Tbt/iEX4SOLGT8ADd+l/Cst36886vWHD2bBYRYAVvSzsME9\no9r8KbJxv7ASrezB9jdWBocyp2T/egaw9fh5jz0k6F8RxEdCaA/h/dhLLGUQHQFebFLMvNPjL+Hf\nRSQ+G9ni94X/l34fviGFWj2AzhZ/Lk2X4Hbuwcbt4kEmCSWVCJb7/ve/8jJLZGiwDwQLBb4wxOKQ\ntU4eEvQ7SV/v3U0EJOh302zoXNpG4KkF/eJA+LH1DT7Z5NMatQ+JQv7Nb3/n0RYI4JSQ8R9aeyw9\nz6FPUZP+roMf1ayTFz/sZtj5D/yA163/HmmS9bby0krhWDkfasxTmuW+xznGHsK6tU2L1mdzXDbt\n+U+rNc/42KiHaBFK5vhY6mMqnjvRHmyiSgQ/0fscvC4GJQarR4bUI/J5jTwYXy4MYKgg6ma9SAyM\nryxihKiRr6zkTmNzJht/GjP5Ovftee9ORuhznfzuD2Q//MEyIf7oCyirlma5tr5mke379x1G2x/H\nYtH/+L/+z0YjFfOuI68F+JI+TKTJa2uU3PmTZa+QRsxt5o05p+fa/fuf254Ptu/Dz3/2M1vMscgT\nW9DBqOR66pZDgn63zITOQwREQAREQAREoJMEJOg/XtB3X9D8QXxEgnki25tgnz95QAz1z/HHCILC\nriZj231KnlO/nXb3x64F7Oy0tbPH7qbhcxG0g71NNvQXn3/uNeH/+q9/VPvcIvSfEThl0f/0PP6x\nhwT9K4LMWWPubS4pvUN2Bn4SPlLO+6ZF8RP8RgAfj0/twDUF+/eHc49OkPPbz9zbvMW8m4ZgJZn8\n7/YYNlb+G7Ki//qHXjoqAqkiiO6hgXJXo2vdLQn6rWOpV+ptAhL0e3v+dPb3JNBJQZ8fVDZS8gh3\nE7wps+PlVL75zsVMT3e0lXh6VuSPrNGzIagbaBhplhbJD/ZtB8ImaXaInN6b6Jn/njHh/MXz5167\nkd43TZ2d89p4zZQsyXNhRZ8IchYmYoMmMy7MoNzZtk1czeBEcGa8hxbJT0Q/BkYeRIuPW8mdifEJ\nL7vD2v6FG50WKWDR91FTPcZefB5GRtSDj7rwCMeLpHtSI9J6Mg9eWPmgF89fWFmf0RqGCkYLhspD\nDsbaSUEfhojbf/r6z96n8UbZI1Jiu+Xg+vlv//gPtX/6b//oPZkXtx18DrKxKJTZB/TffPOt7wHx\n2ko5sXcA1/OwlZkaHhr2Gp0///lPXdT/mW3IlNkX9FwX3XJI0O+WmdB5iIAIiIAIiIAIdJKABP0W\nCPrYzXWhloApSrVmtvfWVoj5W7bJKfZn+Jj4T+ZLWmDVKaVVLFAKe/u2Az+JcqvUWqcnMzxt7LHR\neiY02dBm2z83/5ESLJRiIZAKO91tdesf6msVz0uC/hUNvP2cd7Io8AHfvHnr5XrJkMfnxh9E0Ecz\nICDOszls3os6Ar5sHsyR76fnCzGWdWH+VcyhVQaw2/jOGSyFX537JRD8x4JOLuy0Ihsjz+mxvQT9\nxxLU88tCQIJ+WWZS47iTQKcFfQwq38CGsjJWUiZ+jLd9I6JdE8G3TAzf2bGd5y19jn8T8U7dxPNz\nSugQFX/mURe3DZIfaQyuWS9DMxPlaOzflKWZM/GbaPZ5K6+zML9gP8oI//w4NxfhjMCOIEtPGuBG\n3ZjAqFxb2/DocTbrWbeNbBnfJsamGRtFg8KNRy+Fg2A77MN5T2QBJYIsUyGi9aO0Du+VB0aHbyhV\n31gKY5L0v+XlJduwZyE2gbVsAzIO2G8AGR/j5aFGZqcFfa6RvzQWTL7xhRIM9l27JjDWuuWgRj/l\ncP7ONlimvyvjI68drh9KQ5HdwaLJf/7v31ik/ndmnNY/DzZGX5jCgLQFqs8tzffnP/1p7ec//1nt\nZ/YepBRHanF9g68ugSFBv0smQqchAiIgAiIgAiLQUQIS9B8v6GcQDN4QgnfsLRZ7ilFyZ2t7q7Zd\nt523Caqy++jZ0NZLmFpPoNRtB0Ex+IKjdZ+QrFsagVfY8wi7ETy16NnVM7ZnGX4l9fl5Lu0xwVPF\n85KgX6Rhgj6LOfVGkNyuBdIR7IU+gJjv8299BtHhNzLnxXI8xcUc5ilKJE3UJq1MEgJ97rFGAGBk\nz9v81ve/m6sH/qEt+KIPCz7mt/M63XJI0O+WmdB5dJqABP1Oz4De/0kIdFLQZ4D8KGePaJ2r6Rha\nRFyw4k57u7rWEMbX1jdcOD89ZQObUy9L4y/ykf9NmPHVELnrQnf+GyGfWvNsZEOfQnf2H3m5O+9i\nLC7q1yMCGAub/JISmHXe2TTXy6m8eXMjOuSu9y1yKp4EESNffvGFtc9rpH2+tJJBROSzqS+CfpTj\nMaG3blwWn/uQ250W9DHevCSN1c2nzw2BuR/e3XKQavvDH9mGtbZp7V9bvcUJM/JvO7hmqAtJKijX\n/b/9+7/X/vXf/t36//DofI8qsc2QGV9mY0xOTda+tPn+qUXm//xnP6391BYO8njoYk0+v9W9BP1W\nE9XriYAIiIAIiIAI9CIBCfqPF/SL857iLrY0t13YdQF/28rvbJovebVX24ZFdHsEt4n9+A+3HfhO\nYW9P1ibNR5w1HxEBl8YeaysWkY+/RZQ2ATY8nvr8mR3bSjtcgv5ts2SZ7OY35X5z+EgZAIWg7Xsp\n2CJOCvwE1pHpTCv6i8wZ2e00Av2Yd7SDccuYn5qcqC3XM/nxq1mwwe/Gx/PgOwLk7PRaOd+3j/b+\nf5Ggf39WemS5CUjQL/f8anR1Ap0W9IsTgVicP8xE7RdT5+KHmR9oIvZ3PCIjN7pFCL3tiNX1Wd8Q\ndn4u+rl6T5TFOBEXthpP34oDgzLHQM8YKCVEpP46vTV6DAoiBIi+dzHXyuu4sMu+AfYattRROJ3Y\nB6CxietA1HEkGoAoAq/7//KFG5eI+GGUzHo9fR7z2DI7hRPxrIJOltwhA2LdDPTcNPbIUmh9cyS7\n/8J4dssxaGmapN9+9sr2aLCe6/C2AwckroF3fl2zudfvbHMv9gnY8jqQsaEz4wlFI9QAAEAASURB\nVPPUTrtW6anl+OWXsUcCizrdekjQ79aZ0XmJgAiIgAiIgAg8JYEyCvpph59YSVQCmbBhf/f7P9T+\naPXNiwc1xxHDsYtfWcto5zmLfr7LTi6+xqduH1iAT0bhE71NRjSlWRDyyfCmNCrtrqxeMl4bdfKt\nXj5BOYi5ExbBPTM95QFTi+ZvLS4sejke97Xq/tanzq/Zv3ezoM+iyDcWtEa5XPSETVsocTHd+iMr\nL1s82GPgpz/5iWctf++zz4p/evBt/GVK79DjU+e87+1HVD7/9qwMm2/0gzi3rWsBdf0m6KMH+AIO\nusDYuF+LZFrjaxH8h9CPb52LNxks9+ATb/MTJei3GbBevmcISNDvmanSiT6GQDcJ+v7DbD/KLuyb\nSO/15s0woza637Y6iRgIhxatnKL5pYnmd9bQtzIzRdHeb5txRj9mYviwrbKPWKocK+6tOBrirJ0/\nIm2kgZLieeBpgYibpP3t7u54eRUMkHOrkX9xEZvq5r95nTxY+c/ajZxv1vYbGhzy+2dtgQJjmDZp\n0QQxRhuficg8l9aqVMBOR+i7wWYG5AHGmvUYutzHAhDn1i0Hiy+5cITDQt372w7mmoZRynUdGSlk\npqzVcEy4j+uc8Q0PW1QItTztmiW9d4n9EizzBMeiWw8J+t06MzovERABERABERCBpyRQNkEfdlkC\nFXsc0TztWKKiiwf1yPFVZt1nmWn4K4iod9nJxdf41G2ir1lgoFFHHTs6/chiHfVzK9t624HPlLa2\n+1/me3mddfMb8a3wtVzkN4Efcdc3Uq37W7e95kPv72ZBn70IiIp3odzKHDln89Xx2c9Oz64N+YUF\nIRHk9OrViovj1/74wH8U/Sd8pJz34gJT3g5NIXSEi4srf7G/32ro25yO2tyyqMR8x/4J5mObz4VP\nHRH7XKPDtkluf6Ok0gNPu+1Pk6DfdsR6gx4hIEG/RyZKp/k4At0k6OcPc/ZeNz7FbhM0U8SnR8R/\nT315hG/aLUe/7U6fK+mkQw4OUWf8KjUy6xxmmuQtL9PU3Xn+9Bi32cgoOLLFiDAojxrlhcL4NAPU\nDCPfrMnKCDG2PBgDUQLZnj2zRQgzOLKFEfLMjU028GGMmfqZaYDZ52s+tO+0oJ9RGCyCnNsiSC4C\n0bPnQLccfWYgYgiO1DfS+tSCCtcKB+Pg+mDj5+OTY1/s8evcr/f3ZkSSnUF9TjbsGjYj1AxQM0Jx\nNLr1kKDfrTOj8xIBERABERABEXhKAmUU9Iu2OAJ0+DmI6tf3tiLyPe1iAlMGLTBpqO6XfcpOvu8c\n4adk85Is+GH4kPiTlwTIWDa4PeadZUbfdkQgVNjaaXPjJ9LCh4zzJsAqz7tVftaH59TNgj6cT024\nPz2LzWfTT8dH+5Ave9RlUB3+a6uOhv9kfhRze8kc168B5rlx2/3G0BKKPrYVzLE5ZW5jHzLmc8D8\nLPp+87VCO7D5ZuHG7mOes7VqDK1+HQn6rSaq1+tVAhL0e3XmdN5NEegmQb+pE+/BB2PwYlQ2BP5C\nFElGEHhvYu57e2wepAP6ZkwWJYAxRBrgyAgibmQX8HciBtLQyOe1o8cw6mTJnXaMSa/ZXgIS9NvL\nV68uAiIgAiIgAiLQGwTKKOj3BvnePMtuFvR7k2j5z1qCfvnnWCO8HwEJ+vfjpEf1OAEJ+k83gUQR\neLQAkSImjKewT7mYc4toIWX17NxKyFj/7lqEvtXKTwHfetJSPR2wHo3fqJFP5ECbhyNBv82AS/jy\nEvRLOKkakgiIgAiIgAiIQNMEJOg3jazST5CgX+npf9DgJeg/CJueVEICEvRLOKka0k0CEvRvMmnX\nPQj6lAgi+p5ofU8DzL6QFsj9mULIuZDa5yl/lAyyRlogJVeyXFCm/tG3+5Cg327C5Xt9Cfrlm1ON\nSAREQAREQAREoHkCEvSbZ1blZ0jQr/LsP2zsEvQfxk3PKh8BCfrlm1ON6CMEJOh/BEqb7yqK9R+7\n7dXUTfhvHNTrs3+kYJ89fy/ebjy+jTck6LcRbklfWoJ+SSdWwxIBERABERABEWiKgAT9pnBV/sES\n9Ct/CTQNQIJ+08j0hJISkKBf0onVsK4TkKB/nYf+dTcBCfp389FfbxKQoH+Tie4RAREQAREQARGo\nHgEJ+tWb88eMWIL+Y+hV87kS9Ks57xr1TQIS9G8y0T0lJCBBv4ST2sYhSdBvI9ySvrQE/ZJOrIYl\nAiIgAiIgAiLQFAEJ+k3hqvyDJehX/hJoGoAE/aaR6QklJSBBv6QTq2FdJyBB/zoP/etuAhL07+aj\nv94kIEH/JhPdIwIiIAIiIAIiUD0CEvSrN+ePGbEE/cfQq+ZzJehXc9416psEJOjfZKJ7SkhAgn4J\nJ7WNQ5Kg30a4JX1pCfolnVgNSwREQAREQAREoCkCEvSbwlX5B0vQr/wl0DQACfpNI9MTSkpAgn5J\nJ1bDuk5Agv51HvrX3QQk6N/NR3+9SUCC/k0mukcEREAEREAERKB6BCToV2/OHzNiCfqPoVfN50rQ\nr+a8a9Q3CUjQv8lE95SQgAT9Ek5qG4ckQb+NcEv60hL0SzqxGpYIiIAIiIAIiEBTBCToN4Wr8g+W\noF/5S6BpABL0m0amJ5SUgAT9kk6shnWdgAT96zz0r7sJSNC/m4/+epOABP2bTHSPCIiACIiACIhA\n9QhI0K/enD9mxBL0H0Ovms+VoF/NedeobxKQoH+Tie4pIQEJ+iWc1DYOSYJ+G+GW9KUl6Jd0YjUs\nERABERABERCBpghI0G8KV+UfLEG/8pdA0wAk6DeNTE8oKQEJ+iWdWA3rOgEJ+td56F93E5Cgfzcf\n/fUmAQn6N5noHhEQAREQAREQgeoRkKBfvTl/zIgl6D+GXjWfK0G/mvOuUd8kIEH/JhPdU0ICEvRL\nOKltHJIE/TbCLelLS9Av6cRqWCIgAiIgAiIgAk0RkKDfFK7KP1iCfuUvgaYBSNBvGpmeUFICEvRL\nOrEa1nUCEvSv89C/7iYgQf9uPvrrTQIS9G8y0T0iIAIiIAIiIALVIyBBv3pz/pgRS9B/DL1qPleC\nfjXnXaO+SUCC/k0muqeEBCTol3BS2zgkCfpthFvSl5agX9KJ1bBEQAREQAREQASaIiBBvylclX+w\nBP3KXwJNA5Cg3zQyPaGkBCTol3RiNazrBCToX+ehf91NQIL+3Xz015sEJOjfZKJ7REAEREAEREAE\nqkdAgn715vwxI5ag/xh61XyuBP1qzrtGfZOABP2bTHRPCQlI0C/hpLZxSBL02wi3pC8tQb+kE6th\niYAIiIAIiIAINEVAgn5TuCr/YAn6lb8EmgYgQb9pZHpCSQlI0C/pxGpY1wlI0L/OQ/+6m4AE/bv5\n6K83CUjQv8lE94iACIiACIiACFSPgAT96s35Y0YsQf8x9Kr5XAn61Zx3jfomAQn6N5nonhISkKBf\nwklt45Ak6LcRbklfWoJ+SSdWwxIBERABERABEWiKgAT9pnBV/sES9Ct/CTQNQIJ+08j0hJISkKBf\n0onVsK4TkKB/nYf+dTcBCfp389FfbxKQoH+Tie4RAREQAREQARGoHgEJ+tWb88eMWIL+Y+hV87kS\n9Ks57xr1TQIS9G8y0T0lJCBBv4ST2sYhSdBvI9ySvrQE/ZJOrIYlAiIgAiIgAiLQFAEJ+k3hqvyD\nJehX/hJoGoAE/aaR6QklJSBBv6QTq2FdJyBB/zoP/etuAhL07+ajv94kIEH/JhPdIwIiIAIiIAIi\nUD0CEvSrN+ePGbEE/cfQq+ZzJehXc9416psEJOjfZKJ7SkhAgn4JJ7WNQ5Kg30a4JX1pCfolnVgN\nSwREQAREQAREoCkCEvSbwlX5B0vQr/wl0DQACfpNI9MTSkpAgn5JJ1bDuk5Agv51HvrX3QQk6N/N\nR3+9SUCC/k0mukcEREAEREAERKB6BCToV2/OHzNiCfqPoVfN50rQr+a8a9Q3CUjQv8lE95SQgAT9\nEk5qG4ckQb+NcEv60hL0SzqxGpYIiIAIiIAIiEBTBCToN4Wr8g+WoF/5S6BpABL0m0amJ5SUgAT9\nkk6shnWdgAT96zz0r7sJSNC/m4/+epOABP2bTHSPCIiACIiACIhA9QhI0K/enD9mxBL0H0Ovms+V\noF/NedeobxKQoH+Tie4pIQEJ+iWc1DYOSYJ+G+GW9KUl6Jd0YjUsERABERABERCBpghI0G8KV+Uf\nLEG/8pdA0wAk6DeNTE8oKQEJ+iWdWA3rOgEJ+td56F93E5Cgfzcf/fUmAQn6N5noHhEQAREQAREQ\ngeoRkKBfvTl/zIgl6D+GXjWfK0G/mvOuUd8kIEH/JhPdU0ICEvRLOKltHJIE/TbCLelLS9Av6cRq\nWCIgAiIgAiIgAk0RkKDfFK7KP1iCfuUvgaYBSNBvGpmeUFICEvRLOrEa1nUCEvSv89C/7iYgQf9u\nPvrrTQIS9G8y0T0iIAIiIAIiIALVIyBBv3pz/pgRS9B/DL1qPleCfjXnXaO+SUCC/k0muqeEBCTo\nl3BS2zgkCfpthFvSl5agX9KJ1bBEQAREQAREQASaIiBBvylclX+wBP3KXwJNA5Cg3zQyPaGkBCTo\nl3RiNazrBIqC/s7OTu2LL77w9vnnn9dGRkauP1j/qjyBd+/e1b7++uvan//8Z+8HBwcb18tf/dVf\nVZ6PANwkcHh4eO2aef78ee3LL7+y9mWN2zpEQAREQAREQAREoAoEioL+wcFBw4bG/xoaGqoCAo2x\nCQIXFxcNnwvfC98cH53r5bPPPmvilfTQqhDY39+/ds2srKy4z4XvtbS0VBUMGqcI1CTo6yKoBIGi\noL+5uVlbXFxsNBmWlbgEmhokgv76+nqjDQwMNK6XhYWFpl5LD64GgZOTk8b1wrXz8uVLCfrVmHqN\nUgREQAREQAREoECgKOgTSFX0uwiS0SECRQJkRhf9LnzzvGbm5+eLD9VtEXACx8fH164ZFn4IopKg\nrwukagQk6Fdtxis63qKgv7a2VhsdHa2NjY1539/fX1EqGvZdBI6OjmoYC/R9fX2N64VrR4cIfEgA\nZySvF/qIFFGE/oec9G8REAEREAEREIFyEygK+hsbGw0bGt8Lm1qHCBQJvH///poNjW+evvqzZ8+K\nD9VtEXAC+F1FX/173/ueBH1dG5UkIEG/ktNevUF/9913jbSs1dW31QOgETsBsxdr79+/s/be24dY\nMCBxNGg8Jo/i47mdj9FiUBJS/yGBlZVXnir8xRefW+rn8od/1r9FQAREQAREQAREoJQECKSK0pVf\n1wik0iECSSD9q/Stsse3wq9K3yrv53l5m54j/bC+Pvw2v6fe+5/1vwoS+Oyz75nf9Xnt88+/8OyO\nCiLQkCtKQIJ+RSe+asOmzA4GJWI+qZ86qkng/Py8dnp6Wjs5Oa2dnZ1eMxBJAaZmI5Egw8MjtXfv\nLq29q11e0i5qPPf8/KJ2cXHuj+FxNKUOV/Na+tSoSRFeXl52MX9mZuZTD9ffRUAEREAEREAERKAU\nBDY3N8znWvW2u7tbijFpEI8jgBaPb0VkNb4VG+FSrvL09MRvj4+PeyYHPYJ90e86PT1zv43nIPiP\njOCDjXg/ODhQozQqLRcDHnemenYvElhYWDS/a8l9r6mp6V4cgs5ZBB5EQIL+g7DpSb1GgA0rDw72\na3t7+57S12vnr/NtDYGTk2O/Bvb39+x6OKgL9iHcI85PTU15m5iYdOE+BPyL+iLAsV07YXjyuOnp\naXvstC8CtObs9CplIoBDMjk56U1lmso0sxqLCIiACIiACIjAXQTwu9i0Ensb21mHCBBdT1BUCvWH\nhwe13d09a7t2jRzVCISZn1+oLSzMuzDPdYPfRhlLfLbw5Q88kCr9tcnJKQvCGm40RH0d1SQwMZF+\n15QH3FWTgkZdRQIS9Ks46xUcc0QDRFQAUdc6qkkA54KoIep5bm1t1aNE4rpAgGV1f3FxoTY3N+8i\nPpEgNGr08VwWhTAoFxeXLPJ60R/P83SIwIcEiBIie0MRQx+S0b9FQAREQAREQATKTEB+V5ln92Fj\nw/8mO5pMadr29o5tarpmGfTrFmy1W3v16pW1z2psbortHH7XgS8KbW9v2+O3Pcse2/pqw9wFr7VP\n4AxNWdMPm5syPGtgoN+uG/ldZZhLjaE5AhL0m+OlR4uACHQ5ASJAcCQwHGkXF1Emh2h7hPm9vT03\nDon2yFqMDAlhfm5uzsV8SqQg5BNFciXo8zyijQ5qMzPTFqE/4z0bfA0NDVsb8kaaKEf2/g/9TwRE\nQAREQAREQAREQAREQAQqQiB9sfTHiLbPhh+GkI9fxn0vXrysvXz5wnsE/YzIp6dc7u7ujvW7Fr3f\n5xnS09NTlgU75UI+WdYI+kTrI+pnqwhmDVMERKDCBCToV3jyNXQRKCMBBPxI5wwxHkPw6OjQDMMj\nvx+jMjfGDYMPIX7QDcHx8YnaxMSEi/uxEHDhiwMYmhkpQpQ+EQBZs/HZs1EvqzI1FeVVYoOm2FhX\non4ZrzCNSQREQAREQAREQAREQARE4C4C+FKZ7UxU/pVPdmgBV5f+VOKg+vsHarOzBErNWj/rQVEZ\nyU+dfZ6Xz+U109dC3Gf/M/Y+o0fUJ9Aq213npr+JgAiIQBkISNAvwyxqDCIgAg0CGI4YfzQi8iNN\nc8t7HjQ2Nm6CfRh7o6NjbvxhAGIIEmVPdAd9MaoEo5JIkmxZ0xGhn+dF6ueSl+vBKKXcCk2CfmNa\ndEMEREAEREAEREAEREAERKAiBPCf8JXwx6iTH5nOZDvvu6/FfmQ0Iu2Jssenosd/Itsa8f7ykr3M\nogQqPh6vk/4YwVqZIU1PtjULAmRa03SIgAiIQNkJSNAv+wxrfCJQAQKUzsmWQj6RHBh86+vrVjOf\ntuEpmAsLbLgUdfLZtJSIfHoMwdsODMiMDqHf3Ny0Gvy0LX/Nly9fWoroC0sVfel1HyOCf9BFfV5T\nwv5tZHW/CIiACIiACIiACIiACIhAGQikP8ZYEPNTfC+K+dyenJxwvwnfaWlp+c6hE2SV5VR57tra\nqrU19+1ir6oB97/w6dLPY5Nd/K9i403kk92JWn8UARHoMQIS9HtswnS6IiACVwTSaCQCBCE/0jOJ\nzs9/R6R+RuwTfT81NW1tyhuR+TSiQe7aSIkIkXwNeuo9Zt1HjMxM7SxG/PO6WcsRY5OmQwREQARE\nQAREQAREQAREQATKRgC/jCCo83Mi6s8b0flE6JPdHJsls8fZZX3vsnnfv+xT0fRRLvW9Z0+zSJA1\n9Xd39/w+SqnyGAKq8Oloo6NE/F9F/RO4hS+GvyefrGxXnsYjAtUlIEG/unOvkYtATxPAaOTAOMyN\nbvf29l14v7g4N2My0jSLqZgYdhh41L1HcC/+jRI5tx2Z9omwT31+DNNsGKgYr9lYMMgUUoR+RP1s\nt72+7hcBERABERABERABERABERCBXiWAqJ617imHg/h+ehrBVfhP+GEpuI+NUe+eMqjj7pPdNeYM\n4KLndXjdbGdnp/WALhYSzr1ET5TqufRSPhnElT4ZZX3wy3SIgAiIQBkISNAvwyxqDCJQQQIp6GO8\nUU4n2roL+vwNo5K0yrm5OW+zs3NuMGa0PH3Wuc90zNswFg1Jbqd4T89iAmmf2Uj1pKY+PcJ+RInE\nAsJtr6/7RUAEREAEREAEREAEREAERKBXCRAAldHz9GQ1p8+E/xQ+2Xxtfn7Og6vCJ2PfsU9nMfN8\nDnreBz+P/vCQPc7YNPfAfLL92u7ujp8D/lmU31l0vwxhH1E/s7N7lbHOWwREQASKBCToF2notgiI\nQFcSwHjDcMtG5EVGy4eovmsGXJTB4f4Q6vstAn/QjMcwHOmJykjx/jE1FDPyg55ajqurq42WkSD0\n1HLEcEwD8sPFhK6ErZMSAREQAREQAREQAREQAREQgU8QKGYx45Pt7++5b4SgTra0SfAuwuOb4Ysh\n6lPfvhVR8viHR0eI+dEQ9Hd2tmvb29su6hNYlZnTmQmQgj6ld7LdlaX9ieHrzyIgAiLQUQIS9DuK\nX28uAiJwHwIYbBnhQU+aZZa84TZC/1X9xIFGKZ3h4REX1RHWaZTYSSE/+/u8/4ePyagQet5/d5cF\nhWj5upYc4O+XhiP19Z89G2mkm95Vs//D99O/RUAEREAEREAEREAEREAERKCbCFBSh/I6+GXHx9TK\nzxI4pxZg1We+0LD7QyMjw+aLTTb8slb5QVHSJ96T989ofUT+vj6i/6Pxflluh55gq2ytWFzopjnR\nuYiACFSHgAT96sy1RioCPUsghfMwFo+9zE1GX5BiOT4+4TUYib6gJmPUyI9a+Yj4WcM+IzBSdH8o\nEBYYslHyJzbjDWOSiP1sbPqUgj7nNDnJwkIYsxiTOkRABERABERABERABERABESgFwkcHBw0ouLx\nf8I/itI4lB2NoCr8s3H3x9IvS5/ssWPOrGkyBfDJoqY+e5udeuR+CPyHXlt/cHDIo/I5BzbinZ2d\n9R5fTYcIiIAI9CIBCfq9OGs6ZxGoAAEMQg56jDQMRgxFesT89fV1q5u/7v9eWlqy+ohLNXrSKxH2\nQ9wfe3JSb9++qb1587ZGT+1IhPvcAIpzw4CcmZl1oZ+TY3HhsQsMTz5IvaEIiIAIiIAIiIAIiIAI\niEDlCGRQEz016/HJaNTNz4h8RPPJyUkXzRHOKUXa7oPziazt6NfWVht7nBEUVozYZ7+zxcUFq7O/\n6IsOnNuHPpn8s3bPmF5fBETgsQQk6D+WoJ4vAiLQMgIYYhz0lNYpRr4jjmfL9Er+fXl5YSL+jAv5\niOWkT6aA3okoeBYbtre3fNGBcjzFg7I7WU+faBDOk3OkyWgsktJtERABERABERABERABERCBbiKQ\nWdP4YFclUKlhf+R+W5QXjRKj+DxZ9pTb7T7wH7NxnpRDzU16s0Tr5SV7sl1ey+Yu+mPcZs8zSvTQ\ntyqToN1j1+uLgAhUk4AE/WrOu0YtAl1JIKMqMMaIpGBDJRp1EBHuLy4uvce4Im2S6A9alrWhRxzH\nCOP+VtVnbAYW5x3t0A1dFiWinuSJG4YDA2Egcq7FDXQl6DdDWY8VAREQAREQAREQAREQARF4SgKU\nuEEkZ/NZesrccBCThX9G6VMCmD4MXHqqOvUp6NMj4mdjAQKfLEvyhF8ZvuXQ0KBlE0w1/DLOFX+S\nvhO+5FPOp95LBESgtwlI0O/t+dPZi0CpCCDoZyOqYmNjwxsGY6RBRjok0R6kb87OzrnxRQRFRlFg\nTPLY7J8aEOWBsmFE5ma59Hk/PREgke5JyueiIvSfeqL0fiIgAiIgAiIgAiIgAiIgAvcmQAb127dv\na6urlBd96/4L0ffUyL+KyKf06YQHV+GPZbv3mzzygYj5HPiU6Xsh5h8dkUkQLRYlWJgIH5PSOwsL\nlOBZ8HHEmMZ8DI88HT1dBERABNpGQIJ+29DqhUVABD5FIMX7NLYuLs4t0uPCoz0ODvbNyNp1QRwD\njMh2oiQGBwdcxJ+fn6/Nzc17qZ1PvU+n/k40CBkGGIsI+hkVgjHMWGJDpqipn9kG9MXFCEXud2r2\n9L4iIAIiIAIiIAIiIAIiUE0CKYwTlU8kPu3k5Li2ublV29ra9L4Y3U7N/BTC2cuMYKtuOTh3xHx8\nSjKpt7YYQ5RIxQ/N8q3sd8YYyDAg22B4ODK/wwcd7Jbh6DxEQAREwAlI0NeFIAIi0DECGFcpchM5\ncXxMuRrSI49c2E/B3xI5Pe2R1EdaRIBMel1GbnfrwfiuSvAcNfYAQOinfmMYh1EaiKyDyckJG9Ok\nR+93MsugW3nqvERABERABERABERABERABNpLoFi6BhF8b2+/UQYVgT9L1oyMPLNo/PGGT5Z7g9ET\noNQtB+ccPuepl945ODioRTs0n/OskUXQ3z/gvubICD7niAn7z+qLFJGBoECrbplRnYcIiAAEJOjr\nOhABEegYAYTtSH88sqiJAzcUiWQnqp0a+ePjY24kIto/exabyMbGRcOWAhniPhHt3XqwIIGon40S\nPAj8LFhwm/Fnm5ubszTPKL+DuF8sIdSt49N5iYAIiIAIiIAIiIAIiIAIlIsAPgyiPv329nZtbW3N\n2qr7aAj4lNiJPqPZ8dWubyjbTeI347jKCEfcP6s3AspOGqV4Iis8N8Ud9Cj9mRnKvEbrpjGV64rT\naERABB5CQIL+Q6jpOSIgAg8mkOmb9BHxsVfb39/3kjSZ/kiPqL20tGRt2YTueY+OYJMlxP1uSuFs\nBkSmetKzcLG5SbpqtOfPn9devlyprayseCkeovcZZ45VBmQzpPVYERABERABERABERABERCBZgng\noyF+pwiOmP/NN9/Uvv32Gy8jurz8vIbfQsNfIxofMZ8s6l45GGM2gspWV2PBgrFy4HfR8DvxRxcX\n8UmXGlkHRb+seLtXxq/zFAERKAcBCfrlmEeNQgS6lkAaS2kcUlrnql1FqBOpHvcTMXHqBhQ15qlp\nODU15cZipnF2UwpnM+BjjIz51DMSdnf3LNIl9gmgViORLjQWLvh3thT26Xt17M1w0mNFQAREQARE\nQAREQAREQASehgDifTbK05BJnKVQYyPZKFHDXmdzc7PW5ixqfc59FbKlEfMJRuqVI/1Tzhf/rLhJ\nLuWELi8jon9goL/hj+GXhS/6zHvGnQFYvTT2XpkjnacIiMCnCUjQ/zQjPUIEROARBNI4pKf0DNH4\nlNSh598RAXJpURI1K6PDprdD3hPpcSVsP3ODib9hMPVqJERx018WL7LcEGV4qN+YpXkQ7qempn0h\ng82Zcu+ANBwfMR16qgiIgAiIgAiIgAiIgAiIgAg0COCPIeTTrgvc2/aYPvNF8M+GXcgm+IjIfBq+\nSTHwqPGCPXADUZ8D/ysXL1jIwEfLPd7wz4JL8GHMBJqxATAcEPjx0+h71T/tganSKYqACNxCQIL+\nLWB0twiIQGsIIORnzUKMJErMbGxseONvaQRiDBGRH1H5024YERXB5kQ8BiOJ1ssR6hiOjJke4/Cq\nfuOZ81hfX7d+3f+2sLBgpYYWavPzC56tEAsco244t2Zm9CoiIAIiIAIiIAIiIAIiIAJVJ4ConX4J\ngUarq2+trXobH5+oLS9HGdT5+TkX9vHbEPPxy9JH61VBu+ircjtKpLK/26FtnLtvewjsWAT/tu8l\nQC199jzDR8NnpSRPtl4df9WvfY1fBHqZgAT9Xp49nbsIdCGBFK2z9mJGnWMkZsQH9eNJbcTwyehz\n0hgjfTM2HcJILPORxiPCPqzYaOrtWwzntx4ZQoQ+0fk0DEX40BMBgvGcCyFlZqSxiYAIiIAIiIAI\niIAIiIAItJYA/lr6bPgkRKXjpxF8RQbx1hYC9pb1W+6LvHjxsvbixQsXstMPSTG/tWfW+VdjQYOG\noE9GOcFoW1ux5xmR+ZSDRczndtFHI4s8GiVSBzo/EJ2BCIhA6QlI0C/9FGuAIvC0BNIojHr4GIfU\nYKRRI//EaxK+e3fpIjai/fDwiIvURKCTxphpnAjWZT4wonPRA2YscuzuEgGy68z6+shOICuh3zea\nynr6Wb8RXkrvLPMVorGJgAiIgAiIgAiIgAiIQOsJ4Htk0BV9CtiI2Phu/J068vT4Z0Sm0xCxCchC\nzKeV8YiSO2e+yIEPi6hPpP7+/oGPPYKq+r1M7MjIcD04baQRqZ8BWGVkozGJgAh0FwEJ+t01Hzob\nEeh5AkScYwweHh7UUxUP6obQgadyYuSMjbH565gL1SFMhzid0fqZwtnzMO4YQEbGZJ+RMSx6HB0d\nm+HI5lMYkAe+6JGCPvwwrLOV1Zi+A53+JAIiIAIiIAIiIAIiIAIi8EACBBVlRD49ovX+/p7tc7bv\n9eMR7icno1b82Nio+Wy0Zy5eI+hne+Dbd/XTYJMZ1FeliE5N4D/zhY+I4D/0BZEQ94nMH/BMhpkZ\nFj4oxTPujLp6oDo5ERCBnicgQb/np1ADEIHuIIAwzYHhQ6R5lNWJqPMssYNxtLS0ZHUYl71HlMZA\nRKxGzNcRBDAU37x5Y+219yxwpCFNBgMRMqR60pc13VXXggiIgAiIgAiIgAiIgAiIQGsJZJYwQUNR\nJ/6g7rfhv+24mL2y8qr26hVtxQOLWnsGvfVq6ePSs9fZ6uqal0rd29u7NhDq6i8thY9LyVQOFj6K\nvf9D/xMBERCBFhGQoN8ikHoZEagSAQwaGmmY9NTHv0pPpP7iSb3Uzon/7fz8zHuMGoToaLMe6UGq\n4tBQbKxUJYZ3jRWW1KzMBuOwB/uM1aBHfUSmA1kOUbKI0kVl33fgLmb6mwiIgAiIgAiIgAiIgAiI\nwMcJEFhF4FVGnVMrP0rtHLmfdnERfyNYCHGaNj+/UHn/Aj8sjwhS2/a94FgMubiIMrKXlxfu146O\nkokeGQ2URs1GbX2i+emVXZ001YuACDyWgAT9xxLU80WgggQwbEhHzEZ5HVI0Sdek1uD791Fz8d27\n9268IDRjwBCFH0I0UfljbiCmgVP2mvnNXCYY3FG2CEP70BdLEPlp1LMkrTO4DVo67ISnxE5NTXmm\nQzPvo8eKgAiIgAiIgAiIgAiIgAiUn0CW2EHEj/3NYp8zaubjhyE+46td7WsWJT7lo9U8gI0rJLnB\nEG6U4Tk7Cx8NcR8fDnGfTXEpWzQ1RemiSWMb5WVhrACs8n/WNEIReCoCEvSfirTeRwRKRIDI/Izy\noN/e3rYUxI3a5uaGC9EYKhl1H8bMlNcVpFwMRmG2LBdT5jqMD5l2FkzCIAzDkIWSvT3KF+2ZIXnU\nWEhhHii7s7CwWFtcXHBh/yHvp+eIgAiIgAiIgAiIgAiIgAiUlwAldigTQ+M2An8EDJ246Dw7O1eb\nm5s1EXrKfDXqwkfLsjHlJXP/kWUwGz0Z6gj72XZ2dtwn3tnZ9sj9hYV5z3CgHx+fsDbugW2I+jpE\nQAREoBUEJOi3gqJeQwQqQADxGOMlxfyIRohSOojNGDG0k5PTesrhM+tH3SjMmu/UzNfRPAEMb1I8\nqWuJAX4VDXLmfDG+YTwxMWkLKRjfkRGRBnj2zb+zniECIiACIiACIiACIiACItBrBK4yqi9cYMaH\niCChPRehU5x+9+7SA6/m56PMDoK+jk8TIPgqxXx6SqUS3LaxselR+9PTWWZ2piHmk6lOBkQGt7Fo\nIj/t06z1CBEQgY8TkKD/cS66VwRE4AMCWfKFnoiOTNukz2hyUgxt+x83VDBWaBguRCTQ+LeO5gmQ\n3knpncNDUmRJ8Qz+9ETQkBExPDzk6ZwsmkxMjFubcGOxr6/fDUUZi81z1zNEQAREQAREQAREQARE\noBcJINjjNxwdZWmd9B+O3XfLCHx6IsjJqqbhu+n4NIGM0k8fORdMWDQ5PQ0fLYV7Shmxbxx7nrH/\nWdTap97+WKOmvny1TzPXI0RABK4TkKB/nYf+JQIicAsBarpjqGQjEoH7EJpJHUzDZHR01P+NeJ+1\nGDFiso7+LS+vu+8gkBtY0WM0hsCf4n7UbeT+2MRq/tomVgMD/X4/wr4OERABERABERABERABERCB\n8hPAbyB7OrN8z88vLNOaPdDeuW+QAVcEAmWN9/TZyk/n8SMslkgtivtksZOxXoze7+urNaLy8Y9n\nZmatzXiGNaI/Yr4E/cfPiV5BBKpGQIJ+1WZc4xWBBxLAGKRWPg3j8OCATXAR+PfdGFleXq4tLS37\nbQyVFPRlnDwQ+C1PIxsiN8xlcSXTOzc3Nz3a5tWrVzXaysqKG+cZGYLYr0MEREAEREAEREAEREAE\nRKD8BAj2WVtbq62vr1m/bgN+3xCV8dPm5qiZP+89Ufo6WkeALOrV1VVva2urNRZXWADgIEp/eXnJ\n2rK15x70lv5y9q07E72SCIhAmQlI0C/z7GpsItAkAerj0zLiAEOQDX+INDg+PvHIcKLDuR9hORvp\nmRFlMFOv486muNFkmDQ5CZ94OBEgxZI7V/X1d32ustwOJXfIlmAfg1xcKYr7mpdPgNafRUAEREAE\nREAEREAERKCHCOC34Sfgq+GzZWb14eGBi/lE4NPwD7LEDj0+go7WEWAeYn85guF2TNA/a/jN+GCZ\n2U7JHQLhsmVGOwssGbnfurPSK4mACJSNgAT9ss2oxiMCjyCAWJwiPYYgNQCzkaJJYAFif39/n2+8\nygasGB4Ix2mYYJCkcCxD5BGTcctTWXAhyoN5oi+WPmLRJeePnlRaNraicZu5SkNegv4tgHW3CIiA\nCIiACIiACIiACPQgAfy2KLGz6z5CBmvR46OFz4bfFgE/1HOn3I4yeVs72fhhWSIVXw2/mkaQ3NnZ\nuZU9urCG333pdfQJxGJhBX8txX16zUtr50WvJgJlIyBBv2wzqvGIwCMIIBATUUAf5Vw2axsbm7XN\nzQ0X8MPoC2NwchKhODZPGhwcsr9HJEGK+AjGEo0fMRm3PJUFFVoa6MxVGohsmruxsWHzFXM2MTFZ\nm5+f90YGBZH6acDLQLwFsO4WAREQAREQAREQAREQgR4kgA9AqRdK7eDLYftHG/GNbxGMM4s3A7Dw\nCeSztXayM9sd0Z6W4n5mTUT0/o5F8W/7fGTpo9nZWRf4mSei95kjHSIgAiJwGwEJ+reR0f0iUAEC\nGBsYGYjD9Ij5GUFAnXaMDNIE6TEGMSzSEJyenrEyO9M1eonDnbtYmLeMyicC5O3bt94w5pkzhPzp\n6WmP0kfMZw5pLMAwb9k6NwK9swiIgAiIgAiIgAiIgAiIQLME8OHSD7i4OLe9tbY9EIuALErvIN4X\nW/px+Ag6no4Ac4GfhqBPFkUEYG14j3+Gr4ZPnVnV6XOTXa2Fl6ebJ72TCPQaAQn6vTZjOl8RaCEB\n0v1OTk6v1WSPuovUXjyrpwKSEnhRj+6IFM2xMYThiBzA4JCg38JJafKlcjGGnsWYq4iPnXp5pH4z\nBPtdwKcsEkZjROlHii3pnBiLOkRABERABERABERABERABLqfAEFZHARjEYmPSHxwsO/+W2Rbn9lf\n+zwQCxGfFpH6EbEv29/xPdn/rjKqzxqifpS13fNzSNF+YGDQSu6wzwF+Wux1kMFY+GyZSZH9kw1A\nbyQCItCVBCTod+W06KRE4GkIYPCFMUGt/D03MIgcoBb7+/fvTPglmjvq42e5HeosYmAMDdG08e3T\nzNTt74JBT0thnwWZbGRZRDvwMkpsgDU6iiE/atE6GPcRtYPAr0MEREAEREAEREAEREAERKC7CaTt\nz1nit62vr1tb854MXOx8xHvs+xSD6flbNpVyedo5JqM6W5a4zaz48L3xv498gSazp/v7B7yuPtnW\nNGrsI+Rne9oR6N1EQAS6kYAE/W6cFZ2TCDwRAYTfrS3qrW95TypgpgNi6C0tLdXbsm/Qkxuq8jdF\nBjzRJDX5Nhmxw9M2NtZrb95QgudNbW9v71pkDqmdMzOzNWo1koqrQwREQAREQAREQAREQAREoLsJ\npKBPT3T+X/7yF2/ffPMXL92S/hs2fmTlRnauMqq7Y16LvhpntLW15Qsy7HtApjVBWtmYw+XlZfPH\nl91nYw7xwTWX3TGXOgsR6DQBCfqdngG9vwi0mQBGQxoFWSefyHza6WnU8zs6iqiAjBzg8UTfR0RA\niL78W1EdbZ6sFr/87u6uG4kYiqThZkQHPdE74+NkYETpJBZrSOWkl5HY4onQy4mACIiACIiACIiA\nCIjAAwikgJ/+HJHdRHUTmHV0dGhBO/seuEO2NVHcc3NzLv5OTk55VnUEZF2Va3nAKegpbSRAtnyU\nTN32zHn2RDg/v7C9Ec7dN8NXw2cjc/6qHM/INb9cGRdtnCC9tAh0MQEJ+l08OTo1EWgFAYw/Uvty\nw6Sssbi/f+A112u1qMFour+J+IMu5A8ODtUNiNhAlTRNDAUaYq8E31bMTPtfA2M/y+6Qxsm+CGdn\np94zh7lAg5CPA0BjMyYZhe2fG72DCIiACIiACIiACIiACHyKAII+flwGXhGwk3tmnZwcm91OKR38\ntEGvlZ+b4BKdH7Z+/E3Z1Z8i3Zm/x8IMG+bGprlRiofAu1Pfx+7y8p3PPfPH3E5ORslUgrPw4TIg\nqzNnr3cVARHoJAEJ+p2kr/cWgScggPGXNfqIyt/cpMQObcOj9DH2crPUNADpuR9hF0Mwhfw0BLN/\ngtPXWzyCAHOfCzlcA5TdyZaOAQs+zPHCwkKjaaOsR0DXU0VABERABERABERABESgRQQyOIsALRql\nWd6+fVtbXV31QJ2FhcXa4iJ2/KL7b5l1iz2Pz0ZTMFaLJqMNL5MLNfhmzG+xpv7u7l5td3fHFnB2\nzZ8/8cyLyMCYc2H/asNj7YfWhqnRS4pA1xOQoN/1U6QTFIHmCWAYRFrmpRl6524AnJycemrmzs52\nbXs7GoYD6ZjF6GwitKmvzmZKOspDAAPxekTPiS/0ELFfq/V5ei4G4vz8vEd6ZKRPMVpfCznluR40\nEhEQAREQAREQAREQge4kkCVTMzqfwBwiuek3NjZ8n6z19Q3z9y5rL1++tLbiPWJ+MRirO0ens7qN\nAD78laB/7KVTmW8C8dgvgXK4+Ok0AvBS0Cc4b2CALPrIqM+FnNveR/eLgAiUg4AE/XLMo0YhAtcI\nYPCRghk9tymzEn1EbEcJHn70KadDwyAgKp/b9BiEOspDAAOR8jtsekxfvD6o0xj1NYe95xqYmKBe\nY2RqpFGo6J7yXA8aiQiIgAiIgAiIgAiIQHcSyGhtekT8LKFJT5AO9dWx3xHv5+bY72zOg3P4N/Y6\nATkKxOnOub3rrAjIy73u6BHxya6mZC4leZjXbEND7H+G7xZld8bGrrLuuQ440oe76z31NxEQgd4l\nIEG/d+dOZy4CtxLIsipsjoThhyEYkR2nJtY/8w1REe2JwqfuXvakZmYrRmbf+kb6Q88QyHRdjMMP\n0zmJBOH+uE7OPGNjYWHeo/Wnp2fcMcA5oMk56Jkp14mKgAiIgAiIgAiIgAj0IIHw2yIiH18ufbu9\nvV0PvCLoJoJvIiAry6emrS4htwcn3U6ZjIxiCZ70z8ioJkCvGL3PY8M/63P/PaL3ZzyKn0AtroG8\nHnqThs5aBETgUwQk6H+KkP4uAj1IIFLzok4+BmAK+hgF1EpfWlqyWotLvgEqAj6r+PR5SLRNEuXr\nMf44MAiPjg59wYeoj6u9FTbdEFxZIXV3xa+VjASh17VRvmtCIxIBERABERABERABEegeAplRS48v\nt7W1ZSVTt7x//vx5bWXlVe3VqxWPzOesJeB3z9y16kzSZ8seP359fb3R8O+jzO6lR+3j3y8tLbvv\nRrBeiP0RkNWqc9LriIAIdBcBCfrdNR86GxG4N4H4AX/ntfKJuOZHPhvGX7RDvw9DIBur9zMzpGbO\nenkdRFoEfUXk3xt9KR7ItZJld7hWdnZiwyV60jdzXwXqM2IUPntGRseIXStDbiByvWAo6hABERAB\nERABERABERABEXg4ATJpoyzqhfdXvtyRB+FEcFZE7LPfFYFZi4uLbq8//F31zF4iwPUR/tqO74fH\nNYEGQHv//l2jnv7Y2Hg9+z7K8RT3VcDnV3BWL826zlUE7iYgQf9uPvqrCHQtgfwBR5gl2poaezSi\nrfOH2jLtTHQdaJTRIQq/WDOfH3it3nftFLf1xDAKr66hU7t2Ilo/a3Oyydbl5Tu/lqamJs1hiM2T\nEfe5jtI4bOtJ6sVFQAREQAREQAREQAREoOQEsMvZ+6xYUoWa6UdHx2aPX1zz5SYmsMujYZfrqAYB\nFn2KCz25STLleNAD+Hs2SupSlik3zeU64T6agviqcb1olNUgIEG/GvOsUZaQwNWGtycu4hdLpuSP\nd7HPTU5Zmc+I/PxBV5pmCS+QTwyJjI00+sj2KJZlIvpja2vT03oxHIkEmpujpv6cG4cRsR+G4Sfe\nRn8WAREQAREQAREQAREQARG4gwCCLEFZ2VLYJ5uW4CsyqzPDmqAagmto6cvd8dL6U0kI4Lux8IPf\nRo/vltcJ/tru7q61He/ZKJes/NnZmRr7oaEJkHVNjw6gQwREoBwEJOiXYx41igoQ4EecH/AstZM/\n4Bh6e3v7nnq3vb3tImxsijPtP+RTUxFZnZEcGb1fAWQa4j0JfGggsjj09u0ba2/dKMwyTfQYg2Nj\no7Yh15incxYzPHRt3RO4HiYCIiACIiACIiACIlBpAgTWpF9HoBZifm5+G1m0Z55Ni4BPeZ0ss6OS\nl5W+bBqDzyx9NAEyrDc21q1teEO0RwOYmpr2PgP76IeGhn0hqFg+VT5cA6tuiEBPEZCg31PTpZOt\nMgEMO36wMx0zI6rp+UG/uKCGHnUXzz2KOn+4KbEzOooAG63KDDX2jxP4MFofh2JnZ9sWiXa8jBMG\nXzbq6Me1xHX1zErvRPomKZxyMD7OV/eKgAiIgAiIgAiIgAiIQJFAZlsX/bu4HVH5lE3F/sb2TmF2\nenq6UVq1+Fq6XT0CROmjAdBiQWjPg/xYFGKxKH23wcEB99dYGMJfI9MaX44ArZGR2DxX2frVu340\n4nIQkKBfjnnUKCpAgB/qSKXb9egNfrzPz/kRPzchtc9+nBHs2byUUihRDoXbWes8UzMrgEpDfAAB\nDD+EfVqmcJL9Qe3OYr1GjMI0BDEGqc+oFM4HANdTREAEREAEREAEREAEKksgo/HpEfIRaAnMoicT\ndnx8zETX8YbwGj7eiAT9yl4x1weeGR5x3UQJngj4O6kHANIfm1935lpBX1+/91xTkX097XukZba1\nRP3rfPUvEegFAhL0e2GWdI4iYATY8HZ9fd0b6XT5481GSQirkYq5WFtaWmqsyA8MDF6LmlY6nS6l\n+xBIYZ+ehaPV1bdWfmfVe+7DoaCR/RH1PGe8Z9FIhwiIgAiIgAiIgAiIgAiIwN0EKHGZJVKOjg7r\nQn2f9TWrfT7ne1exhxV1zzkkuN7Ns4p/xS/LI/03/r23t9u4tijJi26Qtfcpw7u0tOyawcLCgmsF\nRPMj7EsrSJrqRaA3CEjQ74150llWhAAr7e/eUSc/aipmGh2R+MfHJ14fjxp5GH1m1rnBR4+gz6Y3\nbJiEAZgr7fphrsiF08ZhYgDicLBJ7ubmlkcOZYQHxh8R+jgaNER+MkJoEvfbOCl6aREQAREQAREQ\nAREQgZ4igKCapVLPzk6tZv6BBWyxEe6B29eDg2x0O+g29OTklG1mGjXQsa91iEAzBNALdnbYIHen\nkNl/7oFa+Gnhu7Ev2piX4eE+yvHkRsvU4MfP0yECItDdBCTod/f86OwqRoBo+xDx+cFNQy+MPWro\nR2RGrJ4PD2P0hXCKoZdpmfQIrhnFoZX2il1ELR4uzgdGIRki9KenJ/VrlH0bLmrpfNBz7U1MTFr6\n5qQbii0+Fb2cCIiACIiACIiACIiACPQkAcT8/X3qnEetc/y+iwsCuS48GAt/7qqE6tX+ZwqS6cnp\n7uhJR/nUIy+denx85AtJUY7n1K+5CCJ85+eYgVn0BAlmnX16HSIgAt1NQIJ+d8+Pzq5iBGLj2yOv\no0gtRSKjIzp6yze3QSjNxop61FWMlXVW0rOliJ99xTBquC0kQPom12WUeDo3Uf+o7ozsu8AftffJ\nLHnn1+b8/HyN9E1K8egQAREQAREQAREQAREQARGo+Z5UUT51zcuh4LdlVitCPntSZQufjk1xr5dP\nFUcRuA8BArJywQg/jlr6ZPvH5rn7XpKHvfnYJ42NlqenZ7xHZ8hrEK1BhwiIQHcTkKDf3fOjs6sA\nAX5wEUPpicqPDUjZiPTQypxsNRrlcxBL5+bmvOWPLSVPMAZ1iMBTECBKn1qMpHESYURGSaQPn3pU\n/vz8gl+nlH8iVTNbLi5l/xTnqvcQAREQAREQAREQAREQgU4RKAqrh4fsh7ZhYj57om0UsqvHTUQd\nbwRtke0qe7lTM1a+90VnQMinETCID5fXICV5pqYo7RSNaw+NYXKSkqoTjTK++HN5TWZfPlIakQj0\nHgEJ+r03ZzrjEhEg+pkf1mz80GY6HOI+K+rZSLfM6Hx+bCMtMzYnJYpDhwg8BQGuUUR9GotPaSDS\nDwz02+LSSD1Vc8QzSDKNk2s093SQIfgUM6X3EAEREAEREAEREAER6BQB/DzsZcpW0vD3KF15cnLq\nfWZbU7JydJQWZXbw8WQrd2rWyve+XIcEYKEp0HNNRtmnXb/d338VgIXeQKmdkRH2RBtpXJNcm+zv\nUCzrWz5SGpEI9B4BCfq9N2c645IQ4MeVFhvW7PqmNRh6UdokaioWRfu4zQ/sM/+hRSDlRzeF0pJg\n0TC6nADXZ+zzcOY9dRmPjmJRKiL1MRjPPOskMkrmPWKf67e4WXOXD1OnJwIiIAIiIAIiIAIiIAIP\nIoCPx7GxERH59Aj5ZFWzDxo9gj5CPj12cvp2qpn/IOR60i0EuBYjU4QyPFQEiOzqXFy6Cs46dv+N\nxSQaQv/MTJTjoUeDkC93C2TdLQIdIiBBv0Pg9bYiwI8rKXBra6vW1q2tWeTGkd0XQj+EFhcXGw1j\nr/gjmpEb2YuoCDwFgXRQ0jgkSj8j9knbzDJR3Pfy5UptZeWl90TqZ/kdeh0iIAIiIAIiIAIiIAIi\nUEYCaS9/8803Ndq3337jEdLFYJcQ9Edd0EfET58u+zJy0Zg6QyCvR96d29mos5979tHj1xG8RTQ/\nOsXS0lKjpS+XEf2dGYneVQREoEhAgn6Rhm6LQJsIsBrOj2P2V2lvp/U0zEjH5EeVH0mEe0RP6uVT\ni5xG5AYGXrY2napeVgTuTaBYk5HoDtI3yTihUSd0amraazJOT0+5s0JkB9cxqZx5jdPLcbk3cj1Q\nBERABERABERABESgiwggjmIT0+PvYRNHCdUTs4kjC5sNSDlmZ8O3m5mZadjE2MVE5+sQgacmwHUb\n1QLCf4uyUGRhn/q1TD19aunTj44+8zI8WY4HrYLrlh5/TocIiMDTE5Cg//TM9Y4VI4Bxl6VI6InC\nPzgIAZ+Nb7MWXX9/n/0gDtZTMUnHHPZNRlkNJ4JDkRsVu3B6YLhc27nHA31E61MnNOrrv3//rp5x\n8s6dFvZ+YB8IjEKuZ1KOh4aGZQT2wFzrFEVABERABERABERABG4SyHImiKPYwmSsppCPn4ePh+BJ\nTXI2G82NR7GFs8yOBNGbXHVP+wngy3HN0tAojo9zMYp9Hk7rkfyxWIXPxn4PY2OhTRCklYFaWpBq\n/1zpHUTgYwQk6H+Miu4TgRYS4IeS8iP5Y0mERpYl2dvbvRbFzAo4m86MjbEp0pgbefxA0hTJ3MJJ\n0Uu1jADOCw1nBlE/IpJOLTrp2K7z7dr2Nm3Lhfv5+blG1kkagc+ejXpkR8tOSC8kAiIgAiIgAiIg\nAiIgAk9EIEuU0OPbvX27au1NbXV11eze2EsKG3hycsqzVNMGJkMV/04+3hNNlN7mBgF0iqwgwPWL\nH5c19YnWJ/sa7YJ+YKC/oFtMe4AWQVoZqHXjxXWHCIhA2wlI0G87Yr1B1Qjww0hLoZMfx6wxTn8l\n6G/W9vf3awsL1Mlf8H56etqj8onIp+kQgV4ikBFKaRC+efOmFu21i/ZZPoo047zGWbgiQkkOTS/N\ntM5VBERABERABERABKpJAD+PI/293GSUnvIlq6tvTdB/64L+ygr7Sb2ytmIbjM5cC9aqJj2NupsJ\nEJxVFPTX19dr2bjep6amvJFxnQ1Bn7JRWXoHny4PlVVNEupFoD0EJOi3h6tetYIE+JFLAw+DjlVt\nopRJXaMOXUYuX9XPP/cVceqLx4/jtIuc/CBmqyBGDbmHCeQiVkbrR3R+ROmzP0RmmwwODtWzUCIT\nJa93ykzRdIiACIiACIiACIiACIhANxLA3iV4JRtZ2Bm8he+XPh/9h5vgInpm68ax6ZyqTQAfLrUK\nrl8i8zNKn+s9r93BwQEvIRU+3LCX3iHrmkoDZKBk1on2/qv29aTRt5+ABP32M9Y7VIQAxl2K+hh1\npFxGitq+Retfunh/efnORM0BE+ypOYdwf1VC2P61AABAAElEQVR7jh8/xEx+KFP4rAg6DbMkBPL6\nT2E/6jGyqEWjLuOxlZ4KRycNvigxNeaZKUR4KDOlJBeDhiECIiACIiACIiACJSSAsInomcJ9+Hvh\n92EDF7NQo+b4mJdSxc9LobMYxVxCRBpSjxLg+s2Ma/qM1udaj82eT6wnUPHE9gHss1H2WV9zIX96\neqZGtQEa1zeaRl7vPYpDpy0CXU9Agn7XT5FOsFcIpIhJj2G3vr5WW1tb9/rhWSORnvS0hYUosTM3\nN+c/hrl6nT1j5rYOEehFApmpQs/ngZ7PBLVE19bWfA8JIjqyhiifCdKQaRiBOkRABERABERABERA\nBESgGwlQliSDVug3NzfrbcODs16+fOkldl6+XHF/LkXNop/XjePSOYkABIp+HLezHR4eNPYBJAs7\nI/npWcRaWlrytri41IjkT1FfZEVABNpDQIJ+e7jqVStAAKGSCA1WrzNS4/z8zH/cMO4ODg68cZsS\nI0NDsbktUchRS3xO4mUFrhMNMQjweUiHh/qiODU4ODTEfT4XtPHxca+pn+V3+LsOERABERABERAB\nERABEegUgaLPR7Qy/l22YiYq2dfLy0vWlk3cXO7U6ep9RaDlBLjOCdDa3d3xPjNU6KkuEL7cpPcj\nI5RRHfEFLvZK4+9ZhaDlJ6YXFIEKE5CgX+HJ19AfR4DojPwhIwUtayceHR26yB8paIiWfY0fNH7c\nKDGCaDk2RtPGt4+bBT27VwjwGclFLj4rfH4ysoNklKGhYRfyMfqI2McopOffOkRABERABERABERA\nBESgEwSIUMbny/Ij1MlPMZ9SkpRTRawcGBh0P4+90cg4pdchAmUhgN8W5VMpo3rUKL1DCR72SotI\nfkb7vlF2Cq0D7SPLDJOdrUMERKB1BCTot46lXqliBIoiPkIlq9U7O7FqjUE3NcXu71MuSvJDNjpK\nvfzR+ko10fqxWl0xbBpuRQmQyYKIn0L+/v6+Cfz7tf39Axf2ozTPO6PT5xuIsYkYpalk+FX0gtGw\nRUAEREAEREAERKALCCBUZlAKfYj5h94jcGbZyJmZWRcyM8uUXocIlIVAVicgWyUCG6mnHzX1KceT\nG+ji47GYRWBW9sXo/bLw0DhEoBsISNDvhlnQOXQ1AYy4PPghy8bKNGIkhh0/XEVBH+F+cXHR2kJt\nbm7ejbsQ9Uc95SxfT70IVJEAnyHK7uzsbHtPxP7paWwuhpGIkM9nZ2Fh0T87lN0p1mDU/hJVvGo0\nZhEQAREQAREQARF4GgL4f9ir9ASlIFbi79Ej6LMpKJHJlFuldniW2CELW4cIlJ0An4vMWqHP/QPX\n19drGxsbLuYj6F+1qUawY5ZcpU+fLvuyc9P4RKDVBCTot5qoXq9UBPixyoYxRxRGrETTn1pkMbu8\n0868jj5i5MXFuUcVT01FqiU/ZNQIJ0qDXjXBS3WJaDAPIMBnioWwLFN19bk68c9UpGWOeHrmVYmq\nMRf3MfiK7QFvr6eIgAiIgAiIgAiIgAiIwK0E8Onw+cLPOzER/9jLjNDjE6YtSmnV6emZRpQ+vp4O\nEagCgSydSrQ+i1yI+nt7tL16CaooRUVVAj4X0Ya9YgH+HVnYlFZNYV8aSRWuGo2x1QQk6LeaqF6v\nVAQyGp+eH6v8oaLn3xm5waCvfqhCiORHisb9xY1gtAJdqktEg3kAAQR9jMBs1CJF1M/GZysb2S5z\nc3NWhmfONpOec6MPgy+Nvwe8vZ4iAiIgAiIgAiIgAiIgArcSQMzP8pAEoZydYZtiu557zfzRUQJN\nKKlKjfAoq4pIic+nQwSqQICFrWz4dBH0yCJYZK/EYljU14+9BYMKC2DsMUHjM5NZ2PQ6REAEmiMg\nQb85Xnp0xQgg2BOhwY8VP0qkkUVb8/sx2miI9oiOlNdBeCTCGOG+KDpmJEfFEGq4IvBRApn58v79\nO89wYTPpw8Mjawe17e3t2tbWljcWxV6+fGltpfbixYtrER9aHPsoWt0pAiIgAiIgAiIgAiLwCAJk\nkW5ubpotuul26ZXd+t5FSHy+8P3mrvl8sk0fAV1P7SkCfCY4ip+NDHbEj0t/js8SVQ0ykIsSVYuL\nS1aqatFK8ky5b5eaSk8B0MmKQBcQkKDfBZOgU+geAvwgId6niJ8/PLnqTIRGbOS5byfd52V0KKXz\n7NmIpVrONtIttQlS98ypzqT7CRCNT5Q+kR1E6WMARtvxRbGZGaI4IpojM2EQ+jH+WDTLyI7uH6nO\nUAREQAREQAREQAREoNsI4ANij+Lz0VNCZH9/z8qH7HuwCbZmtrGxcfP5rmzTbhuLzkcEOk2AvdKo\naEAjWItSxRG5f9Koqz8xMenlVEdGhk1TifLEIezzWQsfr9Pj0PuLQLcTkKDf7TOk83tSAqwqX6WL\nnboxx+a3GHX8EFnQff3o85pvV+LiiP0gjfuP0tjYmNItE5N6EbgHARbRMo2ZPhbOYsNpUpvjiCgQ\njL/JyYkaPaI+i2fUX6TpEAEREAEREAEREAEREIFmCeADXgVuIUCeuLDP3mgEen24vxP+Ho2SITpE\nQASuE0A7oWU51asyPCcW0c9j2aewZv7boH2GonwVnyd8OxqfN/l215nqXyLwMQIS9D9GRfdVlgDC\nYlFMpHYiG7sQoYGgf7VTe6woX/3ojPiPTqaLETWsQwRE4H4EMjMGZyrLW2XdRT6DRHnQ2GiJ9GZq\n6c/OzvrnMT+D9DpEQAREQAREQAREQAREoFkC2KAbGxteZmdzc8Mj9YkSHhwc8ECt8XGCSaKRmc1G\nn+n3NfteerwIlJ0Ai2C03BPtKmDyxLNe8O/QV/AB0Vf4bEV/FbhF4KQOERCBuwlI0L+bj/5aYgL8\ngHBgwHGbnh+dFPFDyI8fG+4jBXNhYdFqvkXjhyfFRP3glPhC0dCenECWvKJHyH/z5nXt9evXtbdv\n3/o+FXNzs95PTU01smLYmKyvr9/rmGq/iiefMr2hCIiACIiACIiACPQUgWJACTbn2tpaY6+0y8t3\nZmPGprdEDmNzZlNp1Z6aZp1shwnw2cpArdiTcM0+a+xLuObaS1HQp6Z+fs7YbBrfjkDJYrCk9qno\n8ITq7buKgAT9rpoOncxTEMB4SwEfET/q4x9bSljsyl78weEH6OKCHdwvXCiMH5jYlR0xX+U+nmLG\n9B5VI0CUPp9NGhkz29uxQS519bO8Dj3pmKQ6ZyvWYKTOqQ4REAEREAEREAEREAER+BgBfD7KgrBp\nZ7E8CGVCBgb66yV1rkrrZJkdIvN1iIAI3I8Afh2aSkbrZ219ejbLzb0p6KmlXyxp/OzZqAdQ4ush\n6iPmZ3+/d9ejRKDcBCTol3t+NbqPEMhoDH5caAiG/KBQzgODjiOC99+7eJg/KvQZkc+PC8Zc8Qfo\nI2+lu0RABB5AIBfc6FlwyzqM9Ll5LqmbbExN9EZ8Lkdr4+PjlrI57v3Q0PAD3llPEQEREAEREAER\nEAERqAIBfMDNzU1vZISmb0eZHYJGUsCnz4ASgrmK0cJV4KQxisBjCHyovWT5newzmBJxPzSYeDcC\ntaanY/Npgirz84n+os/gY2ZEzy0TAQn6ZZpNjeVeBPhRYYU4V4qJ+l1fj7Qvyuwg3GOs0fjxyHrd\n3C6uChfLeij1617o9SARuDcBPqcc9BmtzwIc6Zl8XknVZAPdXGijn5mZtTbjDZFfhwiIgAiIgAiI\ngAiIgAh8jMDW1lbtu+++80a5nbQh6SkDkoI+0cHp90lI/BhJ3ScCdxP40K9L/45sGBbT0GNoRXGf\nRbSlpSUrd0xbdG0GUT+F/bvfUX8VgWoQkKBfjXmu/CgjGj/K51xcnNuPxZn/YBD9S3RGbMyyb/ed\neLQvURlseEQdt5mZWBmmZr4OERCBzhHA+GOjso0Noqk2LFr/xCI0IkqD1OjYrCw2VsL5ymgqeh0i\nIAIiIAIiIAIiIALVIoDtmGJilFo9dT8QH5BNObe3ERO33BcsBoaQ9YktSYAIQSM6REAEWk8AAb9Y\nggeBP7OxWUSLmvpslDvln8Msr4pvl8I+vQ4RqCoBCfpVnfmKjZsfi0jrilr5/Fhkw7iL472nb6WY\njwGHIUd0xujomBt0FcOm4YpAVxHAIWMB7uCAzaoP3ODLeozn5xcu4Oe+Fnx2Q+Cf8L6rBqKTEQER\nEAEREAEREAERaDsBbEcCu/D3yM7OMqtRv/vc3h/B34o4mniI3Tg5id046X6fAkPaPj16g4oTwI9D\nk8k9LLIMDz1BmHH0eUeZVTQZfLxcbIuyq2yeG4+pOE4Nv4IEJOhXcNKrOGRq42cUPmLgwcGh1cs/\n8Jr5RF3E7upE9o7b6m9E59Pn6i899dp0iIAIdJYAEVUh4p+5AYiwHyL/gUdg4bjhtGHozc/PN1pn\nz1rvLgIiIAIiIAIiIAIi8NQEUshH1CfAa3V11dpb7ymfMz09Y+VVZ7xWd3EDzoz+5TEqs/PUs6b3\nqwqB/HxmKeQsuYOgf3x81NBv0HEIsmTRbXz8auENDYcmQb8qV4zG+SEBCfofEtG/e5pAplTSp7DH\nDwWCX6ZzkV6Zgj6rwfwIZG222dnZejpX7LAuA66nLwedfMkJENGRdRfp0whkUyUW5Ki3mI2SPH19\n4ZRh9MnwK/nFoeGJgAiIgAiIgAhUkkDRH0yhkIAQSnm8fv3G2nfWXnsU/srKSo32/PnzeqnGYe/l\nA1by0tGgO0yAz2n6c4j47J3G/hbsn5bZ1yHoT9oi3JTtd0hp5GkPvMS343ObPl72HR6S3l4E2kpA\ngn5b8erFn5IAwn02jLdiylb8MJz4DwQ/FDzu8pLHX9oq73jjx4BV32J6pX4InnIG9V4i0BwBPsss\n1pGBQ89nnn0w6C152gw/sm0iLRMjMDc34zOeBp8+480x16NFQAREQAREQAREoFsJIObH3mmX3mMT\nEsB1dER29lGj5CpBIZHNOefZnAR1RVQ+m24OeBBIt45R5yUCZSWQC3BZiicCMnc8MJPALAK0qJow\nODjkQZjseUi1hSy9Qz80NOx+Hr6eFubKeqVoXElAgn6SUN/zBDDe+BFIMX9vb69G44cAAR/hjsYX\nO1/81NqOHwB+BK42PeJHgpaCX8+D0QBEoKQEMn06ozlyXwxSNNn4Or8PqME4OztXm5ub9R5hPz/j\nMvRKenFoWCIgAiIgAiIgApUjgKCPXUhDFKTU6s7OrvuDlFstCn8R6DHuwV3cxibMpoCPyl06GnAX\nEMC3i8DLS//8klVzfEyw1rH7dgRpkomNj5eHfeS94kJG7I+P4+cNuq+Hv6fPcpJSX0YCEvTLOKsV\nHRNGWxpvROySmpWNL3OiMGhE5JOaNTNDitZMI60yxf780s++ojg1bBHoegI4bTQMP/qMvqInTXN7\ne7vRXrx4UXvx4qW1F/75z9qofDfoEAEREAEREAEREAER6H0C2ISZpZ2lGTc2Nmo0xP3nz7EHo+ET\nYgfSioFc8gF7/zrQCHqTAP4cR9HH4zNNI1CTEqs0PssnJ6f+WSc7e25urlFmFZ0nKy4Qya/Pc29e\nCzrr+xGQoH8/TnpUFxLgi/4qAvfCxfysuUaE7t7evot6fPkTjZ/lNqLEzpSLelNTU27EdeHwdEoi\nIAJNEsBxCyfu+Iagn5uezczM+oZKZOdkS0eu6Mw1+dZ6uAiIgAiIgAiIgAiIQAcIIPZlmR18Q/zA\no6NjL7WTZRmJzifwa3n5udfLp2Y+gV4cEvw6MGl6SxFokkCx+gKBW0Tt8znH/5uYGPcofbQdtJ6o\nxhC+XgZx0ePr6RCBMhGQoF+m2azYWDDcrkpsXAl5CHoYbLHAGxG8UVonyupkpD4CP7f1xV6xC0fD\nLS2BzNA5Pz/z74b9/QOvrU8UBzX1cdhoLPCxX0a2jOKgV8R+aS8PDUwEREAEREAERKCEBMjSjlIc\nbHx7vWY++6VRe7u/v89svMFGhjZRvNiDHBL0S3hRaEilI5C6D3tiXAVxRTkedJ/w82q+F0ZxD7Vi\nma38zJcOjgZUWQIS9Cs79b0/cIy3rJFPn1/uRGUQqRFi3aSt1k54vcQPV2pZpaXJiOv9a0EjEAEI\n4LTlZtd8P5CKGZvknnrtVPbT2Nvb9cU+Nj/LxsIexh7fEYj6OkRABERABERABERABHqDQIr4RONf\ntQO/PTw84lnZCPiTk5ON7ExsPgVx9Mb86ixFAAIfr8yAoH9aD+AikGvfHndpUfpjHqlPtD6fe9rE\nxGQjK0dERaAsBCTol2UmSzyOrKVm1dRMsIuIe+4jEoMa2dRRo0fQj41Tjj3qfnFx0WupLS0t+aa3\nw8NDvus5Ir4OERCBchPI9GuMP7J5Xr9+XW/f+SZL1Fqcn5+3movzbvBlSS4iNyLCI6L5y01JoxMB\nERABERABERCB3iOQNbbp8QEpwUGA18HBgf370O/jfoS8qJv/vLawsNh7A9UZi4AI3CCAb0dmdjb2\nyFhbW/NG9D5Cfor6LOZRepWe+9PPK1ZpUIDnDcS6o0cISNDvkYmq6mlipPGFneIcIn7UyD5xQT+j\nb+l5TBp3iPbx5c0XeKRUcl/ueF5Vnhq3CFSFwIffHdvbW7XNza3a1taWR+0PDQ17qjULfVGGK0pw\nEamPqE8jWl8GXlWuGI1TBERABERABESgFwjg86WQh28YpTiom09w14lnYmIHEgyGgDc7O+dZmdTX\n1iECItD7BPgOyIj9YtUGsrH5PhgYoMwWbcCycoatPbMAT2rq02eLLB0ew2Pl8/X+dVHFEUjQr+Ks\n99CY+bLmS/ri4tz7jL7Y3d1zg416iPFl3e/R93xhI8Tll3UIdc9cyM/H0esQAREoN4Fc3MuFPpw8\n0rDpMfRYBIwFwlM38Ki1iIGXkfoR2RFRHOUmpdGJgAiIgAiIgAiIQO8QINiLTW4PDg49Ih8R/+yM\nMotnFgh2YfbcqAVrINrRjzZsO+w8HSIgAr1PoBi4ha+Hb8f3QPax4BffCbm4xxrf0NBgbWqKgM8p\n66ca1Rsov6USXL1/XVRxBBL0qzjrPTRmDDZEt2gnFmG7WSOlan193b+wU3SjXj4plXwxT05OueGG\ncB+rswO24sqgVUKjh6ZepyoCjyYQBly8TDHTB2Gf75GNjXXvcxGQeqp8p8zMzHgju0cLgI+eBr2A\nCIiACIiACIiACLSMAJG5lFuNRublqWd0Y+sRZUtEPqUVaVkrPwO7WnYSeiEREIGOEsjgLU4CUT8b\n3wdE6mfLzB1KM/P9kGWZ6VnkI2ubrGyVZe7odOrNH0hAgv4Dwelp7SOQNa/pz8/PbLU1yuwQUVuM\n0Cdqn81N2PQ2BX3EfIR9ojF0iIAIiMDHCBC9EYL+hi0SbrhxR7olC4BsnsZ3CI3vlSi9wwbaQ4rc\n+BhM3ScCIiACIiACIiACbSaAWB9Z2xcu4FMvf39/z+vmh5BPeY0+F+VmZ2cbZXYQ6nSIgAhUhwDf\nE4j5fEfQF/fUQPQnADSj9BH0WfSjIewPDuIPUqaZgFCPCK0OOI20JwlI0O/JaSv3SSO20WI1lfQp\nIvRjB/P376NOPpvj8kU7NkYq5Zj3mVbJFzMinA4REAER+BgB0jBZHKQdHOy7g3h+fuGlvUjH5Psj\n2pBF7E941D7iPsaeDhEQAREQAREQAREQgaclgG9IhmWWT8ySGvRZJ5ugDOpkZwY3PeKcDhEQgeoQ\nICj0up6UpXiOrTTXuS/8IdbT8O2ul+iKUl3oScrSrs4108sjlaDfy7NX0nPP1dTd3Z16XcQsuXPq\nwj3CGg0hP1ZUEd9YVY1Nb2Pz24GS0tGwREAEHkuASC4cQDKAMOyiDuuBO4mkabJgmGmcs7MzlrI9\nX5ufn3cH8bHvreeLgAiIgAiIgAiIgAg0RwD/kBI7W1tbHnmLGIfgRk9m9sTEeD0IY8yzKonMp0mU\na46zHi0CvU6AKHxE/WxRujn0JIT+gwP236DtewDX2Ni4l2tmAXBqiiztqPigmvq9fiVU4/wl6Fdj\nnrtylFnfOoWz7NNY29radIMNwS2iMM68FuLS0lKNRn1rxPtsGHQ6REAERKBZAjs7O7WdnajFioFX\nNPwQ8peWlmvLy8ueosn3TLE1+156vAiIgAiIgAiIgAiIwKcJIMwV/UP2UFtbW/MyGlkqg54yiex/\nhG9I0JcOERABEUgClOCJQC6CuA5rq6ur/j3CdwmLfmNjY7YYOObfHbGP2qx/n6AxfejzSW9Kquq7\nhYAE/W6ZiYqdBxGy2fiSzZI6CGnsUE7jPv7GZrZ5UPMMY40WaZSxI7lWUJOQehEQgWYJYNwh5BOp\nnxsnHR/H9xCOYpb2IgKseDsjw9LYa/Z99XgREAEREAEREAEREIGbBBDzscmyDCu3syHOYZNlC0Eu\nomy5T4cIiIAIJAE0p4zWR2MikIva+vQsGOLP0RDw8fso2zUyQh+NihCUYs3Hpf+Xr69eBDpJQIJ+\nJ+lX+L1zpRSDDEONNMpsbGiEQE89RMroUE4na1qn4UbPfQhp+eVaYZwaugiIwCMI8D10FZV/Yg5j\n7OPBdxMG4OUl7dJTuGOjNTZbm3XDL76rIuX7Eaegp4qACIiACIiACIiACNQJ4Ctm1vb29pbbYX19\nsfEtdfER8TPIAuEtfUVtgqtLSAREoEiAxUFaCvv4d9nOzijFQwnWM/P5zk3g55mUXq158GhsoDvl\nt7MqREbuF99Dt0WgUwQk6HeKfMXfN6PwU8zf2NioRVv3L0xSJ7N+GbdJn6RHPEsBDSE/D6U/JQn1\nIiACzRKIlG6Mvfdu0GUEGH2U44mSPLzuixcvrL30Huex+J3U7Pvq8SIgAiIgAiIgAiIgAjcJEGjx\n5s3r2uvXtDcWRDHgvmD4iJPuL1L7moxtBLYM8JJPeJOl7hGBKhMgCp8jy3eluE9PhjbR+gSW7u/v\nN4R+NCoqQiwsLNQWFxc9kIvFwlw41PdMla+o7hq7BP3umo/Sng1fmJnqRLQrgn6UtDj2Wma7u0To\n79oX6p4ZaxNWq5qyOmxIMuVifm6EWxTxSwtLAxMBEegYAb6n4vspojeorc8GbFtb2/4dNjc353t5\n0BMRNjKSm3LHxmvpUHZsAHpjERABERABERABEegRAkWxDRuMSFmi8xHU2E9tc3PT7TDKXmTZVaJm\nR0fHGiV3CK7QIQIiIALNEkDQzyoRCPqUYc1GBlBoUtO+mMh3UDYWETOoS98/zVLX41tJQIJ+K2nq\ntW4lgGGWUa/Hx0eF8hanZrRd2IppRMfSY6BlLURK62T9Mnqtht6KWH8QARFoAQEWH3Em06HE0MPA\noxEtloI9Pd9Tsdg47t9blAgbHBzyDZb0XdWCydBLiIAIiIAIiIAIlJZAMWKW2+xllOIaotrlJf5h\n7Lv27NloPWN7wuyv8UakLBGzCvgq7SWigYlAWwkUg7iyDE/2fCdRCprvF0R7voPQo0ZHs74++3hQ\n7mukreeoFxeBuwhI0L+Ljv7WMgJ8WV6VrtgxER/B7Nx7viRJlxwfnzBDDQMtVj8x0EhtKtYra9kJ\n6YVEQARE4CMEMN6osZjpmMWNulmUTEeTjCLSvqmlPzMzYxEcU9c2UJKg/xG4uksEREAEREAEREAE\n6gSwudLeoicaf21tzdqqB1JEeR0ytic9iCL3UkNUGxignn6UYpXNpUtKBETgIQSyggQ9AainpyeN\nwNOM1Ce4i0CvCDpFxB+z7yTKQU+Z/8d30/hD3lrPEYGWEJCg3xKMepEkgGGWB7ezEZV/VSd/o1B+\n59JXOqlNtrS0bG3JBXxWQRH6FXGRNNWLgAh0ggDifm6ihEH33XffWfvWe0T8+fl5r6+IqB8btI17\nz3cXDqaczE7Mmt5TBERABERABESgWwmkv0ifQho9Yv63335j7VsX9F++fFl7+XLF2ksP/sr61dr4\ntltnVuclAr1LgEVFRH0CT+mvFhjXPKALP49FRXrKf83MzHpgFwuO6fOl35d979LQmfcKAQn6vTJT\nPXCeGWGBQYYARmRrtBOrSX1qjZrU3D62Lz3EesSufhP0qYk4U/9inPGUphTz9WXYAxOvUxSBEhPg\ney2/20jBxLiLtuGLj5FRNOzR+dRajOixsUYqeGYZlRiRhiYCIiACIiACIiAC9yKQNhV9lmQl8Ovo\nKPZVy6hYfEmCJrIRlU/WNnaValbfC7UeJAIi0ASBXGAMLevCFxWjwsSulwNLfYoe/++q9A57qtGi\nykRxk24eq0ME2klAgn476VbstVPEJyUJIZ+a07Fj+J6X1xkcJC2SGtMD/iVIlAUbSvIFmCmU9Hzx\nfbjKWTGUGq4IiECXEMC4w+mkx/EMR/PA+1iwjHr77P9BbcU07ki/JIKDcmIYeDpEQAREQAREQARE\noOoEMiIfm4qSrLu7O1aWddf6XQ/2yih8/MPYp2jCbakU8lNUqzpHjV8ERKC1BNLnw+9j7w4CUrOe\nPgGpuccaZaPTN6zVqLM/4KVXydymFctGa/GxtXOkV7tJQIL+TSa654EErqIsjn0D3M3NjUaZnYuL\nS0tLmm5E4lMrn5r5iF0f1kHMt1d0fpJQLwIi0EkCGHgcGG8sXGbb3t727zgi9qmvT7YRDig9Bl1m\nHvE9p0MEREAEREAEREAEqk4gA78Q8wmSWF9f97axse618peXn9eWl5drc3Nz1/ZSy4Av+MlHrPpV\npPGLQHsIhM9H2egrvw9xHxE/AlUjYPXo6NCzisguwi9cWFisLS7+/+y9h3sUSbL1XTiBEMIJhAcJ\n7wYPO7P3vt//fnfH7A6DZ/BeWCGQAOHdF7/IjlapZZCpbrU59ZBkq0111anqjIyTESfWeE9AVyxM\nSh6sOtdJex1BQIT+CBZ6NAMEiLKI9unTx9LAhrTOe4+0oHAkERdsFI9MBSRXecQFJBeNAU+bEBAC\nQqDREHj58mV50RJ9fQq0pfofC7zAN8WS0FVknMsX95Yj2mhXWscrBISAEBACQkAIzASB8aJeCYLA\nV4QUe/XqddlnRJN6w4YN3iD0I2NbshUzQV6fEQJCoCgE4Lsg9IPUHx5+kw0Pv3UpHhYp0dSPQC4U\nJyLIC54L3xA/kF4+YFFXRPsJBEToBxLqp40AEzQmZKm9dX38lIqEdv4nj2ZlRZOo1oULFznBRVQ+\n6ZNIUBCZT88Ap00ICAEh0GgIQOIjLUbDKY3FTXrGPCTF0FhkrIsFTHo5po12pXW8QkAICAEhIASE\nwEwQwA8MqQqKTeI3vn1Le2v+4gePhEW2Ar+SIAhI/ZUrV7q/GIS+SLCZIK/PCAEhUBQCjGOxEBky\nPPE3EqwEdYUcWPh++H/REsm/xEn9oo5J+xECICBCX/fBjBBI6UhZhuTE0NCg9wxqSOt8/Zqi9iGu\n0JGmR1eawS3Sj2KVkl7k1owugT4kBITAHCMQDip9Sh1HWz85qaRfsjFWkm5JpFk0LWLO8YXT1wsB\nISAEhIAQEAI1QYD5UCK+ovAtwRDDFt06bH7jZyPx0Z3u9D5IL0iwyOAWmV+Ty6QvEQJCYBIE8OeQ\nl47grVRHjSDWjyUfkGj91IjETzXV2r2eWmjrs2ApCZ5JQNZLM0JAhP6MYGu9DwWBz5nzOFp/f7/p\nHvZn/f3PbRAbdmDite7u7oy2dm23R1wwIYO818Ss9e4fnbEQaHYEIPVZ4IxG9EZM9pjYoQdLW79+\nvU/mYhyMvtnx0fkJASEgBISAEBACrYNA+I6QYMhTpIxGiPx4/Mb9yY0bN2a0DRs2lkn81kFJZyoE\nhEAjIgCxz9hGo2Dus2fwYc+s9fu4lhYn2z2wFcnpri4Cu7rKY1z4f9E3IgY65vpAQIR+fVyHuj6K\nWImMgStIKtIk37//4IMY5BURGBBX0dARI2USTTEGNQasaHV9wjo4ISAEhMA0EWB8JNosGmMiUfs0\npMdSttJS7yMCjZ4INMZFLXZOE3C9XQgIASEgBISAEKhLBILoItgBv5EI/dSSPOHXr998brRgwcIy\n0UUWozIY6/Jy6qCEgBCoQADei4b/xzg3NDRktUCGvEexYv58eC9qq8032Z1258JCfgfJaVro64dU\nj8j9CpD155QQEKE/JZha+00QUkHik0qUIixee49ONJMvWlsbmtEMTgxSbTZwLfXBC9KK9KIYpKJv\nbVR19kJACDQTAkzqYpykZ9x8/z4VfePvcF7pOzuXuUbsqlVoxHY6ma/JXDPdDToXISAEhIAQEAKt\niwBBDfiMQeSHL0mPTxgFIyG4VGOode8TnbkQaFQE0NSPhg+YZMXeu+9HLUlIfmqGsLiZ1CuSygW8\nWEiMUVeS8TC4NHxBbUJgugiI0J8uYi32fgYgBqjQBHv16lU2MDCQvXhBe5mRQhQNXbCkm08U6tJy\npD4R+5D4IvJb7ObR6QqBFkKAsTImdvQ4s+HIIkc2NPTKIzcYQ8lcWr9+g8vvRERaZDZpnGyhm0an\nKgSEgBAQAkKgCREg+IuIVRqZixGxT4+/yNwH/5HHkFmaAzXhTaBTEgJNjEBIiiWy/rtH60Psk5WN\n/5cCYN/4+Bf+ID0c2Zo1aywzaY2PgxGpTy9Cv4lvmCqemgj9KoLbaLuOgQkyivShSCPKD0IMThBS\npBS9fv3aBqMu1wOjR1qHQSpao52/jlcICAEhUBQCROUn2Z33Ppl7+fKlL4LSL1vWMWrcrJzMKVq/\nqKug/QgBISAEhIAQEALVRgAfEt8x/Ef8RfxEGn4kWxBf+IvJf1zthH61j037FwJCQAjUEgEytF+/\nplZIUrTIk/vI7CRZ6hUWqb/C1S3IVMIXJFo/FjfptQmBqSAgQn8qKLXAe2KSxal++vTRIvKT1iED\nEilD0dJEbSTFCOkIJCPokdjJE1MtAJtOUQgIASEwLgIpGi2NnaSYJ+c2FYIzt9YmbCkijckbmU2k\nXdIz0cunX467cz0pBISAEBACQkAICIE6QQD/cCQA7K3JDn40GcIk2UqA2KJFaW6Tn/Mw70F+QpsQ\nEAJCoJkQgDcjqCs1OLWRrO3v379ZJD41J9HXXzhKfgxinzExtPabCROdS/UQEKFfPWwbas8Q+kTm\n0zMhGxoazAYHU3GPvIwEmvkdHamwIz3kU2qLy/pfsbLYUADoYIWAEBACBSLAuIkTmzKdPtukLhXI\nhdxPhXMTuf/58xeX4EGGh0aGEwujTOYYW7UJASEgBISAEBACQqCeEYDAGhzEdxx0H5K5Dxt+JZI6\nSSc/BS5E8BdzHF7TJgSEgBBoJgSS7/elLDWWr7FGsGwKnGXh80OZvF+8eIkHdy1fvtxVL1jw1CYE\npoKACP2poNTk7wkyP4h7Ikn7+/utPXO9fDSdQwICrcPu7m5r67xvcmh0ekJACAiBWSPAGBuTO/pn\nz55ljx49svbQ09HRUkxtbTlSH2IfUl+a+rOGXzsQAkJACAgBISAEqoAA8xu2Dx/e29wm+Y70RJ9G\n0BcRp+jlr1yZ6q5JSqIKF0K7FAJCoC4RYIwkg4nMbXoWPfED4dmQYY1ofAj9kCNDkowxMzb5goGE\n+vEQEKE/Hip18lxMkuJwivwxB7nEwELLrxyyWsjqYUoT+mBpkgtL0fcpOj8iSdH/0iYEhIAQEAKT\nI8BYHhH79BSJo7D4wMALj9ZfsmSxR+UzmcPxpS1dSsplu8vvkKKOYzwbG1BpTzji2exv8jPWq0JA\nCAgBISAEhEA9IVA5D5jtHADfESKfDER8xrdvh21O89Z75i0QVcxrmM90dCDRmpoKP9bTXaFjEQJC\noJoIMO7Cu0UjSzsKhqOxzzgcra1tcdkPbG8nUzv8w6SEwdjJgmiRY2ilXQCL2dqGauKpfY9FQIT+\nWEzq4hl+XPkfWPywop/tQbJKCHEfLUlAMBEb9gFn4UK0vRKRT2pkam1OMCWyaakPOLM9Dn1eCAgB\nIdAKCEDkM6bT4/gy1uL8InH26dNni9xAb/+zE/hM4iDz6Zcu7XAZHiL2ZxrVFrYk7EpMHIuyJ61w\n/XSOQkAICAEhIAQaFYH8PIBzCPsf/UzOi4K3iZga9LmMTXFsw3/NnMyHyKe+GnOZ5EemfjbfOZPj\n1GeEgBAQAnOJAL5fNBZC8f1S4Ox7r1MZPuC3b1/dV2S8ZpxEGaOzc7n3LJCyUEorUqosfMPAh+/V\nGB1oNEYvQr9Or1P8uGICFj+uon5gDCZ5En9w8GVZ+5BVv0iNJBo/T+ATJRoa+TMll+oUch2WEBAC\nQqBqCMRYTh9RGmRHsahKyuXLly+8Z4zH8WXixthL+mVqK2c8gcvbEx7n7UlRNqVqwGnHQkAICAEh\nIASEwKwQyM8D2FF+HjDTHT9//jx7+vSpt3fv3paCDzrKtdaWLePxMp/P4FtGdOlMv0+fEwJCQAg0\nIgKMv2z0EPvhBxJgm/i4N2VeDrL/7dtUWHxEknWNZzhFkC18XBFb/rjicRG2oYhj0z6mjoAI/alj\nVdV3xg88Vu/yPRMgVuJo0yXR48dJz+ABgUQPicRgEY0oC9J+0M9ftKgtQ7trzZqubPXqLieVIJZo\nRa4IVhVQ7VwICAEh0AAIUEhuYOB5hmP8/PmATfS++jjPWMtYTHGk5ctThAYTOWzAdG1BfvLI4/wW\nDnb0+df0WAgIASEgBISAEGh8BJhrQB7Rs4WU31SIofAlmT+EDjT+JIEISAcODAzYfj+W5isrvKcI\nLpmFNOYu2oSAEBACQmA0AoypcG/BwSU+7o3XV4PYD5lr6o8wpiYZsxT0lQ+wnWlwFpxg2AX6yACI\nAN7RR6u/6hUBEfp1cmWYGPFDihbEOz0/riDUpzMpYgJGY7CgMTCkFJ93Ruh/tO9C4iFN8OI99HzH\nsmUQSJ2+GsiPOtp0FxTqBF4dhhAQAkKgLhFgjI8FVXrG5C9f0Fr84uP3iH5im9mBpT6h6+igYG77\nlM8n7Av7pjHOM4mjZ3GACWK0Ke9UbxQCQkAICAEhIATqGoEg45lfROM5Mv8IGKCfbAtfkp75QyKf\nIKDeuB+Z/NYvFn0/r6yRjw+JLxlNwWCTIazXhIAQaFUEGFdDeod6JCk6H77urT+P/HUQ921ti2xM\nTf4aY2twg/hvMx1jUexIPmhaREgSP51uG9ivtsZAQIR+nVwnJkn8oEPTnglSkC/8YFOU5nInc6Z6\nyAwSQdpA6ITO4eDgkO37o5FF7In/5lkEBUUY0TmEKKIIR5tPxGKFLgaTma4ATvWY9T4hIASEQCsh\nAKnOhIrGuPzuHRM6sqdYeP1gUCQ9WjDp7FxmWVOrTRJttduEqeKELWFfYWPCvtAzKcS+xCRuqvvU\n+4SAEBACQkAICIH6RQA/MLZnz55ltP7+fg8WWLduXRZtMt+OOQqNfUE28fmUUdjv84cUhR/R+Ekz\nn+cik5CeDEBtQkAICAEhMBoBxlU4ui9fCOr94txf+IT4bRGMS2+KrE7o47fB1QU3yKIsfN1MNpQ6\nGNOjrV27Nuvu7vZGEXNtjYGACP06uU4QLaFpz4+WHzM/ZHp+UEjg0H4USZE/HSZgEPopOvOTTeTi\nB/vMB4woqsEgsHZtt7W13lhA0CYEhIAQEAK1R4Cot8HBQdfTf/XqVZns//jxg6derl+/IVu/fr1J\noq2Z8sFhS0JejZ6/ozHeh31hsUCbEBACQkAICAEh0PgIQBYFqX///v2Mdu/ePT+xnp6ebNu2bRn9\nZIR+BIbRE8nZ19dn7YH3yLJu2LDBG/OHIJroJ9tn4yOrMxACQkAIFI9A8Hb0BGM9e/bUF2JZjE1B\nWKmwOIR+ksde4/7gTLk7/MwHDx64bcA+bNmyJdu6davbBuppamsMBETo18l1InoeDUKiHvhxRTQE\nEzFI/Fgtm+zHNbLKl+R7GAhilY/+/fskuUMEKFGfEPk0Jl58RzQkHrQJASEgBIRA7RFgQTcWd+mD\neKdfvLjNC8yhoxhaikzqaGRR4UBHyx85C8aRav/69SuzMSOp9ywYb9myOdu0aXO2cePG/Mf0WAgI\nASEgBISAEGhABAjmyvuBkDaQ8fREzO/atSvbuXOn93nyHV8yovLpmT+k7L73njlI0MHwcJLcWbFi\npZFKq73eGll++JShwZzfZwPCp0MWAkJACNQcgQjGDWJ/tLrGJ/PxOKR5PoZD4qOwEeoa+Igh08oY\nH7XRxhuLY6EX7vH69evZtWvXrL9mNmFXtnv3bm9wj+yDz9Nrq18EROjXybUh1SUmW5D6MSGiZwWO\niEyiIHg80caPc2TildJ0IiqT5yF8Fi5c4D3FFpcsCX3DJWUdLgaHmepwTXRcel4ICAEhIASmhkA4\n4BD4sRD7/n2Sy8FB//6d9PfvPrkaKZa00h3pmMBVTrywA0T9Dw0R+T/oRXiZxNFYyE2O/a5s+/bt\nUztIvUsICAEhIASEgBCoWwSYP+T17h8+fOiEPj3E+759+7zt37/fCZs4EQgl5ho0IkIJBnj1asiD\nzai/tmjRQvcT8RU7OpaVdfPxH0OeVX5koKleCAgBITB1BCoXVPOSO4zpqf5lqrnJe6MRnBvSqfR5\nHrHSJ+QzsT158iQ7f/5cdu5cagcOHMwOHTrkbdOmTRrTA6g670Xo18kFImrixo0b3h4/fuzRlxGF\nyQoZPyoajyfamITlJ28pIpNozFeuwUUkRRBARGUS1dneHtGdI0U3xlvJm+g79bwQEAJCQAgUhwDj\neERo4FDnJ3OM7xFhj97+unXrfbEXHVw0a8OZps9vfO7FixfWUhYYNubRo8fZ48ePXJP/0KHD2U8/\n/ZTh2GsTAkJACAgBISAEGhsB5g7YfRbu6R89elRukO9B2hw+fHgUoR9SDxFcMDDw3PSVn1sGeb+T\n/CHPSk+Bxsj2hsTHf4zW2Ojp6IWAEBACc4NAkPR8O34gYzKN4Ny3b4dLWdzUWht2OVWyuRmHkWLt\n6koSPBD80SoXWIPQp4d//P3336395v3x48ezkydPZadOncp6TI4tvzAwN2joW6eCgAj9qaBUpfdA\n2sSP9s6dO9mlS5e88eMK4p0eGYTQtCJSP/9DZB/xY6fPSzXwOP3w31qk54fSjxwt/jUeURFSDfzg\ntQkBISAEhEB9IcD4HllX9ETJ4Zi/fPnSJ3FM3mIC19Gx1CZ0i31SxwQsUiTpWdzFGaeOCnqMoZdI\njz1gAnfs2LEsHPuI9Oez2oSAEBACQkAICIHGQgC7nyfxoygufWfnMrf5x44l2x++KHMOovLJEGTO\nQR81fQYHXxoA88wnRTN/o2eNM9dgvkAQgeYLjXV/6GiFgBBoLAQYj0PujEAtAnaThOorG4cXZKtW\nEbi7yvslS9o9cBeuj3E6H/DFOB/tntVU+fe//5X961//yv7v//4vO3HiRJnQ37FjuweLIelD0JjG\n+Pq9X0Toz9G1YfKUJ+Jv3rxp6S5nPeWFHxcky9q1iazZsmWrr5KxUga5Hz9CetJvIoKTyRcTMaIq\n6FnNi0kavMxIKs5y/5Fr1W2OLr6+VggIASEwBQQYvxnPo7FIm6L0X5uz/a6c9k70RdJSTNr6TLx4\njjGenqj+J0+eWnviUfnYmGjIuDGBw7E/cuSIfyYi7irTNKdwyHqLEBACQkAICAEhMMcIsPh/69at\nDP+SPmkxD7n0HvXYTpw4acRNavij+I1B5iPT9+4dEaBvS9GhEEBfbX7QZmQRhFFqkETMEyB6RPbM\n8QXX1wsBIdDUCDA+x0IrfchqxzidZLWRRFvg2VNJWjspceAjJmWOdh/nY8zHF/ztt1+N1P939uuv\nv2YHDhwoZW8ddhlWfEQKntNrjK/f20uE/hxdG8h4fphB1Fy5ciU7ffq0tT8zovWJxI8Gkb99+45s\nx44dLrsTqTf0EDxJG3nIiZ6YVNFDyqRiGfyI2z31hueIyIfkidU6kTZzdBPoa4WAEBACkyAAoZ8f\n71nA/fCBAnUpeo7xP1IuGdeTrNqKbPny5aXJ3BIf74niePToYfbw4SNrfW5jsDO0IPSPHz+RHT16\ntLQwsNR77IQ2ISAEhIAQEAJCoLEQePr0qWd9X7x40XsIoAgA6+5em/3jHz9b+4c3fFFej/cQOBCN\n7D9kWmlLl3b43CDIIZH5jXVP6GiFgBBoXATwByHig4zHJ4yWxu93NsancZwCuSG5w7i9YsVy8w2T\nfxifob97925Zcue3337zQukUxd2zZ0/W27u9LPmN7Lf4wvq9d0Toz9G1gdDPpzQit4OG1R9//O6R\nFPxwNm/e7FI7kPm7d++ywoW7/e/4IdND5kcaJY/58bIixyocxQ4ha4j2J5oiNq2wBRLqhYAQEAKN\ng0CQ+4z92A+K26WU+lTkbkSCp8sdb+qwEK1PZB7yOg8e3M/u37/vNub27dseuYeNQC8xRekfK2dy\nsShAhL82ISAEhIAQEAJCoLEQQL71zz//zP773/96n+YPSY+ZbO9//vOf3n755Z9O9BMgQMvXXyMY\ngOAyfNKNGze5HCwoyI9srHtBRysEhEBzIVAZ8MVY3d//zKVVkViNTGt6FDrWrFnrEq34iSzsxuIt\nhP5//vMf4x//sP4P5x63bt2abdu2zQj9Xif4d+zY6b0I/fq9h0Toz9G1ITo/RdYPen/16lWX2zl7\n9pyTLhs2bHB5HSZd/KCIzt+5c6dPqPIra/GDJDWS5ylQFCk2RFNAykDs81ibEBACQkAINC4CIbeG\nY05EHcXuomXZd1/ITbVR2kvZWegethuhHxH6D70A0p07dz0q4+7dO24jDh48aGmWB70o7rp13VZ8\nfZ0V3F3nkXiNi5aOXAgIASEgBIRA6yDAvAD/ksYifsr8Pp399ddfLpkTcwh8TCL0f/6ZCP2fPUAg\nRe+/tccfS5IMaT/ILUStHvmSrXMv6UyFgBCobwQYz/EH6Rm/4RUTtzhki65x7Ch2LDJ/LungE+SV\ntxMs/J45c8ZsBCohp03ue637f/iAKITs33/AfUOkeMjajsXc6ONb1M8tAiL05wh/yPfHjx97e/Lk\nsUVK3squXbuaQeyTJskPKVqskm3fvt0iJTbYqhopNSmthhW6JJ0z339oeUI/tLLa25FdWDJHZ6qv\nFQJCQAgIgSIQYLxn4kZPlH5E1NFjU3Div3yhfso3m7yxuJs0E4m4S/r52JxHHqWPs0+0PqnzLBhj\nX2hM4Hp6eq31eFRHEcetfQgBISAEhIAQEALVRSCvqYx9h6g5e5Z21uYO323ukOYP+JInT54o6+hD\n8JD1R2OOEdGdyDZ0dCS5Hch8ssC1CQEhIASEwNwjEP4gPiE+YOIGE0f4+TP111iU/eSkf/IfsQHf\n/cDpaXCOFy9eyM6fP+8tAoEJBt66dZvVVztqcqzHXJKVrG2i9ENqbe4R0BEEAiL0A4ka95Dyt2+j\nYXzb+tvZvVyRQgoZsUJGIypiy5YtnvoCwQLJj65hEDmVusmQ+EHqL1w4uqp1jU9RXycEhIAQEAIF\nIxCTMSZykPoQ+J8/f3G7kKIzXtrjYXe8Qz8Rm5Gk2Z765K2vD6keNPUfuqwO0Xo4+Js2bcz27dtv\n0Rj7vM9LtRV8GtqdEBACQkAICAEhUBACzA1GCt8OeRbe+fPnLPsbouacf0vMH5DROXYMkuaY98wl\nEgH0yYPDsP0rV6bCt5A4RGbSCCDTJgSEgBAQAnOPQIzn9PiEROsnv/CLF8yFK4xF3uAN+ZtxPMZ0\nOMe///671C77Ym7iEhcbob/VsriotfJz9ssvv/hrfDZI/blHQEcQCIjQDyRq0Od/ePywKIR75crf\n3qODzCoZjWhKJlPRIFtCTx+SnwgKVuJoy5Z1mjzCWmvdrpVPNEVb22Inc6R1VYOLqq8QAkJACNQB\nAjjy/f39Tty/fPnS0yJJiaRhU54/f+6vx3uC4MdOhK3Bvhw+fDg7cuSI9Ud8UZnPKxqjDi6wDkEI\nCAEhIASEwAQI4GNGTTV6it4nouay9/mPYeuR2Tt48ID3aa6Q3oEkQ8juEUQW84j85/VYCAgBISAE\n6hMBbEEUNcf/wz+EuI8WhDxjO6/dvn3La6vdunWrTNZD3FM7hRorkPoQ+tiGCBRjQUBb/SAgQr+G\n14LVs1hB4wdGesuFCynFhclX6F6RMkMxQ9Ib6Zl4EU1BI2KfHxPpkBGdz3M0SJlFi4iiSNEUIvRr\neHH1VUJACAiBOUSAyVtM1iD0U1RGis54+XKwrLXPe4aGBsuRfEzowtasXLnSo/Uicg+bE9F5KpA7\nhxdXXy0EhIAQEAJCYBIEIHHu3btr7b73FDuMTHDI/fy2YsVKq8+GvF6S2MPX7OhAY7nDfMmVowj9\nWNBnrqBNCAgBISAE6h+BiMynh18kmCtakld77wHCg4NDLsmK/DfSrIzzMebjA4bcDtI7q1at9rqc\nyPEg16qtfhAQoV/Da5FPhYFwiWJFp0//6UQMRD5FbtFBhjwJ0h6Spaury0n7IO+jWjXPU7CItnLl\nCvsRjqTCaPJVw4urrxICQkAIzCECTNpevXpVIuoHLdvrmUXrkfX1zMj852ZjXrqdYWKHnfnw4b33\n2InQyyX64sSJk2VtXYqypyK76PGrDsscXl59tRAQAkJACAiBCREgYIw6bFGPDUL/8eMnRtIkoib/\nQWw9wWKjW7f/TcZ31HCjJ1KTeUK0/H70WAgIASEgBOoPgeTnpboocI6Q9WEL+DsaEfr4jtFinKeH\nY6QYbpJi3Z+hGBK2Aa19bfWDgAj9Gl4LdK0oPEQbGBjIfv/9t+y331LjhxQR/PTxg+LwiJ5kNYzG\njysKGPb2bnepHQh/Wmdnp3+uhqekrxICQkAICIE6QICIi+HhVF8lpVDeLqdQkgFGlD5kftiaKI5H\nVB/2hg1i/9Spf5he4invqd8S0ftE8GkTAkJACAgBISAE6g8BfEeK3547d9b7e1abDZtPY06Q3wga\ng9SnEWm5bds2ayliH4nXIG3okVZgjhBRm/n96LEQEAJCQAjUHwLBN9IPDr7M+vqom9bntdOon/bw\n4SOvpYZ9CN19AorzG9winGM07ESPZXVRLBc+Ulv9ICBCv4bXgghKZBGQ20Er/8yZv7K//qKdsedf\ne7VpyBVabEyiiIxM6ZAdGStiRE1u2LDR+64u0l8Soc9refKFCRuRFTTJ7wSi6oWAEBACjYkAtiEW\nfpmA5VMqIfNfv37jtgTn/fHjxzZZY8L2yB36pKeYJHiyLNmZvK0BEeTaDh8+5Dr6hw4ddiefrDAm\nbpq8NeY9o6MWAkJACAiB5kSA+UCQMRA3Z86ccTL/7Nkz2f37922RP9l8+vyGX4hsK42FfIj7kHZd\nu5aabKvd5q9e3ZXzKyH/l5Yz+vhcBAPk963HQkAICAEhUH0E8j4c43/KvP7g2df4hFEIF9K+v/+5\n1VLr93pq1FSLxnuwI6iI0PIbnCI6+vCO9Lt378727NlrbY/bjBj/o89/Vo9ri4AI/RrizQpZ6Fex\nMvb335ezy5dTg5iJH2b0cWgQ8zHxIpKCSP2Iyk+R+yvLz+WjKvghhnQPvTYhIASEgBBoXATysm1E\n5Pf3I6uDLmKKwH/1KqVOQuhHYyKHnFvSTKSg+icDIC0aV9oaIvF27drtkzYmbkRiEKVPxB6TOW1C\nQAgIASEgBIRAfSBARGXYduw8gWJE6UPs9/X1mb3/WG75IybIC3sfjYAw/Mnly8kGX24Z3/y93IPI\nkHhdu3aNy/GgoUw2eDQROXlU9VgICAEhUDsE8OGiwSMmGR2K3yaJVWqmvXz5woK6hjzYi4DiKJYb\nPTYCQp/90Oc3AooJ5kLWm/7gwYPlgC/8QsZ/moKG86jNzWMR+jXEnaj8Bw/uW9TEA2v3ynIIVJVm\nQsZWSbDwHD8UWkTbh94xJP2yZZ0+CWMixg9u+/bt5dQYiuSyAEBjQUCbEBACQkAINC4COO+RRklU\nBYXuokHqQ97TIPPz7yWCL6IvYuI2HgrYGAj81LZa0bxeJ/d37drldmW8z+g5ISAEhIAQEAJCoPYI\nQMYQifnmzbBnf0PoQ+bTyNLD7kf0Zf7o8kQMj/PBX/iL+I0hx8N8AKmFrVu3WqTmplI9N7L21ojI\nyYOqx0JABgyBXgAAQABJREFUCAiBGiIQ/hzcIb4fUjqPHiGn89DHf2wA2vn4hOE74htGC98wuMfo\n4xSwCyHNRn/8+HGXYz116lTWYwFfwU2K0A/E5q4XoV9l7PM/DtIfb9y44e3OndulH94j7/lx8YOI\nla7J+nnzIPjTqtjSpUmGh0gKIicgXqJB8Aehr4KGVb7Q2r0QEAJCoMoIBEmfnPhhWxS+WV4YRic/\nCH108rE9MdmLPp779o2ojm+jXuc92J0UjZeK5bFATEQGbf/+/eVoDN6nTQgIASEgBISAEJg7BN69\ne5uLxhzIzp8/n124cMF7MsLDrwyfMv6eqOd9kDiRFU6fdJN7sx4jcDZv3uSR+jFPYD/ahIAQEAJC\noPYIhG9Hj//X1/fAM7MePHhQllyF1I/aaSOBXckHDJ9woh57QBYXwV70J06cyH7++RdrP3sAcT7A\nWH5h7a9//htF6OfRqMLj+LHxY4F8uXjxUnbp0sXs5s2bNgkjFSZVmuar8z8MJlRTaayYkRpJ+iNR\n+lSgjobkDpMx9su+tAkBISAEhEDjIsBkDFKfqIr37997LRaiL8j+QtKNSdurVymlkvdF+/Jl5DHP\nffrE35/89YjaoGe/kUpPT+H1o0ePZEeOHM0OHTpUzhJjcidHvnHvIx25EBACQkAIND4CRF5GRCZR\nmRE0Rs9rlX5k+IPRQ9JUvici9JcsSRne3d3dppdMW+eyC8jz0PA9NQ9o/HtIZyAEhEBjIgC3GI2s\n7YGBAeMWB7zncWovPIsLHw/J1U+fPpZ8wy9lH3E8XxE/8evXL+X98z2HDh3Ojh07Zu2oEfo7yv4i\n9kCE/tzeQyL0q4g/Nz+EfrQrV/7OTp+mCO7p7Nq1a07IoHkIMcPkKp/WQkQ90fX0aVI1uk+vL7HP\ndHjBIsh7GiRMmmh1OpkP8RKtiqeqXQsBISAEhECVEQhbQs8ELDQQI+WeCR2Ph4fflnR135t9+WCP\no0/FkrA50bBBRPmFLUrOfZvZpEUWkdebnTx50tvRo0dHLTpjV7QJASEgBISAEBACc4MAhQ0JEEvt\nhmd8Q+zTsPHJh8R/TD4lfmZkboePGX28h7/xLTs6lnqf/Mqkm8/zS5ZQTHeJ+5gicebmuutbhYAQ\nEALwjGz0EPbhz719+879w/AN0dd//x5fL3GO2AakvvEP4/GIn5j8w6jNkoLAUgDY3r17swMHDlo7\n4BH6a9embG56Le7O7f0oQr+K+PMDi/QWelIhf/31V2+Q+/mtoyNJ50TkQxD0+b6jI5H2o59j0tXh\niwFMwvhB0ZhkxUQr+vz36bEQEAJCQAg0JgL5SRzkPn8jw5Mmc2nSxgQuEfyQ/KNbLATQUyTp9etX\npf61L0CH3eqxFPtffvmntV9MN/HUKHKAyD5tQkAICAEhIASEwNwggJzCxYsXrV3wnqzvyP7GjuMf\n4jPSR8AXfmbej8w/Tu/vLAWI4XN2jpJcCP+Ss5VvOTfXXN8qBISAEKhEAD8w3/JEPGR+3u8b8Qkn\n8hMJDEt+Y96vRIZ1167dLu1NjbWouUaBXAV5VV6R2v5dOKGPLm+s+LDqw4SiVTd+WEGM0CO5c+kS\nkjuXrCju/TLpzqQIMp6JFC0fQZF/zHva28dGV0QEBlH+McGyXdrWmDrH+SgRSQW16q9H5y0E5gaB\nkLNJUQvvbYI0N8fx42+NyIz0TiZvkPrROP7URiIy+PvdOxrPBfH/LoP8f/t22J/P2yxS7InE2L//\nQEZkxoiubptN3kToj3eNwp4ne92uSe54IOk5ISAEhMA0EEjRhMmmYeu0JQSI0L9165b7l/SQMLGY\njw+KHQqfCn8yfMyxvmWS1wm7lfc1IWpSsBiBYo2pmY9/nM6NzIIlun2EgBAQAuMigA+UotWTvaHm\nWONt301C9avLqHI+EfAVfl/4giN+4oi/iI+Y9x0jUp9+/fr1Xhh948aNJu+93mXY8BNp8+crazvu\nkxE72u4L4vF8NfvCCX1unJcvX5SL9KDV1KpbIvSR3PnqxP6zZ/2lQrgPXdcqIh3omWzQgjCByI7n\nRj9OUgiLFo30ixYlDcQUMZlI/EToNybyq1atylav7nKtRiaf2oSAEBACtUKASUuKcEs1ToiAr+ct\nFhywvWjlsyDx+fMXT79EJz/08pNWftLOTzqKvJb0FGMRgL/ZD43zJpKPiRtt/foNZpOitguEfmM6\n9tW+lix0dHWtLtsw7Lg2ISAEhIAQmDkCFPwLuwxhrS0hQIYddXSePHlqtXSejNJE5h3Yn7wPGX5m\npX+Zf8/ox21G1KSMb8j8RvUtyTTo6uoyu7w6W7lypW4fISAEhMC4COAHjWQ6vXCfatw31vmTX7+G\n5Hci9pO/F35f9MknxE/k9eQz8lo8P1JrjYX0pCKywmt2UreTsTQadkJbylxLHGbyAyH3a7EVTuhz\nwZN+X59VWn5oEX+tO/GCaIHMhxiBIEkrYikaEgIlRTwkiZyIgIie1/KPR96bIiUgU0aeY5LF383x\nY9q4cVNG+g6pPJD72oSAEBACtUKACLe+vj6zY7SHPnbX6rtn8z0sIIf8Dn2+pYldskXxfJD2E/W8\nj0XifCQff0eLbLDZHHMzfpbF9i1bNpsN2+I2rFaTuWbEUuckBISAEAABpGXCLkPua0sI4EuGlAJz\nF+wyLe8fxuPwKaOvfD7+zve8l63R7X1X15qyXSbKVJsQEAJCYDwE4OryPGajBibDQeIX2v8V/mCl\nL5gCj8M3jH483xB7gA9Iz6JwRKJT67NRF3vHuwdm8xz2E/8veEyk7mqxFU7os8Jz584da7ez27dv\nO4nNxWfFn76VtiBY4sdRee75SVOjT5Yqz206f4MPC0EpsvRz1tPT48U2tm/fkVFoQ5sQEAJCoFYI\nvHr1qmS/kh1jbA77Fc5trY5lLr4n7BU9Niwax4LNAgNaK9usyuvCxDdsGBjt2LHDbNgO75VlVomW\n/hYCQkAITA+Be/fulf1KoifzfmUr26KwPdgfGnOV8eYrrYYR85awyfTd3d1lu0ywmDYhIASEwHgI\nEIgMjwmHSQ83hb2JNt5nmvU5xlG28AOxNzQwYQtM6FvNxjgApf8CE2wNvjP+H/UG8AVrlRFWdUKf\nE4t0DFI1Wm3jRxDESOW5c/Pj/LfyjwBMiDAZGhoqt23btonQr7xZ9LcQEAI1QaCS0KdgXNiwVoi2\njolbvgd4/s4vQtfkYjTIlyABETYMeyZCv0EunA5TCAiBhkAgT+gjM4NNJoOXvpV9KPzLPMkCsRKL\n7tjrVt3AJGwyPVI7YZdF6LfqXaHzFgI/RqCS0GeBNORl8AdbccP/Y2NcxebQ2LA12Bn6Vt7I6gh7\nQ8ZcUxL6pGRs2rTJ24YNG1rqescPIIiRypNnEhoT0egr39MKf5MmSnrTo0ePvN+6dasI/Va48DpH\nIVCHCFQS+kR2YcNIn2sFCbC8vQobxmXicdis6Ovw8s3JIQ0MDJTtF5O6IA7oFaE/J5dEXyoEhEAT\nIZAn9HGewyZjl1uZTMAuB8FCH4vueRvdiv4lagHhU9ITUBh2WYR+Ew0MOhUhUDAClYQ+kinYGWxO\nq6lG5H1AYA57E89jb8LWtKKdiVsPvy/szdOnT5uT0OeHsGfPHm+kH2gTApUIoId548aN7Nq1a9n1\n69ddd5h7hRWuVhs8K7HR30JACNQWgUpCHwmwvXv3ug1bt25dbQ9G39YQCDCRw3bR0HoO4kCEfkNc\nPh2kEBACdY5AntAn3T/8Snqi0rUJgTwCZMphj8OvZGE97LII/TxSeiwEhEAegUpCH79v9+7dbnM0\nduSR0uNAoL+/v+wDItXUlBH6rIpDhuzbty/buXNnnLt6IVBGAD1MJl1Xr171xoApQr8Mjx4IASFQ\nQwQqCX3GIuwXdqzVssxqCHtDfxXFGsOGQe4HcSBCv6Evqw5eCAiBOkGgktDHJkcToV8nF6mODuPD\nhw/uT4ZdXrp0adkui5SrowulQxECdYZAJaFPEe3gMVGQ0CYEKhF49uxZ2d7cvHlThH4lQPq7NRAQ\nod8a11lnKQQaAQER+o1wlerrGEXo19f10NEIASHQXAiI0G+u61ntsxGhX22EtX8h0JwIiNBvzuta\nzbMSoV9NdLXvhkFAhH7DXCodqBBoegRE6Df9JS78BEXoFw6pdigEhIAQKCMgQr8MhR5MAQER+lMA\nSW8RAkJgDAIi9MdAoid+gIAI/R8ApJdbAwER+q1xnXWWQqAREBCh3whXqb6OUYR+fV0PHY0QEALN\nhYAI/ea6ntU+GxH61UZY+xcCzYmACP3mvK7VPCsR+tVEV/tuGARE6DfMpdKBCoGmR0CEftNf4sJP\nUIR+4ZBqh0JACAiBMgIi9MtQ6MEUEBChPwWQ9BYhIATGICBCfwwkeuIHCIjQ/wFAerk1EBCh3xrX\nWWcpBBoBARH6jXCV6usYRejX1/XQ0QgBIdBcCIjQb67rWe2zEaFfbYS1fyHQnAiI0G/O61rNsxKh\nX010te+GQUCEfsNcKh2oEGh6BEToN/0lLvwERegXDql2KASEgBAoIyBCvwyFHkwBARH6UwBJbxEC\nQmAMAiL0x0CiJ36AgAj9HwCkl1sDARH6rXGddZZCoBEQEKHfCFepvo5RhH59XQ8djRAQAs2FgAj9\n5rqe1T4bEfrVRlj7FwLNiYAI/ea8rtU8KxH61URX+24YBEToN8yl0oEKgaZHQIR+01/iwk9QhH7h\nkGqHQkAICIEyAiL0y1DowRQQEKE/BZD0FiEgBMYgIEJ/DCR64gcIiND/AUB6uTUQEKHfGtdZZykE\nGgEBEfqNcJXq6xhF6NfX9dDRCAEh0FwIiNBvrutZ7bMRoV9thLV/IdCcCIjQb87rWs2zEqFfTXS1\n74ZBQIR+w1wqHagQaHoEROg3/SUu/ARF6BcOqXYoBISAECgjIEK/DIUeTAEBEfpTAElvEQJCYAwC\nIvTHQKInfoCACP0fAKSXWwMBEfqtcZ11lkKgERAQod8IV6m+jlGEfn1dDx2NEBACzYWACP3mup7V\nPhsR+tVGWPsXAs2JgAj95ryu1TwrEfrVRFf7bhgEROg3zKXSgQqBpkdAhH7TX+LCT1CEfuGQaodC\nQAgIgTICIvTLUOjBFBAQoT8FkPQWISAExiAgQn8MJHriBwiI0P8BQHq5NRAQod8a11lnKQQaAQER\n+o1wlerrGEXo19f10NEIASHQXAiI0G+u61ntsxGhX22EtX8h0JwIiNBvzutazbMSoV9NdLXvhkFA\nhH7DXCodqBBoegRE6Df9JS78BEXoFw6pdigEhIAQKCMgQr8MhR5MAQER+lMASW8RAkJgDAIi9MdA\noid+gIAI/R8ApJdbAwER+q1xnXWWQqAREBCh3whXqb6OUYR+fV0PHY0QEALNhYAI/ea6ntU+GxH6\n1UZY+xcCzYmACP3mvK7VPCsR+tVEV/tuGARE6DfMpdKBCoGmR0CEftNf4sJPUIR+4ZBqh0JACAiB\nMgIi9MtQ6MEUEBChPwWQ9BYhIATGICBCfwwkeuIHCIjQ/wFAerk1EBCh3xrXWWcpBBoBARH6jXCV\n6usYRejX1/XQ0QgBIdBcCIjQb67rWe2zEaFfbYS1fyHQnAiI0G/O61rNsxKhX010te+GQUCEfsNc\nKh2oEGh6BEToN/0lLvwERegXDql2KASEgBAoIyBCvwyFHkwBARH6UwBJbxECQmAMAiL0x0CiJ36A\ngAj9HwCkl1sDARH6rXGddZZCoBEQEKHfCFepvo5RhH59XQ8djRAQAs2FgAj95rqe1T4bEfrVRlj7\nFwLNiYAI/ea8rtU8KxH61URX+24YBEToN8yl0oEKgaZHQIR+01/iwk9QhH7hkGqHQkAICIEyAiL0\ny1DowRQQEKE/BZD0FiEgBMYgIEJ/DCR64gcIiND/AUB6uTUQEKHfGtdZZykEGgEBEfqNcJXq6xhF\n6NfX9dDRCAEh0FwIiNBvrutZ7bMRoV9thLV/IdCcCIjQb87rWs2zEqFfTXS174ZBQIR+w1wqHagQ\naHoEROg3/SUu/ARF6BcOqXYoBISAECgjIEK/DIUeTAEBEfpTAElvEQJCYAwCIvTHQKInfoCACP0f\nAKSXWwMBEfqtcZ11lkKgERAQod8IV6m+jlGEfn1dDx2NEBACzYWACP3mup7VPhsR+tVGWPsXAs2J\ngAj95ryu1TwrEfrVRFf7bhgEROg3zKXSgQqBpkdAhH7TX+LCT1CEfuGQaodCQAgIgTICIvTLUOjB\nFBAQoT8FkPQWISAExiAgQn8MJHriBwiI0P8BQHq5NRAQod8a11lnKQQaAQER+o1wlerrGEXo19f1\n0NEIASHQXAiI0G+u61ntsxGhX22EtX8h0JwIiNBvzutazbMSoV9NdLXvhkFAhH7DXCodqBBoegRE\n6Df9JS78BEXoFw6pdigEhIAQKCMgQr8MhR5MAQER+lMASW8RAkJgDAIi9MdAoid+gIAI/R8ApJdb\nAwER+q1xnXWWQqAREBCh3whXqb6OUYR+fV0PHY0QEALNhYAI/ea6ntU+GxH61UZY+xcCzYmACP3m\nvK7VPCsR+lVC9/v3775n+i9fv2Zfv3wZ1X+xv7/a89++fcu17xnv//79m/fzFyzIFlpbYG3+fOvn\nz8/mL7Bm/aKFi7JFixZaW+Svz5s3z78v+mqclh+b7fi7HTPHzjmkc7PHX+18vth52vOTbnacHCrH\nyfksWLjQjz/Ok3Ol8XqcS/ST7neWL4rQnyWA+rgQEAKFIVBvhH7enn1l/C+P/WYDbNyP8T/eNy4Q\npXHfRvY0/i8s2TezAT7+R2/j/1S3ZC/DbpqtzR3Xt2/JBk91X9V837z580adIzY8bFxR9k2EfjWv\noPYtBIRAqyMgQr/V74Dpnb8I/enhpXcLASGQEBChrzthugiI0J8uYlN4f5AM35yc/559eP8+e//h\nQ/b+/YcMA/++9DfPfzYC4vPnz4mIsMcQ4k6YWN/W1pYtWbw4W7JkiT9uM/J+kT1H39GxNFvWsSzr\nWNaRtdvrTg5A+MOWV2HLnxPH+MHO5f2H96V+5Jw+fvw46bdDZETjPJa0L/Hj5xwX27lGg+CZVzqf\nogiPyQ5MhP5k6Og1ISAEaolAvRH6LDxjA7Bpnz5+SmN/yaZhB8K2TbagyzgeYz+Lufmxn/EfO7ak\nvd1t3lSx5ni+YTNLLdnZdDxfvnye6m6q/j4Wqdvt3OIcF7KQbRikxfr5hXy/CP1CYNROhIAQEALj\nIiBCf1xY9OQECIjQnwAYPS0EhMCkCIjQnxQevTgOAiL0xwFltk858UEUozWIkDdv3mSvX79JvT9+\nnb22/o09BwH+wRr9p0+fjOA3cv+zkfzWdyxdasT9smyZkfY8XrLECAEjwCE/Vq9ala3uWp11rV6d\ndXZ2jiJKZnv8433eiZPS+bAAMdE5vXv7dryPl56zqHzLMHASwwiOpUZwcOydncuyzmW2ONFh51lq\ni23hIsgf+mpvIvSrjbD2LwSEwFQRqCdCP+xZ2IC3Nsb7+J+3a69f+3NEyE+0pfE8ZWBBaMfYv7xk\nA1LfafZu2US7GPM89pVF8S9mk+hf23Fga+k/fpp8cXnMzqr4BBl1y5d3WlvujcV6MFgEsT+NjITJ\nDlGE/mTo6DUhIASEwOwQEKE/O/xa7dMi9Fvtiut8hUAxCIjQLwbHVtqLCP2CrjakBxv/EzEI6R3R\n94ODQ9nLwcFssNSGhvh7KKOPaH16J/X5nBH7n6yH2FhRIgAgvJc6wZ/I/bVr12Tr1q2z1p2tMnK/\nLSfBEwT4bCPbOadoEDVxPhwn5zQ4xDlZXzqXQTsfiJSJNo4H8gIigwj8pUber1q5IlthbeWKldmK\nFYns4JyJZoTsQFKI98e5RD/Rd8z0eRH6M0VOnxMCQqBoBOqB0A+b5qR5aZEZuwZhji0Lm4YdY+zH\nDvD6RBtjv4//C2xcb1tkY34a+7EBq1aucju2atXKbOXKlUlejgwt+wxj/kR5Z0TmsxBO+2htYOBF\nNvBiwPt3795NdCg1f57MszVrurI1XWu8J1IfUj+I/SIOSIR+EShqH0JACAiB8REQoT8+Lnp2fARE\n6I+Pi54VAkJgcgRE6E+Oj14di4AI/bGYzOiZSPknKh9yHkLmlZHbr169drLDSQ8jPN68eZ0ND7/N\nhi3KcXh4uExGOClhZAjEOVr0aBITiU9k/tL2pU5wQwosWZJkaSDxic5PUfqrjASxiH0jQ1YZGRK6\n+pAnQe5P96Qgc4Iooed4IXJe2fGTWcC5vbZzo+c8aERuvrNzn2xbYLUAqAPgkgucn0fkk4nQkRYv\njNRPixhG9tjjlctXeGRjkEH01SD1RehPdtX0mhAQArVEYK4JfUj8sGmfPn22cd7smY33Q/RDr8o2\nbcgeM+5j096+HfaaKhPhhBwcBD1jP4u0+bEfch+btnp1IvYjWn9553IjvRclUh9i31p+w156htuH\njy5r1/ewL+vre5j1PXw46eJyfh+1eNxuNnzLls3Zls2bs63Wc+5LFpNtt9jtdRHHIEK/CBS1DyEg\nBITA+AiI0B8fFz07PgIi9MfHRc8KASEwOQIi9CfHR6+ORUCE/lhMZvQMkYlE1RNdD8n9+MkTa0+z\np9aGXg0lMqREfiAF8NF0iD9Zny8oCIHiREpJ2gZiHp15ovgiUh0ihMj1ZSZTE9H7a0x6Z7MRBUEY\nIGXD++MzMzkhjoUIR8iat9YT+fis/1n29Fl/9vz5cydwnMi315m0xPlA/ky4GRczf14qBjifIoGW\nVYC0TtviNtfOT+eTZAnWrFmTbdywIduwYX22wTIR4nzAYqaLFBMel70gQn8ydPSaEBACtURgrgl9\nz8gq2TTsAPbsidmyJ0+f+lgJkc8xIh2Hpn7YNOzXRBtkPOP+PLMBjOEx9jOmI0fjC9SrTEbO7NmG\n9Tbu29i/3vplRn7z/vT50fJr2F0W0N9ZTReO88bNm9mNG9asf/Hy5USHUvPnybDbvXtXtntXaixW\nu6a+2WpwKGIToV8EitqHEBACQmB8BEToj4+Lnh0fARH64+OiZ4WAEJgcARH6k+OjV8ciIEJ/LCYz\negbDnSIFP2T9zweyW7dvW7uT3b5zx4mPiGinaN/372jrm5yNkR/2v/1tUj0leRu+PKQOIDCcxKAv\nERrpucwi+9pNgseaEQJr167N9u3dU2p7XZs4iulChM9kg9AZIsvAGtkFfY8eZffu3c/u3r3nj10q\nyIgUehYlIHLivCb6Po+tLEVY8tjPxc6LyE0i75O+cCL0N23cmO3csT3bYW17b69nK3BOiy2qH7me\nojcR+kUjqv0JASEwUwTmmtAnKyvsGbbLbZnZM+wai7tuz0rZWWjrY8u8x5hNsKWhP0XYl22bEfws\n8iIvB5EPqY+c3M4dO7KdO61ZHxI842WccZwsOL99+86zxC5cvJhduHjJ2kVffJ7gUGr+NBkIRw4f\nyg799JP31MBZaoXtO5ZapL5F6RexidAvAkXtQwgIASEwPgIi9MfHRc+Oj4AI/fFx0bNCQAhMjoAI\n/cnx0atjERChPxaTKT8TxDs95HcQ4EQy3r1718j8u9kdI8CHTYrgbUlmB6I8IucXLbKCeCZBk+Rk\niEAcHX1Ylj34ZhI8yPBYodzPpmUc+yCycbFFt682EmS3kR9E/+3atdM0ete49A5ECNGNkCds0U90\ngpwH3wkx89EWHp4+e2YRmUTlP80ePnzkDSkDojQjIp+e6EnOiWyChdaIwuQ5j6qsUD92GQc7n69f\nv/l5xDnxPMfaQQFg69dbVH5vT0/W29uT9Wzb6ueDzvJKkxWC2I9ziX6ic5rq8yL0p4qU3icEhEC1\nEZgLQj9vz5BYS4u5r1yT/k7Jlt0xu/by5aBLsJG9hcNKxhjjvhd4XYikTrJpjP/5jTE+Iv+px0Kt\nGSTqeB5Nea+lYhJrq0x2xyPZPaJ9Z7bW7Bnyc95s7M9vIQcXhP6Zs+eys+do591O5d87l4+Rwjt2\n7Gh27MgR71m4cHtnpD7nVcQmQr8IFLUPISAEhMD4CIjQHx8XPTs+AiL0x8dFzwoBITA5AiL0J8dH\nr45FQIT+WEym9AzkRzRI8CSxk2R2njx+nD189Dh7ZP0j6z98tOh90/ilmCwENIR1cuY7nJBf3IYu\nfpvrCue/HLICwhw5g/cmKeDyNyUJHMgS5HdonSa/Q0T75k2brG3MNiG/s9keW7+2q8u/k++tJFjy\n38XjIFwgXSB0IG98UcLIHOR2Xrx46TIGyC3wniDjISQ4hs5lnRZp2ZHkcUpFevPfCV4ULgQHzuv9\ne4uqtMhKzotIf68RYITNYotYhLzfsH6dSy7Qcy6b7ZzQIEZfmYwFIvtF6FdeRf0tBIRAoyMwF4R+\nyrJKdu25ReE/cdk4bNoTs2OPzJ6l/s2b4RS9b+M4diBsmevCmy3AljGWs8Cb34j4L9swG/dDpgc7\nx6I2Rd/JOkOexiP0d5ChtcNswDovoMsCNbJs+U2E/ggaIvRHsNAjISAEhEDRCIjQLxrR5t6fCP3m\nvr46OyFQLQRE6FcL2ebdrwj9GV5byGmPoCei3drNW0js3M5uWyOaHVmC5y8GvP8K+U00ojWi6in8\nt9q0gumdDIHIsEg9Xstv796ZNrDLCVhBWtMqJjLy5eBgNmjawAgbQJYTDb/YiusRAbiKoriWyr/L\novX37tmT7TUZHgjw9L5UiDa//8rHXgcAwt0aMjuX/76SXbr8d3bZGnrETE7ef3jvhDznjGwQfacR\n7N0WRYlUAtkCEPypgO8SI2pGojTB7F2JwEcmgYyGOCe+j8UJiB0kdcADmYIVXixxpckJ7fVzQlpo\njS1SxDnlFwwqz2c6fytCfzpo6b1CQAhUE4FaE/phz8jOYkwnE+t2SWIHqbWBAbNlL8ymmV3DDmDL\naCyoIh+TbNoqtwUQ+5Dz7e2jI8/JUsN+uQ2znqj6t+8opvvOF8cZ/8n0wnZs7+3JtpcytDbZQjUZ\nW7Tu7rWjYBehPwKHCP0RLPRICAgBIVA0AiL0i0a0ufcnQr+5r6/OTghUCwER+tVCtnn3K0J/htcW\n0sMj2o3UIEoxEd+XnQR/0NfnBPwbI+Ffv37jpAfEM+QHEezr11mxPwgKizykGCAR55Dilan3b4aH\nszf2ecj8QSNAuFgUpaV3yQIn1b85uY0OL8Q+/cED+8up/UQ6BklOP1lEO5Hz79DFN7L9uZE3Z86c\nzf6ydtraa9NLzm8LWEwwsp7z6lrdlW0iM8CyBNbZeXVYlGU7ixTtS42kH9G7BzPOJXB5Yd+BrM8z\nO6d+K7TL66HFzOfS+SzxqM3jyBUcpR3xgomQ/gvIULC+iE2EfhEoah9CQAgUgcBcEPqx6Iw9o/YL\nC7qXL1+2ArO305hdGruxe1HclkXosGX0KYo+2TOI/fzGOT3rf57196fxnr9fvXrtC7sQ8ywq0LAp\nW7dsybZu3Vzqt2Y9W7dm27Zts783+y7DjvG50NB/a9J2586joX8xO38BDf1n+a+vymM/ZuywH3ta\n5I7FkThGehbbj5v9OorkjtkwJHc6bNF6qTT0q3JdtFMhIASEQNEINCOhj71ii34yzMKmxXsq/47n\nZ9rHMeR7Huf/Zt/xXPR+HKWMbReY5XHpIHgt3+wPf63oYx/vnEXoj4eKnhMCQuBHCNQboR9jLb6O\nDcA/OvxxX8+Pw9Uaf+M4OYDKx/HcuAdX8WQca95elJ+reG+9/ClCf4ZXAtLDiwYaCU6hW6LYLxn5\nAQmCzM47k5N5T4S9EeREK3ZAcFsjmnHjxg3Zhg3rrW1Iz1thWwjwSokC9kuEPnI0EOro2XPBIMBf\nv3ltJIsR/kb6Q2q4hr2RK/T79+3NjloBviNHDrtkgRfItahHIh8ni2gftn1FLQC+5+IlO6dLl6y/\n7N8TULEwgPTBihXLvZBttxXlhchHGmfNmrX2PUlyge+D+I+NHxd4xDkRnZ8IfTsnI3n4/jgnyP22\nNtNlXtTmixQUFDxy6FB22PqNhlu7YcYCCNrLRWwi9ItAUfsQAkKgCARqTegz3kYRXHqyzSJD69at\n226DfLHXxm+08lNB16W+EM14jE2j7zS7QKF2pHOW2AJzfkNuZ9AyscjGIkq/38h9xn0f+82WkRmG\nLcO2ku2Fdj4F37dt3ZLt2b3bG4VysWHIrdGzuJCOO9lhZOIo3H733l1bBB/Kf31VHuOws6CATStn\n1JX+5viok7PQ5OfIKoPIP3L4sPWHPfMMfFiAx2YXsSlCvwgUtQ8hIASEwPgINBuhj0/mgWlmc6nT\n9v37t/FP3J6FzHDba3bNJU9zdrgocoZj+Po11YmjXtwnk5uNeQHHSe015ipkk4eULTbYM/vM/20z\n33OR2Vt8VLLD51s9n6g1h7Rt8ilTrTfmMUUd90SgidCfCBk9LwSEwGQI1BOhj51gLMPXomcsnslG\nFja8nXOSBXF3lccRSiOfzEbwGH8y1R79XLIfI3ak8rPxN3YOu4G98N58NPpFtJLdqEdyX4R+XMFp\n9hAP6MxDQtOHNM3lv/82zeGnfiN9hqCwG6qra7U79PTruk0Pnmh217vf5CR7IuPTJCR/GOnGTDcl\nxL2T3yVS/ylEiJHuROxD9qcJjMnVWGT73j27s0M//ZQdPvSTE/rI+ngzbWJu1Ik2yBZIlv7n/dlj\n00u+fuNGdu16apAxsXGTb9pY0uu3c4HMD/KFBQt+tNGI5IyNQSHOCVyGjNThnCLrIM4HgodBI86J\n7/vp4EHLPDhg/QGvFZDPbIj9z6YXoT8b9PRZISAEikSg1oQ+E7SwZdizW7dumU2zCH2zZ0jvxOQI\nm7bMssnWmC3rMpKacT9sGXZtmdmY5DSzuLxwFCRkgCWZnXce8U8mGyT0gwd9Luk2TOF4s3MsHLAf\nstnQ099m0fnYsp/Mph3cv6+cmYV9YIvJGllrZH0NUOvFehbCq72xOMH3YT9oyBLFMTDxW8JivU1c\nkQqCzGdh+qgttFNvJpH9SWauiOMUoV8EitqHEBACQmB8BJqR0I+aZvQUqZ9ow5dbuMDslfmY+HfY\n38iUZoG9iC1qxnEs2G/mBPiew5Z99+lTkDOf7bUP5vdahp/5vmTBQxIxZ+i0OQM2F5/a/Woj98mE\nW2Y13nxOYb4w9jjs8mT+cBHnI0K/CBS1DyHQegjUE6HPIio8I+MtWdXwnzPZCGBasXxFttyCgSvr\noc1kf+N9xoOGzWZ4oJXZEF+IYDHCGvwj/iL9ZIsSC8zOYTfIMvfeMqnjb2xNBJRV236Md36TPSdC\nfzJ0JnmN6PlXRBuabMAovXmL0IekhrzmR0AP0bHZtOy3QOJvtsKuyAl42+yTonnziCSwCVHFpAj5\nGd+P7YMIwKdG5kdE+13TNSYa8c6duy5XE6tF9Lt37XTi+6CR30juoEXvzXT2gwQZ79Sem+xNnxU/\npAZAX99Di3K8l77DIh7z5Ag39D5bNECnf7f1Gy3bgJoAyAgQtZ8/llHn5Jk6JXkCOzcGhkTo23k9\nferncrsUYUkGggHi++KYDxiRs39faltMdoHvoqHdXMQmQr8IFLUPISAEikCg1oQ+UQzYscjQunHz\nZvZ3qYbKHRv/w5bRQ+Jjx7wIu/XYsmTTNnsWWipWThTfaCefCVRMqLAnN23RgIWDGzdvWfbZU4+o\nR1qOY0hEAVF2C7Mek9o5dfJ4dvLECY9yd0e95LBja7CR0dh/LD58s2i+am/Yr4dmMx8/fuyZeX2P\nHib7aTaUTDUvFG9kwgZb9IbMP2RZZmTPka03yk4WcKAi9AsAUbsQAkJACEyAQLMR+tRB8+wyyyin\nJ0J+og0/LBHlqdZN3g4XRWxElhvH4lKzNidhTkCw2UfzuSH8iRJl4R9/tf85deoGLFNwmdePW20+\nbqfJ2JId7pKt1q9YucJ8xVX2+mqrNbfCswoJFEDmtqjjnggzEfoTIaPnhYAQmAyBeiP0kcVOY+7z\n7IMtqM5kgyAn6xpVD7Kwq7FhN/Bl8aF57IFitiBM/8lsB4vF2BCI/Yk2bBu2ghqeyMgm/tT+xr6Y\n7cBuuOy49fhx9bKJ0J/hlYCQ8OJ+duNABl/3SPbrHtFO4cD8hmQApETPtq1O7LtEQUmmYKo3AxOD\n5zZ5eT5gPyqbwNy4cSu7ev16dvXaNY+mz38fJD4E+IED+7Kd23d4oVomNBSsJbJiog1yggKI9+7f\nz+4/eOCk/n2LniSSkhW5pJu/wKP9iZSnsWiAdvJyk1qgkQkw1Y1JGcWDiWpEV/mKncuVq9eyq9bA\nNjZ+PElyYZf1u5w8WreuO1vf3W2Rj93xtln1IvRnBZ8+LASEQIEI1JrQhwTHMca20N+6ddtsy3Uf\nk+/ffzDqzKiVgvTNzh3brXhtr0vHsai7Yf16j5Qb9ebcH1Fw95sR+6TRU0ieIvLI+7CInBar+/0Y\nch9zu3nq5MnsH6dOZMePHSs564s9bXOyBer8Pop8HIvs9GBDvYE71u7Z4ydPnliGHu2pRwR6dp7X\nmNlQXpDGNrMoXvQmQr9oRLU/ISAEhMAIAs1A6LMoz+I6NXNYAB806dOXQ0aam0QdhPlEGwvUKdOb\naEWLdPfsM8tAa18yqV850f54nmNJi/wpE33IgryY+6RAOWrspMbfTsbYvMGz442cefEy+Y4vLEOO\n6PsIXOMxx+oSO9bjl66ClDGChlo2qyyLnEY2OdIPLqVgBM5kvvFk5zDZayL0J0NHrwkBITARAvVE\n6GMv8HXgBWlwdzPZIMTJuE5ty0x24Z9xBX8Cuewvji1vG1gAflHKmMaegCOZ4SwSQ+ZjP7BzBLFN\ntCGTumKF1Tc125HkxUvEvtkQngsJdXrsBjwuPOVU+dyJvne2z4vQnyGCeUKfG2hEu/f+GO1eJ/R7\nIPS3Ofnh0eVIFhjBPtUbgJuQCdegTbyGhl45kY9mPzr3fQ8fjjqLHdt7s31791rbk+3Yvt107ddY\nS/IIk01aICJS1P89IyfuWeQhUYcpYp9UTCY+TJRImTn000GTQDiYHTIpHFbafHJnEzwmSFPdyHIg\njccjMQzDC1bIkGKG5y9eclIp9sMPhfPgvOi32ALJZiOVIJbQbi5iE6FfBIrahxAQAkUgUGtCn4nO\nEyOhHz994j124JZJ7UDsE4Ge33rMlv1k8mcUX99tC6w4xuEkV9aByX+uTISbLWEB4YFPDpPkDovG\nIcHzyOTe8hsZACeOH/N29OiRpNFvtoYo98nsWX4fRT3mHJhABilywzIMrly5agvRVy2jLdl+rxNg\n9gy7i42iYDzFfLeb7WIBBBuGHS16E6FfNKLanxAQAkJgBIFmIPSxvRDNNORssLeeYWZZZkTIT7QR\nmYhNw9/Dn1zeSRBXpxMe+IYz2fBrkZOldhokkdfVMcnX5/3PPTI/aq5BxiCpBwnzxSIribB8M2zR\nl/Y5Ps8CeSJZUm015gVo6dNTz8fr2JmEAmTMOgsCI0qUHpKf55ZbtD7vKXoToV80otqfEGgNBOqJ\n0GfsvWo+TgTc4uPMZGPcpcYnDY5yplvel8QWEJGf+NGhJHnqwWkvXJbNZdzsPfi4ZRti50M9lok2\n6q9QCw5eE7vg8q9mI8jqImof27HOZFQJKEbCDTtDm4sAs/w5iNDPozGNx5WEPoVwH9mECO35N5bm\nkd+2eXS+EfpGhHATEEFApANRDlMl9IliYMJD2sgbSx+5fPnv7Nz589nZcxc8oj7/fb09PSaHQzT7\nbicQuOnQ8O1e2+26vfn35h9D4BMtCYlDUUGiDFPE4VM/zpgUQeAcpkCt6RpD7Jd184lysLTMqW6c\nEz9GJj2c239P/5Wdpv11xgslxn4g9FkUYVVvq6/upcfbLOMBsqeITYR+EShqH0JACBSBQK0Jfcbg\nyMZC094jMSwig2wtIufz2+5du8oE+4H9+91h9omPTX5+NKFhIkbDMUdmJy0iPLXoj/tmd2wBwewP\n35nftmzelEHkHz1yxG0OxILbUOsnW0DI76OoxxD5TirY8TM5pMbAuXPY4fO+GP7hQ0rnBE+OGwIf\nIh/bzyL0RmtI8JHSWfQmQr9oRLU/ISAEhMAIAs1A6OO7JhL9jUvZ4O/54r3Z3krfdeTMM/fzXFrP\nfLEtJiEbdXSopQOpMZONBYSRzMAXFjzw0DPDCVIjSzv0jr98+eyL6EgEuQ3+SsFck9ezBQH8yLIc\nUIlYwWeM5uS+2Vtq1jB3oOYPgWD0ZJcHOYO0QtGbCP2iEdX+hEBrIFBPhD7j7OkzZ7MzZ84YP3d2\nTBb1VK8IwU0nPTjruPuQU/1c5fuwAdHeGCcaC9L0z2wxmDqgLA4j600AVrT4jPfmh060IRu70OwF\nddCI1icLDb4WDnS1ZXmFX0eQMST/YlvQjkyvifZZi+dF6M8QZSZFHonHypA1ZHZeIFdg8jGVUQ5b\nS2R0jxHQTH4gIVx/cBpRDdyQRLR/sO+lv2BR7Kf/SuT37Tt3R50FmQDo6NN6jVDwSQsSNTZ5mYxI\nYBJ1/cbN7KZpGiMjQHFadPu5SZgURSELVtkg853Ut0KF6ObPZIsfF9H/THx++/2P1P74w4me2Cf1\nBVIR3lSIF1J/O9H6dm69vT3xtln1IvRnBZ8+LASEQIEI1JrQx55hRzxDy6LzkcBhgZqGLBqbKwXa\nRIfoin/+8nP2y88/ux0IKTb6qS5QY8+wlUlybSC7azr9RH/Q0NbPb0wCj7B4bIvIyLzl0yCZSNVy\nw1bl0zvPnb+Q/ee/f2b//fO020yOJTBAkogoFPBiAkhUI/Z/jTXsadGbCP2iEdX+hIAQEAIjCDQ6\noc9iOsFTkOXIEiB1+vcVi7y0dvnKFc/+Hjnb0Y8gvvEpd9F27nR/0n3L9es8On70uyf+i2Ngoyc7\n27PAPRv8sc8D7lgwGfMBjo8t7Cl9NH/eX/U32H+2z/TPn2Xf0dLb+DtzQobgMK9hRx8BYhYYhl8b\n+4/vTJ+d+f8i9GeOnT4pBFoZgXoi9Ilu/9evv2X//vXX7F///s2DsWZybQhs+v/+93+t/U/2/6zN\ndEMu7qsFVNETmX8L2VPLKL9957Zxlv3OXcJfogCS32J857nxxviwTbwej+kh68kCo6gv0uUHqelp\nwWw/Hdjvf0P0E9FfDSlVjmWqmwj9qSJV8T5WrDxi3lIWh625dMzrN14Fmps/v1EAIiLkSVEkih2H\nfjpO/XQI/V770YTmfK8RCUzE+H76mRL63NChP8h+XD+/JLsAwTKTjR9KkPpE6v/2++/Zr78lUh/5\nn9iItCDa0QsLW2RIkjDqybZbJgIDRBGbCP0iUNQ+hIAQKAKB2hP6Hzwynuj4eyYdQ5FyiiAR5TD4\nasjqpyxIhYAsFRFnPiLmKY7O+DzPWiqG67T/DyFg3H9p2r1IyNFTeJdod9o1q0eT36g5c/Agk6cD\nNonaZ3q4SPys9IjBWk+giAYkuhHbT3/JMuXOG6lPhD6SQaRqzjesiBiE/DhYspHI7LDwHYsRP8pk\nyJ//VB+L0J8qUnqfEBACQmD6CDQqoR9+Fj1Eecomf+wL90jF3b13zyXjsGsTbUUR+tTPiUVx/K57\naDPbvAONZrIBU+t3G4udZH5Bj60nE4C+rW3RKPIdXzIahX0h0t9/sOA3K96Yj87E/42CjN0mHQSh\n32N+ZK/L4VoNoMWJtKGoLt87202E/mwR1OeFQGsiIEJ/4uuOJv6wKZUgGUfdN4LR7log2p0793yx\nGgke6q4g1ZbfCABbjA2x8b2SC/36bSSS/6vZEJfnMX+PHvsDB4rdISIfjrUXu9Hb47XjUD+BY6VW\nSywajLdgkD+WajwWoT9DVEm7z09MmDhgvGm8lt+WdS7zVD9uBG6k+XZzRIXk/PsmezwdQn97b48T\n+nv37PFIdl9QsEWFtXbDkUIy0TZZhD6TKI8utChDih+6BtY+iz60CETOayZbTMDowfLftgL462+Q\n+r97YcHYJxMrNIiJqiDl0wl9ZIzsR4UMTxGbCP0iUNQ+hIAQKAKBWhP62C3XsX/w0HsmSUMWxUck\nHymNpKtjO5gEIXW2f98+r9HCgjETl+mQ+eADsUA65CuLoOBcmZBdvHTJMs8uepR+HkOiALE3tD1m\n04h0X9uVdHyR+qnlxmI9hAiF+FiIuGaF6f+2yEaiG5EPAh/Hynqi85GkI5ON1Myl7UuzdvR87ZiL\nIAsqz1uEfiUi+lsICAEhUBwCjUjo41/hP3pUo/XIqJKBjbwdC+nPniV5AiIamQdMtBVF6MdiOP1T\n++7bdhxI/ty2xnyAqP031qP1n+xpymhfaQviyOJQ/JaISGxoavNsPmGEvs0p6LHRBCFQa27IejSU\nWYinMVcJyT565jLYZjLoNpuPSQHEIhfdwRPt6WvXrnnPce/YscP88h3uy06EtZ4XAkKgtREQoT/x\n9YevGzAf7IVleSPd6gvSZstYnCbAmoxzGoHX+Q2p1jTGd7o+fv41eFveH1JusSDMGG5mw0j9pJGP\n/A4y5thDGsor+MHwrkiq4gtjlwhys4/VdBOhP0O4mSTlox7iMSn5vJbfiMhfQES+9X6huTtsm84K\nznQIfSYokPkQCkjTrKWQUamY0WRZAZMR+u02EYkiEJssYnK3RWbuNY3+PVYUkR/JTDdHyvDih5RS\neiyt57ffvBZB7BPMQkPfdfNLEkauqS8N/YBJvRAQAk2CQO0J/Y9e/Dalvz9yZxjHGqebCQ0Ra64T\naD36s0xeent6vOgrkE/HlvF+7CX1YMK5h2Agyh0JG6L08xuTJuzMbrM3RL37RMok5OhxkGu5IafH\nBJIMhicmRxc1Z5AJYhHEcTKMSM2kvsCxI4c9m4EIfddjhPC3ucB08ZrKOYrQnwpKeo8QEAJCYGYI\nNCqhH4Q20YZk4V3+2xahS9lw2OBoaNZPtGFvi5DcgYx5YYvhLwdfeoYAGXnXbWGcnuNk4QFyBRuJ\nHQ2byvezuN/dvc5I/eUeNRkZccwn8JHpid581h+R/s+c2KG2DUQ/+124kAy65I/jT5JxuGvnDiNm\ntrnsDkV/8ZcrIzgnwmWy50XoT4aOXhMCQmAiBEToT4RM5gG/1C19+PiR2xCyyj273LK8sCFhC7AH\n+Q25nOBCKYSe31j4/UBWl/m7LAZQqD2ysdkP9gjqFg41arjRYxMPmfT4TwcPZrt2bB8VsF0NPy9/\nzJWPRehXIlKnf3OTlgmQHxTFZXJy0MiEA5buj47v6tVIFKwqF6+d6BQfPnpk+sUUxb3lkRtRtJCe\nSVUUQYqIyb22YLBv756MH0a62bnh02LFRN+Rfz6/KILkDpH5yO789vt/xkToQyARRdFrPZH6mzej\np59afp8zfawI/Zkip88JASFQNAK1JvRZUPViQhalh8wOE5mIcsD2kG64eHEq/EOE/Ib1GzxTi8cz\n2Zgg8R0+abKFAyL0KfJ+/gKE/pVRu1xn5P0+W6DeY4vISMmRKo/eLZlntSL0Y5Ge46VgMDIBD6xP\nWQ1WRLjvgWccePSfZeQx0SOjgInekcOHnCyIrDzSN6uxidCvBqrapxAQAkIgIdCIhH4iuZM0LGQ3\n0YyeVWZ29obVS6PgLEQ3ZH4iQpAeSEUH89e9KEKfTLbHLIhbpgA2C5+TBXF6tgh6g8yPaHnqt/H9\n64zMZz6wYvkKI+VNiseCvch45xyDxGHRndoAFEZkThPyC0TsQ5J5NH8pIA8f0oMTenvcRuf9SuY8\ns91E6M8WQX1eCLQmAvVE6BO1fuasFcU9e84bhcxjs9yoklrJJ+/xF7En0eJ99D2mqjFTDX18sGjY\nMK/5ZoFg9x/0eVFcZLofP35CKRW3DUifQr6jihKLwl1dq72G2RpbsK1UFsEH/vgRlZWPLtUzaNnp\n1EdFo59xnIwxzg1bgy/MPtvaFnuw2VHz8Q4fPuyP3Vc220GPLavlJkK/lmjP4rsi1T+iG4hooJgR\n5AdEfH4jOh8SgUb0Abr93LwQ75ORCfwYbt+lsMTdjInrI/ubiE1Wwkgf6XTpoE7/QRw6dNDJCiQF\n0I3ixmXf07mBmYDxA+GHgtbVH//50woM/jf7z59/ejHeOCf26ZEhdi70yO5ssEJM6036h8WFIjYR\n+kWgqH0IASFQBAK1JvSZfHm6e0kGxycwTHCsMU4zMaIRXY4tIfV91coVYyZFUz13JkVoHHKeQ/ad\nd2xidvHS5ezixUvZFUtPz28bNqz3BeqDB/Zn+0zqZ7UtTndZpAUL1bXQ0PeF59JkEnIAEuTGzZvZ\nLeuJ0keqgMZksGs1hW9X+/Ht2rXLF7wh9qn/ErJE07GReRx+9FiE/o8Q0utCQAgIgZkjgF90xwrv\nIRODzcQeRcM+1uPGcVJ8ngwyGgvRQaJDhsyfnyQCsEtoB7uUrNl9CI78VhShH3r9YMn3kxne12fN\nenxIGljir2L7kXilx+avstZl9r+jo8N9zXkc+7z5TvQwp/hmdhp9fuYWMb/Ar8VHxpdFpiGIJuY1\nRONv3rjJMg03mOTOFpffIZuOzHaIoNluIvRni6A+LwRaE4F6IvQZMxm3kWhDq57s7dhYIHV5Vie/\nB62e6JvsrS2csnhcqWE/U0IfHywWbOmv3bjh0qxXjQO9Z/bMyXcj3iHgsR1Bqncs63C7saYr+WUr\nViDZttzqmSXZtjgHes4xSPv3xkdSQ+758wHvWQxOdVJfZ+8seh9Z1YULk7wq9iJqisK3loO6OpbZ\ne6oTvJU/7vxjEfp5NOr4MTeRp/lbdMOTZ09db9AnZUYqUEQov0F8HD92LDt54phHNKIzTPuRdi+R\n+KSu3PUCRffLE60HNtniZo8fCT+GE8eP2Xcc9Ya2Pj8ibzYZm+oGmU96ywerP0C05p9//ZX99deZ\n7LQ1CJLYmGhCipANQFYAevohI8RKWxGbCP0iUNQ+hIAQKAKBWhP6OMMsGpN2+PFTSk0nSo/J0/fv\n39x5ZhymYQdwdlNxuplFsSFNx5iLDj06/Xdskvi3ywBcya7bZC2/bdq0MTty6FB26NBP2SFLa8xH\n7SEDVO3NiQLIAmvo51MINxXwveIajl4LwAgEIkM2QkCYJB09GWVM9tDMZQGafE3y16aTxTadcxOh\nPx209F4hIASEwPQQgIRuNEIfP8szySwa/v4DyPNEoj8wMv2p+ZJLlph/uCQVm/3y9Uv2zoiYt0Zo\nkKGX34oi9K9eu55dRWLHehYXgjhhsQGZG+YXNDLCd+zYnu10G7rd7P4KI/mpR2e16Ox43Y6aQfXe\nF9wzJ/Y5B2rahQYycn4h6dP38FFJJzktWKDHjw9JpuEm0z/eZ34mdeHwNYuozyNCP38H6bEQEAJT\nRaCeCH18H18kLdUl+WR+Ymz4cg9tXGXR9KEtyjKe49dFhHu8j36mhD7fHwuxyMZRb+3cuQvZWcvq\nRmqHcZbIenpsQ0fH0qzD5FiR2EGaG2k1eoLRllLHzF5bbNH1+S35eZadZt/13rK8UsT/Y4/6h2Ol\n1sxTk3KD3A9fmB4NfeTNsRn4el0WaMb3sgBdhGxb/hh/9FiE/o8QqsLrrDaxRV/5FaErn38PGocQ\n60zMmJAR2cBkiH7ACkNwYzGxoR22NP9Tp05k/zh10gn9NnR7mSRZ75Ofyi8s/Q2J3lf6Dr7nvskK\nuC6VkfwQ73G8REf8bPs+Ze0fJ096deeYhPEdsY33XbEPzvGj7dNlhExCiB8J+snILpy7cMFXxuLz\nRGzECtjBg/uzrRbtiIQQmQFEihaxidAvAkXtQwgIgSIQqDWhX8QxT2cfLBRExCBREBAl7uhbdH6k\n3sf+ttgC7vGjR7NjtoBMamPH0g6P0GPSVosJE8caBQWRIzpz7pzp/dPOm2TQm/JEksUFJqxo8dKn\nIu6pmDsRItXeROhXG2HtXwgIgVZGoJEIfXwtGgv11y2j7MaNlFkG8YIkDQQFi+mQ2itKUYuQJrFA\nnY/C5JoXReift8L3FywT78KFi+6/vn7z2orgvvGoT2QMKDoIKUNkPsFpB8ctJCwAAB4nSURBVE06\nFv8PgobnaZPZfc4ZUga7DUlDFvs5s9dnzF5T8yZJCUIAfXDSngx2sgHI+PbMdgseOOzzjNnX5xGh\n38qjhc5dCMwcgXoi9Cc7C8ZZty8WXHzjxk3nJ4MAzwfmsg/8oplI7vAdZIwRQU9P0O9//zxtih5/\nOkeZPz7GcoKOsWkEVyHXum9fqikKkR98KDVNJ9qwEfCtfQ/hWx+OcKHGiY4EUGNfM5f+3r1rZ7Zz\npxU7tyAuzygzW7LegriwZ7XcROjXEm37LiYY3JAhNZNWhVL033dLXYlJGP2nz0nygNUwJldoDoau\nfdIIfO6rYUQjcBN3liYmFKvdbxOhn2wixMpURM7TB0k+3mmzosYPkEaa4q3bd1xP/6ZNgiDev31L\n2orcpEywgmRnoodmMJI8kP18D9IM9Cw0xMY5cd5x7qTmvHj5wqIcXzq5c9MGhKSleMu1lWORAC1F\nzoXJ3QFrG+1Hyvd5s+8rYhOhXwSK2ocQEAJFINDshP4XS+0nAgKbRn/XFo1vY2/M1rCInN+IrDh5\n4nh2wtrxo0fMoSfjbIlHFWJjqr1FkSQmeUjsEB0CIUFPWmnYcyI/0PhPbZdPJikkj31kglntTYR+\ntRHW/oWAEGhlBBqF0MfHoi7ZR4tafDP8JsnEGdmCVNxTI/KHXg25tjx688jZbDQCAvIDuR33My0T\nvJKMKYrQJ8PtkhXkvWw9iwvYVaQZOJZ2s6EQ9xAv8X27d+/K9ph8HUQ+PiHBaZORMfiZSO+Eb03G\nH3J+l6wRrY/fySICEgqLFrWliM32pR6YRub5ieM217DgAXzZ2W4i9GeLoD4vBFoTARH6I9cde/b2\n7UgdGGqtEVBFcFVf38ORN9oj7IbbNLNnm6xGCosIvbRtPWZDFmcLStwk9Vcm2vDpCDTrH0iyO9h9\nfFOCzR6aBLlnC8Bl2gJ4t/l4+KgEcG3bas2zAbb54yKyvCY6xvGeF6E/HipVfI4bM01eUlpjSiMh\nAtAKEhnJ8c3kDSD2mYwMcwNbZD5kOgQPEY0Uo6BnMhJFBSHp0QDcaCmD9BEh2NvT4xrz5fQQW5Gy\nDMUJN76HiR7fRdpMRExevXrd9JVfGRFP4aTPrnG4w1ai0BmkoNA607FHdgftYKLmuYmZfJHGSXR9\nbEy0SOWM8+dcPK2FIkm2gJDIHZMUevok+2Lfhf7VMptUkSZzgCK/+/c5oY9uPtGQLCzQithE6BeB\novYhBIRAEQg0P6H/xbUPSfsnEyxlm6WMM5z8/IY9+/kfpzzjDGe7rW2Rj/8493n7kv9MkY+xtej8\nYwOxUxQUpH4NDYf9q9luFihWLF9udWVKtWWsxsyarjUp+tFqDUBSVHsToV9thLV/ISAEWhmBRiH0\n8bGCuEYmjuj8m0bmX7egKYKokBRAxpXIx50mE7Bzh0nbWOM5ArlYXK9cWA+CfdeunV6bDT+Mts4i\nEadj365cNdt59Vp21fqntkAeUZcUXlxmWXcpWKvDZHDWGhmz1YkYCBmi8p2MMZ8yHyg23v0Iof/d\nfGh8TmrCXbXMP/xZ9J/JaKe9sLoC1IaLiE1kXJlneLPsc45jtpsI/dkiqM8LgdZEQIT+yHVncdqL\nm6PTbw15VhaGL16+7D7ZyDsz5z+xZcjfQK6vN4KfaHlsFTbE+VBsiPGmE23wsnCvb4wTpWchGPtx\nzewIkuSM60iFE+y10vy7sIXIw1I7jYj93aanX8Si8ETHON7zIvTHQ6WKz5H+CFkzZCQBPStBqaXK\n0Eyw0C7+Zj03LimRg4OmNWwFH+KGRp6GSVBaDPhiE48Oiwq0KAaLDtxtjZQPVo261651QsHC8p3I\nnyw6n1MmOuODTei4Sflej2qwHww9mlhJY/mjT5LSDdztZD6piqEdvG5dtxeFoDAERHw+gpJFCs6Z\n4ovocT1+/NgjMym2AalDFgISBm/eDNvnFtjigMnqrFrpRRD3B6FvpD4Tr/IihU3IithE6BeBovYh\nBIRAEQg0O6HPwrBngFnUAz1kdNIsfDImMpBF43/+8nP2y88/O6kfRfOI0vuRY1/EtcD5f24L3ERs\noMFLxN/16ze8MBPnAWlAo0jvqRMnPJOAjAKkDGJhm8WHam8i9KuNsPYvBIRAKyPQKIQ+PpbbLAua\ngjSnkDuEPj2vJT/zqxMcLEL/ZLVpDplU67DJnxLJjs8HCZ7fiiL0KWiI/cSOYlODfMc/xGekkXFO\ngFgEqaFvj63Hh42WP7bKx3nZ2vulIsC3LLqSRYon1KGzenEEkCGlF74k3/f//vnP7H/+55/Z//7z\nFz+Oyv1O928R+tNFTO8XAkIABEToj9wHLFD3m63AphFsHD4YtViQjstv6NkfxqaZPSPomECrkJQj\nKn9K9sP8OedX4WON3EelJLK8iNQnmHrYeEp6MrODq4QXDeUSpOJQLanlJkK/lmjbd5Fe6NrB3Jw2\n2eJG5TkaxH4UIkQD8JUR94NDqbgEkzCPbi8VLIIoJ0q9bXGbF1+A0N+7JxH6FGOIwoGkLk51Y3Lz\nxQgKSArI9ZEI/Wt+rGnFatjTONPEiwJFy7yoEEQ+N/NaW0RggcGjLDqo8jwiicCEjWhHzoWegkxE\naKJVRVQmr/tihkn7oJPMgsTatWt8n+hTEUmyy1beitLNz+NSz4Q+ZBHYRMv/zeAUE9KY8EbPa9qE\nQKMiEPd59HH/04dRTvd++g3Mm5eKtjbDfd+MhH7++hFxcc0mY9evW9SgOfaM/xE1x0L2okUm22bR\nFLTtPb1eE+aU1WuhEDvXnIlZjHPVvr9ZaOD4HlmqJfaKAr6p3XMiHxtH6zZbdfLECZcHgtDHBiI9\n55GFuUy1ah2vCP1qIav9CgEhIASyrJ4Jfeyrz5XMXyD7uc/8qj4rUsgi9H0jsu9Z0BQ9gVsRlU4G\n9GGKzRv5QdF5gsb+OnM2O3P2rMvK5a95UYQ+pLq3ew88aC3/HZ3mO3aY34gPmQrWdlmmmzUL4prp\nvA4cbmOz79z183dbbsFkIZ0wfz6LBPN9AeH/Qeb/z/80LaEfCzkxFwvsuW98XlUKkuAxW8yz433q\nhUCjIcC97eNijkOJ+5+eAKEUJESAUFKUqIf7XoT+yJ2GesjjJ489Gv+R+WN3LGI+MsnwG+N6MZaz\nOH382DH3FXdYQfWlphiCagjE+0xtCFlel/82mThryO4gT07QM4HO+HfOeZotxU4dPXLY2hGv9wYP\nG8c20+8eQeHHj0To/xijQt8BKf7I0vYf2YSC9tpS+UPPDy18n5QhuWPSOxD46EbReA1ZnojK50ZZ\nbYVhaWUNJ6o5eyXnZekmNjIf0n+qG98dxf9YaPCiEH3IIfR51OSAad0zUaRoEj8cjD6NtJJUWGmF\nLSR0elTiksUULzK9qhyR8c3Oy/US36dFDDIN+DHS+IHEZxbbZzmvDRvWebbBOvQdvaW/q5HGUs+E\nflxzFloqG/gyoLi2pPUQS/xNX4sBZKr3lt4nBKaLAM5H3Pv0LHh+/kxG02cffxYujPude960Ve2+\np4UzMt3vq6f3NyOhzzWETPhkZD5yclcs7Z70e/qnFjFHZhYZWtg9oiq8WJ31pNsTbUEk4UHL1CJN\nnnTJmChV+7pBPjChI10fUuSRkfsPsd9G8DPuUpyXBej1tqh9+PBhL6x31HomkOEs1OKeFKFf7TtB\n+xcCQqCVEahXQh/CyudKpYhC7FPUJLt7996oIDIy26jpglRA1+qubI8FghEMtteKB+Lf/efP09mf\n1s6ePz/qUhdF6BOV/3yASMsU0Jb/EiRUyWrDd0TGp3MZEfsp23um/sxkhD4+L74Sdnrtmi7PBIxs\nQILVZrvVW4S+S0VYBj7Z9twvQXZynsxlooEJcxZwqcXcZbY46/NCoBIB7m22NDaO5k7wIcOfTDW5\nEumL/xj3/Fzf9yL0R64oAcYp+NcCgC3jCkWPe9bjm8Ejcs0Ysxaassdh8xWphQKpT4S+Bz6XxraZ\n2pAHlkF+/cZNz3LDF6S+TBT+5SixV/CXZGnHYgLBZ0iQz7djiwC0kTOqziMR+tXBdcK9Ep2OxMw9\nKwJIIcAXRmZ7M51DiPtkYNMgFOQtxXGJXPebYkEi0SG4t2zenG3evMnTEim+173WJHCsX2wToplE\nBvLdvqBgPYMd2osUrEVz8bHr3CcSgxSX9x/IKkBD6r0d1wLXsuemZkK2cEH6YaF3mNepYnj1DACb\nSHBuH6xg0zvIfdNz/PjpY2mBwnT4jcxH82qzFbTg/NCl8qK/pVRMJh1Fb/VM6HMtYiJGz2Qs/mYQ\nY/UxGthEbYG5NkhFXyPtr7UQYIzg3g+pr8hkol9g42Dc58kJTIVSmZxh3Bt9a0ZCn+vIQjGEPed3\n8fLfpoVoBfKsx7nnWtNwNMn4gkCAJN+6dZvJyZkmoWkTootI3lGtyHzuIwoJXrlW0k80mw3pASkx\n8GLAIjM6y7JwFGvP13pZYrYwv/hQ7XtShH61Edb+hYAQaGUE7pnvdufObdOYv+12at++fVk05uJz\nteG7+WJ5yYaSQXbpErb1shMR2N2wvQSD4T8ik4qkTW9PT9bb22OZcD0uRfP7H39kv//xn+y0Rern\nt6II/TgOeuZ4+W1ByXcES8i1IGOY48106+ubOEKffSYSe5Fngv9s2vn/OGU6+k2qoU/AhGfaW89c\nK/ENKYI5RbGmgsTgzTUIomym2OtzQmCuEIh7m+//YDxVcCbOW5WCSvElly8nEJUAouXOo9TLfS9C\nf+TOQaL7jhHp2DUIdQ+qsoAqeoq+x0Ik/eFDh7KTFDY/YYR+b6+PYT6OzYIXgP/E9sPZsojw0LLe\n+h4mdRH8Ve4ZXyi3RXJkV0+ePGH9cSP4V/tr8LG14CVE6I/cMzV5RCQ6hYkgCYigQMsPgpwLwSoU\nGwNR5cbNkCIXiF5Yku2wlac9rpu/K9ti1ZVdJ8oGJCIvIHJnuhIV3wux7wSaEcjo6hPxccciPfhR\nsUI2Qva/9IlBfG6mPeeHTiLkPb1XjLaCFhRE3LJl86gf5WzPbbxjrGdCH0PEYo9PhK1nQsbf9Ex6\nkT9C3oHMhZiUcY8wyFRu42E31ecq96W/hcBkCIw3jvH+8Z4f7zkIYMYg7n/ufe73YTPe9NzbyInR\nuO8jTZt+vPt+suOsx9eakdDnGrKgzbkN2GLxxYuXTJfwkqf2k7oYGxOjbRaV31Ma/7EF3rZu8UXe\neF+1+7gnL1sBpvMXL/rxMqFELi4VHHzjafrr160vL0Cz6LB7F4sPO32SWe1jzO9fhH4eDT0WAkJA\nCBSLAE59PRL6ZX/N5kvUQLtmGvWn/zpj8jlnvHg7KCQFznm+WL6jd7tFL1rr7XF/a+PGDd5DUvzr\n379l//7tt+y/FqWf34oi9PP7rMVjoishge5YQ3IIqZ3IkMdXbm9PPnW3BRBAwpwwMsgl82xeOduN\nuSvFfymmSM98laCE7dt3uN8+2/1P9/PwD9GYj3Hf0MiG9doFxiHQc5z4ljTm05U+YuXfHMdUn5vu\nMev9rY1AzMPzKIz3HK/H8/T5lviTpHYR3EksbiGTktpav/e53+Pez39nrR+L0B9BHHmbGzdSDRi4\n0zxvSlBwyrJI4zjZ0SdsHGcsZ7G6iI0ArrAZfX0P3ZZQKJeGvY2NsfMXK6z+D5otClPvM+TtIPWr\nvYnQrzbCFftnpem2FQFkgsHN8Px5KrZHCiJSNhS7ZeWcyIUYnNgFE4+IJKBnAhZEB4+5cdauSZrz\nRAb6gGTvgxyZyYaBZ8BDBuG1kWjpJk438P37feUCtixCsEI1243zQzMf+SDOY/PmTf5j7O3d5jJC\nEY3LuVVjpaueCX3uhyA2uSYUc6Kg8BPTFCNzI7/Qk6KVl3j0cpqMoQ+XNJ5JRxp5XMqiKL82Eo2B\nQQPj6GOiFv1sr7U+35wIxHgVDgLjQqVsTvz91eXDkqROeoycWP7vrzYOkonycVRGCg7Sx48ffOGS\nYtwbLCqauh04IO3tieCvxvhQ6yvWLIR+OIzcG2jjMxGjSB9jGMWFsIVoISLBgw0g8wL5pF1WM2WX\nOb47rCdTKyL2sRHV3jhm7DA2mPa3Efq+8HDpckZmHRPId5ZVhkNMVP42W3jYZosNW7dY74/T34y/\ntdxE6NcSbX2XEBACrYZAvRL6zLUiyApfBtv695Wr3liEZi5Pg1QgaGrXzlLGmwWGdblGfdKqJ/qw\n0Ql95hrUoPuG/JD12GwPoLt1yx9TVBGChr7dAp8IgqNoIlkL1BNA3o+iiswpZ7vVI6HP/QGpT72E\naMw3I8ub88aPbGuD0E9Slun+CZ9wfH8yfMa41/g735jfyYec7R3V/J/n9xttxF8cLb9a6Vvm/cn0\n2og8NX8Tlc9vkUh9AsWY1wfPttVkqskCpieiOu5Z7uO53EToj6CPLDf2jEVReuqPJvWQFFAMke7S\nbBbYiob+EdOxP2YNjrSIje+PYupE52Nfb5o9QU8fbi42ZNog8j1C/+QJ52XhLNN4WryySHxv9CL0\nA4ka9UT3ocPLxAkdqJDb4eaE7PfVQyM36BnUYsMQMsAko7nABx4KxnYb+Q3ZQerk5lJ0u6+wexGI\nZJhjH9PpGQRZFcPw03OsEC/cyEToQ7SxMvXRGpOm2W4YezQdV65Y6T1R+uhfkTKDhnKKwrViuxY1\nUQ2ipJ4J/TA+GCLun+teTPKaR31ALOWJ+nzq0WIrmBwLISN90qdMfyfin8csCoy8Jw1A8Tf3XrTZ\nXmd9vjkRiAkYZ8ckjHu1siUyvvL5kJDi+fSYzzG+MOGKhnY+Y1K0TUby7t69x/Rf93i6OHU3YmGL\nsaTRt2Yg9LknuBd8Um49kw2yvNCiR3buiRH7Tu4byc919kVoK4bLddy3d6+1Pd6zYE2NFoqhk4lW\n7Y17zAvQG2EPac8E8qKR+ZdNvuB+38PkCHBvmlNABhnR+Lus8dgXmUwujgLxtXYIROhX+87Q/oWA\nEGhlBO7VaYQ+9jMK4FL0lUh0tPOxtyyeLylFobebJCEkx969aObv9YVziBAyfCEjIP8bndBnQT4W\n4z+bLSdo4Kr5TNeuXc8g9wdfBZH9yol8DySzQAEWOphP7tuz27Lf93jk/mzv9Xoj9IPMx69nPtZX\nqpHH3IH5V5D49PiSEPr0yUcMv3DEVwyZXebf4S/mfcm8PxrzIXxJbUJgIgQiCCh+x+E3Rp/8wxFf\nMfzGFPyVfz58zai9lvxJ9ht8Br7iXvM19u5N0mlk6fBctImOsRbPi9AfQZnF1wu5jG7Gr5Tt/dp5\nUmS6V69a6XLd+I4/HTyQHTxwwDnRkb3M/BEZ5M/6zV81NRVqp7FAfOPGTZOzu2EBXiOEPnY0srzQ\n8ce2pIXSND7O/Aim9kkR+lPDqbB3EfHOxCtpMD30qMVYJR8cHLK/jUS3Ig88x8CT3yhEO29eWuWm\nYNCy0kRsjUVYQHr3GvmNDiKFGVyCx0iQmUYZMCHiR9TfT/Gi5z45vGUrUjesUZwCEh+ihmPMLzzk\nj3c6jxlgvbigEfYcM/qOOywtcceO7dmO3h6PoojCu0wcit7qmdAHZ64HRBNE3+nTFK360/o/fcEl\nkakppZZJE8VCF5WIsaVWrBFcwTQWRejj+ZHHCff0d3ovn6FxbTBwYQSLxl77a3wEgtBnPOA+hQiN\nxuJkNJ7jMZOVeByvvX3LZ3hv6nFSk2NGpP/oLKDdu3fbKjgr4SezAwcOlpyP5IRwrzb61iyEvl8/\nux/oSX33qEGLeGciRHbXm9dvvOf+CeeQArMUwP3J2iGLtqCeCpF0TIxwFqu9oUUM/iEPdMUIfXT+\nL5veP+n63OPRkL1j4njQJpDIF0SheiaYLL7XchOhX0u09V1CQAi0GgL1SuhDdl13koGowZvuX1K0\nDwIC8gOyHrIBnxEf8cD+fTZv2u91adqctE1zJ6IOG53Qx19y0q8UVAL5Qpbd5StXXAP5nc0v35bm\nmQTFeS06CxDZatKu+NC9vameQBF+Zj0T+gTmUcPoyhXaFf8pB5FJJjcBYUHIj/Ufw0dM/mXej+Rx\n+JER9U/PggE+JFv0/of+EwI5BPj9RuN3HBLD4SdW+o3JZxzxG5N/OeJ/EkGNTxr75B6P4C/6Y8eO\nW/v/2Tu3n6aCIIwfDWpE0Jh6wQfvRqFNBLQP8v8nWrTUxHt8QFRE5aIGvCIWv9/MGaiGKKYXj7gn\nWQfb0nJ2p7Mz3858oyaqotoiUSx0M2TLn9bTHxOgvznd0JLXG42scfu2aOQaxhwSSVfEWcdkx6nU\nB0CH9vSSDmVJCKPqqhMX1eWwqdDrDXYMKO04IOagGH2Miz22qma4NMS9Mj4uxpFj1twdDK4XsWsC\n9GMleiRZfOPMV5dkpIEaABuitVkW5c5bAQkB8GOAmk1vVPutqZKjrw6MkHUANYGDt33WMPaUSv5P\nW+nQSVNi+A6PK0sQEBzDFONXtxkGD+OHEbRGuKJ1mZt7aSB+VBZAm+CVAgKPKasDRG6R4RTs1t+o\nT9ZHUkJl/2br+f0013UgsOZlVNzPN40+gdBxT5SBQmPAPcGhb1kUuickzkJ0je4UeFdkQB/wKNYG\noKlWq2U31LiKsbAwv5EJzbqxLjEwIAHKh0MWkjnE+Dj3+IAdmNAUhvLTaBCDpNqD94s1/dub3K/0\nNz3392YAHQWURQLEO884XOM+DCCV7q6sLMtBw/mCD997QYSD9rMEBA69530JLjyLaG9WLpeziYmJ\n7Nq1ieyymuBgN3gOuRN09F8G9NEDLtbMnHA7xPmoqrQZA/ThpCfIxln3sWo8g4OyNwcPqsmsMvEN\ncNAaVwQ6QCcHVUCf1rcXPITsfRxiU9a5IAeOwwecN5w4QJKwhcjyyHA2NnrZGjFRUUYFWYAnndqb\ntvutToD+dmcqvS7NQJqBNAN/PgNFAvTxjfD5GSvypR4+FE87XO3aq9iniCNJDvuk/bd0xCl14Iom\n+euSEiKGlY3OnsU+FfEU+3KRAP1IFEFu0OjkcXHr6q0rnmzqNev4n/Ib8Tug8UNOTz+Rv+F96+BB\n9jnzuYMyj/k4o0GsSTUgjzHwN9u9igbohx9uTAEzT7IGIFk+0CfmGb8NHzr8bfzqAOh/lsSTxIgD\nAznlxaDHkE5jdMgPkRRnEmsGoLUdLKLdeU+//2/OgH3PW+wa3190FluGRG9D0k/N4ov8ex4/E0fG\nwJdnoNOh2xzUoZ9W8St59Wr1B0C/KDOXAP3NlQBzpKfLrXo9q0myvl++rFr8SDURWCdV0YwLomq9\nqEQrKqf5fycu6NCX3iwZzc+cKt4eaK/lEJQENQ4W4iL+Gx8fE93PmNH+DAmzxPYx+vv3x8u6JhOg\n37Wp3fqNATBQDjNSkp/E6YXBYeN3Xl4/aSSDYHWVrGx4fNfseW/Et2zc9jgtBogrc3WPMrKP4LDJ\nWTsqSek/mQY0zkWhtwvI+t9A9oKaF8p4Pns+q5I8dXJWRj4OIuDG/KJz/VMhwGZuADEyzwLv10n8\nPjlCe/PTfSoKMKTmcAnM94xb5yamVMUbXQrck1EOgH9N98T7AuRwX0hviujcxGQ/4mzY53TA6WKl\nigzox0bEpgSHPg7YlJpdTU3VRVnxagM0ZUMz5zwH4HHE2LxsriT5OQYZE+6cAewfUFVHybg0OUiB\nRy5GZJoClKJHOwEs3fqbmR5tZwbQTQICJHaE71MMoxUTBx3ynSqQIgMffeW1m8CuA7wcCPAYgRfv\nx0DvYmNEUiZZrVbNGQPcDxu3U3QU++vN96ZN0sBuZGTE7pu+AUW93NY7Bya2Hu5B9g3AcfYS+sZA\n3fZU2WHsa7yGdabsP5rLklUB0MD+dU7N+w6Lio11jdHtewccoYJu9oVX0kEPZPQFkm9Vehl7G3a1\nojUZzQF9gAGCVqoJkL22lQnQ77ZmpPdPM5Bm4H+egZkCUe7AC/1eiREflCABLeojHTw/1qEzmfr4\nWvhZxJH0JvIeL+rzoiSpk3mTeR4DuN4lQH93nvRVJEAfX2IDxJcPCL0rtBqfRc2I79B64UN8VaxM\n0hvxNBmVjHeaF6oUrO+YYiX8Ku8jJj54ZaGTlX/+PM2Bz9rcEPeUiH8UYxLztHvh38L7XJSmuK1A\nJ7RMdQFkDGLJqIhlLpl7/K2I+yJu3Erijw8KyAfYhza3VPK4nVjSQVNRJQo4Jd4MML/XvlG765h+\nvzczgN4RE4QuAuAvKnbAniEjpnwjcBW2C8fOHEPbKo7kfRitcQl6CDXm0NAJk5VK2RLEyuWKZVT3\n5k5//ykJ0N+cI0D067XJbHLypknsasSOVBJ1G9BH1/yAnD5wr1WtfS+7e/d+dkc0rOAYcaFbJHhF\nkteQ6NAtQVa2kee6fRUB0P8OAAD//2vNc6wAAEAASURBVOydB3sbR7K1RznnnCxROVjZeb17v99+\n7zpIDsqylXOiAiWRysHfeatQwBAWaRIEQACsftTqATiYcLpnuup0hWkPHvT/VTSxvH37trh69arq\nleLKlSvF4sWLi927dxd79uwptm/f3sQzjf9QHz58KF6/flO8efO6eP3mTfH+3fvi3fv3xfv374p3\nbL97V7xVfffure33+rX2Ux0cHCzuP+gvHvY/LB487LfPQy9eFC+GXhTvP7wv5s+bX8yfP091frF7\n187i8337iv37Py/6Nm8uZs6cWa3Tpk0b8aI5x8DA0+LJwEDx8NHD4tq168LwWnFV7cDTgeLFi5fF\ni5cvdc3vimXLlqkuLZYtrbSVz0uWLCkWLJhfLNB1zJ+/oJg+fXrx8ePHSv1QvHr1unhVuadnT58V\njx49Kh49fmx1SPfyQvfEfXGZ3Av3tXDhgmLXzh3Fzp071e4s1q5ZbX/zc8wf8X7G84cnT54Uf/75\nZ/HHH39Y3bRpU7F161bVbcWqVavGc6im7/vXX38VUV8K/7NnzxRnzni9ffu2Yfjw4UP13YBwm1at\nM2bMKKIyBtiOds6cOYbhvHnz1F8LijVr1lhdvTra1cXq1avt3svjh/7MkgjUI8B7LeqrV6+KBw8e\nFP39/VYfPLhvn+/fv1881rP+8uUrvQdeqn1p7zt+917vwPh9bPPeiHHP2F2xYoXV5cuXF7t27SoO\nHDigetDeCzHue2V8Pnv2rDJ/+TzGu4j5i3ls3bp19fB3zGf660Plff9G89vNW7eKmze93r5zu7hz\n915x584dzWUP1N8xL3wsVq5cUWzjfdvXV/T1bSnWr1urus7qgoULi+m81/TuoW11eSrsr1y5WlyW\nDIH8cOfu3eKurvvuvXsFcxTzks8984p9e/cWBw8eKA4d2F9sLs+1Gq+jzbWtuIdbwjrmMDDetm2b\nzV+0vOOzJAKJQCKQCDSOwPXr6ESuVyKnMCdHRU5uZ3n2/LnJU48fP7H59NLlK8Xly5cL2mfPnxXv\n3rouiey0Z/euYo9kpl1qN6xfX6xaudLqsuXLCmbUkJ8uXLxY/O///VD83w8/FMeO/zLsdtZIH9i5\nY3uxgyo9eq10BuqatWtsPhy2cxM+IP+BsVXJiOing4ND1r6W/lwub968lU79xnTmwaFByZ0PpSv3\nS1d+WDx/Pqh5W79T5VgLNRcyH6JX9m3ZYvcEL7Bp08bKvO7zezNkSXR3dMqYl5EdYl5Gx2x3gV+I\nevv2reL48eNWf/nlF8nkr4xr4JqRxbl/xgVtWXcMHTLaRYsWFYsWLRbPskicwPJi7dq1qhobales\nWFmV29kvxlkzsG03dnm+1iOA/sBzHBVOA70xKjrlQ/FftLwPeO7fvn2j+raqQ/KMhy4ZLcel0MJd\nbdnSZ3pGn+kb8Dxb9bmvQLfslPLy5QvNNa6D0PI8BY/52WefdcplGtYXLl0qLl66XFy8eKlAD0G/\nE69bPFA/lcuWLZuL/3z/veq/in+rjrWgg/33x5+KH1Vp6W/mB/p33ry5xl3FfLRd+s5O+ELNU3zX\njAL3+Xzwuc0l3NOpU6eLk9TTp0wnjHPAfR7Yv1/1c6tr16wtli5dUsCLLpIe2+oC7xLzzSX1ydat\n6IBbbc5ZunRpq09vx582lQj98SAK4WWkvQYTQtuNmzdUbxpBAoH7SN9BkCGolMtBkQtff/VV8c3X\nXxm5P3v27GL2rFkFLRPqSAVSmwfx/v0Hxe07d004vKhBcUEPKtcSZZaOFQ/PGpHrkME2gWt7tchv\nFlCWqNIiCEDw8ODxog3Cnhah67aIh9u374gwuWukPvfDfSFUROEY3BP1kMiTjRs32vHjHLHfRNpO\nJvTL94XQdVFC98WLF4oLFy4UN27cEH4iyoQjD/NYC2Nh7ty5VhFuN2zYUKxfv8Fa316vz+ttEqG/\no6YgNlaEp9Z+8XzHM87zfPeuP9eMzRijCGKM4agIWCFsjYYY4xUiO+qOHTsqivReE8RG+203/q1b\nCf0Qsnjns3ADQcB76s8LF40Uf/zksc1lA0+fDuuWjXr/7P98nxai96pfd5vQvVwCCMI3i4/tLI81\nD5477wu7tA+16My8xBzMYjuKa8xxRuhX5qXPJkFBL+OShH4ZjdxOBBKBRKC5CHQSof/o0WNbbL4j\nXe2WdICrV68VV65hAHDNDK/izufLaOfIkcPF0cOHisOHDxfrjIAXqS1Cm7+VSycR+sgQ70TcMOdC\n4EDuPX4yUKCroT+WC4Zi6KgYnD2VbGEyp3CBCEImjYIssXLF8mLFcoxDlhvRgQHcLtVN0itnVMjr\nILPjd422nUbol+/jjgwsfv75WHHs2M+qx2zRA1yp4D2WAp8AUY88RF2phSL0cyp65BoRWnAEGIpB\narE/2KYeORZ0p94+6II8M7G4hMEnci36I/WejGru3UO3vGuEPs921LHokSCKgeaePegZvhgLzxF6\nJWO5U0oS+rWegCf83//7rxaaf7S2/E7HkNk4yMoCcysIfeYX3ovwsfCWJ06eLH47caL4/fcTw/hX\nFmxDj8Woep0M05absfOyYnEbxlYS+rUx03FbbnGAhf4bWx1ixeu+CDEsD7B8vCHLxxs3bhoRXr74\nPbLiPCzi+/Dhg7Kk2KEJd6GsERbaChHkeLnwErSqL1kFva7jQRKzcHDr1m0TFG+qhbCbI1INgQgC\nGAJm44b1NmljXWkW+yJglmg1KiznGdwISJA8QfTYy1ovbFosIR8+fGSECQsUEPtB8D/X6uvHj1j9\nfrTLZbVtp0g82s8+2zTsAS7fT6Pb3ULoMyZu2qIOCzs33JL08iWzJOX7ckF4or8RnmghRek/KuMB\nAcvrUk1yKyWMrTKBLCyhaenXsMSIY5XPkduJAAjE8817gmf7SYW4pTUvHCmfjx8/0vcDpjgMyYoK\nqymUMFPENFHyO34ftSygsfiEBUVYUrhlRZ++22oLT73WC91E6JfnkFfqz+cVKzo8va6ZReM1eXtd\n03tei896r2PpgMUD3kHU+bKwQAFEsd4tC8KdspaL+YqWxcRWlxhz7zX+8II7c+5ccebsueKsWggC\nrPyYk3in2iK2rBWxWNyxHWsQPMd2iChZ2+rLHPX4SeiPCk/+MRFIBBKBCSFwfRIt9Jlny/MUXmNX\nNa/iSY0eeE/6GxU9DntU9C/IjqVLltpCOYvPLJijr82dgzGP6wJlQDqK0EeWLFnrhncfCxj1BgEQ\n/7avdOWhF0OmE+P5zSI8+stc6TzIkOjCzNt4HzOPQzp/Jst85A+8FkxXaiLhjEwbFpO0k22hX+5r\nyJ9Tp06pnixOnz5tujgyOvJ62YCP36D7hR5YNgZDl0RHxLKZis4IqR8Vq9CoeOwHoU+bJRGoR4B3\nHItJVDxJ0IMYj2bAqhaexo1r0CWeV/XHsh7JNr/lWOiltDzXMfawdD8gz+6D4shoY9zS8nx2SklC\nv9YT3UTo79NC0d69u4u9atevX2eLxywiw7W1uiSh32qEJ3B8VqHcPe69wtS80svtuVwpcft4Zq4t\n5//4szgnIQEBp1wIXbBXVo5UCDAEuJVMtKpMyuViZLteeH/pxXdDiwQXZEmJUHf1KgQML1In3Pkd\nwtBiudYRameLwgtQN2/+zCb0BZVwPxA0RhyLPKblJcoLNV6uhBfye3pnL2NIEkiepwq/cwl3UXkD\n0GIl+e6d78s1soCwaaMWEVQ3y92or2+L3CX7VDeXb6fh7W4h9MEuQpnQXrp0UeF3zioMz1l5VFwa\ndv8hhIV1PRYU7h65yASvVatqYXXib7SQaCzaRGUyjJqC2DCI80MFgXi+eVZ5b0HWh7WPbw/Zdzzr\nCGk878+ePTXhzAW2R/puoCrMIdBxrCgIWnulkFKxrMDlcO1aLPbdrTf265W2mwj98hyCoo2HF55e\n9+7dtwVat5a7Y/NXhFsjbJsrgVIGpRDi7o7bO9YVW/u22KIjSjgKI++xVhfG2xvVt3LhhRQ5dfpM\ncVphzU5J0cUqg0V1lHOuiTkv5j4Wl7HM37zpM7P4a/V1jnb8JPRHQyf/lggkAonAxBC4PomEPvNs\neZ66LsOrP+T9hs52RSEZXD98VjyXnjhP8pLpfCtXVBaeCZOzzULlYHQ1S/ocekG9PthJhD5ypIdo\nxaPztd0jIYUuKwxef/+jYR3Jvu/fK5yMWoyeCI3n3u0vLMQOZAqhD8AEkmX9OjyQ15lubISeQsWg\n30ZYv2bpOZ1M6EOMuqc3Ht8XZVBXs4RG/iyXMASjRRYPkh5csXiO8Kxgif4YdZ6FAp5vhhv8lgK2\nzcK3fI253f0IoEeyaMnzTIulPvpjrXrYLT7Dg5V1ySD9aSH1+T3vTFp0iKgs3n3xxRfF0aNfWAvP\nEeMVzqpTShL6tZ7oGkJf/Cfh7TBM260QdxbeTsayvCOXaXGz1SUJ/VYjPIHj10gyXnIIKpAOii8m\n4oEYTr/8+pvqrxJ0rg07C+TItrBmFeHNoMKtaIMs6gm9EyWOHzGPEZQgMiAxLl68ZK4kvDiJW0jc\nQV91X2HhdiBetktA3K4Fg0UKQTCz9MIM8jdWRTkPhTbO+VHbkDpGouh+CM9wqhIX/rQIagihiKP2\n9u07I0tWVCwAtojM27t3j8UvZtGiGaVbCH0mp+da1GF1GqtRrD6If/irxsG5c2eHQYGwHoIY1ilh\nNUELGco4IY4joXZiP9oQ9JkAQ+BPIWwYtPnhEwjE803rCpYLZbGNwoViVrbexysHTxOzMJM7ZYTi\nIcZ+mdBH4Dpy5Ei18j5bqvwdKBad5Cb5CVga+qpbCH3e7B9DcJbwjHUg8xExH69fv1H0S7jGRZG8\nL/QtHle8w5gbmJc2SKlmXoIU37Jli+rm4jMJ3Pyd90/MIQ2BOI4fcW3MQS/VsgBx4uSp4oSs106c\nOGlzVCgHhNshFjECm+VzUfgCwswhsLXDpXK0W0pCfzR08m+JQCKQCEwMgeuTSOgzd3ruIZ+nMH46\nKV2NhWfiF4ehFHoVltKx2MzcapXFZ1UILHLRfGpu7SRCn/uBmCOMzkt59J09f173elaec2f/ZsRm\neuVfssb96Dl8QuZk3ia0ToSIJbQGWKD70C5U2CF0Ixbqq2SesGmW/XgnE/rImOHtjeyAQRhjihYj\nm3KBxKcydpC5sXKOvGsersTDloRHN3rjzJmQqJ67LWQ5jplkfhnZ3K5HIDgiWp7feJZpyS0JH8TC\nJuPXSXx0jH6LLBHjGa/a8u+C06Al19W3335r9Ztvvq2GE+ZvjNNOKUno13qiWwh9DJrx1racn4oo\ngiFyeHSz2NnqkoR+qxFu0vHjJRfkOzGcfj523CqTMKECePlRiZEYAhzW7FgUervZwubEJXHM6ktP\nvyPO8e+KC/Wb4kL9KcuPSDQEsc5EDfkCkcYg3bZtq5H527b22SQfxxxPC6kfZBDEviWZwAVQiwrE\nPmQxAStfiBYEr1hFJdHv4UPEgzyo0EIHx3PKEfftFkIfkhMhkQoJBaEfMRBxm6T/Y1Uach6yE9yw\nvC9bUiCQhSCGYOYCmFvthPCFwB9CfxL6Iw6d/MMYEOBdQ0EQCyHs4UPiI940l/Hr168ZkcoiFVb8\nLFjxmxiDWAJ99dVXxZdffqn6lSkToWCgkPVa6WRCn36JyvsGV3d7J6nFW+zyZSXn0+Iw5AcW+1QE\nbAgJ3jNYB9JnZulemZ9wfcdiboMUbt5H7S6MO/d+e25h5piL3EL/jL1T4/0HOXDg888t4TyxEllk\nZmxS6+MRt/sektBvN+J5vkQgEZhKCDCntTspbshOWJ8zj+LdSLhS8pudheBWWLjLSuIeshItuhpG\nV5aAVcZdaxVeBlKbuZVQOyOVTiP0IfPd0/OlEflhcEbOgI8YB0gfQt8JeSTa8v3hoT6M0K8sbOBV\nh14ZxkxVY7cpQuiDK0QoJBDtOY0jjMJoLWxTRWYHU/R/FokipA4W+R62aI0MxTBo8JCt6JkzZqA3\n1kK9xrgMIj/ach/ldiIwFgTQN6LyLnzwgBBj5H28Z2E9Ce3JOxrvE/Nmkk4Cf4WuGCE+Cdf69dff\nFN9845XxyBgNGX8s19GOfZLQr6HcTYR+hAfHI27jxg2ae5QkXPMuumOrSxL6rUa4SccPQQXhBSL8\n3LnzIt9PGgGPMBcxxLAwxGKQ+PYMJoh9izct68cIZRCXxLGqLpwi2iD0IfMh9RHs3OLDw94QdxDr\nSch0WtyWiD1IIiFelI0U7ol7IdwPiY/Oi5wmjNAfqghsxGCGaB8YeFrMw4pCsZYhgriGL7/8ovjy\nC9WjRxo59d9+0y2EPpjRZ/QNLS6TYaF/RpY6QfbTQuSH4EV4HQ9x4bEOlyzx0Drsg9XFrFmzVSH0\nPVRSVciVC1qZ4E9h7G9DJ78YAwKMWwrC1UNZa2O1TUuSI0+ge9eUCGKeYsHP80iJccjY/eILyHx3\nk8TLJP7GmO210smEfgjULAazEEteBPqL9zX9ybv71q3bxV1tEyv/xUsSrb209wsLjFiyLxUBziIz\noZM2b95k76lIHsTf2l1IMPjwkSx9bJHpdvHnn5qHNB/+oZbCQgTvQRTXQ0qCe+DAAUvSzrWSM4Z3\nKONxMksS+pOJfp47EUgEeh2BdhP6offRsnDOnEooO1o84Ai1gzcc8eUj1OksyezoZniQ7ZS1ICFY\ncfenLlW41Cpx/YnO6ixC/7085jzHEvot+inz8R9/XjDjD/PuNq/1t2aYhlyCTIJeWy7IGyy4e8gd\nkraS/83Dt7IgDyZggxf6VAq5g46InAkxSntSRoInpPufOPG74WtcA3yD6iYtfqD3bxGPwKIQemNU\n9H/zckBHV51Tzc/ANvqkez9gAU3pNOK0PFZyu7MRqBqgVhY3WXhyUv++jVm8a6kQ+ixYhVHoMoXU\nYlGKCh92+PCh4tChw5YkPDiNThuXSejXxmIS+jUsRttKQn80dDrsb2XhDhdLLDPOnT1XXNGqpFlB\nivimRUghtvR6WTviWuiWGluLHbLYKJMOTNQe4kLW3orR/8efbqHvhP6lqrU3+xEeYedOT0y7Xdb5\nTOprlLkey4/yMccDmVF8EPqqvKgvyarzcsW6E0IokjyRDBhChYp1J0LFd99+XXzHCuvXX43nlCPu\n202EPv0RpBoxJX///XcTwoijj3Wzh+QZNNdIsKISWmfxYixJF5twi3DFcXxMFaYMoBDMnj1LCzTz\nTViDpKIG9kHsjwhi/iERGAEBxhnlzZvXEsAg9N0yCNdeKsm4sNx3AQ2Li/tGoMaCE94lHvPwqMLu\nHDXBjHHJmKT2WulkQj+IfBYUUbSNwCehuapZe6kf6UsWZ1ioJWEd7SJbYFxlMX1xQ4TQ571ES14W\ns6CpKIXt7k8SDCI0Ukk2j6XPVSUbJOkg1jv+bpyteW+1eYUdPnRQCsFBIwGY/3DZZzxOZklCfzLR\nz3MnAolAryNwvc0W+ubFLDkdWZ25FuOtKokvbzjXkR7I6GnAQ6JYaJR5kvk3F3t3e3K+bVu36W8k\nn/ckuaPJS51E6CNnYKDmOuorm4uv6P7BgEUNNxSQsYBwwZs8wnHwu3KJ+RmymZB5Fj9f+vE6PM6l\nI3tM/XVm8MRcP0OVthkF0hwvajMQUIulsHlNqE+QfSazgFNgS4th2PHjx1WPWSge/h6LJHv27DWv\nxM8/328hEsEnKvtRyXnHd+QiCM9w9EeS4YbBA6Qp+wSJOpn3n+fuLgTQId3IVDqF9AlysGGdD6Ef\nXibola57PK54M/liVeRbIyrBli191Vxs5GOLsRhtp6CShH6tJ5LQr2Ex2lYS+qOh08F/uybB8sLF\nS+Z2eU2WGnQkcechy7AahHCHbMeSPlxAaBFqojBZR+IgLCixfsDqHyt93DnLBQFx/769xef79pnV\nR1hTsuI5msVH+RijbXMtECk3FYLjptobN29aXO3ram/duj3sp30iqP/z7++L/3z/r+L7f3037G+N\nfugWQr/+/iCesKw4ffqUuUpGBnjuB1dIcg0gjO1QPC/cS52kXygBzDPIQxyyio3QiyUFFhULF8qC\nFose9S2WLZBZLABQEcayJALjRcAXjv4yC317V5llxQMTuiLEDmMWUjIq440xGDE7IfKJo3/48GEb\nl+O9hm7av5MJfYj8SG7LdTIPQQQwZ+B54aFrBu29UsZ8lbwqPPQbSWWdzCem72YptizcTGZhDoW8\nv3r1ms09CJCED6JlkTMs0FgoP6rxd/SIW/fgOWaLShUFdzLvIQn9yUQ/z50IJAK9jkDbCf0w3lH7\nXMY6Z2XAdVaGXGfUQl7FXAtxTLiTJSKsabHK/1wh4fYrPByu/zFH0Y5GXHUaoc99mayh3Eu37tyW\nfoj33y3purp3yR5WlVMsDNPYH7JvpMJ87box4YdWm9e6E+x9Ru5D5oNRs0jnTib0kclZKIr6448/\nFP/97w/FDz/817w+yuQp4S497vh35lX5WgaA3BsVC38WlKgQ+3jTIrfTRjhCjMnQPRl7YJt65Egj\nNL8fCQHGK7pH1Ai5gz5J5XNUeBCI/SD3t4jE7+vDuJG2r9iq92PUkc432d8noV/rgST0a1iMtsVz\nEAvIl6SPb9XCMeOcOQ4epR1lmkhoN99s0tl44HFDjFiHCDi7d+8WsblHiVy3N+UsnCOS9ZiFgJLV\nvq0krSUxT1g108aKNa5/jVqz11805AMuiAhg12RJCJFC4kHaxgj9F+bK+LvI/N9E6tcT+pDoxAym\n7tq10903IX1VId4mWiD0Ie5v3obQu22kCi6l127cMIK/fPw+LS7828h8EfrffWtCwjQJCtRGS7cS\n+nck5P4pF1RC7/AA4252WyEvaCH09+8n3vN+9dluI80gzhiPCHERm5JEW46fW07QnxBY8xTiCPfJ\n8lgmLM/MmbPsuyD4TVn4B0Wh0X7J33UfAowtFoyw2EEpCEsfnnHemywgDQ0RJ3+oFipMVlYDA0/k\noUNSLq9YM0Wuh40bN9ni1N69e22BarIJ4Fb3SicR+mXFjz6EWMD6/rEWYAhTwwKsVSnahEfDkpA5\nkb7GjX2BFhIXLlgoy3yFgtvo7u7EzCc0nFV9X15objW2HJ97qt6Xti9qUQJXfnLHkKD5kTxGuMdH\nUgzwLFiyVC77WtzEUw2i5HMtbu/TWMQyPxTUicw/zbjnJPSbgWIeIxFIBBKBTyPQbkIfohqjKyrz\nEfPTRel8eFM/kbzEXEuOMebldcqLtVb502hZMEeJh9jHSzvmKJLhjjZPdRKhH/IicgQefg/lyfnw\noXtyImdEKD9aQjlipf+Wlv2tuncgYXs89N9Lm/Mt/JCF2VlmeXy2Kg8c4Wg3rN8g0rmS/FWyZzNI\n504n9EMGov3tt98q4Vt/McOGkNNpiTn+vXTuf/3r+2KLuADH13F+8WLIPMPZD5kfvTEMICLcTnh/\nozsO1yFdn4xFlBinn3768tupgEB5TPIOKC8slccd70bTNfRuhMtAf4THIQRof/8DhXK9J08eD+W6\nW95KcIBUCH1yQUbtVEyT0K/1TDcR+rvFj1IJebdBoc9XK9z1aum4GEG3uiSh3yDCCFis/hFzl9at\nTIeM7Pj48YMU/Uo8OSUgggQgSREtiwvNKLhdQkBQsdIuCzusxIzfQn90Qh+BB2uPAwc+12DdZeSG\nxSUUydEsQp+QDVhh0F4XqWLCsxYrsNYvF7wF/v2v78w6/ztlK0dIRRBwUroxUr9bCX2sdG7YoscN\n4aWYmlecDL2i8EUkMDp06FBx8OChYp88K2JhCXdIRTKUUFYRgiX8BgFLCyFLkYwnTAth62FNELoQ\nzCw0huIm0tL3Ufl7lkQAIcwVzZeynHJ36BDEIPcR2KK6m/RbU8iwriBslCfnOmfvSoSvLVIgaFlp\n7uuj9pnrci8j3WmEvgnV5lb9ziwDI8wOC4f9zINaSEbZRrAOhZo+xgpurUKzWUsibqqs3EkSxHuI\ndxIL3c2YQ8YzHghlwDj9oHuiPaOcNKdPn7FEuMw9pszqXmjJ14C3G3lk8HjbsUOh52QYQIt3Wsw7\noxEl47m2RvdNQr9R5PJ3iUAikAj8MwLtJvRJfotu90hz6z1Z3xFyBmMuWhbWQ67Cstws8SCnVclt\nRngJQsqsVt6XmKP+iaTuJEIfPYS5GZnxvdohGYAMVgxB3GDA9Zc30mPevVVOMYxHRCgT1nFwSCQf\nhiOaw8v5cV7q8/wKaY/ByGfCqa9vi8mYm2RsgFU5IWshXzBkmmjpZEKfews5nBbZ+/Tp08WZM6eN\nUwhvb0JiYp3/73//p/jPf/5j48yNdAi188Hwdmt99cO7t3bMjzJq5JhwISZnqf8Ygxg0Rox9J/1d\nj+R79Ecwp51sWWqi/Z6/bxwBxks8+7zf0CXRIyHwbdGusmD3118fjZtw7qew55zQrTzvEPk3LcrD\nDTNuPHiQEJnOhaBPkqB0+fIV9rw3fqWt/WUS+jV8u4XQJ7TdXi0a7dmjqpZwbnimrxQX1w4L+ST0\na2NmXFu4l+Gmf11kKpWXCNZ8tEx2C7FKXEjimAXFbq3U7N69y4hwLBKbUS6LsCWBLIlkr169pnNj\nTegvMywQmk/o9ykJIIT+gWKPVp8g893Fc3FTyBhe4hHi4M7du0bos1BxRfcGvuWyRUlx/yXL/O//\n9a3F0Z8uAYCXOkJto4JAtxL67nb2wEi2u3fvuEvu2TNGiiKcHj3qMcex0qe/oiI0MWnGxMnkESQs\nLQIaE+jr12+Ebc1NEiHMibjF1oYlBm0zBOByP+d2dyIA+Qsh/fw59XlFIPPxxHPucTVJJDrfbjAE\nfsYy+SB+k6UQLeMXryoqIaOwqEBJXbdufdM8nToV4U4i9HlHuAUcCvQbLbDeKv4kxI7qVS24xmI2\nyvZbKdbxXuF9sE3kAlaC5F1Zp/4Lq/yVK1dYPhSIfPb7J6Kh2f3ENZYXKQg198uvvxW/ql6/ecOI\nAebxd6obpehbqCCFBrIkvgoTFG288xqdd5p5X0noNxPNPFYikAgkAsMRaDeh/0AGO7duEWqGcKQe\nbsa2NQcTXz7mWuRvvKcJiUrLwjl6IAlfWTCP8k/zVCcR+mWymQV4yHozPILgV417//AB4t9J/w8i\nmMkHh5UuOh16Onhdr3h7o58zZwd5jJHdli2EANysRMKbjICxuPqSMzFemmjpdEKf+wNnCh7eFyoe\nINevXzN9HJ3yrvTxb7/9rvh//+//qf6PohzsMOyjf0J+p4WAdc9vt5rGen9IiysYRtB3Hk/fvSDg\nR1yXXGTfIwuCOe0/jVO74Pyv5xBgTDGOfMHog40ldEh0SfQMJ/R9IY9FoAjpxDjy+PkepeL27Vta\n9LxilXf2119/bfWbb76RV84WMwhzb5wFHYthEvq1rukeQn9+xXt7j3lwr5fxGjwGdUmTjLlrqPx9\nKwn9v2Mypm8g7y8pMe2ly1dUL1sSx3tK0EEyRywUbbKqEPoHRaYeOLBfltIHig0SFIx8rpDQYzpZ\nZScEmJhESYpLLMWzsiy8KtLbkuISy06V+HVYFBKuYqNCGxA7f4fqTk3Ec+UxEIUXZzlsEDH0iZ//\nm8g04iKXC2FuEBYJN7Br5w6PkSeBkXMxATdauB8K1+ICq4RWhYzBKh8hDDIfgYwJPirC13fffiNS\nn6S4X3sSI+E5FQl9hKeIG4enyIkTv4sMPaG4+ifUN8uLL7/8ovjiiy9tIYZJL4Socp/RBwhcLoi5\nAIYgFoJZ9C37MYn6QpUfi88IYbQIyoztqPRXeTuEtGjjuNl2HwKMBZ7ZUKq8xRoHovSthK9wwx20\nRaHwBuFObSFQyZlpGR8ci/r06bPi2LGfLTHXsWPH5Ka22rxLeG9C6vvE6FYV5fHbfej98xVPNqFf\n7leIb94PgxWLdd7LuP4T8o1cLpD8LPzR0p+8D4g7T5gdn3t2qN2hhZg1ZvmG9RuC+GQWFAYWLInP\nS0uYOch8SH3mm3JhUYK5kzmUuYewBlblZQAx0CklCf1O6Ym8jkQgEehFBK5rvotQrswhYXBAi/w7\n0YIcBHn9V8XY5pa8lTHegpy6du2G5UkjVxoV+Qs5aJbOiyx1sKJjom+ukuGYJ8KdN65wdp1E6I8H\nS+SVDxXMXivePuEAIfSpyCjo6ZdV7967Z4v07yXTsFiPgQFhESD2CU2EJ7p5g8qKl0WS0FWiHc81\nsW83EPpxT2HR7O11C+ULsY9hHYT+//zP/1QJ/fhNtIxbCoS+E7DPjYAtG/YgH+LVHUZg6JELJCPS\n4i0RoXgY06E3Rgv+sc15Gu0Pfptl8hEInY8rKesavNPM0EbPJwtAhBOL8KxwEniE8N6lMmbwniUS\nAdbPEPpO6hMG9KbemR6twMfvt8NyQKCfzJrli0eTj8anryAJ/Rout5XP7P9+IL/Hj2p/tDESY4gQ\nX5EXBc/v7Qo1t1McJbonn5tRWDxHB2ZxkkX2kydPFb8rdyWGYHwfZYHG5P79CnMtnjQW1hmbLK7D\nv7W6JKHfIMIIDIS9wYKceP137t6rrGjfNcsJJi0S8JjlxP59hZH66mgI9jn6HgKU+LtjLQxee5Hp\nhUeYAELtnJJ73CmFCcAFE9dCixOoFnciLDSwNCBEAAN8x3ZZSSpMQPmcCEBGakBsSAjC2v9XWcdC\nakDWlAvuiDwkeBts27bVyDZCEFC5l0ZKPJC0CFdXhSV48gKGVCEGGgLYPS2SICy7VcUMI1Ug8r/9\n5qviayXrsbiQIpKs1cTfSEHw+1MLGiSUoG6StYYnTdlmwnEjx2zHbxCSgnjHGuXXX3+VhTP1dxH6\nS0Xof1kl9BGmmARpy8oH+CN4OjFH68mO/PMbKQ5MoJC17yVITS8JXjNNsEK4os6YMdMUDCf0fLIM\niwvOFwIZbZbuRICxQkHwYnx8qiLU8/dwt5X4beODfmccxDhE4WTcfPwYhP5A8fPPP4vUP2aVBcmj\nR79QPaL4+XuHLSSVx293Ijn6VU82oY/7evQt84rHlFeiKVm4YbHF+/nWrdv2bq7lSnhn3hfmsi6L\nBEuCq1i+kQiX7yH58VrjPTSZ5bXGri2EypOE9hwhd87I5VyVOadcCDEXMfNR+JcvV8I3LZbSdtK7\nLAn9cq/ldiKQCCQCzUWg1YQ+5BbyE/MvLQZNlitNC+hX5Q2H0cPTZyR/fCa9a7ZZ/UHmr1yx0rzA\n91Q8wZH958wmvMn4SKuuJfQll9oiiNp3wm3QyBcImCHJKrdNpyTX3G3plFj7Pns+aMQzskiE2MH7\nE/wIlUA7X/l/MBILvaWRkdRNhD5kKIQQ8ceRJbDYv3jxktqLBUlxv//+e6tbt277GxShF8BRBKfg\noVI8zjkhUxjPritGrjbXFyMnG57g6Je0fBeGIRCvoUfShr5Jm6U7EXD90CMEQOA71/Da333ko9RY\noTKe3APH9UnC/8bzCLcWHh54fWPQSHgoKqFAfTHqusbyTeNAvvjiCzNw3CAODq7C+aSJL8K2qgeS\n0K8hC7/6408/FT/9fKz44aefbbz42FB4cxkpt5rQRwd+PoinyKAR+qdOnS5Oin89eeqUkfxxpYxD\nW1jX4voBLaxj+IVl/hIlBWeuaXVJQr9BhJ+IPGXlH2tFQu+QiNTiCkt4QJiAcPIV55nFfrNsV7ia\n/fvMrc8tnEVsqPPHOilVBb3Kiw7LfKwKT6heEQGOEBNCIEQKsZuwOnBCX1mOK2EPyuQ7x7QXaYWY\nO3f+j+LY8V+K47/8qgWDP4chw8DcKquFvj7FG5TL0saNGxSn0RMcQtA1UhACYnWWa7+gRQQL5aD2\nll7IvJiJH0kyKJ/c3fITK8mvv/rS6ld6STdjgu9WQp+XGhMikx+WEb/88ovqcWtZGcQ6H1KfkDv0\nPTjS1hNRrIb76ne0vgrO8RkjPsESI9FjTgdhy7m9vtcEOV1kLe6UxEX0hYNYQOC8PBNMotQs3YdA\nCO209DnKEotJvnLtyhNWFPyNZFgok7S8H6IihJlVGZZlqhRiIULqsyD1888/qR6zFsELV0mUiX37\nPh91/HYfmqNf8WQT+ihl9CtW+RDeCMgREo2Y+YR4I8YqxALv8BDQsZjZopA0m0Xk48K+Rosy6yqJ\n+pj37P2jd0H0/egotO6veKYh/GBt8eBBv3nZQWZcuHDJcgKUz3xAC/GHFX/z8KGDNo9yH4sknC1Q\nyyJyp5Qk9DulJ/I6EoFEoBcRuC6dr5UW+syjFvpS8y/tZcXKR9c7f/68GTtBEFPxLFuqRO3r1lQS\n4SoM4batW2Rhrhj6qguVm2ZmRdYej7zdrYQ+MimmJqZTYmyCPkySXJGDkEGECcQI4Y70dPOk19wf\nhmJmYCIZddWqlcUhxdo+fOiASJkD5vUAhqG3NDKeu4nQR38Mi3rkPcZc1CNHjsrCWR7x33wrDqDv\nk1BYH1R0g5peGPqht0HU4sUbMmNwAN5i3PPRZP16XTJ0CMZzM3T+T95EftlyBBgn9H0QsqFrhB4Z\nhkS0LO64Lok+6RUdklrmM9AnIucDLZEykIdv39YzL+tuj5/vcfThsnzhyBfrWn7DDZ4gCf0acHfv\n3S9+Pn7cvPd/OnbcFg0J78r7BJ6h1YQ+Y5N8Nrwf8Y4L4y/yrmFMHQVCHz3xMDkbFFmA64rclVjv\nt7okod8gwpAcISSYixohYpRMj1AxkByUIOv37d3j8Q3lhrHls88sTA0uGISriX3+6TJ4ASLEhUCH\ndT6W9FSs2im8KClYzeNGiDcAyZFIkoSQR+gAXoJRmECZeG2SVYvg+LMelmOq52SlXi4QNRttgUAk\nPsdEcESA3NJXjYVd3n8s20YE6Ro+VgSwM2cJIeSVl/AzYqc9U1XsNNxq4kW+ReF/IPK/pMp6txml\nWwl97j36HQWAkCUQolg5I/CXCX0EISoC6kjjLo4VmPK5bGlhyobOw2QDmcvnaFkkiBXzRYs8xn58\nRhhj0vWFrsZDNMV1Zdt+BBgLMT4QtiDgo5q189MBI395p7CYtHTpMmt5z0WFDKXE+ON4IdBzrJ9+\n+lHj92e1P1mc8u+++87cfVmQ4jdR23/37T3jZBP6xKskfBt9AoFPEr7L8kSDYKCv8eh6LdIBS/dy\ngcTHmp26a9dO63dC7FAh8ynR9+XftXsb5RUF3z0NFGOXJOxWb1j83fL1fHHksEK7faWFpS/N2437\nsKr3WSfcS1xrEvqBRLaJQCKQCDQfgVYT+pBcRqxq/qXFOh/SAH2PuTcKchMe2OhhfX1bij4ZW20k\ndIx0vg0y5kJXamRu6lZCP3CJNuRUPrNgTwxmcrPdksHd1avyqpcRHIZw6L6BEzIK83wYi6Gjz2Ku\nr+gtcezxtN1E6EdYTNp78lI8JetTkuTSklT0yy+/MuOwzTKo+6dSxp99+czYRq6MGnol1vvgFIsA\n7Ie+WK9Dhi6JDomuSb9F3/3T9eTfOwcBxkL0Na3pGhVdEr3HOS6PGgFfhbdR6JKMATySaEOf4M44\nZuiicDlY6+NJzDiG5Nwno1q8vGkJR9YNJQn9Wi/dVzjz44o+Ad9JC+fk4+SNeKWZLSf04SBjfLEg\nHDzlmbPn7VriSjHSPiJ98ejhw2YEtmbNKvNa53veaa0uSeg3iDBW+AyyB3JPo72Ie5ri2lNZISyX\nLbJWROCCiEbgilA1axTnnviH5v4zU65EcjcrF7Nc1YsKV0ILEVAJD8BLj/P8oaS4hN5BUCmXjRs3\nVKzp+yw8DZ8R9iD461+CTJ6Eu6FFeCQZ5a+/n1D4mQsm7Jilg4SeRSLiVq5cYa6dXDcW/9u2Yfnf\nZ/GQEXo49kxIDl3MSJMt5B0vX1qEKWJTESeNhIqcn/MiVDIwLb6/CGPII2IuL1WlBU/LSbCfWFWf\nl2+94e1uJvTjpnnBIYBRz5w5bZMels2fCyOSikLmIwiFMBS/G62lryBvyzUmXFr6hhX210pExb5G\ndBnhNae6AINyAZkf56adqfEeCwze1qz3GTtxjSmwjdY7zf+bLbJpgc1Jdo+Jz2JiWFQggOHNwbNL\n3HQfC8PDNDEOFi70HAtmzSzhK4TxekUz3gW0KLAoD1HXKaHMoUOHVQ9q/O6s3uxUGBPtJvTBn761\nuUAtOWKwYKPel3XEHQnGFgJNcw0WCbYILAsJ5g2ebd7/tCwkE7uQukVzHvMGYwErBRSxiRapcMVs\nWWTMqZDqvDvGWrhHW/JWi4cdBEnEJ76ne+ResQRBWCQ03Ry5cs6dM9dcKA8fPlQckZU+czj3YVXn\n7qSxmIT+WEdC7pcIJAKJwPgRaDWhj5wd8xAt4UcjTxtGTuVCqBhIfeQkLAFXST8jnjS1rOeVf/NP\n23iaY1hFJU9OuWCkEXrkehl3LRfRhqEGRDiWiSb729w8x0LqLZCnLh66yAWTWdDHH/Q/NGIfL/qL\nF5X89ZK88dSCdxQIfMj8L7/8ovhalXuDUEQWaPQekI8J4RrhXMFjm0Lgbt26zcK6xrk7oTUuQLIf\n8j3e8VwzSXJpdxF2UHrk55/v13hb19DlokPUDMJeDtMpWURApkQGpUW+wjKbMYUFLnrDHMlitMh8\ntfA80+v0yOF6JReKjNZJclpD4HXZj5C1Q2+M1nVK9+alj3n2vA1DVXiG1/pdePx+sDGA7hD6JM9P\n1LI+wfnQmWwxVC3ka4TfgdvxZ26rhVHmue6GkoR+rZfwpD5x8lSlnjRj36FBeZCLh+VdsGrlKvOw\nIjoJOT53EzZN7yzmxmaUZzIsfvzksXG76IiEJz9//o+CqCbwlFHgOzAy/kL1yJEjlqPFc9nM17ur\nZkwd+ze7TUK/QUQhMcuJaM+cOVsVhBh85YKAtZIqgYskDRaqRlbuWM/TyQgNxDssv6D4vZFoRqa9\nN5IhkiGxgACJf1sJk0iaxAurXLDa2L1rp+ous+BYtXpVsVoDfbXa8jl4CZYJPAiO02fOmDsJCxSD\nPDBamYJsJ44dq0wMWAS47du3mbXidpH63B/xoYiPbHGxIY0rk2j9RPq+Qg5yb7ixDAx4Il+ELnIR\ncA14HHBPsZjAJM8iwtrVa6wlnANJFnft3GnEUfneG93uBUKfyfGyEjRfuUK9YhMfgiO5AMgJUCbJ\n6/tlNNzAH2EvBD7/7C6UZJ33ifmN/d3joXsIFc5HGJ44r4abinuRlIn/CM3iwtucisDmghq/zdI+\nBOjb6G/GE9veQuD74g3vPkIv0Tdeawmr+Mw7xoVv3m0190iEcfq4XIxk1cCgRdgnbidj+PLlS4pR\nvkJ5O3Za7g/GL2U847Z8nm7bbjehz/uYfvUF1pdG3l9T/N7rCjHAPIO7IZb5A/I+43mPvBr024IF\n84sF8z0uPuF1sNL/TGF3CPvmCjFjgDBfYyffR+ov+t+sdCTk11vpjPSb+L6abFDXjLB/3hbE/zTh\njLBulkhP7XvlCiHmoS8iL7bEhxFDH0LDFUp/P8WxO6FNQr8TeiGvIRFIBHoVAebDVobcMRlIsjsL\nzZcvX7FwEeR0oTJHlQv6WBg6LV4iq1XpX+hhhIJjjmqkPBURdlu6JYsHLCiUC0Sae5Z7kj8+E0aA\nWPOcdxFGHJqXF8uAAytYyJXVCmPDfpNZkF3Q75480b3pvs5ZKJk/irNqkWmj4NHsXt9H5dl8xGLr\nkwcPy8p6uTV+809tNxH6yICe9+qjyXo3blw3+e+6Qgp/psgCQYrird9IgWtAl4jKwgF6ROiV8T0t\n1xG6pMS1qh6JDFkj88nbNsP6xsOyVDwnKwsBLMKgjyAz0mZpHwLoBTXCnlC9wSG4fslzEZV+dj3S\n9cmasR+LOh4i2Bd0fIGH76jldxzng0/CGIcW3gpyn8o2C5BRw0u8fWg0dqYk9Gu4EXo7InjQoqs9\nNe5wQBE+PoorWG65Q2nhPvfJGwOdjbDjzSjovlxD/8NH5vmBITUL3rTM2VEwYPvqy0r0kC+O2iID\nY9fGr8Zsq0sS+g0izAsqyA869FclIaX+Juv2eov5WOWnhdSHcMeynVA4ToL7qiNWh+WCtSTneaeJ\nD4LHQvpAsig0ACuQT0WuIKyUBxS/h+g+uF8x+5WYgUS4S0nKYNbti4e9BNmXF2HU6woXFFb/EMJY\naVpVIkQmY88JMMuI/R067o4dJNv1TNLLLFHgMjsPL+dIJlQm4DhPTN7cG2Q+sc7uyRofK1ALXVQJ\ng0DyCULxkLiXAklEckWIIkuyaHGaN2vbiT7baQL/9QKhz1jBxSwq4w1rCioCdvRFtGOFi76n72jr\nt2OipmUChxT0+tIXpNTPCIr1FSEZQb/W1mLvI4hBClPLk/ZYrzf3axwB+pCKsBX9ifcFn1ngG9Li\nHgIS+RZMeaws8mGhtaCiUM6dO8/6jb6zd4FatuNz/dUxtiicj9iduEpSca0MIaxb3CTr763Rz+0m\n9HkvW4gzCcC0JJBDYMFrisR8Ea/Qla3ae4D+RclHGcaDiji0qxXyDS80Fnqj35kPxvve+RR203Sc\nWBynHY8bI+8u5hNai4MoT6aTltzojI1pFIGhoRd2zWUvuh1avMbDaafmOhaWuY+on7rGyfouCf3J\nQj7PmwgkAlMBgVYT+rj2E17n1GnC7JyxcHeEHWVOhqwqF+RjI7ckL8+arapEoiY3z1JIEs1RjRSM\nqNAn8ZpGji+X6vmkp87W+WbOqHiq6Tqwoi0brpHnDMOrPrXonpNZmNMjoSELI8z5p4UtCQ0JYxsF\n+eWorCq/OHq4OKKQCdyPL1jIulK6VCMFublbLPSDB6BlrKGbR0WmC10SubyRUtYhQ5cMfRL9EPkf\n+dL1j9Aj0T3cgIR90DsY2h4DneS5M0s6ZE2nJP4+JFqZKG6G/NnIfU/F39Cv/h4hwoLrjxHSyfVK\n/5590PfRHyHaaZHpvbp3T+gQoUtGn5b7k7HFs1bjH/yccW6IXvMmUsu46IaShH6tlyDwIc/xGKLF\n4+rhI1UR7OQPXWL6p+uhe/fsUb5ScpbuN+Pp2lEa38Kjm9BtGGvDUVy8iJeXqvRjeOAozINff1UJ\n26bclfC98HBwu416ecWxx9ImoT8WlD6xD5NLlXAXmelkvhP6WM2T9OWdQhKQ7LVcEBr6FIqgr09V\nrb/EZOmgFxnCWbm81+r1Wx2HlWyI++vXFaNf5AqWkwhcvBipkDEmyGlyI4nPHrmbHDy43xL8bJd7\nn7t8+GTHy3CkgrCDdTzxBVmV5zOLE5BrTKox4XOdW6v3sLlYLa8D3D+pEDuE3SGUEAPYXrri6wh2\n8JdWYt/Itc4TFr3RKtuAyGcXGqx9IHJf3geQLbyIgwDk3rbLyhxvgG2qGzdukqeDLPZlDYrHQzNK\nLxD6jMmI80UL/kxi1FYJ1ZwzKhMqSVGdGBuqWmIgpEH4l8l/JlUmbchf8iOUEyBVx7L63SdvCLRa\nzMQg0z7VMhbKE30zxka3HyOeW1qeRLd88QUavguhmhBf4XHh7xasKNwNks9h/UDLb3yR0C2Z2V5c\nsWpu1CKL8cFzyNilZXyEINaoEtGtfdduQh/szUW1soh7+fIVs2DHtZAF5JEK842/YxCm3HIPgh8B\nC0u9ZhfeBxs3EkLOPdwQoMZauEfmY1rmNnfhJLE8ir0rjoxzxp0vIG8yzyZCvBlBoQXlFSuWj/V0\nbd8vCf22Q54nTAQSgSmEwPUWW+ij5x07/ktx/JdfVX+x0HDMSchhzFudWvCWQycj9M+6tWu1AE7Y\nPXlRq0U+CBkUuRF9IAwE0B3KBZ2FxYmIW+/yv1vulvcbzzakIWECIfbxOjhx4mTx+0lVteiZUZBh\njx4+JFLf4x9DxhjRKN28URKwmwj9wIGW6y7rkmATumSj8n35+PXbtXHhFvyQmaFH0n8xZuBVXI/x\nI8ARlHVJuI4gg/m+rD+y/Smd8VPfcfTUI2u9FJjHc1xr3RvfwkOL3+F7+pLnGkOwCMnLO4z3F/1X\nW7RxK328uBlfcEfoeTxzGIfRwgWMtXAOHyd+jjAepfVjctwFbSFWx3rNo+2XhH4NHaKhXJLnPuHn\n0E0xWiX0De9z3uEW2lW6IO3nypNAQloSnGPwW36+a0cc3xbW+RZyVuclLJ1FEiFk69UrNjfHPLV4\n8SLPwaJ8I1999YUZnwUXOp6xPL6rq+2dhH4Ni3FtxUvLQsjohfFHZeWIFRsUa1Z0IKyZFONlyAlY\n8XcLRoXB0ao3Ln2zWcFRrV/BibAGtExquHs8fPjQrDYg3vwF+c6sMRZKoGIwQ3BgSbhHq1R79+w2\nKwnC+RDWhHOMNkmxChaxhHG5vCbhFUvNq9evmTDES5qKy1tYYa6W5TcvYouTrPMvkOvl/MoKK5Mr\neQHAyvCSGx0veFa0SKiIFb4JDYRykLW+h3RQK6EW6/w5woZQDRwPTwC8DbCWJG5kkEiQR80ovUDo\ngzFCEIQrFWEnVr1bIYSBe/QtLeMRQTAsuplIo+JaaYtc2gdhnjHk7pMeuqJM4pdfwLwoZ1q8/ZrF\nfuzL/bEdbQhs0TZjXHTzMeK9Y89e5dnFlTXeG966F5C7v76rLM5EDEP3zAjhzZ9/+pR3wHTzsGBc\nEXKF1hdl5tt7phHcOH4I8bQsHDJ+qQjpU6m0m9BHGIbkjsp7n0S4l+SpVR+7t9wPjIOqp4YJ4hKa\nFX7HxkQL+my6nnliJOKFtmvXTgv/Vr6e0bZtQarybmShmjB5p8+qqkURiOcBcmKHFsKZa5hzCB0E\nSUE4IRSPTi1J6Hdqz+R1JQKJQC8g0GpCH+Lip5+PFT8fO6b2uIV1LYcm6VQMRyP0Wei3uRV9QHoA\n5AgVA4Jy/GHujXCuyyve3hzTrBsr+vG0Bm+ec3i85UHTb20hX9b5J0Tqo49GSUI/kCisv0KXpEW+\nD12SPml2QccIXZHW9UjPzYVsWvsbHER4fTuvEGFdkUVnykvFFoW0MBQEWjiroG+WdcnyNjpk6pGf\n7lXI+rIOiP6HrkaflHXJeE/xHX9zboB9PcoCR4++wKiMv3Ns9DzG13wL2zlPz3wtTCt9MtYS542x\n4vqqXytjlgUe2hgXYz3uZO2XhH4NedOHjYt0ThJS3UKOy1p+aHCwmCujUDMOVR/v37/P8p3hZYUx\nVnBEM8QVNTqHsHBwQ4ZteKvfUCSTmzdvFTeJJqIWDpgxjNcafOSXCrXzxVHqEZvP4t0ynrFcu/Px\nbSWhPz68qnvzgvMXkpJ/6MWEMn3z1m3FtFfV9g11dHQ8+0bB8gDSm1A7ECEMtnBdZEIql4962dk5\ndHwsC52odWuDeFnxdwYSISkg16mE9IkY9xtERpB01yev0ZP4YcHw9JkT6iwcRJJaFit4oCBiIWV5\nQRvRJgKHe+BFyYBm4QACnlVWhLElaplsGfBMArzwjVTReWhZpMDlkRU2BCsmcT7Tcr0cAytPjrdL\n1h47RORg9UHYgwVyqTPPA00EzSi9QOgzzsor1Iwnf9G0zt0nJnramOR9Qn1XmdAhhz/aBF++ttgH\nop/f+XFqoX34DWMb4j/uIZIk2VjTxFz73u+PZ4l75sVZ/yw1Y4x00zGiX7hm8A3Bi2fQn7VwSawt\nwPDc+WIKFlEen5LcGQjIYB0ht0Jg9u8RoH2f+Mz7ppFCf5fHCP0Yfcyxp1JpN6HPmEBYMYFFgosJ\nKxWBpT4nTLkfGC/RR8xDszUWrNV4QblqdmFeOKwkyQhrR2RNR2icsRbz/CDuohbZmafLMfR5H/HO\n4VmBUNi3Z2+xb5/q3j0WCxjvM77HwqdTC3JHJN/DLdRj3m6ztpOvu1PxzOtKBBKBRKCMwPUWW+hj\n2PTfH38sfvzpJ7U/Se96bnMSshG1U8tohD76Gx4Gr5XwkvbK1auWL81zpQ0Mu6VNmzaaVSXhetBl\nw6CDfAGjGaMNO0jdB6zzCRNJOCMsO0+cJKSRwu2dHB5yJwn9GnDIQWVZvCbjDY9dXvvFxLbQV2KM\n0wYp63KZy2bxd3SZ8rWVdUnP0VYLichv3Hr8o3Et5fso65N87/qLt+iP1DAum9jdde+vQy937P+q\n6JFkwBX6AABAAElEQVQ1Dxu4m7DEj0UYWvoIfdx1xkpoMGHsONd0Sd8H/bKmRxonBi+mOp5nnmtk\n3MY4KY+p8jG7hRtIQr/23GD8e/OWIpTcvO2huUWqG8F+84aFHrdxxJiZNVPhxvdb6LSjCp0GF2rP\nfIXDGM94qp29MH3RvQMuK4LJdfMMgOTHAJpj2oKUDNgI04ZeevTIIemphywMbfldUj5mK7aT0G8C\nqrw4sMiHFKZC5pN45+y585YFmb+XS0wSMbiiLe9Tv23H0HEsaEbleHFclPXNlUSEJK/ZvFlx5jep\n1TYxjSljOUdMlITEwVre4zhK8Dl9xhIykYEc4ofJtHwPtupVWXrlwbLwOwpNQAspF6GJ+B0PZsQz\n5LNm27/dE/eFhecKJcXkGLg+7toli0xZZZLol88cl3APtM0ovUDog0OMiTImY+n78v4T2S6fv7zN\nRIulhbvFEb7lZWWB6oUt6ER8Pdogn2kpWGd7aB53pwwXS/8+QvfMNYGM8ceYaNa4mAgWk/lbsI+K\nwFvGvmwFH1Y4vtA2ZBhC0CNggXMoVLhAorRF5W8xrqLlfsvbjdx/jBnaOFa0jRyvW3/TbkKfxdWL\nly6rXrKWMGsR/ox342il3D+xHe1ov2vkbzzf//7Xd8X3//pX8e/vv1PonQ1jPgwxEAnn9qD/gYTC\n25V7VRzEi5eqzwoHg0hAKEMgo0XR94TwC8zCZ8wnbPOOSei3GfA8XSKQCEwpBFpN6KNH/u///VD8\n33//W/zvf38wIjpkok4GejRCHxkSK/mQ+auh7kSoQ4qUC17lLKKT1BBSH4tHq7Lcb1SmQMaN/ECE\naajmKFAs/XIM/ST0yz1R0yXbLYuXx3t5m6vjM7qMGwG+MqNAN3R0A0E4BXRNqi8GsO1GYxD2oTvW\n2ppOyXdUrLgh4dAhg9QfjszU+QTekSiZFuyduPc+cF1ycFhkAPqD/eClyrWsS0KA8jdaZHpK+fku\nb48X7foxE7+fyDHjGO1sk9Cvoc04I6E5ntUWPURhwVkQZnGYPJ9lDpJwO1jJUwk5Hs810VAaHQNE\nK8EA7Nz5P+S57vlFSVLPuTHSXqRQO4sXLVbkklXFoQMHFPJcIX+Uw5TF7HaWJPSbhDYWAIMadFRA\nvWqDzePRO5nmcb2YcKxaLDEPcVFeURzpcphYWGkiuYKtOFXbWTaQNmxYZxmdSSJJHMM1GliExSFm\n/1hLTIIQ8DxAsSJF++jxIyPjuU8s+V9XyFnujeuPwnVimc9App2Ohb6OZ1b6ImgR7F5C5qrl+yg8\naBb7Tg8dLde9cuVKLUissJaFiohrbMfVeTgXtRmlVwj9ZmDRimMwRhj3QdbHaj6CGWMovo+wPPEZ\n17ywDGfiH77tluP+PJCvoWZRwXiK8VHb9lj8/n1tm79TKbH99zYEjpr1RzNwCuGDtlw5dnwub4Mj\n35dbtqNGLEP/XLNWiL/TgnfExq++jyreN46xW6kg2NozqeeRtiyEgXmW1iHQfkL/lQlHFhtQQhJz\nmLvFP7YQaK270/EdGQv9b5Rs6Ouvvyq+UfKhdevWjnqAeIZYCLek61h24C5JNQ8E/0zSXlwyOT55\nWSDzg9DHCw1hEMGwkz1FktAfdSjkHxOBRCARmBACrSb0nyv57QkLB3PKLMjRk1paNDF+EFFn8qE8\n1NDrXih+OTpaOdkf1+CEKF7YmgsVFgNZnO+okHUeLscNuT5T7GIqRmWETCXn28tXnmw38s39+ttv\nImjuDbs9wtzhhb1zx3Yj9NFhmY/xxENuD7l82I/+4QNhjB5XcgNBCpGkFnLmvMgZ7jeKJ8U9bNad\nR2RhuTKS4ioUCJ7njRT0nG5JitvI/U3Gb9ANwdV5FSeW+YwuGSQ+4xkiHw9w4x/kmYx+6Pojch7j\n1q3Aa9s+ltGBYqzhqewJeN1r+e/b/vcYl2NtwY19y619aOA/ZFxKua3KvaW/1f+9rBMO1xsrkSEq\nESLcW97fEc4R+SIJuBL62Y3xiF8fMfLxzv+gZwa9sRIKpaJDhj4ZJCvtVDe+G6nLk9CvIWMhx5UI\nt1+RQ/AYvygjrAsXL1oUkXoP8t27dhb7FUd/3+f7ZKG/xRaEI78bY82eOzif2uH/tsWzERwU0VHI\nK3r+vOYMzR1Xr16rLhAzX7MwtUJGxitlgIw+yqI0iXlpmRfbWZLQbxLaQVAiIBADHmDvyyKwXxWL\n9MHBIXP5c0LciX++i7hjMRGNdDkITR4j32PlLyQBBBazGjDEsEfgsbA7IvIRTPgbpDrC1FiLTYKQ\ng1rd5n6w0DS3EllRPNKDFCtST5Qb4NnzZ+YOiuUDAz8KD4u/tEXM64XOhEhIoo+EM9BL/q0mgEiK\ny/dRmEDLlv2Q+ax2rVq1WhaTK80qHwELlxbuaZr2n85DWZkU4ziNtknoN4rc2H7nApZbTiAUxMsy\nWr6Lynf+XPiClwsnIbDUiG+JRBVrfIStGRJoXBBBANHe+psTdCO1CG78rUbwl4U3Xyzyv8V2+e9M\nB6NNCaPjEsIVe4VgxXf12/EdbeATWLqgGgIrViixXbNK4TcU7pPJDMLSk+KG0OaCJc8RtbZoEspa\nuEnOMsuVWExkvyytQ6DdhH415I6SoRN2BzLfcpooBMDg0GDrbnScR2YcY4FhYXdEujNHjFR4ZsrP\nzwW8DyQI4oUAoY9w2F8REhnXKO0QFcTM96RKstBXeB/iM2KFwRzcycpHEvojjYT8PhFIBBKBiSPQ\nakIf4uKKyIOrIg2wQIS0bGVhfnR52+NhM+c/sDmxXzHuHw87NQYdy5YtLZYvXWY6pxl46Lt5qix6\no4suUKVlXrYQsNJLMUKLUKrolcd/+a345Vcl/VWtz8/zmYXckfEWBlxaENi0caMZcvE9c28QrePR\n+5jnIzfcrVskNCS5ohIaXr5sumjcJHozcY+pR48cka65XLqmh3bFuKWRwv0mod8IciP/Bp2mPGbZ\njsrf0I8Y17Gf/+1t9Xv9qUJ+hy6JDjRcDyrrdoQNdt3J9UV0qJpOyZh0j/AYn2WdkXFa/lzeDp1r\nPGO5HhXuk0qhDf0xMKhvY3/nm9AX3ZNhtM/lY/r9+D2xuOHFz1++H+7TF/silBHyc02X9L+5TM2+\nWf6OQBL6NUwwQBx4Sk5ShUzVHHVeEVDOnD1nlbxv5cIi8ratfcXWrVsthj4k+zrl3ST3Jglqx8Id\n8u4gVJt7/2hOlpEbZP4fWgjGWh99OcKFk89zPedQnrUN8hj33GvKvybvAHKmtrMkod8ktBkAUSH1\n3RUJ4v6FJf+JJEBYChgxrjAGbMcqMyudvFRHKnMlUEBmE27GWiO3ZQ3BdxI8LEmsBC2sJEiAGy9T\nJp+xlnjZ02JRX/U60MLDw4f9Eoog+O8V99WyKha1LHTyUmdiswlQLTNl+bhMDuAUE01cG/sjvG3a\nuMFaHkBi5eNtgHAIiW8LBVrR5d6s6NiNU6pxZm+T0B+OR7M/lccA22UhIcZC7MNzUBbYalbk7t2C\nFT/fsR+/odCwCBD7ckxIungOPEafCxARUib+XhPEGLfhalkT0mI8l/+GEDJRQcyv2wVPrjeei2jL\n37HN/Zax8XvFMiJwqd1/7EvLtZZDFkHGh1DqRKa7mWItEd/HPfNbag0j357IvVuH5X+jItBuQh/F\n89btO8r/4nlgEJrs/S+PLEiGTimMQywf9sgCYp8qSvdIhXeDLSbr2eH5IfntmTNnilOqEPrE1PV7\njKRv5LZZYGF8Dspt0kn9gxZ+Kp6DTh73t25lDP2RxkJ+nwgkAonARBFoNaGPLIcbP2Q6LRbGrSwY\nwaC/obO+EWmCAdc1FhRU8WQrF0LSkJMNYgSSBAJ8yZKlVXIfWdI8yKV/Wu4zDM5kVMac/ZbjV+TU\nn48dL44f/6X4WfW2cr2UC4ZpZpEv3Y94+uSB2b5tq5EjkDHTdSy86cYzD9+VFwD57K5X4i67d57H\nYMb6MgqGcV+SzFChGr4Uqb9c4V7Dopj7aqQkod8IaqP/pqw/lreR8fhMpfA5dKP6NnTI+D64m8jd\n5sfx4zF+0SNDX4zWdUtPvouVP3oV+36qIj+W/16WJ9lutMT90nK/oTvWt/ytXNGvufcaDjXd0b/z\nz+jU/js/PveM4QsLXNRyHgL0R77zdrbpjeHRgO7MwkfcNy3PcLSN3n8v/y4J/VrvMl6JDDL0YshI\n9pMKl/b7iZNWyYdWLswhkOvMURvFKWKlD7kPyc973MagnlMMgkcqnM8XD3wRAc/1P/50zy5i98OP\nxjuD8xEejoUEanimEVEED5V2liT0W4A2JAIDIupDWQiENSDbCGoRzoAJP4QpyLeRCi/RVSuxWMda\nXdbrlZbPCB5l630G7EQLE0RcPy3XjJUDMQhJLBSW+7SvtVpVnliGbdddiFnVy2p/el14FCY7eyDs\nwdhkK2pYeOB1wCIGQlwjwlzd6Uf8mIT+iNC0/Q88B7wsaRE6yN1gzwnPSqnyt7KQ4vt6OBl+70KY\nk/jhVhlCmAtlHiseASyEC3vZVy0uXAhxAc2J7LB099/4QkKMd4CqzRHDJwuOH5X9ue5o2Q4BzO+H\nyWK4ABb78CyCS2ATAlk8qy6ksY9b6bMfz9Z8uQ2Tl4LWBTG3lkD4iliGWFyVhVGuN8vkINBuQh9l\n+748sqzKuwyi+5Vc5F/IVb68YDs5aNTOyvPZ1ycBra+v2KYWkmGkwvPl3mF6FvSMnTl3rjhrVh1n\nzTKwTGRgYYh75CJ5vkFY7NldcZtUPF9ytXRDSUK/G3oprzERSAS6FYFWE/rIgRaeRovohKjBs7mV\n5aPmSEKVEF6HFrIbS0QqOXXKhcXzvs2biy1bNpuuhjFZGJchOzI3h9GLEXsV0g85MvKoIaf+8qtb\n6NNCxris6vK+x8snbr6sHrV4sGP79mLHju0WgmeOvOcwzMFbjvB4Vem0Tk41uRrCRXM+3uacg0SG\n11QJuxe5gdBdkatN5tW1YxTn1vmE3TlsnzGkmyMZmXM2UpLQbwS15vyGcYA+FNXkPemP0dZ0yVfG\ndaArRYge18NcB2NMh95Y3waRj46FMVTZWp9x5c9EkPxlfXK4zlm7Y1+M8M/VEV77s7ZCj+TL8Ep3\n/dCvd7gu6bplhNQBEyrPIaFyHBsPlePf1cLmoFuCif/GPQB4rlnkmj+/YmCp7TAWM4+dSlx89Mos\nE0MgCf0afoxpe15ZGFYlD8tvv/9e/PrbCVusjTwP7IdOuFyeZMwh69auKbZv16JwZR4haoiFitMC\n3Aw9r9UnTHPIX8wXqswbLG4/VJhxW1iXtzpW+ZcvX7Ew5MTxj2eQljxuWONv27bV9FLOyYLCWrU8\nL+0sSei3AG1/uUpA0eBigEHOEJqGlphLnhhWyWG17XHHRMDpBUtImpEKVsUel96tHmpx6hcZERHW\n67QMsokWXuJcu92DXupYM9qKFcl/VfEyeFxJAsyDxou/vD+f+e1fH2sTFJc1U4KRTYqVFW23CPYV\ncOL+W4gdtXgaLFnisfi5b18I0ISogzTj/urxSUK/HpHJ+xzPD+OJGiR1WA5E68IGL+EQUhDeXCBB\nSajFPwwyHYGK7ZrigQDmpWbZgbulv7BdeKp9JiQNYWvc9ZJnxCcS9zjx4/izV3sEOVYt5A1CHr+z\n54NnRFWikr5zgSm2a23l8mwfzse+PvHUtuM7b10A82NyHBYhTMEyywqs8D12ZAin/C0q18e9I4i2\n4jmLu8l2dATaTeijcONu/9RcGp/JndCJfBP4NTd1SuH9b55bqxVXV1Z8o7k02vOpB8sENbVY6Zl1\nnlrmrlgEQ4mzcDsS9rCoQLHfJCENC0G8xngWuqEkod8NvZTXmAgkAt2KwHUp9levXrHEeMhueIpF\nRa6aaEH2xVv7jcg2iIuy/jTRY3/q9xD6eOBFfPvrCrl39pw82c6eV3ziC8N+gmGVL6T3FZD6q2RY\nhsEVLWTeNAy1NFdSQ7akRSIu64Z4ynk9Y2Q7eefwaCcELcYlkYCe42L5uEWLCJtVFyvxIIZrLLxD\nGLouWJFTXey26/0g2Z/FCWQYFipuy/MQq8obCiVIzH68Dy2coFrInbDC53zumbe/OLB/v+WAi/to\ntG+T0B82hNr6oV7Pqsl7YZ1eI68jcS6GVKF3BkmIDuWW5q4Xhm4UretJoTNGy63GNm39Z/9b6KNc\na73O57/x3/E/hXOFtTu6mj1Xeg/Rcr2u+7Gn639xXP9tWMUrDHL1PvktxmWhR9e33LtfK8fgeUBX\nxCAuKhEhwlI/9Ej+lmViCCShX8OPeRFvqniGCbdz+vTp4uTpM/ZuLy9K8z43Ay1i28vYeZMs5QnZ\nRsvcwWIUodQYtzzXjG/mkrdawPLcgsojo3A7ZU85iHIzaNYi8ID4T549KnwQhsi7d+0qdu3cKS+A\nrVrkVqQUnZdz87y0sySh3wK0eYkyABGWIBNiZclarfzYCrGtNL2uvlh5GUPQjVQYPG4tIJcmWSrw\n4oyYv7M1MHFHZPAgePgEM9KRxv693QP3oco1W9woCUgIfwhfIYgRS8pJVydU2ddXfsk4X7Mw4bog\nTFglc7esOcUsLC708scVJnIC0PLQcZ/h3hWTSrPurR6FJPTrEZm8z/H8RDtcwHKSn3HlAoxEl4ow\n5PEAeenXBJzYjzHs2z6e/e5c6PG/xXFDKAoLevbxbX4TZDgtx4tY/5xbw1slhLfaNmO2HD+Q83ki\nIXd5rI1tn1xqn2sKkitKLljF390apGb1wT68J+pbn3icxOe6/ViueNX/LY5tV+83xGaWNiPQbkKf\nMelKsLxg5HH1Tq629jwpL0OrrQTHAy1DEqEs6j9ZzvFuiPr06bNi4Jkr81hBYr2HNQbvF54LU97V\nIhCymIylB2EFeCa6oSSh3w29lNeYCCQC3YpAqwl95ioWCpyoc1m0lVgh25J49wVJcNUSaueUwhmc\nElFyTlb65YI3OJaIhMAhhMEakfkkrSUkKgvrNk9qrqS1JPMV0oNjIF+EPnzhoic0jFw2Dx8+Kvof\nPVRY10c2BwdRuFRzcMQ+xmuOBQUqXgGLFi6qyrGcq1wgfiDskaHIZ0ecfubGm7duW5hYiH50WfRx\nFhAItbNUoYOwrNwnj7y9e/daOL8F8tqL+0BmbqQkod8Ias37jRPdrvPV63n+N9f7bHxWDMNiv3gO\na8dg3ziWG3H57+K7v+uMPM9hcBZ6pPM8ZaIc+bImp6LO1kTOsj5Z2JgPb3Pa0D8hOrk2nj1fJKjX\nFT3kT+ivIOxysZ9ruC4ZOuXwNvRKjoHe6LojrX+O76NtXi9OzSMloV/rd8Yqz2F4Xf3x54Xi3Pk/\nVM+boRa6nRmk6X2PR3XMIeQarc1Tq2W1r/yiMhBesniJzVnT5X0TfAjzny8su7E1hL6FR1f4Owyy\n8VqnElEFXdHDOM+2UD77NGd8vm+vzY/oprHwDOHfzpKEfgvRZhBSyq2/RCsvb/+j72P/j/yfc4V6\nSVcIQ17cUfkV2+XWPjTpv/rr56Eqx0RkgL82iwgXkowYMuL/VYG1RBQenCBisMLAqgNi3+ucGlla\nISXj/uLe4jitaJPQbwWqEz9mjD2ONNJ2nCUEMV78CGOxqFRuEXz4bJMDE4QISxYA+C5Wf8NaA0Kz\nvM35EVaw6qHlGOXFqxinMW65rtiOcY7bMAsR8YywIhxuyiEk0ZaFJ84VNZIx8dktJdy63hbFSpYS\nfPZJZ7YJXnEt5ZZtSvm6/Zv8f7IRaDehz/0yvss1MCg/d/Hd5LV/V1jGei015Yv7rC00M0tXZk89\nC5VnVnMVVhs8h91SktDvlp7K60wEEoFuRKDVhD6YtHO+ZU7EGnFIhD7t5StXLC7xiZMnLeFguY8g\n7nfu2OFhcBTGwGPdr7GWcI71JeTK+D7uy+LZYzFvHnPuNXcDwr0Us5/fkjfNQvqIxF+lun79eiUd\nVFWLF53Jy5XwmHEOWkh0D3FLnjclxFWIhNsi9YnXj2deWcbBihJPPxYmNurYO3fslKXljmKn6rxK\n2JD6+yif65+2k9D/J4Ra//cYd3Gm8ufydvnv6I9RQ2cs65ERriZ0RvZlmzZ0y/J26KTxN547Sowt\nroPvaPWvKofGNcV+jPkgK9H/4prQQzn2p3RIvkNfdB3Rrev5zolMJ+bdst6t7l2vrFndh+5Jy3XE\ntZSvv7xd/ntcf7bjRyAJ/b9jFs8r85QvDF8yzyvL5/nA83rGPoxDxnzVOEtEfoSJYz5ZtMjzu/gz\nM90ipzwZeFIMPFEEEnKcUkXqP1I0Ep7t8PTmuMFZ0jInHjogry5Vtu0503lp260/JqH/9zGT3/wD\nAjww1cmuRJwGuUlreQHkOooVZBRcMnF1CRdHrO998NPOqkwwvmLW7kkhCf3ope5ta4SdW0yEsFVu\nY9yGYBWCVnwfQhiku1tjeMt+jPsQmFh55bs4Nr+rFYSe0ie5dTHOo3KdZQv94cJVbcU4SP0g8ePc\n0WL1H6S9WRdr1bjcIoDxud2TSu3Oc6tRBCaD0G/0WvN3nYFAEvqd0Q95FYlAItCbCLSD0G8ncsii\nWOc7qR+E/gkj9QlrUC4k/9u5w2PaE9seQt9IfVm2jxb6rnwMtu8rfMEDkS+0d0Sye3x7EvFet7AK\nhJ8lBCCWloRbtVCzstb3ED8K86PQOAvlxW151UTom3xbkrffSu98+pTQsE8tPAJxkD1n3SPzKmf/\nqMQ5Jqzepo0bFJZBoRkssSEhGjaZwUz9tY/3cxL640WsM/Yv64foeOh3oetFi3V8WW903RHdE53R\nK8+Xbw//PkjHMCUJ632+978N1yEdFQ+34xb6ruv5+T0UCeeq6ZKM8TAMc8/tsm4Yf+M54DfxN7c6\n5tiuW/J96Ju07eZlOmM0TM5VJKE/Mu4s0N667V5XhFRjHuE7WvjHyNnCeGVumq8F5wXKH2jkvqzz\n8bzmOx///qy81IL288FKSPTng2aVT1h0rPN5hqPwTCwjRr8WlYnVj7caIXd279pp4eGMdxH3Egtg\n8bt2tEnotwPlHjsHE051omLC0mRnE16ltUlGVs+EbahNXIDAipmH2JldmTAgRhn4JDnymIjDPQ/a\nBV0S+u1CunXnCWFo2PisCFYhYEXL+C3vF+OZ1v9GG1YTvs3+oQjg1sjfseDHkh8hrr5odyuQ+07K\nu2uibLDsN1wLv6vFZ2RiYfzXYh3WzldTQnx/XCj/7u5YFr5iO4Ww+p7p/M9J6Hd+H3XaFSah32k9\nkteTCCQCvYRAEvoTJ/QJg0OIBGSce/fvKdngVfMMuHzlqsL/vPCY/gp/gHztxl8eppWE9YRjXayK\nZSRyLfJxvXyL/kn4BBYpCCdEeNgIpUBugkhkiqctcZW3b+1TboCtFq8fLwQWLlYrnBDEzURLEvoT\nRXByfh96YLSMqdAdow3inn3C+Gu4zhh6Y70uie5Zuy/0Q34X+iv6YZTyfnyHfhh6Ha2fz8P/8Puy\nLunPh+uTTlx6zG9+FzpmPEN8V9Yn/bPrq/GM8V2W9iGQhP7IWD+RFf2jJ4TEeWxJzsn9Qo6Ua2p5\n19v7X+9++BnyOxAvf45a5hM8v+YppDefIzwVY5yFAAsrXgnJFiFoaXnGoxD6fINyrOHRhccYMfTJ\n9bL5s80KEbd2WJi2+rkpjtGqNgn9ViHb48eNyYeWwR5txEm0iZDZqG5GspVhxa1y64ogLmuxw4Gt\n3Q8B50xCHxS6vzAOKZ8an+XvYrt+39r37vrI59jHNvRfjM/YF+sKBCsv/ju247ds85uo8ZmWgkCn\n/6vHjeP7/rW/1f+ezyFs1W/HvtFylCzdg0AS+t3TV51ypUnod0pP5HUkAolALyKQhP7ECX1IbgvT\nqnCT/Q/7LXTCxYuXikuXLilhLUQ/eW6eKTHwWyMvsdTH4AuCnZw5EPEYyNTk5uEjDVncjMpEwmKp\nicV/JFREJo/wIrTbRObv2b3bLCz7tmyxxLvmFYAHQBMIzCT0h/dNt3wK3Y7rZTs4jvje2wiRU9MV\n4+/xOz7Hto5kdEh8Z3+o/Be/8799WoeM/cu6XnxHy/cjtaEH+m/ZD33T9rbfxd/LBmXxXbm1E+R/\nbUEgCf2RYSZvJ0Q7Sc8fPXpUXLp8RfPHZS0OX5Fn1oDPIVowhqCvJZGWEST5HrCeZ07h/a5nQE+C\nPQssyr3HAJQ5g1Y1FvLKzyyhwnftqMyDCrGzYf06LQKvUV1lyXAn83lJQn/kMZN/mUIIJKE/hTp7\ngrdafrlzqPLn2P5UG9/xwoeIjzrBy8mf9yACSej3YKe2+JaS0G8xwHn4RCARmNIIJKE/cUI/EhvS\nondhmX9FMZFpsbi0RISyvnwx9KKaBNF+o/3NUKxiQDbSQCwTKiZjS96eVpG3Z4nMIdQCpAx1O+ES\ndhMuYZcsLDd5bGQR/ZD9/HaiJQn9iSI4NX6Pbhj64Ujtp5AIXTLG/Kf2ye+6E4Ek9EfuN+YB5gRI\ndxZ/ialPvXL5ioVX8/j3TyzEmi3GVeaO+nmkfAbnY8TNECGB+cLmDch+52rMCFmLAHiK7dF8QYgd\n5g68uQjhs0SVHKGTWZLQn0z089wdg0AS+h3TFV1xISF0lS+2/N1o2yF8MYGwnSURqEcgCf16RPLz\nPyGQhP4/IZR/TwQSgUSgcQSS0J84oW+kPASmSJZBhUe4f/+BwibcV3tfBL9i31cSEhK7+NVLrDBf\nKoTCK1n1vy7eyKof634sJ0cqyNVmyU/eKqz6LdyCQi6IpCfkwtKlS6sEzHpZVxJDf6Ni6EeYHfcC\nmNUU2TwJ/ZF6Kb8vIxD6YrT8rbz9qc98F7pktHyXpTcQSEJ/5H4sRwIZUmi1e/fuF3fv3bP2sRaD\nnyiRLaT+c8XCJ8wa4XTeKLfKq1I4HRJKlws5DgmnM0e5PQnHM1OeYLNmukcYId7I/zlfoXqIw79p\n4yaFa9tgIdssHr8Wh4nVz36TWZLQn0z089wdg0AS+h3TFV11IfVCV/niP/U3visLX0nolxHL7UAg\nCf1AItuxIpCE/liRyv0SgUQgERg/AknoT5zQRwaOSlidwcHBSh1SuIQnRuoPKGwCoROektj2Kclt\nnyphofbTAsCQWkj9kQrhFOZhgU+sZNUFssjHcnLhggWWYHfVKiXWlVUlyXWXLV9WLBPBT12kfQjD\nQG2WsU0S+iP1Un5fj8BI+mL9fvWfy/pk/d/yc/cikIT+yH0X8wctc8izZySvJVzbc80VkPkDxYAI\nfUK4WcJ35g0R/+jVkcOFOPvlAiFPjhYs8BdoroCcnytyn3aJkrOzEMw8sVTJcFcsX67wOt4yx9jC\nsRYEyAc6mSUJ/clEP8/dMQgkod8xXZEXkghMeQSS0J/yQ2DcACShP27I8geJQCKQCIwZgST0J07o\nl8GGkIkwOrRO3juZT2zkBw/6LekhRAWheLC6hPR/8WI4GVM+JrH2SZy7aLEn0MWC0qzyRcasWrmi\nWL9+veo6xT5eb4Q/JAyheKpkDKEWygecwHYS+hMAL3+aCExhBJLQH1vnM2+QK+WdcqXgufVUC8As\nBuPtxcKwf/aF4Yf9D4sHytvS399v5H/5DITMWSGSfrnIeuaMhQsXiNjXQrDalVr8XbtmjerqYsWK\nFebtZdb8suhnATgMM6MtH7ed20notxPtPFfHIpCEfsd2TV5YIjDlEEhCf8p1+YRvOAn9CUOYB0gE\nEoFEYEQEeo3Qh1AnuSBJBl8rgeDtu3eVpPaiJRi8eu3aMBywTtyo8DSbNilEzYYNbqG4zC0VmxVq\nAAv8sNgnNjLhEx5B5Ks+l3UlYXieE4pH1ztSIfEhVvlYWWJ1uVAWlxD8WOlD7GOZb1b6amfJqtJj\nJ3vM5JGO2ej3Seg3ilz+LhGY2gh0C6EPoX7z1u3i1m2vLMKah5VZyD8d1onr1q4pDhw4UBw8sL84\nuH//sL81+qF+UXhQuVcGBzVPVDy/nj+POeW5iH68vTysGxb75YIHF6S+J0VfaIu9c2V9j6cX88aK\nFcvNMp99yovAk03il+8hCf0yGrk9ZRFIQn/Kdn3eeCLQcQgkod9xXdLxF5SEfsd3UV5gIpAIdDEC\nvUjoY9n4VvXd23eykB+oWsQ/fPhwWE/Nn7/ASHxCDSxX2AEIc0gQWqzim1EgwKkQ9i+10PACgl8E\nzZBaW3hg8UELD+/eDY9/XD739OkzPG6+rCfnEBfZQifMLeapnacYyGa9v9BDK8yQZb4lP8QqvwX5\nrJLQL/dMbicCicBYEegaQl+LwvBnkf+ERVc8qAh1wz2Uy2KR4Z9t2qSqhWEtDjejQOhHJbb+m8r8\nYfOI5oqYT2i5Jq8vFVN/+KLwnDmaH+ZR59mcQUz92bOVg2XWbEugjqU+i8L8nQS5zQzN1gwcOEYS\n+s1CMo/T1Qgkod/V3ZcXnwj0FAJJ6PdUd7blZpLQbwvMeZJEIBGYogj0GqFPN36QheXHD6ofP1g8\nYmILO3k+nPCYpSSBJJaNamFqROTTYuXejPLhw4fiveoHhU6gZbHBQim847Pqe/7+3q53pPNBzHss\nfFndi9yfOdPj4vMdlpWR9JZFiLjuVpD5XF8S+iP1Un6fCCQCoyHQLYQ+ZLonnfWE5SwMv3vv4W/e\n6b1dLpDkQYyzGNyswjVQaJlDavOIzxf2neYOQvO817VxXXxXLj4/+BwRZP0MzR/TZ0yvWuQzZ7R6\nEbh8TePdTkJ/vIjl/j2JQBL6PdmteVOJQFcikIR+V3bbpF50EvqTCn+ePBFIBHocgV4k9Hu8yyb1\n9pLQn1T48+SJQNci0C2EftcC3IMXnoR+D3Zq3tL4EUhCf/yY5S8SgUSgNQgkod8aXHv5qEno93Lv\n5r0lAonAZCOQhP5k90B3nT8J/e7qr7zaRKBTEEhCv1N6onuuIwn97umrvNIWIpCEfgvBzUMnAonA\nuBBIQn9ccOXOQiAJ/RwGiUAikAi0DoEk9FuHbS8eOQn9XuzVvKdEoPUIJKHfeox77QxJ6Pdaj+b9\nNIRAEvoNwZY/SgQSgRYgkIR+C0Dt8UMmod/jHZy3lwgkApOKQBL6kwp/1508Cf2u67K84ESgIxBI\nQr8juqGrLiIJ/a7qrrzYViGQhH6rkM3jJgKJwHgRSEJ/vIjl/kno5xhIBBKBRKB1CCSh3zpse/HI\nSej3Yq/mPSUCrUcgCf3WY9xrZ0hCv9d6NO+nIQSS0G8ItvxRIpAItACBJPRbAGqPHzIJ/R7v4Ly9\nRCARmFQEktCfVPi77uRJ6Hddl+UFJwIdgUAS+h3RDV11EUnod1V35cW2CoEk9FuFbB43EUgExotA\nEvrjRSz3T0I/x0AikAgkAq1DIAn91mHbi0dOQr8XezXvKRFoPQJJ6Lce4147QxL6vdajeT8NIZCE\nfkOw5Y8SgUSgBQgkod8CUHv8kEno93gH5+0lAonApCKQhP6kwt91J09Cv+u6LC84EegIBJLQ74hu\n6KqLSEK/q7orL7ZVCCSh3ypk87iJQCIwXgSS0B8vYrl/Evo5BhKBRCARaB0CSei3DttePHIS+r3Y\nq3lPiUDrEUhCv/UY99oZktDvtR7N+2kIgST0G4Itf5QIJAItQCAJ/RaA2uOHTEK/xzs4by8RSAQm\nFYEk9CcV/q47eRL6XddlecGJQEcgkIR+R3RDV11EEvpd1V15sa1CIAn9ViGbx00EEoHxIpCE/ngR\ny/2T0M8xkAgkAolA6xBIQr912PbikZPQ78VezXtKBFqPQBL6rce4186QhH6v9WjeT0MIJKHfEGz5\no0QgEWgBAknotwDUHj9kEvo93sF5e4lAIjCpCCShP6nwd93Jk9Dvui7LC04EOgKBJPQ7ohu66iKS\n0O+q7sqLbRUCSei3Ctk8biKQCIwXgST0x4tY7p+Efo6BRCARSARah0AS+q3DthePnIR+L/Zq3lMi\n0HoEktBvPca9doYk9HutR/N+GkIgCf2GYMsfJQKJQAsQSEK/BaD2+CGT0O/xDs7bSwQSgUlFIAn9\nSYW/606ehH7XdVlecCLQEQgkod8R3dBVF5GEfld1V15sqxBIQr9VyOZxE4FEYLwIJKE/XsRy/yT0\ncwwkAolAItA6BJLQbx22vXjkJPR7sVfznhKB1iOQhH7rMe61MySh32s9mvfTEAJJ6DcEW/4oEUgE\nWoBAEvotALXHD5mEfo93cN5eIpAITCoCSehPKvxdd/Ik9Luuy/KCE4GOQCAJ/Y7ohq66iCT0u6q7\n8mJbhUAS+q1CNo+bCCQC40UgCf3xIpb7J6GfYyARSAQSgdYhkIR+67DtxSMnod+LvZr3lAi0HoEk\n9FuPca+dIQn9XuvRvJ+GEEhCvyHY8keJQCLQAgSS0G8BqD1+yCT0e7yD8/YSgURgUhFIQn9S4e+6\nkyeh33VdlhecCHQEAknod0Q3dNVFJKHfVd2VF9sqBJLQbxWyedxEIBEYLwJJ6I8Xsdw/Cf0cA4lA\nIpAItA6BJPRbh20vHjkJ/V7s1bynRKD1CCSh33qMe+0MSej3Wo/m/TSEQBL6DcGWP0oEEoEWIJCE\nfgtA7fFDJqHf4x2ct5cIJAKTikAS+pMKf9edPAn9ruuyvOBEoCMQSEK/I7qhqy4iCf2u6q682FYh\nkIR+q5DN4yYCicB4EUhCf7yI5f5J6OcYSAQSgUSgdQgkod86bHvxyEno92Kv5j0lAq1HIAn91mPc\na2eYEoT+okWLip07d1rdunVrr/Vh3k8TEBgYGCguXrxo9cKFC8WmTZsKxsrWrduKVatWNeEMeYhE\nIBFIBMaGQD2hv2XLluoctnbt2rEdJPeaUgjcuXOnYO66dOlScffu3WLbtm02f9EuWLBgSmGRN5sI\nJAKJQLMRKBP67969K3bt2lWdl2fNmtXs0+XxuhwBCH30ypiX58+fX52X0TGzJAKJQCLwKQTqCf3V\nq1dX55p8d3wKsfyuv7+/Ot9cvXrV9D94THTApUuXtgWgaQ8e9P/VzDO9ffu24GauXr1SXLlypUDQ\n2rBhQ7F+/foiyZBmIt07xxoaGjISBFKE+tlnnyWh3zvdm3eSCHQVAvWEPouKzGHUdk3MXQVYXmzx\n+PFjm7sg858+fVolDpLQz8GRCCQCicDEESgT+q9evTKdMublGTNmTPwEeYSeQoBFn9ApmZcXL15c\nnZeTlOuprs6bSQSaikA9oY9hMhwm883KlSubeq48WG8ggN7HPMOcg7U+Bsk9R+h//PixWLJkiVUe\niiyJQD0Cb968KSDRom7evDkJ/XqQ8nMikAi0BYF6Qh8L65jD5s2b15ZryJN0FwIvXryozl8YNaSF\nfnf1X15tIpAIdDYCZUL/+fPn1TmZuXn69OmdffF5dW1H4MOHD9U5GZlu+fLl1Xk5Cf22d0eeMBHo\nGgTqCf2ZM2dW55v0uO2abmzrhWJkEBwmRso9Sei/fPmy4GHAgiKtKNo6vrrmZH/99Vfx/v37AgGM\nlhAXGXKna7ovLzQR6CkE6gl9bi7msCQOeqqrm3YzGC7EHIack4R+06DNAyUCiUAiUJQJfTyiYk6m\nzZIIfAqBmJNpCZsR83IS+p9CK79LBBIBEKgn9PH2Qa5nrkkdMMfIpxBABwwOE05zay9Y6Ieb2+3b\ntwvqq1cvP3XvU/67ILERNKgMBr6jUghVxMuDtvwCmTZtWs9jt27dOrk2bSw2btxYLFu2rOfvN28w\nEUgEOgcBVteZu+7c8TmMd3O3l5hbaLkf5umozCkIq2WBNT5Phfmm2X3rYQZ9/mIOS6+OZiOcx0sE\nEoGphoC7s/ucjHt7FkcAEiHmcnRJ5mwqeiM1Fz4cp+XLV5hOyZy8Zs2aHD6JQCKQCHwSAfJvBIeJ\nHojX7VQt6IvMK+/ewVW+q3KU6JIxv8ycOUtc5Uybdxwn5qCpilhhODDPBI/Zrug0TY+hj3Dx5MmT\nap3KD8JowxmcWOzAgwFXDQQyHhy+RxjDrWfBgoXFwoULRLT4gxKC2mjH7YW/LVu2VET+cnORTPem\nXujRvIdEoHsQQJhjDhsY8Hns48emppmZFCCYWz5+/FC1IGDRIioXBOk8d+5cq3PmzClmz56tOsdI\n/km54C4+KYshuPdHBcssiUAikAgkAo0j8PTpQFWvfPEiDcUCSUKWvnhRm8+DwGceYu7xuX3elF9Y\nXrhwYXVOJkxTlkQgEUgEPoUAfFyZx4TQnqoFLPBYgKukui6JPvnRFoudq3S+cvp0X0yGqxStPVUh\nMw7X9b9lmnNWmF7dDjCaTuizagMh8vr1KxHVr41EaMeNdNs5WO3yeEtPrUUo48EJCwsfDCtMAEEo\nYyXMrS56/yGZM8eJJQgmrB2zJAKJQCLQLgR8sfVVZR57rdN2P6H/4YNb5TO/vH37pnj06LEE1sdq\nH9m8ggUBSeNo58+fr7rAWqwusowPgWnTplcXR5jDIFayJAKJQCKQCDSOwJs3r02nRL/EUjCLI8Di\nBiGIHj9+ZCQUOtOsWbNNd2IuZ173OrVz2IFJ2Wghx08ikAgkAp9CALI6OEzmm7/+6n4v7U/d51i+\ne/36TcFiOl5xAwMDZhSGjgxGzDVhuIQRLrqO85TwlWM5eq/uM6061zDnsMjejtJ0Qr8dF90L54C8\nRwBzQeyxWenjzUDlgVi1apXqaov7x4CA0Odh8QcGBHwlrBewyHtIBBKBRCARaC4CEWaHozLfxPyC\ngPrgwYOiv/+B2n7NLdMstNnSpXhGLZNX2CIj9iH3c0G1uX2SR0sEEoFEIBFIBJqFwODgoObx+8X9\n+/c1p/fbnA15jSEY1pPM6VTm9zAMQ8ekZkkEEoFEIBFIBNAXKaE3RotVfiwY02IUFoQ+xrfkJokK\ncV0j9HN+afeoSkK/3YhXzsdDgSA2OPi8eP580FYD37x5W2Cpz8Myd+4c1VoYhLJlAQ8NlpPErUqh\nbJI6ME+bCCQCiUCHIoAwBokflXmF0G5l77mwQGEugbynQubjoh+1XZYFHQpjXlYikAgkAolAItCx\nCDCvYzkZVpRBxBAqkLkdPTLm83Kbc3vHdmleWCKQCCQCbUMAa3t4x6joiXjEYZ3vOmN8fi3O0XOz\nzJgxvYDQX7p0SbFkyVLVJVUL/VwwblvXDTtREvrD4GjfB3fpiYek/qEh/A7W+hAyb811wwmXxSJc\nFtpnJ/jnyOIi3fnb12t5pkQgEUgEOh8B5hcUfWrEPnzxgjiIL/Td60qM/FnWMpeEoo/yP3t2zWUf\ni74siUAikAgkAolAItB5CLBozxzvOdleDSNiIGiCXKHFSj888Zj3syQCiUAikAhMbQSYJ8KDm/b5\ncwyNqc/se/J4sgBMnTNntuqcSq3pjuiQ5blmaiM6OXefhP7k4G5uLZAuxOaidQtKYkS+sgRHEYqH\nFsGLOFUrVqww18lImEubVhaT1IF52kQgEUgEOhQB5pQQyvAEY3toiNa9wVauXFl4XWVu+YTWcSIf\nry/P1xLCWYfeYl5WIpAIJAKJQCIwpRHAIh9ChjmfFhKG+Z4cbRD9WFmiX1LXrl1brRiHZUkEEoFE\nIBGY2ggQMSQMwLDIf/jwodVHjx6alzeLwFjgY4nPvBEVYp8w4Bh+RTi3qY3k5N59EvqTi3/17KyK\nhdCFJWWN0H+kB4aQCLWHiERH8+aRuHC+WVhCxsTqWfWAuZEIJAKJQCIwZRBAmY8QO3h2DQ290OKw\nV4S1cKNEeFu5cpUR+uRqYR6J/Cy0WRKBRCARSAQSgUSguxCA3C+Hcn3xYkikvnvpIQMsW4aFvsfU\nX7BgfiXePh55vpAfpAyL+VkSgUQgEUgEehMB9MCo8I+hI9KWF4W5+/DsYu5wg+IF1pKnJUvnIJCE\nfof0RTxYEDIQ+0NDQyaYYVX5/j1uk36hWE/yEEXFzYXVMh4ytrMkAolAIpAITD0EIOyZN6iE1omQ\nbbRKdVS1ooC0X7RoscXMX7x4keYSQre5hQVtlkQgEUgEEoFEIBHoPgQgZJyciZB73vLd9Okkw/W5\nntAJ5MxxY7FFVaMwjMNSDui+fs8rTgQSgURgrAhEKFb34iJUW82Ti/wrRA9hgZhcnWUSn4ghEXIn\nI4SMFe327JeEfntw/sez4C4ZtT6eFQ8cJA3WFsQ/LpMvxNZftmyZheTBJSZLIpAIJAKJwNRDAMs8\nPLuePHmsBHnPqovAIEHyooULsapg8RfPrjnVRWEI/givk5Z5U2/c5B0nAolAIpAI9AYCYRz2/j3G\nYWF56aS+W+976D3m/VrovZWSEcJQzMMo9AYaeReJQCKQCCQC9Qg8ffpUeqLXegOw0BUxFsZQ2OcG\n1xmZNyDyaXPhtx7Vyf2chP7k4j+ms/PQRUyrgYGBKvHPAgAkPmETVq9ebaR+mZgJcibaMZ0sd0oE\nEoFEIBHoWASwmojCdtSnTweKBw8eWH3y5Im50ePJhTv94sWLLQcLeVhwm8ySCCQCiUAikAgkAr2L\nAOT+69cebg8Pvnv37lm9e/euyQ3r1q2zmPq0WF7OnTvPWg/B427hqT/27vjIO0sEEoHeRiD0xdAT\no8X469GjR2YEhsEwhsQfPhCG54P4ROcUV69eY57cZSPi3karu+8uCf0u6D/iIJPgiIqFBUIaoXmw\nwMAdZt68miDmQhmf59jfYiWN1bQsiUAikAgkAt2LQCS+Q/hyZf11VWHHeyvc7d++fWNukVjiY12B\nZT7eXFSsLrIkAolAIpAIJAKJQO8iEN7e5NQh9N7AwBN58Hl99+698ufMMwtMcrJhiRmVkAqQ+tSM\nk9y74yPvLBFIBHoXASfpIeo9v1rkUSNROtteXxmJ76S9h2RbutQT4BI7nzmBRV3+nou7nT1WktDv\n7P6xq4uEFR4X8bXcKHkQPd4Vf4PYh+An7tWSJYtljcnDuFgPoifNhdCZNSuTV3RBV+clJgKJQCIw\nIgKQ+Lzzed8jjPlC71Nref+XlfDa4i4LvL7IS+gdlPUsiUAikAgkAolAItC7CJQNALC+fPHipeXX\noUV+cKLfyf4g8+fPny+i3wn+2E4ip3fHSN5ZIpAI9CYCoSvSErr7+fPn1YqRb1T0RnhCdEOMwGIu\noI0FXeaAnAc6e5wkod/Z/WNXV46tD6FTTmbx7NnTqsUFlvyE34kQPFhj+oM53widLrjVvMREIBFI\nBBKBERBAMAvLCt73/f2E2Om3FsGLkDrUZcuW27s/FHMEtnSbHAHU/DoRSAQSgUQgEegxBOrDLbjF\npodVQH6IUK6EXkBXRF4gASJefITpI6QrbRI5PTYw8nYSgUSg5xFAVwxDYMh83vePHlEf2Xuddzs1\nPLfx5ObdH/HxaZPI755hkoR+9/SVXSnkvodVeGkt8fU9FtZjheN5rvjISyWELVW7xASzcKXEQpPw\nO1FTQOuyjs/LTQQSgSmHAAp5uE2ymPvmzZuqgIZC7kmNBqwl/u2qVSst0d3y5SsqVvlunY9gliUR\nSAQSgUQgEUgEpi4CQfJjGNbfjzGA15p33yzJDvOM2Fm0CIJnkXn+he6YssTUHTt554lAItC5CMAP\noieiM9KSP4VQrBD7xMmveXTDFS6p8oWLFy+ysKyxmNu5d5hXNhoCSeiPhk4H/g1hDCtNYiTT4jo5\nNDRosfUR0DzO1XRr3Y2GGMpzjNwJa01ahLMsiUAikAgkAp2LQCzgli0tIskd5H54b9GihJetLXj/\nR1Jc5oUsiUAikAgkAolAIpAIID9A8EQYBkLyhPHAtGnTJTu4/IAMgeUmZA81Q/bl2EkEEoFEoPMQ\nIBQrPCBGv7S84wnRTUvOFPTEv/76aOG5431OSy6VCMeK8W+W7kQgCf0u6zcI/Y8fSXLx0YQvHmAe\nVsh9WlbhqC9eDOnBLYbFVMZ6P2rExfr/7J0HmyPHkW1r2nvvZuhFK5EinyjK7dvdH79P0kqUVnTS\nSqRET860997NyxOBAKqb7RvoLqBufUwmBkAXqk4WChE3IyKb7PR1uCIgAiJQGgI42LEYOo533kg7\nPDxKqZKeIkkUHYuj+yK41EHsskndSJ1URlZpLhmdqAiIgAiIgAhcSIAIzvAb8R3J+PO2ac/zxxHN\nPzo6mpH1NzY2ZqL+hTvWiyIgAiIgAndOACG/FoW/ZvdxDwDetzI6LuLjM/af8BUJ/iLIF39Rwb53\nPmx1+0AJ+nVDeX87wuiiYaDNzVFTeS6bnZ21L3MIOkRbTExMWjmGiYkJi9g/XRtLos/9jaE+WQRE\nQAQgEPdzHjNhu7y8XG0YbGRn7e3t83L28OFMNjPzMLWZM+/p9ib9TwREQAREQAREQATOIbCyUrMz\nNjY2TohBrMs2PT2T2nS1pn74i9Gfs1s9LQIiIAIiUGcCMdma75mQpT4+ZbiXlhZNE8SHRBtkjRTu\n31NTtKkf1Mmv8+Fpd/dAQIL+PUCv90fGF5pozpUVr6dMj/BDig3R/Gx8oUmniZ7HpE/SQvinl4FW\n7xHS/kRABETgfAIh4tNz397dpVH7kBqItca9/MED3w+RFETOsQAufWRd6f59Pme9IgIiIAIiIAIi\ncJIAmd0I+bTt7S3L+MYOoWRDLJgbZVsp74f/SAvf0cu9VoyTk7vWv0RABERABOpAIMqsRnk0/EQy\nrGi10qw79hhfMBr37KjQQR/36+jrcGjaxT0TkKB/zwNQr48PQYiSDFFDK77oEdGZL9WDITY8PFyt\nuRwLItGr3nK9RkX7EQEREIGLCcS9Owy12uJFa9XSab6Hp1ZCjQlYSuv09HSn2ofUP+yzpsnYiznr\nVREQAREQAREQgR8SCEEo+lhQkYAC6utT4o++o6PzhDCEz4jtQYCBfMcfctUzIiACIlAvAgj5RN1H\nKR1KsTIJS8/z3IPb21lHsz0F63ZVSut0VYJ5+2xylgnaEPqjr9fxaT/3R0CC/v2xr/snIwzxZfeo\n/COL7tzcpC6i19WPxY/W1zcsKp80SholeBCJImIf40ybCIiACIhA4wmcvm9TYmd+ft7a+vpaxRAj\nIq431T4cSJOwg6l2/pDVsuVeHQ3DTJsIiIAIiIAIiIAIXIdABBQQ+LW/H4srEiC2U8n8XrGefVJ+\nZ2Zm2np8R0R9MgTlO16HuN4rAiIgAtcjgGgfk65Mti4sLFiZHXp8ycFB/MNBC9bFX4zmlThc6I/7\ntHzG67Ev+rsl6Bd9hG5xfHzpXczfsoVyV1dXs2hEU0T6DZH6iPksqkjf2emGWQhFtzgE/akIiIAI\niMApAjXn2Rc3J9ri4GDfHGlE/JWV1dSWLdsKg8wXM+qvGGtD1vOcNhEQAREQAREQARGoFwFqLkf5\nBkQjggyoy7y8vGT1mCnzxwK5NHzGCAZjrTYiQz1KVIFh9RoP7UcERKC8BLgfe4mdwyTm79u9Oe7P\naHpra2h7a3bfRc+joe+F70gfJVnLS7H1z1yCfguPcX4mjzqIlHJg0Qyi9rk5RFoOwj3lG8Iw8763\nWmu/hRHp1ERABETgzglwb6Yh5DPx6qXSyKbaNoc5yqMRdN/bS0kd7sfeE6lPyiQRF9pEQAREQARE\nQAREoF4E8mUdsFOipAM9JVwR7T3gq81sEa+tTzmHnkqJB8oCdmk9tnoNiPYjAiJQSgJE3dfWUduu\niPm+tgm+I+uqeYDYkQXjRvAXfUy00hPEq621CUjQb+Hx5UvuM3vUP2RmzxfOcAFpx6L3Efi5WXR3\nE2Xhoj43gqGhodSGLRK0hRHp1ERABETgzgkwwUoqO/deFqBbW1urNhzh/n5PlQyjLCZbSW3HMIu6\ntXd+4PpAERABERABERCBliUQZQCjhGusx+ZRodtJ4KeM64YFiRFcMDBAmYdaJiFr+2C7qKRDy14i\nOjEREIE7IICOh39I5jY9wV9E6TOxymQr99loIeCzxhoBX/iKTLzSa32TOxise/4ICfr3PAB3+fFu\nnLGw0ZHdGGZnZ7O5uTmrwcWXPxpi/tjYeDY+PpaRWskWhln0d3nc+iwREAERaHYCOMmxIeKHU8za\nJqS0R1o76ZIzMw+zhw8f2vomCPzcm+lllAVB9SIgAiIgAiIgAo0m2ryjAwAAQABJREFUECUC8R3J\n9H78+LG1J08eW4S+B4ARBHayEcnPJr+x0SOk/YuACLQCgbyfyGPuvYuLi6nk2aL1BOFGhjf34+np\n6Wxqasp6Sut49pTXym8FHjqHqxOQoH91Vk3/zjDK6LkprK6yyBH1t9aSwRWn9yAJR51mpBF5QXkH\nIveJ4EdUIjIU4wxhSeJSMFMvAiIgAucT4J4bGVJEVuzs7Nqi5UToe/SbR1wQeYFRNjo6avVpcZDz\nUflyjM9nrFdEQAREQAREQATqSwD7JcQl7JWop08QAjYJEaA0gg7wG6M8YASJETGKHaNNBERABETg\nhwRqAbfHtp4a/uLurlfViJI7u7s7qdrGUUWvQ4d7kGrlj1q9/NHRESux8+CBa3PS537IuNWfkaDf\n6iOcOz8MsqdP3TBDOPK6zdtJXNq2Ws7Uc6ZxY/FgUiJKH5yIusBYixQeem0iIAIiIAIXE6DkGfVn\nNzbWref+yyK4RFpQA5FJVBxemjvDfZZGSQql16r1heYk6F/MWa+KgAiIgAiIgAjUj4D7jviPT81m\nISAsGgEK4Tsi/HsAArZMhwUnDA4OWelWfEdtIiACIiACJwnEffXw0NdWYy01fEWyt1nzEuE+hPqY\nOO3u7kp+Y3dufbU+u+fyPvxE+YonGZfhXxL0yzDKuXPkxsGG4YVwT6uJTV4TcWtrsyr2E40xOTmZ\nSj9MWj84OGgGW4hPuV3roQiIgAiIwBkEcHg9bXLJUicR8o+PfYK1vb3DIvKJyqcR5RaTpkRZhHEm\nA+0MsHpKBERABERABESgoQTCd6T3tdncd0R0Wl1dtUaQmG/uZ2LPjI9PWOlAfEdtIiACIiACJwlw\nT2VdtYjIX1tbNX9xYWHB7qtkbcc6JTzOr7HW0UGwly9SHlH58hVP8i3LvyTol2WkLzhPbiYYZR5B\nShSpNxY9IgpjZGTEhCZSe1h8I9Io6bmBRASpbiIXQNZLIiACLU+Ae2k0nN5oGGvh9FLijAlV7p0Y\nYgj44+OsWeKNCAxtIiACIiACIiACIlBkAtgzlN5ZWVmx+vou9rvtQ3S++48jFq3f0dFZLc+jQIUi\nj6qOTQREoJEETgfVUk6HAFoaGlz4izweHh5JbdgaE6OI+vTocdpEIAhI0A8SJe4RoKKWM32U4qGn\nHE8I9iE+eY3Enkp9fa+tj7gvIarEF5FOXQRKToD7aGQ90XP/jLR07qt5R5eofIR8Mp0oqxMGGj33\nW20iIAIiIAIiIAIiUGQC2DkslIutw2OyEan/TCkezzR0ER8fEftmYKDfIkzxFz2owbMQi3yOOjYR\nEAERqCcB7pOuu+1Ueurle5Q+pXcoxXp8fGSZ3Aj30dDf8BnpuadqE4EgIEE/SJS8pwRELZrUF+KI\nm4sbal4zkaiKvr7+1LzGsxtoGGkDJlCVHKNOXwREoKQEiLjgHsq9lEaEBZFrtO3tLVtYHEMsjDGf\nGHXjDHGfhoGmTKeSXkA6bREQAREQARFoIgLYOohT9PiM29suUCHuI+zzHD21nScmIhNxwuydWrBY\nWxOdsQ5VBERABG5HgPsjlTHW19dS26jcK117Y7Kzv7+vqrXhF0bzNUp8EXIF0d5uDFrtryXot9qI\n1uF8iC7FOEOcwlCbnZ21Njc3a8+HiE8dL2okRkkehCo2CVJ1GATtQgREoKkIcN+M6DQc2Pn5ebtv\nPnnyxKLXoqQO/dCQLxTHvRRhX5sIiIAIiIAIiIAINCsB/Eai9aOtrCynNYMIaliy7MVHjx5lDx8+\nyp555hkLbECQQqBSVmKzjriOWwRE4DoEyORmo5SOr6u2aEFf7jvumw+JXzgzM5NNT0/b+iPcJ2Py\nU/radWiX670S9Ms13lc626jtFRH71EaMxk3H0yhZhKPDxKh8pGnMIkakKTefaFf6cL1JBERABJqE\nQD4in3tj1ECkJwIj0tAR+70G4lAS84ctwynum0TmaxMBERABERABERCBZiWAnUMZCS8lsVuJQPUo\n1P39g2rZCMpHYP9ExiL+IqJVCFcSrZr1CtBxi4AIBAG0tGgRIOtZS3vJV6S8de1emWUu9KP3c3+M\nQFmCv9DcVJ4sqKo/j4AE/fPIlPh5ZhDjJoSBhjAVDaGKKIyDA0+xJI2yrQ3Rvi0ZZ92VyFNEK92E\nSnwJ6dRFoBQEQrgPJzbuk6w9wj0xnFREe8qU9fX1Jke2z9IniUyL9MlSwNJJioAIiIAIiIAItCQB\n/Eb3D73sYNhD9AhYESRGj6A/MOALPCJg5YPBEK+0iYAIiEAzE0A/i2oXCPkbG0xublh/eHhUDXbl\nfhdlV+mZ6HR/sc8e83oExmqys5mviMYeuwT9xvJt2r0j6kfjpkTDCEO48puS35iISkXcp8cgm5yc\nTClCk9ZHilDMLjYtDB24CIiACJxBgNRyr4O4bimUW1u+ONzm5laa1BzMxsbGrDHB2dlJnXxE/K5q\ntEUYamfsWk+JgAiIgAiIgAiIQFMQCJ8xAsIQs/ANaWQrLi0tVdqiCVYjI16yFfsoFn2kl6DfFMOt\ngxQBEbiAAPe/iMhHO6PEjrcFE+gpreP3PV+HMspZI+p7JQxfODxE/Ogv+Ei9VGICEvRLPPg3OXWi\nLFZX17K1tdXU1iopQ9sm9BONSk19b2NV8YqbE69hpEW7yWfrb0RABETgPgngqMbkJhOcOKnUQqTx\n2BcS90XgcFanpiZTm7JyOz6x6amTMszucxT12SIgAiIgAiIgAo0kkA8GI0p/fn4um5ubT23OIlIH\nB13IYj22vKAfdfUVDNbI0dG+RUAE6kkgqlvEfW9/n9I6NC/BurpK+erVpKGtmCZGGVZKsDKhOTg4\naA1Rn/ufNhG4LgEJ+tclVvL3E2lRS6PcSkL+rqVS0h8fH9msIrX1OzrarbRE1IkmhShSiojk1yYC\nIiACzUQAYy1EfMR7GgYb98S9vf0k9B9amR3EehrOahhr/f199pomNJtpxHWsIiACIiACIiACNyEQ\nkfoIXNhJEQhGMBivZRm2UmZ+Y62efo+V43HfEb9R/uJN2OtvREAE7pYA9zTE+1hDhMc0Ar3CR6TU\nDvdD9LD8JCb3v1hXhIlMbSJwXQIS9K9LrOTv50aUr5EYN6y4iW1vb5ngv7W1XZ1xZOYxblzUBeOx\nNhEQARFoFgKI+WykT5I2vry8nNpSckqfmkOKgE8WEvc3auTTY6BFXVgiLkLop9cmAiIgAiIgAiIg\nAq1KIErwRDAE9pMLXHvJT/SgCHxFAiOwkWgdHZ0WDBHRq/IXW/Xq0HmJQGsRQB+LEqz0BL96yZ1d\nCwaLuvjuH/ZW/UP8xFhvLapZtBYZnc1dEJCgfxeUW/gzwjjjpkX0xezsbGqkVc7aKt1RI5EVu0kr\nciNtyMStFsaiUxMBEWgRAiHm02OgPXnyJLXH2ePHj80IC9GeVEmvmT+ejY+PW9RZiyDQaYiACIiA\nCIiACIhAXQgQGDE/P58tLMxb+VYCHSKDEX8x1mPDZ9QmAiIgAkUnQAZ31Mnn/uZlWPcsQh//cXp6\nutJmLOgr6uQrIr/oI9scxydBvznGqbBHmY/WZ4HIlRVqhNGWqyV2SJns6enOpVH2WhqlC2Es/tFR\nFfgVvVrYodaBiUApCGB4EWkRzSMsMMqILtvJWPA2Su6wyG13d4/d34i6GBz0WohMXuKcahMBERAB\nERABERABEagRYN0hakmvrq4mm2oz2VvHVrYVuwubyrO6PduRf+MvkvWIXRV+YvS1veqRCIiACDSO\nAP5hlBKjj4Vvo17+zs52CvzaseAvyrDyfhqiPQGusc4k9zPuZTwvX7Fx41WmPUvQL9NoN+BcQ/Si\nR/BC6PIa+1vpRndoaUaHhwfphpalaNZ2u3kh4FOGZ2iIRUCGzEjDMIvWgMPULkVABETgSgS4l2Gk\nUfOVhuMZaZTc4/w+5uuEuJiPoE/9Q+953NPTW3U6r/ShepMIiIAIiIAIiIAIlIAA2d34itSbplFn\nmgUksbGePj2u2E8PUhmeDsvsHh4esT5KUshfLMFFolMUgYIRQJzHPyQaP9ZUw0fc2PASO7EuCIfN\nvaqzsysFsHZaEGu+5E6UYc1PUBbsVHU4TUZAgn6TDVjRDjdmH+lD3Ocmx2MWPqKtr6+ZwcZsZkRh\njI9PZBMTEymtciJFYgxUoy40U1m0EdbxiEC5CHD/ijVBcDRJnVxYWEiplAtJ4D+olNUZs76vr9fE\nexYzYpEjoi2ilYuazlYEREAEREAEREAELicQ/iI9gRNE6UerCf3bFt06NRWlKqYtUj9EMPmLl3PW\nO0RABOpHAB2L+xUTj/RUpFhaWrRSOwj7ZBYh3HuGUX9GKVY0Lv6Nb4jIn4/KV5ZR/cam7HuSoF/2\nK6CB50/ZneVlL7+DocbNLyJfqZE4Ojpm6Ufc8LjJ+Wxm5wlxXze7Bg6Qdi0CImAEcCp9wtGdS4T8\ncCrzZcR4z9TUVLWxAG6kghNxoU0EREAEREAEREAEROBqBAiiCDGfnozIiHrFZxxPAWCsS0QQGBmQ\ntQV0O074i1f7NL1LBERABK5OIHxD+gj4ivUjCVrFR6R8GD4j5VajRQlWKlIg6GsTgUYSkKDfSLol\n3zeG2daWR11QU4waY8xq0ii7Q+kKRHxq7BPpijjGzCbGGtGu9MxkahMBERCBRhLAOIuGmO/Gmj+H\nAXd4eGSGHPcsX9h72HruU7pXNXJktG8REAEREAEREIFWJUBARdhf9LFGET1+owd8dSafsMPWYuvr\n8yhY/MV8MJgCwFr1CtF5icD9ESAYNX9/iseUCauV3zlKB/g0aVj9lej8PtO0yN6mEfilTQQaSUCC\nfiPplnzf3ASjIeLHTZCFJRH4ffGQ7VQrsS2JY0OpeY3EuAHSK+q15BeRTl8E7oBAvk6+O5Hcu5h8\n3E/GWI8ZaTiP3JOIEIuo/CivQ+q30r/vYKD0ESIgAiIgAiIgAi1D4HRd6vAVCa7wbMmtqsiPHYav\nODo6kiJhh80WC3tMNljLXBI6EREoDAF8wsgYIlA17k+s+eGTjASjhnDPGmrd6b50MpOIiUdtItBI\nAhL0G0lX+7b6h2AgyjVKWGCgzc3NVdqsvTYxMWn19OlJT6IMDw3xTJsIiIAINJIAdfJpi4uLZrh5\n1MWBRV9MTk5mMzMPU5uxqPw4DkWDBQn1IiACIiACIiACInA7Aoj7+IsEgxEIhpj2+PFja0+ePLYs\n7slJL3tIGR4E/qhbrYzu27HXX4uACPyQAGV1lpfdR1xdXc0J+rs2qTg9zRofU2ldtfFqxhACPj6i\n/MQf8tQzjSEgQb8xXLXXUwRIqYxyO/TcFKPG/sHBfhLufXYzovMR8iMalpIWRGDQ6+Z4Cqz+KQIi\ncCUCsYB31EPM34+YbMRxpMeRTHZY5V7zwCLBWO9jbGxMdRCvRFpvEgEREAEREAEREIHrE8BfjFIW\nRMMSaOFBF4spE7LdfMMo0xo+Iz1+Yr6+/vU/WX8hAiJQRgL4hdG4/8SEIr1nCW1bVQnuR8fHT1Ow\nKu9/aoGno6Ojth4kwaiRtU0vvaqMV9L9nbME/ftjX6pPjsVEiLzAUEM4CxGNOmTcQGnUqiaFCaOs\no6PTDLeI2KdXSmWpLhudrAjUjUAI+fQYZb7w2rr1bqBhpD1NBlmbTR56ffzuJOKTTul1EXEYtYmA\nCIiACIiACIiACNSfQN5Ww1+kzEU0BLajI1/XCHstylsQBEa0fkTsK7u7/uOiPYpAqxJw/cn1Ke4x\nXmJnw3pe8+1pEunbqpOG6FRMJIaPyD0nyq8qOr9Vr5TinpcE/eKOTUsdWT46lse+0OShGWbMfq6u\nrmVra6uprSVRzaNjuSFys5yYmMhIraSXoN9Sl4VORgTujAD3nDDaWKx7YWGh2hDqI9ILhzBKfvX3\nD1QmF1nEu0P3nzsbLX2QCIiACIiACIhA2QiEv+j9cQoCQ8D3RiDGyspK8hlXTOTv6qJedVcKwui2\ncq0jI74WGwFg2kRABETgKgSYOIyofIJNIyNocXHJou4jIyjvHw4M9Cf/sKtaZicfla/o/KtQ13vq\nSUCCfj1pal83IoCgX7t5LlqUPhEax8dE63dZqQtSmih5wYxopDQh7nPTbGujTlnbjT5bfyQCItCa\nBHAGuY9Ej7FGo8QX0V5LS8t236E2IjVYcQCHhoas5/HgoD+WYdaa14fOSgREQAREQAREoHkIUK7V\ngzHmrXRrzR9st0CM4eFhW+sIGy5ei3rWzXOWOlIREIFGEgi/kCAv/ER8w1jsFkGfSUMvC71spbzw\nB8M/pI/HWuy2kaOkfV+HgAT969DSextCgBtpLb1pPd1YWYwS8e3AxDhK8FB+x1cT77WUyt7ePlsw\nl5tpNAlvDRke7VQEmpIAhlrcR7jHMHG4s0Oprx1bz+PwkPsMUV8HlVRtyup4ynZE67O2h+4rTTn8\nOmgREAEREAEREIEWIsBaR0Tpr6+vWWCGZ116ydaOjnaL1CfjklI8USqRgA0Jby10EehUROCWBLhv\nsI5aiPiUfq493je/MLKCuJ/EvYQI/fAPeayqEbccCP153QhI0K8bSu3opgTixhqLVMZNdXd3x26w\nOzvcaP0xs6SjoyPZyMioRdJyo40m4e2mI6C/E4HWI0AKZX4xI5803LTJQ7J/mBQkjRKjDOGe+oc0\n7ic4f7G4WuuR0RmJgAiIgAiIgAiIQHMRIDgjhDhEOAI0CNTA1kOA8+zupya0jY+Ppczu8VSylezu\nLgVnNNdQ62hFoGEEuFfUAkk37P6BzoTehCbV29tTFe67u2u+If5h+Ib00p0aNkTa8TUJSNC/JjC9\nvTEESH9io/fFcjczIjFq6ZUL2fz8vJXdmZmZyaanp+0xYlw0ld1pzNhoryLQjARw+txg84VvuZes\nrKxa7VWiKriPeHuYWwSXkl4ddroy1Jpx1HXMIiACIiACIiACrUoAP5GGKMe6a6y/hn2Hz0jDh0SU\ne/ToUWrPWB+L5Mqua9WrQuclAlcnwMTg8nKUXV1O94wtE/MR9dmmpqZSm7aeewfifVSD4HXdR6Cg\nrUgEJOgXaTR0LEYgH6FPrWuvZYYYt2IRtCxEQgolKVDMokZ0bVcXCyN1VW+8wikCIlAuAhhp0biP\n4Njly+zs7+9ZdBfGGWtyePTWePWegcGmFMpyXTM6WxEQAREQAREQgeYigGiPj7i1tVnpKanojXKL\nAwOshUQbMD8xsrnxE6mvj61HkzjXXOOuoxWBqxCIiT/P2vE6+eEfEvCFiO8BpEwARnbPsQV1sW5j\ntLhfyD+8CnW9574ISNC/L/L63HMJUCojGimVHnWBkbaVIjJ8ARNKZmCEdXVFyZ0uE/gHBgZM7I9o\njHM/RC+IgAi0HIF8CiWCvt9HWAj3wKIriL7HKKO+an+/3yu4Z4RzRy/nruUuC52QCIiACIiACIhA\nCxFAqItSrfiKlMuI8jvYf0dHx6kED/X1j618BgtZDg8PmdAfZTMk0rXQBaFTEYEcgcjiiVr4aEnh\nIxKJ74I/f/DURPy4J3R3u55E9YdYf0OTfzmwelhIAhL0Czks5T6omE2lJwLDb8a+gCULIZFaubq6\nlgy3nRO1zIaHhy3qlllVRDptIiAC5SKwuLiYLS0tZfTcHzDY2Ohx5IaGhlM/bGW6cORoGHGI+CHk\nR18ucjpbERABERABERABEWgOAth14SfiK0Zt/Vg7aWVlOZXVWEnZ3csm6FNGY3JyKtXUH6+uvUbU\nPoEc2kRABFqLAPcGIvIJ6KKPEjtLS4sWmU91h6iVj3CPbkRjfbXwD+nlH7bWddGqZyNBv1VHtoXO\ny2dRvWYiN2Rq6S8sLNhMa8ya0hN9MTIyYmlSEXUbkbe8zpa/MbcQIp2KCJSGQP5+4JN/HoGFQ4eY\nzz2CRoQWxhj3ABpOHGV26Im80CYCIiACIiACIiACItD8BBDuImKfUhqzs7PZ3Nys9ZTNmJiYTG3C\n7MDeXsS8XivjGkEd4U82PwmdgQiUk4D7hGTmHFswaNwP6Cnb7P7hUvIP95JmFCW5Bk0/QkMi6Ev+\nYTmvnWY/awn6zT6CJTh+BDw2euolsgjS+vq6leJBxPN2mMS7Tou2xXCjcVPGYKOP2dYQ+EuATaco\nAi1JoPad94isqJlKT93U/X2PxkhB95U1Nfx+QC1VJvroicrSJgIiIAIiIAIiIAIi0PwEsA29zKIL\n+57N7QvmPn16XMnoxh7srIj5NVEfnxG7kF6bCIhAcxLIC/iU4SKwKxq+4eGhl3RO4Z2pnE6f6UOs\nx4hO1NfH/aBP/mFzDn3pj1qCfukvgeYAEKJ+3Ky5QUfNRL9Z71QWw3Qxj0gLovUjYj8MNSIxEPe1\niYAINCeBSKHEcastmk1aNYtmx5oa3RZ55SmVHoXFPSDuA7oHNOfY66hFQAREQAREQARE4DSBiM6N\nIC9q6uMfUoInyvBQYx8/EuEuovQptxElNxSde5qq/i0CzUOAOvmbmxupgoMvls33Pu4BTNZFmR16\n9xd7zFeM+vnSiJpnrHWkJwlI0D/JQ/8qOIEot8FhEo27vs6Nm7ZutfUR9VZWVi3Vanp6OouGscZC\nuSHoFfw0dXgiIALnEPDJvD0z0ojAmp19YinVpFeTTh2NWvn5hW/ZnUpunQNVT4uACIiACIiACIhA\nkxOIALDwF+lXV1eyJ09mU3tipRkjGhdRP1+ulcfaREAEmpMAPqGvnbFs1RxqE3k7Vo6ZdTSmpqYt\n2DPEe/p8WebmPHMdddkJSNAv+xXQxOfPYrlebmPLesrw0NbW1i1aPxY48UVOPEo3RP3OThbE9BI9\nWgSziS8CHXrLEyDayhfGPrR0as/I8cirfDQGURksiD0yMpr6kVReZzBFYBF94WnVLQ9KJygCIiAC\nIiACIiACInCCAIFfi4uL1hD92tvbkojn6yvhF1J+g8Avym8QyesleLrsPSd2pH+IgAjcKwEycZik\no8c/JGvbM7f3TQva2tpO/VYK+tpLrx9WyjIfWX181lHDT6T0an6NNelA9zqk+vA6EJCgXweI2sX9\nEOBmTuqk38z30g18x27miPyU4zk+ZiFdXxylq4sSHF6GI+rqR920mJm9n7PQp4qACFxEgNI6fKcj\nbTr63d0dM9QePMAxo1ET0VOnPSOnt7KmBhN3qot6EWO9JgIiIAIiIAIiIAKtSIBAkFopjq1Krf19\n6xHzYp01bEXEPhrR+kTvahMBESgOgQjyokcDYrKO8qt8v3nOxf6nKSM7s8BNvtsEcVJOKybtmMRz\nv7EtTe61F+fkdCQicEMCEvRvCE5/dv8E8jO0iPv5BTER+1ZX11K0/qqlXXHD5gZOQ8gfGRnOhodH\nUhs2Q+7+z0ZHIAIicBYBHDHPvPHFsF3Qd4EfQy3WyqDHGWPBM3peC4NNk3ZnkdVzIiACIiACIiAC\nItDaBBD6YsFcgsC8VKuXbN3fJ5KX4K8jgzAxMZlNTlK+cdJ8xtYmo7MTgeYikP8ek6W9vLxkZbSW\nlpZMwI/a+ARv1io19Ff9QnxDNKEowaro/OYafx3t2QQk6J/NRc82IYFIv8IoQ/RbWFjI5ucXUj9v\nZ0MKJdEWlODIC/o8j+DHDZ4+bu7RNyEKHbIINCUBJunYcL7i+8x3eW3Nxfz19TWLyIjFsTHYqIc4\nPe11EeP7G31TQtBBi4AIiIAIiIAIiIAI1J0A9iVld6JRniNsSso7sg7T+Livx4SNiW8YjYMJIbDu\nB6YdioAI/IBABG/iE9KYkIvvK5H5y8vLlbZkC11TbhUhnwwbGoGbNPxCbSLQqgQk6LfqyJbwvKK8\nDqV2iLiIqF5q6mOk8To/DBhjXiOx23rqbPf29tkPATO71FXkxi9RsIQXkU753gjw3Yzma2MQhb9t\ni9+G8ba3t5++v+5Qpf9bjfzItCFCPxyt6O/tZPTBIiACIiACIiACIiAChSKAKEhkbzSCRmJtJnxH\nSrRGDX0CwKivT2Z3iPv4hhHhW6gT08GIQAsSYAKu5gPuVb+rfGd53iP2vXwW31dK65zVJOi34MWh\nU6oSkKBfRaEHzU4gxEB6fgDCQKOefjze2dk1sZ/Xo/X3D9gimgiCzOySjhUNYVCbCIhAYwmc/u6u\nrq5kKyveMNj8e/jA+tpCt77gLWW04jmOUmJ+Y8dKexcBERABERABERCBZiSAvelrr/limviIXspx\nJ/WIhPiMe9ZjX/pCmr6YJr4hmd70EgibcfR1zM1GAMHea+RvWqms2nd1xyL2fX3E3kpZ5e6su9vL\nK3d3d9t3NaozSM9ptpHX8V6HgAT969DSe5uGQF4g5DE/BpTtiNIdsTgSPalY09OU7Zg2w81v/l6L\nmwU3tYmACDSWAN9RoqboyaaZnZ2ttCcWfRHrXxAh5TXzR63n+cikkbHW2DHS3kVABERABERABESg\n2QmEj5hlT5Nwv59FVihR+5Rr9TafxMHu7NGjR9nDh4/MR+TfnuHdZVH6zc5Bxy8CRSdAQGYEeNHz\nHfXv65Z9BycnWfNiKrVJ+76GgM+kG5uCvIo+wjq+ehCQoF8PitpH4Qlw848ZXvqtLVZEp9+y9MrB\nwQGrucYK6D6767O8EYnBDwMpltpEQATqQyAyZFjzgggMnKpIq8wvWIbDhZDvrS/VRBzMBgdpQ+ZY\n1edotBcREAEREAEREAEREIEyEXD700t5EP1LTe6VFa/LjRhIHW7sTexOzwj1aGD5h2W6SnSujSQQ\nE2wR2EUGDd9LegR9NBwX8rcs6IvALxrfwdHRsUoWzaj5hOg1yqBp5Ghp30UkIEG/iKOiY6o7gfhR\nQDCMH4dI20JY9B+T4zST25ZqryEeek39EBIx4ojM0CYCInB7Anzf3GDzlOft7Z00wbZRnWSLiAq+\nj11dvpB1lNWJnu9kRGDc/oi0BxEQAREQAREQAREQgTIRwAdEPIyWD/46ONg3/5C12djytbnxD7FD\n5R+W6WrRuTaCAEJ+BHnR176DG1b+itejdXS0m+/X3t5hugyBmNFCyCdzWyWxGjFS2mdRCUjQL+rI\n6LjqSiD/Q8GsLgsfRUQw0cBeimfN6ieyOnr8OHgk8KBFaGDIaRMBEbg9AQR9n1Bj4dsdW8B6ackj\notbX16wMFovdjowMp+/iQNVpChGfbBmaDLbbj4X2IAIiIAIiIAIiIAJlJIA9GmIhPcEm0RAWfU2n\n1VS/e90yufERWW/N+1p2dxnZ6ZxFoB4E+N7FhBo9WTJLS4upLSetZtcqKXR3d1UFfNdpBixzGxE/\nsmVqwWC+5lo9jk37EIFmICBBvxlGScdYVwIYb/HDgbjPD8f8/LzVTFxfX7cIDCIvEPAR9Em3pCHy\nh4gYdbs5MH5AtImACFxMIO80McG2vb2VUii3rWdCjdqIfBf5Dk5N+ZoWrGvBd4/smGgXf4peFQER\nEAEREAEREAEREIHrE0BcDHsV29TXdHpiPmJfH9HAfck/7DdBP4K+EBjP8g+v/+n6CxEoB4H898wD\nLb3sKpNpS0tL1paXl2xyLT95NjQ0bMFeBH2h1WgTARFIWuTc3LznkYmGCJSEAIZaPmK/FqG/bjXa\nfIYXGA+s3EdXl4uJrKQeJXgoyRPGW8wIlwSfTlMEbkSASTTKXZ3VMOAOD0l5PrTvJpH5HqHvBhvR\nF9Fu9OH6IxEQAREQAREQAREQARG4gAA+YjTqdq+urlrACdmj+IXhI2KTRskd72Otp16Vg7yAr14S\nAQhQAhnfL9ZOy/uGPE+5K3q+b/lSV/7Yy+ywAK42ERABCfq6BkpIIAw1Zodp/GDkf0hqj3fsdd7P\nhoA/MjJSFRqJGI46bSr9UcILSad8LQJRWoe0ZSbR9vcR8DHYDtJ3qy05Rl6PNGrkR4/TFJNn9NpE\nQAREQAREQAREQAREoN4EwuejJxAl1lvL97u77h+6bUpN73bzDYeHiR4esYzSeh+X9icCrUSAclZM\nmEXv3y+ytnfs+0MQZXe3r1HhE2bdNoHW2dlli98i5ssnbKUrQudyGwKK0L8NPf1tUxPIG208RtzH\neIt6ifSsrB4CP++hBEiUAyFanx+TaE0NQwcvAg0mgIhPTcTFxaUU7bScIvKPqpkylLOanJy0NjEx\nUYmAemATZkRnsEXf4MPU7kVABERABERABERABEpOIHxDejK7KQtJGRB6BEj8Rp5nw4bFP5yamrKI\n4pKj0+mLwIUEKLNay37xCgleinUrGx+fqPiEE6ns6nBFwCdTu6viF7Jr1cm/ELBeLBUBCfqlGm6d\n7GUEjo4O0wK561bHm1reLujvmOFGjbdavcRBK7/DIi2U5ImZYhZnQeCX+HgZab3eigRweqJF9gsZ\nMDS+S0Ri0DDa+I54a7P1KcbGxpIRN27RTa3IRuckAiIgAiIgAiIgAiLQfASwbREgqau/trZqNm1+\nPTb3D1lzDf+wrxpFjH9Ys3clQjbfyOuIb0qA7wy+ID0TX/iCfGfCJyRCn0bgpJdd9dKrY2Oj2ejo\nWIZfSP38/MK3Nz0W/Z0ItDIBCfqtPLo6t2sT4IfndFolPzQ7O7vpB2gv/Shl9sOU/m8pYbFAEsYb\nKWGxcKfSwK6NXn/QAgT4/hwfE3l/bMbZ+vpGEvA30gTZhpXXOT5G8Me4y6rODiV1qIlIlD6GG4+1\niYAIiIAIiIAIiIAIiEARCCBK7ux4SZAI9trd3Us1wHetDngEqNDjDyLwDw0NWY9PSGlWBXwVYSR1\nDHdFIL9eIVpKBHXR5/1FErHb2z0gkvJV/f0D5hPiF/Jdyn9/7urY9Tki0EwEJOg302jpWBtOAION\nSHx+hHzV9b00c0xD1N+xyAwi91kciagLjLVo/AANDLBQi88mN/xg9QEiUDAC8b0h0oKFjhYXKbHj\nDeONia9YWBpDjYaAz0RYLHpLJIY2ERABERABERABERABESgKAfzCaPiFCPu15tHGRBzjH9bKSE5a\nhDG2LU1rrhVlNHUcjSZAND7fF3pEfEpVLS0tWeM7Eo010wjoQj/BLwx/MNZQy2e4NPqYtX8RaEYC\nEvSbcdR0zHdGgB+hWIEdo21+fj5bWJi3nhnjEPMHBz0KY3AQUX/QfqS0YO6dDZM+6B4J5FMqEfKj\nxA5ZLXxXFhYWrPF9GR5mUWlfNAzjLUpYYbRpEwEREAEREAEREAEREIGiE8DWjZIh9F5f32vsI9xP\nTk5ZPX1q6odwia3LaxIoiz66Or6bEMAfzPuEfEfQUOh9HbUlC/JC1I+gLgIh0VBYTHpkZNj8RL4f\n2kRABK5OQIL+1VnpnSUkQMQxon4I+1470esnEnGMSEmaGAaar8heW5U9IpGJPo4fp+hLiFKn3IIE\nMNww1OI7Epksu7usO+FlqnxCbN8iLpjwIgIDMT++H6RT8v3RJgIiIAIiIAIiIAIiIAJFJ0DkMTYv\nNi49giUZ3Bsb65blHSVY6SM7NTJSsXkjCrno56njE4GrEmAdwr09XzeNMsV8L6KFsB+v9/X12veC\n3ssXe9Y2Qr82ERCB6xGQoH89Xnp3yQh4jbfjagke/2FysZK6iVE/cX//wNIo29oeWM8PEtHIzDYz\n86xojJJdOCU5Xb4fZK5Qjoo+opVIreS7EutK0NMQ8aPPOzRKQS7JBaPTFAEREAEREAEREIEmJ4D9\nG+V3CGrJr7/G45qQuWvZqGRvk5WKf5i3iZscgw5fBKoEPGtls+oL1spR7Vjkfn6SK74D9DwfWSz0\n2kRABK5HQIL+9Xjp3SUkQBQym6eSseinL+zJQp+RYknkPoYds9NE9WO0TU1NW7rl+Pi4ifwS9Ut4\n8bT4KXOte0SSRybxPfA1JtbNmSHVOBpOTFcX6cadFpmk70OLXxw6PREQAREQAREQARFoUQLuF3qZ\nkagVjriPHTw3N5farJVo9XIio1ZWhLKTZKlGa1E0Oq0SEmAia3V1NbUV6wnyIsCLnoyUiYkJa6wv\n4QK+C/kEeMknLOEFo1OuGwEJ+nVDqR2VjQA/UP7DtWrGGzPTXn5k32abvT74kBltMfMc9RO9VE+7\nFkcq20XTAucbTktc79vbLATm0flEJHmJnT2b2MJ4Y0KLnuh8jLa49lsAhU5BBERABERABERABESg\n5AQIcImGiLm4yPpRi9Z7diolRshU7UslRrz19/dVg1w6O1kwt73kFHX6RSeQn8QiSyVKrtLjA3qm\nNiL+dnoNXYSyxa6LjI2NZd7Gk8BPuWIP8FKWdtFHXcdXdAIS9Is+Qjq+whJAuKylk21XhEwXNI+O\njtNxe2T/gwdtlmJJNEakWobAr9Sywg6vDuwcAkRg4KxQL5TrH0MNQw6jjXWMcEgQ7RHvmdTiuqfn\nWtdC0edA1dMiIAIiIAIiIAIiIAJNSSBKtNJTknVjAzuZmvobSegnuxvB/9js4O7urkqZkW7zCxH2\nqSMun7Aph75UBx3XeX7yyqPwN00Hiee51j2Aq8367u6e5A9SJ9+zU+I1fEYJ+qW6hHSyDSAgQb8B\nULXLchDgRyuilWNm2usmuuDppUc2Ul3F7Wx0dDS1MesROInOiEVBy0FLZ9kqBLiul5aWUtTRYkaJ\nHUT8LHtgfU9PbxLvMdZcyCcjBQeFHoNNKZWtchXoPERABERABERABERABCAQkcs8Dt8wsrYp0Yrt\njMBP8EtHhwe+tLd3JL+Q9dbwEUfNL+TvtYlAUQmE9hHX+PLyUvIJl60EMQFe+HvRXLx3EZ9a+fE8\nfd4f5LE2ERCBmxOQoH9zdvpLEagSYMYaMd8F/V37YZufn7faidSSy6eZRdQy0foI+xG1HD9u1Z3q\ngQjcEwEcE7ZwULi+nz719SMoM7WwQCrxggn6pE2GkTY0NJSu9fFUZmfMFoW+p8PXx4qACIiACIiA\nCIiACIjAvRPAXiYIhjI8ZLaGjc2BRQkS7Gai9MMnjKhliZ33PnylPwCuV/cDn9pkVZRcpVLB0hLX\n9aIFeiH2o2u4vtFva0YwUcUaEgj62kRABBpDQIJ+Y7hqryUjwI8dP3D8uNGTfra2tmqCJ2mXLAbq\nkcqeZtnT053SLXvsBy5WeidinxQ0bSJw3wQw3Ii+iEiMmKyKCSuvk7+bSu0cpuu4K13bXM9dZsQR\nnc+kFQadNhEQAREQAREQAREQAREoK4H19bXkD3qE/vb2TrKvDypR/Ic/8AMjexthNAK9oi8rP533\n/REIfSMv4vt6abtWM39vL7SPPZuMYo2IuIaj1DA9gV/aREAEGkNAgn5juGqvJSPAD16In/QInru7\nROzHD96ePcfzbNQXpyH0Dw0Np2hmb6qfWLILp6Cni5gfxhuGWyz+TM/mIn5MTjEx1VtxSnyiqru7\n2yawCnp6OiwREAEREAEREAEREAERaDgB7OiTLfzDnUp9/WPzIbGdvUSrl+DJR+srUr/hw6QPOIMA\n+oYvdLtl2SU8jvUD0TkioMv77hMTVGga4Q8qYPEMuHpKBOpEQIJ+nUBqNyLAjx6NLV+iBHHU09E8\nJS1EfYwzjLWpqalscnIytSnVT9RlVAgCiPnhfJBtMjc3m83OzqV+Lhlr3dnExIQ1UoWJIvLWb5NU\ncV3L+SjEUOogREAEREAEREAEREAE7olAlCuhxwdkoVxsa/po/JtAr5mZmezhw4fW82+E0BD27+nw\n9bElJsA1y3ppBHTRsxYE1yqNNQLHx/EHKbU6YdnZeRGf6xZfMFqJMerURaChBCToNxSvdi4CLu4v\nL/uCMfTMaBPFT2MCYHBwKEXpU6ZkyAT9qEdOH0Zc/CiKpwg0ggDXIRNP0XA4orwOkRhuxLkhRyrl\n+DjG23ilLmJE5/eoZFQjBkf7FAEREAEREAEREAERaHoCBwcH1Yhnop0R9H3B3I10bk9t/SmytkdG\nhivRzWS+dlvJkvAJFe3c9JdB4U4gghLDH+Q6jRYR+ltbmxbsRZkdAr8oHcW6abFOIKVW8xpG4U5S\nByQCLUpAgn6LDqxOqzgEmN32H0NmtLfsxzDKmbAivEcy+ww2Rhu15qLuXP6HEUNOmwg0ggCTSyfr\n5Ec68K4ZbTgZsVFeZ3CQa5Q6+X3JeOuqGnC6RoOSehEQAREQAREQAREQARGoEYiyrATO0KKECT0+\noW8PrEMgDZ+QYBrKtIbNrSzYGlM9uj0Brkv0CnoytBHv0Sy4Lnnu6Iigr6OkWWQp2LA9BXC1WRCX\n6xWuW6BhMNkU7fZHpT2IgAhchYAE/atQ0ntE4BYEmO2OWW76vb3dVH8OwdTb5iapl1upbVjdcWa7\nx8fHUh3FsWotOn4kSb3UJgKNIEBkPhFCkU5JGqWX3NlLBt5RJYuETJIhuyZJqaQx4ZRPB5aD0YjR\n0T5FQAREQAREQAREQASanUCIpi6SxpprXmN/e3vL7HBscRbRJUo/auoPDg4m+7s3ZXL7ulWyt5v9\nSijO8UdUfmRpU07HKwsspVI7a8nX83X/0CG4BgcG+lNAV38qt9p/YpIJf5DrUlUFijO2OpJyEJCg\nX45x1lkWiEBEZDDrzY/m4uJCtrCwaH17e0eqpU89ukmrUR71yYnMQDzVD2WBBrKJDyWfWolzQcYI\n9RFXVlasZ7LJs0j27Jqjpuf0NG3aBP1wJKJvYhQ6dBEQAREQAREQAREQARG4cwIe8LVvgV8E1jx5\n8qTaRkZGrJwJJS4pwxPrVSGmhmiKHS5b/M6Hrek/MO8H8rhWOeDAJpXQJlj/D78wtAh6AruYZBoZ\noY00PQedgAi0AgEJ+q0wijqHpiLgUfp7lQjo3Wo0xvr6mqW7dXf3WL1EovJ7eojEqDWei9ZUJ62D\nLQSBvAEXdfK9Vv5O9XokMv/4+Kk5CKRWdnR0JuNtpGq8xcSSHIhCDKkOQgREQAREQAREQAREoAkJ\nRCkToqPJjl1eXjERdWVl2TKzKbFDqR33CYnQ93WrwhekVwZ3Ew78PR8y1xslnvb3D0zM96xszxSh\nkkCUhOJ1rrlolFrt76+VBr7n09DHi4AIJAIS9HUZiMAdEyDNMtLaEPdDUPV+rxoZzY9odzeGXLeV\nN2FmnJTLaHd82Pq4JicQYj4R+TQW4iIqn0atRBfoifTJ7HpjYqmnxyeVenv7qsYcKZVsEvSb/ILQ\n4YuACIiACIiACIiACNwbgbDJ6RFYt7e3rSwrvYuqiKx72dOnxybq4xMi4kdtfXoCv7SJwHUIcG35\ntUadfK65Lfs3j9koqxoaRPiCXGdce3EN8h5tIiAC909Agv79j4GOoGQEQliNPuoo0lNHf3FxKVta\nWrT6dURHe+26ThPySbuksaK8NhG4DgGuNxyGuN6ojzg3N5farNXPj+gLeiaNhoaGLbUSZ4HU3mgS\n8q9DXe8VAREQAREQAREQAREQgbMIPE1ivT+fF/ex1bHToywrQV9kyEaj7Am+ID0leLSJwHUIIOb7\nWg1ryQdcS0FeLIK7YcFeiPbj4xNVvYF/R9O6adehrPeKwN0QkKB/N5z1KSJwLoEQ9umJlF5aQtBf\nsrRLoqVTLLRFTRMxHdH59G7UsVBNbWFSxFaEV20iAIFwDkLEJyIj6iQSob+2tmoGHamWLG7kqZT9\nKfKnlglCZog2ERABERABERABERABERCBuyGAoB8+Ieuu1XzCB7Yw6eDgkPmF2Okh9BM1rcCbuxmf\non9K6Ascp2eAHFiFgKgOgObAdUVUfpTYodwOgV0ePDhuE0ZcW1xX9NIYij7qOr4yEpCgX8ZR1zkX\nigA/uGz0/KD6DDk/spsp/ZIad/wAH9jrHiXdnrW3t52oYUcaHDUUmTlXLcVCDe+9HgzXTgj4XFtu\nuGG8bVqkPpce1x3XVV9f1EikvA7ldvh3j6VW3utJ6MNFQAREQAREQAREQAREoEQENjeJmvZGRDU2\nfbSODvf38PlOB3yF6Cphv0QXyxmnGkFd9JT6dR+Q62kr+YZ76TkvAUzQF9cM2gI9mkKUdCLYK68v\n6Jo6A7SeEoF7JiBB/54HQB8vAhAIUZ8fVQTYEGIx4Fgkyfsdq7fvtfZ3U6plrfwOP7zMnkcTVRGA\nAJH3XC9cPxhy1MsnKp+e9MmhIaJ7hsxww4CLRpmn9nayP3ySSDRFQAREQAREQAREQAREQATuhkD4\ngvTY89jx1DqnZ501gr14jcjpiYnJbHJywnqCuxBeJb7ezTgV9VNCyEdbIKiLjA8aCy4j8Lufx8RQ\np2V8ULqJBW/xD1mImQWZuba4jhD6dU0VdaR1XGUnIEG/7FeAzr+wBBD5KYuysbGe6tt5eZSVlZX0\nQ7xiZVImJyezqampZMBNZcPDQxahEYJs/kdXBl1hh7ghB4YBx7VDCyGfCB+upTDk6IeHR7KZmRlr\npFYyGeRGXJcZbg05OO1UBERABERABERABERABETgygQI9qLmOfXO6SNyH3EfsXV62u157PoojcLz\ntNjkDwaJ1u3D/6NHyGfCJyaEFhbms4WFBWu83ttLRnavrcGQX5MBX1CbCIhA8xCQoN88Y6UjLRkB\nfmyJriZCn54UuViwBkMO8Z40yxDx872Ls0Tsd1sZnpKhK+3pRhQGNRB3d/csooeont3dHfv3wcG+\nRfXQk9UxMjJq9RFjTQYi8iMao7QQdeIiIAIiIAIiIAIiIAIiUBACUTKFQB2i9D1gxx9j+yPMRqlM\nHse/EWeJ2I8mUb8gA9qAw0A3QLyPTH+i8t0HxA/cTVH63uMfcj34deIlVvEDo8wOfqA2ERCB5iEg\nQb95xkpHWkIC8aOMAMsP886Ol1Dhh5nX/PV9S4PDkEPUp+45KXOkzkUpnhKiK+UpY8hFRgc910xE\nZ2DoMcHT3e0TPWHws5gW1w1RPBh49DL4S3n56KRFQAREQAREQAREQAQKRiCircP384AvL8XqPuFe\nsvnxC/eS7zeYAnZGrIUfiEhLsJfs+4INbB0Phwxtn/DxUr2Rpc0EENcI408ZncjIjkBAJn3yDV9Q\nmwiIQPMQkKDfPGOlIy0hAUTYKKESxhxRGoi0S0uL2eLikvX828V8F/VJnYvoa4RbbeUggIC/uMh1\nsVi9Lrh+jo+fJiOuI6O0Tqy9gHEfAn5exJexX45rRWcpAiIgAiIgAiIgAiJQfAL4g3mfMB99TUlN\nyqnMz3tJFfy/6empVJZ1Otn8Y+Yfho8oG7/4Y33TI0QnWF9fr5RmolzvejXIi+h8fMBoUSsfIR+B\nHz8wfEFdIzcdAf2dCNwPAQn698NdnyoC1yaAIcePNQItfYi29Bh2lEvxRUw70kKnAxahQQodgn6U\nUqHnhzrfrn0g+oN7JxCTPFwTMcHDpA4RGBhw1Nik53U30Nos+mJ8fMwEfQx8rgVtIiACIiACIiAC\nIiACIiACzUMAmz+ycCnHOj+/UBH05y1De3h42NbKCj8wsnKx/Ts6KMHTYf5B85yxjjQI4NtFQw8I\nP5DsDdZU8LaZovV30jVCZv9u0g0Ok5g/URX0yc72iH0Wv1WJnWCrXgSakYAE/WYcNR1zKQnw4x1C\nLj0RGRhx9NTD40edH2z6WLmevqenO1eCpz8ZcFFLkdIqtcWSSgm1CU+a68DHmvE+MsONNRW2tjYr\nRps/f3x8ZKJ9pFhyHUR9RHquA20iIAIiIAIiIAIiIAIiIALNQwARFx+AvhbM41HZ+AkpdsuCtxDw\nvbZ+1NWvrb2Gf6CtuQiEFoAOQGPsQ8Rnzb2Dg8N0TRzYdZEug+TreRAfekAE++EDxtoKXB8qsdNc\n14COVgROE5Cgf5qI/i0CBSbAD3m0qJ+/v09k9k5ugSR+0GuLn2KwEZEdjZl4j9DoVHRGgcf6vEPD\ngCMyJyIyVlZWrLzO0tKSLZ5cM9xZT6Ev6+vDiPc6+RGNQa+UyvMI63kREAEREAEREAEREAERKCYB\nfIEQd/EH8AmJ2Kcn2Gt9nYCvdfs30fmxYC719Ynaj8j9Yp6djuo8Aox5BHUx7gT1LS8vZysry/bY\ng/Z8TTTKLLGeXl8fzSPyww88q+TqeZ+p50VABIpNQIJ+scdHRycCVyLADP3a2lq2urpqLSL3+aFH\nvJ+aopbiVDY5OVVZFNUXxuG1EHajv9IH6k13SgADji0MuZrhvpfqZi5mc3Ozqc2ZoE+N/Ji8wWAn\nEoMew06bCIiACIiACIiACIiACIhAaxJYWFjInjx5ks3OPrHym9j/RGTTDw0NVxfMRexV3fTiXwN5\nH5CJnAjoIrhrdXUl+YGUW1qwcquMsU/g9FjJpfAHKcGkTQREoDUJSNBvzXHVWZWMAAJvrGYfqXes\nas9jFkTt7a2lWBKlwQ9+GHhE7NOYtddWTAIYbdH29/estA6TOGRmUBtxZ2fHHmP0DQ4OJYN9yER8\nIjLCuNP4FnNsdVQiIAIiIAIiIAIiIAIiUA8CBHgRsU0G7+bm1oldUn4z6ulHRm/4hIj72opHIC/g\n4+/j/1Eb3/3AvUq/a6V2YizpWfjWszEGLEq/eGemIxIBEagHAQn69aCofYjAPRMg/S5SLfmxd4HX\nBV9/viYIY8j191OKxVPw+DfCL01R+vc8kOd8PONJY9KGGolbW9v2mEkb6iJ2dTEp02UROD6eXmYn\nUiuZsFGNxHPg6mkREAEREAEREAEREAERaAEC4S+4z+ALo7LWGv4gG8I9rbu7y6K4id4eGRmRn1DQ\nsWfcYizzwXv4gPjtEZiHH1gT9LvT+BK8572Cugo6uDosEagDAQn6dYCoXYjAfRMgMjtfTxFRn4YR\nwIKp1FdfXl6ynhl7yrBEKRYMOSK66SXo3/dInv35lE5aX/fFrqiJyZhGGx4eySYmJlIbt1TammHn\nayQonfZspnpWBERABERABERABERABFqJAP5g1FnHDyRif319LfXr5heyzhpZv16SdTqbnqYs67QJ\nw63EoVXOhWz78AHp8QPj3wTjRalVJmUQ9KO8Ur5OvrIvWuVq0HmIwA8JSND/IRM9IwJNTyDS8+gR\nfhcXF03Mp+eHPhqGADUUQ+BHDPYFc33V+xD4o296ME1yAhjjGNsxjkRhhIBPdAYGerTR0dEk5k+m\n9REmTNDHgAsjTuPWJAOuwxQBERABERABERABERCBOhLAl3BBf916ovejXAvBYPgQIyM0xODu5AN6\nGdZYYw0/QmJwHQfknF2dVScfH5AWUfn4gfiDUWqVsRwY6M/Gx8dTm7AxJBI/msbtHNh6WgRajIAE\n/RYbUJ2OCEAgIjOiFA8R3tE8kv/YautjqHlEd4cZcYj70RD9I7pbRsHdXlcY4CHgb21tWrbF/j5l\nk/bT2B5X02UZl8i0IMuCcjs8F+1uj1qfJgIiIAIiIAIiIAIiIAIiUAQC+IH5ci3UXUcIZg0ufI22\ntnbzGdrb26wUawR4EfCFqB9BQgoQauxoRqY9PjoifqyHR0/G/eGhl85lPBkLH48Hacx6kx84aL4g\n/nsE5cWETGOPWnsXAREoAgEJ+kUYBR2DCNSZQBgG9BgGUYKHPmb6meUnyttTMxH4jyxKY2xsLKXv\njZlxEMIwBp22uyHAmBE9s7S0bFkVlEviuWS/mQFH9ExMutAz8UI0Bn0YcDVj726OWZ8iAiIgAiIg\nAiIgAiIgAiJQHAIhEEfWbwj6UWef4CECh1g8d2ho0CK9KeNJxH6U8MTHkKDf2DF1X/zIAvLwzVnQ\nmIWNl5eXzU8Pfxw/jzXwYi288AEZI8Yr3ic/sLHjpb2LQJEISNAv0mjoWETgDgiEgYCRQA2+MO7o\nMeKoo0g9xaGh4Wp0RgjFHJ6MuvoOEmI9G300JltmZ+eyubnZ1M+mCJmOJNiTRtltYj4TLqRY0muy\npb7job2JgAiIgAiIgAiIgAiIQKsRCJ8PQZ/MbXwM9zXmbC21hw8fZg8fzlgpT8RiGnXZEYrZ5APW\n74rI+39E3keJHcZmfn4utXlrMI/Fbgnkomb++DjBd+Na96B+w6E9iUDTEpCg37RDpwMXgZsRIBoj\nyu8gHLtxt2vpl24w9Frplt5eFtbpqRgRJ+sqSkS+Gfv8X2HIYbxhxNEYh6hrWauPuG2psZ2dHoHP\n+FBWZ3BwsNrCyM7vW49FQAREQHswXHkAAEAASURBVAREQAREQAREQAREIAgQqU8EeGRseyT4Sra6\numJBXJTa6e3ts1IuPT3hD/ZaJnBnp5dnJchL2+0I5DMnYkzcB9wzf5CSSOELwj388fAByaYYHBxS\nUNfthkF/LQItQUCCfksMo05CBK5OwBdTRcBnYVV66il67ymZXqcPobi/f8BK71BTESMiBGXS+rTd\njgAifr4UEtkSLFxF29/fq6S6egplRGbk+4iaUbTM7cZBfy0CIiACIiACIiACIiACrU4gHwmOz0eN\ndkqxehnWfVuri+cJOkLcj/Iu+IAI/fT4H9puR4BxIBLf23YaB9qWNXzAWJzYxXzPkghRH18wfEAF\ndd1uHPTXItAKBCTot8Io6hxE4BoEiArwdpQMt8NKJIBHhy8vr6R6fUtWv50FeKihGI2ocF8sadCE\n/Wt8pN56BgGi88OYY1JlYWHBUisXFuZtoarx8QkrqzMxMV6NlsGYpk4iBhxNmRJngNVTIiACIiAC\nIiACIiACIiACJwhEaU/6iBKPUi9E6y8uLqa2YMIyPl8EduEDRlQ4Qr+22xHAx15f30gZ8+uWNb+2\ntp7+vWalcPf3D6ykaqxpB+8Q8RHywwekV1DX7cZBfy0CrUBAgn4rjKLOQQRuSCCixCP9kgVY3Zhb\ntOh9X3yVKH0W4OmvRGr0W4QGKZfR+HgZFZcPQkTGBPcQ9OlXV1ct5ZUeQ3tycrLaSHuN6HxlR1zO\nWe8QAREQAREQAREQAREQARE4n0Be4GdttajbjrhMRLhHgneb/+dBXQMWuR/+H738v4v58iqcwwdk\nAgW/2yPyfUFiMiS2t3csW+Lp0+PK4sTUyp+oZkXEwrfnf5peEQERKCMBCfplHHWdswhUCOSjM0ix\nzNfXJ2o8rcNT2R5YCRiMia6uThOXPQ3ThX6iBNhk1FVwndMh3HuJI0+z5HGUPTo6isyJY5soGRoa\nStEw3sKIQ8xXVP45cPW0CIiACIiACIiACIiACIjAlQggNLPR4wMi5BMtjthcy+g+Tj5gR/L/ui1L\nmAAjD/Lqs15+ydmoY7IEjjzGB4yyOvh/+N0HB5Q58hJHvpcH5gMODhJM5+ulhQ/I5IlYn81az4pA\nmQlI0C/z6OvcS08AAyNvsNVquvuiPPmafsncqwj2DyxiY2xsNBsdHUtt1IyPEPOjLz3cMwBQJz9q\n5WPUUSdxb2/feozjSG8lvbK7m8mTbmONAZdPsTxj13pKBERABERABERABERABERABK5MAF+QDR/Q\nM7bdB9zc9JruIe7j39EILsL3oyQMvTKHz0YdPjaR+TT8P7IgKG0EU1i2tcG0LUXh91jmA8FyrFPg\nAXT4gV0m4ssHPJuxnhUBEUgBtXNz834XFw0REAERyBEgeoDyO9R2p8fQo+YfqYIYGFNTU9n09HTq\np82Yc8OkVs+Pf5d9CyM5ekoaYczRb2xsWFQGTInOgOPDhzPZzMxDi8wvOzudvwiIgAiIgAiIgAiI\ngAiIwN0SwC/B98NfoeETRq19xGX8v2j4hOHzRX+3R1usTwufjz6YIejDk5JGc3Nzlg1BOaNoTIyM\nj1NiZ1w+YLGGU0cjAoUnIEG/8EOkAxSB+yGAgB/R5PRRZ5/n2Ygg6OvrTT2L9WCUeK1FDLuorUhk\n+W2MuzCK8gRus7/8fuLx6c+47f7ZHy3KGXlZHY92Id1ye3vb0i4xlvmsaKOjIxbpQtaDFpyK0VEv\nAiIgAiIgAiIgAiIgAiJwVwQQogk8wv+j4cvg/9Hwb/BTouEPxjpfCNT4NYj+4d/c9JhP+2fsh33W\nY2vUvuGGf0cPK3xnL626Z74ffiDt6Oiw6jfDjgxtyqyy+LB8wHqMsPYhAuUhIEG/PGOtMxWBaxHA\nGMGAo2F85IVpjJSI1j84OLQaihghNIySiDgIw+5aH1x5cxhb0fN03pDLP77J/vmb2Hf0sc/ob7Jf\nDF0iMejhFpMia2trJ3bHZEeNU1fFMGbh4T7LgDjxZv1DBERABERABERABERABERABBpMAB8mfMC8\nHxi+4PGx+zms/9Xf35cND49kIyPD5ge2t3ut93oEdYV/xunim93GP2Mf+f3x79PbbfcfzPD/COCK\nmvlbW5s2yREBb52dXZVJEA+IiwkRegLjtImACIjAVQlI0L8qKb1PBEpGAKMnhGl6N+i2k4GyY6mC\nlI7xWoDLyYAbyiYmPFVwZGTUROlYMIkojZtsfH60+Pu8MXdbo4t9xv7p2WL/t9k3EyHwomeBKdIr\no0VWA6K918xnEsQXPorFjqJevh2Q/icCIiACIiACIiACIiACIiACd0QAvygfoLS7y4Ku+IBeV58g\npWgEc0X5HUrGUFO/o6Mz9R3Jr6qPD1gP/wx04e9Fn8cZvl/0+deu+hgBn8yGyG4IRvT4e2Rhswbd\n0NBwNasBER/fL/y/m/rNVz1GvU8ERKC1CEjQb63x1NmIQMMIkDYYkfoYKtQC9PqKi1Z2Z3h4yAyU\nSBeMVEw37GrRGlc9QAzJvDGJ8eXtOEU5uOETIvhV95l/H/siLZJsgyh/w7ESGXGdBZ7YT/5Y2V80\nIjJWVlZT80WQ+vsHzKCLTAbvPbPhNgZk/rz0WAREQAREQAREQAREQAREQATqQcB9QA/qwreJxV3p\nEaRZIJc2MjJi2cddXV4fHj8NgTraVY+FoKi8j4ZvFv4ZwvdNNnw19hstL6DH8eGLXUVQx/djy++T\nYK6IyCegi8cxAcLj4eHhFPw2YXXy4RSMbpPNfhMO+hsREIHWIiBBv7XGU2cjAg0jgGEVxhWRGuvr\nHoGAuJ9iHqrGGqmWXkoG46s7RetTa99LyfD8VbcwuOJz6X0B2UMT3JkwiLqNV91n/n0YY5TDiSgK\nDDsEdmoYUjboqhsGXAj49KRYRuPfvB4tJjlIT2Xtgd7enmQIe+1JCfpXJa73iYAIiIAIiIAIiIAI\niIAI3AWB8P/2931NsI2NTfOfNjc3kqj91KLLOzraLTI/fB16/L68GH/VY42SpfhpiOH4ZtHY3002\nziHWMaOP44qJgggSo79oi0Au+tin+31bFX8Qf5nStIcpEI09ufiPL+x+ptfJjywGevmAFxHXayIg\nAhcRkKB/ER29JgIiUCUQ0fKI0xgpGHV7e0Sj75mB5FEJ22bMYNQhkCPuY4Cx4CuleK4jlGMkERES\n9Rq9LiGLCe2aEB71GgcGBqvHeJ0HnA+lcBYWFqxhwE1OTlojguKqW96YyxugGxvrZuR6aZ3+VGJn\n4ER6JQYkn0lKKsacNhEQAREQAREQAREQAREQAREoEoGaD0jk/GFloVfWWdszwZ2IdBp+G6J1BEjl\nxX0i+a+6IeTjo83NzVk2ACV9pqamrLHPm2z4kaurq1YqiJ79RHlYjo3s7MjUvmj/sAgevs+VlInt\nLSL3EejxgfPnnw9243MiK+CmGQcXHaNeEwERKA8BCfrlGWudqQg0jMDS0pIZXfPzc2YoxQdh2IyN\njafaihhh05aKGa9dFo2AUZiPpHBjccMMRiYGJifZ56TVI4x9XqdnYuKbb77Jvv32W2sI7M8995y1\nZ5555tJdhdHGcRLlH5H+q6s1ww4j7eHDh9XmUSCeNioD7lLEeoMIiIAIiIAIiIAIiIAIiEBBCOD/\nROYxPeVXHz9+bI0SPJSTiUZQVwj8iOdsl/l/vAe/8uuvvzY/7cmTJ9nzzz+fvfDCC9bY3002As8i\nkIueY6MMDj3H5oJ7twVfnbf/0+fOPpl0wP+dm5tPIn5bNSuBfXqJnQnr5fedR1XPi4AI3IaABP3b\n0NPfioAIGAEiKYh2oFFb0cvlUGrm0AwbIhS8xExv1WDCcIr0Royc0zULiXZHxA+xfHl5KRl4LMS7\nZIYiht3zz79gYvlVhwFDjEZkBZH1n332WfbPf/7TGtEZr7/+Wvbaa69nr7zyyoW7RMSPRnQGx0qj\nFFG+/A4C/ujoqNWVZCEkj8b3iPzT53vhB+pFERABERABERABERABERABEbhHAuFHRaQ6PiACPGI+\njyPSnR7fivKo+IE8xvfDN6I/yw9i32yI+J9++mn2j3/8Pfvyy6+q/tnrr79ufhV/y8TAWfs4Dw0L\n0xLIFQ2x3QX3cfMrI5qe481POnCe+TKw4f/t7ZGhsJuCz/ABt80PJOOac6NRcpbJAhbApb/OsZ53\nDnpeBERABE4TkKB/moj+LQIicG0CbtBgzNB2q2I3Rg+ivkdysJhtW8W4IR1zyIy7SG88XbOQqAeM\nLxqpjBh3s7NPrKc0zuuvv5G98cYb2Ysvvnjl440USXqO+ZNPPsk+/vjj1H9s0RnvvPN/sp/97GfZ\nW2+9de4+MTZ9ksHr7yPkMzlACio1/k8bstRMpGY+fUxc0OeNxXM/TC+IgAiIgAiIgAiIgAiIgAiI\nQEEI4EfhD9Hwg7zsKovAeulV94v2ze/r7CQzuTO1bovWJ8uaKPvTfl+I+fSI7h988IE1RP23334n\ne+edd1L/tpVGzQeEXRUJkw6fffZpav+0gK6HD2dSUNgjCwxD2I/jos/7aIj5+Iy0/LkSwMZ5UlrH\nS836GnJMXPT0IOr7ZEZMauT3edVj1vtEQARE4DICEvQvI6TXRUAELiWQT71kIaCtrVgYFlF+vSLM\nr5rhMzFBnXqiIiZNRI+FbYnYyG+I5kR70EjnJPXy66+/sh4D7Gc/c/EdYf+qG8cZURYYnX/60/vZ\n++//KbX300TDYPab3/xb9m//9m/ZL37xi3N3iaHJ8dCWlhbNeOXNYYh6muloNdoD8T4MT4y5aOd+\ngF4QAREQAREQAREQAREQAREQgQISCJ+HQwvfip5ArsjYpgQpPteDB20m7OMLjY+PV9tpv499xn7J\nnv7973+f2u+yDz/8MPvVr36V/fKXtF9mjx49Mr8qAqiuimdubjb76CMP4qLPl/GZmZmx8juU4KHl\nxXdEe3zSyBqPYLO1tdV07seWMRBrxUUmAiI+54cPGO2qx6n3iYAIiMB1CEjQvw4tvVcEROBSAhh0\nRGogmNOIro9yOaQnInhThoZFcqkviKBPIz0xjB560jZZsBbhHCPs88+/yL744vPUf55R4/69936R\nhPf3sp/85M3q30UK5nkHSTmciLBg/wj577//R+sx4P7jP/4z+8///M8k7P/mxC4i3ZJzw7DzOvmU\nGFqxEju14+6w8jrj42O2dgDnpU0EREAEREAEREAEREAEREAEWpkAAn4EY+H7eaa2LyKLSB619ekR\nvRH5I+gpov7pKbfz//7ff2X/9V//lf3P//yPCfkI+gRcsd5ZlMehv2jL7/P777+3ff3lL39J/Z+z\nH/3oR6m9nL388o/SJMEzlfKoXiYVf4/G+ezv7yUxf8sEffxbhH2i83mOc5qYYJLCy/eEP4tPy4SD\nNhEQARFoNAEJ+o0mrP2LQMkIYDzV6gvumbjvJWo2TEz3tESPWCD9EoMOwydSEkPgJwKChYZmZ2et\nzM6//vWvJOb/K6MnQv+9936e/fzn72VvvvlmdR8xKXAe8phgIHqEiYKPPvrQIj+I/hgbG8v+/d//\n3UT9X//61yd2wURApJPSY+BFw5gjCqO72xe7JVXT26A9f2JH+ocIiIAIiIAIiIAIiIAIiIAItBgB\nRHAE72gEUZG5jR+F3+RR9V3W4+/hLxHchTDP6yGkI+j/7ne/zX77299mCPCU2qH99Kdvp4Vxn7co\n/7GxcfPdLkJIEBb7pf/2229TZvafTMynf/nlV7JXX33V1k1jkoDsgRDnKa0TgWmcA8cf53F8TJ1/\nzyagZn4s+kuPPxiZAwR7aRMBERCBRhOQoN9owtq/CJSMAOmSeaMsL+5jFG1v16L329razfjBAELQ\nj1RHFg9C0H/8+LG17777Lgn5vngtaZgzMw+TmP9u9u67PzdBP0T0s2oy5vGzTyYIYpLg73//3+x/\n//d/s7///e9myCHo//u//4eldsbfcT4YdUScrKzQVtKx9lYmIKiT6BkGPhHhKZZMVESqZexHvQiI\ngAiIgAiIgAiIgAiIgAi0IgF8JsRvotrpWVeN9dV84VjWHHNxH4EdEd9L8EyY/xfCO6999tln1ZI7\nCPoshvvaa69ZezGtnfbMM89mzz77jAV4XcQRv5OGL/rVV19ZRraXW30/ifmvVRfbpfzO1BQlYaes\nRv/6uq/ftrKyasef/wz8Pha85fh57AFd1Mz3THOyxaPl/06PRUAERKARBCToN4Kq9ikCIlAlgHEX\nKY8YVYjplNCh5zWiGzo7O8woYrFbFiaiJ4qeaArEfBZH8oWMPjMjb3p6OtXQf9cWsCVCn+h6yvjQ\nENLP24jKpxY/Rh095Xs+/5zI/8+TITeV6uf/3yTo/1+r08g+OD42yvM8efLYMgXIGvDjxPCbtPTR\niDCh1yYCIiACIiACIiACIiACIiACZSZApPvGxrrVoMeXwrcjMIqeyHxKqFLuBh+MCYAIAiN46w9/\n+EP23//93ymT+oNqvXuEd0rlvPLKK9ZeeulHF+LNZ1d/+eWXts8//vGP2R//+AebJHjjjR9nb7zx\nRvbSSy9l+JYzM9PWU/LV/dU5y9DGt4zmkfy+Fpz8vgvx60UREIE7ICBB/w4g6yNEoMwEEMWjYax5\n/fkVM+gODg4TGn+daH0iHnp7+yzqIUruIKA/efLERPcvvvA6+gj4YYQRscECSdGIlD9r4xgwzkjj\n/PTTf6SJgX9m1FP8/vvvrEecf+896vL/wiYK2EeqpsP/zcjEKIzsguHhERPyySjAmItyQfTaREAE\nREAEREAEREAEREAERKDMBIjU9+h8X1eNEqzr6xsm8lOSpr+fMqWsp9aXyu1QzpTa9YdpzbQvrd49\nte4/+eQTE9kR3BH+EfTffPMty9BGjKf0abQ8a/y+paWl1BZTmdWl7Msvv0ilVj/KPv74Y+upn+8T\nAy+naP/nKuV2vB7+7m6t5A5lgMi8JhKfKPzBwaGUUTCUDQ0N2xpw+c/UYxEQARG4awIS9O+auD5P\nBEpGAIOKjR6jyGsSbqWIh22LxPDUTGoTHlSFf96L0RcLK0VkPVH133zztdUrfOGFFzLSLmkvv/xy\nZWGjl01gP404joFI/48//sgMub/97W9m4GHoYfCRGfD22+9k77zzthmKD5KYHwYiqZO+aBOLNzHx\n4PUePd2yp1ovUQsgnSavf4uACIiACIiACIiACIiACJSNAGV08PPw8Vzc3zb/D1+Q8ju8HiI+bNxl\nfGoZ2iG8UxY1SrLS4/O9+y5Z2u8mn+0dK2+Dv4avRh8bvh9Z3t6+TYL+lymg67Psn//0bG+i/V94\n4cXUXkiR+TMpUGs4fQ4BW8NVn49JB3y7nh4EfcqssuZbrdSq/L6grV4EROC+CEjQvy/y+lwRKBkB\nDCsaoj4GXIj7W1ssnoTAH4so1R77YrqbVk8/IumJqicSnigNojWIzH/rrZ+m9mZqb1nERB5tiPn0\nRPiTavn++3/MPvjgA1u0KdIxSaEk0uPHP/6xLZIUhuGDB20pgqTPyvp4aZ+xEwI+xl68l16bCIiA\nCIiACIiACIiACIiACJSZAL4XZVdp+H2U1EHY39vbN99ueZkI+iUrwUOmdnt7W2rtlpmNkE+j/A6R\n8dGIqv/1r3+T/eY3v7Gsanwv/oZ2WtDPr7+GoE9gF+Vc6Sn188wzj6zsD0Fdni3gi/RSwnVkZMRK\nubI+m2di+7pp8Vn08vvKfHXr3EWgGAQk6BdjHHQUIlBKAojp1FSkra2tVlIjlywyn+dC6Cc9c35+\nPrU564mIIEoDYwth3+vp/x/rMcIwsMLIyk8gYBRSj/EPf/jvjEWW3LD0BZr4uxdTtD91FInW6Oyk\nXiL1/TvNoHv4kLI+D21B3jDiThuPpRxEnbQIiIAIiIAIiIAIiIAIiIAInEMAcZ9IfY/W30++3lIq\nefrYyp6ytlpsvI8a9l5m9Qtb8yxEdHw7Su4g5iPq//KXv7DI+RD7eR9/HxMJZGP/9a9/zf72t79a\nhL77kviT87YOGj4kJVfxAUPQp5Sq19OfSYvuPrTXKOcaLT9pEMesXgREQATui4AE/fsir88VARGw\nmvQehb9h0RnUy6dhaFFuhzr6q6tr1vPY26pFYbCYEiVviJr/+c/fS+1d64myQISnYdh5iR+v3fiv\nf/0r+9Of/pT9+c9/shqKGJWe7nlopXpIuZyepk2lSP8hK+1DrcTJyQmL5EDQR9gPw5I+Jg40nCIg\nAiIgAiIgAiIgAiIgAiIgAicJhKAfJXiIzPe1zL5Pa5w9OeGv8RrrntHwCSNQi/65556ztc6i5E4E\neNGzcG1kBODfffjhh5aR/cEHf8m++uqrqj/Jory8n4a/R4BYNMruxLps9GRwI+bjc9JL0D85rvqX\nCIjA/RKQoH+//PXpIlBqAojtm5sbVvpmZWUle/zYIzUw8IjOwKCLVMzd3d2MtrOzY4ZdiPYYYyxk\n+95771mPIE9qJI33YLRFQ9Cn1M6HH36QojX+VjX6MP54P0Ydixyxz6mpySTke+TGw4czldTMZyxa\ng3r60STol/oS1smLgAiIgAiIgAiIgAiIgAhcQCAv6CPq5wX9J08ep3XNWLzW1zXDJ4wMbgK/ENGj\nEXz1k5+8mdpPUpnUNywQywOypk1wj8xsgrYI4qLM6vvvv2+CfviR+JL4fQj04f8REDYxMWlrqj37\n7LNpoVxvPB+CPqK+BP0LBlkviYAI3DkBCfp3jlwfKAIiEAQwqDY3N61+PsabL3r7jfVEZUTEPtH6\n+RTK+Ht6IvV/9atfpbTLX6b2K4uqIF2S50nBJLKD/TBBQC3FTz75a0q//CQtjPRpfjcWdU+ZHSYB\n+DsWSyIKhBZG3TPPPGP75z0I+vQS9E9g1D9EQAREQAREQAREQAREQAREoEoAPy6i813QX0wL1n5f\nidL/zmrbR317xPzIoKbPbwjsLIxL6R16FralZCoN34/3I+ZTVvX3v/999tvf/jb73e9+a3XzEfsj\ngj8f9Y/fODNDFjalVWeqPiC+ICV52C9ivgT9/EjosQiIQBEISNAvwijoGESghQlgOGHE0WNgxSK0\n29vUz9+wCIyNjfVqyR0E+Ci5g8hPdD3RGSHo0+c3oibefvvt7Kc//Wlqb5sAj/GFwcdCRix85Isg\nfWP1GP/5z3+ZsE/qZX7DsEOkb293oT4i9OmJ2Ih9sl8Mv5g0iBRMjoMWmyI4goR6ERABERABERAB\nERABERCBVicQfho9wj3BWzTPyt60zOyNjc0MH8+j8hesJ/AqfEDei9+IAE/Lb2RRR4AV/euvv5G9\n8cbr1iO842cSLEYG+J///GeL0idSn+zv8CXZN34avh89/hslXEdHx6zH56O+Po3n8SeHhgZTP5TE\nfYT9/mrgWOxHAV75UdJjERCBuyIgQf+uSOtzRKCkBCL1kYgJDDo31qiVP5+MueVqOZwQ7onKQMDH\nIIv696RI5g3EPEqi6V955dXUXsleffUVi9B4/vkXTNhHfP/ss8+qDRH/u+++Te277MmTJ/ndVAy7\n9iTot1m0PsbbyeY19SnLQz3FaBh6+YZhF+3EB+gfIiACIiACIiACIiACIiACItCiBEI0p8efo7QO\nC+AuLS2n5iV1FheXUkDXmr3Oe043JgLyAWF5VIj24Xfh57399jvZO+944zX/PP+sTz75xNZMoydb\nO39seV+N2vsehY9Q32fCfYj4+H0smjsyMpr6kWo5VsR+XvNgsHbr88epxyIgAiJwFwQk6N8FZX2G\nCJSYAFH5NIwzjLcvvvgy+/LLLyxaPiLxYwHceC99fiIgjLqzMFL2hgiNaC+//EolUuN1q3v/8ccf\nZR999HEqtfOxRepHjUY+8+SGEJ9Vxfh8WR1K8XR3d9liS0wgPHrE5z2q9LXP5hjCQIz+5GfoXyIg\nAiIgAiIgAiIgAiIgAiLQegTCZ6NHwP/22+8skOr777+ztdJ8vbTHFkEf/mH4f1EuJ/YBHUT4/Ib4\nHuVvyJam3OqvfuVlVxHl2T81+ekJ6vr0UwK7PjWh//T+8NXY8lnaHR3tVlI1/ED2ycRBtCjx89JL\nL1kEP++LFvuznep/IiACInAHBCTo3wFkfYQIlJlAGGsh6H/++RfZ559/ngT9zy1an4gNxHXK7mDA\nhRGX74+PnyaD7uRr8V6MMKLlI1qDSH3K77z11k+tBuJf/vKX7C9/+R9bDJd0S9IwIwOAv6VhgJ1+\n/OABr8XzRF549EVHR2eqqY+I/6xNIkR9/ehDyI++zGOvcxcBERABERABERABERABESgHgbz/RhDV\nt99+U6mPj6AfNfMf2/ppXlIH/85r2yPeh38Xj6OP5/HX2tvdJ0Pc//Wvf50E/V9bT+mcfKnVeExP\nBvhpX+8qPiD7dDHfy7m+9NKL2Usv/SjV8EfQnzYxn+NA1JegX45rXGcpAkUiIEG/SKOhYxGBFiSQ\nj7SnhI4vdjtrPfUT19bWrG2keooHB/sWzR+RGuf1TA7s7xP5v2+R/J4m6YsVsUhSCPovvPCCCfkf\nfvhB9uGHH9oEQkwwEAUSERVhiMW/Y3Hcri6PuuB1IvO7urqznp5uq6mPcTc5OZEmE2i1Ejwh5Muo\na8GLWackAiIgAiIgAiIgAiIgAiJwJgEE+GiI6Ij6ROpTZsd7f8xaant7+HN7lsV9ns8Xflv0+JVs\nfAbC/s9+9rPU3s3effdnya/ryr7++usk6n9tfWRl01O+FX8uWs3n67Tn8v/O+4FkA0S5HUrveG39\n6Wx6ejqjnj8ld6KdCURPioAIiEADCUjQbyBc7VoERCCrRloQWYExFhHyvmCRL1rkj7eSscXCSbtW\nax/Di5r7Z/fb1fr6e3t7FnGBUUekxYsvvlgV9Hn80UcfJjH/o1RD8SNbgCkfjUHURb719Jz8d29v\nT+V1Jgt4zScNqJnotRVZHKm/mvrJvkLIj17XgAiIgAiIgAiIgAiIgAiIgAi0OgGEdjZ6fLRYDy0W\nqyVLGr8PQd9fw/fbNv/vfD/Q/T78QvaZL83z5ptvZm+++VZqb5ofyHpptK+//urEZ3NMiPP4atGf\n7QO67xc+IX5efk01yvxE6+npqUb9419qEwEREIG7JiBB/66J6/NEoMQEImIjeowyjDMaRt0PxX4E\n/x82jEFfPHfdXidiPyI3nnvuubRA0tsm6lPnkNr5H39MDf1P7L0Ybxhg9BhkYaS5cTZYfS5eiz7/\nPo/W96h9JhJCvI++xEOsUxcBERABERABERABERABESg5gby4z+Pw1/DZEPTzi+GGv0fGdjyO3t+3\nXi2ZGgFf+JGvvvqqtVdeedUmEb780tdqQ9Rni2PAd4tgLAKzwr/L9wMDP/QDI3ArJgIiMAyfT36f\nIdb/REAE7pGABP17hK+PvpwAM/Ah+NLHj/Llf6l3FJNARG340bkIv2cply7uE6GBuO8if4y9R2zU\nnkP839oiWmPL3s9+ok1MTKbahi9apD61DTHovvrqS+uJ9segixYRGtF7pMYPozd4vRah35tSKzst\nvbKzsyNFZrQXE7WO6kYEWCuBTAy/FmoZFzfamf5IBERABERABERABETgSgQi0Ac7H/FXW+sQwIc/\nOjpM0fVH1u/uEtRVy7gOn88ztT1iP56rRfNvW+Y21wkN3+/Ro0fZw4cPU3uUdIJjK+nq5V3nTHAP\nAZ5SO+7PebZ1+H7Rn/QBIyubILDe5Dd6EBf+Y5b5QrpJz68+bp1RKt+ZMKYxWcM1ok0Emo2ABP1m\nG7GSHS8C7NLSUlo0lbp7S8kAOC4EAf8RL8ShNO1BkJGZr69/eHiQjHca0fa1GvlRKz/fR73FMOaY\n+IlGJEUskkskBgvu+jW0bJ9HjURqHdJHHcXo889RP9GfP/k+nicqv72dRXMp8+OGXdMOhA78BAGy\nN2JNhLGxcUulPfEG/UMEREAEREAEREAERKDuBFhXC5udtrGxXvf9a4f3RwC/zxe29QVwDw4OzecL\nn86DvHx9NHzBk37fD2vth9/nZVCHsqGhQQv8I4M7WpRjRdTP+3iIuPl/4++53xf19MMH9MVu3W/0\nWvkI+tIB7u86qvcnDw+PVP0+dANtItBsBCToN9uIlex4t7Y2s2+//S777rtvU/+tibYlQ9DSp0u0\nxvExiycdW3987EaeG3w8d35jMoDX8z2PEdmJnMf4wpALg4+ezcV4BHmvuY+RF+2s5/y1EPD9vZFm\nqVTL1rs8SbelbBPt2Wefteuk9c5SZyQCIiACIiACIiACxSIwPz9n/h4+38LCQrEOTkdzawKI+qkI\njgnveR8vfLn8c6cfE9SX9xPjb8KHo8evzPt94QuG78d7Tvt6p/+d318EbvHcgwf4gAriuvVFULAd\nTE/PVP2+iYmJgh2dDkcELicgQf9yRnrHPRJghv2LLz5P7Yvs888/tyNhRp3GD7A2EcB484kBF/+J\n6iCzg8bjqJdPj2HnRtkD60VPBCAQ5ZpwAqil+aMfvZy9/PKPrNd9RteICIiACIiACIiACDSewPff\nf29+Hz4fZVPC56NXEE3j+TfDJ+DzsYX/R3mmKM3Dc0TfE3FPjw0foj7+nzYRYKIIvw+fj/6ZZ56p\n+H0vZzMzMwIkAk1HQIJ+0w1ZuQ74tKBPnbvR0dFsZGQko7SKNhEIgy56Fk6qpetuVNPoKKOCqK/o\nel0zpwmsrq5mtJWVFXMCJOifJqR/i4AIiIAIiIAIiEBjCeQFfSL0w+fD70PU1yYC+Hts4fctLi6a\n30ePj8c1MzY2Zj2CPkJ+NNETAYL9wuejZ/0F9/sk6OvqaE4CEvSbc9xKc9SnBf3JyUkrg0EpDH6w\ntYlAEMgbdqTq0jDuKJ3y/PPPWx+TQIryCWrqIfD48eNU1ovSXt+ZgyBBX9eFCIiACIiACIiACNwt\ngbygzxpY+HvRiLjWJgJ5AkRbf/PNN9bw+xDuuV6ibGYEcSk6P0+t3I/J5gifj356elqCfrkviaY/\newn6TT+ErX0CpwX9F154IXv99dezN954w2ZUW/vsdXZXIRCRGvFexNl//OMf2aeffmo/2FwrNK4b\nFk6KTaJ+kFD/2Wef2fXCNUOpJgn6uiZEQAREQAREQARE4G4J5AV9FsgN+52eLG1tIpD3+xD0sd3x\n+2hE5Iff99prr52AJb/vBI7S/oNM/tAJ6AkWVYR+aS+HljhxCfotMYytexKnBf0XX3zRfqh//OMf\nZ48ePWrdE9eZ3ZgAzsDf//53+7EmWoNrhYaBNzw8fOP96g9bl0A4A1w3EvRbd5x1ZiIgAiIgAiIg\nAsUlkBf08QGx3cOOl6Bf3HG7ryND0Md2j0a9/PD5uHa0icBpAgj6cb3QS9A/TUj/bjYCEvSbbcRK\ndrwS9Es24HU4XQn6dYBYsl1I0C/ZgOt0RUAEREAEREAECkdAgn7hhqTQByRBv9DDU8iDk6BfyGHR\nQd2CgAT9W8DTnzaegAT9xjNutU+QoN9qI9r485Gg33jG+gQREAEREAEREAERuIiABP2L6Oi10wQk\n6J8mon9fRkCC/mWE9HqzEZCg32wjVrLjlaBfsgGvw+lK0K8DxJLtQoJ+yQZcpysCIiACIiACIlA4\nAhL0CzckhT4gCfqFHp5CHpwE/UIOiw7qFgQk6N8Cnv608QQk6Deecat9ggT9VhvRxp+PBP3GM9Yn\niIAIiIAIiIAIiMBFBCToX0RHr50mIEH/NBH9+zICEvQvI6TXm42ABP1mG7GSHa8E/ZINeB1OV4J+\nHSCWbBcS9Es24DpdERABERABERCBwhGQoF+4ISn0AUnQL/TwFPLgJOgXclh0ULcgIEH/FvD0p40n\nIEG/8Yxb7RMk6LfaiDb+fCToN56xPkEEREAEREAEREAELiIgQf8iOnrtNAEJ+qeJ6N+XEZCgfxkh\nvd5sBCToN9uIlex4JeiXbMDrcLoS9OsAsWS7kKBfsgHX6YqACIiACIiACBSOgAT9wg1JoQ9Ign6h\nh6eQBydBv5DDooO6BQEJ+reApz9tPAEJ+o1n3GqfIEG/1Ua08ecjQb/xjPUJIiACIiACIiACInAR\nAQn6F9HRa6cJSNA/TUT/voyABP3LCOn1ZiMgQb/ZRqxkxytBv2QDXofTlaBfB4gl24UE/ZINuE5X\nBERABERABESgcAQk6BduSAp9QBL0Cz08hTw4CfqFHBYd1C0ISNC/BTz9aeMJSNBvPONW+wQJ+q02\noo0/Hwn6jWesTxABERABERABERCBiwhI0L+Ijl47TUCC/mki+vdlBCToX0ZIrzcbAQn6zTZiJTte\nCfolG/A6nK4E/TpALNkuJOiXbMB1uiIgAiIgAiIgAoUjIEG/cENS6AOSoF/o4SnkwUnQL+Sw6KBu\nQUCC/i3g6U8bT0CCfuMZt9onSNBvtRFt/PlI0G88Y32CCIiACIiACIiACFxEQIL+RXT02mkCEvRP\nE9G/LyMgQf8yQnq92QhI0G+2ESvZ8UrQL9mA1+F0JejXAWLJdiFBv2QDrtMVAREQAREQAREoHAEJ\n+oUbkkIfkAT9Qg9PIQ9Ogn4hh0UHdQsCEvRvAU9/2ngCEvQbz7jVPkGCfquNaOPPR4J+4xnrE0RA\nBERABERABETgIgIS9C+io9dOE5Cgf5qI/n0ZAQn6lxHS681GQIJ+s41YyY5Xgn7JBrwOpytBvw4Q\nS7YLCfolG3CdrgiIgAiIgAiIQOEISNAv3JAU+oAk6Bd6eAp5cBL0CzksOqhbEJCgfwt4+tPGE5Cg\n33jGrfYJEvRbbUQbfz4S9BvPWJ8gAiIgAiIgAiIgAhcRkKB/ER29dpqABP3TRPTvywhI0L+MkF5v\nNgIS9JttxEp2vBL0SzbgdThdCfp1gFiyXUjQL9mA63RFQAREQAREQAQKR0CCfuGGpNAHJEG/0MNT\nyIOToF/IYdFB3YKABP1bwNOfNp6ABP3GM261T5Cg32oj2vjzkaDfeMb6BBEQAREQAREQARG4iIAE\n/Yvo6LXTBCTonyaif19GQIL+ZYT0erMRkKDfbCNWsuOVoF+yAa/D6UrQrwPEku1Cgn7JBlynKwIi\nIAIiIAIiUDgCEvQLNySFPiAJ+oUenkIenAT9Qg6LDuoWBCTo3wKe/rTxBCToN55xq32CBP1WG9HG\nn48E/cYz1ieIgAiIgAiIgAiIwEUEJOhfREevnSYgQf80Ef37MgIS9C8jpNebjYAE/WYbsZIdrwT9\nkg14HU5Xgn4dIJZsFxL0SzbgOl0REAEREAEREIHCEZCgX7ghKfQBSdAv9PAU8uAk6BdyWHRQtyAg\nQf8W8PSnjScgQb/xjFvtEyTot9qINv58JOg3nrE+QQREQAREQAREQAQuIiBB/yI6eu00AQn6p4no\n35cRkKB/GSG93mwEJOg324iV7Hgl6JdswOtwuhL06wCxZLuQoF+yAdfpioAIiIAIiIAIFI6ABP3C\nDUmhD0iCfqGHp5AHJ0G/kMOig7oFAQn6t4CnP208AQn6jWfcap8gQb/VRrTx5yNBv/GM9QkiIAIi\nIAIiIAIicBEBCfoX0dFrpwlI0D9NRP++jIAE/csI6fVmIyBBv9lGrGTHK0G/ZANeh9OVoF8HiCXb\nhQT9kg24TlcEREAEREAERKBwBCToF25ICn1AEvQLPTyFPDgJ+oUcFh3ULQhI0L8FPP1p4wlI0G88\n41b7BAn6rTaijT8fCfqNZ6xPEAEREAEREAEREIGLCEjQv4iOXjtNQIL+aSL692UEJOhfRkivNxsB\nCfrNNmIlO14J+iUb8DqcrgT9OkAs2S4k6JdswHW6IiACIiACIiAChSMgQb9wQ1LoA5KgX+jhKeTB\nSdAv5LDooG5BQIL+LeDpTxtPoOiC/tOnT7OnCcPT4+Ps8OgoOzo8zA4Pj9Ljw9zjo3NBPeCVBw/4\nL7UHWXtbe9be0Z51tNN3WN+R+vb077a2tnP3c/oFO650bMe0dFyHHFelP/3e+/w359XRns4znTOP\nYfAgnWcbQG64FU3Qj2skS2NRu0Zq48H1cpSuF4zSWkvX1dP0b66v46fGBj7VBqP2tnS9tGUdnZ1Z\nZ6Vx3cCQLfobYrzwz+KczrruudaO7Dtw8+s+zjPOJ84l+gsP7gYvStC/ATT9iQiIgAiIgAiIgAjU\nkcB9CvrYtgcHB9lBsmPpsclvsmGbh11O34jtKOfbYXMfHR+Zv3d0hO/g/gT+A37EeRu+lvma5ndW\nfLGK7xk+GX/bKNv7vOO6zvOtKOhzHXJeR/iFaZwv3NIYMo6MUb5dRzO4cP/pRa618E9D4zBdIX1P\n/Brz64332feH79DBYfLtuaa8tSeflWNqe9Bmfn5n7rXQAML3u+x4bvu6BP3bEtTfF42ABP2ijYiO\n5wSBIgv6Jmryo5saP2K7O7vZzu5OtpPrd3d2st29vRPndPof9gPHj1xqXcnw6+ntyXp7erKe1Hp7\ne6uP+VG86sbxhCGwv7+fO6YddOXCbN3d3ekc/Tx70mN+zNsQrhOLmxqQRRL089cIj3e4HnbTdZL6\nE9dJeq5qBDH5gijOGFYanOBDT+M66ezqsr6/vz8bGKAN2DUThl09jbn8BZM/J7/u07mcOCc/v71r\nXvdcB1zz1uJc079D1Od8bnpN5I//rMcS9M+ioudEQAREQAREQARE4O4I3Legv7m5mW1ubmWbW5sm\nSt7kzP8/e+fhF0XWfP1es2BAASMKKMGc143P739/n103msUECCiIOSsG1H3Pt+4UNDzLCOMwzEDd\nz969A8xMd1dfP1116tSp1fLP6wt++Tr56PMxiCUsniisxHrvNT+8/2AJiUQwUyxRJClBzEW8SayZ\nYs7JuHOV/PD5jifKYZfFCOhzTcSEHz5ojn9Q3D5z4E5sZEB4YfUYmt+VI2bi2Plzef/ufTZmMeyY\nxbEO7ENYYz/y7+fNmzeaYwnDqFub1Wl/EbsC3CcS34qsrq5OU3/Tyt7z+JZYd75HAPrzbeH4/kpb\nIAD9Sls8jjcnC1QzoG/sd7LnmjzQONeXL19lL19p8trWV9mYnMKZh9gRMK0LQDZO1Yb167P169dp\nri+8TusqOYizHZwPDJOPcggAjl/Y+eicXry0ioLZfs98v6++vi7buGFDtkETp9cy+YDVSl6U6ohU\nG6DP/rDkilaciLRH0l7hZ+4N6zs5Se/fv9N8LydODrnYDXYfdQ9xeADt6+vXyU44P0r0WOJnbbZp\n06assXGzTfYMzp05eFrnY0zZ9zo33+cvX03d/2Ny6GYexfc9e4FEBZN9T4LHr2vm7yz9LwHol267\n+GRYICwQFggLhAXCAmGBclhgIQF9/PUnT55mT54+zZ5qfomQNdP1AlQ2bpZfrrlZcz4GwCn+N/HD\nK70eGxvTfGurAfsFcJ8K4JkGMdf69cRgKc4kFuM1sUS94g73uwGJS6+bnuno5fk99+z69esTk2va\nv39/tm/fPpvlOUplv4UqCwiCThTkGmca4AcrVlCpnZjwznynMqTUODp/rERGmyQssu9evHiRcAXF\nr8SrlnjQ+ur1K/27eWb/fp49e5Zt3LjRYnxW4lgSXatXrzJCWgN/02xo2GhYh8d885UAy18T/2by\ne6a5uTnbs2dvtnfv3mzbtm35t8brsEBNWCAA/Zq4TUv3JKsN0PcsOSvZaGdV4/Tx8OJBxvrs+fPs\nueazZ8/N2Sp2B8lWu8xOnQDMTXq4+UMOsHazJitgP8Cmgf+AtZTXzfDF6QGrh6wAVx5cjx4/zh4/\nfqL5uGimf4avm7dfNzQ0ZE1NTVlzU6Me6g0G3gLgwkDHkSxlLDSgn98jAPm+R1htj2hP2B7RPrE9\n8vyFrTAeqOiA7c5+GsdJ0mf4HA4OjjbJDxzttWvrBHZrykFqbm7Ktm7dmm3dskX7JNkQRw4b4sz5\nLMWW/hmuCYdy+r4n+cAef/acfZ/2e7qmWex7Od3miMoZndj32vs4eelatW7cYMyOlQVnNe+glsNR\n9esLQN8tEWtYICwQFggLhAXCAmGBhbHAQgL6VJ3eHR3NRkfvZaP37hnTuBQr4MPu2LE927l9h62l\nfEf+M/je7ofjiwP4Pn/xfCLmfC6ANVUWvBao+iaRg0QSIpaAGDTTwKcm9iLutNXiTX7eZMB+iiUU\nk60qXzwx07mU+vvFAuj7PWYl7kvJmpS0QVJppsG9SdXNk1XcCThXhUWJcfT0vQZQ/+oVe0tgvrCN\np+AcYB6a71URQizIZB8+fPgoe/jooWEO4BebNyccg9gVFr5Vm4uRn5JdiZDWoP1G7NegmG/jxgYj\nOnoyqZyxntswAH23RKyLxQIB6C+WO7lIr6OaAH0ecCaBYs7UJ3OeyFI/F+udFRCfBx0rDwtKNik7\nA6gtNtDNdz301avXGAO7DrBWIC4PPAP19UBs0EPOWBQFUNeBWlunHQAn7n0BGCbJcGd4OBseHtEc\nripAf+vWLdmuXbuyXS0tyopv1YNeZXdr0gO/VEdkoQF9l8lhRVrH9weOTn6PwNRnf/g+ef8hMfNh\nOuDM0YcBRxy9QkpivTRxrdj5+dLEBoH45hjB0tc+ySeBAPUBzSeSQNP2yWx+ZN9PsH2UZDB2BhUf\nVKNotQqDwvpaDt9rK7Wc277HGSU5AbBPJULa54nZAajfsCGxOEho+PWwlsvRC0B/Njsh3hMWCAuE\nBcICYYGwQFhg/iywkIA+lbF9/f0Tk6rmUkaTSEodHR1Zp829pXyFfQb/2ycEH3xsQFX8cKoIHj95\nkj3VJL4wCR6TfE0Snk4IIhaZaSBpSayZKoDrja2/UT43leIQywBjPaYAJHb/u9T4bKbz+JrfLxZA\nn7jPyXhvVG3x4MHD7MFDTa38baaB3CpkLiY4gUuwetX7TJ8r9nvOg/gV/ALpnCfaY+y1x6peeam9\nxh58wz6UAsEH/Zvh/Ji819j7eg+xoakN6Pw4R0iJTjZjBeBfz9+kSLCpQO7j302zSH71dfWKBxNp\nbS7qBMWuKf+3APTz1ojXi8ECAegvhru4iK+h2gB9c5D0oOPBxcNt9N59Y3E8ePDAHmLPxbZ+IQdw\n7O2YPZjJXI9L/27mkRjUy5axqsGpWMs4TTzAKEtDSoVyzc2bNmdbtjRn27dv19yWbRcj25rHKvvu\nGof5Y/iDGLkdzu1mb1/W19dnK82SqmW0Cszv6urMujo7s9bW3fbA56GP3l6pDuNCA/rsDd8nONn3\nCnvkntg+/Mz+YH0Di0YgvmtepkbKNFRO2vk4qT4ppVy5MlUu4AixT5iUVuIMGXNfZbJNjY2WHCFJ\nsntXi9nT9PYLnynlvhMM4Fxackor1R73tace3H+QPdRrrsOYQQLyCSjQ7+SaStr32vPs+w0qATYp\nJgUWVHDsYM+z91UK6ddDDwEqVsoxAtAvhxXjO8ICYYGwQFggLBAWCAuUboGFBPQBMi9eupxdunxF\n6yUDzUu5kh3yV48cOZwdO3okO3bkSClfYZ+xGABQX/EAfvhDAF4Y0FofPXosJvQjq7wGRPVGviQl\nJohFapTLZ2caxFmrVonZTdwp3xtiDeArID8AMWQrjyf4nQOyxB/VMhYLoE/c7rEW5K/BodvZ7du3\nsyGtkPRmGhC6dqoahBgJYhzVFZsN4N9k92umzxX7PeeRKslTFcjoPVWtKIalcgWg3hn5xHs0Y077\n7bPhHt5LkHgwTz4jjvWEEGv+b8jubNtWwDcU5xHLmpTs5karRi92rqX8LQD9UqwWn6lmCwSgX813\nJ87NGMADA7eygYGB7NatW1lbW5tp4qGPt2PHjopaCKeBh5ixILSO3L2b9fffym7p3HjwOluZFZY1\nThR647ArvjRMOsfkUVDSSSA9moU80Jr0sG7Uw62lZWfWIX03GB979+4xwNsleKYzlcmSvxlLTWlG\nRkYmHdTLlwQSf/l8vnS+5fp7l67lqBzeo3J8AfVxGF1Khgd+KWOhAX3fH6yP5Gz33xrQvGUTMN/2\niVakdf5RcoX74Qwc2yvsGV247xtWS9rI8Z5SlVGQ04HdDnufRAjMhgP792X7pR25f1+3SddQ3sh7\ncMRLGVQJkIBASoegYVj7fnBwyObw3RHr0YAjyqSaoBz7Hoa+Afpi5O/Uv/MO7Xf2/N49eybKNbmu\ncgUVAeiXsjPiM2GBsEBYICwQFggLhAXKZ4GFBPSJ8c789nv22x9/Zmd+/93Y0aVcWdvu3dkPP3yf\n/aT5o2apg7jTwFKt+N/EmkMFkPf+/fuJwS1wn9iiWBxR7PhOKCPOoEKaWIKJXIrHE6ww9k3aRb73\nfLCmi51jsb8tFkAfkNliLd1niHjXr9/Irt24mV1Tf4C36o0w0wDItxhJ8VFbW6uR/7Y2b7EV0LyU\nwV67p/11794DA/IHh4YyEgusxLCGbUzBOIhjU9zK/fBJwoi41ddJrEO/I4bV39l/7K3dBSIaK3hH\ny86d2U5NpHjKPQLQL7dF4/sW2gIB6C/0HYjjF7UAD46FBvTNSdJZAmy+QO9cuoUw8YcFlA8MDhqw\niaRNkhpJTGY+A4BqzWm0euNb5HWmg+8wusc/Uq6WJFY+w9AuPBC9aQwlkDzcAL1htHd07DUZFpwr\n5FimA5sm5WLSJ2PZnTvD2bkLF7ILFy7ayoO2Wsa+7q7sxPHj2fFjxwyAttLPgtxQLQH63G8Gq4Pf\nrLDzcYAGBgZtr7i8DnuF/WR7BPa9NOInmQs4QFOZ59wzZ9zkezf4d3hFB6WxJEm6Ojus3BeAP5Vi\nbjIdft97vs60D7gOd8ioMsGxI3i49+B+dvfuqO199v99sfT5+wcqDbTitBmDR5qOXBNSUvzOnLlp\nHR/8emB3cB3sf/4t8Pu0D1JT3G3btmRtrW3mqLbLWYV9YtekEk32v1+LrzNdU7HfB6BfzDrxt7BA\nWCAsEBYIC4QFwgLzb4GFBPRhQv/3l1+zX8+c0XrGfN9Srrhd5LP//PxT9n+arKWOd+jgqzkqBCDk\nTiC3EXcSU1Ata8179XtiivywCt5CDDo9lgKMdf/eYwuPO/kcVbKw9ok7iSW6OjqzTq1b1DjU4wmk\nUtzn9jV//Eq+5hryDU65hlppiuvAODEX99KqnwXmE2cl6adbtlJtP9NI2IDknXSPID1tUwU/TH3W\n2QL6HJ84zCcKBGAHd4ZHTLKXf5MjOidW2PsO0LNa1TQVHtpvxHyC6bU3OFv+VwD6tdIHgBjPpaC4\nb05qI+ajAnv79q22trW2qmq/VbHfbrH1mxRXUqVO49/SiGnTbReA/nSLxM+1boEA9Gv9Di7y819o\nQJ+HHJOHLswNLzkbVdMkb5zEykPYS9DeywHjoVMvLfB19ZQu0tldJY0mJ6ImNTnmOWxm1xxn5aHN\n93xg6sGH9Ayd4WFL8ICGob93L0zl9kIjIzTzEmsivxUC0L+e3bhxw3oG4Ni5cwcLoNwjv0e4n+yR\nuypLtBJFVu0Pc4S0sjesv4HuL04wGodpn9RPlB/igOGQ5keSsUlNh9gjk/f3jTlWvJ+JdiKM9pad\nNOLSqnJZpHcomwXc55hMnLBiA1DdHTv2JVUotwYIIgaMsWRBhHozkLT4qGSUA/IA7Ghvoo3IubgD\nhqMHE2Ni6N+T24FEwFtJVHEcEh4w/fOlmAQQNP1FZop/A7t0PVwX1wSL36+HtdQRgH6plovPhQXC\nAmGBsEBYICwQFiiPBQLQn7QjTOlnBSIZrG2qYweokC0wpWmAi+QlcWN+EDdafKEYY41Y9/nh/jrr\nB0nC4oN7/EpsAHhKPFEnHXNiCWKKnawilXk8sWXLlgm51y/FE/ljz8frWgX0iR2JtTypQtxI9QUy\nO7fv3DGMgd8B7iMFNdMoF6A/JqA+zbeWyLLEkfYazPynz55aA1x68gHKe8xJjJd08pMePjiHse4L\nsabhJ1aF/tlivtRYNzXY9RiTlca+6P8jvUNz5j1KiLW3t2d72tss7jMsxTCVeov5ZrLFbH8fgP5s\nLRXvqxULBKBfK3dqiZ7nQgP6eSYDDzrkU8iaI/8D+9qaxDx+Ys1OP1kT06QlR7Y5dXenqa2a1AC6\nsNIEAABAAElEQVTcFpp+rlgxKSWD3MozZeXpFA9Iao1SC1I5HI+HJQ9OmP5oifNwa9ekrM6y8Fu3\nFR529VN2yCTgGwz9SgD65pAJzGft7xejAokd7ZORkbsTe4S9guOCA8eEVU9/BBrZsleclU4joOnl\nrGMqt2Q/cF9fqiwTp+op+0aT2gAvmQUId/Y6a8feDqt82L9/nwHgON7ML2nP47B5I1yqUa709Ghe\nzXquXlVzpKcmOwVjiCCAa3aWBWB+c3OTkgfNJhcFwM85sVKl4gMnz2ShdD2wPQhauJYnJAkk7cO/\nkeXLk94igUmDmEIkY7gm5IT2dXfb2qQGSlyLX5d//1zXAPTnarF4f1ggLBAWCAuEBcICYYHyWiAA\n/Ul70hQVwhjVsNglye3cyQZvD8kPfy9wlQrZVNk6+anMiF7Wf03xBWBofgAO078LUs07CEKFmJP4\nAka1yb7KryYOyccTsL/3FeQ8YVAjmeK+99cQavLnVsprYpBaZOgTBxFrERfS/wAA/cbNXiOjkbR5\n9gw1gOeGL/CemUY5AH1smKrLkwrB8PBI1tvXr9lnhK5UKfLOYj/uNXuDSbIIBn2zYjEwCuI1izEV\n77HyvZ8+pdiYfmuPnzy2ypJHwk2o7La9qIQSdCzknpzM1aG9tlcERqSEWlp2Kk5O/QRZy7HXAtCf\naTfF72vVAgHo1+qdWyLnvdCAPtI3n/QgReaEru49AjUTsNljTGXAVTLOOELu2ODkkGH2kjeYDDCW\njbksbfBVAud98P35JkeA+oCbzwta6zzwAUv/EfC/Ud8JOwJ9OVjKOFSUo7E689wfdIClBgDLURsW\nqHzJmjxdzi5evmwPWD/+fKw65Qkd9TzYm17jLCaWuJasu6tbkjvHbALSkvSgogGnYHqZ6GzPFacX\n565SDH2uyxvZ4nTZ/mCfXO1RhcCIAfA4DyRr2CNcPysM9smkDHuERrCJ3Y4+fH680v56pc+z32hU\nZE6+HHwYOziELtHE9+JgrV69xtaDBw5kJ2Xf45I1wjEyVoUqRLCt75X8cfw1QD37Z0xs+SdKRJw9\ndz7N8+dNq9PfhxNGxQnHBbBvVAMjZ/PAqq83bX/u59psRa4yhUSZ/dspXBPHSKWmD63JFzb1Cbjv\n18O+OIlEU2HP0HiMa/Hr8vOa6xqA/lwtFu8PC4QFwgJhgbBAWCAsUF4LLCSgj+975vc/st8K88HD\nB5MXp9jG/VJ8bovP8FUtTkuym/7mdjGMv0Zyh+9mIOc6dPuOAfl3xNpGAmVYv2PlXPDB5cxPxp/4\n4pqNAli3KvZkblAla35wjdb3SqQcYlf091+8fGErMYxfIzECZBxiCtburq6JeKJb0q/ud7MWiyfy\nx56P15xvLQL6nLdVKus+sN7s7cuuXLmSXdLsvzU4UTUxSZxKe8L3htuyHIA+JDMaLD+k4bLWIVWA\nWHLh5k0jMubvLyx8YjEmRDTisB3bJZejpraw9YnJmMSFnwXmO4mNZrpIt44i33r/npG6ElFtLFeB\nkCR6SB51SloYVYJW4RwcY7sdY5t9r197qWsA+qVaLj5XrRYIQL9a70ycl1lgoQF9ZG/eFx62xlQW\nQxlQH6Yy+oXeDBSGRGLg6wGnMkXkTXao6zwPoS1bt5h0DrI5SOj8D0O/kIF/oZWsNWDtwwcJ2IRF\nkeRWPphDldjPZMObxFLukp5+l5ysTusIz8PTZ3ISEgODjDhlmpTNwQCY7gyUe6vx8IZ1bYCwscpT\ng94xJRlgfbsMC2Wd+7q6Bc4ezY4fPWbXkdjcKUvPtZQyKg3o4wAb04V9otlz9doEm53Gyb5HYNkn\nB4g9Umes/O2FPUJTI35ne0TgNxI1+QEbns/zXfybcPAb1g5O0qvXr7LXSiy5fSlfXLlylbHzjx87\nmh07etQAfXPOV3/ZvpTwOluD/XhZDuaVKz3ZZe19HCEfOG3obJJQalDQ0CyNTZPHkTQObA1nW6wW\nkyPP0CcAoskTCQOuiSTFvUKCguNxfBJlHIvAya+HwOLYkdREmWbKJA+4JuxGL4lSRwD6pVouPhcW\nCAuEBcICYYGwQFigPBZYSEAfgsz1Gzez6wIyb2iFIe2D2Mn8UvnbrMQ4+Pw2BcjmR6mAPsdwQB0/\nmUrfG7292c2bfSbD8viRM5wfW7yX4qkV8n/XCrgXcUx+OHOTCGD01PLq3/y5cY0w+5HaIVaDUMOk\nipjrSvHbGwNZiSM4Bj444OrRI4ezI4cPm167S8KyEgss1KhVQB98wRj4YuI/0z5D2vSmGPo3db/p\nUabbr5Fkfz8W9OeTxOmnKaYuB6BPHEvyyDXz0c/35suci4P0xHEQFMEgmE2qyP5Xhr7i92/U7BYV\nAt/PYABPkO4pVJc/IHmgeI+Yz2K9HPiPpKoTGHfv3pUIjFImsMqQErGBvNEC0M9bI14vBgsEoL8Y\n7uIivoaFBvQBUgEX0ffG4QGsNZa+AH1ASBwjwHyevDAimhrTpLlLS0vq0A5T35rGFByjPFAN+94y\n1AXgm8w4D1IYGMNiYLx+I1BTZWpvdA5kyOvViAj5HrLgR+VUHZZzxcoxYEAvF1OClYczJXyslLnB\n/Lepa0hOwvxtGkronj7FOUwPbpxEcxaVrMBRBHhdAwC7dk22X6x8wOZjAmc7OzqyFTS+4Rq+gvFR\naUCf603679wrVXEU9ghJn1HJMuE4j2uP4Lw1Nm6e2CNblejBEUOXkgnrYVVhj0x3jnHi2GfsN44B\nM58JoG/luEoA8TPg/qTjtdySPjjfOOEw9NcV9g9rfh9O3w04lzha7MdRaTjC1HBHk2v1gaPPPuc6\n0Nqk4qAJR09O3uZNmxODx+4nFQH5BM0/E9fDNXE8LyueuDZdE78jWPJr4nhHDh3MDh48mB3WitPn\nlS+spY4A9Eu1XHwuLBAWCAuEBcICYYGwQHkssJCAPoQkAMYHBf8z34z0s+K1BxM+9wMDJhO7/aUR\nbfJXXyqgD/jJOVjVr+K3nmvXssuXr4hU02MAK32miAtZIcwQRwHmb5T2+E6Y0gWS0HqB+jSuxdeH\n9JIfiTFNfPjJ4k/3vWFPPxZRzaRkFb8Berrvzco1HTywPzug2Slwn2Nugsyj5AEx20KNWgX0wRfu\nTfRcuyft/FSJQX+ER4q9SKaQSCEupNcB8kgQoCBu5Uc5AH3iMCR2kBRmHRGID8mKPQF50RNHrAD5\nsOZbd++WWsAuk3eC1EVPM0hXYBXEe6ymMCDQgUSVJZAUPxJDvtEepi9bmgO27zgHj3O3bGnOtm3Z\naoRIgH0nL3Z3dtqezF9/Ka8D0C/FavGZarZAAPrVfHfi3MxJGhi4Zc040a1vk0NhGn5qdErTz/ke\nPHjIoMNWBuC8WmBfXxFYi4QKjgQPKpyZXQI2ARgBZ61xkB50rLCvkeFJuoRWIDnltHmIAb6Pj38U\ngHk/67OHqjTYdb0kDdDXR0sP4Jjs+PJlkhgR8H361Kns9Lensm81d+mY6YGbusBzTj5x3vjucYHC\nH7WS8Z/PMSanA4d8ZPSuNfNBR545fHdEtnxhTqY10REAi8wOTOtjApzRy0t2SpI8pZ5jpQF9AGff\nIwDT+T1CUMB98H1iwLftk7RXcIZcQolEjDlCMBumXbzfS9gOY2ogmwfzcf4G5BihuUggkpypZENK\nFg8fOmTgN4A+jjdNlFlx0GcaOJNINVFhQHLJjqHvp9IDVr0PnLekZ9+ddeteUnYJkL9Zup0cJ38u\n/hlfk13Yp58tETGRnJADyfXcUjUJK0kK/x7O+aD+7R/Yv88aHfPviySJ6yv6d891DUB/rhaL94cF\nwgJhgbBAWCAsEBYorwUWEtDHL4V8M654C3Dx8+dJNjRa4LCo3Te9OzpqwOvDRwLBBXrmx9cA+nZ8\nzkHz/IUL2V9/n8v+/vusdPNvT8iXENclctf6bJ0IXkjrdHV2iDnfaSt/s4pngf4rBMJOGbpGrpOJ\nPw8DO8VpkvPRa/P95f8D5LrvrRDWwNt9harwPZJE2aKKXIBX1ul9v6Ycb55/qFVAH3zB9pPkdVjZ\n96MC+JkkioyAtU4EPiVlqAKnChsgOh+DYdpyAPrgC1Rg9xT6pbG3wR2ePX9mWEe+ep7jEYPt29et\nKvuuCfkdKtBXrlipPTP1hhcKDVRtDRbBvk54REpUSWJICStizXfqCYG8EDG1N8el0gRcBQLX4cOH\nROg6VDR2nXrkmX8KQH9m28RfatMCAejX5n1bMme90Ax99OyRwcFZG5XmGyWYVo55/YYxpf1GICkC\nw9w03wSitugBhN7bDjH1kSEpNlz/HKeEpEFf/y013ZXTqAe8AbcF9jXsdh8A36dPf5t9JzCfFVDY\nnTfWSg93DllhkPv500R4VI4BDYRxUnBgnKXeqGoGbHbwgMDZffutH0A5zrvSgL5LxjwVmE8pYW9v\nnxjt7JNeawCUvyYYDUx6H9AHgWSPaQNqnxRjzOe/A2cHR/uRggjWvr6+tCe1N3HC8gMQHx39gwf3\nZ2gSOvDNWoxRA2MHiaYhaXbeVhAxPDyict9UOQI7BGCd80U/EcY8ztYhOVpUisCUp+SXgGK2gyoY\nYwXp3xpVAddv3Miu6d/YtWvXLaHl38MxkZiCpQFjg1JM0wlVtQNrqSMA/VItF58LC4QFwgJhgbBA\nWCAsUB4LLCSgX+wKANFvyt/Gx4fFDNnF2O2K0Yjd8qNUQJ+qamKKJEf5Ljt/8WJ29uw59bA6Zz54\n/hjEUsSXMKaRn+xQ7InPjzQOldAA+VQ8FyPvEE9AprknMhnrJEFoUDHb/YkEAvEp/v2etrasvb3N\npE+IcyGyAfBOrwLIn+d8v64lQJ/7axX0ArYhChornj2l/QQBzCvpAfBdYpeECbGzxXyKj/hcfpQN\n0FcVCJUgl3uu2F6gvwLHZT+6ZPBaScIaoK/myJC4iMfAHMBAWIvtNfCBPN5xUb39LquvH739iC+J\nA1EU4JgkB4ghiTHZYyfUO41+eydPHC96jLxdir0OQL+YdeJvtWiBAPRr8a4toXNeaECfh6uD0TiZ\nANT9Atz7xJ7nYecDZ8ZATUmBHDp4wJyrTZuShiFlaMUGzggPOvQSAYRv0/hIDzcHUNG1A1CliagP\nWBPfnjyZnTx5IjulCbBpeoaSsuFBWOnBNeDs8rCGrX5VQCxNilgBncn083vKSL1paosc0Lb2NgHN\n7dme9nYDtstx3gsJ6FNRAVN+SKx52Oww9vPDAP1CI2NKY/MAO/d0NgMmBd+LPbEr4DeNeJnslfzA\nrsZmF5Nij+xsmody/lmLAfokX+i34Ncycnc0VV1o5T7jvK2S80YTXyR9jDkh9gTfa3r22ofTG/vm\nz2v6a4IKKl5evnpp13QJJ0/OHpP94wNA3/cLDKFW7XsqYthL2LPUEYB+qZaLz4UFwgJhgbBAWCAs\nEBYojwWWMqAPYYa4l0l1Kn79JfnB+MT44fkBc9mlTyB17ZTsJdKXxFgw5gFXnXyT/1z+NYxp75f1\n/MVzq4pFw50GrcQTyKTAmibuoPLW4jd9f4tAVkhCNpVEIP5cqFFLgD6JGrADgOtH6m+XAH1kbvqM\nvGQSv/obA+JXihlbs+eKLSFYDUmWB6JffpQL0CdeR+IJIhVx13sx5kksIBsLsJ5mnZrfbivc+/as\nXQkeYkkUAliLEdOc+GdNpIUVcLyrwgk4HrhHUiQgrn1m+5cYcrWqwLm+098WCIzfnioau+btUux1\nAPrFrBN/q0ULBKBfi3dtCZ3zQgP6dHy/LafmDkxlgeysPFBhLefL3gAxvz11UiD7CQPZ0RLHweH3\nX2Iu8JBjsFJmR/d3tOvQLkdmiOQBiQQAXB+Av2Srjx87pvWoMfTXqSzPNRP9fZVanXXAinY+ZaIX\nLlzMzmm+ePliwjGglwDAsjuCOIU4oTiJ9B8ox1hoQP+u7htVCdy/fBKGazN2fqGxDxr6MBCchTBb\nQB8HHAZDcvxem8N/4eKl7IKYPINi1edHu47VLSY7DZTbBe5vpTxWTPYtzVvkgM2seUnggOQT+w9Q\nH4AfrUcYO+QdaPxcV58a+6LPf5RGtQL2N8nhN+fuC6yg/DnymmtKjYVVViqWxt9nz6rMWFMrrBUf\nOIuA+Lt37bYklgczbap6IKlV6ghAv1TLxefCAmGBsEBYICwQFggLlMcCSxnQhw39RDFU0rF/YlXh\n1wA9NYkL86NLlaqJsLPPgNXNjZuMJARRiH5qs5EwBQzH9wa0Z1IhjmzoVQG76Ju/GUPvfExa+29M\nAoYGqE1NjQbq7pfsCsc/IBnMuVTk5q+hHK9rCdCn6v/JU0npQhaUvKhr1vf29llcZ1JPiofADfze\nsoJFpH1ww8DvvN3KAujrmK5AQIU5oDrkLUh4/2iP0AjXMAbJOxFDkkyCOU/sTlzm80txrIP6nD9J\nIxIaJDPAVoj1rH+Fql34vhUrSEitsCTVjz98n/34ww/ZT1qLkdHydin2OgD9YtaJv9WiBQLQr8W7\ntoTOeaEBfR64A3JqADUpRUwNbGArj5oTxK0Qvilwsz778fvvsh946GilDHK5HkhfYkdMv5U0Onqs\nrD3OHOV1/gCHhY2T54OH5jGBqEcMTD1sYCaVAN6Yxt9XqRXNxw84hGJx8ED+66+/sz80/9Sk6a8/\n5NHO369SPXcCKeEEyEd+50uVDLO9looD+mKXw56ANc/0BsDcw7GxSb15zh8WDcAzzAuuOTVLVtMj\nsWlmO3CyaKb0To4/K/qDAOB/nz1vMk357+E4OP1oa8Kk2Cp7k2xiwqiYaaCjibPVrwZJOPXeNIt7\ny57euFF7TfsNRr6B+QVQn9+XMnDImVR4wNb/7fc/sjO//Zb9+tvvViHj37ls2TdyIFMDXpzY3QLy\nLUGkZEV7e5u/bc5rAPpzNll8ICwQFggLhAXCAmGBsEBZLbCUAX3Y296MlPgTYk1fn6Z8ceQoPZbC\n4EdUFetSJMjs1Ks6u15EG+JRwPxSBschpkB6BaDVmv4KhAaIpio3SWquN9381P9MPdCOHjHAN39u\npRy71M9UO6DvpD2uj/5ko7qvVP7TeDZf9U8VBEA2dqQHGYS948eO2oRkBVHu3PnzBoLnbVUOQB9S\nFckc229aAbx9cD4A+lRksyL1tFUNayGIfUlS2L/j31ZiS6sE1wqgb5XgIsOhp4/NfD9B+vu/n3/K\n/vPzz7YGoP9v1ozfLXULBKC/1HdAlV//QgP6ZIyHxMZnIoPDw/iBJtlyHoA0qV2mJrU4Uc6Y5wEM\nQ+Ibz1rPwbEC/PYmuADCV68ipXJNZXBXpeP/ZOJu8aBLEj8HJPFz0EDizZs2ZZs0WSs9YHC8ev3K\n2NU4oxfFFj9fYI1TsplKP5dZwgFJosMmTXTQnAGAYTTXsWE5RqUBfZwwGPNvxCxnhZWPfAzlsjBe\n8gMtRBwg1g1yjmiEi3MyFwdlboB+q7Hz0TlMDH2x8+WEoTdfKqDP59JeazCmht1Laegf1n3lPpYy\ncN4c1IctdEZAvgH6Z3636gD/TpzdpNmZ2CEw9NuUqNjT3maanv6+ua4B6M/VYvH+sEBYICwQFggL\nhAXCAuW1wFIG9AFSU1Pa1Jx26HaS7xwQoeypmN0eSxF3Uh176sSJ7IR0xZGiXLN6jUmUIFXiYOhc\n7wxVvhDIbtzstQpdpFcgl7Hif1vluXTUIWIR85JQOKkVMpmB0cS9c4h553p+//b+agb0iW2I2Uw7\nXitkKSMIiiQIiJ3A/VT9TBzoFduQpQ4c2G/VDwe1gkFY1bIql2HQ50c5AH2Y+PeoLrdK7HtTFAjY\nS3VrlSjSfef+A+pb09qNDUbuyp/LXF4XA/TZS0z2OzJSP/34gzH0f9Y6l3h5pvMJhv5Mlonf16oF\nAtCv1Tu3RM57oQF9GBEA+XeGR0xGJYHtKpcTIxsnAnCTpkM8hCk/tCkGOiA1D0Gfs71db9++M4ka\nrvup9NEviymBduIlsSVIJvjgexPLnYay+4ypjIPV3NSocsgmf1vF1ufPKSN8ahO5GdPGU8kmZZsf\nP35KdgIIliQL0ixUFlBhwM/ebIeGOuUYlQb0cYS8OgEAH4b5O7QHtSJBlB9esshKSaU5LAXHJf++\nYq/nAujDykduZ7809AH0SSRYUkGgPvt2plGMoc99amKfab/B9Kfc1vcijl4pA6fXJ1Uev54RO//M\nmeyXX3/7H0B/9y6B+VQ6aCK/09bamrVJWgg5o1JHAPqlWi4+FxYIC4QFwgJhgbBAWKA8FljKgD5E\nIKrBAdaHtA4r9sQfZ+VvFnMSd2rCjDeZV4H6VKri0wN2MokRSxmwow1oHRiwc7ireI6KdFZi3lWr\nOPYqkcca7Nin1MsNuVnIZBCUUsJheSmHLvkz1Qzoc26Q/5hUssOAv3b9hnrM3bD7TAUE8T73FkLU\nFsXvkL52bJdOvaourMlxx15j8v/+xx/Z73/8afF13ljlAPQ5T87BKjIkkzv+YXzyENpLVJOne7/S\nYlfvlUbz5VJHMUCfPZz2OpI7O7Pvv5MCAioI350OQL9Ug8fnFrUFAtBf1Le39i9uoQF9WPE4OMz7\nYp6T1X0FE1sTh2n1ajUHXbVa2nL1GeApTGFWmscw5upUAQin739jD1d06NFGRyMduRMffC+sa/TR\nWZEegXWNLjtrpQcMDspDmSMjd608lNLNPunj0SEAEHiNmtuQbDhhJYQwO46ZA7NyBQ7iCnMEy3He\nlQb0nV3uK46RsTG08rv8wNl1p9fYLAWney77ZC6APk1xAfNJ+nhTXJgfzc3Fm+IWA/Rx5GyvKSmw\nffv2tAe7O7N92oskKr5mYC8qHn4RoP/Lr2ey//76q/Ui8O/EZtYkCh197fmkoQ+wLw19AfyljgD0\nS7VcfC4sEBYIC4QFwgJhgbBAeSywlAF9ZDuRPiF+6teKzCtxFf2rkOMhjiKeYp6QJMupQu+29rZ2\nEYTmTiKbfseoSrcEgpIIkNmGlFhICYYhk1RNx1C1tcDn705/m53W/F6TqnRPNgDGVnJUM6BPvDZB\n9FJ8D8nt3HnF9Irt+5U0+STS18dPmiK+IUHbRlxDPKO5S+Sl3WjVK7aBlU9cBNGJRsn5UQ5An9iL\nc/V+eDSuzQ/rxwD5TDErcZiR0RTPspY6igH6yND6Xuf6aIp7+ttT2Xea5dhfwdAv9a7F56rVAgHo\nV+udifMyCyw0oA/z/OGjhyaxQ7NXGha9eyftcq3ffLPMAP2VevBQhrZdGXW6v2/TLDVrDbMb6ZpX\nr16bZiFA/sVLaniqicyPDwDg/d3d2T6BtTCwefhvEUjrci7+vvlcHaxmpREsjYKHVEKIEzhsjYSH\nraEwTp4165V+PkBwaqIKS1+6i2g9FpyDr3EM8tdZaUA/f+xKvIbpQULJE0tXJMt08ULaI9Ob4naI\n2YEkzkHJ4cD0QCrHpZmKOUUksExPUQEFGoeWrFFAwbpa+x39f+Y2JZBIFlCZAksffU32ps/Z2oM9\nhFPOpLLhDBr6OK/S0SeQ8cEeIWlmiTMlK8zplbOHw4fOYqkjAP1SLRefCwuEBcICYYGwQFggLFAe\nCyxlQJ9K5+s3bqpB6Y3smlYqsyFMIXkDMIw0KYQxJtXOyO0A7LdJfrIcg+OQRMDvNo33/oGkqy5m\nOb65D3x9wHxAfSYVu8QGJBqI+So5qhnQJ15z1jsMeNj5Xnl/W7EyMY3LKEFKohdCZ0dHRtUx8bJL\npF5VU+RffkkkJ/ob5Ec5AP38983Xa+K8iVhPr0lYUbHABDeANGn92h48sP3tuAEyq95PgL2Ovb52\nBKD/tRaMz1ebBQLQr7Y7EuczxQILDei/kab9S5XE8SAGRIU9bFMPaUBLQFEmjoxpyjU0aG2w8rQp\nFzLLH0gUPFfzIRoQPX0qyZ0rNCdKDYpwtHxwbLTo0c8/eOCAMvq7TL5m86bNtvr75msld0/ne39A\nAyTTQIkJo4NqAhIQrDieTWqiQyOdHWJ0AwDv0zygZERdXV3qNVAAgctxvosd0Mepx+l/WpA4uimt\ny56r16yBMtqb+UGy59jRo1aa29nZkRpayRFHGqeYU4SOYiq7HdT9HMpGrOz2riVu2HvuaMHKIUFz\nRIEFK3u/lGbQMEMoR8X5pY/EH3/+ZfP3P/80J8+vCee3S9eBw8tKg+FtW0mipUa//r65rgHoz9Vi\n8f6wQFggLBAWCAuEBcIC5bXAUgb0ifNgYAPaXunpyZ5J3hXW/nNJsOInb2zYaHr1NE0l9qMxLnOX\nmNzlGE9EXHNQ1Yg9qrJOsV2/Edn8GMQQSO2cpkLg1Cmr+kXDf81a6fgrHq7kqGZAHxnd+w8gQwms\nFiHqllj5VK73qgKDagiv8melut+q7hW3tUtKlHhq48YN1iC3R8z+Wgf0uU9eAcB6o7cvu9nbm/Vq\nImucYlpJGiu2RcIJ3GCzYkxkVg9orx+UvCv9BIrFrrPddwHoz9ZS8b5asUAA+rVyp5boeS40oA/A\niKY3GukfpCmHQ/Xps+anzwL0M5WfTZaerVYpJM2IYCiU+sAhgcDDjOZHqSmuGuIKrKVMj599AKqi\nn3hULHeAVAB99PeYlELO95jIssOqVqadhzJOaI8mjG4SEomV8NIY4Tt2bDdNwBY5nXv27Mk6mGKM\noyPPtTB8/dpzX+yA/piSPjiG9wqMeXcQ+8RygOGQHzj83546kaFziTST9ytgLVYRARPfmkGj43n7\nTkHDk8qLkWxcjhjlkEz22qmTaoolDc9TJ08Ya9+TXEgLzXbw7+wtvQfk/FJ58PfZc5pnbc1LTXHO\nVAIgI0RSqFWMFmSckBFqkq5/qSMA/VItF58LC4QFwgJhgbBAWCAsUB4LLGVAH38XmdXzqro9r5UY\nGDLZ69dvLEbCz4UNz9ynKm2vjoUsVY5BfzjIWPSPQzcfwhByLzTJhXDmY70qrs3vL/j+VId701Ti\nukqOagb0uXfExLfUBHdgYFD9CEZU+TBqMr7EyXVUW4jYVldfl3WKnW/xjYBrwP21So6sXbPW1stK\n7tQ6oA9+4ngK6zVVHdBL4Kom1SAoEwC0EwPSn40+Asi6QtyicsGmqs4hjX3tCED/ay0Yn682CwSg\nX213JM5nigUWGtCfcjIV+IGH/8NCeeVDOXap9BJn6qaxsv0UAL9PqtTS5vHj9sCrr6MMM5Vj+vvm\nawXQt0w7CQ5N2AMXpAt47sIFa96TGsPSHPadSRHBNrDGpVphknhj0/lgctQSoG8VDtwk2TMtU3UL\n7Zf251SqyM/sEdgMdyRrZNJGWind5GfYNewNgG9WmDtoD353+pQxP2hshEQUa7EECnuPY6RmXMOp\nQReSSgL33ann3HFEveSW8lsa7gL0c18pu/Vj+OrXw8rnfX2nhFkKWl5nyFxdvHR5oncEjCU+zyRR\ndliVKUgIHTp00HTzN4nFwoTNUuoIQL9Uy8XnwgJhgbBAWCAsEBYIC5THAksZ0IfJDZnlr781tVKx\n6vEUzWgBOumVxtopcLOzs9OqVfm5HAP/+/GTxxn946jU9Qau125c17lMAvr0y6IP2knN44pBt8r3\nr1cvuXUCqCEMVXJUG6BvcZ3iG1Yq7gGur12ThJJWEiXEaRD3iHs2qtKCaosGMfG7RLqCiU71fZti\n5Xy18yVV6lcboO8xHPfar/nf7ru/z4hbSgpRtTAm6eKrRla8boRF9to7SQ5Tgc5EfggZKfqkIa1q\nmEGLeqeJrV+MjPZvx/+33wWg/29Wid/VsgUC0K/lu7cEzn2pAfo8/EelR8/DDXbEwC30CzVVpvdc\nZZc+ADdpEEPJI+WOPPzQ7afcsVT9fv/u2awfBeK/laMJWxyAl8TDpctJHogGSlQzjI8jTzSu6oHd\npvMPQ5zGrFua0QWkeW/zvGgt1gqgT+Pccao/xE5n9Ua6OKf/fE7OoDtJyDzBaHj/4b0YO68mNO3v\n379XYNMkjU3uxYYN6405T7VGl5x9A79xEHUflq9IElGw5/8NZPd7/0zlvQ8KvSPYi/00OO5PWoew\nKDhHEjkA9wDrSD8dPnTA7uv6dUj6rDOppZU6HsA+rP28E8Z14dz5tb8UK4MKFBxd9ELRVPSmygD9\nXhHA/japKTm9XNfOHTssgKhXcEEgUeoIQL9Uy8XnwgJhgbBAWCAsEBYIC5THAksZ0MffNsnJv5Ls\nJGA+cRQxANXf8w3oE1/A0kfqh0rdHvXo6um5ltGri+SCDwB9qsSPI+l57Ijiua3m9yPFA9GnkqPa\nAH2A+nfExrp3JEa8woGV2Cqx0F8JBc+MgZ4q2LeLld+atbfTI6zd+vERM/m8ePly1QD6xG/Y3Cdx\nHPtzHBUDKRjkx6eParSrWPGTGv8Sn77Q/nr5MlXwQ0JDO/+2eu+BfYi2pVJ9/vvGbAFe0N7eLhLg\nzon+gFSC0Jj3a0cA+l9rwfh8tVkgAP1quyNxPlMssNQAfbL2NJaFcX1bbOg7hdd3hu8YkOvG4SEP\nM/r706ez7747bVlrZ0azzvfg4Y2kjuv9I7lz9VrKtMPq/qiHuMkT6UEOiwSNddji6LhPMhI2lixN\nVOz6agXQB9DGQUZmiTWvLYikkztLrG/ejE00wX3x4rk5iTDXmTjggN6UKQLSA3Lv3Lk927l9h7Eb\n2tra5By1KRDYMuEcfkkS6vWbNyabxP2lKRdlkTTouq5GXZSJjo9/NEAeBglOFw4ojWq3iiWUGuZK\n+1AaiJTewtYhyZQ/Jg6hXbeOwwqY74ks1okmvApuPsoRpA/Duvp1FjAcEph/QDqKAPoENwQ5JBZY\nSx0B6JdqufhcWCAsEBYIC4QFwgJhgfJYYCkD+hC5zvz+R/a75pnffzeg1OMp/On5BvSR9nlRAFzR\n0neiFusb+es+INAcyfXPoo8VEpxMwP5KDmKk6ybfgoTLdSMQ7ZdsDbKczEoPcItnqnSAhIcNTTO/\nL/WYw77v3lO9/l4xyyrJz0pKRjEyErQ7FLtt2yaZGdkS7XjiOcBr1moC9LE38T1APXEr+4IY9c3Y\nG4sLJ+ythAVYARNCGiD6E8V6j5TkYDV5YSWOSCCRDGB/W8yoda/sAXawV1I7JDw2rEdSeL31gcMe\nXzsC0P9aC8bnq80CAehX2x2J85ligaUG6FOOZ4x8MZRviZl/T4DmKFrpWgFZfQDo//jD99mP32tq\nhaG/fMXyDOY1bOj5HrBGTBpI5wvgC6MajcUbAvYBZJ1ZzoqO++lvqSQ4aZqP/sBm5TrKPWoF0Kes\nEHDckiJyAPkZp+aDKhsAzD8L1Pd+DTiG3ggX5gyfoTSW35MYcMcKJ7u7u8sqIijf3C7nEBkcJokU\nd4R8ncn2OGCmaa/7jLNlDbquqAKj52oqFS2URtIYGRDfg4ztaB7qmDhg/N6a58q5h7UDW98HDmH+\n2kcVxAyiManqDhJZk1qKr2w/b2rYpCZJDRlNeAHzDxSaI6Gdzx7y6d8/1zUA/blaLN4fFggLhAXC\nAmGBsEBYoLwWWMqAPo1ofznzW/brr2e0nrFYACq3Qikjx7ivzTofkjvI6jhBCOnNCxeTlv+FCxen\nxKCQbA6rOtcnQLTLX+LvV3JUG6BPlfFEY+GRuxbL9w9Q4TxgcR7n+1lg+HolPyC6HS0Q3mCf0wR3\n44aNJp+LDT1WqyZAHzCfuJN+asSKxKEej1KdkB+w8n0+UW9A7/82qupyJ4bxXVRyN6jhM/JD7COk\npKjq9zgWmViv1M5/f6mvA9Av1XLxuWq1QAD61Xpn4rzMAksB0OfhaBlvPeR52BkwLnC8Vxl9stgu\nRcKDk4feqlUrxUhenSR3JLvznebOnTsN1IQxPR8g+fTtCKN8RI7KsJxPnO9BNU8dtMY/gyaZQlIB\nAJcVJvVpgfmnNLu7uux3LsXizsr07/+an2sF0EeuCMfv0eNHYtw/Nqb6WznTOD/ca1j6VuWgffFS\nAP5TlWo+e/5M7JmXxug3dr9YEStXrrD9sEpsD1jx+wToY2ccIdjyG+VcI79TN4cyWEsQFBw2c3zE\nzEdWicn5vpbsDqA7zhugvQH3ktmhUZfrezY3N8kplRTOusSu5zx9GKCv6+DfNxUGD8Riofzytubd\nu6OpOqFQpUDgwHeRlMDhpTHS3r3ttuL4lWMEoF8OK8Z3hAXCAmGBsEBYICwQFijdAksd0P/vL79m\nvwjQ/39aiQF84MPPN6BP/AHbGgIZzXHPqy8ak/5osMt90K/tIMQaxXeQtiDzQLiBWQ5Lv5JjoQH9\nSQkaSdH889liYohJ3ttseLjQj0zV68S8CZhemTVtbjRA/7AqHQD16QNWR0WzJuz9/KgmQB9Wfmpu\n+8GqDSx5od4PxHHEpT5IQr2VVj6a+e9FDqNqgSQRjZ+ZLsfKSgy5RXEeMR7xXpuqyqn6prqcuHKZ\nyIpgG+VoiMv5BaDvdynWxWKBAPQXy51cpNex2AF9HAHAW9NHFzgKmHnVSwdv9EpGRXIqgKeSU+Fh\n5vrosK3J7DMPyxHYKk16K80D0C9DOdqXthNg7i3p+t8SiD+gFXCfUlHO/+WrlwKPCw16te7f150d\nPXrE9Bb37tkz0egHCZalDOjDgjGbYTdVNQDaA9az53GAcFLdUcRJek1Jo5xsqiNSQ+KPtsLm2Lx5\nk4H5W9SXgJ4Fu3ereZDWDXKS1ioIMAdxDlJMlmBSIAGwj4M/2YB3RE7bw4mmWVQKLPuGJBJlocuM\nVQLDgv3JXl29mp4OksTRunz5ZDUG18X3eg8GvueJyjBJXj0T22ON3r9Gn6OKgyRFKkPdlm2zCgAq\nAlJZKmB/OUYA+uWwYnxHWCAsEBYIC4QFwgJhgdItEIB+9QP6JBcOKLbbv3+fYrx9VpXb1ChAtqnR\ngOnS7/7cP7nQgD7HN8a6SFDoyQ+o2rjPJHb6TSP+ydPUH4wqa+xmTXAF3pOc2dcNE73biFjrRIoC\n7EdCdHqlfTUB+lxratT8XjHcmF3vkKqrh0TsI4adGOAb2KRQeT6mGJa/u6TTZAX3OksEUd1tsZ7i\nPDANm5KKpeLDpYfKRVgMQH/iLsWLRWKBAPQXyY1crJexFAB9NMQBagFtaQ5zRbImPZpXpVsO2O+T\nzH2SN9GDTg85Gp52dnbYCjNCiGqGstx8gOTT9xdyKddgbescYW2TmUcXD6Y5rG3kUQBiN2l26Rxh\ncByUVArSQDyQOcdyPZinn1utMPRxbGggTHUDzpAB2nL4qMpgPwB66z9bxz/SODc5i5/VdGjZsuUG\nkGPDHdu3W9OglpYWc6ppOkzDYRoPr1m9Olsh9gMVEXkN++k2m/6zJxJYcchoVotTiuYh+vYkbpgw\nMwDmSUCwcj5o2QPGr1IVyQpkoHRsa8Krv00MfS/lmjiGJCfQk3SAH+khEhSNm2D7CMyX09vSslOz\nRZUoO8y5wxHcICcP57ccIwD9clgxviMsEBYIC4QFwgJhgbBA6RYIQL8WAP21VgnsFcH45ibvqbiD\n2K+SY6EBfaooiIEAuZEqpfltz9Vr2VU1Eh4SUz/FSInAhEwoMRsVDcQ01ghXLPT29raJXmPEatPj\n42oC9MEkIGO5PNM1eqxBRBQmQKw4Of6xSnNiVirOifeI78AIWJtki2ax75uUBALIp/ktagPYZb2S\nGw74E8eWG98IQH/yLsWrxWGBAPQXx31ctFex2AF9HBHXUAckJ7N/5bK0yq/0ZD3Xrk3cVwBwQPK2\n1tbC3J3tEji+e1eLgeRIqlRiAPAynkoLDwfjks0r9hCHmY98Cu8BhKVJEhn3vWqa2tnRYZp4O6Wt\nPt+jVgB9tPBv9vWbtFK/1nsCx0mM3BcDnn3vw23uP+PswVxPc7XZNyV3OsXO35UaU8GS155wEP9r\nkjzsUXNIcVblxFFVMDCgygztVZo2wzpJgP9TSz75eZa6cs5o8LfQ3FeTfd7autv2PZUH/N1nuapR\nAtAv9W7F58ICYYGwQFggLBAWCAuUxwIB6Fc/oE/VL2QtYg9WgFiL+xT7NTaKYFbBsdCAPkA1ckTW\ne0BkrCs9PRk9B+g/MHT7tlnCYzBidirV92i2K54n1qEZLrEx0jMzjWoC9N+//2CkM5rgEvOf41ol\nycT1IqUzNWZNxLR/uy7iO647xXnCMna3FmK93YmEViCDTU9u/Nt3zfV3AejP1WLx/mq3QAD61X6H\nlvj5LUZAn4cdDshnrR/lCNyT9tz9B2p8K+YzunsmZXNr0NjbAJc8zFjRleuUfniHdX7fM1mSJkZE\nuaRHim03nBafj8TEv2SJh5R8IClBtv6tqgyW6yGM7AsgLAAz0i+s/A4Gx3yPWgH0sZnda8BxTZoL\n0xQZXX32vVdmwJDPO0jsB9dgXLlylTlEOIkA3ziHzU1JgxAmyFoB/ziJrlVYiu1hn+D8vNREamlY\nOpDILNHgCY1I/uZ/h23/tYPrQ0cRPUX2S0vLzqwNBktbSmZRAWBVAFr5d1GOEYB+OawY3xEWCAuE\nBcICYYGwQFigdAsEoB+A/lx2z0IA+sRkNnWiEJ1S7KYY7uHjrK+/P7vZ22sTiVKrUlZcTB8xSHkp\nCdKp17utzxka8SRBpsvs5G1QTYA+sSnKAqgKEBP2qBLBKhJEQgTQHx+XHCx4geJB4kfuD2s+juXa\nuGbUBRrVSwAC4C4x83cploWhTwW2s/RXK479Ru8nKeKJkbxtSnkdgH4pVovPVLMFAtCv5rsT52bA\n5oC6wwMg3rp1y4C9fdLr269mPGS1a3HwcEObnAccZWcD6NCbFv2gadFPNJgpNI1xQHa7HniuV0iZ\no+nwbWzINqozvJWkzbMxcFp4gPMgx0mBhUAlwWWtsBPGkQfSQxzmuDM3kAQiA58Y+9use/08n6ak\nYO5KCuh6dkPlf8NqsspeYbJv0HavlgFoTzkmE6b7Y0kWmdaiGO9Ua2BTpHdoTpV3hHBokLJZvjzJ\n6OAQkexpaqIh7VZjO7So/BXWA9qD9dJsRLcRELyUAUj/VNUEVGVQVYAsVL/+Lfb33zJA/917Sk1V\nQikG/yft7a8dAPpJY3KjaXGyf/a0t4vR0m7//tdJN58EFmsxRstcziMA/blYK94bFggLhAXCAmGB\nsEBYoPwWCEA/AP257KqFAPQh5P1TIOa9Ekt9SHERsRGkvBGRnu4Mj9gKcQti1Zq1qaq6Q8x8wzDU\nfwBwf53kQ5GWAbwm9plpVBugb3iAMAHi1F7rF9CnvgH9AvQfFSq6kxSrkwBZuU/5QRxHc2ViOZop\nE7OmagXJNxVkYyF1bZBtvpFtqMguZqP8d3/pdQD6X7JQ/L3WLBCAfq3dsSV2vouRoQ+Qbw85AaU8\nFMluX7123dbRe/cLjOfXBuY6G5mO92SvvRHuoYMHDTin7BFnoVhmv1xbBoY2QDNz9N490/o3vX+d\nP9qBnz+nygMy64cOHcwOa3KePJg3NdC0tcGcl3Kdz0zfUyuAPsyGkbsjYrzftUQOYPlzNYSlKayv\nz56ln6c7Qs5UYDWHSA4hTlGjmB572sVmFwAOox2wnyQGE2C/lMFefSgn7eGjh8ZCGRy8bQyUXjlv\nd4bvmDYi58fMJx5KORafsWsiCSFHr15NldGaRLZpr6pTWL3pLmupSYrp5xaA/nSLxM9hgbBAWCAs\nEBYIC4QFKmuBAPQD0J/LjiP2gMTlk3jYSVyA5/MxOCYEps+K5yE80UuOOIIVtj5SpJCgiI2daQ54\n393VmR04QGx8wBj6kJJWqdJ61aqVRdnn1QToExOCXdAvAJIffeBuS1poSCvXDlaQKrpfGWkR4iLz\n48dPU24FFdb0V6OqH9zAZXrR06eynwoGKv2JY5cD6PPeIkmPKV/+hR8C0P+CgeLPNWeBAPRr7pYt\nrRNeLIC+Kc8ro8+gIQzMayaNUQHzr6lUrUcrwCkPvg8fmOMZ2vgbNqy3SUNZby67X06KMff1IGQt\nV9a62O5CJ/3R4yQLMyIQmsY/OC83bvZaY1POgYctjXCPHj2cHTtyROsRa5CEI8Mk+TDfo1YAfRwh\nyhMfPKBMU7r5BemaV6/lDInxAaj//PkL9Vh4bo7Q538EmONEFpoLWVJIjhVOjjefhZHfSm8FSRwh\nwUMPg21qoEyFRENDgzmMngwodh9IOsHMp5IEx2109J4lce4pkXNHMjvoQjKRi3KHDCfazkOVA7xe\nrioC3xM08VXuQYA/R02aipYEKFwTjh7Ho/kvr/16+B6cOa6H/c9K09/UfKvZkhju5H3Nv4EA9Ivt\nhvhbWCAsEBYIC4QFwgJhgfm3QAD61Q/o16GhL3B6X1eXrWjobxV5aytNceWzV3IsBKBPnE4sD2D/\n8NFjawp7Q81hryqx4BXWr9+8tpiH6ummRjWA1QoxKd9I2IBqYmfFccVGNQH6xGr560cu+J7IiPe1\nPlES47ViWAhrr16/Tu+jgluV3MSspk5AvKfYckJWVtX9q1etyhrNTthKxDSRt+gzAImLPTVBbtT7\niGG/dgSg/7UWjM9XmwUC0K+2OxLnM8UCiwbQF5LpJXo86ADG0aGnPO2WtMgHBpEUGlCmH/BWwKYe\nfDgpExlrAbK7d7eIfa1mOrCv29vMAcAJYJarOegU40/7AVb+iORsYJQjETM0NGSNUcnOM6giQNud\nh/ExAflHBOiz0pzVm7iuKtL0Z9rhSv6xVgB9HCISOi9eMF8Y2wHwHAdxTOvYGzQKkdwZS46Q9gSS\nRvwdwN+bEJuTZOD7RwPSsT/6+axtYunD1qcJE5JNefC7mFPEMUwjUcd+8fKFSesMS77ojub9+w/T\n/pUTy/mbpI+x6ZH2SSWUSPzU1a2Vk7a6oPe/SuD+N1bFYbqTAvI9IcE1vVX/BZw/mkpRwpmSCUoo\n6Lrq1taZnJBfV2sryYrUl2GzkkerJCWEM8jeK3UEoF+q5eJzYYGwQFggLBAWCAuEBcpjgQD0awDQ\nl4+/v7trQj4GqRTiDuQ/N4k8VMmxEIA+UjpWSa2YHUAb3XxkSHu1vlEM41KkMO93F+IVJ1oZOUkE\nJQB+iEjEYl8iJFUToG8qA8SchZjUK8ohoBHHET++K8SyxHcJuB83UN967elvxLpegf7s+TMjqkFI\no5phw7r1hnG0t7ep0rzNqrStMltYAtXmxWLX2e67APRna6l4X61YIAD9WrlTS/Q8Fwugb2xk2NWa\nT548MYAUvT3YzqOjo9ndwgTQhIHN+xkAsXv3CpAVKGuMa8mP7Ni+3ZjX7gSwluMB96UtBiObpAPN\nUHkNwO/MbaoEAHEBd5HYAcg/CqCvWb+u3oBmY3J/gYXwpXOYzd9rBdDHKYLh8d7YC++tgZAB2WKp\n00xoXBUaDnrzvrdv0ap/J+bDS0sEweqnlwHMfpggOJF8DiAdEJy1W+yZw4cPZUcOHZJj1JrugzHp\nVxTdMzg7lJHicNGsd6LPw+CQ/c57KXB+gOpUZWySpFJ63WA/UxHge4J1+fJlBuizt+3adS1v3yWd\nxZdyjklwMZ+olwB9AwD2uS7t7mxt4ZqQFeru7hQjqMuujYQXe86SClpLHQHol2q5+FxYICwQFggL\nhAXCAmGB8lggAP3qB/TxuQ8c2J8dUH+yg1p3KDZF8tNlPsuzE2b3LQsB6NPrDla6Ed2kmZ+qlu+Y\n/AxkLWK5T5pUpu+XXj7SP/u0bhPbvInEh8B8KvAZs4nhqwnQh5RFDGexnOI5A/AB8RXLAt6nOJYK\nb0B/Kq8TOYu40WV7SYjcvTsqkqDwDxEFifkgZRk5S+TAtt0ioylmhZRm1R+qNIepz/xS8mM2uyYA\n/dlYKd5TSxYIQL+W7tYSPNfFAOj7w88b4eIA3JRMDVI1/crmI2WD3h6TB6OD88iNoLOHDj0r3d8B\nTjcLKAUsreTgGtBMv6ZyQiSCBtXE1865cO6UX27YqOy5HJTtSjgcO3JYDP0kuwM7v5KjVgD9udjE\nAHSx5ZFpwu63lQhKCaE7AtwfZ4+fMJ9a/4X899Jz4fvvTmffnT5tZZ7OZMdx8n2Wf7+/5hj3Jadz\n/8F9c7podgTzBBbKG52Hf5ZEjjU8VgUJ4PpWOV1btmxVwmmLmDpqZgSjQqwLVipJXHOSfwskr7zp\nL9dA9Qf3DiePfxOPlfhiwuTwwXccZW/pulhJcrHnrE+A1lJHAPqlWi4+FxYIC4QFwgJhgbBAWKA8\nFghA/0z2y6+/Zv/99YyBo25ViDH42/jZrJ0de7POThFcOjvsZ3/f16z424Cr+PmQhs5fuJidu3Ah\nO3/+gv3ev5uGpsSl3iuNCuBE7Nlkeuj+vkqslQT0iYUZQ2p+a0SngcEM/fgRkfIg5wFQo6uvIMni\nJEhOJ44f1zxmE+JTagZbn61RdfFsRzUB+rM9Z94H8E/cxwpJ67ERt6RQoJgPTAEMhJVYz23LShVD\nK1Kr0tJnRUu/1V7vDkB/Ljcg3rtkLBCA/pK51bV5obUK6OcfTDzIYFEzX0kqBUAfQHxAbGey+mSK\n/W/cJdjINLuFjbyvu9uy+90qbUQPnWy/Tf1tvgfXYCwDnT8A7I0bN61xL41wByW3g+yLnztOC07m\nVjmZLdJSRFuR5j/dcjbL1bh0tte7GAF90ysU+4GED3sF7X2cbaZp2heqPWC45wf75/ixozY75fSv\n1/6xskatgOP5wf32CfvEGSe35biOiIFyZ5gGviPmmCU9w1VixtdnLS077Z5z35uaGi3ZhNNKiSQB\niE3tZ46H451nddBUiWt6oVJNZ+g/VkWANwoeVtNg9pl9RnuQQfDS2dFhKyWs27aqT4CCCQKcUkcA\n+qVaLj4XFggLhAXCAmGBsEBYoDwWWMqAPtXav/72e/ab5q+//Wa91Nz/JS6cb0AfqU3iOqRhiTMu\nXryUXbikqRUCjg/i08OHVf1r87BJekKswe8nRq3kwD7eEJcVMly5m+JyDGeewzinWr23r8/AaCRo\nAaSdiER85FXDVKzT+47kByvNX9esWW0ytBCiZjtqFdDHbjYVX5IsAtNJLP2X2a2BQcNCbg0M2F4j\niTT2FuLamEk3baVfmuzX0tJi8R64QpcwhZW6v5DKXK5otjbMv489nt8zEND27NlrPQ5oyhsjLFBr\nFghAv9bu2BI731oG9HmIAZCOq+TsnpjOxniW1h4yNbCRmTQZfVsAagE2edDTUAiAHM3wDjEwOtRE\np2PvHivTI6PvzWHmeyuQiKB87v17Ta1X1bj38pUr2aXLVwzQp7yOc2bu2LFdHelVHqcsOhl1b2BK\ng9a5OC3luKbFCOjjSJr8jtZ3kt4x7X05Ri+lb9/b25caK6shE3sqP2godGD/PiWF9luToWYB7jRn\nAnjH6c0Pd7povHtbWvlUkdzs7ZXTNZCqAIxZ8USfWy6ndIMlBtinbW277d636v7D0JmQ/Fm7ZkI/\n3ysCPGFAPwm7Hkn2oMNIzwBLasnJQofRWRtUBeAk896PkiJCjorEQcvOHZZIgLFBj4A97W2mtZi/\nnrm8DkB/LtaK94YFwgJhgbBAWCAsEBYovwWWMqAP4ev3P/7Mfv9TUytxFr4vcSSx33wD+rCo6ZtF\n7A2xh3jP5xRAX1KqSKqavOrRoyaFsmGDqnEFWMNAr+QgdsmDs/MB6ENqQxfeSUjERtev37SqdXqL\npaqGJBVKDwFkdYizdqpivUMEJKum0AphD0CauHg6qaqYzWoV0J8e8wHqE8Mit0qVA4QxKhzY948k\nt2rV5lpJGLmmPpI7Rw4dVDXIIUsiEU+6hG+p8jsB6BfbbfG3WrRAAPq1eNeW0DnXKqAPYEnZHaVm\nHwSIA4r6BNB/qGa4D8VE5uHlmvkA6BslW9OyY6c043bYNJAcHTmBpTAf8k1N53sbACKPqVkpGXNW\nmPkXL17MzoupAXvbr4/zBjj2aoL29jaTW9mijDdNkqYDx/N93osR0Mcp8gTRx48kWqS9T7JF89Kl\ny9nfZ89qnrP+Bnn77mrZaX0Y9uj+sIdsX6l5FQ5SvkGxf79J4mjP9vffynAgSeDc7O0zeZzXYuyg\naQ8rP2lANllVhiWcKP1V4mm9HHqcVHe2vlHDJxo2O5OC4zD4GHMOtQAAQABJREFUP4kDbxQN4yU1\nTvpQ2GuFIELHJxFGhQKJJd6DRidJr8bGzZZAOgD7paDlaV9ewv8C0C/BaPGRsEBYICwQFggLhAXC\nAmW0wFIG9Gmw+ufff2d//XXWVmKv5P++N4LMfAP6AJ3Pnj+3hq/35Htf6emx2O/KlZ4M9r4PWPgn\nrPr3WHZccjJom68TyM/vkWCt5KgEoA+piIavzNeyEdKzxMTYh+rlT5/QiVc1u2KZnYqxvPEtVcRO\ncGOlSa7HRS5dOhtb1Sqgz7V53Md9ctlVcAOrxIbcOHJXNhzOhjVZkZS1OFKJD/AD+jN8e+pkdurk\nSVuR8SUhQmJkLkmRvJ0D0M9bI14vBgsEoL8Y7uIivoZaAvQdcOXhBfCYMvnvDQQFIE0NZW+pkekD\nOUwvzGGClcwDyx5OK1cYUNoGwx2tuNZd1gDXmuAqy0/GupKDazAm+AuVyImtcfXqJEOfh66DtDgl\nyOtQekkGHXDfNM2VgEDfvNQHbqnXuhgB/bwtpoPvlML+8edfCgD+zm6qBBRHCaeSFecfh9K0CNEk\nLFRRsKKn74Pv5DNMwHVAfDQzz1+8kF2X1JID6qzI6eCwMluUMNijxs0dNG/WfS+VmcPxOV/+DVmS\n4rIAfZX54sSiqe9NcuklYEFDPdJT9aoOaFVQkQKK42IJlToC0C/VcvG5sEBYICwQFggLhAXCAuWx\nwFIG9B88eJidPX9e2vUXtF4w+RvvoUUsBXAOWQopEuRHkGMl/kKStRyDWO+pemg9ffosu3f/nmRW\nrxl4zcp5+EC+8+SJ45onbOWc6urrTGqm0n3TKgHoE88n/Xf1K1O1MhXMxEbXbtyw5rhuF1ZidsD7\nXZKKgUS1RffMJGm1UuFcyuBYZ8+d1zxn8Vn+O7ZJ7hbCFvEQx6U5sTfeXbNmrR3TAXLY7atWaiqx\nUCq7PX/sr3lN8grCFivSsfRoS/OWxYL+3Uiqfn+aXnDf2kTG1fvBlUoYDEDfrRvrYrFAAPqL5U4u\n0uuoFUDfAUkDRQVM8rCwprFyjJ6ofIwMNPrjzGfPnplG3JuxN1Z6tl6gN2WKTB5cltEH0NeDGfDU\nGg2phK/STtJblcU9epya11BN0CuQ94bKDG/IseABzIMU52T5cukV7uu2JqVHVYLpwC4aggC8lXYa\nlgKgb6C+QHBY7j2SQrqgxlU0r+q/dctYNFZZIee7ubnJJGpg6u9q2SV5mjbJ0ySJGsp3feAQk8AB\nTGelYfM5BRMXFFRc12sv+YWlQiDR3obETaocQd+Qhs27taLxWcrIX88HHeO6nORrkhCiCTP/dggw\nnijA4N/OWrEz+LfAxIE9fepU9u23midPlHJo+0wA+iWbLj4YFggLhAXCAmGBsEBYoCwWWMqA/qNH\nj7NLVy5PyNw8F1v+BaSqFy+sshUpVqpTWamKPmDVqfsMRC6H8TkeevCPFbeO3hs1P/w6vrh8cuIK\nH8ih4HM7c5pYY63A47WS2szHFv7++VwrAegT05tEjPTykYiBRe5scuKT/CBm5/4wN2/eVCC4bbAq\ne9j5pQwa7qI5DzEQeZr8oHofDfgtugdNTY0FqZpJ+SPvZUY8jhwQs0ETUH8hB3sMlQKkdgD02WcW\n+2mvcU99QEw7TYwnlj4r17FmNTHg6pIlfQPQd+vGulgsEID+YrmTi/Q6agnQBwj1+VAZ/OHhEWsm\nStf7RwLEcdQAxtEhBLQEHEW2ZgvNZGn+srVZrOediU0tVjUALM6RA5ilZqJL3RqwonGsR0ZGTZud\nRrjezBeHzzL9ZPvlFByUU3n86LHsmEowAfRN519/Y51LWWGp55r/3GIH9LlWAHCbek2ipefqVetx\ngMP37NlzA74pm8WZhC3CBHinFwN9GZDHyTvdOE9oG5LEQdsQNggMIZIEaEW6LBTvg5kPI4gGRXvF\nzHfmCU5X/jvz9+RLr02Ip3BNJMX65bSSnGBShknp7717YnOouiUlklIpJkmFH77/Pvvxh++zH747\n/aXDzPj3APRnNE38ISwQFggLhAXCAmGBsEBFLLCUAf0niq2uishy7doNW2GDe8NVfGMjeRVAWcB8\nqqJpuEpvqXKMpyLNuCQsDXrNNxapB5IPMYIPCGgGsn4La/pU1qzeXBb3rSYmnKz+9ffP51oJQJ+K\nhXRfVLEg4JmY3kh7AqOJlfODmB0QHYIT05rg0v9Ovy81HgaA5t5Aanol+dP84PuRQk3A/dp0H4jN\ndUzuU9ozm7LNSgS1UF2tvULlQKWlkfLnzOvnSlK9QK1AKwkSJF6RMLp8pWcKoE9Vyiklj5DcYaU6\nhF4EnH+pey0A/el3I36udQsEoF/rd3CRn3+tAPo4FDSHpSwPpwdWMWx2wFa087mOFy9f2QqQ7wNw\nkkayNPdsLTSUhZlP2VxLS3kcND/WXFez/eBQQft/0MB9HDwSFPzNEg1KOMCUPnzwYHaC8svjx635\n6nKxECjxQ/P/m7ke+Cvfv5CAPiB70SF5onLbg0QLEjl9ff3WrBjQm7JdVqSPANopycSJA4TvVplu\nV2eH3Tc/V+RuvKnTmzdjxpJIkjsA+n3+Nlsp7Tx8SLr1uud8H41xrYpEa16Xf8qH5vAD5+LMlzvD\nsGHEhBErBnYMv88PKgX+7z8/Zf/5+efsPz/9mP/TnF4HoD8nc8WbwwJhgbBAWCAsEBYIC5TdAksZ\n0AewvSlfntixVxKa+PHIkiDV+u79+8waz1LVrXlYQD5V0czdqpItx3jy5KmOCXnmoRG5+nQOvZyP\n5hRAX8f/HgkUEWkg0yDzgv+/UkAy2uaVHJUA9B88fGi9yv76+1z2l3qW0TyYmJ+Zj+kred2zORZs\nfEhXxIE7BOZ3KvbzGJAqi+mjeAyr+LWMASzkxhR3jhlD/5xIZFSbs3JPfVAVDrZwgimcgSQFEsQw\n9VcrgVTKCEC/FKvFZ6rZAgHoV/PdiXMz4Hhg4FY2QFNZsXXbBODt27cv279/vz2cFtJEPHCYNHkZ\nFzvfsvViV7DeVeNbSsgAIAHB0R5M860B3TQOWr8udXF3nT0Y1Nv10G3Ww2tLU7OVzlX6+rxJKdcF\nGwBWBhI7lMFRXYCzB1uESoSGho0qIaR0b6MY213GEgHkxbFEZsdnpa+h0oA+tqBZFM4JYLjpzdO0\nVk1ccY6QJXJWOY4IE5mlNTnJm6+x0cDgoN0ngHcqKGDX4Hxyv+YD0IcVDyvo8OGDdt+9fJOVXhBf\nOwD0kaai0RTs/NtW4npHyQrKXO9M+XrO5T8//5T9/JPmjz8Y+wUGzFxZMAHoTzFr/BAWCAuEBcIC\nYYGwQFig4hZYyoD+czGWIYGlKSKV4sdRkahYAT+dhY2kKX74cWtMe9T6Y0GkIu76mr5lJA7uIA8r\n/5v4dUh+N773kIhD9NfyWAZ/HwkUl0GB2ON/+5rjl7LZiFevq6rBJ+cBRgBWwCzHILFCr7I///or\n+10r8kPEfuPjHyRJ+qkch5iX7ygG6AOIE29x/uMfx7OXhX559FHIJymIp9avB7PQVPwKic+b0n5N\nzPeaBsNKjNBomL1GRfhF9U5j5Z76CEDfLRFrWGBmCwSgP7Nt4i9VYIFqZujzIOShx4S54E4QYCSM\nCkryHATnwe/65DwUtxprWszpbVvUzGh7tk1d3HeoqRESKTwweQ+gf6UH12QPeK1IBFECd+nyleyy\nJmVxlk3Xw/ebZd+oORPM762W/Ud6pVOZ/86ODl3PVv1djmUJwGo5rrfSgD5APvfZy1RpdPxakxWp\nGsohqWag3DI1k91u0kobN24ox+Wa449Ezo2bN5X4GpQeoTQJde9Y5wfQb8uOHDlkTZDR8OQYaDgy\nv8a5c2Ow/0ZM6in1nYCZn4KKQWPp+/tY0dD/+ccfBej/mP0kQJ89R0AzV1A/AP28VeN1WCAsEBYI\nC4QFwgJhgcpbYCkD+sS85vNKpx2/d7gArN8W4MnfkDh1udOjhw9bQ9rjx49le0R2w/9eAUtegPZc\nSS1+l/G9iSMgCnH8ESUSuB9UZjO8f1Xj5s069rGJprj4/1aVXUgq+PdVYq0EoE/fuDO//5H9rskK\nM99iZSU58uBzJa53LscoBugjBwTxDHxi7O2YiFSFXn/ac/kGyMuXL8u2S7aVxss7hFWgv2+JpYKk\n0FzOJ/9eWPKA+axI7gDmX7x0Obtw8dIUmwagn7davA4L/LsFAtD/d7vEb6vEAtUM6APkw8amDJIH\nEmx29MaZgLvo3L16/cpY2zzwfTY3NZmW+d69e9SktF2NbMTIh5WvdV39OjllSR8clkGlBwyMj4Uk\nBbrlf587l509e06lhuf0wH+bfeLvmjgCEzJBSAQhGSTdfxr6cn02APQrfQE6XqUBfTTrrb8ALJbb\nQ9ZMypv9YCvu6bp19Zag2dfdZY2saCK8RbqA5RjozKcGsjfMCZ/Q3JS240Y5XuWW3NnT3mYNkI+o\nzJfrAdDfqIoDZrkAfdhIdxVAEFwQ3AxK+mlgcMCYQnmbIf8DkP/zTz+Ylr4xlCTzxDqXgCYA/bxV\n43VYICwQFggLhAXCAmGByltgKQP6xI2QwkZgyQtgBVQnvhgYGszQcffKZ9ZjR49YY9qT0hWHVIWG\nPZW/rHPxf/N3eEiJBGLZXsWxNGB9kCMrEZN6dTlNWDn+saNHsxOqEkACSAe1mK/UY+fPYy6vKwHo\n04j2lzO/Zb/+esZWQHAqsH3O5Xwr+d5igD77hEoDwPyXkgTuuab+AFevqX/DdRH4nk+cJve9qyDV\n2tkJaW+b3W9iPyrOSx3gOxDfODbyqoD5EAhZ80mSAPRLtXB8bilZIAD9pXS3a/BaqwnQ58HtoDyZ\neVj5ZJcpG3sqUNdAQQB9OUNP5HiZ9IrAfoB/Z1Sslr4gDUq7usRm1wOyQ81JN29S13mVK1KyyAN2\nIQesA4B7rg1Q9dy58wbm/60VB8YHzluXHuxdHZ3GzOeatomZD3iMBM9CjkoD+jSx6u2/lfX192f9\n0pm8p9JMa+AqRgdVGQ7mU3Vx5DDM9sOmeUlTolJLZNmH7kiis3kFJ0yTMt1nKtmlIe5zTZy5bXK+\nuDc0zcIZ8/tG5YAP9jOyQbAyXEP/3Hk1xdWkF0R+JA39g9kh6eh3dXZN2b9fA+hzPQzOZXg4Se5Q\nhonMDhr6lP3yM8ECc5mqRFoB9H+gKe4P2ffS8QxAP3+n4nVYICwQFggLhAXCAmGB2rHAUgb0qfiF\nTHVf8QMrhB1iC3pkUQmcHzTDBVAHWAfQN1mUQoU3gD/jS+A6fjc+N9KxrAMDg9b89boavwLoeyzB\nulY90zY10DMrxRVo+COzevjQQQP68+dWydeVAPTpS/bn339nf/31t63j4x/n/RI//1OI8z7/Y5I4\nHz6MWxwOUSw/qIxIREBVaKxYYXGQVUuIWU/lRFNjU9bc3GQksj172jNIWXtEJqSSw+M+pJ7Onj9v\nMR8r8ro+eN/+/ZIvEoFrvySMkAluEnGvqalR393ob/viXpt4Y+EF/SLYV8j7IlHcc/Wq5jU1xr06\nDdBXU1xp56Ohf1IrKgb19XVJQ1+YSikDEqZLNLGSoNqzZ2+2V5gMMXOMsECtWSAA/Vq7Y0vsfKsJ\n0MdpcJAeVj6A6SOxoB8/kbyJGPkTut9iVvCw4IEPmI/DRHliozrMs+7Ysb3Abm+1B6M1d4HBLT27\nrwFEy7E10M7jupiwQ3iwetd5rsUHJXc4cweZBw5YdQFyQZs3bTYA29+3EGulAf2n6plwS06wa16O\nwi4vMMxJjniJ6loB6GheAuof1sQpcjbNXBg17Cccuo844Vqvqb/BZbEaYDZwHqblP5b0/Nlv25Fz\nUsKFpridHXtNFqlDa17Dn71NEuftWxo7v82uXruRnaU6QxM5n/wgMdCtZrhd6pvQoSqTrao0oOkS\na6kJKa7JJ1UiA2bPQTHzBwTij2SwY0bVl4KyV3NY5cDSm4DkwvfffSd2/nfZd2rQFZI7+TsVr8MC\nYYGwQFggLBAWCAvUjgWWMqCPD/7kqXqxCVCFLIT/fU2A49Vr183/zd9FQHx8cSbkFq/0ptobP9nJ\nL8VAfUD8tzR3Lfj+gPhU/NI3DdkdCD4pphgzVva2gr9Pg9WuwrHpoYam/0KNSgD6gM/XCz3lkDfF\nbvM5JuI8Yj1p3IOFAHwzwRfyo65urYHc1ixWxDGLOVevMblXwG8IeFRQNygRQyyIbA5Sv0jpcO+J\n/V5IPz9fkU+vPB/sJZIA7ZJ1ate6W1X5ENKQkIWtn99nxfaaf5+v9HqzqWQJpC36wEFQY+We+iC2\nPKUqlJMnTmgVoL9uvSR/1prsD2TJUkYA+qVYLT5TzRYIQL+a706cmz3EqqUpLg9wNORh5MPMp3kQ\noDfOJ2Bjvinuu3fv7YHPQwmmBMBjW6tkaTR5CDpremvzlimaiM6qWKhbj+7/fR6yXJuAVH+48oDN\nswIAik8cP2bz+LFjVmFgTHTJy+SZ3wtxHZUG9Cckd0zzcshKZQGhSfBQPosz5NMYLWKzAOrjFHmv\nBMpYZ+sIsaeolmBSAQCj4fyFC9mFC5csqfBBiReaNLMif0QCiT1H02UCAEB4Zh585ztdPoqV4OEv\n2Ch/nzXnPn8fqcJob0/OHfu6pWWnJSd2aUWKqZSB88o52LXpvKlyoTKAqhf+jbmEEUGOV7ugJcrx\nAfK/O306O60GXXnHci7nEZI7c7FWvDcsEBYIC4QFwgJhgbBA+S2wlAF9/HokSF6+khyJ1ss9Pdkl\nSZAgQ4IEZX7slG8PMcim4onW1oL8qV7jJxNPMovFFhDPAIshc7H2qSIAdj6APvI747DC5ZNzXsQT\n6VgtFr+0qYeVgbxaS/X989dT6mvihjzbmnir3E1xSWokYtF9WznmfA6LhT68N7u/k859ismHjeA0\nvVIDgt1WZHsFfDc3NU6C++s3KNGy1u4NID9JF9QAqLCgept94XEfAPeff521uI9KBGIuH7D92Wsk\ncXYqIYDEbnt7igHBNGyfWdV08b3m3+drkpZCt/+uVWIPSVrK5KUksUpM6APC2LcnTxqof0px3nrh\nDGsL17VKPSNKGQHol2K1+Ew1WyAA/Wq+O3Fu5mBUC6APoE15mJWJKUtOkyLYDP2ayIKQ5UayBoZF\nPnuPY5XY7JQmHjBw1SV20KAr5mxVegvgMFL65lInt2lIqnlbjh2McB84dkicfKf5vQBVWAAGtNKU\nSc7UQo5KA/qUKt6W/p/ZTfuA5j7Ya0iv+Vt+UCJrU6A+YDQySzhW7IfZ7oMJRk2BWQEz3/ociE3P\nfpx0gzJjzcOkgFWPI57KLdsF7Lf/D6BPBYY77iQJ/vjzLzl4fwvcv5a/BCux5Pvse/lOlW7yfayU\nQZYycF4p+f2sPUaS4opKL69adchVa8ZlwY0YJOgtUvbrVQ/tCiS+PXUqTTE4Sh0B6JdqufhcWCAs\nEBYIC4QFwgJhgfJYYCkD+sSZiTGviln5+OcvXEyyp2fPWmyRtzDxQ6MkT5pU/U0Fbnd3l9j69Onq\nMv8eINZlPfOfy78GqH/0+HGBNPPEpH0A86kMQNc8h6sauxtSEHEEQD5EoRRf7JgST+S/vxKvKwHo\nEx8lQh/Vz2+mAM7zcY0W5wlTcAb9oKoluCfcG2LM/IDBDrDeJqAdgtVmEe7YFxDviJVg4rMXiM3X\n6uc1NLPVCmhOzAcBDJIiMZ9P9oQPAHukdVAZYOVY3V3d2m+S3O3osO9mn3GM2caxfPfAAM2X6Y82\nqGu6Ywkr752WB/QhkX0rIN8nBDiui2soVdUgAH2/u7EuFgsEoL9Y7uQivY6FltwBxPYmsQD2aBoi\n+4G+ocuAsFI2hmPkGndIf6wUkM/Dpk4Pz67OjqxDDz5WtOwoGeOhhMxOOcZyyY+gz79qFQ2R5laC\nxoPTpk6E5qNoNt7SHBKQz7WiB+9SJ7C6kWrhAXu8wNCHqV+v61hRcBh4qC/kqDSgT8XGfVU03FfZ\nICwKqhp6pXfZ29snOaZJlgM2MaerUK2B47V1y9YJuZqVK1Zm3EfsiAOVH5+5RwDeWmFUIImEVj4r\n+po4ejc0kfrJD4B3gPb29jZLIHBMftcikJ8EjA/uv8n4WHnnR2uKZRr6Yv7z3e/FFHkvlgh7nH2L\nU9ckJgiOJA7+3r2aWhs2qjGu7cO097/RAXDw/s3JwwnnuKyA+Oj306AJx9IAdlj6Yujzbyv9bcyS\nZWhCkgijVwNJkcOHD2VH1ZcAHc9SRwD6pVouPhcWCAuEBcICYYGwQFigPBZYyoA+QG6KJZO/felK\nT3bh4iXNiwbkfpD/j79svrjiLuRUkFohrmwTyJ5Y860Wk61BdkXxGnGo++Fyx6XHnuRgxwXm4nMT\npzwWgIvEz4jY0hC6qDIG1DX2tYG1y0QK2mXyPjRIBdSH2MVxWfPxRHl2wey/pRKAPlgAhD2kiVjz\nxKnZn+ns38k+oFntW90fpFuJySFaoTNPP7H8oEfaHt379vYkh5P07dN94f6ne6i+Y4otE04AVrDK\n4i+L+ziW4i/2WNprlyymdRkm9toGsf3Xb5B8j/Yasj2W1CG2FKmqbm2dSeBQpTGx1zLivvxZpv5o\ntncVS7LS8JkqkCEx88FRUiU2MsZP7HvAMsA0kAg6rsbLaR4zIJ/zZ5ZKIAxAf+q9iZ9q3wIB6Nf+\nPVzUV7DQgD7gKQ9THnaUJNoDSA8fHkKPHj1WJ3hA1RfGHObByEOYlQeNNW2pqzf2eutulUWqDBKZ\nFYDIBIyvmTP4PtPN5vtgyZtentbZDgfzcYgAiwGh0WuEBYDTgD78UzX4RU6I5IMBqQJTkXGBaX5Q\nDZEOHdhvGX9ngkwHo2d7LuV6X6UBfRgUCWCneuN51mPM8h4rlaWRUn6kPgqA4ZstKQJrHikc5GrW\nrFlr+4J7Od1JYV99+pT2FywREgckl1ipqsAJh9nAfcqPdjl5+/d1i7HTbQ4Y2prWHKmgsenvdWDd\nWfL9aq57WYHEFU0SFDDjcYCQEKJBkiWjBOyzl9Hlp7kzuvwA/evq12X16glBeec3CgRIbnkw4cdj\n9R4AXBvXhO3Qh0RWZ2BwwKoN6EtAg2kPcAhASCaRSKAMMzFFupQok6a/kmWljgD0S7VcfC4sEBYI\nC4QFwgJhgbBAeSywlAF9YjGPI4kl0bMHxKWfGSSr5IcjyfPKwNk1qliFqbxxw0brl7W9oJG+XkA/\nkp7EhPzdgflvln1joLQ3Q+V7nkheBTAfIJUYgpgPXxyyEgCtN1wFvD2wf392QDFfhwg8G0Xg4bis\n02OW8uyE2X1LJQB9jkH8keZHAfrzC+mzB0i2gD1wr4jDLl++orgs9UrLWwaAnSrpvSJWQXKiwSux\nHnO1erd5DMYeWK74zcl3+biPJIVLLbHnIIehRsBeAPtwRjz7jSa7xKxUhVChMVlp3mDvs732jeR3\ndLz8IBkFYcv2sFZ086lsR+0Aud/Xr5OkMfEgeINjGhzjiAhb3oB5FTFygUDIsUoZnENepima4pZi\nxfhMNVkgAP1quhtxLv9jgYUG9HmQvhRozwMNtoJpe4s1fP1Gr8D85xP6gjzk8+A4YH7DxqRTh14d\nAGQzIKR07uoEdFICt2xZKof8n4su4Rd1evgBpjY3ARY3zfobOGcDcQH05UD0SF7F9BovXza2vpcY\n4tjx/an56VYr63MQtVNAKll/Z2H7OuuTKPMbKw3oc++p3vDEz9nzF0wC5+y58//DmDd2hJwRmAfY\n09jtlK+K6YDzXad9U68kEAmh/Pj4McnhcKwX2o849ibro8TSUwHh/I6mRjh/+UGzrKNHjkiz/7AB\n7yRkaI6EAz69ksL3Lyvlj6m886YxQxKDJzn8OJo470xA+3z1CUwRnDtKPjmWOZByuFjz+4JjEKyY\nc6wVx3Gi+kVMDdhBLv3Evz1LOGmPMlp3kxjbLR1HNEPVl0JlppSa8nOpIwD9Ui0XnwsLhAXCAmGB\nsEBYICxQHgssZUA/74cbyUpALtW3+ONIoD5+MimPg0/tUifIqDRuTr63+eDmh6OXvtkIOCa7gi8u\nIBRQ9QUVvophnyt+cCCfFcnYDwXt9k+fPhdIRqtshbhD/y+PJ9aKhIQEJszsUoHVcuyYSgD63JeJ\nSulCLFKOc5/pO4izrCHxGBI/Y3b/L15KDPq+/ltTPob0kRGrpAIAsI+W/jYRnsAdIIh57MXqk/vF\nNTFYURcwItXAoGL/QeuhB6h/V/0BqUAnXvRJDDnRgFnH2K64z/sCQvZaDrZRwDjyJ0p8OpE4EnFr\nRH3mhguENGJAiwkVD7ImKalUCQ7xbZ+IaftFTIOgRuzp1+HXlj/ObF4HoD8bK8V7askCAejX0t1a\ngue60IA+YCKliDg6yM5YBlvZazLYOEUzDSRokjZ6AvVhMm8sAPw08yz3ADxtUcbcGhbp4TfbgSNk\n7GcBxYCrV9SAiZK78yq9Gxq6Y/IuVCkwYQE4mErzJYDUVrEB+B0sjmoZlQb0SYgYMF2wIVI1aZ7P\naPbjDWqxc34AqsOgp1SSMlkcIfYNczqgn/9+wHsAdwP1taLnmO7RB3OEYNA74A4z/+jRI9kxTZzx\nOjUS8vLIYg445Y+ubTikSo3RgmOHg2flpnIAcQK573va2+w6uIatYs97UEGjJmSEYPewwgzSh4zX\n4vvOzlt2gQViUlYFeSeTMFIFAivJEhxJzpdr26vr6DA2yl7b7yQRjLUvB7bUEYB+qZaLz4UFwgJh\ngbBAWCAsEBYojwWWMqA/3YL4+WiMD6kyHO10fHNkUFmRg3VCFj4yMcR6Vceyep82AP0N69clco2B\nssuM3Q+gT084KsyfPX+WXgvcz/dKWyEJUORh1+vzsKWJIQ6qMpvqbMhI+OOJwZ8kfaafe6V+rgSg\nX6lr8eMA6EOoI75jXrt+U/0ULthE0jU/kFGFWNWpyX0hHvK4CEB/NgMQHfA+gfijAvSHteduW5Pa\n4eGRiR5n7DcSOIZvWP+3BgH62+x4W7VCTPN4jTU/xpSYSOSwJO90T/EdVeb3FetxrXmQnu8kUYEa\nwO5dLUZ6cwJcsdg1f7xirwPQL2ad+FstWiAA/Vq8a0vonBca0Kf8cFQPOZwnsslIgNAEF515suYz\nDXTrHJxNq5jXgLViNOMElXs0ipXf3a1mSIWGSLP9foBidxpYr167LskYycVIasXA6AJIzcOeUj5Y\nADTBAbzlgesPcgDkahmVBvRxJnG+mNjpRq+038WmuSENeJwik5EplLE6IwJbUalBxYaVRorlQEkj\nzhdzuj39+5HdgeXw6NHj7KESTZQpAoqPjye2O6WVqUwRx369HLy92X6VyB7UJAGzSpUBVAlwjGLM\nBva9AexytHDwYGwMqL/CoIIKqjU+fkzXy3fAAnG2BomrFFRQbaBpCQRYPInBg63cXgD1sIFYKft9\nTlChgMKDDGSMkLT6/PmTdEBTI1y+h/2HvA97cYccvnzirNQ9GIB+qZaLz4UFwgJhgbBAWCAsEBYo\njwUC0J+040P5+BBbkO/EF6dylbgCcJ9Y4N17NN3fm1+NtA6SKMQSSJbgiyOBmSR3xM6Goa+Jz031\neQKLfZXciWJA/HMfEIucLAPjmxhw797ULwu5FQBbpE9Yi8UT/n3ztXLOefkU4ifinn379tmcr+PO\n5/dWGtDneMR9NgvsefCOW2LsIzFs/QO0z1hXrFhewDPYY4m8CIGLyd5jjy0Tgesbye7kB7Eq8ePL\nl0nC1WM8Yj4Ib+wj21P6/tbdrSKKtdqe2yVAH2AfUiEzAP28VeN1WCBZIAD92AlVbYGFBvRxogZp\n2qJJuSOO1B1lq2kahFM008ChWCX2Mg7RSjHyV62kgQts5VVleRhNP+5OPeyOHzuWnThxLDt5/Pj0\nP8/4M46g6eSp3A3gGUmh6zeuWwUCSQxKLh2ARb7l4AHp5mvSEKdRsiqbKfFUaScP4WoZlQb0Aemx\nka/DlBEyC/sEx5u9A6s+D+jDbMHpJtHDukJM9hXLV1hjXMpo84NST47BJAmTL8VM2vrpb+y5BK4D\nsjdZQ1wY7QZ+b98x0XT3Sw44jj2VAADqJA9IUFyX1BRNamH04HyNj3+w/TFxDXLsAN5JGrDvSWpZ\nwy4kftRMiWOSCPiopASJD/QSCShw8JArSg2YBPC/02s5jTYF+GMXkhQ0Y0Kvs6sLJgqa+Z1WVkpi\nxKsO8jaby+sA9OdirXhvWCAsEBYIC4QFwgJhgfJbIAD9SZu65jiklwcPH2UDIpSlHlOD5p/DNOZv\n+OTEnT7xwb0BKr+bZD+rf5X8byRWPsiHH2fVZz8ormDNxygQaKjA3SNJUFZAfIBVmNNIu0IgAlwl\nUaD62wUbxEUB6H8dQ58Y06sBiC/vjt7N+lQJgLwPwL7vs1cC42Hps7/ANMA2kF0CyGcS1wrKL+y3\nqVuC6g9A/fc0xdXqcR596Nh3jpGwdom41SXMgTgPQN90+pGR0ixH8igY+lPvTfxU+xYIQL/27+Gi\nvoKFBvRpOEp5Gw82HmomBVIoEeOBVGxMf+hM/7nYZ+f6N5gTP//0Y/afn3/K/k9ztgOGh18TyYu+\n/nStN3v75DxObeh6WE1pLGlw/JiVXiYGSAKky5Exn+05f+l9lQb08+eDUzKRIBHbATD/qvoS9FxN\nM+8s8znfExNr+mX+K6e+1vd7Kyb/Ll95IxUgritvGvMFbXnY+c1ywP04U7/0f38aN4dfTr4cfAD8\ni+qpcMnmFdNAxBFLWpsfJr7Tv9tXAPymRpI+m61fAD+bdFDhu/m3DVODlWBi4jqmXSMJD5JHzKam\nRjX47bJqlO6ubvvZGUJ8f6kjAP1SLRefCwuEBcICYYGwQFggLFAeCwSgP2lHq/wVEOoMakhXNlUJ\nDNnmyVMa2j41dj2fcv/bv2H6z/571gmfe9prfw8Mf+R1fCKpafr88sUh2FTLCED/6yV3uJcA7uwz\nJsoEN3tTpTn4B3vMGfzEf5bAUUKHkRZ/XTy1M7nnkG21j9s+JOmUkgKrbT0k4iCYAxJPSAmTXLKp\npEGxPZ2+8cv/D0D/yzaKd9SWBQLQr637teTOdqEBfVjqt8SI8LIz09N//CR7pMZEgJ3VMnjgnf72\n2+z77zRPny56WjxQ7TmqFfvCHLcpFrlXH1DWCTsbkDQxPpZnhw8eEqB/NDsuQH9ve/tEaSflnOV4\nwBY96Tn8cSEBfU7TGTUwz0mWmFQNkjUDgyqPfW/7BoYC++e9JisTaRmviJh0ev73wkmepOa6iQm/\netXqAltilWll7ty5o6A9uKMgh5OaMdNnYbbDgggB7wD7sDZI9PT33zKpqUfa/+wbHCKu1RgXlGLq\n2nCsfXCeNE/aIHY+TH2qDnAYYQfxvegpklCi9Jff+WAvufNWJyeuQecNkE9Corm5SWwNmuJqqncD\n389xfPp3zHUNQH+uFov3hwXCAmGBsEBYICwQFiivBQLQn7QnPrVPmPhUhxOnDStGo0GuA6344ya9\n+XFc2vow8Cfji7x/zTcT08GkpqKXCliL8xTrLVeFsLGuFVOsVqXthvUbVI1dYOirKhswH430dQLz\n8c2rZQSgXx5AHzt6T4anIqTZPtN+g9jIz77XiAmNZU/zZMWyELUgZbHyHTMN4jTDE9hrtgepKJFy\ngV7D8vdK7PWKGdvb2HdttiJLmyoCklzsTN8/l98HoD8Xa8V7a8ECAejXwl1awue40ID+hOSOmsMg\no/JCWm/ovTF5eFXL2L4NyR2anwpwF+hebFBa9w9Oolaakfb29Wa9vX3KxidWPrrs6DaOjb1NGXNJ\np5A5P3ToQHZc388xeNimZkjJMQxAf9LiVkYocPu9WAzPX7y0Sgca/zxUxcOLgnYgzgTO+av/z96Z\ncElulOk6u/bNeN/ANmCzmGG4l1ng3Dmz/Pdh7gyzsXgYMBcwO3gd2+Dat7564qsvFZld1XRWZVUq\nU4/OiY6QUimFnlBXKl598cYnu43lTAjj3E88kPPwjaB+1QJ3HqqHXvnNw3UpN9vwsH8OT/vmAYiE\niF8E9WYfRPJHXYYPdk09EOrDT/+dJn+3TBL9P42oz+RGPORxjdjzMIF0/X9iKMw39w6+nkuNnyLH\nLcdujpsvM3ghUD8E8tBXIvKffrpE+DO091mu52K+gWea7U+X9FSZh4DzMPT3Jveggv6j3hnuJwEJ\nSEACEpCABG6HgIJ+y5XgntJna3JsXv+nee7+gGjpJidi+qOmD0dOX5kAGfpt+wf7F4FFuyXwhj5J\nvdAXwKqSEb0I82VuraafR6AQUflE3yOqPvH4E4PnG+/8kpp+BaNlSxR1sy8Ca1cW+g9a7tzMcoe2\nHN5rDU9sV7Hh5f4qYn4pf1i2MWr7j580QV2MsG76sWEBGwFadR9w/P6IKPxGTyhzoq03fdK4/zab\nuda4555uRnQ//dTTg6eaPPuwBHEREMZI7AgunM58fQr6463j+rwTUNCf9xZc8PrPWtBnSGN6or/9\n9jvlx2u3EWH/2Iiw41EPs2wKfvy+8pXXm8lPXx/8WTMZ0MOWIqheCKsI9//1Xz9oJsH9weCNZiJc\nhFl+6EhEi6etTg69/N//K14afLaJjs6oaPIuLbOO0EeML6lhjFhNpD5+8bt7u0UMJ8Kd++p/muia\n+sGch+70FnzYvYU3PYL2M88geLf5U5SbB6EnmyiaJ59o0pPNBEXNvvHiZbVE4TxqO/FgV1LzhbPm\nBUMZdVCuY7d5MfH+gP8LjF55txH4333v3WYkwnvlxUVtQ4XATuRPpnvNsRgb0hw6HhzhdHEfcq5c\n2P/llz7TpJfLUEs8O7NTwcuKHHZJTmQHy03EfL6voA8FFwlIQAISkIAEJDA7Agr6o+zz+Zh+AaI+\nnuNYXn70MWJrzH/28UcfN0E1TWANATaNuF8Ef8T/pr/B83u9IJ4S/INgT8BPmYcKcb9JTzfzoj3T\n9CefbfoX2GUyqS4Tn9IH5Hk7n+e71O9T0J9OhH7eZ9wrxXaVwLRmpAd906GVLPPtNffVe00fFscC\n+rII/B/94eOS133A+p6jzEugci9d3FMI9TmKmz7tCy+8UCZhfrHJ455sXjzxwqn5Hn28Mqlzk09j\nQeOoXwIRNPbqq681kz6/VuoxjXN4DAncJQEF/buk7bkmJjBrQZ8fMcTKdxrh8v3mx4vJOw+Igmgi\nIBC8u7I81Yi3n2ui5nPyoofVayjoN4Iq1/SD//5h4/H+w5JzfUSW86PMDygPcSQiwpkU9/XX44UB\nk/B2dZm1oF9zQbA+LZH3MRzxvfIA1IyAaETx8jDUrPPAjYUTk8LCncTD1FUL0Q1ELWBBE9HrbZmH\n8dJeRNg0bTaNh24e8mL0QHMNTb2IzEfQf7sR9N95h/zdEsFPFD8T2rL/MJ1X5bELKlH12OU099m9\npZxE6V6Jwvjsy68MeGn0SuP9/+kXX4zrbR64eImBdc8SLwqa/KZCflZJQT9JmEtAAhKQgAQkIIHZ\nEOiyoF8sNH/5y8EvGhtNfMbpQ5F4Lq6XVxob1G/89V8PvvnNJjX5NBaeqzMIhqAh+scEYeUoWYTV\nPyCsNqJ+2MNG3YiirhdE1CeeeGLwVJMYxbvZCPk72xeCfiOs5mhYgoMQ8TMoaFrP23VdplFeVEE/\nR1uQ/+xnbw1+0PTT6av/orn/6uXF518YfP7znxswcp5+U/QPm5cyTT9xGiMp4MtLojISu7nfCERj\nxHmO5v+oeZlUUuNccHg0Ohqkrif2sAj69E2xbXricSxZm3uxuQdD0H++EfQbUf+F50tEPv1XXiDd\nxn2noF+3jOVFIKCgvwituMDXMGtBn2FnHzc/UmWIWTO87AjPOLwJG9GVB6uuLETSP99EL+fQyIfV\nix9nHgzJedDDPx/PfLwZi5jc2L4g4DY6axleubnBZDQbgxcbYfUlIqc/08w43wjHXV26JOjDOCP2\n8Y+PB3AiaJohi80DEpPC8mBBO3BfFQ/Mhv15s+9Vy+raavG2JLLmsSrCAb/Lncd2BsxpQGJo7LQE\nfa4hJ0yivhGtwUNcDPdlSOaHzUMekUNl30b4z/z0lO+eNjZPbRQ+91Z2EsgZSsmD28rKctnOiJNi\ns/Psc+VeSx9+Hv5GXgRwoCksCvpTgOghJCABCUhAAhKQwA0IdFXQ53n+3UbIxIqVHEsSbEcQO3eb\n5+J6IfiEaN8vfqGxQvnCa/VH1y5noAz1wIYnLHZiHirmpGI+KvzN2U6f4hNE2KZ+h02gVr1gcUKf\nEQsdIqHXsdtpEiN6se98/EJoJTioPJcTQHNLwmpdr+uW4VFHW9Of+EozUp0ANNI8LlxT7VNPwFSZ\nP6HpqyOm18vjzYuZ7PsT6JX9JV7cwOKmC/cd91beb/QBeWn0x4sRIdxznzSj0MkJYLtqYb4G+qWp\nKfAiaau5F7F+4r7jJdOTTSIvAVsZ8DWlfl5dL66hvmeM0K/pWJ5HAgr689hqParzrAV9RFZEyoye\nRphEoESs5EeuK0s7lC2GRj6sXvlQSO3D572J8GgiOz5uIjvOuLbmQYLr4zc0J6zhh5hhmo9/6vHy\nsDeJH/vD6nIbn3VJ0Ic1D2aZ40cPc/LDZiLZjMhnHebs+6fuLR501jd4AG9E+3wQL+vNtmZo4koj\nkBNVw4PctCIbqFdJzfVQ5zLstxlRcHDh1YmtEPMBcB3lxUTz/yZefDExV2yrR7RQL14S5YPd2nBi\n39XSschRIY81Lyi2Gp9Frjevle9mmtb9o6A/LZIeRwISkIAEJCABCVyPQFcFfZ7j0z6TnOfg8kzf\nRCUjvtZL2Nc8VWwx8Qaf1jLsvzV1IfCqTEZ6TH4xOWlTPmnKh019jqhX088YH/G72vTn1lbXSvQ2\nAUIrzWS4BNPQZyCKujxvN8Irk+YSFJRpWtcw7ePQN6nF2UUQ9Gnn0BoazaHpG4aI3ozAaPrqBBrW\nCwFc29gibe80L2m2LvpKBHWtTy2oK0dpc7/RB2zniov+Hf090sMCHbmPSt+0uf/QFri/COhiIuby\nQqmI/cy5ttnOi0Z/r77YKZUV9KcE0sN0hoCCfmeawopcRmDWgj4/qiz5EJV1jM3dEfRT4Mw86/mn\n8rwuHoiG18qXLq6b48XSTDxa2aK02y8+7lDWJUG/xjLk27DN+6fwZ6cL3uWOuijX3x0v1+1c2uLi\noSfbJfPx7910ffQaYrKufJAj5yEvX4Bhv9MK/wcjc07wYIdonwmfRCbOzZEFEa3fPPQ1UUHsy1Jf\n802vY/z7CvrjRFyXgAQkIAEJSEACd0ugq4I+FMoze3mGb+0kc3tNiedVnl0zrz+bVrl+Hq/rcFX/\nYnjesf4C27PPcFU+/G4HC4so6Cfmuo3L5MhVXz33oc3q1LRms962ae53k3xYDw5ycf9HMf4fZJn8\nYUveX1RwqC5Q2arOw30edqAbfqagf0OAfr1zBBT0O9ckVqgmMGtBv66L5fkg0FVBfz7oTVZLHvKY\nqItEFBBRHERvIO7H6IOI0Kd8Xs05wQNbmdy2EfIZckl0BlH66+tN1NBYVNBdPNwp6E/W7u4tAQlI\nQAISkIAEpk2gy4L+tK/V492cwCIL+jen4xEuI6CgfxkVt80zAQX9eW69HtRdQb8HjTzlS1TQnzLQ\nhxwOQZ+H6TJRVzMslKGhKfBnzrwAp6cnIx76RGcwzJJhvwz5LT761bBfRPw6PaQKU/lIQX8qGD2I\nBCQgAQlIQAISuDYBBf1ro+vlFxX0e9nsN7poBf0b4fPLHSSgoN/BRrFKLQEF/ZaFpUcjoKD/aJym\ntReifqYcEjrMG7E/y+MGVcwFwJDkTPcoV0I+9buL6HzOo6APBRcJSEACEpCABCQwOwIK+rNjP49n\nVtCfx1abbZ0V9GfL37NPn4CC/vSZesQpElDQnyLMnhxKQb8nDT3Fy1TQnyJMDyUBCUhAAhKQgASu\nQUBB/xrQevwVBf0eN/41L11B/5rg/FpnCSjod7ZprBgEFPS9DyYloKA/KTH3V9D3HpCABCQgAQlI\nQAKzJaCgP1v+83Z2Bf15a7HZ11dBf/ZtYA2mS0BBf7o8PdqUCSjoTxloDw6noN+DRp7yJSroTxmo\nh5OABCQgAQlIQAITElDQnxBYz3dX0O/5DXCNy1fQvwY0v9JpAgr6nW4eK6eg7z0wKQEF/UmJub+C\nvveABCQgAQlIQAISmC0BBf3Z8p+3syvoz1uLzb6+CvqzbwNrMF0CCvrT5enRpkxAQX/KQHtwOAX9\nHjTylC9RQX/KQD2cBCQgAQlIQAISmJCAgv6EwHq+u4J+z2+Aa1y+gv41oPmVThNQ0O9081g5BX3v\ngUkJKOhPSsz9FfS9ByQgAQlIQAISkMBsCSjoz5b/vJ1dQX/eWmz29VXQn30bWIPpElDQny5PjzZl\nAgr6Uwbag8Mp6Pegkad8iQr6Uwbq4SQgAQlIQAISkMCEBBT0JwTW890V9Ht+A1zj8hX0rwHNr3Sa\ngIJ+p5vHyinoew9MSkBBf1Ji7q+g7z0gAQlIQAISkIAEZktAQX+2/Oft7Ar689Zis6+vgv7s28Aa\nTJeAgv50eXq0KRNQ0J8y0B4cTkG/B4085UtU0J8yUA8nAQlIQAISkIAEJiSgoD8hsJ7vrqDf8xvg\nGpevoH8NaH6l0wQU9DvdPFZOQd97YFICCvqTEnN/BX3vAQlIQAISkIAEJDBbAgr6s+U/b2dX0J+3\nFpt9fRX0Z98G1mC6BBT0p8vTo02ZgIL+lIH24HAK+j1o5ClfooL+lIF6OAlIQAISkIAEJDAhAQX9\nCYH1fHcF/Z7fANe4fAX9a0DzK50moKDf6eaxcgr63gOTElDQn5SY+yvoew9IQAISkIAEJCCB2RJQ\n0J8t/3k7u4L+vLXY7OuroD/7NrAG0yWgoD9dnh5tygQU9KcMtAeHU9DvQSNP+RIV9KcM1MNJQAIS\nkIAEJCCBCQko6E8IrOe7K+j3/Aa4xuUr6F8Dml/pNAEF/U43j5VT0PcemJSAgv6kxNxfQd97QAIS\nkIAEJCABCcyWgIL+bPnP29kV9OetxWZfXwX92beBNZguAQX96fL0aFMmoKA/ZaA9OJyCfg8aecqX\nqKA/ZaAeTgISkIAEJCABCUxIQEF/QmA9311Bv+c3wDUuX0H/GtD8SqcJKOh3unmsnIK+98CkBBT0\nJyXm/gr63gMSkIAEJCABCUhgtgQU9GfLf97OrqA/by02+/oq6M++DazBdAko6E+Xp0ebMgEF/SkD\n7cHhFPR70MhTvkQF/SkD9XASkIAEJCABCUhgQgIK+hMC6/nuCvo9vwGucfkK+teA5lc6TUBBv9PN\nY+UU9L0HJiWgoD8pMfdX0PcekIAEJCABCUhAArMloKA/W/7zdnYF/XlrsdnXV0F/9m1gDaZLQEF/\nujw92pQJKOhPGWgPDqeg34NGnvIlKuhPGaiHk4AEJCABCUhAAhMSUNCfEFjPd1fQ7/kNcI3LV9C/\nBjS/0mkCCvqdbh4rp6DvPTApAQX9SYm5v4K+94AEJCABCUhAAhKYLQEF/dnyn7ezK+jPW4vNvr4K\n+rNvA2swXQIK+tPl6dGmTEBBf8pAe3A4Bf0eNPKUL1FBf8pAPZwEJCABCUhAAhKYkICC/oTAer67\ngn7Pb4BrXL6C/jWg+ZVOE1DQ73TzWDkFfe+BSQko6E9KzP0V9L0HJCABCUhAAhKQwGwJKOjPlv+8\nnV1Bf95abPb1VdCffRtYg+kSUNCfLk+PNmUCCvpTBtqDwyno96CRp3yJCvpTBurhJCABCUhAAhKQ\nwIQEFPQnBNbz3RX0e34DXOPyFfSvAc2vdJqAgn6nm8fKKeh7D0xKQEF/UmLur6DvPSABCUhAAhKQ\ngARmS0BBf7b85+3sCvrz1mKzr6+C/uzbwBpMl4CC/nR5erQpE1DQnzLQHhxOQb8HjTzlS1TQnzJQ\nDycBCUhAAhKQgAQmJKCgPyGwnu+uoN/zG+Aal6+gfw1ofqXTBBT0O908Vk5B33tgUgIK+pMSc38F\nfe8BCUhAAhKQgAQkMFsCCvqz5T9vZ1fQn7cWm319FfRn3wbWYLoEFPSny9OjTZmAgv6UgfbgcAr6\nPWjkKV+igv6UgXo4CUhAAhKQgAQkMCEBBf0JgfV8dwX9nt8A17h8Bf1rQPMrnSagoN/p5rFyCvre\nA5MSUNCflJj7K+h7D0hAAhKQgAQkIIHZElDQny3/eTu7gv68tdjs66ugP/s2sAbTJaCgP12eHm3K\nBMYF/ZdffnnwpS99qaQXXnhhymfzcItA4O233x785Cc/Ken3v//98H754he/OPjUpz61CJfoNUyZ\nwM9+9rNyv/z0pz8dHB0dDV599bXBa6+9WvLl5eUpn83DSUACEpCABCQgAQmME6gF/T/84Q/DZ3j6\nfpubm+O7u95zAgj62ecj55k9dQL6fS4SGCewu7s7cs88++yzF/2+1wZqS+O0XJ8HAgr689BKPa7j\nuKD/9NNPDz7zmc8MPv3pTw+efPLJHpPx0q8i8OGHHw4Q8ukUUOZeyXtma2vrqq+5vccEeAnE/cJ9\nw6Kg3+ObwUuXgAQkIAEJSGAmBGpBf/wZfn19fSZ18qTdJYCgn30+8qWlpWGfj/6fiwTGCRwcHIzc\nM88//7yC/jgk1+eKgIL+XDVX/yo7LugTnfH444+XZKRG/+6HR7ni/f39AVE93Dt7e3vD+4Xo/LW1\ntUc5hPv0jAD3St4z3CMK+j27AbxcCUhAAhKQgARmTqAW9N9///3yDM/zO32/lZWVmdfPCnSLwP37\n98vzez7D37t3b6Tf163aWpsuEDg5ORm5Z1588UUF/S40jHW4NgEF/Wuj84t3QWBc0OeHm+F0JN7C\nu0hgnADRGmdnZyVRzvuFnAc9FwmME8j7hfyxxx5T0B8H5LoEJCABCUhAAhK4ZQK1oP/OO+/4DH/L\nvBfh8PkMf3p6Wvp5db9vEa7Pa5guAbSkvGfIGcX/6qtYrWq5M13SHu2uCCjo3xVpz3MtAkRY/+53\nvy12GL/97e+aP8Cn1zqOX5LAnyLADzzp/JyclwLnTfmsSfGCoM7zxQA5L5ZIPEAuLfGyqV3n89iX\n/E/VwM+7QGBnZ6d5uHupPODxkEe7ukhAAhKQgAQkIAEJ3C6B999/b0B/j77fBx98cLsn8+hTJxD9\nqAf7TXWfiv4U+7FE3yn7UG2efavMp15RDyiBCwLPPfd86fO99NJLA6ydXSQwbwQU9OetxXpWXyao\nxEPxo48+KjkPAS4SuA0CIdifDk5Pie4/HRwfHw8Tw/Pq9XzAJGcIMDYtdVpdjfWVFUYFIPAj6Dui\n5DbabdrH3NhYb+bneGrw1FNPlXk6aGMXCUhAAhKQgAQkIIHbJcDI7I8++rD0+T75ZPd2T+bRp0Qg\nxHk0egKijo/bPtPJyWhfiv4UkfQknq+jv7Q67ENl/2l1dbX5jLTS9LNWp1RPDyOBBwlg6UWfj0RQ\nl4sE5o2Agv68tVjP6stQqMPDw5KOjg6Hb/R7hsHLvQMCCPk8aKZ4z6Q5Bwf7TToY4Msf62w7KBEl\nRJWQmKSL+Rw2N7dKvrXVlhH5a/HfKP07aMgbnmJ5eWWwsbHRpPWmbTcuRljc8KB+XQISkIAEJCAB\nCUjgoQQInsl+H2KwS/cJXATblz46wVHZf9rfjz5TrtOuBOplog9V95+ivDmgH7WxsVn6VzyPr687\n/1n374L5reHa2vqw38cLJRcJzBsBBf15azHrKwEJ3AoBokXoSOSDJnZPe3u7ZWJdyru7bZmo/FbQ\n3xhsb281D6DbTb7d5Fslp4ygT5Q+IjH7s7Q2PG05bHlu5bI8qAQkIAEJSEACEpCABCQggWsRSIsc\n8vFybiMnEI8+E4FQme/v05/aL9tC1I9APfpS9JW2t3eG/SbWiZKmL5UCP6K+iwQkIAEJXE5AQf9y\nLm6VgAR6RoCHUET9HA6aEUJ1zigR1uuFCHwEex5MEe9D7M/1P50zpJTvsNRif30OyxKQgAQkIAEJ\nSEACEpCABO6aQPaR0i5nNKHnrOYAAEAASURBVG9tdGJ79KcoY2HKCOgsh71pzFGGlU6Oho2RsYyO\njcTo59rK9K6v1/NJQAISmBcCCvrz0lLWUwISuFUCPGTGg2ZMhBvCPhY8PIyO5vmASs5D7lUJgb71\ngVwtFi48pMYQ0tE8xfzMb/ViPbgEJCABCUhAAhKQgAQkIIE/QaAewRxR9mGdU5ePj49KUFSOYB7P\nl5YIegq70jYQaqX0kwhsygCnCJBqA6JyhPOfqKIfS0ACEuglAQX9Xja7Fy0BCVxGIIeN8lmWmeDp\n/DyGmOa2tOUh52GWoaWZ8N3PMi8I6giTsOQJa54YZtqW02tfQf+ylnGbBCQgAQlIQAISkIAEJHDX\nBOjrpIUOeZ3o80Tf56AR9I/LnGL44GObE9Y55O38YljpENiEcJ99njqnP8RSb7vr6/V8EpCABOaF\ngIL+vLSU9ZSABDpDACE/o1V4yM0H2VbMjwl1GWbaRqMwgW472SqR+nW0/oORLFj5LA8n1a3LnQFh\nRSQgAQlIQAISkIAEJCCBuSJAkFKOTo6cEccxWrkesUw5+zxhPdpObMv60dFx8znbjsuI5RTzEe5T\n0M8yQn4K+kbez9XtYmUlIIGOElDQ72jDWC0JSKC7BNI7ElseEg+6PMzGAy/lWEfQj6j+84tJpO41\nESdc14P56moMNw2LnrUmsn+1RPevrlKOlMNRyxHiQN2FZM0kIAEJSEACEpCABCQggc4RQKjPfgyR\n9cfH0Z+5rMy+zdjlpi/DZYznsY1/iapfW2v979fXsw8T2+jH0Kchz0h8vuciAQlIQALXI6Cgfz1u\nfksCEugxAR5s6zTuoX9+Hr76CP88ILei/7jwHy8BeAHAA25MAhXe+kSwZERLlsnZLxcenF0kIAEJ\nSEACEpCABCQgAQk8KgH6LowyPjw8KPnBAaOLL0+I7xlc1OaMNE7BPgOP1sro4uXlpUawT7/8Nuc4\nOeLYPsyjtpT7SUACEriagIL+1Wz8RAISkMCNCCDo58MxD827u7sXvpO7w3Juqy14EO6v8ttnv9pX\nMh+Ir8pvdAF+WQISkIAEJCABCUhAAhKYGwKMDmap87rMZ/RRWv/7/aEvPtvSIz/LiPjjc3+xvrOz\n09jqMB/YVvl8Y2OTQ7tIQAISkMAdEVDQvyPQnkYCEugfAaJfwn4nbHgiEqaNhmnXD4de+RnRwmRR\nN0lEwKTI3z/yXrEEJCABCUhAAhKQgAT6RSBHDSPYUyb/U+ns7LQZTRz7UR7fH4ucnAcMH/w65Xby\nehRxv6h7tRKQgARmQ0BBfzbcPasEJNADAtjy5MM0OdY7PCRHjhVPW84H8NE8vs+2tPFBpM9ofnwq\neajO9bqckfw9wOwlSkACEpCABCQgAQlIoPcE6GMcHaWl51Fjp8OEtUxeO1qmD4IFTiZscsIOp7XI\nSescAowQ9Znva2XlwTw+X2m+v9J7/gKQgAQkcJcEFPTvkrbnkoAEekcgJsVlAqlM+O9nuc2J1see\nJ/N6GCzbWd/fPyjC/tbWVhniGnkMcw2Lnijndh7SXSQgAQlIQAISkIAEJCCBxSeQ/YiDg/3Sr0j7\nnMjpS+wVSx2E/4i03yx5PW8X/Yh6vfa9J7BoaeleMwp46QELUEcGL/795RVKQALdIqCg3632sDYS\nkEBPCaT9Toj6KeDz4B0P5CHo75eIfyLzMyqfPCPzM49t6yVSJiNvyDPSpt5G2Qfwnt50XrYEJCAB\nCUhAAhKQQKcJZFAQI3/HU4zibbdj9RkR+kTmE5Wf0fltTtQ+I3/xvKfvgHifAv64mM+6fYVO3x5W\nTgIS6DEBBf0eN76XLgEJdIcAkTI8hGce3vs8jOO/H0NnKWPZ0wTHNAvRMZlHGWG+TgyLXVsjrTXD\nZNdKOXLWGTK7OvTp7w4JayIBCUhAAhKQgAQkIAEJQAARv7XsPB3pL2S/4eSE/sJJ2ff+/fMyMpgR\nwc3UuBejhHOS3Fgnwj76B9FPoExAEPl4GUHfRQISkIAEukdAQb97bWKNJCCBHhJIv/3MR730z0pk\nPtt4oK8n2h0v80AfD/cnzYP52jDqJqNvNjdjGG0Msw3/fR7cXSQgAQlIQAISkIAEJCCBbhHg+Z9o\n+0yM5r0sHR4elGh6PO3xsydwJwX68TyCetIvn/2jjHif5cwdydut+8HaSEACEkgCCvpJwlwCEpDA\nHBBA0A8fzN2LfG+wu9uW+Qx7nr29/WYY7foAb/0H0041tHazEf43hleeD+1X5cMdLUhAAhKQgAQk\nIAEJSEAC1yaAnU4uWR7PefZPAR8LnVFf/PDEj+f/vSLi11Y6Ozs7pR8wnhPYU4/qzTqYS0ACEpDA\n/BBQ0J+ftrKmEpCABEqkfvhhHhZfzPTer/P0zFxaWm4e7FcubHXCXifWW6uddp3InNy3zTM6J/MU\n+m0KCUhAAhKQgAQkIAEJSOB6BML/nlG45006bUbhxkhcBHzS6LaTC9ud+Cz2OWlG5eZ6fN5G5cd8\nWzkidzwnYj+f6TO/3lX4LQlIQAISmBUBBf1Zkfe8EpCABK5BYNRHMx7ksdg5PX2wXHcUmPyKDkPm\n6a9JFBAP8jHJbljwENlP1H5sWx8O2aWToI/mNRrNr0hAAhKQgAQkIAEJSKAiwPN7a5V53ATqtLY6\nYa8TE9ki3rdzZw2aZ3GCcJYuzbHbaYN1wnYn7HXaMusE6rAo5hcM/iMBCUhgLgko6M9ls1lpCUig\nrwQQ4OuEwJ/rWSYnEbWfQ3Sx4YnyfmPJc9D4cB4WL346DHx/a2urDMnd2sKipy2znagePPjJFfT7\neud53RKQgAQkIAEJSEAC0yLAs3iMsD0qz+j7+9jnYJsZ9pm5jqC/trZaAmwQ49t5sTab8lbzDE8e\nZYT69MEnR7DPnHK9Pq3r8DgSkIAEJDAbAgr6s+HuWSUgAQncCgHEeRZyOgkI+SnmRzk6CREFlJE/\nZ8VvP4fjEp0f5TZSPyfTIvKHjsFVyY7CrTSrB5WABCQgAQlIQAIS6DiBDLJhJOz5+f0SYJOBNm1+\nVrYfHx83ATbHJcDm+PhoKO7z/B5iPxH7h2XffA4nJ9gmhXzK7frW8Pk8xfuO47J6EpCABCRwAwIK\n+jeA51clIAEJdJFAivoM5SUCPzoM5HQM6DjENj4/Pj4pHp354P9gPireExlEikihtRE7nhzCi+if\nQ3m7yMc6SUACEpCABCQgAQlIYNoEEO3T+56c52xsdS7LQ+APcR/xv30ZMFpeWrrXzIfVRuivr681\nz+EkAm9GcwJuWPJ5ftrX5/EkIAEJSKA7BBT0u9MW1kQCEpDA1AjQKYhOBd75dYpJt2JblBnKi+hP\nyk5Hu35SRRedNQL+2sWw3rDhCSueGOqL535GECHuu0hAAhKQgAQkIAEJSKAvBHi+bp+nj4fWlwcH\nrQ3m4eFB2X7vXhs0s7KyXJ6x4zmawBmCZkK4xxN/eXmlEfVJ+OdH4AzBM+MJIZ8l875w9zolIAEJ\n9JGAgn4fW91rloAEek8gBX9EfwT93d3d4tkZ+W5Z393FnmdvKPbTQSEaaHsbn/3twc5O5NvbO6W8\nsRE++9j10BFhqTsUV5V73xgCkIAEJCABCUhAAhLoPIEcBUtFLyvzTF3b5eCHn8/YlOv1GPWKaL/a\nWF1uDp+td3Z2Lp61eb7eaaLw14twT/S9I2A7f4tYQQlIQAJ3RkBB/85QeyIJSEAC3SFAJyQT0URM\nmBsTc+UEXUQPhYdnWvOQ05kgUogoIToiES0Uw4CjzHY+57OIIqojinKf2oO/Fvq7Q8iaSEACEpCA\nBCQgAQlIYDAc9ZqjXxHueX4mj3I76vX09GS4nWdnPj854XPsd9qc5+V4lo6I/M3NnMOKfDRIhmfl\nfHa2PSQgAQlIQAIQUND3PpCABCTQQwIZVURO56TtcNDZGE3RWYkOCZ2X6Mww2VcmLH3OC0U6HNHp\nuNdEFG2UqCIii8ZTCvvkdFBcJCABCUhAAhKQgAQk0EUC+ZzMMzEjVpmj6rLE5/GMHYEzIcIvl2fd\n5eW02In1+lk4ovVbgT/WI2CGqPx8viZ3kYAEJCABCUBAQd/7QAISkECPCaSwjzhPOQX+zEO8R7CP\nSCSi+GsfUCL7Dw72S4Q/nZ3cH6RbW1tlyHCbY9Gz1WzfLpY86bevoN/jG9BLl4AEJCABCUhAAh0m\nwDNxzi1FzrPv/v5+sc+pc2wqT0/PGlschPsQ7ZlrKtPWVpa3mm0bzX4x4hXBPqPvIyhm6SI4JvIU\n8TPvMCqrJgEJSEACd0hAQf8OYXsqCUhAAvNGoBX2IwofQZ/OSybE/CzTyYlo/tMi7OOlf1kicj8m\n+4ohxnVHJjs0mdN5qdO88bO+EpCABCQgAQlIQALdI8Azbp3akac5ArXNCVrhOffkJKLzR20q067y\nsHn+vX9hRxliPUEtlyVEfp5/MynWd+/+sEYSkIAEuk5AQb/rLWT9JCABCcyYQHZw7t8Pa56jo+Om\nU8NQ4+jU0MFh2DGdHSL5Q9Q/a6KNajE+o43YFpN6ZSeGIce1wJ/DjNmW+5AbyT/jG8HTS0ACEpCA\nBCQggQUhkKNKyXl25Tm2Fe7TfhIRn+dbAlsisX++CEDAj3Js4xm3ttLhWRbbyczrMs+1CPmZLwhW\nL0MCEpCABO6IgIL+HYH2NBKQgATmlUB2WgaD+01n5nzYoQnxvu3gZHR+5hHJ1EY0HR/TOYqOUeP4\nVjoxMKGTQ6QS0fw5LDlzPqs7RvPK0HpLQAISkIAEJCABCXSHAAI9Yn2K+WEjiZXkwSAsJsmjTK2b\ngH7+LVY5a2v42681z7CZr5UJbmOS24jO5/m1DkyhXG9zBCo8XSQgAQlI4LoEFPSvS87vSUACEpDA\nCAE6Rinm00Ha3d0t/qLkmfb2YhsvCSLy/34R9Hd2dgY7O3jsk+8U731yRH46Rwj75JcNSb5s20jF\nXJGABCQgAQlIQAIS6CUBnjnHF7bxzErwSY403dvbG3l2zWdWrCXTChJv/I2N9fKsWj+v5vMrEfgG\noozTdl0CEpCABG6DgIL+bVD1mBKQgAR6SGB86HJGOLVRTniMRqQTkf7n5+HLjzXPygoRTplWSjm2\nZZTT6kUHCb/RdhKx7DSlJY/RTj288bxkCUhAAhKQgAQkcEEgAkawwGFUadjp1EEndTkDUTJKPyL2\nGVEaFjynpxHBX0faE2SyscEEtzlXVIwyJQiFzxD/c38bRQISkIAEJHBbBBT0b4usx5WABCTQMwIZ\ndU8+PoyZDlLa7dBJouOUfvsp7mcHrM6x5olOUXSOiHyKtHGR5/r6SAfKqP2e3XxergQkIAEJSEAC\nvSeQz6A8h/Kcid0j8zxdlngWzWdOxP82Cn/pgXJY5URAyepqBJ6EvU4Go0ReB5hwPBcJSEACEpDA\nbRFQ0L8tsh5XAhKQQA8J0JFiqcV9Okvj6yHwE/UUHa3at7Qu0yFjgrGYYHepseLZGmxtYc0T+dbW\nVrHnIc9ofXI7UT28+bxkCUhAAhKQgAR6TYDnzTbK/qTxwz8cYJmzv7/X2ECS7xc7SHIE/VjuF0vH\nnL8p5nUiAj+j8DebkaOI+Yj2PGMul+dMgkd43qzzHCnKcQ0uucBrJgEJSEACt0JAQf9WsHpQCUhA\nAhK4igCdLTpRiPlE6x8dHV50svYuOl3R4aKzRaeMhe+wRCeLIc5tJ4shzuG1H52tiKKKzlYdbTXe\n4eJ4drag4CIBCUhAAhKQgAS6SyCfA8lJbWR9W85tDwaNYPkYto8I/FE+LNaPGTSCSB/BIgSMjKbN\nTYNGuntnWDMJSEAC/SWgoN/ftvfKJSABCcyMQA6FTmueGArNxGQ5LPq4DI+O4dDhtU9HLSP1L8vT\nWx9BP4ZDx0S66c2fE+s6HHpmze6JJSABCUhAAhKQwMQEUqwnz2fHFO7T0hF7nfC8D7ud09OzIvxj\np3N+zouA0ZxnSYR8ngtXVpYb/3tsHNeKpWOU14snPlaPBIiEBeSywSATt55fkIAEJCCB2yCgoH8b\nVD2mBCQgAQk8lAAdsoiyignLwk+fDljbCaMckfw5MRk5on/rx1+XQ9CPjhnifT1kmgj+GDrNsOnV\n0inLztlDK+qHEpCABCQgAQlIQAIzJRDPh+1zIfaMh4cHxVKnzg8Pj4bR+zxrLi8vNc99a40wX3vd\nxzoWOhkEEqM7V4biPs+UKeDXgSC1pc5MgXhyCUhAAhLoPQEF/d7fAgKQgAQk0F0CCPrHx4j4EbG/\nt7c72N19MO3t7Y2I9ERT7ew81qSdkra3t4dlxP2IxorOWl699jtJwlwCEpCABCQgAQnMlkDa7FCL\nOiqfZ0KeBfOZkGfAfDbErpElgkYGxZJxZyeeAetnQZ4Pw64RoT9GdJYv+o8EJCABCUhgTggo6M9J\nQ1lNCUhAAn0kMB6lHxFZh01E1mhkFn6oFzb7BVNEZGU01qj1DlFY46kW+OtyRmIp9vfx7vOaJSAB\nCUhAAhK4TQLtiM37F6M065GazLfUroedDqM1c+QmIzZHE4Eg8ewWk9W2IzYZqTk6BxNR+/k8SES+\niwQkIAEJSGCeCCjoz1NrWVcJSEACPSNAR4+UQ63HO27pm8r23CdyLH3iu3GMmDSNbXT02mHWq8Ur\nlYh+On3kdcKWR1G/ZzedlysBCUhAAhKQwK0TqCe35dmNZ7mYU+momlMp5lYKC8YQ93mui+ezpZKH\nFz7Pa7GOH35a5sScShngkXkEehDAQQAIPvocz0UCEpCABCQwTwQU9OeptayrBCQggZ4RyOHWMXQ6\nRHk6cnUnMMtpzZP2PG0UP9H8EdXPNr6fE+UyzHpra2skMSQ7t9HZo5OXwn7P8Hu5EpCABCQgAQlI\n4FYI8PyGkI9YT84zGpY5+/t7F/l+Y6sT67nP2dl5U5f7w3mS2jmSIvo+bXQI0sg5kwjMqJ/l6nLz\nUbPcK8Ebt3KRHlQCEpCABCRwSwQU9G8JrIeVgAQkIIG7JZBCPjkCPp6qD3YM98rw7bDViQguOn/Z\nIRzPI3orJtpNcb/uGKbQn1H8d3vFnk0CEpCABCQgAQl0jwBiPUsGXYwHY7BOish7rHVOS3T+6AS3\nGYxx2Ox7Vo7F8YjEz8AL8joQY3Nzs4y4zMANntNcJCABCUhAAotIQEF/EVvVa5KABCTQQwJ0Bhmu\nnXkM2z68GL4dk+qyjc+J7qKvSccwIrUieiuHa+fw7fBWZYg2vvurTSeR8qgnfx0BBnbEfRcJSEAC\nEpCABCTQRwIp4mde2yPynHZ83Pre80x2dhaCfor85+etTWJuy2AKntMIsAh7xLXmuWzUKpHIfJ7d\nInBjxWeyPt6AXrMEJCCBnhBQ0O9JQ3uZEpCABBadQHb6yOsh3NFZbId0p+DP5Go5sRodzEjHF3ms\nI9bTOUx//Y2NzWpStc1hZD/7ZZS+gv6i32lenwQkIAEJSEACVxGon8d4tmLUZB15f3AQ64eHEWSR\ngj4ifEbWjwdPINLzWU5im6J9Cvd1PmqpY5DFVe3kdglIQAISmG8CCvrz3X7WXgISkIAEJiSAkJ+d\nSfxad3d3iz0PeZ2w7KHzSBRYWvHs7OwMIj1WhnjnOp/X9jsTVsndJSABCUhAAhKQwEIQIKgiEzaI\n8Zw1+oy1uxu2iCnmE2xB0EQ8V203z1j5vBU5z1kRlb9egiwWApQXIQEJSEACErgBAQX9G8DzqxKQ\ngAQkMH8E6GTSwTw+Pip5Le63k+dG9FgM7Y7h3RE5RrT+qO0O69jxZLTYeF5HjVE2gn/+7hlrLAEJ\nSEACEug7ASx0SCwhxKdwj2VOlmNEJAJ9pnoEZGu3c1y+E8cLG8T19bUi6uODn4EUmecktxml3/e2\n8PolIAEJSEACCvreAxKQgAQk0CsCYckTnc+036n9XdvO5kmJMIuh42dl8jZ8Xe/fZyK3zKOM5350\nNlt7njqSLMvkCvq9ut28WAlIQAISkMDcE0gxn2ciygRGMC8RwRFHR6NlBPy0NWQy25if6N5FvtSM\naGzLBDosL0fgBMERreVOlFPIr4MjnOh27m8nL0ACEpCABKZAQEF/ChA9hAQkIAEJzA+B7JSSZ8c0\nRHvE+Ugp2sfEunRWSYdDq56I5E8P2MNG+D8feusTTba1tTVM29vbwzLb7YjOz71iTSUgAQlIQAIS\nGBQRP5+RyA8O9gf7+w+mvb39Zi6idj4inrWw0uHZKKLtyWM+ovX1jRIMgWhPQrRP+0LyOtXzFBkY\n4R0pAQlIQAISGAwU9L0LJCABCUhAAlcQiIncEO4R8/cbr306r3vDnM4sXvtE+tMxzUj8HCLOsPFI\n2YHdfKDDSsc0O63ZYc0O7RXVcrMEJCABCUhAAhKYGoGrgh0y+AERP3zxY4RjBDkcDAMdmJMIC0Ny\nnonSG5/nmq2tNrCBIIft7TboYW1t/eLZaa1E8E/tgjyQBCQgAQlIYMEJKOgveAN7eRKQgAQkcH0C\nDBtnWHnkGan/YE7nNcX4HFqeIv1ovly89seHlNfrePCzTqSaiwQkIAEJSEACErgtAgj2LOQI9q1d\nzkkpsx4JIZ9yeONjpVNH7GNFmOscr9Hx+bfY6bSifYr3ma+VOYhWV1dKznOUiwQkIAEJSEACj0ZA\nQf/ROLmXBCQgAQn0kEBEo0WnNSeAi8izmPSt3hYd3bbj+2CnODrDq6trF/Y8Mfw8hp63w9GJ7ifS\nn+HnLhKQgAQkIAEJSOC2CGRkPmI8zzcxMrGNvE+LQSLyea4hyIG5hlZWlod+9633fQQkxHqI9AQp\nsO/yMvlKCVZocyx2wmbHkYm31cIeVwISkIAEFpWAgv6itqzXJQEJSEACUyWQUWz1QXMbneDaigcb\nnt3d3WLHM54j1u/s7DRDzrcv8p2S5zZ89vkMYd9FAhKQgAQkIAEJ3BYBhHyeZcgR6/f2dsvzy+4u\n9oJZ3i1WOvW8QvGsks8y2OjwLEO+XawGM1iBEYcsl0XfX7bttq7T40pAAhKQgAQWjYCC/qK1qNcj\nAQlIQAJ3ToBI/vTbb31lDy6899tIN/xll5eXLqLamARutSk/mKcFD7Y7pIxuy/U6N6rtzpvbE0pA\nAhKQgAQ6TyCDDnK0IaMKKZ+enl344edow8gJTmBCWyLwx3NGISL6831yghOYIyiF+3buICa6xVKH\nZ5v1EpXfeVBWUAISkIAEJDCHBBT057DRrLIEJCABCXSLAJ3bcYud6BDXneKw48F3NqLh7jf5edMx\nJo9y5Fzb/TI5XHaIycOGJ3xnseMhpfCPqO8iAQlIQAISkIAEIJBiPjmR90TXHx8zBxCCfeRsq4V7\nnmViPqClki8t3SvPImyjXNvj5PNH/SwSQQqrjYhPCpsdAhBcJCABCUhAAhKYPgEF/ekz9YgSkIAE\nJNAzAiHEtxPC0SnOlKJ9rtOBzmj+w8OM4j9sth0MO9p0vs/OzgcMad/a2mzSdilvb281EXFs2yqW\nPBkRp6DfsxvOy5WABCQgAQk8hEA+l5AfHOw3toCjaW8v1sNG57AI/uzLcwVR95HnXD+Rt0EG62W0\n4b17S43I/2CKFwDxUkBbnYc0kh9JQAISkIAEbkBAQf8G8PyqBCQgAQlIYFICiPl47NO5jhyfWjrW\nbEPgx6LnoExOx3D20YSgH9vobBO1T04EXFrvZD7eoWbdjvWkreX+EpCABCQgge4RSMGeYAHKl+UZ\nSMAzxYNp/8IXn4j9SEThRyBBBhG0ef3swXOHzxPduyeskQQkIAEJ9IuAgn6/2turlYAEJCCBGRPI\noe8RFcewd1JEx8VQ+BgOj5dtRL4xbD0j4EK4j/Xw10fMX1lZGdrvMAy+Xqec+zj0fcaN7+klIAEJ\nSEACUyCAlz1Wf2H3h/d9lDMPP/yTJjggve9z5GB44DMKMF8C8EIAqz8sdQgUuCrxfJEWOwr6U2hE\nDyEBCUhAAhK4AQEF/RvA86sSkIAEJCCBSQnEhHQ5Md1picRnojomqaMDTop1Ouis00mPznqW2Scj\n78jpZBMxt7n54FD58N5vPfcnra/7S0ACEpCABCTQHQII8DwHtPZ9hyXavl6vgwXwtF9dXSne9m3e\nbosggPg8AwDqYIAs81mm7tCwJhKQgAQkIIF+ElDQ72e7e9USkIAEJDBDAhEN11Yg18lJiPR01rHk\nIe3u7l6Ud5sy1jx7F5H9THJ33HTU1wY7O9uD7e2dJt9p8u2SU2aYfIj9myXqrj2rJQlIQAISkIAE\n5olAPi/w25/PBuN52vph7Yd/Ps8EPB9Ens8HbAtLnZybh+CA8cj7er0uzxMz6yoBCUhAAhJYRAIK\n+ovYql6TBCQgAQnMJYEU9Kk8kfwPet6mx/5hEfJPTtL3dqmI+gyFX1sj6i4i8nNoPJ30TBldV+cr\nK1j5hJ1PTnBnx30ubyErLQEJSEACc0yA3/6rU47uixF9iPrxHHAy9MHP9XZE30nzUr+dj4cX/Ftb\n7fr6OiP7sNnZKHZ9c4zOqktAAhKQgAR6RUBBv1fN7cVKQAISkEDXCWT0HVH60VmPjjq+uLlOh722\n4WHffBkwng8GMRkuAj1i/fo6Yj+d99Ec8Z9h9ZnY10UCEpCABCQggbshwO83v/NtYo6dmFennmOH\nz/HA53f9ssTktrGd+XfulZf8vNTPl/zti3/m3IkX/mmrczdX6lkkIAEJSEACErgpAQX9mxL0+xKQ\ngAQkIIEpE6hFfcT6NhG5F+u1Fz+d+/TOZYLdLJOHJ39E/HHcra2tSxND7iPCP6L7ieB3kYAEJCAB\nCUjgbgjwG41FDqPz9vcPShnbnEyxPT6nRhldT9Q9qV6nzBw6RN/nyLvxkXixHfEf4X+pvAS4myv1\nLBKQgAQkIAEJ3JSAgv5NCfp9CUhAAhKQwAwIIOin0I9wj69++ubWORPjEd1P4jsI+vjqR0Lcb8u1\noE+0Xkb+ZUc/89zOZVN2kYAEJCABCUjgcgII9XWqR9W15fPywv7wECE/J7lF2A8Bv7bg4zcfEX57\nO1/Q44e/NfTE39rCG5/f9vj88lq5VQISkIAEJCCBeSagoD/PrWfdJSABCUigtwRSBCBHrCcyH/E+\n0+Eh5cMLMf+0idQ/adLZYHmZSLzli7wuLzdD79m+0iTKK0Pf/fTfz23kiPvsR+4iAQlIQAISkMDl\nBHJEHSPmSPmSPXzueeEe21iPUXg5Gi9e3Oc2fu9zlB6/v1jnEYWf0fgZkU9eW+tdXiu3SkACEpCA\nBCQwzwQU9Oe59ay7BCQgAQn0lsBotB8T5MUkeSkYnJ2FcDC+vZ0oL0V+hITYN4LtGX4/KGJ+DOPf\nLEP5c0g/efrwIuyTXCQgAQlIQAISuJxAvHSvX7gzwf2oPR7rvJDnpXr8tsaLdTzuWV9dze2xnr+/\nvIin3H6P/eLlfOaX18qtEpCABCQgAQnMMwEF/XluPesuAQlIQAISaAgg7ueS5cyJDIwUwj12PG3a\nHezuplXPXrHwYV+iAFdX1wY7Owzj32nynTKUn5yUon5a9OS5zSUgAQlIQAISGCWAUI83PvY5e3uk\n3fI7vLvLb3CU0ypvdJ4bfoMvT4ycY0nbu8yv2lZ29h8JSEACEpCABBaGgIL+wjSlFyIBCUhAAhJ4\nkADifAzTD2G/9uFty/slWpBofiL7EfWx0gnBnqH7MVFu5ggJETG4WiL5Gfqf9jtZzvwy3/0Ha+kW\nCUhAAhKQwPwQ4KX5+O9r+wKdF+P5Mv3swlLneHB8jL0O+eWJ0XI5Gm5zk4luc46bNudz5sDhN9hF\nAhKQgAQkIIH+ElDQ72/be+USkIAEJNADAik6ZI6QwPD/FBSyTF7b9SBU8J1IMQqAclMqEYHhwx9C\nfgr94dsbnr65LYV98jqCsAfovUQJSEACElhQAvwe1r+f+ZtKNH6Wj4+x2Tkuwn+Ngd/CSBFhH7+N\n95oX6ffK6Lict4bfUcqX5c5fUxO1LAEJSEACEugfAQX9/rW5VywBCUhAAj0j0ArzbURhRhZGFGFE\n8edkfeQIEkyqGz6/McFuevwShdjIEBeCxL1BWgQQNThezkh+cgWInt14Xq4EJCCBBSXAb2j64CPi\nY6fDqDfyKJMfFKsdEGBjt7bGqLa1EoUfE9gShR+T2ka+3vxOxmTzvATnNzPT+LovyBf0xvKyJCAB\nCUhAAo9IQEH/EUG5mwQkIAEJSGDRCdRR+ggV+/ut3354/8Y6+52fR/Q+Efubm1tFyE9Bv84z0pAJ\n/SJKf2n4IgBBArEiIhWbmXibRZFi0e8yr08CEpBAdwnUL8Cp5ehotXgpzj61oM/vZYr5dR6++QfN\nb9/ShZVOTDKfvvi8AM8yOb+d+RuYeXdJWTMJSEACEpCABGZJQEF/lvQ9twQkIAEJSKBDBGr/X0T7\niNCP6HwiEA8Po4zPbxvZj99+WO8gWkQUYb2+Urx+idCvo/VT6M9tGX2IiGEkf4duCqsiAQlIoEcE\n6t/BetQav4n50jvzet8s528j61nm9y1t6MjxwSdCP6P0s0yei4J+kjCXgAQkIAEJSOAyAgr6l1Fx\nmwQkIAEJSKCHBDISkTzEidOhr37465+Nrbe++/F57I/gn+sp8iNoIOIzyV9O+lfniBwI+exHcpGA\nBCQgAQncNQHEeiznyONFdlrPtTkvu9knRphhi3Nv5MV1vsCOPCaRX1nht230BffofjmKLUar3fV1\nez4JSEACEpCABOaLgIL+fLWXtZWABCQgAQncOgHsBFguz+83Yv1ZI3YcN4IGEYvHg729y6152I7g\nkQnRfnt7Z7Czs11yLAZ2dnaK5QDifi1u3PpFegIJSEACEpDAGAGEemxzwnZuf/j7tru7Oyzv7e0W\nsZ/ftIyuxy6nts9JO52tre3yMjvE/9ZmjtNmFP54PlYlVyUgAQlIQAISkMADBBT0H0DiBglIQAIS\nkIAEHkYAG4GIwkfQPy3iB17BiCDjKd4NxAuC1nZgvdgPrK8zSWCUid6vBf2M1K9zBBHWET8yPaye\nfiYBCUhAAhJIz/v792MC+LOzHIV2VkajpTUOI9OIzI8UL60R+I+PsZsjz3RUvoegn4nRZzF/TOS5\nzjZ+2/I3K8V7W0UCEpCABCQgAQnchICC/k3o+V0JSEACEpBADwlgydPa8mS0fogfEbkfZcSPEEoQ\nTeI7TKKbIn+dp2VBWhIQ9ZhCSUZB5npG/KdA0sMm8JIlIAEJSOARCSDoI9KnFVyK9CnQ12I9v1n1\npO9NHH0jxnOiOo+XyjEXzEqJwF9dRdxfbcop8rfljM4vR4mDPWLN3U0CEpCABCQgAQlcTkBB/3Iu\nbpWABCQgAQlI4AoCiCN1SnE/hf6MdmS9jnZENMGTOCbbPbwoM9nuYXlB0Ebor15EOm49kGNjQJR+\nHa1/RTXdLAEJSEACEii/L/z2EGmPiM9Isv39/ZLaMiPM9hta98pvDPO/rKww70tMXru+vjFS5gVz\n+uLnSLJ82cx3mSw+1zMqP3ObRAISkIAEJCABCdyUgIL+TQn6fQlIQAISkIAEriTQRkCGcN/67e8W\nMSXXEf5TFCFKP6wLWkEfIT9TLaJk5GNG69frVEoB5cqm8QMJSEACc02AF8ss9Qvmy8pY6cTL5Hih\nPC7ih7gfIj9ifEbbM1Js1Bef+V/4Ldouv1Ep2OfvzlzDtPISkIAEJCABCcwVAQX9uWouKysBCUhA\nAhKYLwJYHKTVAeL+eIT+4WEILHjx13Y8RDe2Av9oOSP5V1dXSgQl6+nBX+d8PwX9zOeLnrWVgAQk\nIIGrCOToMAT79L+vf3Pyt4dtZ2enZUJ38tz/spzfjbDSwTKHCP2Ni4lvM0I/1onQTyGf3EUCEpCA\nBCQgAQncJQEF/buk7bkkIAEJSEACPSOQgkvm6WF8etr6GbfbEFzqdFbWQ4hpt4eAv1bEFkQVBJfL\nEmJMCi4K+j278bxcCUhg4Qnwe5G2brwwxr4tU1q78dKYuV2w0skF0T5fDEce6zmHy+hnvDh+MOUL\nY35b/H1JsuYSkIAEJCABCdwVAQX9uyLteSQgAQlIQAI9JVDbIoAgLRHqMpGSIcBExD4WCGnHM15G\nXMkJchHyt7d3Bjs7WCHsDO0RdnZ2isiP0IKobwRlT28+L1sCElhYAu2or6Pii5+/Gbu7u8PfD7bh\nnc/vRgr2WLqFlU7Y56SNDjkvghHr2TdfCAOwFu7r8sLC9cIkIAEJSEACEug0AQX9TjePlZOABCQg\nAQn0gwCCfvrtI77gcZxpfz8mK8x1xJQQXCKqcm2NSQvXGpF/vQj9+B6H4I8wg4jDfkxQOGrdg1iT\nx+GYLhKQgAQkMFsC+cKXUV2U0xYnR3mxnhOvZ3Q+ef37wQTsOQEuZb4TFm1h08aL4HqeFsqZ8rfC\nF8GzvQ88uwQkIAEJSEACDyegoP9wPn4qAQlIQAISkMAdEECswT4h7XVCnGlFGiwTchtizvn5/Ubs\nCcEn5kXMyRGzsvebiMqlRtgPH2SiLlPwz+j+zHkBkIJ+5nkUcwlIQAISuDsCtXCfljrMvdIK9vlb\ncFyEffaPxN/8rGcUcp3fgto2J//2x+8CL4MzYdPGy19sdJaGvwt5VHMJSEACEpCABCTQFQIK+l1p\nCeshAQlIQAIS6DGBOiqzFWiY6DDEmojKpEwkfyv0E4WJ2BOT64ZdT0y8e1REHsT6TJub2CsQiUm+\nNRKhSaQ+i4J+j29CL10CEpg5Af7+I95n9D0js7Bdq/ODg1jnd4O/2ST+huff+vGcl7lE3qflDvvm\nCK3IsWWLbXm8eBkwfEMwcy5WQAISkIAEJCABCdQEFPRrGpYlIAEJSEACEug8AQR7xB0mP0TYSd/k\n8RxBqBZ2wmJhu4j5CPp1SoGnFXNCJLpsvfOArKAEJCCBzhFgVFVUKl/gXpbz8raOxudvPIJ+pBD3\nc51Iev52k4iyD1985lOJtLUVORY74aEf+/J33UUCEpCABCQgAQnMMwEF/XluPesuAQlIQAIS6CGB\nUb/k4yLs1xPqRrT+YYnwJPoS64RW+AlPfQSgiNhsozYRfLBgSGuGy8p8z0UCEpCABCYjMDry6qz5\n+3za2KydXOSj5bBeO7uwYWOkFglLtiifnka+vBxWOvxd5u/1+vpGMxn6epkQnTIvdBHzEfvTE9+/\n4ZO1m3tLQAISkIAEJNBNAgr63WwXayUBCUhAAhKQwBUEUtQhx2O5TbU41G5PcSj9+UMM4vMQiciZ\nMLEWgFIIQgwiZaQ/wpCLBCQgAQlMRmB0jpSTxirtsLyMZaRVvoQl54Ut86PkPCnx8jUnN88Xskxu\nS4qJ0fMl7MpK+0I2XtDGJLgcI0dbIey7SEACEpCABCQggXknoKA/7y1o/SUgAQlIQAI9I4BNA0ud\n19YN+RkCEtY8mcKmYa9YN2DPw/reHlYOeyWCMyx4wpIHy4adnZ3KumGrlBH3XSQgAQlIYDICMbE5\nL11jVFVtkba7uze0TsNuJ8T3mNOktkYLC520S9sejqgiOj9Fe2qV4n3mWVPWXSQgAQlIQAISkMAi\nEFDQX4RW9BokIAEJSEACEniAABH8Ef0ZkaAp7IcnM0J/O9EiYhDR95GYSJdyTqib5bVGQForwlFM\npBh+zFmuc8qKRw80iRskIIEFIlC/SKXM31ysdeo8y0Tep8UOon5MXn7c+OXHxOZHR1Fm/5yglr+j\nm5sbw0nMmQeFSc0j3yyCfkbws6+LBCQgAQlIQAIS6AsBBf2+tLTXKQEJSEACEugZAYQlRKRMOdFi\nRIoiHrUJe4cm5n84aWOgupjBsaxEZCde/K3w374AyG1EimZSYOrZDeflSqBnBFLET9G+/ps6Xmaf\nTFjqjC5t5HzMd5IWO3jj59/ZzFfL3+Dxl6u+QB0l6poEJCABCUhAAotNQEF/sdvXq5OABCQgAQn0\nlgBiUzsRY0aNIipluc0Rn4gYHY8WjW0h/BNBen5+dhEdiu1DRItmTtRoeu6TEznqIgEJSGBRCfD3\ntZ3D5LTYmMVIqBz91I6ESk98cv42jo6CilFRzFWCUM+cJumHz75MfkvUPmVelGaeljqZLypnr0sC\nEpCABCQgAQmME1DQHyfiugQkIAEJSEACvSOANU/46rdezrXHc/jv75do/9rTGa/92ns/rSDIEZ1S\naKpz4OZ6lnsH3AuWgAQ6TYAXoix1TrlORNy3NjonZT6S/FuZ85PkelxsROIziml8npLt7ZynJKx0\ncqRTfM9/JSABCUhAAhKQgARqAgr6NQ3LEpCABCQgAQn0kkBG6B8d4bePp3P47iP0h9dz+Dxj34NQ\nv7ISlhDLy0SSEjla51Fmn4wypYxAFdvYnt+PqNNeQveiJSCBThIg8h7hnjxE+9OLSHx88E+bF5u5\nPpqfnZ1e7M9IKD5rcyLrM/G3kFFMROTnqKYorxc7Hf6e5t/ZTgKyUhKQgAQkIAEJSGDGBBT0Z9wA\nnl4CEpCABCQggdkTaEUrPPdrkerB9RCpWqEqfKFDyGotfu4X24j19Y0xwSrW03OfHHHLRQISkEBX\nCMTfNP7GnZVRSQ++6IyXnrzgrPdtX2zGS84Q5fOF5+hLz/oF57jFTgr/5C4SkIAEJCABCUhAAg8S\nUNB/kIlbJCABCUhAAhLoGYG0kciJcXM98vMmUjWsJog6DSuJ/eIXnXYS+/t7A7yjiebPCH+8oLGV\nuCxh05ORqeQuEpCABLpCoPbFTzuyyyzJGNnUvsQ8v7AfY36RrWauESx0KIctGQJ+vsC8yo5MK7Ku\n3AHWQwISkIAEJCCBrhNQ0O96C1k/CUhAAhKQgARmTgBhn4VoVIR7hPzx/PDwYCjmI+wziSM2Elel\ntbXVJjp/7cJiIiZ9JCIVsavOM1q1FrtmDsQKSEACc0egflGZdjqX5a2gf9JMFH4yYjtWW5Dx9zCX\ne409fswh0k4YznqI+60vftqN5ffMJSABCUhAAhKQgAQmJ6CgPzkzvyEBCUhAAhKQQM8IpKBPTlRq\neu5nOXMsKE5OjotNBVH9LAhd7RIriPMI9ZnXFjx1ubalQAjjOy4SkIAEJiXA3y7Ee3KE+PpvVpYz\nT/97hP379/lOfbacLHfQ/D3i7xiWOvFCsv7bNV7mRWUm/47VPC1LQAISkIAEJCCByQko6E/OzG9I\nQAISkIAEJNBTAimGZVQrwlhdZj3S6TCy9fg4JtRFLIvo1uNmski8p2PCSY4ZkaybFxGu5G2Uay2M\nIYi5SEACEpiUAH+n8m8VQj0jjDLliKNcT0GfPEYaMZKI0UaZx+S1/G3ipWMmhPpatK/L+QLTkUaT\ntpz7S0ACEpCABCQggQcJKOg/yMQtEpCABCQgAQlI4FoEUjRDpA/v6d3Gc39vsLsbOWUSn2U0LJPw\n4rOPNUV4TpOzHtvw2E/bHqL0WVIUI6/Xs1w2+o8EJNAbAvzNYSEfL7PO3yaEfF44MpIIET988WM+\nkLp8fs6LSV4AnBWxPuYB2Sl/l+o5QXgRiajP3ydyFwlIQAISkIAEJCCBuyGgoH83nD2LBCQgAQlI\nQAI9IJBiGuIZohnCfaajo7aMmB/2PFj0nA4Q6ldWlku+vEz5svXc3uarq1lefcB7vwe4vUQJ9J5A\n/s0hR6xv/e9Ph2X+1oSY3247PY19Mxo/v8cx4j3hvZKvrKw2E3ivl0m819c3RibzRsTnb1Vag/W+\nMQQgAQlIQAISkIAE7oiAgv4dgfY0EpCABCQgAQksPgFENZYU11JIyxyrHQT8EM9CZAuhLa16ENna\n8lXiWghrWGAgsEWuuLb495dXKIFxAjkqqH6JmBPX8jKRMnm+QExhP+1w2nxlaJfDy8V4schLxtWL\nF4ytcJ8Cfn43rXbG6+a6BCQgAQlIQAISkMDtEFDQvx2uHlUCEpCABCQggZ4TqCNnx8sI9ZFC3N/f\nPygWGOFlHRYYlNnOfmGBcVaEtdryoi3vXETQtt7WPcfv5Utg4QnwdwUhP/5GnBfhPm29Mk9rHYT9\nFPX5e4LFFynm74hybmttdNaLyF9bfF1WBnTafy08dC9QAhKQgAQkIAEJdICAgn4HGsEqSEACEpCA\nBCTQLwL37yPChUc1YhzC/cFBCPhMTBli/n6ZtDKtMMiXl5eGfvrhq58R+gj568PJKYmgJXqWyNmM\nnq3zcVGuX/S9Wgl0nwBiPcu4aN/624eQz9+PHOXTTrwdE3FnhD5iPvtENP9ZOWaI+e3k21tbm0OB\nH0E/E5PiukhAAhKQgAQkIAEJdIuAgn632sPaSEACEpCABCTQAwIRsY+gHxG2MUHuUZko9+jo+GLC\n3FivBX32r/2tm7jY4frS0r0LER+7jOWhIIe4n+JclmurDIR+FwlIoDsE4u9DTG4bVjr8TTgpfxdO\nTvLvA/ZdzMXBKJ+w8uJFYbwH4LtcT5vHSzxe8N0rL/nib0I7omd9vRXxYw4PLHhWyr7dIWNNJCAB\nCUhAAhKQgAQgoKDvfSABCUhAAhKQgARmQGBUtMOCp424rW12akE/Rb3jYyJwU9iLMt9JsZ/LSTsN\nLDXGU3pgkyvoz6DxPaUEHkIgo/LJ+f/PqB3S4WHkOaKHCHz+JoSwf3Ih1DOnRivOM3KH9dVVtq0O\nR/EQeZ8v9iJH7I9t/E1A+L93b6lJ9x5SUz+SgAQkIAEJSEACEpgFAQX9WVD3nBKQgAQkIAEJSOAR\nCdSCPgJeemPv7u5elHcHu7t7jbB3NIz4J6o3/fUR9rNMzjrRuXW0fop2acVD1XLbePkRq+1uEpDA\nQwgg1rPki70sk9e++Pz/5//8/j5pf/j/n22I/IzuwRufnP/X8X99Z7Czsz38f7+zs1Ne6sUk2hvF\ntovzuEhAAhKQgAQkIAEJzCcBBf35bDdrLQEJSEACEpBATwgQeR8R++dFtEPUz3R01JaJ1M3Jc4n2\nX1lZLpPo1vYZWX7UnMhdonUR943k78kN52XeGoEU8TlB/aKO8tlZTJA9vr1dD6/8XI/98cPHZifs\neXhJt7GBYM/cGpnWS5lI/YjQj5d5t3aRHlgCEpCABCQgAQlI4NYJKOjfOmJPIAEJSEACEpCABK5P\ngGhdBLuM2kXQIyKXlOX00K5FwbTwaUX+1taHyXXDXmOpROojADLJboiBWHREGYGwtuW4/lX4TQlI\nIIV3SBBRz4s5JqyNF3MxkS3lmFMjrHT4Px4v1mqLnKXhNl7c4XXPPryoW11daXKsdUZzPvP/sveg\nBCQgAQlIQAISWAwCCvqL0Y5ehQQkIAEJSEACC0wgI3tTEEyBv14nir8V+k+KPQcWHdhy1DnltNYh\nx6Zja6u150hbHnIE/ozmR9x3kYAErk+g/v/K/8u0zwpLnbDTwVqnHYFzVEbnbG5uNf9HmQujzrcu\nbHTi5Rv/VxHs6//bMbJm1As/P7/+VfhNCUhAAhKQgAQkIIFZE1DQn3ULeH4JSEACEpCABCQwBQJE\n8BOpH1H7TKS5/4Coj5jPhJoIi417d8kRAcOig8j8sOmICH0sOtYrQX+lRPVjvZMR/jF5JtH+Ycuj\nWDiFhvQQc0sgX7SlRRb/JzPV1lmUmfPi8PDB6Hy2Mcltjr7hmCHkh4DPHBj1hNc5qoZcW6y5vXWs\nuAQkIAEJSEACEpiIgIL+RLjcWQISkIAEJCABCXSTAF7aabMTguFxEQ2x7zg6Gi23Njxh59ME6jcL\nkbyktry0dK8I+lh6EKmPB3dMqLt2kcc621LUz7yblKyVBKZPIF6QxWS2OUFt5vz/y3KOoCFvve+p\nT7xcK+/ZmnIs8X+R/0/hfx//53jZxv+3TIycycT/XxcJSEACEpCABCQggcUnoKC/+G3sFUpAAhKQ\ngAQk0AMCiIptQtxvPfMzOjjzjP4lop/JdMOz++giR/yPlwAI/yHmh3/3xsbmhfUH9h+ZInI4/bkR\nIEkuEugLgRT0+X+FlQ6WOeTjCb/88M0/LP+v1tdbYT4E+hTrEenbl2Y5Iib/j9V5/n8jV9Dvyx3n\ndUpAAhKQgAQk0HcCCvp9vwO8fglIQAISkIAEekcgBPwQ7hEYd3d3Gz/v3Yt8b5izH+Jhiob46o+m\nneF6eu2n2JhQU2Qcz/NzcwnMA4EU7S/L80UaL8j29sILv/bHT4/8EPtD6Mcih/9LOzv5fyhy1tNS\nh5yIfBcJSEACEpCABCQgAQnUBBT0axqWJSABCUhAAhKQQA8IEEmcUfqI9jkJ52h+UKxCwJFWICna\nR75abHhWV8OOp/4sLXrqbVlG8GdB4E+Rv2zwHwl0lAAjW/L/DPnZWfz/OT0d3V7vE+V2Tgu+kyNk\nyInIR9QfT8xjgYifycmoO3pTWC0JSEACEpCABCQwQwIK+jOE76klIAEJSEACEpDALAgwUSeiYkyk\nizh50oj3p0XAHy2neIl9T6Tw38/vh61PWvOEuB+e3giVKUqS5zpCZor5WvPMovU956QEwoLqsJmL\ngklsczLbmNA2tmFRdVSE/hzREjlWVVhQRZ6jV1iv/6/U5XzxlXm+AJu0zu4vAQlIQAISkIAEJLC4\nBBT0F7dtvTIJSEACEpCABCRwKYHaNiTtQpik8/x81IefCOS050GwxDJkf39/JD84iHWEx5WVEPMR\n8NOaB9uQuoywnxY+ipWXNo8bO0Yg7vu9Yqezv0++V/4fZL6/j43Ofnnp1c4twXwTMb9E5hGNH3NP\nIPTfuxe+97zgYgLqej1fejmKpWM3g9WRgAQkIAEJSEACHSCgoN+BRrAKEpCABCQgAQlIoIsEiMpP\nQZ8cYTNFTARMhMwQ+PdL1H1EIkf0MdYhIWBGpH6WidAP8Z+o5ZWhuF+L/FmGiYJmF++M+a8TL7IY\nofIoKaLwDy8mtI2JbdOeKiP0j4+Pyguxra1RIR8xPwX9FPuZXNrRKfN/D3kFEpCABCQgAQlIYFYE\nFPRnRd7zSkACEpCABCQggY4TaC15wjM8rEeOisiPkBlif+QhjEaEf+O6X4T4Oso4hPl7xYIkIvnx\n3l9tvMSJ6l8rnuL4hSP4Z56ip6J+x2+UOawe9+vJCVZTkbiXo8xk0Wxr89GRK/UolvvNlbMOgPtF\npOf+XVtbL/fx+nqUI897PHLv6Tm8aayyBCQgAQlIQAIS6AgBBf2ONITVkIAEJCABCUhAAl0jUEcx\nUyZiPyYFbT3101s/vPdbcRRRNERShNE2IaSG6BnCJtHKGbk8nqclT74Y6Bof6zO/BLiPM8qenNEn\nh4dY52SKbazjcc9LpnzxFPdvvnyK+zheRK2U0Sc5UoX7N0ej1Nt4UaWgP7/3jjWXgAQkIAEJSEAC\nsyagoD/rFvD8EpCABCQgAQlIYAEIELEfgihC6P5gdxev8d0m3y02PZkj7hPBTNQyXvtbW9uDnZ3t\nxmd/Z+i1j+f+zs7OhTja+oynCJo52OryAmD0EqZAgJdPuVxWZhuCftpHYRtFOVLcr+36XnnhxH2a\nc0Fwb+Y9mtvIuZ9dJCABCUhAAhKQgAQkcNsEFPRvm7DHl4AEJCABCUhAAj0ggF1JG4nPBLp4jhP1\nHN7jEQV9WGxN0iOffGWF6Oew3xnP+axOEe3cbst1chcJQCBHjORokhxRQj5ejlElsZ37N/ZhlAnb\n2pwXUDkHxMNyovhdJCABCUhAAhKQgAQkcNsEFPRvm7DHl4AEJCABCUhAAj0gEEIqQmjY8oRAGhY8\nCKThTx6iKfuen6dtT05MyjplPjsvZcT89CHH0oQIaARV8jrxmYsEINC+VDoexIS1R5fm3INLS/cu\n5npYKnM7xIum5eKFv7y81ORRDrudfOmE9c7qxYuo0bIvlrwHJSABCUhAAhKQgATugoCC/l1Q9hwS\nkIAEJCABCUhgwQlgYzKaEOdjGwJ9fHZeBP+jI6L2sehpfcqx6Wn9y8PHHEG/9tjH1mRra6vYndQ5\n3vsuEoDA+D2UtjqZ7+9jrbNfXhytr28091e8HBqdv2FrZF6HHFGCvRPlOh8v2woSkIAEJCABCUhA\nAhK4bQIK+rdN2ONLQAISkIAEJCABCQwJIO4juhI9neIrHuYIrZFTjkSEdEboh+c+AuyDiWjORh5r\nAABAAElEQVT9FF0fliO+krq+8PIjl9uqb57jto6f9Z9Gni+KuHcuS/fvx3ZGeBwfZ0T+8YjdEy+P\n4kVSvEwaDO5f3EtMyrzRpK3ysogXRYj75Jnm5b6ZBmuPIQEJSEACEpCABCTQfQIK+t1vI2soAQlI\nQAISkIAEFoYAgmza76Q9CuJ+CLHHIzkR/qG/I8QzAW5GR7dWKdimIOKHLcpaydfWsELJ8tqIPQr7\ndnVJkT3zFNszn0a989jkedzMp3H82zgG9wz+9ulzH/cP9wqWTsdle5RPhoJ/iPyMEInRITlaJNe5\nD7BqInGvtC+O1ss2XhKlzVPX+dwGc48pAQlIQAISkIAEJNBdAgr63W0bayYBCUhAAhKQgAQWjgBC\nMgJt+OiHUBv+++mpT55e/Ey0G6Ltg3kr5OK7H9Y8RO8Tcd2m8Yj+LvucwyYTDY+QnGlaN0Ien7w+\ndpdFa8T8eOkTvvg5soNJl6PcTsBM+2aKlzyrQ9E+X/SQr6yQ2Hel7F+X8/uZd5nNtO4LjyMBCUhA\nAhKQgAQkMD8EFPTnp62sqQQkIAEJSEACEugVAWxSwvsc3/O9we7u7jDPMtsRe/HXb9POYGeHdfKd\nC999LFS2S7R+Qszo/1wnn6V4W9vJILgjKKeFUF3H65ZTzM/zcK15/FleN/UaX+ptROSniE++t7fb\n3AvcE+RxT3AfkOoXODnPAvcAKe6PKBOBzzVnGj+/6xKQgAQkIAEJSEACEugqAQX9rraM9ZKABCQg\nAQlIQAI9J4AlD2J9+p8fHLSR2GwjsQ3bFSbQJSK7zbHdIa0029qczyNFdHZdzojszO8af760+OST\nT0qkfgrR5NMQ3BkJUQvj8MnRDAjcd73kyIwcsUEkfjs6g/JZsdph+7jlzukpIzdIfNbmYaMTdjlM\neBsCf/jkt2L/Zrk3uF4F/btudc8nAQlIQAISkIAEJHBTAgr6NyXo9yUgAQlIQAISkIAEboUAgm74\npodgGwLuyYWA225D0A1ROCdNPRt6qUc0elrZnBcxH/G6TRvDcnqqh6/66q1c08MO+v777w/ee++9\nkrj25557bpim4f0Pv48++qikjz/+uIj5Tz755IDES4O7XIjAz/Ykz5c3vMAZT7CI0RRRwxhV0I5e\nWF5eGo40qF/e8DInbXdie77kWS2jH/J6p/GyJI9lLgEJSEACEpCABCQggdsmoKB/24Q9vgQkIAEJ\nSEACEpDAtQiERQwifQjyiPNsizy348d/PhJ5Xkeh47NeC8RE5KcVCzk2PNvbkWe0ekZyX6vSN/jS\nr3/968Evf/nLkhC5P/e5zw0TowZuujCi4Z133hmmT33qU4MXXnihpKeeeuqmh5/o+7RjO/riqGm/\n/cH+/n5jm0O+V5X3S3vXIy3admrnStjcjPkTYnQFAj8jMJhEmTLWOiH6I97zQkARf6LmcmcJSEAC\nEpCABCQggQ4RUNDvUGNYFQlIQAISkIAEJCCByQkg8CMGj6YQhdlWW/Ug5j5ow7I59F7PyH2i9CMS\nvI3+zvVaFKY8LXH4Jz/5yeDHP/5xSYjvX/ziF4eJeqUVEPWYZEE8Z8HShxcGv/jFL0r+9NNPDz7/\n+c+XhLA/jSVewjz4AiZGSuQIisiPj4nGPy7R+WmhFPlBsVM6PMRu6aBUK0ZNrDWjKdbKC5l8GRP5\nVhltQBk2dftM45o8hgQkIAEJSEACEpCABLpEQEG/S61hXSQgAQlIQAISkIAEJiaQ0d5EfNfWLbVg\nzHYS+0bEdkZtt3kK9hndHXYta0PbFtbTjodIfwR28kkF9qsu8L//+78H3//+9wdvvPFGEd+/9KUv\nDUhf/vKXiyUOkem8jKAOj7qkwI6g/sc//rF5WfDm4Ec/enPw5ps/Grz44qcHf/Znfzb46le/Ovjs\nZz/7qId86H6cJ7zww/8+bXVgn+XMz8/PyugK8hD8W2ukGJURozCItK8tcxD119Za2yR48MKDPF+w\nZP7QyvqhBCQgAQlIQAISkIAE5pCAgv4cNppVloAEJCABCUhAAhJoCSBa47OeKQVl1tsyk6eGJ38I\nygj8+PC3OfsiLPM9jrmxkZOphrULYnqK6ikgIyJPww6Hq/nOd74z+Pd//7fBv/3bvzfi+x8aIf/1\nweuvR8LnHoucxx9/vNShvfqHl0Ioj4h4/PO/+93vNuk7zbm+29j5fHbwV3/114NvfOMb5cXBw4/0\naJ/CEL75AgX7I6Lu0wYpy0dHh8NoeuxweDESL0zwuY+XKGtrWeblyehkxjlaIV+s5DpCPkvmj1Zr\n95KABCQgAQlIQAISkMD8EFDQn5+2sqYSkIAEJCABCUhAAtcgUEepE8W/u7t7SfqkiM7pt48ovb29\n00TG47FPHml7e7uUa3EfUblerismf/vb/zL41rf+afBP//StwYcfftiI+V8ZfOUrkZ5//vnBM888\nU9Jjjz1Wn+6h5XzJQf7BBx8M/uVf/nnwz/8cCUufv//7fxj8wz/8w+BrX/vaQ49z1YewrRe4IdrD\nEREfm5/kvbcH971m226xR6pHPPCipOVcM98u0fc5aoLcRQISkIAEJCABCUhAAn0moKDf59b32iUg\nAQlIQAISkEAPCKSgT47gXEeNp2c729LPnah99gvLndURu5fcVk/SGlHiRJAzEWudhx0P0eNp51Pj\nrutFOQT9bzWi/rcG7733XhNB/7nGCicmxsUS55VXXinWOHjfszzKiwOuj3kEENbffffdwX/8x39c\npH8vUfl/93d/V0R9BP2sI/n4sXkhkNH++ZJgfPTD2RmjIIjQJ2f0Q0Trw5IU27J81vCNqHz4MeKB\nERH1i5KY6HajtENOajste6O6HSxLQAISkIAEJCABCUhgnggo6M9Ta1lXCUhAAhKQgAQkIIGJCSCW\ns5AjRqfAPJoj4rdCdNrvpIh9/349oev9RvDmiPjvD4pdDIL0eMLnHUseBGteBIxH8lOfPD450fOI\n+f/4j98a/P73vxsQlU967rnnm2j9Lw8j9l988cWh4D4uvFOresE3H6sdIv5///vfF3/+N94In378\n+f/2b/928Hd/9/clQp/6ZV3r41JPeGTCTidHMpDHXAUxwS18YcV3SKMvCUYnGG7Px3mx17k84aGP\noE+d6nrV12lZAhKQgAQkIAEJSEACfSGgoN+XlvY6JSABCUhAAhKQQM8JpMhMnkJ6lhGhz87CPx9R\nGvH68PBgJJr/4OBwuC2j1MkRpre2ti4SdjGUt8s6VjKI+iQE/3rh3Jwnj4UVzre+9Y9F0P/1r39V\nPPPxzcdi5+tf/3rjd/9XxfOeyH2WRxG4sdl55513Bm+//fbgN7/5TZkM90cXk+KmoI+o/+d//rXh\nCwnqWkfCU8/0xCdnNMP+PtY5+yVnBEAmuKaIz8iEnIcg5h5o5yQgEh9u7EOe3yHnusbzvN5y4f4j\nAQlIQAISkIAEJCCBHhNQ0O9x43vpEpCABCQgAQlIQAItAYRrxHVEafIUqQ8OsKwZFa/b6P7TRpRe\nGrOKwTomxOv19Y0LQT8meK2F6zxfCvrf/va3B//3/+Kh/0+DX/7yl+WYCN+kv/zLvxz89V9/Y/DN\nb35z8NprrxURPCPaHxa1TlQ+xyL94he/GPz85z9v0luDt956q1ju/J//8zeDv/mbvxl89atfHQr6\nvHhg5MH5eb74OCsTCCPmc921TVGUY9Jbyiwp0hN1Hy838mXH6IsO9sv0sGtoW8iSBCQgAQlIQAIS\nkIAEJKCg7z0gAQlIQAISkIAEJCCBhgACOymj98NKJuxlWluZsJbBD57oemx6iO6PiHIsZTK6vLWX\nSdGaHBF+ba0V9/MFAufE3/5f//XbTfrXwa9+9avyIiBFeyLov/71/92kvxi8+uqrJWqfyH0S575q\nQcR/8803Bz/+8Y8HP/vZz4rtDiI/lj5MistLgm984xuNnc/rIy8eqE++tIhrPRuOJEg+XHeU4RZl\nJq1lLoG000kbIuyHosxohbAiql9uKOhf1YJul4AEJCABCUhAAhKQwCgBBf1RHq5JQAISkIAEJCAB\nCfSYQIr6GT1fW+K05dZP/vT0Mk/+iGRHEEewr5faeoYI9vp83/vedxtR/z8H//mf/1HscfJFAML3\nl7/85cGf/dlXSyQ9gv6zzz47TOx31YKQ/73vfa+k//f/fjz008dXn0j/v/iLvygJcT9EeF42rBQx\nPy2GmCy4ed1xUVfmDIgXE6uraw/43nOMmDAYO53w5Kd+OWFwlMNqBxE/01X1d7sEJCABCUhAAhKQ\ngAQkMEpAQX+Uh2sSkIAEJCABCUhAAhL4kwRacf+sWNDs7u4ORtMnZZ1JY9NSh3xnZ6ek7e2dBzz1\nf/CDHwy+//3vNen7g9/+9rcjdUDER3T/4he/VCL0X3755UEmRPSrljfeeGPw7W//SzPh7r8MfvSj\nHxX/ezzwSRzza1/7WkmU8wUCOfY5XM/e3l7Zt46m56UE9c9ryXx7e7tcU0bnP6xeV9XX7RKQgAQk\nIAEJSEACEpDAwwko6D+cj59KQAISkIAEJCABCUjgAQJplUNOJD4COSJ4iuVZxqqHffIFQESkx8Sv\n2NUg+Gd6662fDX7yk58OfvrTnwzee++9kXO++OKnBy+99JkmvTz43Oc+W8T9L3wBgf+LxSoHwZ1j\nE/FPfTgf+X/91xuDf/u3fyuJaH3OhRc++Wc+85ki6hOp/9JLLw02N/G4x/t/szkWNj4RlU9FarEf\n65yYI4C5AjbK/pkj4tf7jlyEKxKQgAQkIAEJSEACEpDAjQko6N8YoQeQgAQkIAEJSEACEugbAcR4\nxHPyFPUR0HPiWMqZar99BH8m2yXf29sd/PGPfxym3//+7cHvfve7kv7wh49HkD755JODp556avD0\n00+XyHwi6/HVJ0eAR9BHSKdOOZkvOVH/WPjgz//Tn/60CP2I/SSO9cILL5T03HPPDZ544onB448/\n3qQnmuj77Ubcj8lsEe/DRme12PKkr3/OBZDr5NQhXy6Qu0hAAhKQgAQkIAEJSEAC0yWgoD9dnh5N\nAhKQgAQkIAEJSKAHBBDOWchT2M88JopF8D9vhPNRj/0PPvhg8MEH7zfpg8H770f5/fffb8rvDz7+\n+OPG4/7jJv+oCP41xoyAR2T/9Kc/XSayzQltsbpJmxvO/Yc//GGYfvjD/x585zvfHXz3u98ZvPXW\nWyP15Xuf+tSnSkLMR9R/9tnnmhx/fsrh08/LhLW18MsnR7RnNACCfaZcjxEI90rVKbtIQAISkIAE\nJCABCUhAAtMloKA/XZ4eTQISkIAEJCABCUigxwQQ9dNihyh4IvbThof83XffbdI7JcdWh5SCfkbu\nsx/R/fWCiJ6i/XPPPT/45je/UUT9b3zjmyWqHqGfSH3OXx/zzTffLFH6P/jBfw1+9atf1YcsIn3Y\n52w0nvjbI2L+888/P4zef+aZZ8qx8xyI+lkX6sWieD+C1hUJSEACEpCABCQgAQncGgEF/VtD64El\nIAEJSEACEpCABPpCACGdhZyJZHNCWSx1PvrooxJ9T+T9hx+SPmy2fVi28TkR9eSI/5l4GVAvRMKn\nnQ1WOV/72v9q0p+X/Pnnn2vseJ4uFjrs95vf/Gbw61//uuRE5f+08eT/yU9+Onj77d/Xhxyxz0HY\nx24nIvYfH6TFDzY/lIngf+KJsONhn8cee+xict/tcsw6Mn/kJK5IQAISkIAEJCABCUhAAlMloKA/\nVZweTAISkIAEJCABCUigjwQQ8jP9z//8z4AUtjrvD955JyLyyXd3Pxl88sluyYnIzwlxmUSXyP5M\nWOfUSwrmCPYI70yGm+nll18pk9oysS0+9njlZyIqH4H/N7/5dalPfcz6JQER9xmtT07E/s7OTkkI\n+IwKwJInbHmeHeaI/XXd6uNbloAEJCABCUhAAhKQgASmT0BBf/pMPaIEJCABCUhAAhKQQI8IpJCf\neU5sS46Y/qtf/bLY3SCup4BPXkfh891HXRDbX3klRPyXX3558IUvfHHwpS8h8H9pgNc+E+Fmevvt\ntxtLn7D1YSTAw5baNocXA1jrkDjfSy+9XCbjffnll5r8lVKmDkyqy4sBUgr7DzuHn0lAAhKQgAQk\nIAEJSEACNyOgoH8zfn5bAhKQgAQkIAEJSEACw+h8hPmY+JYJb5n4NiP03ymR+kTiZ8JeJyPyL8uZ\nUPfs7LTsg/jPPuSI7fjaZ/rSl748+MpXvlLS9vbW4I03/qtJb5TESAHsfD755I/lvOl9n/ny8kpj\nvRP+/OnTT06U/vr6RvOCIKL18dQn1ZH6ROtjyZNCPqK+iwQkIAEJSEACEpCABCRwuwQU9G+Xr0eX\ngAQkIAEJSEACEugBgYywJ8c/P1N45H/c+OX/ofHK/3iwv3/QTJK7XybKRdg/OsI3/6h450c51nM7\nkfwI/7HvUck5B1HzmV5//fXGS/9rgz//8z9vLHIeG3z/+98fJoR8vs9xsPFh4tyNjc2LHNE+U4j3\nuc5+MQnuVjlP+uiTp4c+OfukoF9H+Pegyb1ECUhAAhKQgAQkIAEJzISAgv5MsHtSCUhAAhKQgAQk\nIIFFJIDYThQ96eTk5EJMJyo/xPj9/b0yaS7++Xt7CPv7FyL/QZOH0B8529vERLs52S4CfdrckBOd\n//Wvf70kRPbvfe97JX33u99rhPzDIrgPBveayP6VMpktE9qStrd3mhSCfb4c2NqKFwU7O+Thoc9n\nCPeZY8PDKAESkf4sivmLeDd7TRKQgAQkIAEJSEACXSSgoN/FVrFOEpCABCSwMAQQ9xD1UuBj3UUC\nEugPAaLiSWmpEwJ+K9S3on0I+u06++wVUb8W84n8Pzg4GB6P4zI57le/+tWSEOp/+MMfDhOfI7oj\nvhN9/9hjn2oi7BH0P1UmvEWkD/E+BfzIU+CvRfz01Ndapz/3r1cqgcsIpGUXORZdLhKQgAQkIAEJ\n3C0BBf275e3ZJCABCUigZwROT08am40/Fg9rrDcQ11wkIIH+EOAl3v37Ieoj7NdWOjFBbmuxE/Y6\nR2Wf+Ay7HdYjuv8y732Oibf9Sy+9VBKT4v72t78dJs6f4huiPlY6kbbKBLp45PMdxP7I03qHPLbz\nWR6D3Gj8/ty/XqkELiPAi0NGA5H4e+IiAQlIQAISkMDdElDQv1venk0CEpCABHpGAAHunXdiMsx3\n332nROv3DIGXK4FeE2BQToj6jM4JOx5e7DFqZzSPCXBzItw2b/dLGx++l1H/5NjhILDt7OwU4f2T\nTz4pHv7kLBlFSyRt2ORgl8NkuFjmxIS4tWA/XuZ7rcXPciPol8P6jwQk0FMCzz773OCFF14o6fHH\nH+8pBS9bAhKQgAQkMDsCCvqzY++ZJSABCUigBwSwyvjFL34++PnPf97kvyiRtj24bC9RAhK4gsC4\n7Va9Ho5crS1X/RmHy3VyhPxMtcDPZ4jvKcJnnoI8x6kj7K8q47lfC/f1fhzDRQIS6C+BV155ZfDq\nq68OPv/5VwfPPvtsf0F45RKQgAQkIIEZEVDQnxF4TysBCUhAAv0ggKD/85+/NXjrrbeKqI+olpNL\nYmPhIoFxAkx4yn0TE6MeDO8XvMyJnHaRAAQQ81PYx1efaHxsvYjixwaDiH0S9wx/dxDkFeW9dyDA\nfZN/Y8h56ZO/S9qneI9cRoC/K/U9E4L+a4PXXntNQf8yYG6TgAQkIAEJ3DIBBf1bBuzhJSABCUig\n3wToANeCPqLsc889V9ITTzzRbzhe/aUEEGbfe++9wbvvvjv48MMPh/cL9w2im4sEIIAom+n9998f\nWnvht59WGOQI+inmK+h770CAER38jcmEDVP+Lj3zzDNCksADBJiIO3+XyF9++eUmQl9B/wFQbpCA\nBCQgAQncEQEF/TsC7WkkIAEJSKCfBMYFfcQShqmTENtcJDBO4IMPPiijObBp+s1vfjO8X7hn9Coe\np9XfdcT8XH79618PRwHxN4eoWe4X8rW1tbKbYn7SMj85ORn+jcEKjsmP83eJyGsXCYwTYPQPv0lp\nH/iZz3ymuWcU9Mc5uS4BCUhAAhK4KwIK+ndF2vNIQAISkEAvCYwL+i+++OLgK1/5SklEuLlIYJwA\nkyi/+eabJSGecL+8/vrrJX/qqafGd3ddAkXMz3sG+536ntHayxtknAC2Xj/+8Y/L3xhybHbyd+kL\nX/jC+O6uS2Dw0UcfDe8X7plPf/rTCvreFxKQgAQkIIEZElDQnyF8Ty0BCUhAAotPQEF/8dt42leo\noD9toot/POboUNBf/Hae1hUq6E+LZH+Oo6Dfn7b2SiUgAQlIYD4IKOjPRztZSwlIQAISmFMCCvpz\n2nAzrLaC/gzhz+mpFfTntOFmVG0F/RmBn+PTKujPceNZdQlIQAISWEgCCvoL2axelAQkIAEJdIWA\ngn5XWmJ+6qGgPz9t1ZWaKuh3pSXmox4K+vPRTl2qpYJ+l1rDukhAAhKQgAQGAwV97wIJSEACEpDA\nLRJQ0L9FuAt6aAX9BW3YW7wsBf1bhLuAh1bQX8BGveVLUtC/ZcAeXgISkIAEJDAhAQX9CYG5uwQk\nIAEJSGASAgr6k9ByXwgo6HsfTEpAQX9SYv3eX0G/3+1/natX0L8ONb8jAQlIQAISuD0CCvq3x9Yj\nS0ACEpCABAYK+t4EkxJQ0J+UmPsr6HsPTEJAQX8SWu4LAQV97wMJSEACEpBAtwgo6HerPayNBCQg\nAQksGAEF/QVr0Du4HAX9O4C8YKdQ0F+wBr3ly1HQv2XAC3h4Bf0FbFQvSQISkIAE5pqAgv5cN5+V\nl4AEJCCBrhNQ0O96C3Wvfgr63WuTrtdIQb/rLdSt+inod6s95qE2Cvrz0ErWUQISkIAE+kRAQb9P\nre21SkACEpDAnRNQ0L9z5HN/QgX9uW/CO78ABf07Rz7XJ1TQn+vmm0nlFfRngt2TSkACEpCABK4k\noKB/JRo/kIAEJCABCdycgIL+zRn27QgK+n1r8Ztfr4L+zRn26QgK+n1q7elcq4L+dDh6FAlIQAIS\nkMC0CCjoT4ukx5GABCQgAQlcQkBB/xIobnooAQX9h+Lxw0sIKOhfAsVNVxJQ0L8SjR9cQUBB/wow\nbpaABCQgAQnMiICC/ozAe1oJSEACEugHAQX9frTzNK9SQX+aNPtxLAX9frTztK5SQX9aJPtzHAX9\n/rS1VyoBCUhAAvNBQEF/PtrJWkpAAhKQwJwSUNCf04abYbUV9GcIf05PraA/pw03o2or6M8I/Byf\nVkF/jhvPqktAAhKQwEISUNBfyGb1oiQgAQlIoCsEFPS70hLzUw8F/flpq67UVEG/Ky0xH/VQ0J+P\ndupSLRX0u9Qa1kUCEpCABCQwGCjoexdIQAISkIAEbpGAgv4twl3QQyvoL2jD3uJlKejfItwFPLSC\n/gI26i1fkoL+LQP28BKQgAQkIIEJCSjoTwjM3SUgAQlIQAKTEFDQn4SW+0JAQd/7YFICCvqTEuv3\n/gr6/W7/61y9gv51qPkdCUhAAhKQwO0RUNC/PbYeWQISkIAEJDBQ0PcmmJSAgv6kxNxfQd97YBIC\nCvqT0HJfCCjoex9IQAISkIAEukVAQb9b7WFtJCABCUhgwQgo6C9Yg97B5Sjo3wHkBTuFgv6CNegt\nX46C/i0DXsDDK+gvYKN6SRKQgAQkMNcEFPTnuvmsvAQkIAEJdJ2Agn7XW6h79VPQ716bdL1GCvpd\nb6Fu1U9Bv1vtMQ+1UdCfh1ayjhKQgAQk0CcCCvp9am2vVQISkIAE7pyAgv6dI5/7Eyroz30T3vkF\nKOjfOfK5PqGC/lw330wqr6A/E+yeVAISkIAEJHAlAQX9K9H4gQQkIAEJSODmBBT0b86wb0dQ0O9b\ni9/8ehX0b86wT0dQ0O9Ta0/nWhX0p8PRo0hAAhKQgASmRUBBf1okPY4EJCABCUjgEgIK+pdAcdND\nCSjoPxSPH15CQEH/EihuupKAgv6VaPzgCgIK+leAcbMEJCABCUhgRgQU9GcE3tNKQAISkEA/CCjo\n96Odp3mVCvrTpNmPYyno96Odp3WVCvrTItmf4yjo96etvVIJSEACEpgPAgr689FO1lICEpCABOaU\ngIL+nDbcDKutoD9D+HN6agX9OW24GVVbQX9G4Of4tAr6c9x4Vl0CEpCABBaSgIL+QjarFyUBCUhA\nAl0hoKDflZaYn3oo6M9PW3Wlpgr6XWmJ+aiHgv58tFOXaqmg36XWsC4SkIAEJCCBwUBB37tAAhKQ\ngAQkcIsEFPRvEe6CHlpBf0Eb9hYvS0H/FuEu4KEV9BewUW/5khT0bxmwh5eABCQgAQlMSEBBf0Jg\n7i4BCUhAAhKYhICC/iS03BcCCvreB5MSUNCflFi/91fQ73f7X+fqFfSvQ83vSEACEpCABG6PgIL+\n7bH1yBKQgAQkIIHBrAX9+/fvD87Pz0uifN1laWlpcO/evUHm1z3OVd+jbg9PfDP2ueoYbKeO95q6\nLpGX1JSXopyfP+z7XfhsHgT9vJfOabfm/mK9LufnV/KkbS4+HG+nWI977crvX/JBfc5Sn4t61dsv\n+dqdbxq/R6kA226ydFHQT+6lLa68T8r/6uaf5j4CwDBvmFz8v837oeTNLuT8Hcq/Rfn5Tfg96nfz\nmup7vS7n51ce7xHue66HJfMrj3WDDxZV0Id/pj+FJ/lmzv51+U99/099nvWoc36LyzpfLnUl+//s\nnYdfVMnShs+ac86iEsxZd9VN9/7x391oVlQQSYoYwIwBEN3vfapPDUdckBlnGJDq7/b2CMMJ1XX6\nfL+nqt/i/cz6qd9pxO/t/cU7l//DHXK/cZ/3kev1/qXr+drfB9D/WgvG34cFwgJhgbBAWKC6Fgig\nX117xtHCAmGBsEBYICzwiQXqDfRHR99nw8PvsnfDw9nIyMgn11bOP5YvW54tW74sW75sWbZo0aJy\n/nRa3/3w4UMGZPL+fmwse//+vfpYNqbPHz9+yD58+Kj+IYG/SY66ZPHibMmSJdnSpUvSqM/8e8nS\npQXInyDIJIeo+49nM9Avwimfs5HCvI2MpDlk/iZrxqcMWqUg0WKfM5urNH82Z/o34Gq6DVj2QZ0R\n3xnVtYyMjtjn6R5jJr5n/pn75GI9S9yj90rPP5uAfslHdDPMBfMwqnlwP7Ex9xN8aEz9w4cxe775\nPh3IuXixnlv5xuIl6osW27rD2kNfbmtRWpOwoUPNagLZ4lyU7kkQdqLfu8+zdpXr90vN51mjdI/c\nq92v/L4AamtxT98i0AeKj8mPeF/QAeaTNQv6Fp47f/4WlrHeTHZsfo6/+HWMjaV3G2uR+wo+9EHv\ntI96p/Hz4XfD9o5mXtL7a6neYUvl94uyhQsXljo/491mo3yn5DPym1q3APq1tnAcPywQFggLhAXC\nAuVZIIB+efaKb4cFwgJhgbBAWKAsC9Qb6L99+zZ7+fJV9uLly2xoaKisa/cvA5TWrl2brVu7xkZg\nQrUbABZbvdH1MhKAcMhBIMLgviANI7BksrZyxYps5Ur6ymyVOqN3QCCgDHhTC0g22TWV+/PZDPQ9\nG9lArc+Z5us1c5f316/fZsMjw5PeNrYHnC1YAKhaIDi7PM3ZCuYqzZ3NmeYSmDWdhk8YHAbmCZa9\ne/fOruf16zcZz8BsaqtWJZ9ctXJVtmzZ0myh/HKR7vNrAmWzDegbmGdONB/jvvG28Bl/eWsBvPfv\n8yAQwbscyPL3K+QXy+UD+AeBxAQzl2bLtP6sXcd6tNbWI37nu3J4tmvR/H7YjTJa9Hv5F37v9zg8\nRdC05PcAWl3nRL+3++Re1fEHh8y1WKu+RaDP8w8w533BPEz1nmDdseAQc1F4/lhvqmFvzs01jAwD\n8Ufsvfb69euM/ubtG73HxsyP/L33Kn9Hv3nzOlu1apX11RqXLl1mAS0LVCvAtWr1qoyfr9bIGonv\nu9/Uwu+LxwygX7RGfA4LhAXCAmGBsED9LRBAv/5zEFcQFggLhAXCAt+wBYA93d1dGcCtu7s72759\ne3bo0CHru3btqvmdv3z1KhscGMweDw5kT58+q+h8SNZs2bwl27Jls8bN2QpBtmo3oAdBhxcvXuTB\nB8EPwQ2A7DsBWYc0jFPw/GzN6tXZunXr1Ndm6xnXq69dl63XSDYjkCzB5NqAv2rYZVYDfQHNlF2q\nzFLNxXPm67m6xucv0vzxs6kguoFNgbNFiwD6izRnq1LAKIe0af6Yt7XThtwANOAYsJWR4BXX8VzX\n9krPwGxq+CX+yH0C7zzLFmhXaZtNQN/gN36izlwk38BHxv2DnxFoJPAyrOAdI5n7NocaCcqsXbPG\nnuc1Gj3Aw9rD561b8vVIIwESe6aBszUE+u73XO/Ee+Hf5fv96kJgIt3raq1f3K/t3MjvpxZBim8R\n6JMRz7pDUPitgkUEHydrwHyeu+LOCNsNop9VA+jzDPi1ELh6qXcbQPyZOp+HBfoN+PPe07MwMDiY\nDarz+w3rN2QbNqzXuN6C0ksV9APsA+/t5xs2ZBs3brA1k/cdPgPkr3ULoF9rC8fxwwJhgbBAWCAs\nUJ4FAuiXZ6/4dlggLBAWCAuEBcqyQL2B/uDgk6z33t2st/de1v+gv6xr9y8DyXbv3p01Nu7JGvfs\nMdDmvyt3BLy6VnYJ0gtuDClz8dmzZ9nTvL8l2xsw8xbg9y6X4nlv0G8qog8gTVBMsExgbC1QP8/k\nBXp4djRwxDNgawHMyrVL8fuzCegzX8Ws/LcCrw6qhoZeC0YBqRLUJ3g0NPRKAH3IAG3xnj75rAx9\nMpBdSoKsfJszwJTmDJDlQGulsvaRelqm+UKexGGbj35crhN/sgxdSVgQvHr46GH28OGjbPDJE//a\nrBi3bd2mwJ76tm0G9rkvzz6v9ALrDfQd4jMCKt1HWP8IqgADAZcvBPEJsBBwoTvUBHCSqU/m8vux\n9xY0skxlwXtGdt4g+4XUzjJlsG/ZvCnbtEld43oF7FYK6rMjh17M1p/oJ9O1L/cxcccHa9Hbd9pl\noCAjUDYFJV5mL+XvQ7qnV7ofAhOTNa7FfZ6RwASZ1gZl16T1Cpi/Zs1auw8LXqyQrFBhreIYld5T\n8bq+FaA/cY6ePdN6ZO+Q5zZ/xXsufsafPNudeVghO5Ppzq6QSt8HBBSQuMOP8ecXL8eDnASrycJ/\n+Uo75eQvLj/FPLBe8t7jullD17ITTj7Ae4vrShJdSYJn7bo1FqBmhwqBwbROKgCgACGyci7nhX9V\nuwXQr7ZF43hhgbBAWCAsEBb4OgsE0P86+8VfhwXCAmGBsEBYYEoL1Bvo3+/vz27eastutbVlnZ1d\nU17rZL8EcBw5fCg7rJ0FjBs3bpzsq1P+3GC+A2KNAAI6QPjp06fZkyfqT59ofGJABG1h099Wlm9R\nj1gKxZOeZ5kyGQHAgBmAGMBs1SplvWrcrN0FW7duzbZt3SIQssGyYE12Qdma1YBkk15Umb+YTUAf\nsDlu+7HsiaATQSLmCAj1kix4ZScDOIG470wLOgVgJr/t8aKm7P5AQgVoCVAD7jM3nqWKr22ib9po\nGamuLT4RuhlIJtMbqSb1Bw8fakdMT9al3q9nYDa1xsbGrLm5KWtuarRMc7v3/P4rvc56An2ea/cR\nNOTxBXyEQMoTPdcvycwX3CSLnfUQ6J38ZFh/l+pkkJmP3I7XyWA+kSOy51kjoHIJmvrSmuez7+JY\nL7C5UWB/W/5c83xb9jUyKuoT/WS69uV+bOcAPqXrJXPa1igFigD5KSDx2sbS/eh7o4K5kzeXmko1\nE9BCJzhBcJG1ak0O9Qlq4fObCVios5ujeE/VWKu+FaBPQGgYf9I8Ac37+x9k9+/3Z7z3kHuarK1X\n0HBzvuPMst0J/gqiA9MrheH4AUEdgP0LgfmBxwPZ4wH641KQ09ZIXas/L2PS13+ngDVBojcKahMw\nBeKvWK4AlkaCff6Ooo6E/U6+wsg9pJ0qWzRutvXRgtgKBNRCFi+A/mTeFD8PC4QFwgJhgbBAfSwQ\nQL8+do+zhgXCAmGBsMA8sUC9gX6XZH4uXLxk/dr11oqsDlA488Np9R+ys+rbtm2t6DiAP8t8Faxj\nfPDgoYEX4AuZ1AOCH8gOPJZEEKCvCPf4/kcVyqTw4VTNMr8l5cI1AwABxMAy+p7du7KWlpZsb3Nz\ntnPnjpQVnWdHVwOSTXVd5fxuNgF9MmCBf5b9rhFY1nvvXnZPnTkjoxSAi3wKmakAKmAVcitTNeyt\n/2X6rwG0BK0WmrQEgG0jUF+9YefObM+e3da3C9YCaL0X5wz/AJZ5FnVP793s5s1bCmbdyu5UGMia\n6vq/5ncExY4cPpwd1rirYWfJPwlCFe+pnHPUG+i7f4wKsD4SyLyb+0if/IWsZPyDTm2FD7mPAPDt\nuebZtq7dO1ojKIjLiBwTcNV3czDv/Bv985Ur024bdtxs006HvS3NWUszz3aTZSr7rodK4Sw+D7QH\n0NITKL6f9d2/L3mUJ7mvUe/jra1VFfk965TuEekpsqvX5nI7ZOk3aH1iV9QedXZz+P0QzKg0SFH0\np28F6KNJbxBdc8R7o7Oz0573O3c6pwyusDvG7Ku1pWHHDgsYbtpIAGWjvTuKtpruZ/ybIFZ6hw1k\nfX3yF/V7fX22A20c4svv8XG9y/B7ngMCWqmPmRRQWg/l/4X1jnn3ny9evMiAPn7CGrlDYwpqEbDe\nars/pnvd0/1eAP3pWiq+FxYIC4QFwgJhgZmxQAD9mbFznCUsEBYIC4QF5qkF6g3029pvZ7/9/nv2\nf//7LTsvsF9JAyL899dfsv+o//c/vxpAqOQ4wAsyeMdyWY3unl5lUHervkC3gY8B6fwPCMqgJ8x3\nvSX4q6xuILCgxsQG/KMlGKjPQEH9m+xvtIct01dZsHsF89NOg4NZU2OTwX4vnLtAoFB8eVa02QL0\nseGYQJMXKgaYk/F+584dg2bAzQQ9U6Yy9gc6MV/MFcTe526iYZlfvu8jv+ff+FpJckdAv6mxMTtw\nYH92cP9+g/r8nkxVgFYRfnMcL0wKZO3QNV6+ciW7dPmq7U6ZeP56/vvUyRPZ6VOn1E/a/bkPEnwq\n3lM511gvoI+PfFTQJ+mWJ5mse4KYgNUO9R494w5ckWgCapp/5H7i/vFv940/2LOMn6gX/YVdDf5c\n71BdEnuu811EJqciGRWkVNBJ/7dj/5tt7Xz6BSPZ+ewuoJOZ36sAEetVd0+PAhaP0w4iBSeQVkmu\nngJNpfvhBPxiQuPYn/YUpCTwwG4il55qFGjet3dvtledQCT3Yl2BSYq4fn7kCSf6wj/nMtD3eeIW\ngczsGmKOCAy3tbXreW+3XWnc42SNQMn+fXutNzU1jcNwBavxmek2X7+4JnaYcQ30vr7+7O7d3ozA\nYk9vrz0f7oeMpXUyfw7+/Xzu8+PrpN87I5I7u3Y1ZLvVGxp2aX1U35WCQEjy+PvS1uJ/P0FZPw2g\nX5a54sthgbBAWCAsEBaouQUC6NfcxHGCsEBYICwQFpjPFgigPz77ABakBdDLJ7MS0NEjQNYlUEa2\nfsr0Rp7jpUEv/0tgF7IUCeIt+wTQATYooPlBWY5kk5sGd57tyO+KhQ93KhOzKa8DQEHirZLeQbIA\nmQ4yX4FkDuT83PUY6w30sZt3ZCRS1ikSKoMWeLl7r8+yTpGTMLkR0xZ/Zzb0OVomORFsb10A3mEW\n9vzw8YMBU5c0eT+aZ6dqV4ZOncCmdNPRTge87durzGvApiAnP0u1EFZZ5rbPTwD9LsHMNus8WxTe\nPnjwoI21kN9w/wDok1lMVrL7CRJH7iNktidJGvTn3xnIHH+Wl37iI8XMc3lgKWOZ4yO/hb9YMVGN\nPK/uX2RVN6m2BzU+9mjkmUZWi+faNPUFUKfzXLN+WFdwCJ3/e7mfk2H9WBCfnQfAfCR3klZ68lvs\nmyS+JJGiAKIXe2ZkB4o3srI9C5vR5GLsnrRrQeemPgCyU3R2ozQ0CNSWsq9Zq7bamkW2vt9P8bny\n80xnnKtAH7/jWbeuz+wSGofofYLo97Leu6oZoxEbT9aqAfS5BrTwU+2OEdXseKTATzp/n3yHQvSP\n5TPsPKNYt+8uYVeGzzMjQUqD7wSA9L/Ss6X7w8/8+UFWqOSj8hcCV0gybZb/b1YtiabGRj0DjTby\nTLiUF2M1WgD9algxjhEWCAuEBcICYYHqWSCAfvVsGUcKC4QFwgJhgbDAZxYIoD9uEoAe2uuulQ/8\nMKgvsE9mPlrCaGsD7oAa3oB3rg3MWAR/SLsAp5B7YQR6mD63zgXQSRAlFWClgOAW6ejTtyurt6UF\nmY5mk+sArABVPHPSz12Psd5AH1Dl4IzsagAZoAwZFa4NsAmoei6wmQBlApvA07VWgHiNoPvqAqBU\nAeLvxndWuM56kut5lWvvM/eaM2VwpwKxqVBsw46dpjffIikVJDIAVaYtLo1x/MIb1xwZ+jML9B2q\n8rziG+Yj8hXqFyQfeWzPOjDT/YR6Ce4ja1avKfiIwKYCd97wv/Qsp0AAQQqT7RFoB7YXn2uy2imS\nu8U00beYvyQJnmaTbioWyfXj/9vINfq1sk613+5Qv521a5cT57adBq+HTNapCFa5H4qSomlOgVv8\n0nw4B+9+LgJZvjaxFrK7xe5JAUzWPg9QMFIjwGpHyM8JPLJO+XoFyGWd+pq1ai4DfZOuIfiitaJH\n/nZHO0E6O7vMB6nd4Lu8mKPJWjWAPscnOM08svuEHUvslOFaCCjY7+Qv/E6YvjS/+AbZ9amvz5aq\nRkSaT3Y2LRgPWGhNY+cL6yyFpalD4c8RoH+xAgGlYtAKdCIl12x+0mQFt+05y+sCTGaHcn4eQL8c\na8V3wwJhgbBAWCAsUHsLBNCvvY3jDGGBsEBYICwwjy0QQH988gEfJkcgXW3L4i1kU1Jg1QChIAZj\nsZHR6wUMgfHAD29AFc/0BggD/gAoQwIpwDPPZOX7ZNECQJCu4Dgnjh9TP56dOHHcsr45rmsW+/Hr\nMc4GoI9dCZY807wgYWFSFu1tkrZIRUEphIsEzz/Ml+ArABbNew+YoINPNj2AEymR4pwBE5FVMvim\nkZ0ZNmfyD8/iRi7pO8Gt7ZLAaPTsawH9ncpYRneezOVi5mkA/ZnN0Mfe+Acja1xbe+4j8hUylcli\npwguEBzf8AAR+vDAdwpUE5gBxpvUjAJAyCh54/v+HDPih+4z7ATwzHRGADpa+jzX+NyJY3quT6Rn\nG610e6YVLGCcqpFpbbsANLJjCMmmy1euZpc0joyMlrKjuWeuj8ZIIIHz7Ni2XQV6N1r2tWfs+3Xy\nXXT2scfrHPIi5wN8ZncDu5JcIoW/wbeRYOKeAPultUprlgU18/spPlecY7ptrgJ9bF8MvBBwaW29\nkV2/cTNJ28gXkdzCJ/nuZK0aQJ/AAu8t1kT8E0kmCwDpmpCaIoDjdWDIwkciih0cFLTFX5Lm/Tab\nZ8/eZz79b1iD8Qt2h/BMsSMq+WjyU+7P/k5/w/H37dtrMk3saGIHmq3FeeHfyexQzs8D6Jdjrfhu\nWCAsEBYIC4QFam+BAPq1t3GcISwQFggLhAXmsQXqDfTR8L1y9Zr6VdMVLk4FhWdNwkJa0AArQAk/\nQ7amCEOABZVq6AO8vD+T3jF6+Z2mm99lcgmAigeSTQD2j2fdLsiWmfa9ZHYkQ0G292aBMsAWwGzh\ngvFMXgP6AnAjdg8jBhE5D/ABeDaq+wJeIY3AfXj2N/D5lED+iRMnbCQj1gtPkiFbz1ZvoO/AzMF7\nq2DZzZs3M0Yyij0Tnu9hsyWS1wGqbtm8xQp4AquYrxUA1rwXweOodlM8EQRD95o+/vmZwX3PwGVE\nT5+ioHQgPhmoZKKSgQ3sBH7S8THPfibbGbkU4Bo1JABttW74Ifaa2PG7EngDwqrjd2jon5SWPlrp\nJfkNQdwiAC7nmmdaQ5+5IZud++XZvZH7Bz4CeH8jaS3WPrLsLWMdP1HnubP5lI8gjeMZxswlGcfe\nmE/8jP5W/emz57nszeMENocFNXnudXxkSpYsAZYuMRB+imf61MmMWgX4DM/zErrOP1WzYGCecU3g\nMa2brJ3XTPvf/5adBMsUHDSJnGXLTd6HHT/4/UatUfwcIE8v6pcjDWbPTm4bJKxsJ8Ojx7q/p7kE\nD2vZiPkJ98N9rVf2/2ndC/5yUvfGM2HPne6n0rWKeWu3IEybjfggMk105K1ma2PNMb9gntRvd9zJ\nbqnw9c1bbZYhb2uHAidk73tQkrH4PuPeqgH0yZJnNwr9oTq7zTp5v3V22bWw5nlgEv9ex+4laduT\nmW9Sb/L/LeoUbKfQc/p+ytC3a/4g6Sc9WwR8eKboBMo8Y5/gE/fl79fmpkaT22mU7A51F3ZJsone\n0LCzKtMZQL8qZoyDhAXCAmGBsEBYoGoWCKBfNVPGgcICYYGwQFggLPC5BeoN9MmC7r2XNIXJii82\nri1lFz7PgOD824CTRsCJt68B+g5VKJwJkAC80IEwgIkEKF4aGHSZCkYyvDcpgxcwvH79BsGQNRnZ\nvcgIFKEnMINrtS6I80yA+HGe9Yq0z4tXLw0SA6JpZAEvkqb7OoGVY0eOZEePqmskWOBFKcmurWer\nN9BnpwOZ8mTgoxl+48ZNAdtbBvRfv3ltwBHoyDysNUmHtTY/gNodqlNArQLmjnlEYoURsOUN6Aao\nAgS/ejVkUPPBgwdZvzrwinO/y3X5gV3MFRCMjFMvfnrk8GHzB7KugeRcS4LpyKaMWqCALOt+gTaO\nWetGYAwpmJfyt1fytRfqfGb3AQEy820BWsaT2hVy6uRJAdrj2W4Vs1yyJMHmLwHnqe5hpoE+8+8+\nwnMM0MdPAPqsKQbb9R3AapLYEczUMwzINB/ZucMylFPWcvIT5tGbHmsdIwUagfacw3XsGcmMfibI\nT2Y0QZP0XKtg8uIlsu8xge+08wYdesuW1zONL03VOBbHJcCEfEqb1qm0Xt2yOh3+t7ZjSL5oOw1y\nmZ+tjLo3/BTIvpg51Vhcq8i8tgxr2YWRnQbcC51MfYIWfg2sa35PrHvsOjiufuzYUdvZQKCMDH5A\nfCVtrgJ9AkQJcKumh55rihR35jI3vF8I9i4QHGck4ISdR1V/gWew2KoB9Dk25ydg2CuYT62FPu0+\nu6/OtfDepI4C40YFsijevGNHCvwgz0QnwMUa6eD/O62T/3wcL4L7VuugrSNaW3hXcmx8s6/vvv2c\nXR+sp7xnWXc5/k6dh3ojFvxU4BO5pmq0APrVsGIcIywQFggLhAXCAtWzQAD96tkyjhQWCAuEBcIC\nYYHPLAAk7+7uMm3dbmWmk8npmZBsi691A86iVQ44JQO12IBX9wUH7gkOkJEKTHJIBpDz9jVAH9iA\nLjpjUcYCOQsyqh38Ab7QhiaTEVCFXrpJrQhMUNwSmYIVy1fYWIRkgC+yFL2j7Q7EBRBzPoD0I2XA\nPnr8yKQM+FsyIZGCOXTwQCocqhH5A4IIgBcAWj1bvYG+gXaD7a8s+xRI60AfuJqKEH8wOI3dkMXZ\npk42NACVrNBNCsQAaCkAmYD7uEWRajGwmWdZ44NIVADHgFUGxg2IvzIg6kEBANjpUycsu/20MrDJ\nVDZoJnAK2McHLLNVI75F8IHnDyhW68azha9RAHPc55DKeGz36n69csVKwWYkYZRtLbDfILCNffDJ\nItAu93pnGugT7CEow1whHVMM+gDfLZAnyMjzhm9Q5JURmO+Zw6yFZLsvFPQ0G+i73hC0sWMALHUc\nAiPYFfiNTfEZoCb+Qqa2ZzdznOMK0gG+AeC7dzXY88zz/qXnmuOnbOtHOnaftNmlhy5YzMi1eONY\nzU1NAqaNgqVN8vXNafeQgoJr1qxOc5mD5fE7SvI8/uwAYtmd4vfEeYG1rMXcE8Dd74ki0EeOHFYw\ni37I7EjggF1F/K6SNleBPs8ZBZep2cAuHGzFXN3TSNC2VFhYOycICPH8I8HDelNs1QD6vFtv2S4H\n1Vm43S4ZOQUkFUSm/gJSOWmHRdplsVOgfa+kcPa1tGSNyqBPMlOp8DeBHz0o2mjCbiP8BMX9tLON\nQHWSlBuRnv4bq+fQ3n7bzktAg511zCXfsx1sBMLlhxSHPnzooPohG4v3XunnAPqVWi7+LiwQFggL\nhAXCArWxQAD92tg1jhoWCAuEBcICYQGzQL2B/lTTAEzquNOZdXTcMXDFvx0wFSHo1wB9smdHBVMY\nAXB/n7+gfj77SyMA1huZy2RiA6nWa9y/b1928ICAuzpZh0APy3ydkPXqf+8jEj6m069zkTF5V0UT\nrfiuRqAOAQAaWbtoDSMvwUh2o8lmKMscqF/PVm+gD7hhx0YK+PQbzL+lbOUb2lUBOPKGXnlT4x7B\nzUaNjSWYD7AlODJZYw5Mf12QlBE4hw/e7ugwsE/mMrsrGIvnQ2/93Nkz1n88d9YylV1KpVLpkcmu\ncbo/d38CYlM8mE5xWIOM5oP35XfD2sGwzjLVbWeIgDOw+fjRoyY/M91zTfW9mQb6gFWXtkLbO+26\nST4ypOChNzLV9+zeY9JCZA0TxNxN0EegHYma6TaCTATrOBdrFL5iPnPnjgUh/TgEEI4Kfqd+xKRH\nPBOaANBUDTjsxZ/T2pEKQeOfH5U1LdZq4JX1geMfY3ePOgCVdYtOUHK6jeAp90Nn95Q/A+16FoDF\n3thZYMHHfD0EDlsNAtUiAOxX0uYS0LegrdYM6nUAyrFTh+addxfB2oFBbDho4Lv0DtFOrtcC+VbL\nQX/De7jYqgH0CWpdvd6aXb9+PbvW2iq/HMjwfQJdzJ9LL7GLguD0UQVjjmg32IH9+5Ikk955yDJN\nFcijPgm721IQdNSk85DPo7YDAQTbzaRzAf29HgUBJ87HLhUkmhir0QLoV8OKcYywQFggLBAWCAtU\nzwIB9KtnyzhSWCAsEBYIC4QFPrPAfAf6rneMHcg+9UKTAIki0EdCguxdkwwQsPIMfSAgxTPJ5LVs\n7EXjOtufGVs/ADqQMQwQJuv1TmenaRqTZUuGI9ILQGJA8G7pDO8WYAQycp5G63ssW//fjj1TP6s3\n0EcuImWaDyhruM90qtGqprPTwhtSKoBGh41k62+m4KkylslUnqwB6AzSCdDhA/3aSYH+NFn6dyUP\nxb9NgkfAikCQNwIIZ374Pjur/oM6EjwAMSRQCAjNdOPavRN8ADLfvp0CEykogSxIKuDKLpOtW7eY\n3jrBKu/YqxqtnkCfe+3U8+UZ7a+lEe+NQEujgj48W0BUgmYmT6N6C1MFffzvfSTLGp15IDgZ0DcU\nYDLt9LY2e9b9ewB9MpOPoAcvgIqWeMpcTjU4/Hv/NgLzu+WHvepAfORTUgb4fcuWTwHFRebfwHzb\nBaDRQL7WL9awcvyQIAWBoOfPX2jXwSOTK7pxA9miG1qr3pYuESBM0HGfgo/UjmAXDMEQJK64t0ra\nXAL6aTfPsNVjYG1PQF+B6DyYw+4NQD957Tu2I/mVpG3wFWS82KlF8KnYqgP032Wtkpqivgg7mPBL\nB+zo6xOIWcnOMu04I8hJ8PiAnv2mpsZSgBqZLXZiTNZK66TWzPdaCzlfa2vyEQLX7EpIO/Be2e41\nfIWdbDxvP3yvdfL709YnO345Pw+gX4614rthgbBAWCAsEBaovQUC6NfexnGGsEBYICwQFpjHFpjv\nQD8BK4rUvrCM+WLxzCLQB4oZtJIkQYvgFcAKve0t0qYGHJskicDHVPADN2NnATZHbgWYiiQCxR9v\ntd022Q4KpiLHgrTB1i3jkBWd4X2CLWRPAl/q2eoN9E3+Q7AoSYD0leRw0IouAv0NG9arwKsKkHqx\nTv07ZYmuNsg+lQ1LWbcCVeiHk6EMoDL5HRVy5lxAfjJPva1atdLkdr4/dTI7ffqU+YdJ2QicVaol\n7seuZMQWSLEgo4LNrpOt20q/IXmr5IOMlqErmL1njwJHGglWpXFXxRnWE6+3nkAfyMruG7LaCdpR\n/8AbGfpkC1tvTME509SXrBW+Mt2GHzi4fPHiZXZNWdFXJpH90QAAQABJREFUr6XMaPzHG0D/4IH9\npSATdrYgk2neb/av/euIz3VJFg1ptF7B/VTXQXUYBIUBr6UiuJIOOqbdFSeOJ1kfQD6/B+YTdJxu\nQw+egr/AezLMr0iG7OLlK9kl9aI8GkErdsKwCwY7Eog02SLtcmCNrKTNJaBPxjvQHnknMvJtV5ll\n6N+x54xseNZ1CqmbrA2BD71DAPmur0/ApNiqAfQ576023i3tKr7dbrsB0O0nYMy7Db8gCMm6hX6+\nBak1jw0KXC+Un5jclALV+OxkzYOfjKw37bc7rNA3Ej88cx68ZqQWBzUkCDw1yU/OaRfTTz+ezX48\ne3ayw5f18wD6ZZkrvhwWCAuEBcICYYGaWyCAfs1NHCcIC4QFwgJhgflsgfkO9D3bG+gG8LstIAGU\naFc2cxHok4V/QsUs6celLY6UBJrXZHqTge3Qw8fJfIpjmva2ICtBBKQQyHgFslKsc+g1xVhfGxzx\nYqsEEwD5QDo6EjL1bPUG+mhUk6XcI7CeMpVVY0FyJMDaopY4oPSnc+cSONIIuAJsApSAVV9qQCoa\noAigia8ATzty/yDjvSj9BLxPMhJISRy3nRRAYSQm+N1MN8CdAzz0vC9cvJidv6B+8ZLZyaQy5Ifr\nJdGCf5GVz0i2/jZl61NEtVIN9In3Wk+gjzQT84ckzsDAYwVhxndVABkTzBfUF8zkuQZQe12Eifcx\n2b8B0F6EF9h98dJlA98XL182yOt/x/rgdsbWwO/xwN1W/9q/jp1d3baj546kXJBOQtoHEAxERqLL\nJU3YSUSR2hPUQtBaxb1wXoKNX1qfiicG0FJfBD9CT//PvyVF9tff2R/qZO97I1BgAL8h1agg+xq4\n39TUaKDYv1fOOJeAPrCa9wea8QT9xoF+p+nH+5qPbyFlld4jxy0gSOCHtZ/5LLaqAH0FZHif2c6c\nDoILr/OdR//IF74zf+H9xfrEbiJ2p7ADjc/4iffidU32mbWStZeA053ObgtUIOv18OGjVPdBflr0\nQZ65X3/5OfvPrz9nv/7882SHLevnAfTLMld8OSwQFggLhAXCAjW3QAD9mps4ThAWCAuEBcIC89kC\n8x3okyUJpKUDIIBmQAlGMQ31lHVPpun3yro+feqUjRQNJLOZbkUDK3AiMjqRQkDfG/13Cmoiw4D8\nAvrHAGhAMJmUByUdc+rkScs2R9piQZnApYLLm/RP6g/07wno3zUgBsT3osKMaDqbbQSsCMKcPfOD\nZHB+sJHAywKBfMAm35luI/P6mYItgGEA6k3NFXN2U3NXlB5BnxyZE+ROjmvcpl0caNNTc6GcbO/p\nXteXvocPJcj8zoChQWaBZiCzw11GAJ4VNZUMDEVN2dmwfp36+nXm3186z3R+P9NAv1gUl/kjeMZu\nnBcaAdTeyFgHYpqcloDmaj1zixTwWayfl5PNzjHJaCdTnzWVoMlF9QvqxexroOanQF9FtbW2JLmj\nLwH9LpOVAhhTewNNdNYMwD6BF9dnp/jzuOTOMcuM9vstZwREe8f3f//jT+u//fGHFTH3YwH0Oecu\nAf2dGgmMNAvoU5gX21bSZjPQ96x0s43WG3bvsA6V6lJIDskL46I/v1RBxCWy0RatR7Y+aG0g4IIk\nDz7C88j7ptiqAfSRAvLrIKBXrHvAc2+7h+TvvF8INiAx5fUWitcy3c8AfXaRdHf3aOy2c9u7VfZB\npqy45jjQB+r/+vNP0z3FlN8LoD+leeKXYYGwQFggLBAWmHELBNCfcZPHCcMCYYGwQFhgPllgvgN9\nQAdZ3oCPe30aJWXBv3s1AmMWLUra+EjsoPf7/Wlp/qovl/Yw2d5LJCHAdyppQ8qYBM6RcQvcQUID\nOAeoQ8Jh2bKlkslI2cKHDh3UeRVM0DUc2L8/Wyggw/U5JKnk/JX+Tb2BPrrhPm+AIrKHXdqBzNM0\nb4sMUFHYNUH2oylTOYf5gNXpNubJildKSoX5IaPWd1Xw/HhDk/qI5unw4cMGxpGxAJJRpBQZl5ls\nQEfX7kYCplc+jeROq679unaEAKtTX2iBhxOCjEdlKwIRq1ettmASchzAyGq0mQb61DYwqRPkTtSZ\nJ4qQMhZ3ceArwEwK0xLAIDufn1mXr0y3lQP0eX6R3aEjc0JABemuL8nTIM9CnYh/A/pr164xP9sg\nXyNb/jDBmSOHVOj0sO1Ime59FL+HDxEgo9grQP83gP7vf2T/UycY6Q2gv3uXCgk3UO9jZ7ZH2ddI\nqpClj45+JW02A31APrsXrJOVLhjvRXCB+lYw+2kqnJ0CLQT11pktLJiTzz1SOH9p18P5CxdsTot2\nqgbQ5/pSrYy0PmJTb6x/xffLSunoc62r9OzzuZL2JaBfXHMA+j//9GP2848/SnbnXCWn++xvAuh/\nZpL4QVggLBAWCAuEBepqgQD6dTV/nDwsEBYIC4QFvnULzHeg36VsQjLye3p6DOT3q9DpfTL2NSLN\nYtBeUHPnzh3ZGcF0CvmdUV+6dEkJqAPVK2lkd5NpThAByQXT+CawIGBNAUMH04xkTp/NM82B+8AR\nzyIuB05Xcp0T/6beQJ+sT/TzAfvIqFBwEsAIwEb7mR0TzBuQdt++vdl+7Whg5OfYqlx7MU9Dr4Yy\ntLIpxos2+tVr17IrGota4uzWMH30AweyA9pRsVPSJ1s2qwivgO0GXctMNmBskpNKUkH3BPRNSur2\nbRuxDz7MyHVSZwB5FkagNpAWmI+fVaPNNNAHLjp0ddkYoDv948ckpcR9EQBC23ypgmfcN1JM31UQ\n9CkH6B+Uf1ihZvkIRXEp0ow8FGB/qjYV0MfX3dcA+gcOJJ3+QzoX61glDR+iMbJrCJD/22+/Z/+n\nXgT6SPqkuguFAt7UYZD0DoHQStpsBvr4FtdH0IiRnTrXFChrlXwagWECSF58lkDNThXCZacCxYJL\ntQa0i4Hg2u9//pn98edf9kwW7VQNoE/goXgtHz58LJ2CeObChQT1UvCKtRF9+6RzX5m/fAno+3rD\nmgPQRzv/3Lkz2bkzZ0rX9TUfAuh/jfXib8MCYYGwQFggLFB9CwTQr75N44hhgbBAWCAsEBYoWWC+\nA/2U8XrHdIYB648FbIHEjEDNJKuzzLJeAflkyJ/94fuqgE6K3wKnXfYnyRUkyZ+iTAeTBdD/UUUE\n6UeUdWsARmCEsdKAQskJyvxQb6CPtA5FXh9In5nsfHwY6I7MCvCSzFMg4xplxe8WRNtl2cMNFc8Z\nUCwVkX1jkPzKlavZZRUIvaRxItDfr8DBAWnR75c+OjIkSKmgkU6m/kw2YN59glMKfKDrza6THuQw\nFLiimC9+vUK7TBgBwKdPIeekYr4agfjsADF5ojJ2Mkx1fzMN9Ke6llr8DqBPPYV3795qJ8Cb7AIa\n+iancuUzyZ3DCsiRQU9gDnCLzIn1TRunvDRkWTwTPEnuaDePngV2jbALhJoHWwWQ8fck67PfdvMs\nXryo7CCWX4hD/WfK0Afo/+/fgL4CIejmA2mB+NzT7l27LGufegyVtNkM9AkUmZwVa47WhitXr6le\ngqSsNOcAfQ8YMmKLvS3NWbOKmmOfHdqxYBJP2r1zRUHB//vf79lvv/9uhWuLdqoG0C8er5af3UcA\n+h4g71agnAC1F25mvfb1hjUHW3iAnJ1v1WgB9KthxThGWCAsEBYIC4QFqmeBAPrVs2UcKSwQFggL\nhAXCAp9ZYL4Dfdevv3WrzTLlkZagA7DQFl6tooHonwM9T6nQ6Qn1UydOVAyHixOA3jbg/qGgHMUD\nTbu/s0t6yp2mOVz8LhDwrDIZ0YQHBgKsLatY43wD+uihkzHMHL1S5vywtKJHRqRfrhEYbTsrBPbR\ntN8k3Wq09DcJlrLToZLGM/KSDH3tAiDQc02Z+RSzJFMfeOsNYHX44EGB2kOao4OW+Z50qTeZvrl/\nr1ajgzXGDwL6+FNXl/SsNSIF0k8QRBJFwDUKLa9TwAPddeArGvpHrR9JO08EI6sp5/StA32CPuwU\nYZcIvkn2dcravmFBIJ9zIC+yRhRHZQTcIsdk+vdfkGUiGGM1PgT2CdBYIPBhCggij5SOsc52EyG1\nk+bzsAUmmcty5zPtcvggiaIxk7SiGO6fyiYno5zdKt6WL18maN1i4LpF4JpMdKD1TkFrnr9K2mwG\n+tRKePokl/lSQPG2dr3cbGvLbt1qt/XBdk5p/SGQQh0Bgit05toluBgvX70654G+1RHQWuO7Fjr0\n/iLohIwchcqR/BkYfGKBV9abtVpvGAH6SKHZsyCpr2q0APrVsGIcIywQFggLhAXCAtWzQAD96tky\njhQWCAuEBcICYYHPLDDfgf61663ZVcFZIC0640Db1IcMPKxXgVDkUkrQMwdl1ZAiAUCzGwAZF3Tz\nkdSwDFzpZJNVXWxIdJjcj3YHHBI0BqJZlrWyHecb0CcTmgxZsvIJihSlVby2wMKFC0xOZtVKdKFT\nceFK7TQkeElBVQIJZEOjn99646Z1nh9vVhQ31+wHVG3fttWK4gJaZ6IoLiAfzXMgG4ANje42enu7\ngP59C1R5sAq9dtdt3y3ZlwQdJU8k8OjgF/js2cZ+j5WO3zrQp87CwMBgNjg4KKj7OJc36hDs7TC7\nu92wJ7sgvLg2kjtWnDQvfu3f+7cRWS52WbDDAqCfZKeS9BQyJr4eoFt/UkFH5JNOq/NzpKiQEyrn\nGRjVrgMKq9KRAPv7wsXs/PkLGi9kQ0OvS5dIIOug6gIg87NfIxJO7BRgx0ClUlOzGehz7/fu99kz\nBbTukWwa0mk9d3uzl6pXsUz2tvV52fJs394WW68pag7QZy3yNemSdvnM9Qx91hl2p+ArrMXtCm60\ntdPbJVv3sFTHg3eqrzmsO3t27zF5MupJHNBupmq0APrVsGIcIywQFggLhAXCAtWzQAD96tkyjhQW\nCAuEBcICYYHPLDDfgf7Fy5JOkVTCRUkmAMwcFgOMyewGPmzZvEUa0dKl3n9AEGKf+oGKs72LEwAo\nI4NxUBmMjGQ1OhBBH77YAB/fUxRXHaAPPF6h4oWMlWaeF49fzud6S+4AkchA/5iPgOx/pIv+zz/S\niM4htFC04GUqkOu1CMq5x+J3ybp+8lQ7N5SNi8zPLbJxLSO3zYIK/l12dJzMIepJydcAsFavXmXF\nJimYW+tmmfm5TQhyoPNvev+SBOlTgIhn/U1eGJYipmRSI0kE0G9UAVOyZtH4ribI93v+1oE+RZMJ\nwlmXzJHJZyFvJABP5r63BfJPdtmcO3smO6MdNwB9pL1sx43GqRoSJoD8VLhbtTb4TM0Njajd4+cA\ne2SevN4Gu3pWaZ1g1wq9nLUCQMt6SOCMegyXTVbmiq2VRakp1iB2eCALRt++LRWDpkDv2jVrprql\nSX83m4E+4BiptvaODq3Zd0z2yKXayN6nuCzPPQVmqamRdr8cMQki3z3EyDtnrgN96lOM6J4JTvPO\nvKF6AvSbt27aWunvU3awuPTZrgYVTlZwgzWHwsmsOdVoAfSrYcU4RlggLBAWCAuEBapngQD61bNl\nHCksEBYIC4QFwgKfWWC+A/1i1ilAP2WkquChAAUZptsEx7ZJB3qXZEnQRXeN9HLA2GdGz38AtDKJ\nH2Cx5GOAQ0gA0QF3xUbmNNm2J5XdCyQCGiGzwViNayme60uf6w30v3R91f49c/NYmfnsoqBYctIx\nv5N1COqhoe2N+fhBARc0ob9XvQWKnJK9vEIZuxRcrXUD4uNTFOsExlrh3qupgG+/pHZGR1O29ejo\n+5I8ClIpe/bskrb39my7OmO1svKL9ztXgL7vbrCgkYIjFizKdz7oH/xP8Jz//KOdISq8KzkaRmAi\nMN80w+UjqcZDqvPAXDD/9BXaWZOy51Wz4NQJy2b34tZA3qka8lx2XM0lmeHolSPDw8jcc+1cL3r6\nlp2vtYLAElDd/ZDgAbURfCdL8XylgBBBIXVkdUxGSFnn7EwhiOXrE+sj6w5Z/8iSHTtyxCR+gNes\nm2slU7ZG52X3QSVttgF9stCxMSPBV9v90q4C0+rPnj8zO72QnbAhgWCKHDPuVYY+GejsXNihAsEE\nXNz+Fy5dmjVA3/3cR+Z/DD+Qb1ugtDCJSWYn7QQaltRZqi/y2uTP2GV2p7NTvcsk0ew4HEO+2dSU\ngobNGgkmspPE1p0KCycXLsk+BtCfaJH4d1ggLBAWCAuEBeprgQD69bV/nD0sEBYIC4QFvnELzHeg\n/+ff0oVGG1od6QSgzdjYe4GbsZoDfeAQUi6AIDJ82yXPkeRcbti1FF0P6YaT0u8/cfy4FbpcI4gG\nMFsjcFYN+Z/iub70eb4BfbJvk7zJfZPZQPKEzOtujcBabwRXyL62WgdnfzCg55nXSKLUugFZkX4h\ne5raAsgC3biZ5IEIRjiQBLKRSU0tBkYKmQKByahmnM9An2eSObUue2Ir7w7MP2o3CJ/fqgDuO2Ww\nE9QBJuInyO4goYU8k8k06bkGfBvk3bRRoHezBQX35brqm/Uzfu99Kh9Bm59dIgSYCCzdVoY4meKM\nIyOj+do1ZmsCwUeXM0Gvfd1a1UzIpZ/wxaV0wf3iXLPrpXTvssETncsLhFPjw3YIqHC4BxuXK0CB\nnM96SZKh13/kCP502HzI5X84RyVttgF9nqmh12/0bA1ZRr7bvUP255lzCTBs2+iFgZWFTla6F+be\nqOLH7NDA5oD92QT0E6RPUl2AfPMDFW1/N/zO/N/nUPGK7L3ej2N6P/KscO/4fqprQuBzwOrCEADi\nGIsXLc4WqZbAksVL8uLATTYSPESOiY7/VKMF0K+GFeMYYYGwQFggLBAWqJ4FAuhXz5ZxpLBAWCAs\nEBYIC3xmgfkO9H//48/sN/Xf//jDILqDDcZaZ+gjVzBEsVVlwqLTTtYnWdUUXCXrttj2tjRbAUEK\nCZKtnwqapsKmAfSLlqr+Z7LbyYRGRuWudnG4rAojEN0bOvk/nTub/fjjOY3nrBAvQIvimDMxR0ij\nUCj4qe34eCr9/KRljZ71oIp4um+ThYuOe8riPmXyF0nbW/reCkrUos2VDH0gJM/iK4HKN+pAS4J7\njAb2tS58/PDRMvORYnr58pVlZwMTvVAz4/CwdkMQGJB/EHxrRlqkSV3jDmnM79y5I2vQSFDOAW8R\nrv/bHLBWU4QZuEy2vsubMCJpAgSnA9GRNWnYqa5MaHYZsZYhH0bAJsl1qa6EpHKKmvoEfLh3IC0j\nfk8xZUA+n92vGDkHmf/cGztRDpvcTpLd4ef4e7kSP8V7nm1An+DGEwrhqvc/6LcM9M48E501AMiN\nnxBgPXRIhbEli0ZhbAI4mwTyN23aaLupNNnZd7pR5no2AX18OwWztctHvo7mvT0Hej/h+97YnYJv\nG/DXfb9Q4CoFshTMkiwTPoqsF36Kb62mZoDWFOxCEGvfXup07DVZqBXLV2TL8x1MfvyvGQPof431\n4m/DAmGBsEBYICxQfQsE0K++TeOIYYGwQFggLBAWKFlgvgP9//32e/Z/1n/LKGxYbLUG+gAU1zQH\ngCBncVmFEi9fuWoFcovX0tzUlB07ShbsEQMi69ets4xqshuR7JjJNh8y9IHeNP6LRjkZuUgidQnq\nDygL1TSzVfwUiAecowM3f/7xx+ynn37MflYHnrq0SRGc2oFr8B+y8gG9zA+jSV+oLkNHZ5dl0fp1\nMv6owMM56aufO4eO+25l0CrwoOxixlq0uQL0eQ4JigDl2TUDrE19NIf6KYsZyAnkJWOeke9aYE5z\nABB3W1PHAcku01FX9jrgm2eX55axHCkmzglsZUQC6lpra3b9equNyJ4A9enffbdAa0PKfsYHkTUh\ngEBnTQOu+u6eol9yXN9VABxFn7+7uzvrVGdHQNEWaMQbqBas3i7JlIOC14cFsSneXanMTtHvZgPQ\n9zWA6+p/8MBsQBAPu/TkAT526xAo8/lmJ0YKllH4WHJHayU7tIKi3CssCFK8x9kE9HkX4VvYHWD/\n9Bm+neqGMO/esAm7Eby2Av6PbR4o4MOa43ZgxA82aXcIOxOwC9JDQH3GTfo3vmc7UzRWowXQr4YV\n4xhhgbBAWCAsEBaongUC6FfPlnGksEBYICwQFggLfGaBAPpzA+hTONAlUtBlBtQBSoBqX9Le/mzS\nv/IH3zrQB1oBN9lBMaYRKaZbynJvV+/u7s2ev0QmKUklAaRWKNMZjXLmwrPegXnsovhOsApwhdRG\nrRsQmoKp1IJAFqVP4PGuFVLtMwhHVjUSQEBkiiufkr7696dPCvTutIxq9NBrtZNgrgB9NOORC3n0\n6LEyjgeUpZ8y4pFbef9+1LLzAbhkNBNAeTn0ykbkdxx4U6OAHQ9e5wLg3dLclDU3N9sI6CRrmSLK\n5UgxWQZ1nkkNvOwSaO/qSsD92bMUgADIcx1Ll6S5Zs7XC+6n9WKDBRFMDkc+y1gE+hyfgAY7E3gv\nIB8EpKVz3IULxqWBOB7FdwkQ7JAWOjVGdltvKCtIMdkzUW+g73NMfQTqJJjEVl6v4H7f/eQj+Ik6\nzxPAHnBP8IagjUkQaWSu+T3P3cR1ejYBfdY7/IYdJQSZ7/ffz2XG+rV2vClNE3HO0fx7fJ9nwOrA\nKAjGmsi9LlediOXLkGJaZ4XB8ZOtW7Zqt8hOW2vYPUJAiTXR1sYA+iX7xoewQFggLBAWCAt8SxYI\noP8tzWbcS1ggLBAWCAvMOgsE0J8bQJ8sarJf6S0tzUmTW3IOSDrUKqt6Mmf91oE+sBZJiXd0ZTx3\nCprelKzJjZs3TXbHtNP1c7JUAbcbN2xUcGWDMpW3mtTGoUPIbRwyoFvMWJ3MntX6OZIXVrC3ozND\nDsTAtEHHpJ+fJFLWmFTKsWMUMT0qGacjBiG9UGcR8FbrujjOXAH6ZBzfE7AlENKvbGy0wV+8SBrh\nAMyPIpoEfAC+JjtifiKtfcFw5Ej4HXO+VWAXqRtAJsB7xw4KDu+w0fXrge0EhKbbOKeBZo1A94d5\n4OHRY3ZlaNdIDpipyQGc/yAQzQi4ByzTKdC8eMli0zRfopFr9YaU0IgVTk5Fwdlp8FLSK8ivoNG/\nRln5yErRAdd2T5INImCxkR0BBBnVJ4JrP345Y72BPmsA8819YxPqm7S3JwmrPhUkBmRjF3ZlcN9k\noG9RIdydskeLCk1T84TA67Kly2SPJLk1ca5nE9DH3u/QzNe6xj2xu6dDu3vYlcS/S01A3wJL8isC\nnjwDbwT8CQLwt+w6WacOzEeKyeSl8H3ZJenla2eZdqfgk9VeGyNDvzRL8SEsEBYIC4QFwgKzwgIB\n9GfFNMRFhAXCAmGBsMC3aoEA+nMD6JP9ilQBHfkdz3pkLCfLtxp+/K0DfYCV6YgLaL4WzGrvuJO1\nSt7k2vVW09L/IPAJ8AOukpVP5mkDmugNuzQ3jaaV3tzYZFn72LsITath/8mOQeHS6zduWODh5q1b\nBqO9OCsw0QqzCjoyEhg6cGB/dvDAAfu3X6OPk52j0p/PFaBPUc/Ori4L4vT09qQit4NPskEFSygQ\nigYTMkwi9xlFZBNk/6BM44V6DqmXsERZykuzFj2jzZaV32SSN6kAqDLkBTo9K5mxHHsTLEin/sek\nUVzrnrGPIEResJaM+lfS9n/5Kmn8cw7m3/t3kgFaIFkexqTobodNgYp//J7k48pOt10qeh7YubFV\n2fiAfAIVaPPv3r3LMvMJZPnuD8ZqBIXqDfTJWKfYscvLmLzRtevZVdU36bvfX4LarBVknBNw3U3P\ndyn4jgVgPvb3niyd/jubgD7BC2pwAObJtOd+W6/f0Hhd8lMvCpetoJWKQltQKw9ssRbS+Rn+QYBn\nm3yCnT9mD/OTBts1snRpKsbMbiBaOf5fuIh//RhA/1/NEj8MC4QFwgJhgbBA3SwQQL9upo8ThwXC\nAmGBsMB8sEAA/bkB9HcJoCUN4r0G9A2sCZowBtD/+icVGOUdmEgR2SdPn5hGemdnV9Zm2bm3rUCo\ng1j00bdLn9zhbeOePQZvPXMZmY1aN4dpjPelc05BZQIPrTduSj5FAQlJxZDNvUwZsVYk1bTUdybY\n3NRovgRsrnWbK0CfXQ0G9Du7LXgzMEC9hEGBfcnvCHgW7V20GcDbYSWyIwTdUnAHoL9NWckbSrr2\nDtYZKwWaAOcEYMmOfmOyUN3dKtwsGZ770jQnS/+FSUO9tKBD8Vor+QyoT7BWa46ALaC2UTJgdDT6\nycqns1uo0nsqXlc9gL4HargOstWtnoCkjRhvKUBG8WGeK3yENYD5Y2SeKfa6V5n5BDnYnUHwg2Ar\nNTQma7MO6Avmk22P7xC4aG29YSNa+h8/Au3Hgz2+VjJ6wxZ239w7Ukxaa4pAfznSQ3kv1X0h2OEH\n+MoxgP5XGjD+PCwQFggLhAXCAlW2QAD9Khs0DhcWCAuEBcICYYGiBQLoB9Av+sN0Pn+LGfouZfJR\nYBxQek+SK2Q9993vMwmWe9Kj59+DT54kvflFZDwvErAi0LI/7ZxQRrbL71DfoNZSSMA0NK9HJHvB\nyDUD4ciuBT4mSZhU1JWCvSnw0Gyw2YukNuxAz3r1dKb9q74zV4A+mfjdqpmAZjp1CJ7mgZ0nGl+9\nHsqGkSXB3urFBtwF6pORTZY+EH87XfDbM5YtCCfYu9TBpiA5f1NJG1HQ6aVBe7LwX1rwAWko7PxA\nOzXILHcplCJ0reRc/A2w3nX4GQHXTQpaNDU22g4VpHyQUQHaYouvbXUB+nqeTFJJOy+Ghl5n/Q9T\nsdcHCpB0yx+6rRBujwFvgqhIJy1RxjkwP60B+209QHJm3bq1VkMDyD1Zm21A33ckvNTujjZqhtxG\nYui2FX12+aFRyQ+NUVdAOxOQdPqobH1vBHLWqm4I0l6MW7dstix9MvXZwUSh5vXrkGaS5I78xOqL\nAPTVq9EC6FfDinGMsEBYICwQFggLVM8CAfSrZ8s4UlggLBAWCAuEBT6zQAD9APqfOcUXfvAtAn0y\nr11eBKB1u6PD9OhvSzv7sbKzKfz4TJmqFA1FWgWgRycT+8jhw1YEkwxdNPWt4KmKnrqsxBfMWfGv\nAbUuu/JaWfi9klxpleQOWcRI7gDe0HYf070hDWQ1GA4dtHGTZHeQ3mFcqQKptW5zBeiXNPQVwEFD\nn0LDgEIrOitwnnTTXxnwLdoMKJmytlPmdoK60hIX2AXkl+RYBMIplmtdWvSV7q4hoECQgV0kjBTI\nvdPZZdrnFPQlg//9mPp7afsXsqiL11zOZwIPq3MN/TW6bjKvvdAvQS109fk5Y6VBiuL11APoJ/mk\nlIX+VEWGO7u7si7ZlEAJa94jyTGRnT8s6aUVKoDLc0NB7IMH9lvNjMOHDwpcN1idAisMm+vEF++r\n+Hk2AX3sjQY+UJ9gBv7Ebo/O7h751xPbBcL/r0Cwk+/SqS+AzbzxDPguFXZ0sPOHHUzs4Eh1JHZY\njQGCifgKz4t3P8bXjAH0v8Z68bdhgbBAWCAsEBaovgUC6FffpnHEsEBYICwQFggLlCwQQH+OAH0y\nwffty/bt22sgjWKb6BSH5E7Jlb/qw6gAaIJUI4K3zyQ10ZpdRzdfutlIbni2O5mplo28ImUkk517\n8vix7Pjx49l+zY3LjjBOlZ37VReb/zHZxM8JNACc1Xt6e/PivbeyW23t9i3PfiVL/OSJ49kJu9Zj\nlkULVFujbFrgW63bXAH61BzoV0b2gwcPM9OiV+HTFwL5ZMEDDAns0PmeNc2B5ygDzh2eo6O/VAVR\nGbdIfmSvdm/sbdHuiOZmA50UUqXjS9NtfmxGMvAfCtyngrjIBAm+qpApUJ8AlM97cbQ86Dwb2n/+\n2bkn3A+/53z4Mn7C/SCbgm58i+6F+2ncs3v8ngRx8X3apOew3079H57FdmWJt7W12Uj2/yEVmqbv\n1TNXi0bgywNg2JBC2ATHKIbN/FshXNXU+Oefj3p+lIm+NmWiHzp4MDt6lCLThw1Ys0MBqZ0v7VSY\nVUBf619a44Yl06WaDKoTQPHf++oEjLh/L5D8bnik9F2y9OUeavh+8hX8hU5wx6WHeE8lf0nPAbs8\nFipIRNDzS3aa7lwH0J+upeJ7YYGwQFggLBAWmBkLBNCfGTvHWcICYYGwQFhgnloggP7cAPp7lNlL\nAVOyQVsEBjdv3pxtyXulWb6Vuvy3kqHv4IlxSKAOcIt+NDCPzPzbd+5Ypj6/Gx1NwB9IuXHjBst4\nR1bH9LMVaKG+AYUxAVRkKNO/BmhOZ27IjgU6UwyX8e7du6Us7a7ungyd6kWCq1zLzh3bDegTeCAA\nQWYxMJnRAex0zlnpd+YK0AdmGrTXbgwA4bhO/dvx3RDyB3ZGsKsjQeAPylYesexmspzpNAf9a5TZ\nnjKVk/wOBWV3KUBHXYx1kib5TvB3QZ7hP5V9k+yJYKrOhZ/e1w4CgCsjAQg6MjFkWAPfvVPLwTOn\nWSsWL5JPIA0kv7DrzAEsASIH2oycx+SFJDMEYLfv2n8z+f+GkqSQZWDLv3Zs35FRP4LMdXwOv6oU\n1tYD6DP3zCt1Jx48fJh1aJdOu9aBdo28J9+9TUVyF8uGJqmEnJJklaxeggIb7Fhg14tnnX8poDeb\ngD6BSmxOYBOwj7QYmfmDg5KaUlDrrbT1eRYIJCH3NKrsfPyRvyn9W3I87GB6I/sx4gPrc/mh9Qr0\nYCdkmrDTFsnxrGKXw8oV6itzr/q6IYD+19kv/josEBYIC4QFwgLVtkAA/WpbNI4XFggLhAXCAmGB\nggUC6M8NoE/B1cOSS6Hv3dtiQHnTRiRTNs4IkC24jMlPkDlLR5aBrNmDylJlJOt4LjSH+SazIZCJ\ndjra4w8F8pBaQT/9rmRXGN8K5Bm8FfRCbge5EYBsceQzxTDJzHWgV2ugzzX1CuL3SvOdEZ1/dPTv\n9SXIi+zHsmVJ17xBGdUpQz9l6QN20fhnrBS6ljPPcwXoAylZE99YgdAkLzIiUOkAE8jtuzXQE0d2\nBKj5SpCfnR3WFQjw7wyPDBvYdF1xAP6BA/vz4NwBBeU2TTtTmcBSypIeMn/t0ZzfzeeeXSSpEO5L\ng/KrtfOC2ghrVudj/hlJqOX4hHwDLX8azwDPA/40qvvDBsO6L0DuCx2XY/N52DOzdU9kzLteOnJO\nBBldgod7tAKo+g4685W0egD9wcEn2YDWAWD2fWWom2Z+d0/W1dOdw+sU1EMuid0WLZLYIuucIIbV\nShDcxyYEZ3j2v/T8zyagjw8kXXxJjwnqE9QYsqLar61uhEF7QL56knMas5EgRwqCKBgi/xxQAWkC\nogODAyb3VAocCtw3q94CRZSbNGKzVJNho42V+MjEvwmgP9Ei8e+wQFggLBAWCAvU1wIB9Otr/zh7\nWCAsEBYIC3zjFgigPzeAPpngSDqg175v395/lbiYKVf9FjL0AZhArA/qFMIFgqMb3SXpEuC4QSmB\nKUay8z0AYNIfANmDBwzMkp1MVi47JshGpU0H5lVjrgCwZBCj90/nHgbya0YmI2n5rzS9dnYPAPQ9\nQ/+7Qlb4l8BjNa51rgB9A5uyKxnq2Jd/U/gzjfhL+hm/I1uZYA8dLfv+/ge5XM+D0m4Pdn0AQMmG\nZ7cEAaHvT53KTp8+lf3w/Wlpru+035HN/qWdEk+ePhXIV9b0k0E7V6cK4CapnS7Lph/TeagDwXG8\nPkLyzY2lf1OQdNUqad3nOv6ZdHg+fOAeAbljdk9kYr9791a+P5i04yXtA6i1HSwvU+AAn/B7InBw\nNK8jcVgjQQp8j3MAdCtp9QD6BMMI4nlgrC8PjjGaL+RrBjt0jh+TzNbRo9mxY0dtLfYiuKwPtOk8\nU7MJ6Pv65iNwn90njB/xD8kM+TMwRm0Ofie5HXY1EMR6qh0t1J8guNgt6a8eFREG9C9cKOmhBWnX\nEjAfeSaC0w0KiO7ckWvqa6xGC6BfDSvGMcICYYGwQFggLFA9CwTQr54t40hhgbBAWCAsEBb4zALz\nHej/9scf2W+//5H977c/DOQ66GVE+3rbVvpWZWTvyvZLVgWddLTsq5HVDCxJMg+SKBD8uNnWll29\ncjW7cu2agbriZJEJevzYkeyYIBLXMF50c51lABe/W+vPcxnoM680YNUw8iiSl6AD8bs6kw75XQE8\nMpMt41mj6JxB0sWSKUE7m10SRw6j533QZI/QoScDu1rSEVPNn/sncA1QfEM633SK4CK9kjKqU/FW\nwKNnwTYK6B/WNXPdh7WTYqbbXAH607UL80ABUSskKqAPzER733Z4oMGv3R6uw8+z7Q3QC8hP/XvJ\nNO2ybHfPZPbv+ej+itc+UMCgL5fZAT4bPBU4pXYCDYkTOiDdJH5MBme77eLZrJ08SEQhfcLvV0nm\nBOhOw5cIbOFP6X4UqNC9sWuFAruPVQg26fVLsx+JJ/0M4M7fcX1A7CPyKYrCoidP9jVZ+5yPbP1K\n2kwAfa7dA3rcC8GRO3kdAiA+wbzHKoTLiF19Vws7cawWhaD+CQH9VZJUWrF8hdmBgM1022wC+tO9\nZr5XtBnSOlY4WkWECTgREE2Bpi6D/F6bhHcdsl8EQAH5u+X31F+wXR2S4fEg6HQCIZNdawD9ySwT\nPw8LhAXCAmGBsEB9LBBAvz52j7OGBcICYYGwwDyxwHwH+n/89Xf2x59/WQfqUuSPDEQARK2BPhmx\nr4Ze5cUWX0nCpj27dv16dvVaq8k9FF1wr+QdTp5IxVfRawcgO0gGNs1km6tAH4BHRyscWREg7JM8\nsxSJjXt9SWbnkWCsaacrU5nnA2CZCsiuFhzdpICKAjv7U2CHwIpr0aNZXutGZqxJXgBfFYi43nrD\nive2tt4URH5QkooBzJL93dCww8bdAvqm9d3UaGOtr3Pi8b9FoA90piNHgm492vtkKwM2vUAtRWoB\njd4AlsdUQJXAHCM7J/Ch9evV8x0e/l33Vx+7eiT/kgPTe5KCAqx7/QR08ldI1mSldMnJwkcCyrrA\nKTIwlpGvIqVI7vBdCtvSacBs08+Xb9n96NlgRN6H4r8EiYD7BA668wACkkSskfgjOwKacimVPcrA\nxtd253UCKIpaSeP8tS6Ky7Un/XfJDHE+drvcvm0jRWFTIVgKIr8y+SKCeWTiUyuAWibUNEE+aYXk\niwz2S16onLV4rgJ9D+TYOqo1CKhvgWlJ7vQoQx8/6elhl9NjsyE7OygojI9vUECJoBK+mSTkUmDU\npcoIlFcK9QPoV/Kkxd+EBcICYYGwQFigdhYIoF8728aRwwJhgbBAWCAsYMCyu7tLoKjL9NDJ7EQL\nnU5Wej3bI2WGdtzpVHHCO5b1x7/pZIwic+ENiPLfX3/J/qP+3//8agDTf/el8e/zF7K/zp/P/vr7\nvLK07xnIAibRaw/03+cyFoJGKnLZJpjU2toqQHuzlHXr109W/qkTJ7KTJ08YTEI2g2KbqwXpqrFb\nwM8znXGuAn0Hl4wUbrx3vy/r67uv3pdnU5OJ/Ehg9mn2niK4gubAc0AUYJJOhmmTijoCx8kuJdMZ\noIkPlgPzpmPnf/sO1+P67IA0dnNcu3otu6pAENnUfs1IxlBrgb5PwSAyYrdvSxmyFPKc6fatAX3s\nl2RHkvzIiPTlvWgoUiPXNC9Xrl3XeN0yvN3ewEqeZYJCBOaA31vzXUDsBCo2Cz4B23PgfksBP3Zi\n3NSODGo7JN18adwLuhPgA5TiqxzHgje5n65YsdyA89IlS7PFyiB3X6WAszcPdLnUEPdGwMh2ISAp\npGeinfOr39JOIiA3a+T796MCsAvSPfCM5OdmN5PdX4XvkJkA+jxLHrh7q2fpxq02s+2NmwqOqcAw\n9RKsnoDssG3b1myHnh+eHYoaI4GGFnyTRmpRsAbTv1QI1+3NOFeBvgeYuAeCOlYwXH4wIjsh+2V1\nPCRdlHasaKfKo4e2NhEYTbUVlhnQP6V3Gf2k3msm35SvoeXYkGvwFkDfLRFjWCAsEBYIC4QFZocF\nAujPjnmIqwgLhAXCAmGBb9QC8z1DH6hy4SL9ogH9d++GDZiS4bxly2aDY0AqMgotM1swDlBVDYgO\ntALKASKQLbitDNEkoXLTrqXocpzTtbfJDEXeZRUZuRqrcS3Fc33p81wF+kBKh7Bk35r2vGxOZi6y\nGim7+pkVdxR3VbP/WMFLtJ/JPiajmkAX/oBcykxk5RfnA8AIyCcgQQb1JSSarlzJLl+9ajrn/l2g\nWMoEP6LaC0d0vQ058BX0nZAJ7n9Ty/FbBPpFe5GtTC0G/Iugyu9//KldP/S/JIX0wL4KCAXo40Pu\nT5bNnvsSPy82vu8+i8wJwZvLl69ozq+Y3I4HdhjRygfkbxV4Zq737U1BA4IHX9LmL56z+JlAgp1f\nI+vUFfnaZZ37kq7hqSRWhoeRHBq2+2a3kBXh1cg6eeLEcavZsF/XUUmbCaAPsE9Z+K9sbNVul2vX\nW60T2Cs24L0HSZgn5GOQjkFeaIE04itpFy9fMqk3JN/a2ts/OQRrC3O4T/PHuZlbm1+NRVmfYjZ7\n8fMnB5uhf+AvQPz+fhUW13hXAfLuHtUlUW0SdnYUG0XFfzp3NvtR/dzZsxYUWawdDh4cKX53up8D\n6E/XUvG9sEBYICwQFggLzIwFAujPjJ3jLGGBsEBYICwwTy0w34E+kOyqMpyvqPcq63VIsgHIZyAh\ngP74ZhV4BJYBcQ+pECrFUA9LJ7oaEB1ohTwHUh3Iv7ATgSxcMmApzlhsQHzX3kanmqxbpF6Wq+gk\ncgUz2eYK0DcgKshkoFWjy0K80hxTNPauJJaQWeqVTATAkp8PSRoC+Q2ySc2+GoF2jYJ4AP2dkrHZ\nogK4+AVjpbC00vnieX0mmEoAaPDJEwsA3VLWNtnFBCQ8Sxi9fyvcKY1v9L6R32E3h/VcO73Sa6jk\n7751oI+vWSa9/IzCtClIeCm7eOlydv/+ffkU2d5p58+uhp3ZrlySxuB+LlcDuC0207XXThEyyQkS\nXAXo50CdDH3LjM6z5JGBYRcGMJ9j4qsUH6VXunPEghQ8P+qvFDyyYOONG1mrMti9SC6Z+tSisBoA\nWouWa106pLXqe+oEnD5ta2bxnqb7eSaAPmt9/8OHed2Dh7ZDrbMzFRpmTS42B+rbt23LNivQm2pT\npBoVFJiupCHLZPUvtN739d3/5BCsLaY5r6ABAeUN2nlh0kwKxrE2EUikI5u0UoFddgrVI7hbvGj8\nZEDSTPgGAVLWVd5p7SrY3XHnTvGr8v+d2dkzZ9R/sG73kt9Tpf4aQP8TE8c/wgJhgbBAWCAsUHcL\nBNCv+xTEBYQFwgJhgbDAt2yB+Q70ASqtN24KrKSs+OcvnlvGPDIWABT0qDeu3yCg35AdOXLYiooe\nPXxEkKyyrMyiL5FtDZQdHFR/MpjdudOlbPF2ZWt2ZH2CgMVGEOFMDj/QHl62FA3sBHQqlSgoHr+c\nz3MF6AOYgKEAVkbs7LJN3AMSNUmD/KFpz1vG88hwlqkC6QYFc2zuNQLDyaTes2eXSe5QTNTBeDUC\nO+XYHoBK9jDXT+HVVMSzU2OXBaMA+YsWLRbsW2JSFqeUKU22NIEI5C5c9qKcc1bju/MB6AP16RRc\nphbG9evK9lbWN7DWa2UQVCJARHY3HfCe5JtUILSlOd8Tkiw+ploew/JH5HwYr0q+h+x4oD6yJvye\nDHpkT9Cwb5G00l4dY48gvhUflTwU56rUR/1+GLnu24KytwVoOwRoHwiEA255pshyt+xqMqzVj2h9\n8szro1ozK2kzAfSB9nfuSNJNYB24boV/9VzxfBHULbZUr0QyZ9qBwLPvAB2YXmlmPPbDjjzHwOhi\nWy05tXVrgfhrrX6HB0wIMq7S+anpsXrNais6jBQYu8kIAmD/ejUCQM8t2Egtieemp0+wsVXvWILU\nxcaaeuaH7xWkpp/WupSvTbo/5HcqaQH0K7Fa/E1YICwQFggLhAVqZ4EA+rWzbRw5LBAWCAuEBcIC\n815DH7kVtOvb229nFJq0DEMAuzINgSZrBVTWqagkGbWe8Xz82NGKs16LLofkA/UABpTN+PjxgOoE\ndAuaKZuxo1MyHf3Fr1og4dzZMyZPcOTwoVwTOwG0APqfmKr0D2CnaWDLzoxA0O7uHis4TBFcstyt\nCz4B/D2THyjWsDMBV6CrSewo+xkZDLJli3rPlcK80kWW+QEIiZQFGdqM97ST466K+TKid+6ZuwCy\n06dOpn7ylADvtmyRtL7ZUVApMCvzUj/5+rcO9LlZwDeNzHoKXCOj0q615d69+xa4e6LgHfOHHjuZ\n3nQCRfv2qs4B8ioai/6ET1Ir5O27txrfahfRdYP5AH0Cfh8/pgAC50Vah0DfIXUy/Tdt3GgFnDdp\nd9HX7ODxe+I6rNipCp72qt9TkIKdB32SE3qiYCQ6+qxD9GOSePr1l5+yX37+2XaHmFHK/M9MAH3A\nPUESdj4w2g4dZe1TwJX1otjsmc+fHzLICeguWphGl+Yqfn86nzkHdQoIJHK/xcY5eFaRoFlEkE7n\nIjBDRzJr06Y0v+wcaGpqtJ0YjATt6tXwlaIN8RfsSh2Ja6oNU2ysq9+fPqV+2kYCFivpCpBUuusp\ngH7RwvE5LBAWCAuEBcIC9bdAAP36z0FcQVggLBAWCAt8wxaY7xn6nSoGTHYzUgtAUjK2KeLHCGAg\nG3vVqpUqhLjTitKeOH7cCvkBHYBv3itxEXT6+1V88cHDpDvc09uj4sTqPd2WPe6AjBGIj0QBUB9w\n52DWr6OS81f6N7M5Qx+oRCc7H5kSpEKATIxJ01n27e4xjWeyjl9Li54RUAbIp1NsGI18dmUw7hB8\nIuOZbGekNma6+T0xImVBoWgyivHZRwoEPR6gWPSAZWvjq/gswSh89eSJY9lxjduUxbsAIJhD15m+\nh5kG+sVinYDxD8pmH/swZjbi3v3ZYt49CML4NfDbbYrvWX2GjpTRTiCJgB1zR6CQjGqgPsEh5HGA\n8V6fYyLQt3oJ1Ex4A9BPkjsJ6H8a8EMOjJoJR9XJ+Af6WpFcjdzr1zbAM8WjveApa2Vvr/q9u7ZW\nFY/PdVCk/Fd1Cnl7K96b/2yycSaAPkFTiqKfv3Ax+/vCBYP4QHakkfCf2drYPbQtL6TMzpt9uf8c\n0MgOHPyPYM+Hjwpo5rs7uC9+7o25YK0z39dIAAE/4Xmo1F9Yn/BX1tQ3b16bbr77LGC/2FhLrSbM\nqVMWdEw1YZANWmHXVfzudD8H0J+upeJ7YYGwQFggLBAWmBkLBNCfGTvHWcICYYGwQFhgnlpgvgN9\nsggp2NejDqwi85XsbUZkS5K0zTKDuacFH06dPCEQcTJbqkzIRYIfDkIqcZ83yrpFZ/iuoBhwzGBZ\nDs2ePn1WAsyAFyD+GUkTIFFw4MB+OzfwhV4OKKvkOif+zWwG+i5BguwJvp3kaSSto2zcJFOjAMqD\nR1azIBUVHbYsWQA4EjsbJK9E9utOZegniL/Dsp3XS8MaQLpasHymG/cEjCPzu18Q0nS3JWVBFvgL\nyZ3QkeLBF1NmdsreRcucmg/UX+CeFhCAAuhrnOk200AfqEhdhBd02YcMd+8OM3mu2MlAFjt1MugA\nzq9tzFXa9dMhsE+Gfl++82fQajfUAuizPhw/ejQ7pt1DzU2NJhfGziJkwyoFtEU78KywJvaxNvbd\nz2tPaN3U+sWzVWzI7Pz6yy/Zf379OTupYBL2LtfvZgLocz9//PV39pc649gY9QqSPFcRfhfvbTZ8\nngro49MuMTasgsVpx1nStaeOgzfWCoKTrBcbN24wCSF8H01+jlFJA+gPESQdem0j71aA/hUV7KbY\ncLEF0C9aIz6HBcICYYGwQFjg27RAAP1vc17jrsICYYGwQFhgllhgvgP9UsYpIF3gLRVKVeapiqUC\nywEfyCsgj4HWL1CfEYkAwIdJIug7lTQyw8m2ZocAWugPHjwoAeiXyih33eSVFJqUhv4pBRJOnzxp\nGb0OyKoB68q99tkM9MnKBwbSAbrd3d2Wkc/4REESaiNQJwHoRMY2OuRk4yJd4Rn5yO2QPb01z4JF\nL3uZMl+Rs6gUdpVrY/8+kIzgBNdIxy8vX7maXVG/Ln32pPsvjXUBVzLzufaGHTuzHRoBu2RrN2kk\nY1tkNQPlz3QASKfUzpMuBSDarOP3hw4dUrABiZhDVYHonKPYKDbdLzkYsrDZbWNwXxJLjDw7PFMr\nlq+QDvmarLm5KWuRnbAXNvzaBgymuDWSO23tAvpaW5DboV4GgbraAP1D2pFxVLsxjtmcrwXm694Y\nq7FG4F/3c3sS8MQPu3t6LBCKDnyxAfSR20F2h10inN86/jfNYNJMAH3m5bff/8x+/+OP7Lc//swz\n26lL8LEkn1S8r9nyeSqgz/vK1gRl5vMOYQcaO3kYCSB7W6p3F/UbqLfQpHGjwD6+T2dnWiWNtaok\nuaNdUQTJqSVxVVJREyV3AuhXYuH4m7BAWCAsEBYIC8wtCwTQn1vzFVcbFggLhAXCAnPMAvMd6PcL\nogP+GAH63d1IsnRnneoACm8A31TE77Skb34w8EE2I5C3Us1fZGBuGuRsz27earOCrQC/p4KR6KEX\nCzEePLA/l1A5nrU0N/tl1WWczUCfugTDsh0SIWSnWsHjGzey6yp8PCTIBOx6p8xVZFiKDfCNbAmZ\nzs2yL9narlNdD815vzZ8kGv1QAVg7q+/z5tUyMVLl/1rNpJti2+0CFA36X7YZWDFVzXWY2dB8eJm\nGujzTFPE9Y46tSmQu6EIMkWRFy5cYM/WmtVrbI5PCIKfVOHgE8eOaxeGAh9f2QD6PM90ghgG9PPn\nmpoNtQD6SHIBz09IYgkfsPofAvqsIdUB+iO2Rvp6aTubWCt7uhWI/BTocy2//IyGvoD+sWNJ6ond\nRAL7swno96oGxf/99lv2v//9buNXTvuM/flUQJ+5dpmmJ0+eWvDvkmouEASkeLE33lsEXpBoQiKJ\n3Ugm0aRdSGvlM5U01iqCCLzXGHuVoU9mPp3gY7EF0C9aIz6HBcICYYGwQFjg27RAAP1vc17jrsIC\nYYGwQFhgllhgvgN9oC+61gMDTwy8UcQy9Y5PNIeRJTh6+HB2WB0QAjwFgGwQAFyhDG7PfP4SsCrC\n2WcqxnpLwM+yeTWSQQ50fjX0yjLHi/Ipe1taDDYDnNHdrmebTUAfeIpNrSuDHWiVpFZemrZ8CtCo\nEK7gI8VFU/Z+gvmrpZUP6F69arWKk+4qgXAKIAO11qxVhrNGdmrUq3F/ZLQjZUFnp0GSsbhmwYri\ndQGK2cmRZHb2JxmZzZttXKGM9Hq2mQb6ZI0D8jkvmeQPqI1h9SoeWqAu7X5ZbjsXrNi1oP6JY0ft\nubb6FBQjLWPnDTDTpZHwxesKIrUKYhJQQtrFMpdVbJU5nHZRXPnzO6SCFKCiKO1lSZdcUhDnwqVL\nJntTnM/9+yiKe2hCUdwkvVRpXQDuicbI+cnKty6Znb4+5HdSZ+eBZ+ETLOE6fv7xx+ynn84JFh8t\n/c4kn2ZRhj4BnqvKICeL/Nq1TyVhirat1mfzEenaf9QOAPTtkYCyGh6SBiPQWGzI36CHjyQUsm9L\nlqSC1ksWq8aH1qUNevfw/tmyeZMV7WbNot4H5mWu8Jmnz57m/nLZRqSnvHF8ijDjNxRkbmjYabuS\nCFwjQTXd95kfj5G1ip0xBBKePH1ickzt2qHC+413arFFUdyiNeJzWCAsEBYIC4QFvk0LBND/Nuc1\n7iosEBYIC4QFZokF5jvQR2PbATCZtGQS3hCEA8gBKLytFUQhi7u5UTImyoC2Qqkq7GeZjblONTD/\nS9mwBnEEcLA7wQR00AEedDIbySwH7gC/yGI0HXdlTzY1NWYtgvp7W5ot69qvqx7jbAL6yNCYNrpB\nz7elTOzHysR+mGdkc71kZlPs0jX2qY+AjNJ2it1u3yab7rSM9gYVmdwiCG4gLZfZ+dKc1nIOPoVk\nTwXJei3rG3+53XHnk1MDycg2px8VSCUYgd8yVkMb/pOTlfmPmQb6wNpuFZmmPgaZwiYXI6kYJHgA\n7iaXJdkRAjrHBfLpwCZr1lgAAC61SURBVOetWzT3khwB+JPFPN2GX7l2OQVICbpcvUa/bjuA/Lnm\nd9vlb/5cE5xr0TNNwI5nuxgQxLeH86KmrAkXL1/JLly4mJ2/eNF2ExWvralxjx2DNaJRn3fIt339\nqDQgBYDG/z5qfKOaBMiCdahTkJngCIWYB7TzgfUzBUGQJ1tsgcefzp1VAe+zFvzknr5T5ng5tRtm\nQnKH60YWhmeKXutGoVoLPMr/GAcHn9i6RFHrFy/GYTvXwTObanooY17vF2RwKByLXyIBtnJVKn69\nds1qBewUtBPY36x1S9EXe3+wU+nZs2cq+HspuyB/OX/xktWT8HvE/3fnRb8JZqYi4LsULFYRcK2J\nPl82d5q/6TR8hUCaBc803lMAiKAau4ooRF5s7B6iJsz3p7+XhN0pC15YkE1rbqU73qIobtHC8Tks\nEBYIC4QFwgL1t0AA/frPQVxBWCAsEBYIC3zDFpjvQJ/7p79+81YZp33ZpctXJU9wReOVT4A+QGWb\nINk2dNU1ImuCNAvyFlsEAcmCXZDLSkzlLhQvRcMd6Q20vS17UVrbjIBpCp8CBwGwjdI3bsx1jvco\n+9LBC+erZ5tNQB/wh7wDmfmMyCalTOJ7su/DUmY0GdLYFUhJRyua7FTLUN23zzT0rTCqwBi640DQ\nhQsoOjx9mZBazAnXbDInSEOp35VMSBeZ58o671WmdLEB5ZCFop8+LUgmIG1ZvhrLyTYvHrNan2ca\n6COxg616VXCakYzyu/dUeFr+AVy351XPLPZBcsSlRwjwpEDI2rJkigy+C6IC7HmOge9k07OOADk/\nah55toGegPYGBV8IwOwW0DcNf9YSgH7B4Mz9SF4PgmDURWXm/33+vCSXLti9FL6q2gk7DcoCZDmm\n6aNrZP2odO4N5rMeqb/S7oJb7ZIQkozQTa1VBMxSPYoXtn6yXhEkYzysXSLIkp09cyZDfsdbMVjh\nP5tsnAmgTxb7M6SQBL7ptW42n/IPgjMA99KzrF03BByLjaCiS2ZRy4MaGID99WvXqXDtUgtILVbW\nPtn7pZ1GKuzNnGE7/Ib5+Uv+cv78BZPoIoDhDZ9gRw/HZiQIZEElZe3z3iGI6c/IdOeN+7ur58vr\n0NzjeVOQnJ+xm6PY8FeXsGM0+TrbkSCgr2urpAXQr8Rq8TdhgbBAWCAsEBaonQUC6NfOtnHksEBY\nICwQFggLGIzp7lYGHdIUAgsALQpV0ncJENazATkoGtuhTGSy/Pg3HZiErIA34MR/f/0l+4/6f//z\nq8Et/92XRgAccIWR7N1Ll4D5lw3IkUUJpKCTNQhUoa+TzA5AHwBCRiwSGhTHdakOy2q0E4PnkOJI\nEgtILQDykSNAlgDgbLIgsjsjIMYzIsnC3Cu4ghwC5wH+cR4kEcjcrGerN9AHWhkc1bzgB4NPJJtE\n0VFlvBpAEsAF3j4eGLR5ZW7p2DaB+gWCY2uzQwcOmEQJ2vkUhXSQS6ZoNRpAzM5HcEC9nEbQgUbW\nd6+yhz3TnPvrI9NcHVCM71vX8Slw6UD/ewF9wJj7ZD13GXAfMw30qUPhgRBsRYYwtTEYCeB5I1P5\nwP591vft22vP2aaNqX4CsiaeqYz9imDTZkdz5AEi/As5HeSRgN8m44J+eGurstgH/XR2DAIvZOYT\noGMEwjN3wPdiw89LGd3yA4ID55WhT8Z1r3zc1ib9nKLJAGAKObM+NDTstN1ErFEECSiA6n7oflC8\nl+I5/X64P849qkACcJidTKneR6oNgH2HlLXP/bJurSJjfCVFVVdmBw7st+Ldp0+dlF33Fw8/7c8z\nAfS5P5czIghT68Z8vWMnkToj9R2os0AwdyLwJujThE8ItAO/kcFhjUKGDZ8l0Mhc8uwTRFmmzshu\nCu5rTB2JnQsKKl1Udj71NghaEHjid8yvvct4p+l9RsCY981evW/Y7cE56PgOgWoPNE30G3wU/+Pe\n3ssPehRkZK1C5qpf79PH2sVh72wF2PDBReoLFy3UPTVkP2iNIvDIWlW8B+6pkhZAvxKrxd+EBcIC\nYYGwQFigdhYIoF8728aRwwJhgbBAWCAsMO+BPvDDukAHoPoqBfwAceqAvyTn8hYlA0keSPZgheQO\nBNsbJBmwS5IFDdIuBqaZXACyCNIqX6DMbsDHggXfWcakyWZYVuawZBCeW9HbQXSGBwezhxagAHo8\n0nf/SdBDwINilgDnA0BnAectyqLciGa/YP5qZWLWs9Ub6DugZ3wuaNXXd9+CMfeVBQo8NbgvwM9u\nCJ9fQBaAiuxWskHXr1sv6LlH8KrJ5IyA+cs1d+zEWLpkaVXMC6RCux7f4JzTbSWoKqcbHX2v4q4d\nJq/T0dFhMN9qPsh3KKBckt+QTwKFKUKK5A5Z5w5xFwqQlSN3Mt3rLOd7Mw30ka9yPe+Heq7b8l0w\nwFPqVHgDHpr8jclbJSmcJMO03bKXF0uz3IJ1yoZ2GG5/q/UAHXQLLglmArbxO0A3gSWAJsEDxqKc\nCusC2uUE6uhk0gPhk/zTNr8sG4GzH+S3Bu51jmuSA7uaS/kA9H1tIqjFmrBOQap1yuDmeC0tKeBI\nMBDInvTYl9szYGuTroOx2PC7YrDsjXYtUc+D3S3cU2dnlyR3KDTcac+Wywjxd9QYATYDnTkntT7I\nzm9qbCyeYtqfZwLoY1d2PoyMjljgYtoXV+EXxz4gD0Y9hFQXob39tmosSOLt5k3LYi8eFojf3Cx5\nN8m8EQBCTiftINqsOZQvfqcAk94vBA09aMfIXBhgl98QYKKGg51DI7tWrJaD5pPC4LzHeKexhrDr\nzHd3oMdPUWV8ip7Oh7+kcxavk3l6xz0pQEExXnYd3M13xXA+fJ/AAjuo/B3Jmrhb52CdOn6cYtRH\nS/ewSPfAPVXSAuhXYrX4m7BAWCAsEBYIC9TOAgH0a2fbOHJYICwQFggLhAXmPdD3TG9GQGnKmExZ\nqAACZAqQLhgVPF5M1iKZ+Bo3b9poIB/QAsxaJ5kWpFrWrlmrrMmFBv8WKIvyw9iHVOhWcOW1QAqF\nb9E2JkMf6R0riqjfAV8AsKn44RLLmjx25Eh25AhFeI9kGzdsKGXBou9ez1ZvoE+gxbOhqUNwR6AR\nYMwIrAVEvhE0GxkZtt0RDl0BV6ulOQ2s2rB+Q0ljnGxYbOpgbNHCyjJEJ84JIHWdZcCut3NO/P1k\n/3awynWze+TGzVuq66ACqwJ//f0PDKa+fPXSfMdA6oYEUoHDFMQlAHRAMkIAaDrgdiK8nezctfr5\nTAN9MqDxEfyB4Nk16dl7MeFicVDsk8BlKo5MPQXs2KjgCGDTaiksozjpcssudvuQ4Tw2pkxogVM6\ngbo+ZSSTlcxOHwB4Krj9xACu/x3zQHFtCmvzbCOPw06AjQrUbdAzXmz4QdEX2gSAb9y6ld2UPwBO\nbW3SGsL6lIJVklhS4Aif2CeoTrb1vn0tdvw1Wpeop0DAyv2CsdgMBuf3Y/ek9Y/7IFDBM4/EU490\n0dGb5xnze2e9sxoUJiO0PWsUxLfdAZIRQjamkjYTQN/XBcA+ELzWDXu9zdcm1jCCS+zkoM5Cr+xa\nbASLmcOWlmbzRQK61Hdg5B3kzzSjS735fHJfBIMoqGw73LQTgPoHrB3sWhoYVN0D8xl2lZGJv9je\nL15ThHGT3m/o8rMzAN93+R0CCcUGyPc6NBzTCiX39Wmn1H2d43kuLzRsgRNbC1kP1dmdclgBnyPa\nCUjwh3cf189Y6VoVQL84M/E5LBAWCAuEBcIC9bdAAP36z0FcQVggLBAWCAt8wxYALMxnyZ3i1ALl\nbgt+dHSoa3R5H4o/FrN6AQ7oFpNFT2Y3oILsSeAHWaqAYSAXcIIMcQD+Ux3bRmXwIn0A2PdjAtJo\naFCTyU3nOCdPKHtRGYyMBAsAOYC7SiUJivf6NZ/rDfTHAdJzg6dkoQI5W9WxN81tWrxP5mmTYCfB\nETKJAajp8wabK75bKUwqnsc/A66SDIp2V+h8020GGoFygoxkQV++Ml7XgWxzsmvR4QZ6ksmLHBPg\nFPmWpMfeVHFm9HSvsdzvzTTQB55in1H5A/7y13npiP+N/vx5k72aeP0+78DM/fsA4XstO5qiuavU\ngf4Tnzs7vp1j1KRFrPhnXt+AgAJzxFxxLd44D1I0p09JbkQjc1bcZeHf+7eRgBXrEsWQTVLKJMgG\nTIIMn6FxfNakdA/7bEQn3QunsmYVpaCK5+EYPD/YjHtj/UOuiJ0vNlLHwQIWD0zCyv+WIEKqJ6K6\nIsooB0bjk/gmULiSxvnbtauira3NRqCyS8ERqJiLDfks3rd0Arlk5qdn+6rt5CjeE9ny+xWUYx6b\nmhpt18XWrarhksu7Fb872Wd2MKFff68v1Y7AZwgE9Wqkfou37/QB/06SPtppofdYQwNFwnfaTjT8\nn3cZcjnsPis23mFk4iOtw0jQwHzkQb/do6/D+KWthQQmtIOEoBn3htwV91mNFkC/GlaMY4QFwgJh\ngbBAWKB6FgigXz1bxpHCAmGBsEBYICzwmQUC6I+bBDhh+uRAKyCW4EQa+y0DF9BlwEuwCcBEtisy\nAmRip+z8BPhN4kTZhmQckv3JcenIHaCvbTIWGoF+xUYGLZAZWZ3tgjcHD+zP9kuDmhHoB1CkA1fq\n2eoN9Ml8dojUp2xQh5yAziI8nWgj5mnN6jUKxKQsfSCWSUvo357dOvFvvubfwOEmAU6ylYGb0234\n2bBA8LthZZnLZ9Bhv3YNGajrlmEL7Hz/ftR2HzQ3JVkOpE3I9gbEJci/fbqnm5HvzTTQt6xrAVT8\noSg90irZGrKUkcjh5xO108mWJziCDZEhWaGdGzzry9SLOzeUOy8t8nR8MvXJln/w4KHVNSDoUoL9\no+/NtwjSke2/YvmK7Jgy848ePWqySOwOsd/lgbypJoPMfzKgyX7us54KjgJs3+taLBCk9YY1KQH1\nFOghsLRGAUF2EQFni3rlnA/o+vEf1aXQbqJh7Wqxoq3DIxaAJDv/ySBZ+gpEKhhpMkaqAUIM0nYr\nKcjIc4TMjmmwK6Mcu7GDadPGTSYDNNU9Tfa7bxHo44sG8w3qvzU5HAqwA/WRZio2Aj0AbzprCDJK\n1gX0CRhPp/GusnVSoB0pMorUduf69gRo7F2m7zDiE2ld1DtM7yEC1AB+5hHft+x5wfyJ6yTPD75v\nQVZl6Bd9BKm5pPWfgtu7FeihLg87X7zAOz9DUqgaLYB+NawYxwgLhAXCAmGBsED1LBBAv3q2jCOF\nBcICYYGwQFjgMwsE0B83CdnQKZseWZznJoNgMhOSmCAD8c1baernkglAFbLlTepCMAToB7BbLnkO\nIAYZiRTUpBBuAmQA2gTLfARaFRuZtMAOYCJZrq5pDNwhCxaQD1CZCFWKx5iJz/UG+hQ7TdIOwM2+\nrEeQCskKpEDGBCUna0Ar7LjM5inthHCYij50tVtj426TSzomeItu+nQbgZ6X0oCn44e3JLNisjsa\nAWbcowcukNc5aLUW9hsYo57DllwqY7rnm4nvzTTQB2474OZ56+6Wpr2gKYW/ySB++PBxBngHWBcb\nmuLUVwCCAzZdkoTnfWEhOxmg78dHSx+wWdQL9zkisIDfESggUMfoQTqyk7ds3qJzjBcvLl7LxM+2\nswfALrh+X89Ap2RUkFLpuNNlGfOAWfyC3UHj8ibrBfip45BkgywAuTIVr12psVi0m2KpSFUhp8P9\nEPSwwMdQCn7Yv9/wszcGlb2mCEVVybLeJ/hMXQB2FwGHAf0EPStpAfS/Hujje2jX21qieiKslewi\noQD7Xa2XpblWgAHZHl8LeZcR/PTdKbzj7H2md9pEyZ1RBRY5Dv6SfCYVSiZYxvNBABr/5hgtkmDa\nq4APuzl4z7FWsYODsRotgH41rBjHCAuEBcICYYGwQPUsEEC/eraMI4UFwgJhgbBAWOAzCwTQHzcJ\nMMxkMgy8jyT4YcCs06RdyEIE2pGRCOBIWYsC7IIhLknAyO8y+993lv0KWAH6fRDct8/8Wx3gUWyN\nkiE4oIx8sjKRTjE4K4kCRoAIzcFK8e9m+nO9gX6PtLy7BGaBtIApAH+/sqMZsetkjUALUJY5Knbm\nD9mJajd2Vpw7ezb78dwZZWMfnfbhycq3osmCt48HHmfttyWzcvu2xg7zPfyGrGruwQpL5oVwgWTI\nrQCikVaZTW2mgT72MSErjcBhMpWThNZA1qvAD9riwPBeSZAUGwASTfEl0hZfnBcf9SCaPdeFL9s5\nOI86BU/fKxvf5WqKvwNs71QmPlnzZOSzm4Ksa3ZXAPgJJlFA+0uBOoCpQ1iCETcl2UKgh9oKFFv1\nYtH4B+tF6pL/Uk0I83eBfgJa47B/Xbp2rXvIwVAcdgh4L/8DyGI3diHwO6sXUPo8ZjuGOA6FeFmf\nPEgB2GcnwBLJhy3VNUw3m7xgVvsYQP/rgT5+MKI5dL8gCMoupjvqBLeK7zPWzeKauFjPwSKBeJ4H\n/FLh6dI7rThXnIP3phfi5XPylzH7u6X4gQJaBAvQyj908KCNO/Qs2O6oXM6qeMxKPwfQr9Ry8Xdh\ngbBAWCAsEBaojQUC6NfGrnHUsEBYICwQFggLmAUC6I87AhCuWCSXjO8uNLHzrN6n0r13/fsPAhf2\nXQENtM4NaGicCJRL4F/w1cHggjx7n3+jS+wgpalxT3ZAEBio36jPCc4mqQy+M1tavYF+V3dPHmzp\nMi1xJHiQlGBkLmZLO6yCjz//9GP2888/ZiePH//iZeF/tGcqJokWNRIrZJO7TEa37hvQ6n6E5Ilr\nsZ+SHnuDIBkZ2J6N/cUTzuAXZhroF2+NZzJlKStbWRnLQHyCIx0dHWZbfk8vPsP8OwVOUvDk48c0\nN8XjFj8zJ/4cp3H832T8J7kR7b5R0AW4v2O75HA0Avun2wClZOHT2Vlw61abCquqgLf6kCS8Eux/\no6DkiORzEmQFsBYbkJ/dB2TVA+RF9EsAFvCLf3lWPvfvjXUMOG8Z14K8/O0mk9XZaJroZF+3tCAv\n1ZytlDxYqYiq7FJJC6D/9UCf9YQ59PcUuvnFQCjvsvROe2q7x5Bc8ufA/q70DEzu+/5+S2tSCkqh\ns8+/AflpFweydKtyCbl92UG937YqUL2U3VL6Dt+rRgugXw0rxjHCAmGBsEBYICxQPQsE0K+eLeNI\nYYGwQFggLBAW+MwCAfTHTQIAcQjyUZ8fqyjkw0ePMwD2oGAxhWyfP08QxGR0BMCAYHwmQ/atpFLI\nouUY3oB7y5YpQ3Fpkngh63fJosUGx8hidR1+QCza07sapIGuDvDgZ/57AMlsafUG+hR27FawBakd\noDeyNM+YFwGqIoSst732S37k9OlT2ZnvTysr9dCUl2N+l/vfgLLJkcVAHgaY//Ah2uyPTJ99VFnU\nSQZmifTYl2enTp7IgPmnTpzItm/fpqxoAFnKzp7yhDP8y3oCfXzCJUHe6BkdkHxWX38q9Ark9N/Z\naM9wepaHVcMA6RyDnALjxed6ovnI6l8ufXyTt5kwrlcW/nZpn2/V883Iv02CRyPyJtNtDlsZCUwg\noWJFT6WN/lz65QBNdg/9f3t3/+RGkZgBWNiG48OGxNjmCPiKQFWqUnc58v//EblU5X65JIC5C1TA\nNlywARt/pd+We1feW+1ao9FoRvOIUo13V5rpfro1Kt7p6f6hTNV0P/O0l6lxsl0tdwL5BO51Id4y\nvVBOVdlf7iDKaPw2HVjOaaufpbwvFxjbQuCZXz1TO2XKlOvlXJV65fyVed4zGjsXLXPOOnlXw8vW\nVaC/faAf67RhvsuelW36RrtLJeeYet6sC7YvF2jPd1idVq5s2/dbtukf6x65IP3qyt0gdTT+85A+\nIX7u4MgFpFwAyiK7bW2H3MWRC0TtuW7/m/xeoL+JltcSIECAAIHdCwj0d2/sCAQIECAwYwGB/ouN\nn/CrPTP1xP+VZwKyOtVOCcyWc+x/X0ax3qtzSWdE6/LvJVAr0/FkGoPVICyBRUbhvn3lct0mhE3g\nlXncE6r9XRm9ezWjZZ+HfBk5m7Av0xHUoOR56NE1GHuxdv38tO9APwsXJ8z885//Ui+2ZPR1bYMS\ncj47ZyR1PwIvt5fcZfG73/128fuXmEO/Bm8J38ozizHXkddlBPaf/vNPNazNqP2EtumbLTS+UvpU\ngvxPS6ifOwB+XdZguFimV8kc6mO6oyNa+wz0Y5ZR7ZkOJ9v0lVguTb+vn9nmWxf3LJ/hv2bu8TLv\neBYf/iVT6ZSpS1Y/1yd7QIL5FlzW7d8fB5mZOz/zyicEzzbrbNQ1N8q89pna5GUfOX7qkm2C91zA\n+u75XUPLu1SWi5/m4mMbfZ1FbFfLnZC9TcWTaYVy6TFhb0Lfp89D/TZlSo7VHglq26KsWbD7Rulr\nueh448ZyHvTjxaaz7kCpU+5CKm/uet4S6PcT6KcN2zN9Zrkuwo91WqX0+VwI/b5eEM35JT8vLwzV\naZfK9EtZyD2fmXWP9KV8p7U7gxLi53st21y4Wl70KX2k9JOE+Fk8PtvVNWH6OlcJ9Ne1kt8TIECA\nAIH9CAj09+PuqAQIECAwEwGB/vqGPpoXuIxQzOj7F4OPEoCUICSjHrNIZeY6z8K5mat7dURjgrB3\nr14tYV55lm1C2MtlMcq3Lr9VA8D3yojWXz8f3ZpgJPNOJyTJhYA8ugZi62u1/V/2HehnVHXmy0/w\nfadMPVJHI2dEcnmuhpfb13S7PWRx438qC59mXvGsj3DWYzlKernGQtYI+Lc//KE8/33xH3/84+Ln\nn8uCyqX/ZcT4pXJ3R0ZJZ9HRBMefliD/Xz/9fZ1L//q1a6PsL6n3PgP95t4C6gTWv5Q7axIa53Od\nUcvp0/9b7sbJ57c9b9++uxypXILQ80Yq56JdLqjcKCF3gu8scJ3AO9t87hNkttHt24bdqU/6S+ZH\nTx1yl9DX5S6O/ykXuuqz3LXydT4fWVuifEZWz0d573nnlOaU17ZHAtuPy9z/Wdvj4zL/f+ZAr+et\nUtec2+rUYeXiRLbn7b/t86ytQL+fQH/VeBns5zdlzYfyGVgG+MvvsNrnS//PuTWfh3ZBKNv0r3WP\nXJzOuaiek8pnIBek66LSZZvPQkbkf/BBppf6h3qRMf0jd3ukj/TRT1bLJdBf1fBvAgQIECCwfwGB\n/v7bQAkIECBA4IAFxhzo53/Q/1LCqYRUX5dFT9uI2vz+4cNfjlolI/zqSOh/+W1dfDTBZh+PhMPt\nmfCsjVq8V0bnHy0emVGMZcTvcdn+doT+UeBRgo83y3QcGZ2fEboZyZiwLyN4r5ZtwvyEHXn2NWqx\nD4eT+9h3oL8Mm+7WCykZRV2nCXn4YPGwBK+nhZEnyz/UzxmRnVC/TaF01nHTz9pc1wmWs2Brnp+X\nxSvbCPGEnOkbbRqmjIL9pASsdf7ysk1oPNbHGAL9ZpOAuy7kWULNfK7b1CPLEctlxH45v+RCXUbp\nr9o/LYtar3vkromMSG532KzecZO7bTLNTWu3dfvY5PfpL60O2WY6sNt3bpepwe7U6cG+PdrerlPp\nZEqdei7Lwtz59/Pt6jETsOa8U+/yKNsLZRHpjOjPQtJvlHNWFvTN3P/Z5k6DnLdS54S5eV199hTU\nHmKgn36XC0NtWqNcuPuvsjjzf3/2WQ3SV9vivTKiPeeNTFOTCydtiqZ45xyw7SN9oX6flTvMcpfZ\nX8vI/JxXcwdaPgc/lDUZ8r2W7dkj9F+tfXs5Qv/NxZVyTqoXrcs2n4Vr7147WmvhqI9sMRXTWfUW\n6J+l428ECBAgQGB4AYH+8OaOSIAAAQIzEhhzoJ9FHvM/6XV+6BKwZY7rH38sz59+rIs+tmZ6pQQE\ndW7eEoAkQE2o0Mcj4XCdf7hsE5rVeYXraN3lvPkPSoicBSgzenpZth/rdjVUvlCCsUwvkAA/oxnr\ndBeZRqfMuZ0FAZdBXwn7ynzWLchvwUcfddjFPvYd6KfP3i/zgyeIin0Cp0ePM53K2fOc78LirH2m\nH7YRq7moc9ajzXOdvpMphOqI2XLHR+5AyJ0i6X9ZtDIha/pQLv7k7o8b1zPlyfU6tUX62FgfYwr0\na7CdCyhxLc/0p+VzeW5p55n0rWP7s/tWpsdqgf1ReF8+0/ldPv+vlbZqd9/00UbpJ6sLeLeFbHOx\nMSFs5thvz1y0yGfjcf2MLKcdqp+ZMpXQ8aQ6ixrIZ/2FrMOQ8i7nN79UpgXK+gCv13nQ60WLcmdI\n+nbq+WapY+pXR1wn1C+Bfh+PQwz00++qe85XpT3u3L2zvKurTJH0Q2mv1Ufu+GjWuVDXFpeNeb4f\ntn3kfJMLoA+O1oDJd2vWXFhu64WH0v9z8eGshcZz8SdrwbS+XaeTS18v68ak7+eiY/pKtm1Ufttu\nW4eT7xfonxTxMwECBAgQ2K+AQH+//o5OgAABAgcukP+J//zzz+qUGFmE8/3331/8c1nAM8+bN2/u\ntfYJMRPstKkl8nN7Pl2ZKz0BQUbItkCtTVfTR+FbOJ8wJgHg8rkc5Xr0cwlaHz85LlvJSo4eFy60\nUa/Lec0vJvRqzxL2Zw7tBPl55sJEm3c6dRrrY9+BfvpACygTuLaANvPn57+xPBKEtrDrvD7Z+llK\n/6j0+TaKN8Fa/pb+/uzZ0xqKXSgjpms/Kv0nCy4nUP1VeWY6i7E+xhTox7M+C1bmj2/nlDZ3fC6c\n1N+Vz/Sq/ern+qTzxXKh5VJdv6B9npdTi6xepMvo9z7C2Hbso3qUguXzkItaj0tYnPNlvciYQLY8\nc9Ex06bUBbyfX4SsYW75ffpUeyScTUDfzqMJZ3PRqIb8ZVHvN7K4d/ldnunby/NW6Ys5dz3fSV/n\nrUMM9FtfelrM0+/qxeAyjVY+47kTZPXxWrnom3NHuwDcviPq90QP3w3Lshx/p/3NZ+Douy7n1/Xn\n1Hy/HZ+Pyt0cpY/njo76ecj3Wi5et++35+Xuq4+seuXfAv2TIn4mQIAAAQL7FRDo79ff0QkQIEDg\nwAXGHOgfOP1kq7fvQH+ycDMu+JgC/UNvhqOR4PXC16M6Cnt1NPaDrMmQ0dn1YtGLgX69u6CMAr9c\nRldnarBflSA/F40SLOdiRLsguatQtrXNIQb6rW62uxEQ6O/G1V4JECBAgEBXAYF+VznvI0CAAAEC\nLyEg0H8JJC95QUCg/wKHH15CQKD/Ekg9vSSjrzPiuk0pdDzNy6PFL5nupYzgz4jwR49+KSP0jw+a\nwD7hfQ3xM+VOmRZsOe3OcjR+vbOojLLu8y6D46O/+C+B/osefjpfQKB/vpFXECBAgACBIQUE+kNq\nOxYBAgQIzE5AoD+7Jt+6wgL9rQlntwOB/nBN3qbiaVNRHc21n2lUXpg67EmZc+i4XK+U6VOOpw3K\ntClZGDdTqCynCcuo/PY8ftdu/iXQ343rIe9VoH/IratuBAgQIDBFAYH+FFtNmQkQIEBgMgIC/ck0\n1WgKKtAfTVNMpiAC/f00VcL91cfqz6v/rq9JYP/8xS9OqZMgf3Uvu/+3QH/3xod2BIH+obWo+hAg\nQIDA1AUE+lNvQeUnQIAAgVELCPRH3TyjLJxAf5TNMupCCfRH3TyjK5xAf3RNMvoCCfRH30QKSIAA\nAQIzExDoz6zBVZcAAQIEhhUQ6A/rfQhHE+gfQisOWweB/rDeUz+aQH/qLTh8+QX6w5s7IgECBAgQ\nOEtAoH+Wjr8RIECAAIEtBQT6WwLO8O0C/Rk2+pZVFuhvCTiztwv0Z9bgPVRXoN8Dol0QIECAAIEe\nBQT6PWLaFQECBAgQOCkg0D8p4ufzBAT65wn5+0kBgf5JET+fJSDQP0vH304TEOifpuJ3BAgQIEBg\nfwIC/f3ZOzIBAgQIzEBAoD+DRu65igL9nkFnsDuB/gwauccqCvR7xJzJrgT6M2lo1SRAgACByQgI\n9CfTVApKgAABAlMUEOhPsdX2W2aB/n79p3h0gf4UW21/ZRbo789+qkcW6E+15ZSbAAECBA5VQKB/\nqC2rXgQIECAwCgGB/iiaYVKFEOhPqrlGUViB/iiaYTKFEOhPpqlGU1CB/miaQkEIECBAgEAVEOjr\nCAQIECBAYIcCAv0d4h7orgX6B9qwO6yWQH+HuAe4a4H+ATbqjqsk0N8xsN0TIECAAIENBQT6G4J5\nOQECBAgQ2ERAoL+JltdGQKCvH2wqINDfVGzerxfoz7v9u9ReoN9FzXsIECBAgMDuBAT6u7O1ZwIE\nCBAgsBDo6wSbCgj0NxXzeoG+PrCJgEB/Ey2vjYBAXz8gQIAAAQLjEhDoj6s9lIYAAQIEDkxAoH9g\nDTpAdQT6AyAf2CEE+gfWoDuujkB/x8AHuHuB/gE2qioRIECAwKQFBPqTbj6FJ0CAAIGxCwj0x95C\n4yufQH98bTL2Egn0x95C4yqfQH9c7TGF0gj0p9BKykiAAAECcxIQ6M+ptdWVAAECBAYXEOgPTj75\nAwr0J9+Eg1dAoD84+aQPKNCfdPPtpfAC/b2wOygBAgQIEFgrINBfS+MPBAgQIEBgewGB/vaGc9uD\nQH9uLb59fQX62xvOaQ8C/Tm1dj91Fej342gvBAgQIECgLwGBfl+S9kOAAAECBE4REOifguJXZwoI\n9M/k8cdTBAT6p6D41VoBgf5aGn9YIyDQXwPj1wQIECBAYE8CAv09wTssAQIECMxDQKA/j3bus5YC\n/T4157Evgf482rmvWgr0+5Kcz34E+vNpazUlQIAAgWkICPSn0U5KSYAAAQITFRDoT7Th9lhsgf4e\n8Sd6aIH+RBtuT8UW6O8JfsKHFehPuPEUnQABAgQOUkCgf5DNqlIECBAgMBYBgf5YWmI65RDoT6et\nxlJSgf5YWmIa5RDoT6OdxlRKgf6YWkNZCBAgQIDAYiHQ1wsIECBAgMAOBQT6O8Q90F0L9A+0YXdY\nLYH+DnEPcNcC/QNs1B1XSaC/Y2C7J0CAAAECGwoI9DcE83ICBAgQILCJgEB/Ey2vjYBAXz/YVECg\nv6nYvF8v0J93+3epvUC/i5r3ECBAgACB3QkI9Hdna88ECBAgQGAh0NcJNhUQ6G8q5vUCfX1gEwGB\n/iZaXhsBgb5+QIAAAQIExiUg0B9XeygNAQIECByYgED/wBp0gOoI9AdAPrBDCPQPrEF3XB2B/o6B\nD3D3Av0DbFRVIkCAAIFJCwj0J918Ck+AAAECYxcQ6I+9hcZXPoH++Npk7CUS6I+9hcZVPoH+uNpj\nCqUR6E+hlZSRAAECBOYkINCfU2urKwECBAgMLiDQH5x88gcU6E++CQevgEB/cPJJH1CgP+nm20vh\nBfp7YXdQAgQIECCwVkCgv5bGHwgQIECAwPYCAv3tDee2B4H+3Fp8+/oK9Lc3nNMeBPpzau1+6irQ\n78fRXggQIECAQF8CAv2+JO2HAAECBAicIiDQPwXFr84UEOifyeOPpwgI9E9B8au1AgL9tTT+sEZA\noL8Gxq8JECBAgMCeBAT6e4J3WAIECBCYh4BAfx7t3GctBfp9as5jXwL9ebRzX7UU6PclOZ/9CPTn\n09ZqSoAAAQLTEBDoT6OdlJIAAQIEJiog0J9ow+2x2AL9PeJP9NAC/Yk23J6KLdDfE/yEDyvQn3Dj\nKToBAgQIHKSAQP8gm1WlCBAgQGAsAicD/atXry4++uij+nzvvffGUkzlGJHA3bt3F7du3arPr776\n6qi/pN+8/fbbIyqpooxFIP2k9ZmffvrphT7z6quvjqWYyjESgcePHx/1l/Sb119//ajPfPjhhyMp\npWKMSeDevXtHfebLL79cfPDBB4uPP/5k8cknnyyuX78+pqIqCwECBAgQmIWAQH8WzaySBAgQILAv\ngZOB/htvvFH/5/fatWuLd955Z1/FctwRC9y/f39x+/btxZ07dxbffffdUX9JaJL+40HgpED6SfpL\n+k1GX6ev5ByT7cWLF0++3M8zF3jy5MlRf0m/yUWf1l9y0dmDwEmBBw8e1PNL+266efOmQP8kkp8J\nECBAgMCAAgL9AbEdigABAgTmJ3Ay0I9AQtk8X3vttfmBqPG5Ao8ePVr8/PPP9fnw4cPaVzKCNn3m\n0qVL577fC+YnkH7S+kzC2naOyfaVV16ZH4ganynw7Nmzo/6SfpOLPu0ck60HgZMCOa+0c0y2v/nN\nbwT6J5H8TIAAAQIEBhQQ6A+I7VAECBAgMD+BTH9x69YXiy++uLX48stbiwRvHgQIECBAgACBqQpk\nhP5HdfrAf6x3d0y1HspNgAABAgSmKiDQn2rLKTcBAgQITEIgAf63336z+Oabb+s2cxd7ECBAgAAB\nAgSmKvDuu9cWWQfoxo0b1naZaiMqNwECBAhMWkCgP+nmU3gCBAgQGLtAAvwsJpd50e/fv7d48uTp\n2IusfAQIECBAgACBtQJvvfXW4sqVK4vLly/X6ZrWvtAfCBAgQIAAgZ0ICPR3wmqnBAgQIEBgKZC5\nijP3bJ5Pnz5d5GcPAgQIECBAgMBUBbLuwoULF+r6C9l6ECBAgAABAsMKCPSH9XY0AgQIECBAgAAB\nAgQIECBAgAABAgQIECDQSUCg34nNmwgQIECAAAECBAgQIECAAAECBAgQIECAwLACAv1hvR2NAAEC\nBAgQIECAAAECBAgQIECAAAECBAh0EhDod2LzJgIECBAgQIAAAQIECBAgQIAAAQIECBAgMKyAQH9Y\nb0cjQIAAAQIECBAgQIAAAQIECBAgQIAAAQKdBAT6ndi8iQABAgQIECBAgAABAgQIECBAgAABAgQI\nDCsg0B/W29EIECBAgAABAgQIECBAgAABAgQIECBAgEAnAYF+JzZvIkCAAAECBAgQIECAAAECBAgQ\nIECAAAECwwoI9If1djQCBAgQIECAAAECBAgQIECAAAECBAgQINBJQKDfic2bCBAgQIAAAQIECBAg\nQIAAAQIECBAgQIDAsAIC/WG9HY0AAQIECBAgQIAAAQIECBAgQIAAAQIECHQSEOh3YvMmAgQIECBA\ngAABAgQIECBAgAABAgQIECAwrIBAf1hvRyNAgAABAgQIECBAgAABAgQIECBAgAABAp0EBPqd2LyJ\nAAECBAgQIECAAAECBAgQIECAAAECBAgMKyDQH9bb0QgQIECAAAECBAgQIECAAAECBAgQIECAQCcB\ngX4nNm8iQIAAAQIECBAgQIAAAQIECBAgQIAAAQLDCgj0h/V2NAIECBAgQIAAAQIECBAgQIAAAQIE\nCBAg0ElAoN+JzZsIECBAgAABAgQIECBAgAABAgQIECBAgMCwAgL9Yb0djQABAgQIECBAgAABAgQI\nECBAgAABAgQIdBIQ6Hdi8yYCBAgQIECAAAECBAgQIECAAAECBAgQIDCsgEB/WG9HI0CAAAECBAgQ\nIECAAAECBAgQIECAAAECnQQE+p3YvIkAAQIECBAgQIAAAQIECBAgQIAAAQIECAwrINAf1tvRCBAg\nQIAAAQIECBAgQIAAAQIECBAgQIBAJwGBfic2byJAgAABAgQIECBAgAABAgQIECBAgAABAsMKCPSH\n9XY0AgQIECBAgAABAgQIECBAgAABAgQIECDQSUCg34nNmwgQIECAAAECBAgQIECAAAECBAgQIECA\nwLACAv1hvR2NAAECBAgQIECAAAECBAgQIECAAAECBAh0EhDod2LzJgIECBAgQIAAAQIECBAgQIAA\nAQIECBAgMKyAQH9Yb0cjQIAAAQIECBAgQIAAAQIECBAgQIAAAQKdBAT6ndi8iQABAgQIECBAgAAB\nAgQIECBAgAABAgQIDCsg0B/W29EIECBAgAABAgQIECBAgAABAgQIECBAgEAnAYF+JzZvIkCAAAEC\nBAgQIECAAAECBAgQIECAAAECwwoI9If1djQCBAgQIECAAAECBAgQIECAAAECBAgQINBJQKDfic2b\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIDAsAIC/WG9HY0AAQIECBAgQIAAAQIECBAgQIAAAQIECHQS\nEOh3YvMmAgQIECBAgAABAgQIECBAgAABAgQIECAwrIBAf1hvRyNAgAABAgQIECBAgAABAgQIECBA\ngAABAp0E/h8NNSg//qJhWwAAAABJRU5ErkJggg==\n" + } + }, + "cell_type": "markdown", + "id": "64fc2295-0840-4a40-842b-8329578348da", + "metadata": {}, + "source": [ + "- Let’s work on a real problem next!\n", + "\n", + "## Mergesort\n", + "\n", + "- Some lists don’t need to be sorted\n", + "\n", + " - Lists of size 1! This is our base case\n", + "\n", + "- We can split lists in half until they contain 1 element, then merge\n", + " all of the sub-lists\n", + "\n", + "- Python’s sort function uses a hybrid of merge and insertion sort,\n", + " both of which you’ve learned!\n", + "\n", + "![](attachment:images/merge_sort.png)\n", + "\n", + "## Big-O of Merge Sort\n", + "\n", + "First consider the non-recursive part of the code\n", + "\n", + "- The “divide” step takes linear time, since slicing operations take\n", + " roughly $n/2$ steps to make a left and right copy respectively.\n", + "\n", + "- The merge operation also takes $n$ steps approximately\n", + "\n", + "- All other operations are constants\n", + "\n", + "- Together, the non-recursive part of this algorithm is $O(n)$\n", + "\n", + "Next consider the recursive calls\n", + "\n", + "- Recall the big-O of recursion depends on the recursion depth and\n", + " number of calls. $O(branches^{depth})$\n", + "\n", + "- The depth in Merge Sort is the number of times you need to divide to\n", + " get to a list of length 1.\n", + "\n", + "- Mathematically, $2^{\\text{depth}} = n$, then\n", + " $\\text{depth} = \\text{log}n$. So there are approximately log $n$\n", + " levels\n", + "\n", + "## Big-O of Mergesort\n", + "\n", + "- Since the $O(n)$ steps must be performed each recursion, the total\n", + " run time is $O(n\\text{log}n)$. Our analysis only depended on the\n", + " size of the list, so the best and worst case of mergesort is the\n", + " same\n", + "\n", + "- This is much faster than insertion sort!\n", + "\n", + "- 2 minutes: does it have less space complexity than insertion sort?\n", + "\n", + "# Recommended Problems and References\n", + "\n", + "## Recommended Problems\n", + "\n", + "- Bhargava: Chapter 4 exercises\n", + "\n", + " - 4.1 to 4.8\n", + "\n", + "- Write a recursive function that produces the\n", + " `RecursionError: maximum recursion depth exceeded` error.\n", + "\n", + "- Write a iterative function to calculate the $n$th Fibonacci number.\n", + " What is its time and space complexity?\n", + "\n", + "- Write a recursive function to determine if a string is a palindrome.\n", + " What is its time and space complexity?\n", + "\n", + "- Write a recursive function to check if a given positive integer is a\n", + " prime number. What is its time and space complexity?\n", + "\n", + "## Recommended Problems\n", + "\n", + "- Suppose you have a plot of land and want to divide the land into\n", + " even square plots, while keeping the plots as big as possible. How\n", + " would you do this using D&C? See Bhargava pg. 52.\n", + "\n", + "- Explain why the “merge” step in mergesort is $O(n)$\n", + "\n", + "- Implement mergesort. You might find using helper functions useful.\n", + "\n", + "- Write a recursive function to perform binary search on a sorted list\n", + "\n", + "## Bonus Readings\n", + "\n", + "- You may be interested in learning more about quicksort in Bhargava\n", + " chapter 4 or\n", + " [here](https://www.teach.cs.toronto.edu/~csc148h/winter/notes/recursive-sorting/recursive_sorting.html).\n", + " Quicksort is another recursive sorting method\n", + "\n", + "## References\n", + "\n", + "- Bhargava, A. Y. (2016). *Grokking algorithms: An illustrated guide\n", + " for programmers and other curious people.* Manning. Chapter 3 and 4.\n", + "\n", + "- Cormen, T. H. (Ed.). (2009). *Introduction to algorithms* (3rd ed).\n", + " MIT Press. Chapter 4." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": "3" + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/01_slides/4_recursive_ds.ipynb b/01_slides/4_recursive_ds.ipynb new file mode 100644 index 0000000..bf2d95d --- /dev/null +++ b/01_slides/4_recursive_ds.ipynb @@ -0,0 +1,755 @@ +{ + "cells": [ + { + "attachments": { + "images/tree_num.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAENCAYAAAAMmd6uAAAelHRFWHRteGZpbGUAJTNDbXhmaWxl\nJTIwaG9zdCUzRCUyMmFwcC5kaWFncmFtcy5uZXQlMjIlMjBtb2RpZmllZCUzRCUyMjIwMjMtMTIt\nMjhUMjAlM0EwNCUzQTQ4LjcyM1olMjIlMjBhZ2VudCUzRCUyMk1vemlsbGElMkY1LjAlMjAoTWFj\naW50b3NoJTNCJTIwSW50ZWwlMjBNYWMlMjBPUyUyMFglMjAxMC4xNSUzQiUyMHJ2JTNBMTIxLjAp\nJTIwR2Vja28lMkYyMDEwMDEwMSUyMEZpcmVmb3glMkYxMjEuMCUyMiUyMGV0YWclM0QlMjJpTmst\nT0tyQ1RfbS1BaVlFZURpdSUyMiUyMHZlcnNpb24lM0QlMjIyMi4xLjE1JTIyJTNFJTBBJTIwJTIw\nJTNDZGlhZ3JhbSUyMG5hbWUlM0QlMjJQYWdlLTElMjIlMjBpZCUzRCUyMjEwYTkxYzhiLTA5ZmYt\nMzFiMS1kMzY4LTAzOTQwZWQ0Y2M5ZSUyMiUzRSUwQSUyMCUyMCUyMCUyMCUzQ214R3JhcGhNb2Rl\nbCUyMGR4JTNEJTIyOTg0JTIyJTIwZHklM0QlMjI2NjIlMjIlMjBncmlkJTNEJTIyMSUyMiUyMGdy\naWRTaXplJTNEJTIyMTAlMjIlMjBndWlkZXMlM0QlMjIxJTIyJTIwdG9vbHRpcHMlM0QlMjIxJTIy\nJTIwY29ubmVjdCUzRCUyMjElMjIlMjBhcnJvd3MlM0QlMjIxJTIyJTIwZm9sZCUzRCUyMjElMjIl\nMjBwYWdlJTNEJTIyMSUyMiUyMHBhZ2VTY2FsZSUzRCUyMjElMjIlMjBwYWdlV2lkdGglM0QlMjIx\nMTAwJTIyJTIwcGFnZUhlaWdodCUzRCUyMjg1MCUyMiUyMGJhY2tncm91bmQlM0QlMjJub25lJTIy\nJTIwbWF0aCUzRCUyMjAlMjIlMjBzaGFkb3clM0QlMjIwJTIyJTNFJTBBJTIwJTIwJTIwJTIwJTIw\nJTIwJTNDcm9vdCUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214Q2VsbCUyMGlkJTNE\nJTIyMCUyMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214Q2VsbCUyMGlk\nJTNEJTIyMSUyMiUyMHBhcmVudCUzRCUyMjAlMjIlMjAlMkYlM0UlMEElMjAlMjAlMjAlMjAlMjAl\nMjAlMjAlMjAlM0NteENlbGwlMjBpZCUzRCUyMlhyQ09JTDBUeHAzbUdUUWJzYjFpLTQlMjIlMjBz\ndHlsZSUzRCUyMnJvdW5kZWQlM0QwJTNCb3J0aG9nb25hbExvb3AlM0QxJTNCamV0dHlTaXplJTNE\nYXV0byUzQmh0bWwlM0QxJTNCZW50cnlYJTNEMSUzQmVudHJ5WSUzRDAlM0JlbnRyeUR4JTNEMCUz\nQmVudHJ5RHklM0QwJTNCZXhpdFglM0QwJTNCZXhpdFklM0QxJTNCZXhpdER4JTNEMCUzQmV4aXRE\neSUzRDAlM0JlbmRBcnJvdyUzRG5vbmUlM0JlbmRGaWxsJTNEMCUzQiUyMiUyMHBhcmVudCUzRCUy\nMjElMjIlMjBzb3VyY2UlM0QlMjJYckNPSUwwVHhwM21HVFFic2IxaS0xJTIyJTIwdGFyZ2V0JTNE\nJTIyWHJDT0lMMFR4cDNtR1RRYnNiMWktMyUyMiUyMGVkZ2UlM0QlMjIxJTIyJTNFJTBBJTIwJTIw\nJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhHZW9tZXRyeSUyMHJlbGF0aXZlJTNEJTIyMSUy\nMiUyMGFzJTNEJTIyZ2VvbWV0cnklMjIlMjAlMkYlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAl\nMjAlM0MlMkZteENlbGwlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteENlbGwlMjBp\nZCUzRCUyMlhyQ09JTDBUeHAzbUdUUWJzYjFpLTElMjIlMjB2YWx1ZSUzRCUyMiUyNmx0JTNCZm9u\ndCUyMHN0eWxlJTNEJTI2cXVvdCUzQmZvbnQtc2l6ZSUzQSUyMDQycHglM0IlMjZxdW90JTNCJTI2\nZ3QlM0IxJTI2bHQlM0IlMkZmb250JTI2Z3QlM0IlMjIlMjBzdHlsZSUzRCUyMmVsbGlwc2UlM0J3\naGl0ZVNwYWNlJTNEd3JhcCUzQmh0bWwlM0QxJTNCYXNwZWN0JTNEZml4ZWQlM0IlMjIlMjBwYXJl\nbnQlM0QlMjIxJTIyJTIwdmVydGV4JTNEJTIyMSUyMiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUy\nMCUyMCUyMCUyMCUzQ214R2VvbWV0cnklMjB4JTNEJTIyNDkwJTIyJTIweSUzRCUyMjc2JTIyJTIw\nd2lkdGglM0QlMjI2MCUyMiUyMGhlaWdodCUzRCUyMjYwJTIyJTIwYXMlM0QlMjJnZW9tZXRyeSUy\nMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQyUyRm14Q2VsbCUzRSUwQSUy\nMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214Q2VsbCUyMGlkJTNEJTIyWHJDT0lMMFR4cDNtR1RR\nYnNiMWktMyUyMiUyMHZhbHVlJTNEJTIyJTI2bHQlM0Jmb250JTIwc3R5bGUlM0QlMjZxdW90JTNC\nZm9udC1zaXplJTNBJTIwNDJweCUzQiUyNnF1b3QlM0IlMjZndCUzQjIlMjZsdCUzQiUyRmZvbnQl\nMjZndCUzQiUyMiUyMHN0eWxlJTNEJTIyZWxsaXBzZSUzQndoaXRlU3BhY2UlM0R3cmFwJTNCaHRt\nbCUzRDElM0Jhc3BlY3QlM0RmaXhlZCUzQiUyMiUyMHBhcmVudCUzRCUyMjElMjIlMjB2ZXJ0ZXgl\nM0QlMjIxJTIyJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhHZW9tZXRy\neSUyMHglM0QlMjIzNzAlMjIlMjB5JTNEJTIyMTcwJTIyJTIwd2lkdGglM0QlMjI2MCUyMiUyMGhl\naWdodCUzRCUyMjYwJTIyJTIwYXMlM0QlMjJnZW9tZXRyeSUyMiUyMCUyRiUzRSUwQSUyMCUyMCUy\nMCUyMCUyMCUyMCUyMCUyMCUzQyUyRm14Q2VsbCUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUy\nMCUzQ214Q2VsbCUyMGlkJTNEJTIyWHJDT0lMMFR4cDNtR1RRYnNiMWktNSUyMiUyMHZhbHVlJTNE\nJTIyJTI2bHQlM0Jmb250JTIwc3R5bGUlM0QlMjZxdW90JTNCZm9udC1zaXplJTNBJTIwNDJweCUz\nQiUyNnF1b3QlM0IlMjZndCUzQjMlMjZsdCUzQiUyRmZvbnQlMjZndCUzQiUyMiUyMHN0eWxlJTNE\nJTIyZWxsaXBzZSUzQndoaXRlU3BhY2UlM0R3cmFwJTNCaHRtbCUzRDElM0Jhc3BlY3QlM0RmaXhl\nZCUzQiUyMiUyMHBhcmVudCUzRCUyMjElMjIlMjB2ZXJ0ZXglM0QlMjIxJTIyJTNFJTBBJTIwJTIw\nJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhHZW9tZXRyeSUyMHglM0QlMjI2MTAlMjIlMjB5\nJTNEJTIyMTcwJTIyJTIwd2lkdGglM0QlMjI2MCUyMiUyMGhlaWdodCUzRCUyMjYwJTIyJTIwYXMl\nM0QlMjJnZW9tZXRyeSUyMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQyUy\nRm14Q2VsbCUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214Q2VsbCUyMGlkJTNEJTIy\nWHJDT0lMMFR4cDNtR1RRYnNiMWktNiUyMiUyMHN0eWxlJTNEJTIycm91bmRlZCUzRDAlM0JvcnRo\nb2dvbmFsTG9vcCUzRDElM0JqZXR0eVNpemUlM0RhdXRvJTNCaHRtbCUzRDElM0JlbnRyeVglM0Qw\nJTNCZW50cnlZJTNEMCUzQmVudHJ5RHglM0QwJTNCZW50cnlEeSUzRDAlM0JleGl0WCUzRDElM0Jl\neGl0WSUzRDElM0JleGl0RHglM0QwJTNCZXhpdER5JTNEMCUzQmVuZEFycm93JTNEbm9uZSUzQmVu\nZEZpbGwlM0QwJTNCJTIyJTIwcGFyZW50JTNEJTIyMSUyMiUyMHNvdXJjZSUzRCUyMlhyQ09JTDBU\neHAzbUdUUWJzYjFpLTElMjIlMjB0YXJnZXQlM0QlMjJYckNPSUwwVHhwM21HVFFic2IxaS01JTIy\nJTIwZWRnZSUzRCUyMjElMjIlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0Nt\neEdlb21ldHJ5JTIwcmVsYXRpdmUlM0QlMjIxJTIyJTIwYXMlM0QlMjJnZW9tZXRyeSUyMiUzRSUw\nQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214UG9pbnQlMjB4JTNEJTIy\nNTE5JTIyJTIweSUzRCUyMjEzMSUyMiUyMGFzJTNEJTIyc291cmNlUG9pbnQlMjIlMjAlMkYlM0Ul\nMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteFBvaW50JTIweCUzRCUy\nMjQ2MSUyMiUyMHklM0QlMjIxODklMjIlMjBhcyUzRCUyMnRhcmdldFBvaW50JTIyJTIwJTJGJTNF\nJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDJTJGbXhHZW9tZXRyeSUzRSUwQSUy\nMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQyUyRm14Q2VsbCUzRSUwQSUyMCUyMCUyMCUyMCUyMCUy\nMCUyMCUyMCUzQ214Q2VsbCUyMGlkJTNEJTIyWHJDT0lMMFR4cDNtR1RRYnNiMWktNyUyMiUyMHZh\nbHVlJTNEJTIyJTI2bHQlM0Jmb250JTIwc3R5bGUlM0QlMjZxdW90JTNCZm9udC1zaXplJTNBJTIw\nNDJweCUzQiUyNnF1b3QlM0IlMjZndCUzQjQlMjZsdCUzQiUyRmZvbnQlMjZndCUzQiUyMiUyMHN0\neWxlJTNEJTIyZWxsaXBzZSUzQndoaXRlU3BhY2UlM0R3cmFwJTNCaHRtbCUzRDElM0Jhc3BlY3Ql\nM0RmaXhlZCUzQiUyMiUyMHBhcmVudCUzRCUyMjElMjIlMjB2ZXJ0ZXglM0QlMjIxJTIyJTNFJTBB\nJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhHZW9tZXRyeSUyMHglM0QlMjIyOTUl\nMjIlMjB5JTNEJTIyMjgwJTIyJTIwd2lkdGglM0QlMjI2MCUyMiUyMGhlaWdodCUzRCUyMjYwJTIy\nJTIwYXMlM0QlMjJnZW9tZXRyeSUyMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUy\nMCUzQyUyRm14Q2VsbCUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214Q2VsbCUyMGlk\nJTNEJTIyWHJDT0lMMFR4cDNtR1RRYnNiMWktOCUyMiUyMHZhbHVlJTNEJTIyJTI2bHQlM0Jmb250\nJTIwc3R5bGUlM0QlMjZxdW90JTNCZm9udC1zaXplJTNBJTIwNDJweCUzQiUyNnF1b3QlM0IlMjZn\ndCUzQjUlMjZsdCUzQiUyRmZvbnQlMjZndCUzQiUyMiUyMHN0eWxlJTNEJTIyZWxsaXBzZSUzQndo\naXRlU3BhY2UlM0R3cmFwJTNCaHRtbCUzRDElM0Jhc3BlY3QlM0RmaXhlZCUzQiUyMiUyMHBhcmVu\ndCUzRCUyMjElMjIlMjB2ZXJ0ZXglM0QlMjIxJTIyJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIw\nJTIwJTIwJTIwJTNDbXhHZW9tZXRyeSUyMHglM0QlMjI0NDUlMjIlMjB5JTNEJTIyMjgwJTIyJTIw\nd2lkdGglM0QlMjI2MCUyMiUyMGhlaWdodCUzRCUyMjYwJTIyJTIwYXMlM0QlMjJnZW9tZXRyeSUy\nMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQyUyRm14Q2VsbCUzRSUwQSUy\nMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214Q2VsbCUyMGlkJTNEJTIyWHJDT0lMMFR4cDNtR1RR\nYnNiMWktOSUyMiUyMHZhbHVlJTNEJTIyJTI2bHQlM0Jmb250JTIwc3R5bGUlM0QlMjZxdW90JTNC\nZm9udC1zaXplJTNBJTIwNDJweCUzQiUyNnF1b3QlM0IlMjZndCUzQjYlMjZsdCUzQiUyRmZvbnQl\nMjZndCUzQiUyMiUyMHN0eWxlJTNEJTIyZWxsaXBzZSUzQndoaXRlU3BhY2UlM0R3cmFwJTNCaHRt\nbCUzRDElM0Jhc3BlY3QlM0RmaXhlZCUzQiUyMiUyMHBhcmVudCUzRCUyMjElMjIlMjB2ZXJ0ZXgl\nM0QlMjIxJTIyJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhHZW9tZXRy\neSUyMHglM0QlMjI1MzUlMjIlMjB5JTNEJTIyMjgwJTIyJTIwd2lkdGglM0QlMjI2MCUyMiUyMGhl\naWdodCUzRCUyMjYwJTIyJTIwYXMlM0QlMjJnZW9tZXRyeSUyMiUyMCUyRiUzRSUwQSUyMCUyMCUy\nMCUyMCUyMCUyMCUyMCUyMCUzQyUyRm14Q2VsbCUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUy\nMCUzQ214Q2VsbCUyMGlkJTNEJTIyWHJDT0lMMFR4cDNtR1RRYnNiMWktMTIlMjIlMjBzdHlsZSUz\nRCUyMnJvdW5kZWQlM0QwJTNCb3J0aG9nb25hbExvb3AlM0QxJTNCamV0dHlTaXplJTNEYXV0byUz\nQmh0bWwlM0QxJTNCZW50cnlYJTNEMSUzQmVudHJ5WSUzRDElM0JlbnRyeUR4JTNEMCUzQmVudHJ5\nRHklM0QwJTNCZXhpdFglM0QwJTNCZXhpdFklM0QwJTNCZXhpdER4JTNEMCUzQmV4aXREeSUzRDAl\nM0JlbmRBcnJvdyUzRG5vbmUlM0JlbmRGaWxsJTNEMCUzQiUyMiUyMHBhcmVudCUzRCUyMjElMjIl\nMjBzb3VyY2UlM0QlMjJYckNPSUwwVHhwM21HVFFic2IxaS04JTIyJTIwdGFyZ2V0JTNEJTIyWHJD\nT0lMMFR4cDNtR1RRYnNiMWktMyUyMiUyMGVkZ2UlM0QlMjIxJTIyJTNFJTBBJTIwJTIwJTIwJTIw\nJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhHZW9tZXRyeSUyMHJlbGF0aXZlJTNEJTIyMSUyMiUyMGFz\nJTNEJTIyZ2VvbWV0cnklMjIlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAl\nMjAlM0NteFBvaW50JTIweCUzRCUyMjU0OSUyMiUyMHklM0QlMjIxMzElMjIlMjBhcyUzRCUyMnNv\ndXJjZVBvaW50JTIyJTIwJTJGJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIw\nJTIwJTNDbXhQb2ludCUyMHglM0QlMjI0MzElMjIlMjB5JTNEJTIyMTg5JTIyJTIwYXMlM0QlMjJ0\nYXJnZXRQb2ludCUyMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUz\nQyUyRm14R2VvbWV0cnklM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0MlMkZteENlbGwl\nM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteENlbGwlMjBpZCUzRCUyMlhyQ09JTDBU\neHAzbUdUUWJzYjFpLTEzJTIyJTIwc3R5bGUlM0QlMjJyb3VuZGVkJTNEMCUzQm9ydGhvZ29uYWxM\nb29wJTNEMSUzQmpldHR5U2l6ZSUzRGF1dG8lM0JodG1sJTNEMSUzQmVudHJ5WCUzRDElM0JlbnRy\neVklM0QwJTNCZW50cnlEeCUzRDAlM0JlbnRyeUR5JTNEMCUzQmV4aXRYJTNEMCUzQmV4aXRZJTNE\nMSUzQmV4aXREeCUzRDAlM0JleGl0RHklM0QwJTNCZW5kQXJyb3clM0Rub25lJTNCZW5kRmlsbCUz\nRDAlM0IlMjIlMjBwYXJlbnQlM0QlMjIxJTIyJTIwc291cmNlJTNEJTIyWHJDT0lMMFR4cDNtR1RR\nYnNiMWktMyUyMiUyMHRhcmdldCUzRCUyMlhyQ09JTDBUeHAzbUdUUWJzYjFpLTclMjIlMjBlZGdl\nJTNEJTIyMSUyMiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214R2VvbWV0\ncnklMjByZWxhdGl2ZSUzRCUyMjElMjIlMjBhcyUzRCUyMmdlb21ldHJ5JTIyJTNFJTBBJTIwJTIw\nJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhQb2ludCUyMHglM0QlMjI1NTklMjIl\nMjB5JTNEJTIyMTQxJTIyJTIwYXMlM0QlMjJzb3VyY2VQb2ludCUyMiUyMCUyRiUzRSUwQSUyMCUy\nMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214UG9pbnQlMjB4JTNEJTIyNDQxJTIy\nJTIweSUzRCUyMjE5OSUyMiUyMGFzJTNEJTIydGFyZ2V0UG9pbnQlMjIlMjAlMkYlM0UlMEElMjAl\nMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0MlMkZteEdlb21ldHJ5JTNFJTBBJTIwJTIwJTIw\nJTIwJTIwJTIwJTIwJTIwJTNDJTJGbXhDZWxsJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIw\nJTNDbXhDZWxsJTIwaWQlM0QlMjJYckNPSUwwVHhwM21HVFFic2IxaS0xNSUyMiUyMHN0eWxlJTNE\nJTIycm91bmRlZCUzRDAlM0JvcnRob2dvbmFsTG9vcCUzRDElM0JqZXR0eVNpemUlM0RhdXRvJTNC\naHRtbCUzRDElM0JlbnRyeVglM0QxJTNCZW50cnlZJTNEMCUzQmVudHJ5RHglM0QwJTNCZW50cnlE\neSUzRDAlM0JleGl0WCUzRDAlM0JleGl0WSUzRDElM0JleGl0RHglM0QwJTNCZXhpdER5JTNEMCUz\nQmVuZEFycm93JTNEbm9uZSUzQmVuZEZpbGwlM0QwJTNCJTIyJTIwcGFyZW50JTNEJTIyMSUyMiUy\nMHNvdXJjZSUzRCUyMlhyQ09JTDBUeHAzbUdUUWJzYjFpLTUlMjIlMjB0YXJnZXQlM0QlMjJYckNP\nSUwwVHhwM21HVFFic2IxaS05JTIyJTIwZWRnZSUzRCUyMjElMjIlM0UlMEElMjAlMjAlMjAlMjAl\nMjAlMjAlMjAlMjAlMjAlMjAlM0NteEdlb21ldHJ5JTIwcmVsYXRpdmUlM0QlMjIxJTIyJTIwYXMl\nM0QlMjJnZW9tZXRyeSUyMiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUy\nMCUzQ214UG9pbnQlMjB4JTNEJTIyNDg5JTIyJTIweSUzRCUyMjE1MSUyMiUyMGFzJTNEJTIyc291\ncmNlUG9pbnQlMjIlMjAlMkYlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAl\nMjAlM0NteFBvaW50JTIweCUzRCUyMjM3MSUyMiUyMHklM0QlMjIyMDklMjIlMjBhcyUzRCUyMnRh\ncmdldFBvaW50JTIyJTIwJTJGJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTND\nJTJGbXhHZW9tZXRyeSUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQyUyRm14Q2VsbCUz\nRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUzQyUyRnJvb3QlM0UlMEElMjAlMjAlMjAlMjAlM0MlMkZt\neEdyYXBoTW9kZWwlM0UlMEElMjAlMjAlM0MlMkZkaWFncmFtJTNFJTBBJTNDJTJGbXhmaWxlJTNF\nJTBBRmQdUgAAIABJREFUeF7tXQm0jdX7fpFIFJGhUioVGkgoZCgR0UCIlDkqKkSimQwN5pQxZE7m\nopJQUUSaadBEShrILOrfs/uf+zv33HPu+Yb9zc+71l2tlT0++93P2d/e75Djn39FKESACBABIhB6\nBHKQ8EO/xpwgESACREAhQMKnIhABFxH46quvZN26dbJhwwbZvHmz5M2bV9asWSN79+6VypUry/vv\nvy/58+eX6tWry4EDB6Rs2bJyySWXSJUqVaR06dIujpRdhREBEn4YV5Vz8hUCb7zxhuBv2rRpki9f\nPmnRooUUKlRIypQpowj9uOOOUyR//PHHy759+xT5g+w3bdqk/nbt2iUzZ86UgwcPSqtWraRevXpy\n5ZVX+mqOHEwwECDhB2OdOMqAIfDXX3/J0KFDZfjw4XLBBRdIp06dpFq1anLqqadansm2bdtk9erV\nMm7cOPVDcM8990jPnj0lV65clttkxWghQMKP1npzti4g0L9/f8HfoEGD1Im8ePHi2nv96aef1BdD\nnz59pF+/ftK3b1/tfbDB8CFAwg/fmnJGHiEwY8YM6dixozz55JPStWtX10YxatQoRfgTJkyQm266\nybV+2VHwECDhB2/NOGIfIgCix707SBd38m4L7v0xhgIFCsj48ePd7p79BQQBEn5AForD9CcCsLip\nWbOmLFmyxBcPqcuWLZMbbrhBVq5cqax+KEQgHgESPvWBCFhE4KWXXpJXXnlFxowZI3ny5LHYiv5q\n+/fvlzvuuEMaN26syJ9CBGIIkPCpC0TAAgIvv/yyTJkyRebMmWOhtjtVQPidO3eW+vXru9Mhe/E9\nAiR83y8RB+g3BED2sJCZNWuW34aWZTzNmzeXtm3byjXXXOP7sXKAziNAwnceY/YQIgRwjTN79mxf\nn+wT4cZJv02bNrzeCZEeWp0KCd8qcqwXOQQQ9mD06NEyefLkwM29devWylELYRoo0UWAhB/dtefM\nTSKAuDe7d+925IH2xx9/VPftMXn44YdV/BxdgpANxYoVU2EbKNFFgIQf3bXnzE0gABv3li1bSp06\ndUzUMl50xIgR0q1bt4wKeAxu2rSp8QYMlHz99ddl7ty5MnbsWAOlWSSMCJDww7iqnJNWBOBBC/PL\n6dOna203vjFctXzwwQeOEj4ahyfujTfeKHjMpUQPARJ+9NacMzaJACJc/vbbb4550E6cOFF5ycaL\nEyd8tL9nzx4VwO3PP/80iQKLhwEBEn4YVpFzcAyBxx9/XAoWLOhIbBzcp+PrIf7uPjYRpwgf7eP6\nCM5ZCLxGiRYCJPxorTdnawIBhDhGjPrDhw+bqJW6KEIaIwHKl19+KRs3blRkn0qcJHz0mTNnTjl6\n9KjkyJFDy9zYSDAQIOEHY504Sg8QeOKJJyR37tzSo0cPLb2bIVenCR8RPUH6iKdPiQ4CJPzorDVn\nahKBEiVKqJO4rnj2fiJ8JFOpWrWqbN261SQqLB5kBEj4QV49jt0xBJCSECd8RJ/UJX4ifMzpiiuu\nkEceeURq166ta4psx+cIkPB9vkAcnjcI3H///cortVmzZtoG8MUXX8ihQ4eytAdnLoRYjhenr3TQ\nF2IBffLJJzJgwABtc2RD/kaAhO/v9eHoPELgtNNOk7Vr19rKQWt06DCRPPHEE10n/O+//15q1aol\n3333ndGhslzAESDhB3wBOXz9CMCSpmHDhsqaxg3xivAxt7POOkuWL18uZ555phtTZR8eI0DC93gB\n2L3/EIBHLcj+sccec2VwXhL+Aw88IBdddBFz4bqy0t53QsL3fg04Ap8hADPMkiVLSvfu3V0ZmZeE\n/9RTT8nOnTtV4nVK+BEg4Yd/jTlDkwggWchdd90lDRo0MFnTWnEvCX/x4sUq6fmiRYusDZ61AoUA\nCT9Qy8XBuoFAkyZNZOjQoVKqVCk3ulNxbbx4tMXktmzZIr179xYkdqGEHwESfvjXmDM0iQAcrT76\n6CMVP94N8ZLwf/rpJ2V+un37djemyj48RoCE7/ECsHv/IZA/f37ZsWOHiqPjhnhJ+AjgBo9iRNGk\nhB8BEn7415gzNIkAPFBXrFhhspb14l4SPkbt9nytI8WadhEg4dtFkPVDh0CUTviMjx869c12QiT8\naK03Z2sAgSjd4ePuvnLlyoKcupTwI0DCD/8ac4YmEUAKwCFDhkTCSufrr78WxA2ilY5JJQlocRJ+\nQBeOw3YOAdrhO4ctW/YWARK+t/izdx8icO+996qgaboSn6SbopePtvCwRb5ehIKmhB8BEn7415gz\nNIkAUg8ilDFj6ZgEjsV9jwAJ3/dLxAG6jQDutRFWAVEz3RAvT/iIkgkTVLe8it3Ak32kRoCET+0g\nAkkQQPC0d999VxAX32nxivARBx82+N9++63TU2T7PkGAhO+TheAw/IVAnz59pEKFCq6EDfaK8GfO\nnCmfffaZPP744/4Cn6NxDAESvmPQsuEgI/Dmm2+q1H9IDuK0eEX4yHbVv3//LOkVnZ4v2/cOARK+\nd9izZ58jcMopp8iGDRtUrBknZf/+/Vni9iBc8bXXXutYt1u3bpXq1avLDz/84FgfbNh/CJDw/bcm\nHJFPEIDJYo4cOaRXr14+GZG+YQwaNEiOPfZYgQkqJToIkPCjs9acqUkEjh49Knny5JEjR46YrOn/\n4vgh++eff/w/UI5QKwIkfK1wsrGwITBw4EApUKCAyoAVFhk+fLgcPHhQhVSgRAsBEn601puztYAA\nCB+JQhBFM+iya9cuge39H3/8EfSpcPwWECDhWwCNVaKFwOzZs2X+/Pkya9aswE+8adOm0rJlS0GA\nOEr0ECDhR2/NOWMLCNx2223SrFkzqVevnoXa/qiydOlSWbhwoYwZM8YfA+IoXEeAhO865OwwqAgg\n5eHOnTslX758gZsCbP3hPbx79+7AjZ0D1ocACV8flmwp5AisX79eRo0aJVOmTAncTG+99Vbp2bOn\nlC9fPnBj54D1IUDC14clW4oAAgsWLFCEjzv9oAgcuDp37iyNGjUKypA5TocQIOE7BCybDS8CiB2/\nbt06mTt3ru8nWaNGDeWxe9999/l+rByg8wiQ8J3HmD2ECIGOHTsKwhJ07dpVnn/+eV+f9EH0d955\npwwdOlSZYo4bNy5EK8GpWEGAhG8FNdaJHAKvvvqqNG/eXIYNGyYdOnRQ88f1zrx58+S5557LEgvH\nS4DwQNulSxcV6TN2jTN+/Hh1yn/xxRelbt26Xg6PfXuIAAnfQ/DZdTAQAMFv375dkSWcsOIFD7m1\na9dWJ30/ECl+mED0q1atUuGd4wVOV/jROuOMMwQ/AJToIUDCj96ac8YGEYDdOghyxIgR0r59+2xr\n4VEUhDphwoQsPwoGu7NVDH3juqlIkSJp7ewxRgRNww/Y1VdfbatfVg4WAiT8YK0XR+sSAu3atZMd\nO3YoUjQaUgFlQbr9+vWTbt26uTRSUddM6BNEbtSDFtc++DFDRi/Uo0QDARJ+NNaZszSIwJIlS5RH\n7ejRo6Vt27YGa2UuhoBrDz74oAwePFhuvvlmR9Ik4uF42rRp0rdvX9VP7969LY114sSJ0r17d/XD\nVr9+fUttsFJwECDhB2etOFKHEQDBw5N2zpw5tr1pEXp4yJAh6jqodOnSyg6+atWq6v7cqiAHLfLs\nIjQC8tDiK6JHjx5Wm8uot2fPHnXaR6IXWB5RwosACT+8a8uZGUTg5ZdfVoQHa5s2bdoYrGW82MqV\nK2XZsmUyffp0yZkzpwpeVrBgQSlTpoyUK1dO/bjgMRhXRyBf/CEL1qZNm9QfwiHMmDFDddiqVSsV\nz6dmzZrGB2Cw5KRJk1QYaPzgNWjQwGAtFgsSAiT8IK0Wx6odgdatW6tQwbjSOO6447S3n9ggTuZw\n2kLqxM2bN6usU2vWrFEkX6lSJfX/Qf7VqlWTQ4cOSdmyZaVixYpy6aWXSqlSpRwf3759+9SVVrFi\nxQQ/AJRwIUDCD9d6cjYGEVi8eLE61cMZCXFmKJkRmDx5srLlxw9hw4YNCU9IECDhh2QhOQ3jCIDg\ncU0CMsubN6/xihEriWsl/CgWLlw4kAHjIrZchqZLwjcEEwuFAQHEggeBwTLllltuCcOUXJnDCy+8\nILfffrv6gWQANlcgd6wTEr5j0LJhPyEAgt+7d68iLdybU8whcODAAfVjWahQIcEPACWYCJDwg7lu\nHLVBBBDvBkSFB0hYuFDsITB16lRB9i/8cF533XX2GmNt1xEg4bsOOTt0CwE4PeFkCnLKnTu3W92G\nvh9YD+FH9IQTThD8AFCCgwAJPzhrxZEaRACBzGBaCDKCzTvFGQTg6YvAcvhBvf76653phK1qRYCE\nrxVONuY1AiB4nEDhPJQrVy6vhxP6/g8fPqxO+8j3C8cyir8RIOH7e304OoMIIPsUiAek06JFC4O1\nWEwXAvAEhpcyfmhvuOEGXc2yHc0IkPA1A8rm3EcA8d+PHj2qrhYQuoDiDQJHjhxRV2nwWI6FgvBm\nJOw1FQIkfOpGYBF46aWX1Kl+1qxZ6r8UfyAwc+ZM5b2MH+AmTZr4Y1AchUKAhE9FCCQCIHhEpASp\n5MiRI5BzCPOg8cWFNYJ1FH6QKf5AgITvj3XgKAwiAILHFQ7+i+sDir8RmD17tsoJgPUympzF3zMK\n9uhI+MFev8iMHqd5nBhxRw8SoQQHgb///lutHaymuHberhsJ31v82bsBBEASMLfEKbFp06YGarCI\nHxHg15n3q0LC934NOIIUCPAeOJyqEXtgxw8AxV0ESPju4s3eDCKAhz4EPKOlh0HAAlYM9vogfny9\n0cLKvcUj4buHNXsygABsuUEAefLkEZj3UcKNAH0o3F1fEr67eLO3bBCIeWviVN+4cWNiFREE6CXt\n3kKT8N3Dmj2lQIDxWKgaQAAP89AF/OAzDpIzOkHCdwZXtmoQAcS+ad++PSMuGsQr7MXmzZunrvQY\n6dSZlSbhO4MrW02DQCymeoECBQRhdilEIB4B5jJwRh9I+M7gylazQYBZk6geRhCIZSubPHmy8tal\n2EeAhG8fQ7ZgEIGDBw+qcAjMi2oQMBZTCCA15b59+5iPWIM+kPA1gMgm0iOAxNedO3dW8dIbNWqU\nvgJLEIE4BBYuXKju9idOnKj8MyjWECDhW8ONtQwisH//frVRCxcuLFOmTDFYi8WIQHIEEHZ59+7d\n6uAAXw2KOQRI+ObwYmkTCODutUuXLupTvGHDhiZqsigRSI3A4sWL1dXg+PHjVdx9inEESPjGsWJJ\ngwjgvhWn+qJFi8qkSZMM1mIxImAOgdatW8sff/yhDhTIskVJjwAJPz1GLGECARD8XXfdpTbhNddc\nY6ImixIB8wi8/PLL6nDx3HPPqZy6lOwRIOFTQ7QgsGfPHrXxSpQoIc8//7yWNtkIETCKQNu2beXX\nX39VB418+fIZrRa5ciT8yC25/gmD4Lt166Y2W/369fV3wBaJgAEEXnnlFXXoGD16tOAHgJIVARI+\ntcIyAn/++afaYKeeeqoyl6MQAT8g0K5dO9mxY4c6gOTPn98PQ/LNGEj4vlmKYA1kwoQJcu+996pN\ndfXVVwdr8Bxt6BFYunSpOoyMHDlS8ANA+Q8BEr7PNOGrr76SdevWyYYNG2Tz5s2SN29eWbNmjezd\nu1cqV64s77//vjq1VK9eXQ4cOCBly5aVSy65RKpUqSKlS5d2fDawgYZJ3BlnnKHM4ihEwM8IIDDf\nTz/9pA4miNvktPh9/5LwndYAA+2/8cYbgj8EEcODU4sWLVT4gTJlyihCh8kZSP74449XLuYgf5D9\npk2b1N+uXbtUshCELoAber169eTKK6800LO5IiD4Xr16KaeXunXrmqvM0kTAIwReffVVddofNmyY\ndOjQQfsogrJ/ecLXvvTGG/zrr79k6NChMnz4cLngggukU6dOUq1aNXUfblW2bdsmq1evlnHjxqkf\ngnvuuUd69uxpO7Y4bJ2xYc4880zVNoUIBBGBjh07ytatW9WB5YQTTrA1hSDt3/iJ8oRva9mtVe7f\nv7/gb9CgQepEXrx4cWsNZVMLn7H4YujTp4/069dP+vbta6mPsWPHqjbwSXzVVVdZaoOViIBfEHj9\n9dfVleSQIUMEPwBWJEj7N3F+JHwrK26xDlL4QcmefPJJ6dq1q8VWzFcbNWqUInw8tCKHqBH5/fff\n1ake7wJjxowxUoVliEBgELjtttvk+++/VweZggULGhp3kPZvqgmR8A0ttf1CIHrcu4N0vXADx70/\nxoCHq3SPrSD4Bx54QG2GOnXq2J88WyACPkRg2bJl6lDzxBNPqCvV7CRI+ze7eZDwHVZEWNzUrFlT\nlixZ4shDqtnhQ8lvuOEGWblypbL6iRd4KmIDnHfeecpVnUIEooAAwnZ/88036oADY4l4CdL+NbJW\nJHwjKFks89JLLwm8/3Bi9lMoV4QsvuOOO6Rx48aK/CEg+Icfflgp/RVXXGFxxqxGBIKJACxtcNjB\nuxp+ACBB2r9GUSfhG0XKZDkEdUL8d1gE+FVA+DBTwwMWzD+fffZZvw6V4yICriBw++23C2zpEQBw\n+vTpvt+/+HEyE86EhO+AGoHsYSEza9YsB1rX22STJk2UExe8ZilEgAiIDBw4UHD1uWLFCt/Dga8S\nxA0yGpmWhK95SfEZOHv2bF+fDBKnjJM+QsvGrnc0Q8LmiEBgEAj7/iXha1RFhD1ApD5kegqaIJkE\nHLUQpoFCBKKIQBT2Lwlfo2Yj7g1izeh4oP3uu+9k3rx5yprmxx9/FHjRwqzzoosukgsvvFBZ0pQr\nV045Q+XMmdP2LBCyoVixYipsA4UIRBEBXfsXIU5wJYSrXdj6w7sXkWXhqX7uueeq/8K7Hmk/jznm\nGC1QG92/JHwtcIuycW/ZsqVtu/XffvtN7rzzTmUtY0Rq166t0giWKlXKSPFsy8ALce7cuQLvWgoR\niBICuvYv3u1g04+EQOkE5A8v+KZNm9oOf4K+jOxfEn66VTHw7/DAg/klXvXtyGeffaZs9X/55RfT\nzcAiCNcydgWeuDfeeKMyUaMQgSggoGv/3n333QKvdrNy/fXXq695HV/q6fYvCd/s6iQpjwiXOJnb\n8aDFJx8cob788kvLI8IdZKVKlSzXR0WcTBDADeOhEIEoIKBj/+Ldzk7c/aeeekoFOrQr6fYvCd8m\nwo8//riKxWE3Nk737t1V5MxE6d27t4qiiR+DIkWKKI9A3A0mUw6Ueffdd21/Ho4YMULgnIWgaRQi\nEGYEdOxfRJM96aSTssAEc2f8CFSoUEH5uSA+1XvvvafCliQ72H388cfqfc6uZLd/Sfg20EWIVMSo\nP3z4sI1WRD3G4sE08d4P9/iI7JdM8Bh0+eWXq8fceMF9vo58nvi8PHr0qOTIkcPW3FiZCPgVAV37\nF29ecNiKF5g644o32Vf/kSNHVJTcxHe6Z555Rrp06aIFrlT7l4RvA14EXcqdO7f06NHDRiv/uXAn\nEjuCrKVL1gB38MREJDfffLPttwRMBhE9oTQ6PjNtgcPKRMAhBHTtX5gyf/DBBxmjhCEFrHSys8CB\nVQ0SHMUf2LDfse91SKr9S8K3gW6JEiVk48aNtuPZwyonPljZaaedJj/88IOh03XVqlXVZ2JM8PL/\nxRdf2JjVf1WhiGgbJmUUIhBGBHTsX5zWceiLl+y+zOPLIZ5VfOjxihUrqtSmOiTV/iXhW0QXp2uc\nEPBLblcaNWqkrHxigi8GxLcxIolKgzo4PeAhyq4giNojjzwiOLFQiECYENC1f5Fo6JRTTskEzc8/\n/6yuaNMJclQgWFtMzjrrLNmyZUu6aob/Pdn+JeEbhi9zwfvvv195paa6YzfT7Pnnny+ff/55RhX8\n6sci9qVr57777hO88McLctyeeOKJ6aqm/XfYFH/yyScyYMCAtGVZgAgECQFd+xcPreXLl8809b//\n/tvQ1zlyTbz55psZdeGIBYMMXZJs/5LwLaKLa5e1a9faykEb6xqngXjb+0WLFsm1115raGSJSoNx\n6bqGwcNwrVq1BF6/FCIQJgR07V9c6axZsyYDmmOPPVYuu+yytFBt3749C3f06tVLvZ3pkmT7l4Rv\nAV2ET8WvsR2b+fhu4YoNi5iYwMU7V65caUf26aefZjHjwheHUS/dtB38WwCfmcuXL1fu4BQiEAYE\ndO9fs5igfzhYJlrYbd68WYVM0SmJ+5eEbwFdmFuB7B977DELtfVUOXTokFSpUkXwSRkvI0eOVLG8\ndQlshhG/x2guXF39sh0i4BQCbu5fPML+888/gnv9Dz/8UNavX6+ucRJNsHE1izdB3ZK4f0n4FhDG\no2rJkiUFzlJeyM6dO1XoAwRWixcEU4OC4QtBl+B9AP3p/NTUNTa2QwSsIODm/jXixwI7fiRVN1LW\n7HwT9y8J3yyC/5ZHsgGcohs0aGChtr0qeNSBvW6yeDsge5h26ZTFixerpOd4V6AQgTAg4Ob+NULi\nMMlGPgo7oVlSrUvi/iXhW9BgZIkaOnSolgiVRrvHQyyyUqVKmYj0hDDR1C0wE0N4BziHUYhAGBBw\nc/8aIXxgCtNnkHP+/Pm1Qpy4f0n4FuAtXry4fPTRR4ZsbS00n6kKYtrgx+Whhx5K2lSBAgVk4cKF\njiUeh50xzE9hVUAhAmFAwM39iwMaAhH++uuvag/BKfK1115LCiNuDJYsWaIV4sT9S8K3AC9+hXfs\n2KHi6DgpOFXjnSDxNT/WJz4D8dBjxMnD6jiREAUeiUbie1vtg/WIgJsIuLV/U80JX+v4Ih88eHCW\nIm+99ZbUqFFDGxyJ+5eEbwFaeLA5meAY0fcQjCmVeSUeZ+GcpVMxsoPB6flaWAJWIQKWEfCLPuOr\nHdE64wXGGMiJrVPi50vCt4CskycE/MLDlj7Zoyyub3C9g2iYulKjpZt+uvja6erz34mA3xBwcv+a\nmSs8cs855xwV8jwmOMwhEZIuSdy/JHwLyDp1BwgzS/waJxOcBuCJB9J3U3DviDj7yKtLIQJhQEDn\n/oWFDUKZxAQOmfBbMSoIk4yMW/FiNDSDkT4S9y8J3whqCWWQAhDBzXTkkY01jcccEGviXTmSKEyc\nOFG7B57RaX/99deCuCO00jGKGMv5HQGd+zcxLAriTiEomlFBcELktY0XxOnX9QWfuH9J+EZXJq6c\nbjteLDCy2CeGaoCtP65wdC2+hakqUzHa4VtBjnX8ioDO/Vu/fv1MVje33HKLTJ061fDUcT2LfNQx\n0X2lQzt8w0uRuiDs4ZH31W7ik1gPCI2MEMnxcuuttypFMGrHq2FaSZuAhy3y9Trh9u3UmNkuEcgO\nAZ37NzE1Ka5c4ZmeJ0+etIuAwGuInRN/h68zCQoGkLh/ecJPuyxZC+DODVcwumLptG7dOtOpAN6y\nyE2LyHteC2PpeL0C7F83Ajr3L75+O3XqlGmIuIJt37592mE/+uijWThk3LhxKsyCLmEsHQ1I4l4M\nThKIemdXYCeb+BCLONZ+CVaGKJkwQdX5XmEXM9YnAnYQ0Ll/d+/ereJqJb69IT5O4g9BbMw42ePf\nu3btmmUaCGl8+umn25leprqJ+5cnfIvQYpFxCkdcbTuyevVqlYxclxQtWlQ5hekQxMGH1dC3336r\nozm2QQR8g4Cu/YsJJUtijv+P/NLIJ4H3OWTFinnaPv3005kSHsVAmTRpkjK51iXJ9i8J3yK6ffr0\nkQoVKtg+ieOBB1c6OgXhWHXIzJkzlU1wonOIjrbZBhHwEgFd+xdzSGV0YWZ+jRs3lnnz5pmpkrZs\nsv1Lwk8LW/ICiGkNEywkB7Ejye7x7LSHuroIH6eT/v37S82aNe0OifWJgK8Q0LV/Y5NCvPuOHTtm\nyk1tdMJ33323Ms3UkZY0vs9k+5eEb3RVkpTDZxpCEiPWjFW55557BElLdAneAxCsya4g3gd8AH74\n4Qe7TbE+EfAlAjr2b/zEcNDCoyvCohgRhEZ55plnTDlqGWkXZVLtXxK+UQSTlIPJE8wm4QEbNhk0\naJCyEoIJG4UIhBEBp/YvYmFt2rRJWfIhbSGuReE9i/c+hFLA39lnn63u9p0yu061f0n4NjQZeWhh\nb4tX97AJFFHX1VDYsOF8woFAFPcvCd+m7g4cOFCZVerMI2tzSLarDx8+XJBYHSEVKEQgzAhEbf+S\n8DVoMwgfiQZ0Z6vRMDTTTSAQFGx38VlKIQJRQCBK+5eEr0GjEb96/vz5AoepoEvTpk2lZcuWggBT\nFCIQBQSitH9J+Jo0Gu7QiGNfr149TS2638zSpUtVukQkV6EQgSghEJX9S8LXqNVIeYjASfny5dPY\nqjtNwZQT3odwFacQgSgiEIX9S8LXqNnr16+XUaNGZQp3qrF5R5tCdM6ePXtK+fLlHe2HjRMBvyIQ\nhf1LwtesfQsWLFCEjzv9oMi1114rnTt3zhKiOSjj5ziJgC4Ewr5/Sfi6NCWunUWLFqnEJUhZ6HeB\n+3Xv3r0FSSEoRIAIiARp/+LdEFE569ata2jpSPiGYDJXCAuQN29e5d7s55M+TvYwwYTj2LPPPmtu\nkixNBEKKQJD2L+LwGCV7LBcJX7PS4tH2/PPPl19++UXweYgIeEh0jAchvwgeaLt06aIifSLT1kkn\nnSRbtmyRQoUK+WWIHAcR8ASBIO5fM0CR8M2gZaAsgqEhTgZ+eSF4CKpdu7Y66Zv5JTbQlaUir776\nqiL6VatWqfDOEFw//fjjjyoxO4UIRBmBIO5fM+tFwjeDVpqyyF6FyJmJ2W9QDY+i8GKdMGFClgxX\nGoeQsin0jfCtRYoUSWpnf9xxxynvWlxFUYhAFBEI8v41ul4kfKNIGSiHpAqIaZ0qBs2LL76oSBex\nr7t162agRT1Fhg0bpvrEj00qD1okOTl06JCKf08hAlFEIMj71+h6kfCNIpWmnJnIewjY9OCDD8rg\nwYNVGjS7aRKTDQ0PxtOmTZO+ffuqfmCJk04YITMdQvz3sCIQhv1rZG1I+EZQMlAGJ2gozWOPPWYB\nFh7wAAAbWUlEQVSg9H9ZqXBnPmLECCldurS68qlataqcccYZhuonK4Qclsizi9AIyEOLr4gePXoY\nbg8Z7vG4jB8JChGIEgJh2L9G1ouEbwQlA2WQLGTfvn2SO3duA6UzF4G9/rJly2T69OmSM2dOFbys\nYMGCUqZMGSlXrpwK1YCIfojGifcB/O3fv18lWcAfwiHMmDFDNdqqVSsVz8dKWsIDBw5I4cKFVdsU\nIhAlBMKwf42sFwnfCEppyjz11FMqhg4y6NgVnMzXrVunUiciWw4Ucc2aNYrkK1WqpP4/yL9atWrq\nzr1s2bJSsWJFufTSS6VUqVJ2u1dfBIip0717d9ttsQEiEAQEwrR/0+FNwk+HkIF/x0Mt7sxPOOEE\nA6X9XeT3339XKdh+++03fw+UoyMCmhAI0/5NBwkJPx1Caf4dSYiRuxJB08Iid9xxhwqiZjQZc1jm\nzXlED4Ew7t/sVpGEb1PHYXe/ceNGKV68uM2W/FN927Zt6gEZXy0UIhBmBMK4f0n4DmnsxIkTlVUM\n7NvDJm3btpUrrrhC2rRpE7apcT5EQCEQ5v2baol5wreh/GeddZYsX75cBSALm3z11VfSsGFD+fLL\nL8M2Nc6HCCgEwrx/SfialRxmkK+88ooypQyrIOYOPHObN28e1ilyXhFFIAr7N9nS8oRvUeEREXPO\nnDnKTj6s8vHHHwsyYX300UdhnSLnFVEEorB/SfialDuIWXGsTp3ZsKwix3p+RSBK+zdxDXjCt6CV\ncIAaO3asXHLJJRZqB6vK2rVrBSFj33vvvWANnKMlAikQiNL+JeHb3AavvfaaIPok4spHRa666ipB\nJME6depEZcqcZ0gRiOL+jV9KnvBNKnaNGjVk0KBBcvnll5usGdziiPWDoHArVqwI7iQ4ciLwLwJR\n3L8kfIuq/9Zbb8lDDz2kskVFTapXry6IOYIYPhQiEEQEorx/Y+vFE74Jzb366qvl3nvvVdEooyZL\nliyR0aNHK1NUChEIIgJR3r8kfJMa+/7776vE34hkGVVBVE54J1588cVRhYDzDigC3L//LRxP+AYV\n+IYbbpB27drJ9ddfb7BG+IrNnTtXZs6cKS+99FL4JscZhRoB7l8SvmEF//TTT1VSkk8++cRwnbAW\nRPz9+fPnq+QsFCIQBAS4f/+3SjzhG9BYkD1O9i1atDBQOtxFkCcXpm1Tp04N90Q5u9AgwP1Lwjes\nzFu2bBE89nz99deG64S9IDJrwVLJTv7dsGPE+fkDAe7fzOvAE34avWzfvr2y3cX9PeU/BMaPHy94\nBBs3bhwhIQK+RoD7l4RvWEF/+uknFT5h+/bthutEpWDRokXls88+k5NPPjkqU+Y8A4YA92/WBeMJ\nPxslhhkmourdeeedAVN154c7cuRIwefyiBEjnO+MPRABCwhw/5LwDavNrl27VGKTP/74w3CdqBUs\nUKCA4BSVP3/+qE2d8/U5Aty/yReIJ/wUituzZ09Bvkt41lKSI/DEE0+oH8TBgwcTIiLgKwS4f0n4\nhhXy0KFDcuKJJ8rBgwcN14lqwWOOOUaAV65cuaIKAeftMwS4f1MvCE/4SbB5+OGHJXfu3CpQGiV7\nBB555BFF9sCMQgT8gAD3LwnflB7mzJlTjh49Kjly5DBVL4qF//rrLzn++OPl8OHDUZw+5+xDBLh/\nSfiG1RKx7vfs2SMDBw40XCfqBe+77z5lntmrV6+oQ8H5e4wA92/2C8ArnQR8cFrduXOn5MuXz2PV\nDU73f/75p5QsWVJ2794dnEFzpKFEgPuXhG9YsYcPHy7ff/+9SmFIMYfAXXfdJeedd5507drVXEWW\nJgKaEOD+TQ8kT/hxGOFaYtOmTVKkSJH0yLFEJgR+/vlnFScfdvkUIuAFAty/6VEn4f8/RmPHjpWN\nGzfKmDFj0qPGEkkR6Nixo1StWlU6dOhAhIiAqwhw/xqDm4T//zidfvrpsnr1anUXTbGGwLfffit1\n6tSRb775xloDrEUELCLA/WsMOBL+vzi98MILsnz5cpkyZYox1FgqJQKtWrWShg0bys0330yUiIAr\nCHD/GoeZhP8vVnhsXLx4sZx77rnGkWPJpAh8/vnn0qxZMxVJk0IE3ECA+9c4ypEnfORnnT17tsyZ\nM8c4aiyZLQKNGzeWNm3aCPKIUoiAkwhw/5pDN/KEX6FCBXWVU758eXPIsXRKBDZs2CCdO3eW9evX\nEyUi4CgC3L/m4I004b/yyivy3HPPycsvv2wONZZOi0D9+vWle/fuKj0khQg4gQD3r3lUI034MCGE\nk9Vll11mHjnWyBaBd955R/r06SNvv/02kSICjiDA/Wse1sgS/ptvvikDBgxQ1jkUZxCoVauW9O/f\nX2rWrOlMB2w1sghw/1pb+sgS/pVXXqnCH19xxRXWkGOttAgsW7ZMnnrqKXn99dfTlmUBImAGAe5f\nM2j9r2wkCf/dd99VmazWrFljDTXWMoxAlSpVZPTo0VK5cmXDdViQCGSHAPevdf2IJOE3atRI7rjj\nDuUgRHEWgYULF8qkSZNkwYIFznbE1iODAPev9aWOHOF/+OGH0q5dOxU3h+IOAhdeeKHMnDlTLrjg\nAnc6ZC+hRYD7197SRo7w4QV60003SdOmTe0hx9qGEZg1a5bgpA/SpxABOwhw/9pBTyRShP/FF1/I\n9ddfL5s3b7aHGmubRqB06dLy2muvydlnn226LisQASDA/WtfDyJF+K1bt5a6devKrbfeah85tmAK\nAdzjwyb/+eefN1WPhYlADAHuX/u6EBnC37p1q1SvXl1++OEH+6ixBUsInHLKKYKwCyVKlLBUn5Wi\niwD3r561jwzhI7bLJZdcIp06ddKDHFsxjcCzzz6romjCTJNCBMwgwP1rBq3UZSNB+L/++quULVtW\nJSeneItAoUKFBIlSChYs6O1A2HtgEOD+1bdUrhD+V199JevWrVOf83gwzZs3r3J62rt3r3LIef/9\n9yV//vzqyuXAgQOKnHEah9MOHvvsSrdu3eTMM8+Ue+65x25TrG8TgSFDhqi8t08//bTNlkS81ivb\nEwhIA17jzP2rT1EcI/w33nhD8Ddt2jTJly+ftGjRQnC6K1OmjCL04447TpH88ccfL/v27VPkD7JH\nEnH87dq1S5nxHTx4UJBFqV69egJ3arOCtosVK6bap/gDAfzg7969W/LkyWN6QH7RK9MDD1gFv+DM\n/atXcbQS/l9//SVDhw6V4cOHKycb3JdXq1ZNTj31VMuj3rZtm8o1O27cOPVDgFN6z549JVeuXIba\n7Nu3rxQoUEBFbqT4AwEEVIOu9OvXz9CA/KhXhgYesEJ+xJn7V68SaSN8bGL8DRo0SJ3Iixcvrnek\n/7aGqwB8MYC8QRZQhuzk77//lty5c8vRo0e1j4UNWkfgn3/+UT/YWJ904ke9SjfmIP67H3Hm/tWv\nSbYJf8aMGdKxY0d58sknpWvXrvpHmKLFUaNGKcKfMGGC8pxNJmZPkq4Nnh2ptcvuy8vPehWm5fMz\nzty/+jXNFuGD6HHvDtLFnbzbgnt5jAHEMX78+Czd4454z549cuyxx7o9NPaXBoH9+/fLySefrN5v\nEsXvehWWxfU7zty/+jXNEuHD4gZJLZYsWWLpIVX3NBB3HQmzV65cmRGGF1YgO3bsUPHYKf5EACkQ\nzzjjDIEVBiQIeuVPJM2NKgg4c/+aW1OjpU0TPrLEI5fkmDFjLFlZGB2Y2XI4MSLkcePGjRX5w877\n+++/lxNPPNFsUyzvEgK//fabnHfeeQI766DolUvQONZNUHDm/nVGBUwRPpJ9T5kyRebMmePMaDS0\nCsKHC3+OHDnkmWee0dAim3ASgdtvv12OOeYY9TXmd72CtyeSswdVuH+DunL6xm2Y8KEssJBBqFu/\nC9IW4poAkTEp/kZg3rx56ocZOUr9Ls2bN5e2bdvKNddc4/ehZhkf92/glsyRARsifHwGzp4929cn\nsER0cNJv06aNut6h+BMB6pU760Kc3cE5CL2kJXyEPUCwq8mTJwdhPpnGiHCqcNRCmAaKvxCgXrmz\nHsTZHZyD0ktawrfjBm8UhCNHjsh1110n77zzTkaVr7/+WooWLWq0iaTl6JZtCz5HK9vVK4TLXbt2\nreUxwgMcbz1WJEh6ZRfnRHw+//xzeeGFF1RMrFgIFJhmI1YVQp8A19q1ayuTW7sSJJztztWt+tkS\nPux0W7ZsKXXq1HF0PPDOTfSaRdz6kiVL2u739ddfl7lz58rYsWNtt8UG9CCgQ6/w1WnH0Q8JWXAf\nb1WCoFc6cI7hg/34yCOPGPrSh18MroAbNGhgFd6MekHA2fYkXWwgJeHDAw/ml9OnT3d0OO+9955U\nrVo1Sx+6CB8NwxP3xhtvFDy6UbxFQJde4apu5MiRlidjl/D9rle6cMY8v/vuO7n00kvll19+MYU3\n4mrB18KucP/aRfB/9VMSPiJcwk7aSQ9aRExEkDUESEsUnYQPb1sEcPvzzz/1IceWLCGgS69gKbN0\n6VJLY0AlHYTvZ73ShTNySFx++eXy5ZdfJsX6rLPOkm+++SblOuDqB74WdsTPONuZlxd1kxL+448/\nrhyX7HwyG5kMcsvC1DOZ6CR8tD9ixAiBcxajZhpZGWfK6NQrXPfFHxTMfr3hCwH3zXbFj3qlE+cm\nTZrI/PnzM8F02mmnqf1Uo0YNdVeP4IS4z2/fvr3KbREvMI1esGCBXZi5f20j+F8DWQgfIVIRo/7w\n4cOaukjeDIg+u2Tiugkfo8iZM6dSTjhlUdxFQKdeHTp0SCXRiQkS58Q/+Ls7M3/plU6cP/74Yylf\nvnwWsgfWCImRKDhQ4Qfitddey/RP+ALAo65d4f61i2ASwn/iiSdUSOEePXrYbz1FC7DAOeecc7Jt\n3wnCR0RPKA3i6VPcRUCnXiED07nnnpsxgdtuu03lS/BK/KRXOnFGmHO8BcQEj7GffPJJUrKPlUHu\nClwBxcuiRYvk2muvtb08fsLZ9mQ8aiDLCb9EiRKyceNGR+LZY444geBEFv/pB/d6xOaJFycIH1cA\neCCGSR/FXQR06tWrr76ayQIEgbbuvfdedycU15uf9EoXztu3b8+SuOjBBx9UOS+yE+Q6QFrS+Ht9\nWOHdf//9ttfHTzjbnoxHDWQifKQ1wwkB0SedkgceeEAGDhyY0TzIH6kMTz/9dMcJHx0g7ALMy2Ar\nTHEHAd169eyzz0qXLl0yBq/rBGkHDT/olU6c4Z3brFmzTJBs2bJF8EibTnAVFH+ouvDCC7Ps73Rt\npPp3P+Bsdex+qJeJ8PErDK/UxIXWNdAVK1ZkCacMJYIlUKITjBMnfMwDsYDwWTpgwABd02I7aRDQ\nrVe4bhw2bFhGr3AGQp5kL8UPeqUT50SMGzZsKIjH47X4AWevMbDTfybCx+s7vBft5KBNNRiEwD3/\n/PMz2fLCYw8Pt0hd6BbhI2RyrVq1lG0xxR0EdOtVo0aNlI9ITODpiUdceGbCDBA/AEiOA3NA/BDg\nmsNp8YNe6cQZj7U4qccEX1UIPx6TXbt2yY8//igw20QIcmANU1CnxQ84Oz1HJ9vPIHw8hOFXPJW9\nrZ1B4F4Pjk/x5l0wo4M3HsRNwkd/+Cxdvny5FssBO7hEoa4TenX22Wdn3BGD5B599FGVYjOV7uKx\nEV6nKHfCCSc4BruXeqUTZ/xYArN4QbIjhIbGnoXXOpINJQrmH7ty0eEln2qhvMTZMeVxqeEMwodH\nLTbMY489pr1rKAgeZmOCGDmw2z3ppJM8IXy8I1x00UUpc+FqByDCDerWKzz6W01ZCb2DcQAiqToh\nXuqVTpzx9ZtoRon3gSFDhhh2dsNDLUKUx5vP6sLcS5x1zcGrdjIIH3d2+FXW4QodP5nPPvtMedPG\nC2Kf4yQQE7dP+Eh7iE9RnAopziKgW6+MmPSmmxEck0AausVLvdKJ80cffSQVKlTIBE86j9pkWNat\nW1dgUQVTaJ3iJc465+FFWxmED1f1u+66S0vAo9hEcLdaqVIldacak969e8vgwYMzzdVtwl+8eLFK\neg7rDoqzCOjWK5w0QSTJBF9teJ8pV66cul+G6W+iE1Cs3rvvviuXXXaZ1sl7qVc6cV61alVaKzb8\nAFx88cXKZ+eDDz5IeZ02fPhwFaJcp3iJs855eNFWBuHDQw7BjkqVKqVtHPhawILHBBsSCZSRjT5e\n3CZ8WAbhhwemZxRnEdCtV4nXgxg99AqPuLjPT5S3335bXSfGHzpQBmU//fRTrTmPvdQrnTgvXLgw\nZeIgED0ylCVGwkRcrHbt2mUJwwCsYRWX+JVvR+u8xNnOuP1QN4PwixcvLviUK1asmJZxYQPCmiJe\ncL2D01eiuE346A/mp3AuoTiLgG696tevn/KjiMnVV18tL774YraPsQi+hSuKxCBfzz33XKa3JbtI\neKlXOnGeOnWqIHlQosC7Gad5hF5JJghbgvhbiU6UuDmwE9k0GV9w/1rT1gzCz58/v0oknWoxzTQP\nIi1Tpoxgo8UE8cvvvPPOpM24TfiwQoCpXvz4zMyPZY0joFOvYr3C6gsmmFg/BO9CEvR0smbNGuXh\nHS+6QzJ4qVc6cU4V5wom21WqVMkW6t9//10KFy6cqQycHOGDo0u8xFnXHLxqJ4Pw8Yiqa1ES7aRh\n7ol7t1RBy9wmfICtc75eLV4Q+vUTzojxglgvMcFVEL5qdYpX89XZL962EOUyXvAlhQdYI5J4lQsT\nT92hyXXO18icwlLGkRM+bJ0TT8/J7ldjICIyZ2JyBSgJHDpigpf5Fi1aaMGd8bW1wGioEZ0nT0Md\nZlMIVwu4f44XRN60auaZ2JWXeqUT52Qe8YhVhJhFRgTesMiUFy/46tflAOclzkbm7+cyjtzhJyN8\nuyBgo8bHT7HTHpSvcuXKypKD4iwCOu+W7Y4UhNWrVy/HCN9LvdKJM4InVqxYMRNO2V3JJq5Lsusz\neO0ipo4O8RJnHeP3so0MwocnLBwrdFjp+J3wYcuNuCO00nFe9XTqld3RJsaHwSPkF198YbfZjPpe\n6pVOnBHXPvEtDw6ZDz/8sCGsEHMnMRwyTuX4CtEhXuKsY/xetuGIHT7u8HEvb1QOHjyYxWwO5l/I\nuhWThx56KKWpmNF+YuVox2sWMevlddqHJ1ro4BS6YcMGw4PDvW98SID48B6GG8mmoJd6pRNnTBFx\nr+JNWc1ghcB28fk0sJdhSqlLvMRZ1xy8aieD8HFHh6BpTiY+STXJZCcKp6JlYgzwsEW+XoSCpjiL\ngE69QviAW265JdOAYUsPckonya4pzJxa07XvtV7pxBlzgUUdzFbjxcg9/N9//60csuIDryGUxbx5\n84xAaKgM968hmJIWyiB8ZLbB560TsXTSDc9twmcsjnQrou/fdeoVYqwn5k1I5rmdbPQI/JXodQub\ncpCTLvFSr3TiDDzee+89lSwoXjp06CATJkzIFi4ESIQTWLyYuf83shZe4mxkfH4uk0H4uBeD9xyi\n7rktbhM+AkPBEkHHe4XbWAWtP916FR8pM4YF7pbhjJUsZgt0C562cCaKl7Zt28qkSZO0wumlXunG\nGcAkXuvg/+FA2Ldv36S+D/Bqhgl2vIUe3kngaavLEgpj8BJnrQrjQWOZ4uEjeBpijGRnQunEGN0k\nfEQCxF3ut99+68RU2GYSBHTq1eTJk5ULf6LgsIKHS3jUIsE2vGrh2Y3QHvHXC7F6SJenM++DH/RK\nJ87ACY5WyeIN1ahRQ1354AcB72y4GQDZ440lUZA976qrrtK2L/yAs7bJeNBQJsLv06eP2jA33XST\nq0Nxk/CRThFEgIiJFHcQ0K1XuMaxE+lU9xUDUPSDXunGGfMaMWKECnNsRZDcCEmOdIofcNY5H7fb\nykT4CFuM1H9IDuKmuEn4iKaIRMw1a9Z0c4qR7ku3XiFmC2K94N7ajCAePuLuQAd0ix/0SjfOMYwQ\nobRVq1ZZnCOzwxAm3vih0B0a2Q8469YdN9vLRPjoGKkGYeqmyyvOyGRglom8tvECs044k+gUPPoh\nngosgCjuIuCEXsHBB+a6ILp0ArNCBPUqVKhQuqKm/91PeuUEzgAEKUqRNQyRNLMTmGDC0xaOjbrF\nTzjrnptb7WUhfHwqI+ZNokeiWwNysh9k4cHjEUzYKO4i4KReweQS13QwOEBOWwRXQ1RWBPBDrlU8\nHOoICpgKMT/plZM4Y/4///yzfPjhhypq5vr169XjLWISwYsWd/p4UM2VK5cjyuUnnB2ZoAuNZiF8\nfC4jXv2RI0dc6N7dLvBDBjKguI8A9codzImzOzgHtZcshI+JDBw4UCUxRrCpsAisNXB1hJAKFG8Q\noF65gztxdgfnIPaSlPAxERA+7tF1xb/wEpxdu3apT80//vjDy2Gwb+qVazrA/esa1IHqKCXhz549\nW6UrwwNM0KVp06YqXCvstCneIkC9cgd/4uwOzkHrJSXhYyLICNSsWTOpV69e0OaVMd6lS5cqy4LE\ntGuBnVAIBk69cmcRibM7OAepl2wJHxOBdcPOnTslX758QZqXGiuy7MD7EAmWKf5CgHrlznoQZ3dw\nDkovaQkfplejRo2SKVOmBGVOGeOEp1/Pnj2lfPnygRt72AdMvXJnhYmzOzgHpZe0hI+JLFiwQBE+\n7vSDIkjA0LlzZ0Fsfoo/EaBeubMuxNkdnIPQiyHCx0SQwPj5559Xrul+F7w7dOrUSerWrev3oUZ+\nfNQrd1SAOLuDs997MUz4mMiSJUtk/Pjxvj7p42R/9913k+z9rnlx46NeubNYxNkdnP3ciynCj13v\nIHsNsuE46a5uFjQ80CLJOSJ98hrHLHrel8e1A/XK+XUgzs5j7OceTBM+JoOHoNq1a6uTvh+uTfC5\nCqJftWqVCu9MCSYC1Ct31o04u4OzH3uxRPixieBRFF6sSHsGzz63BX0jgl+RIkVoZ+82+A72R71y\nENy4pomzOzj7qRdbhI+J4BEXpItsN1YTJVgBZNiwYapP/NjQg9YKgv6uQ71yZ32Iszs4+6UX24Qf\nmwgCNj344IMyePBgufnmmx1Jk4h42NOmTVM5NdEPMh9Rwo0A9cqd9SXO7uDsdS/aCB8TQehhZLpB\nWrTSpUsrO3hkvkeOUauCHJbIs4vQCMhDi6+IHj16WG2O9QKIAPXKnUUjzu7g7GUvWgk/fiIrV64U\nJDCePn26SnOG4GVIeIykFEhOgVANuPdHNE5kuccfUh1u2rRJ/SEcQiyFHdKrIZ4P0xJ6qSr+6Jt6\n5c46EGd3cHa7F8cIP34iOJmvW7dOpU5ERiJknUJ6OpB8pUqV1P8H+VerVk0OHTokZcuWlYoVK8ql\nl14qpUqVchsT9hcQBKhX7iwUcXYHZzd6cYXw3ZgI+yACRIAIEIHsESDhU0OIABEgAhFB4P8A0rjK\nuooofdIAAAAASUVORK5CYII=\n" + }, + "images/tree.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqoAAAJYCAQAAAAA1gzzAAAAAmJLR0QA/4ePzL8AAF0oSURBVHja\n7J1nnFPF18fP9iT35qbs0nuVKiBSVBQFCxZEUOyCWPiLKAiiqKgPoigWULAgCooVWREpNkQUFQQp\nIiAICNLrwm6SW5LsJjnPiw0ICks2e8tM9nz3hR93ozdzzszvzpw5cwaAIPjDDZ2gLwyE4fCk8LIw\nXZgIo2EEDIQboQvkkXkIgiASoSHc6f4wb609YAs1810V6K8MDT2Jz+MUfBFH4/Dw7eo1gdY+IWhT\nvRu8+TAYWpDJCIIg/osHbpM+EQ55lOvkN/EH3I9lU4BLcCr206orgr/Kl3A31CATEgRBAABkQy/P\nAlvwysBk3ITlZwe+i30VR9DzM9wMdjInQRCVmQbim3a5vX8q+rFiaPgxdg3YNNcMaEVmJQiiMtJM\nnOlQHw5tR/3Yj89GPJp7IZxN5iUIojLRwvWVpD5d7EP90fDVWFXN+wt0IjMTBFEZEIVXRHVCVEXj\nKMZpsVxV+hByydwEQaQ2PYWD1ysH0XgUHBUUAlnDIIOMThBEapLnWtRI/gnNYy22k6U1UI9MTxBE\n6tFFKBgeKkZzieELJUIgoxeZnyCIVCJNGOFSvkRrWIk1FPFNyCY3EASRGthdC89WdqN1FGIP1fk7\nbVsRBJEKuKXVfdVitJYYPh4Wd0JdcgdBEHxTQ9o6OBxFFpgYEY5Aa3IJQRD80lA4MK4EmeHDmOCH\n9uQWgiD4pLqw740oMsV8FP1wBrmGIAj+kJybngojc3wQFQqgDrmHIAi+yHb9cncImeT5iHM7eMlF\nBEFwhOvz3loUWWVISPqVjq8SBMENWYMaKxqySxQvUIXnyE8EQfBBK0H9E9nmIOaqcCm5iiAI9hHE\nne9FkXkWo+CDmuQugiAYR/qwfxC54Mli6SfyF0EQbNPBq/n40FQswaZKRl9yGUEQ7JIhbfkkhtyw\nBB2FIJHbCIJglKxh58nIFbdo4iTyG0EQbFLVoWzmS1PxEEoqNCfXEQTBIPaX7tGQO8ZF3J+T7wiC\nYA+XQ9nBn6aigpIKTch9BEEwhm3MrSpyyRMlro/IfwRBsIUgBDbzqal4BB1BunGVIAimSB90lYLc\nMjRsf5F8SBAEQ3j++JJfTcUNKBRS1SqCINihsUsrQZ5pGoCLyI0EQTCCbeyQENeaihNinpnkR4Ig\n2CDNeXAN35qKB9CmgYNcSRAEC7Ssbujh1K4ICAiYgXsNfEoHH1xOriQIggHSh9xuYIbqDkyLiyrg\nCwaK6lNR4RXyJUEQDJD73QwDxW7MMUkFbGloxSrvFvIlQRAMTFRt8n4Dxa7xcaIKuMrA6qq2EHjI\nnQRBWE3bun4j54+lYnp5/J/3Gyjf5/uhF7mTIAirGXCDgdtUd8fF9E9shoCAeVhsXA2AaOYYcidB\nEBaT89KzhtX6D6ILAQHbI+IzcXmdY5iofoi588mfBEFYTN73sw2TuRlxIX0ZEbfHswB6G/a0VejZ\nSv4kCMJiXHs2GCZzPeL5qQcQEbELAgJm42GDnhbArBCkkUcJgrCSzMxio26k3ocZCAh4Wfzfp8Tn\nra8aJuIeFWqTSwmCsJLqLsMS/1+Ii+gH8X8vwhwEBOxgmKi2KIJO5FKCIKykcY2AURLXCgEBHfhP\nodY+cZndaNATOxZBd3IpQRBW0q6Jz6hto1IBvfm4382O/26kQaJ6qQ+uIZcSBGElF7QrMkbg7o8L\n6FfH/S6MHgQErIVRQ57ZNwC3kUsJgrCSKy80ZKZajHkICFgVTyx+/b+41C4wRFQHajCYXEoQhJX0\nvtQQUf08Lp5D/vX7n+O/v8Wgu6pgOLmUIAgrufRcQ5b/vePiueJfv49hg/j2lRH7Y/1VuJtcShCE\nlZzTygBRPYzZCAjY9CR/ezwut9MMENVeAbiRXEoQhJW0qm9AjapX48I55iR/2xz/2wUGiOqFPriS\nXEoQhJXUq2JAjaqzT6ihevKfNPxb9+e2K4ILyKUEQViJ2677PaobEpBUQMCndBfVBj5oQy4lCMJS\nbKreBU4eTlBUG+n83BjmFINEHiUIwlJyNy7RVdqiWDNem+otfPcUP+fEZfVnXZ+8C8Ui8idBEBbj\nydd3H/6buGBeXMZnPoh/5i5dn7wQ81aTPwmCsJj0Rx/U9YaTmxJImZLRjoCAEmo6Pvk1lN4lfxIE\nYTXXXKTjmSp/XC5zsOz01+vj0qvn5dgDgzCU3EkQhNVUdYQiugnb23GxvCbBY6w99Nz798PZ5E6C\nICzHvWu1bsLWJS6WM0/zuVD8SsAM3KfTkw9ijgYZ5E2CICxHnPKCTpX4tsUlVcTTXycwIP7ZF3QS\n1U8w93vyJUEQLNC7q05R1SfLUYPq2/hnW+okqgO09AfIlQRBsIDXHtJzF94KYlhNhlbkSoIg2FDV\nXz7hXFSXoms3+ZEgCFa45SI/36J6ZzB7FLmRIAhWsNvV/RxLahhFDeqQGwmCYAbXzPFRfkV1FnpX\nkg8JgmCJ82vL/KrqOQG4lVxIEARTuNfmcyqpy1EogGzyIEEQbHFlEznGpah2l9MHkfsIgmAO1+Yv\nOJTU39FRBDbyHkEQ7HFdqwB/c9UrlZwR5DqCIFgk3bXuXc5UdSEKh8BBriMIgk1au7QCrvJT6ypw\nFbmNIAhmcb59B0dlAMaUuBcCwFcwCZqQ7wiCYBGXULScE0n9Gx0q1AOAajASdsNC6Alp5ECCIBgj\no29NhYdCAMXYRrH/s0WVA/1gLWyGoRRhJQiCMYRpV6vsi+qQkPP7/8xMu0A+HIaJVAeAIAhW6AzD\nIce56Y0I25L6BQoFkHvSFjSEcXAY5sN55EyCIKylLcyHnTAAAJo45NUMS+p2lFToXEZLnDAQ/oRV\n0A+yyK0EQVhBM3gfDsDIo2eTMnp71W2MSmoB1lXtQ07bonS4GObDPhgNeeRegiDMpB5MgYMwGpzH\n/zLrnhoKizVWVWwrC+MSblsbmAKF8D5dtUIQhDnUholwGMaB+79/coxpohQxt+ffTZU+KGcbq8BI\n2A1LoC9dYU0QhJHkwTg4DBOh6qk+4Hy7g+JjSFJD2FOVFiQljdnQF36Bv2AoiOR4giD0xwujoQCm\nQI0yP5UmTmqo7GFEUmXsqojfVKgiVXt4H47ARKhPHYAgCP0QYSQcgvehQSIftj9YXdnMgKQewOaK\ncxqkV7j1NWE0HIL5cDF1BIIgKo4DhsI+yC/PWfmsuzzqMosl9U+sqTjG6GYFG/SDP+A3GEiVWAmC\nSJ5sGAh7YD60Kfd/eYXd90KxdVUB34+Jmu0Ona2RBhfDfNgP46AWdQ2CIMpLOvSFbbAQ2if539dx\n/X6JctgCQQ3iIE3cDWcaZJcmMBEKIR86URchCKI8groZlkDXCv1fssRJVdXvTJbUldhAkfJBMNQ+\nLhgKO2EJ9IVM6iwEQZyOi2ENLIPuuvy/eggH+ij7TBLUIhwYEv0Z5lw+nQ49YSFsg5HgoS5DEMSp\nBXUlrIO+Ov4f7Y6xDu3ZkhLDJTU/5tbE/FMUTTGK0pSrKdCcug5BEP/mPPgBNkJfAwo3N3X9Ukee\nHis2SE6jOBubBaQNScd/K0Z1GA0HqeQ1QRDH0wnmw3YYaOCxzC6exVWUl6Oa7oI6D5vJrq2GvAwS\nJwf6wTrYRCWvCYIAaAX5sAuGQo7hT+rs/sGjjghv0O16lP8rqa64VsMljFiyC+TDfhhHJa8JovLy\nrwJ+JtA85yXH4aa+l6MHKiCnhfg2tpcdsuttOJsxizaCcXAQ8uFc6lwEUdk4aQE/U0iH7q78HLWh\nf3BoLpanAIuC3+CI4ma+nJDna+jJbEFpJwyETbAK+lHKFUFUFsoo4GcaGdAx89HcZTmhhr6egcej\nH+EqLMDYSWalv+NMHBPtI5/hyw5712Q/BV0gm3kLl6Zc7YXRJucjEARhOqct4GcyWXAW3Jg5xvuF\nZ5tNSYtlFTu1anLjwuoBl5odBrQFhQO5C7LHwW3QEeyc2bptvOR1S+p2BJGaJFbAz1ocUBUaQnto\nDNVBBID2sJprm1eNl7ymlCuCSDHKVcCPIZrDRu5tnw19YRlsgaEGH6AlCMK02V+5C/gxQ33YkSJe\nOFryuh51SILge5aUbAE/VpbPB1PIGw1gHBRQyWuC4JVM6FehAn4s4AQ5xbwiwkDYAKup5DVB8IU+\nBfysJwMiKemd0pLXo6EKdVWC4AE9C/hZTZiDvNTkaAoToRDeN6ykNkEQOgmq3gX8rMVn6SEFo/mn\n5HUGdV2CYA/jCvhZxz6m82r1IAN6whLYBiNT+vVBENxhfAE/a9gGjSqF/46WvG5GXZkgrMe8An7m\nsx5aVRo/UslrgmAA8wv4mcsK6Fip/JkD/WA9/A4Duat1QBApgHUF/MxjMfdpYclwtOR1berkBGEW\nLBTwM4Ov4fJK6uHGMA4OQT6cQ52dIIyGtQJ+RvIZ9KnEnpZgKGynktcEYSQ8FPDTkw/hlkru8X9K\nXnup+xOEvvBawK8ivAV3k+MBoB1MgQKYAi3IFAShDzwX8KsIE2EIOT9ONRgJuynliiAqDu8F/CrC\nc/AIdYAT+kJfWE4lrwkieVKhgF9FeBKeok7wH7pAPhyBiVCXTEEQ5SFVCvhVhIfgBeoIJ4VKXhNE\nOUmlAn7JMxheo65wSpwwEDbCKugHWWQMgihbUFOrgF/y3AHTyAinWc9cDPNhH4yGPDIGQZyMVCzg\nlzw3wgwyQgKcES953ZpMQRDHk6oF/JKnF8whIySIG4bCLip5TRBHaQX5sBMG0oHEE7gEviUjlIMs\n6AtLYSuVvCYqO6lewC95usDPZIRyU1ryeiLUJ1MQlZHKUMAvec6C1WSEpKgBo+EQpVwRlY3KUsAv\neZrDRjJC0tigH/wBa6jkNVE5qEwF/Coyj99BRqggXWA+HIBxUItMQaQula2AX/JUhYNkBB1oDBOh\nEPKhM5mCSD0qYwG/ilhLJiPohARDYQeVvCZSi8pawC95MiBCRtCR0pLXf8NIKnlN8E9lLuBXEcKQ\nTUbQmbPiJa+bkykIXqnsBfwqQhHlRhgClbwmOF5wUQG/irCPtvMMIwf6wVrYDEPBQcYgeIEK+FWU\nrdCIjGAoXSAfDsNEqEOmINgXVCrgV17SwAN1oTmcDd2gPTSFWrARWpFZDKchjIPDMB/OI1MQrEIF\n/BKnGlwOw6Tpeb8JRWkxRyhXruM/w3f2kaa+mgGPkhNOizkP5S4TJ8Mg6AYSmcswnDAQ/qSS1wSL\nUAG/xPBCb+db7l2OYBffvaE38DvcjScjgtvwK5yAA7SzinJC3j/tL8GlFAM0iH9KXueSMQg2aAX5\nsIsK+J0GF9zpWWMLdfW9FFuNUUycMP6ET0bO8mWHvIugD+SQKQ2hDUyBQnifAi+E1VABv0RmQpdL\nc3O0K+W5WIzJI+N0PEexK9J06ERGNYQqMBJ2U8lrwjqogN/pyYRbpZ3NA5NjhagPu3BspIbi/g0u\nJeMaQjb0hV/gLxgKIhmDMJOjBfxcZIpTD8+M/uKedvI81JsozsPmsvtv6EczKoNgp+R1FTgP+kA/\nGAQj05/NfhEegftgAPSFC6EuuSl1oAJ+iXCFuL+bvBSNIoafYwvZtR7akakNoqZlJa8zoH36CG++\nd6NNFYKtfZcV9Q3cFXyoZCyOw5HRQaGbA1f4zvZ5laywZ5v3i+zRcCFF2nmGCvglQi3v7JrK12g0\nMXwv5taEmbRrbRilJa9/g4Em7RqcAUNcC3PUev57gtNwCR4u0/8BXIUf48MlZwZywlV/y34SOlE6\n4/F4oDP0g5HwtPRG7kfer6ssyP1UfCvzeRgJ98DFjJz7oAJ+iZCePdKujA6H0ByO4J0h0ZdxAxne\nMNLgYpgP+w0ueZ2XPsSzyasO0D7Bg+XuBQH8EocV1ws4D9iehoaV211VoK9zWu46u2wPNff1lUcU\nP40TcArmYz6+g6/iOHwocofaocijZIU9Wz1z4B5oatE3pQJ+iVFVWtJR/hvN5Veso7o/pOtDDKVJ\nvOS1EZkXl7kX2YLXyd+WK9XuZKzCwSFXMHd9xu2V7zBDJvSwvy79bQ91870cW4wHEngTrcLpeLNW\nVRWLvLOhv6kbRFTAL1G6CkcGFxej+ch4fVDcSTmWBuOCobATlkBf3XKy06G3tKlh4N2YrFtfKMb5\neJ7sLMi6r/IkOrYVX3f42vjHRVdgJAmTbcOpeKVsC7rnw5UmpNtTAb/Ew29PupVv0TqmRAU140by\ng9HhHegJC2EbjARPhcMKNwl/t/DPxZghq5fLVNFnfzjVhTUn/R7X9mrKqJItFTZZIb4Za+N3+ISX\nobqB3YcK+CVKhvBOC3kfWstarKLaR5AzTKA05aoiJa9bu9a0lhca2h/W4RWKuBcuS1UnCOnDHUe6\ny4t1fSv9hYPDjqD7HUMy1qiAXzkCJM55nRU/Ws9ebKw4JtMesClUh9FwMKmS1w7nc5L6cjRiQo/4\nHuvKzkVQL+XWhdmj7L6r5TWGGO0gPlwsBF0zdN2ZpAJ+5UFyLr9GDSMbHMY2ivQRHQowa/UJ/WAd\nbCpXyeuLhSO3agWm9YggPlnsULMGpZLZLxP3XqVsMtRsRTiqRFDtI3XZ8aMCfuXDLq26KxRFdlCw\nqyJ+RP4zkS6QD/thXAKpjxm2Zz3KItP7xGZsprrnp0YRyZquWdUCX5pitq3YTRF3V/D0BxXwK3cs\n1fllH5UlSUVE1LC9Ik0g55hKIxgHByEfzi3jM1WlpZ0VayLvIRwUdBzgvhRPRn+78kRx0ETDzcIq\nqnNqkkfWqIBf+UkTPzxPDSF7+LCxbH+YHGQyThgIm2AV9DvpKOrkKHqq2MoX8CcxQc24jeM4quut\nuspa080WwN6qtKXcKfrNqYBfMgjPn6koyCa7sIpK56wsoDTlau9/Sl5f5pC/tLxXbMCqmv0hPg3b\nzLntBs2q4TY94lQybk74u1IBv2S5Kk8pQHZZiw4FmpGbLKEdTIcj8MbRokMZt0jqEiZ6xV5sLPOY\nH3KloLxraZjtN6ylCC8nYDgq4Jc8tQX/EmSbqTFpO13CYhnV4MnSkZUztIq6gZlecQTbqa6PIZ0j\nS2b1c2lLLTdcIbZXnZ+WmQ1ABfwqQqb023PFyDw3BaUPyVkWK8KAqspOpnqFip0U5xRuDGh/sKry\nJyOGu1h1fX+KeQoV8KtoNPXFbkqMfU1FGeuWJxRE6E5GT5f6J3P9wo/NFXE0FwZ0jm+g7GHGcCV4\nkyb99p9LIaiAX8Vp7dQOIR+sQsFX4VPqRLJ0EtRfmOwXh7C2kjWQeftlP9JQPsKU4WI4ICj9fFwQ\ngAr46UGaa+XkKHLDwKDrHXKaJTQSAguY7Rd/oUeFSxiPpVZRdzFnuAherUlzIB2ogJ9+C7rbW8gc\naSr60avS/atWSIJr/aQIyz3jRxR8UJMiJ+UmjF0UYRrcBTthPrSlnl5hPIJvNfLFBzFpI1e7vSmB\nOOVSlfW4+1MlrlWsnp9s7VBWMGu4ImyspP0Enamb64H9uduDnGkqxvDMAFxPvjN1mnV1VfUI8z0j\niheownMs2k8Qdkxnej24FUUVzqKOrgOSXfkL+eNLlLZSiRUTqWEPrOCiZxxArwpd2Jvmz7xNY910\n+TFxH6X4V5zsx29QkEuaB+Aq8p9p7945j4R56RmfonM7YzdaZdzZQFE5MN3dIekL6uwVxOHwr+dT\nU3EWujeQA03igqoqT+/ebgpbxXfqO9SNXBguiE0VnivUsED64Cs4naciRrGuTBfjmLOcEXfO46pv\n/IUOxdDrt8uH67tnSngx3SoUisBNfT553Ju/RX6ZEPPkkw+Nx/bYpdy9eh8vluawYr8etZUQR6a7\nK+h8mzp90jT3qBGORfUg5mj/OV9H6I0gBDZz1zc0dKvQggXz2cUDi7gyXSG6VOhI/T5Jd784Ioxc\nc5EMVAfAYHIe6sVliOi5iHs2C7sWz/RReTPd9JhrLXX85AKq4pF1BnrGjz/gNHwBn8ZJ+CGuQCNK\nYM1A71JypLGaKhSu5vKFG0BBs/74OpcZizFsKDN+3pdVzmlk0B3UCr6GnTEd4YQfO16CH6O+wSUN\nbSGKqhv65r23e4DXdcwTJW6ry0TymrH4IbpXU+cvP5lPDDNk8T8N8/4lp8f/VMWpqOdRxy4+6EW+\nNA7nniW8aioeQVvwX1fAmL32d/j/4NJ0Eawpw/nU/ctL7kr9bxjS8LoTJDQNPdgEq2HGCb+9Tc/I\nWVScTL40jM415RjySx8l/V4LrZc17CqZV9O9HXP/TP2/vLGy7JDeq/8QXnhMOEV8ABceW+xHcQOO\nw7Pjf+uu4zNXoHsHOdMohKljSjjWVPwKPX9YZ700577l3JoujG6NKqqWkwtb+/T2w33HJPVmPHDS\nT8zBFjqLagQdQahG7jQmImiX/+Y6OySCbhXOsMp859YN8Gy8IWHHszQGyrUB8ehwnbfj5xyT1JFl\nvgDv0lVUEbv6oCf50xCu6eBHzhkatltVs8r57rM8Z4HjbygWUM2i8uCd9Y6uHohiw7ik9j7tZ5fq\nPGzSHyJ/GoFrxuu6eangP1uWGShgDWyLvXEUzkefQcqwDN3bLJvm7+L8jdTQT5tV5RLVjfpK26z4\nUHGdYuFvHFPQ9RH505CpVsEmA0X1xJ9svBoXGtA7StAegjwrrNenM/fT/Bei0gc0DBLHph7WdxEe\nHxxDTPf8YsxdR/40gHpuHY8CnU5US3+6ov63jVzkh2utmOZ//FrMaPPlYDVsjwNxHhoTZ9iKYiGN\ng4SpKupa7V/FzLif15kuqgfQLpNDDeCOa2X9VaE6fhr/ycep+BKOxG7oPE4nRJyrc/94KeacasU0\n/6Cexf5O906qi18YMriqKJQBkDCdmusaxFoU920VS1YpOcVUVkV/3LOnGqAKjU66R/8Znn9MH7Lw\nG117xxp07TbfenVdWsxEUQUEfNmAoXWzCv+joZAgl5xbpKftx8b92sMSUfWoDN+gya+o7lpvkqiW\n8gbmxD+Ti/t03ULNKgaH2dYb0EfXtP//TvQ/xU/xXXwaLz7uPPj3ug+t99D7JQ2FRKPoPXSNog+O\ne3WYJaJaK2BdLmLKkpFZHDRVVBG/OqYP/XXtHw38pl9j7571NqJJ5luNdeJ/7aT70NqN9gCNhQTp\nf4OuL9Kb4l59yhJRPcMHZ5NLdaZxNRlNFlXEx4+lW+mZjXSF3/Sbdz3bf0PzzLcS0+J/36P74HJq\nUJ1GQ0Lc9z9dN6p6xH36iiWienYRXEQu1ZkrL/CZL6oyuuOfe1rHZz8ayfw/c42XlhWW0UzzdYz/\nfYHug6ttEd1ZlCAPjyhJHVHtRmeq9Gf4fSHzRRVxePxznXV89vvoMflqlbpenQv+nc58t8f//pHu\ng6ufCgNpNCTE0MG6Dhlrl//nFFFFXb1xTBqPVojqgmM5APrVpVyMeWvMtd6lnYrMFdUB8b/P1n1w\nvYiOV2k4JMQdt+j6Kr3X0o2qlkXQiVyq807Lh29ZIqq+Y+FB/TKeV6PnL5Oja3cHzRXVc+N//133\nwTUf85bQcEiIvlfpuvv/jKUpVfX8bFzxlkrkfTHDElFFrBX/pH7VfregtM9U42U++wyaKap/xNMm\nqhlwssr8NxK3XK7vNsR3lib/58pQh1yqs6j+NN8iUW0Z/+R7uj17Pwp+U40nTp5ooqhuxibxv441\nYHCZ/kbil/Pa6Br0USw8poroCIGHXKqzqP6+2CJR7RL/5Js69s6ssKnG8858xyBRrYFfH/fzGb6C\n12L2sWWiEXdr7kfBR8MhIern6bw9eYFlBVUCmBWiso96k/vnMotE9VzdRTWC6VFzjfdNvkGieqqf\nOviiQUVVFMwK0XBIiPSssL6qmh/3rtv00n8r0bOVHKr7THXVdxaJagvdl/8+zAmaarwqy742VVRz\n8SE06iLsGKbHIIMGRCJ4dqzR1fYRbGBRkeoPMHce+VN3Uf1+jkWiWjP+ya90e/ZuFI+Ya7yVC00V\nVUDAdByGhtyOjJkRyKEBkdgK5ROdbT/boutUHotkjiZ/6t4/Pv/AElEtPJZSpV85l43o3m3yG+lz\nUzaqSrAAf8ZHjh1D62VACCCMGREaDomR/ez/RfW2/6BjsnrLKYIAc3W/+A/xKj/cSP7UG+ndNywR\n1a+P3QSg367Lr5i7ies30unMtw+bx//+ou6iehhtCg2HBOndVfdrgYLHVcUU8QH87rgrqjfi84Zc\nUY2Yp0BTcqfe5Lz4bMwKUX0g/rlzdXz2AsxbwfUb6fTmWxOf4HtR0/nJ29F5iIZDgnhtIf0zMBTs\nfUKgJw292BSrY8YJv71Lxyf+hUIROdMABvZTzRdVGV0GpFy+gdJ75r6Rxj9vsqgitot/Yr7OT16H\nnh00GhLFvfUXQ+LaUzC3jHh6bfxY16e9he5Z5EsD6Nq2yHxRHXWs9N9uHZ89OATDzDXeIw+XmC2q\n/Q0qv7EY89bSaEgUx6RnDLqWXMZJ2PHYhsPRHwdejrNQ586GvWW4nXxpANVEzWxR/adI9e269pEu\nPrjcXOP1vdxvtqjea1Ci+Nvo+YRGQ8Jc2dGoy9YREbEIF+HbOA6fxkn4Ea7UXU5Lk+jcGtQjVxqy\nhtWOmKoKkw26TgWxigwNzbXdmfVNF9Xr4p94VOchNqw4fSQNhsSnqjbN7ER9vVmMrm3kSIOC7huX\nmKQKEZxt4MV/CmYVm529bs8qjpgqqtFj6b2v6jzEuvmgFw2GxHHNnBDlW1Rv0zIfIj8ag/jGc1H9\nVeH4m+vewQn4CHZHydArqheg93fTjecs2GaqqL59zIAbdTZfDboArnx0a+rnWVKD6AhCLXKjQVzd\nxae/KpT90xX/1L2XPFSc/bTptstdOs9EUZ1+LHLSWWfjaZhVDFk0FspBmrNgHceiOgO9S8mJxi1k\ncsIh00Q1G3vit4b0kuY+uMB022U+MSxshKieeEX1DJyMQ7HxcUZcpbPxFqKX9v7LG/t54f4Qv6La\nJQA3kw8NjKpu/tlAUU1HO1bDNtgLH8V5aNSeaQBzQlYcXT+niSH3Jpb9Xpqru/keKbE9QwOhnNR2\nBAs4ldTfUDgM2eRCA1+540eVIOd8jt7lVtguMyd42FRRvRA3GGC+Vj66SzWJiPp7o4r5HC6XK1lD\nyX+G0r66HONcVK+SM+62xHa5S2cbLqrp6ML6eAX+H/5h0DQ/OwQ2GgflpqEQ9HE4WDai4AM7uc/g\nsOqOpVxLqg9tGrgtMV36gwOCnL+QcLZF0/wUGDizxnK4yLtOzX6UfGf4IvaxOzSeVeHNmOdLq2xX\nS9BCnIvq5XLGnTQIkuIMUeXtEMCvKBSBk1xnvDI4gjyrals/XGXdPt+KWVxLaiHmBMFFYyA5hAk3\nqDx5O4qt5IxbyG9m4Fk6nduw6joUiqxMsux/Cddp4G/EPHSlRvI4xEPfc+TtV6PSarrqzyS61ZF5\nPXbXW8229Ni6YNMOcSyqrf1m16FJMfo0kHlJAjiAogatyWVm4V77KZeasBXtAYtDRK4ZY7jNSVuF\nwmHIpO5fIf9//0iYB1/HsIfqHE/+MpGrmnCZWHWL5hhj+XaFU5N53aSijMWKU0U4soADX4+PSBsp\n5d9U0qS/5nGnCX+jXbEomep4pC8mRHiUVMpY1ImubnUv475egQ4ZGpCrTOayWgpvOZeXKrbHWTBd\nG4/GY7rqtZSxqBO2pzrKLL9Xi7CGmtGH/GTBhOurJ8M8acJXKO5h5LJ69w+TuNvo+9P6cHTqkC79\nfDez79UQnqdIr5OTLKG2Xd3MjSZoWF2BbqyYroVTO8iZqJ6n5FA8VT+czj/ZnJNE8RpNWmB2BXfi\nKNmPXKTwogkji91zGTKdMPFmrtLAP445t9G+v67kCbteYTAGMDjkWsnIgq5ykuXc9BoXey4/oeCD\nGiyZziEe+oEbSQ1grgrnUH/XmQbCkZmM5dA8USxtAYlcYymNHPJq5jXhCFZVoSdrpruukcxLTHpQ\nSPqA+roBtBaOvMnMrCSG94ec26AaucVqMq6vqbB98DKGlypMZjE7vxrERRLAFygeBi91dUOoL+we\nwcS7tQRv1ZzrIJdcwkR4cFovheWDAGNLXGvYDAe6hf2zmT9CsRtdKpxH3dwwqjo33R20eroq44Wa\n61uqk8sMNufaEcwWtJsREw5DbVZN10FS/2ZaUkuwveIYRX3c2CWLtOQcZb+FXl6P9RTnu7TjzxQu\naduLTB5oX4QOGdowbLmcB1srLNdRHBZ2LaY6RYaTZhvlUr+xyMfTow4163/kBOaoJRx8h7l89pUo\nKNCF8eEk5l+msFphZWJE3EVRNpO4SCgcFTa7JwTwxqC0HZqT+ZmkueD7jKkA4Rp0qxlXs2+4LOcP\nNwZZDK1+EhOOQH3q2aZRTfqpsbzERA/nx/JU6X2q58AwbYQjk5nJD/kBnVrGtXwYzi6teZi5PIDv\nWY+cpCY9HQevV804bbcVO2iuv1lfyBHs5IfMiTkUuIQfw+U6d7B1aPE7DiInKYpTfFVSx0eMPKt4\nEB8M21UIwLlkbg6o6vzzDs3q0uYTo2Ihb5OsXNf6uzVWotKzY2IALqDebBktpfmSOqbYiCutd+N9\nYYfmfAtqwpWwgyLmnLxoF7SWt1umB37srTq38FgKUnD/fAUTJQFfjQiF0JZ6ssWcIX7iUB8K/aXr\nzu3tQYcmTjx2amo8zKfcDi5IyxomqPmWbL38hrVVMR8cfBouW5rXSbG2elUER4TF3VCPejETNBBf\nd/jO9E2OFVbQr7twbLSeIh1wPHXC3DQLlsIwMjMndBQO3BuSTdaDl6MOOeNGns2WLjyfqy62TFL3\nYEfVvQTyqP9aHw6CZfE5ZCZc4Z5nC17knxD7HcsbICrGJfhU5CyfTXa+c9IIah3YT5FVbvBIM/MU\n85KsfsWWqnsVNObfcBcJRx4vtiKLYhF6VcdYSKe+ywB3w4wT/l2C65zTnLsF7bLCF2PzcQuWldEa\nwvU4C5+JdZVt4byt4kToUUYxP4qs8sX5zm3nKH8argZFOCjo9GX0T5XwUE1pxXnKVlMFVcEHwsJh\nuIz6LCN8Cye/zqQG3OJ4NXep80BWSR1/F9+V/lvl+0KP4zh8JDoodFPgCl9HXzU5s9i9O29RzovQ\nK6Er2SiyyhdZ2Q/blYHBHQYK6ugSp+acAq5UMltG9ki78mTYrG2rz7Cq5p4F7WAXr+FolsC2OA3/\nxkLchK9hkyQX/z4QTvOZHGgJl0FfuAuGwuMwDh6F+2EA9IVu0Lic9YMossofeY6xDvl6Vf8ZawE+\nXixqrlnQLBXNVtv5ZU3Z+PPgW/EiRdoO5wMAQD48TP21QoKagS+cEPgMYzIW/ffi32gossojbttT\n9sBl8ueoT4p7DH/Cfppdc05L7Y3qHuKejoGFhgnqX3ibZleyH4as+POawiHwUG+tgKTOOomZy3+J\n3qkW/8ZBkVU+EWGAe7WgDdSWV0gJNuOokuqqZ2f2SKie+kZLh57SlqZyPuq95fcHXq/YVPv4f5Wf\nngrPUE9NWlTHn8LYD+q++NcfiqzyS73sJ1273Vpv+S0s317MAZyBt2s1ZKFIfK1yHUpPhz6uLXXk\nsZFdusipjO9hZ7/gy37kJFdO14KCyvCuMkRSO58y4ymELRhe/JdCkVXupRVud38mFuYqF/seLJ6K\nS7DgWAf8Ft84rjLZSvwIH4/2DNT121Tvd+lDoGVlfZ2eI0yzyR1978aOICLij1j+wuAh/Ab7qvZQ\n3mK49pRJNhNgEvXPJCQ1B8vaNfgZE09VM3/xXwpFVlODxtA7/RHPTO8Gm5qGjlCuXNdfXXOH6/uq\nBByhjGhW2LPV+0XmU3AjtKEESoAc6O1dmBNs4r87LOCBhMW0BJfhM9HOvpywd336/adJ7s+DAmhI\npi63qA48jROuZHrxXwpFVlMPD9SB5jAW5kJraAAeumj+5GTCOWlfZB3ODtUKXOJ7sHgaLsFtWIDa\ncSJaiNtxDX6CT0WvCTT15YTdWx2vwpUnWe6fjNEwnYxcTklNww2nK/zF9OL/KBRZTU3uhrfJCKfj\nF7gcsqEF9E5/1Jvv3eA8aJczi9NjjpAQyixJj+aoUoHn79xvsp+DW6FDOW9yF2EftCQTl0tUeySw\nYGjN9OK/FIqskqhWUurBwWNpUMeTAR7w6nAn5nCYTUYul6hOT0BUE8mrsHLxXwpFVklUKyWj4DVD\n//822AmdycwJS2p6QgHu35hf/JdCkVUS1UrIesPnEnfBYjJzwqLaIcEjK7UYX/wfhSKrJKqVjDaw\n3fAunwEboTuZOkFRfSjBNIxbmF/8l0KRVRLVSsYkeMqEp1wPK2m2kqCoTk9QVMdysPgvhSKrJKqV\nCDsUmFLwIA1WQ28yd0KiujLRCym5WPyXQpFVEtVKw23wpUlP6gGbKFU4AUlNw0TvuNjCxeL/KBRZ\nJVGtJPwE15j2rO+hPxn8tKLqSfhom8bJ4r8UiqySqFYKzoB9J81QNYaOsKOMiziIUlGtV47yC9mc\nLP5LocgqiWolYLzJpfnmw/1k9NOIautyiGouN4v/UiiySqKa4mTDQWhk6hNbw4EEKwZUXlE9txyi\n2oCbxf8/r3GKrJKopjA3wQLTn/kRjCLDlymq55VDVBtytPgvhSKrJKopzfdwnenPbACHaAFo+PKf\nzcV/KRRZJVFNWZrAfhM3qf5hMjxPxi9DVPXYqGJ18V8KRVZJVFOUCfCsJc+tAYehNpn/lKLq1SGl\nitXF/1EoskqimoI4TDpJdTKeh8nkgFOKajoqid4HzuHivxSKrJKopiD3wCzLnu2Gg9CYXHBKWV2V\noKjO5XLxXwpFVklUU461cKGFTx8FH5ELTimq7ycoqs9xuvgvhSKrJKopxUWwwdKYlgD7oC254RSi\nOjJBUb2N08X/USiySqKaQnwG/7P4G9wP88kNpxDVTgmKaj1uF/+lUGSVRDVlqAUFls9lsmEbdCVX\nnFRU0/FgApK6luvFfykUWSVRTRHGwgQGvkV/+JlccQpZTSSq+izni/9SKLJKopoC5MB+aMrA98iA\nP6AHueOkonplAqLajvPF/1Eoskqiyj39TStLfTp6w1pIJ4ecRFTTcONpJPWHFFj8l0KRVRJV7lkB\nlzPzXZbB9eSQk8rqoNOI6tUpsfgvhSKrJKpc0wm2MjQ77Apb6IqVk4qqHf8qQ1KXY3qKLP5LuYoi\nqySq/PIBY0ut7+AucspJZbUrxk4hqWFslTKL/6NMoMgqiSqfVIEj4GXqG50Ne8BOjjmprE48haiO\nPMV/wOfivxSKrJKocsoTDJYymQ3DyTEnFdV0fO8kkjq+jK4+g+PmUmSVRJVDMmE3nMnctzoDDoBE\nzjmprGbgxBOCACX4RBkf53fxXwpFVklUuaMv/MDk95oOo8k5pxTWTvgx7sMo7sap2LKMD/K8+D8K\nRVZJVDnjR7iWye9VDw5DVXJPhTv6DO7bQJFVElWuaAV7LLk+JREmMXFwlm94X/yXQpFVElWOeAse\nY/a7VYECqEsuqgCpsPgvhSKrJKqc4IYjUI3h7zcWppKTKvni/ygUWSVR5YIH4T2mv58LDkJzclMl\nX/yXQpFVElUOSIMt0IHx7zgS8slRlX7xXwpFVklUmedK+JX572iH3dCRXFXpF/+lUGSVRJVxFsLN\nHHzLQfANuarSL/6PQpFVElWGaQV7IJuD75kFW+Ei6rGVfvF/tDdQZJVElVmmMpxMdSK3wK80O6HF\nfxyKrJKoMkoVOAJ5nHzXdFgDPanP0uI/DkVWSVSZ5El4k6Nv2xPW0xUrtPg/BkVWSVSZIxv2QWuu\nvvFSuIV6LS3+41BklUSVOfpxt6N+PmznYluNFv/mQJFVElXGWMnhNdDfwCDqt7T4PwZFVklUGaIr\nbOYwQtkG9oCDei4t/o9BkVUSVWb4HP7H5ffOh5HUc2nxfwyKrJKoMkJ9KOB0adgUChi7oJAW/9ZC\nkVUSVSZ4BZ7l9rtPhbHUd2nxfxwUWSVRtRwnHIY63H77WlAA1an30uL/OCiySqJqMcPgI86H0KvU\ne2nxfxwUWSVRtZQM2AqduG5BHhyGhtR/afF/HBRZJVG1kD6wlPs2jIbp1H9p8X8CFFklUbWMn6Av\n920QYR+0pB5Mi/8ToMgqiaolnAU7ITMF2jEcZlMPpsX/CVBklUTVEt6HESnRDhvshM7Uh2nxfwIU\nWSVRNZ0aUJgyqfN3wWLqw7T4/xcUWSVRNZkx8FrKtCUDNkJ36sW0+P8XFFklUTUROxyApinUnuth\nJQ0fWvz/C4qskqiayD0wJ6XakwaroTf1Y1r8/4vyRlbt0AYuhuvgdhgMI+FxGA4DoS9cAV2gKnUo\nEtWyJWgjdE2xNvWATSmRy0CLf31JJLLaCO4Up+QudxZklTTwd/Zd4bshMDD4UORxvD/YX+kZuNDX\nulAM5mjeP72z0h+FLlQenUT1ZB1tVQq26nvoTz2ZFv//4dSR1WrQz5MvHvaq1ysv49e4DaN4ao7g\nMnwHhxU38+WEcpdnPgYdyLQkqv+wCG5OwVZ1hB2QQ32ZFv//IhuWQZf/LPNv9vzsCPYMvImbsbz4\ncB7eF6obcO63jaFD0iSqAACtYQ9kpWTL5sP91Jdp8X8SWT2es1yf5KgX+D5GDSvGShwcloK56zMG\npOh4IlFNmPfg4ZR9XRwAJ/VmWvyfkvOcP3iVF6L7US+KcR6eL4uHs4aAncybWqLqgo5wW/ZY59Tc\nWVW+zV3h3Zi7PndZ7jfeT8TJmU9AXzgTbPFP1kyhpP//8hGMot5Mi/+TcpFrZbXAlGgY9WclXq6K\nftujJKzHcRncx+PXzoGu2U/nrXb4beEzfNfKo6Ov43T8FBfiMlyC32A+TsWJODJyub++P6vEeSh3\ncfqD8FZKVyBtAIcq9SmaatAU2kM3eBWWQl+4HC6As6AhuCr9AK8lfVFT+RAjaBzrsZcqHoSrKrml\n3dAQ2sMFcDn0hRuhJ3SD9tCEj4S0epmPuX/NDrUofCi0APcm4PIIbsNZeE9xXdWmVV2UMRA8KerU\nyfB8JevGVaFP+uPe2d7NOUGnVjPQ1Neh0FPSMXhV4AJf28ImRdXknLDgz1sjvQfDoXslvIE2M2e4\nTRkRDqLxLMYGivsHaFDJLCzAJfCg+4O83x1+W7ia3KSoXWFX31WBa+Ruvg6FTX01A6KWo3k3eT9L\nHwXXQB57DZDgDvdqURuofYGBpBy/Hz/Ca1R7yPM1XJ2CAfaaHN+5VT48cI34pnunI9TdPzIyHZdj\n4TEfP4TqCT7fg4twMt4XOsuXE/auzX4aulaaPInWzm0XKn+hWYTxmRKHmjO8Upzvs8FFtme967PD\n7X33h97E78uY3h3BZfguPlxykc8ecm8XJ8PV4GajEc1cM23By+U5WPG4kA/fjp3ltweEl6BKCrm5\nOpwPPeFGGAgjYDQ8CkPgDugLl0K7lIow2qCv5wdb8ALf89GV5VzSqrgQHylp5bOp0gdwfqoP/ayB\ngvp+DE3mb2ytuBam7FoQACAduro+sWln+h4rWVTOLIoIrsDnol18tqD7O+hj7cu9resrSX26+Iiu\n7t+KdwftmjQZanHs4By4IPNxz+ely982Rd18vQK3q8PCo/GR6L2hW+Qr/V18DX1Zxc4jeSucU+Eu\naMJ1d+4gTLcp5xS9j0qFPL8XX4g2kp2HHM9yfPFj2YjirPrKerSCEhwVEgvgvJS0a33bc8KhRv6X\nIhXLoQjgdDxHsSvSu3CWFc1o4V6cq06IqoZ0gP04LOzQpHdZjHWUSRp0zBzl/TU71KJoeHg6Lsei\nMloZw+24ACfhTVoVVSz0fga3Qw3uuvOFnuVVlecie3Tz/RocHHJo0kfQOOWGfkNx94CghtYxByU1\nZ1CKWfUM10whODS8Vjcr7cKxkTzV/TOcb2oQ2D5BUCZFwoZ2gMM4JCQEsu6BdE6c28j2jPNAvcDQ\n8Hz0l7u1f+Fb2Ft2BD2/wK3chAWucP5eKzA9Vqy774/gkyVS0DM3pS6laSMUTo6gxWzFWqpzbMrY\n9ExpvqSOKS4yIA49NVZTcf8Gl5rTkJ6Og1erB0zpApvw3IBzE/O3q2bDANfvknqvtrqC7Q3iTOwu\n24PeWXA2421uKi1tJOeXeTK9Ysj4fMSlOt9KkeSrrvbAzBgywAFsrjincTNVOTUe57sedXxEMcxS\nEfwY68muxdDI2IZI0rwGyo8mdoEYTo+5VMczkMGoa+3pQxwFXfzzsUS3Nh/E8bGqmvcXc5cf5Wmz\nY6xde7akxHDvF+GgoNOX0Z/3zauMawTlB2QFP56jSPO4rp+WltHf4bsxeNiESPTLESEoTDh2UEl3\n2gl7bwyqpneCg9hVkVZATeZc68h+1FHUQ15lSBrMtFgtxb0GLmau1d3Eg73VvaZ5fwU2l10roT7H\nEtBdUlcjS4TwElWaye2rqpFrTWvZPIvuxqsUcR9cYEBLbAOcygyLFjAxfLZE8EMPplx7tXjwGvUP\nA1sdwRlYS3F9w9BeeIbtGbeywGTvR/ClqEPO4LXg95li4EdkDQ3PVsSJXM76r3fIr0SiJtvrC/Ro\njtH6Bk0ynB80V7Za2g0WoUfNYeXkbm3PV7VMEZdinFAsqLZnmEiMryot6azss8T7q7CGIkzn8HhA\nI0fhZzFkEB82ke2PcGbNHOeU6tpyS+x1EM9XpF/1y8/Jkb44Tw1Y3g22Yx1VmGB9PCfnQYc6tiRs\nWru3YXfFuQPaWtzuLkLRk8VRy7xfhFeozo0MBoHKwivsfzuKjLIbq6oZ13NkzdrOzb1Uv2X2iuCj\nYaFQn6vnRdcv16rFTHSDw3imLL1r6c6lR1zQWv7b9JZ/FBO1nMEWLrp6Ccq3Fns/hk+XiAc5OiiR\nJi24P4gMsw4dCpzBiTWbC4deKLHaYl+gqMLlFRYR55bBIXZetgHsokhzLJPVs8X994bClrR8CzZT\npW+sOZ2cdbtLW8aE/6dHHX595gomrFUfaimHkW1eizq3clEcsIPDN5UJGVqBbi3rrgrtb4u/DWHs\nXRvCLqrrHUsGySBJnWthy4N4V1DYY/5MzfZYNWULM/6fGxMU6MaDDDi1v5F9rlWdU5m35WUO+Stm\nLLYRq6r2EUmv+VwL+mrsRdkD2EIRnzHbr44xNZVtlrf9rahQZO655JzhdZW9TPn/ZxQU5merDmH/\n5zEONBX9WFOBq5m25QWi+gtj0ejaSnLBuDTxo+5KCZMdoQDrqjnDTI2Ovd5YZUNa5sUE1azDcwAZ\nN+epO5jz/yJ0yHAmyzogvNRXRU74CYVDDB+Nbi0EFjBns11YRUlik8/2RBuF3X7xN3pU0xaBmc65\n58h+hgaBpGZca0rLu4vqWib9PyMmHIZ6zApBE1Hbi/xwveYcz6glGwiF+UzO+NejpMIl5WtMZ5e2\ng+mO8AMKRaZUdUqTZl6shphq+1p0lduhSXCWQ/mFWf+PL3HuAIlNJZCWTYpwpKl4AEUVmjNoSI+4\n93VmLbkYHTK0SrwxXvHQXOa7wqhi6VfjawIIE89UFObavhwFBc4xtOEuYV8+01HBu0LueSxKasaN\nzWSuNBURJ0Vdy5gzZJq4YDDTKWnvx8SdiQZO0lzfjQix3xGi2EVxjDHWr9mPNJCPMNn6L2IOHzQz\nUFM/Hxhk2/8hbKbk3MucFKRLuxYhb0SwlmzI6faKbJGOYD8l7dag8/OEGpM1qI1cwkVX2IcuFdoZ\nOOe4oaq6m9nWT4sK+4262jvrviaKxrz//0LRUP8nxXWtAsgh02LupWylpIkq+ylpQWwiZ91x+sbk\nCv7fOeoK0kbDjgI0dsirmW79A2HXD4bUGmolqn9x4f+PY+JutpLXXZu/4FFTsRirKtCBGTOK4oHZ\nXKSkbUCHAk1PF2Sf8UCIn64Qww6BrIHGrD6cm15nPDRWgm1l+8P6x7Jca96M8tIDeqnCcwxp6hVN\n5BjyyatR93fMpKS9ciM3KWkvnzYefZ5X83PVFdajEDDi9lVh2tUcuHUXulQ4V+egxx0tZW40Ffej\noLJzft2z/GPklSC6NKOr3CdIS6d2kKN49Blyxo1lpQ9tzufuRXt/yDlNd7f2rKnw8XKZi8IBXVO3\nPYL/V678/1JEYiUaWMsR1JBf7gvZnmHAimnSr29EebLbCnQUnvran6t4XLwcRoem84XWDvEgPzu4\n12tOHQsiOt+5hzNdKMEmSsZ1LGhq5mN38KypuBrFQ9bfB5BxG08rpVL6aeJrp2iOe+2nXHaGoeFT\nNim5pf94fg4Z6py6XV/Qirjz/3co7WLhKjvXjqXINw38cJ7VbybxAH9WPIQO7eS1frvV4e4NcTSu\nZld1jKs25euQIeKkqLRKnxmG891Hwzz2gLYBsH6u2r4Gt5tURxkXld632Iq3deYyJe0UEzvX8unc\n9om7gsKLus03lk3i7N0SweZyxk06NL26QzvEpf/no7TV6oVr9jMjdUzvLkBAQMBGZX6qTfxT23V6\n6t8o+Cy1Y5prx3cpNLFr6makvn8ybEWHH7J0cev5tZQId+3/AZ27K74Adrx6f4jXHtAsAFdaK6re\ndQuRd1FFrCpbWgXg2pYBXnvgXUHhhX+1xjbuAW4HFCJiOz9cpYdX3UumcTlfPysAFb1vyGlT93Dr\n/5noXm2ppjqyw2oKiOptarqF1/a4/5jDbQ/cjjYFHCdMu52H1vKsqTgl5vlSB6+2y1O5DCrilxVf\nAA/oEeDX/8UoatDQQlG9tL0PU0BUP0TvN5bZsIlHjXCsQV1lOCEId2FjP9eaij60aRW/wcn17aQo\nrxZoHoCeFVq+rprNdQ+4J2QbbZ2m2l96siQVRHUf2mSrMils44ZxvVr+CD0/H9cc6cOXovp3iLJ/\nZujcpJ4y3FlBrzZwavwmGs5E76oKtL2uGOS6R+Ov6Nxn3SZL3q9fYyqIKmKeAg2s2aTifbWsoUOD\n6sfaIx7eiryL6gfo/bqC+7djBgX5dWkYRQ3qJ932J4ws9RfEZfghjsen8SWcinN0FYF/qB2ATlaJ\nqnh4e4qI6jk+uMwSE17YhPPVMuKtWuaDx2IZuQpyL6p70aZUbOEi7VvJtUsHhmxPJr1FsPknQ75T\nCN/B7pj1H+/n4nU4B/XNN3kyIrxi1eo/qziSIqL6vyAMseS19OZzBobeErNnRfkWveuOtmfgDbIR\nDcjDV8v40f/a41qBCl0Hd27dANeaisvQuTdZTbWFjdigex9rlPlirYKvoH7P/Rm9WywS1TYN/Jgi\novoqGlBLI5EuuHMV8i6qQcwJxStxeOZP57AB/+WuYHoF7lh1vvtsBDmnlpxkTcxe5/v0/i4aXv8v\nCRWwHjZE4V+/banbE4vRFgaPJaJ6w5UpI6rfYt4qCyxY1RGKcC+qiGcfDZ4Ivp0pIar5mPt98l4V\nCrcZYoVT/1yruwUeLbElVV1UnDxO56VXCLsea6cNB+Ln+I9qK/gtPogN43916fjULj7oZYmoDh8a\nThVR3YzSPiteS5caGlE1S5NGR+zjAQDyHEFMCVHdgs4DSTv1jDwFuRfVRehdn9TSa4fe0eRBx1p5\nI578SEEEP8QWOovqc1FxsiWi+n+jY6kiqvtQ8JlvQOm9ibFUENWf0LsZAOC81r7UENUSzCoBW5Je\nHXSryr+oBjEnDM7ynwbSe5vl02NtHHUaj41Cr47PXYK5Gy3Zp5r4kkEiUAUnl/FT2wBRlTErZL4F\nPVuN3SQ2S5PCmFUC2QB33Kykhqgi1vFDyyRT37/+wCA3nnq77msDLNDBBz3K3fi2DXR9rUawfrzt\n1yfw6RU6Pvkw2lRLNlk+mGJQ70nsR09RjWF61PT0/7TscCAlRBWxZgCagX3CuFiqiOqlfuiTnFPt\ngT2YClYYE00irUjnbZZPjqVNmX+9txA04nKd05E7/+OUEVVMbrVTMep4Da5gbN5o7OaDXpD3w2xM\nFVF9qCT9seTOE3kVTAkrfIu5K8vb+MzRj+m6+u8Sb/mDaD5n+qCLBaK68LMUElWnBlVNNuDFHYpS\nRVSHFaePhNwNv6SMqE5Ax6tJOfWSjkWpIao7USwstyTM0zP0oWBmvOV/WiCqNysVPqycjKjO+cCS\n3tPGEFHNKj6x2pIJDL5LSxVRfRs9n4B7xzoLguzzjWrQx0k59T79D2laI6oxzA6DWE5JWP+zjt/g\nu3i7q6EVPB3LHGvB3vW7b6SMqEYwLWp2DQX7yy9gqojqIsxbBc6C7QY1oKyf7oY06BPM+yqpxP+3\nJ2FqiCpiIx+cVc6dV11fq8/E232lJaL6ClqRVJUz/vmUEVUf5gRN3+h7782UEdUV6N0MNvlwyojq\nl5i3JKnl24oFKSOqVwegnFerOA/pOSgHx9s93BJRfQc9n1iw/f/449FUEdXdSQSQKhw+mftRyojq\nJnTvhYySUMqI6k+Yuy6pN+WejSkjqg8Ww0Pla71NLtDx+TfF2z3GElH9FHOtKLI85J5gqojqH+je\nZbb58hbPTRlR3YtiEaRHilNEThCXYu6GpI5pFu5JGVEdg5nPlK/1+r5We8Tb/cpJ/3rDSV6wvXR8\n+jdYZZkFotrzQl+qiOpczPvJdFH97fuUEdUAZgchRy1MGVFNdkjlBH2GufFUP68aZIOXUXyjXI1P\nT9M1T/moqE60RFSTXatUkKbVA6kiqi/EHJNMX/7/uSxlRDWCaVEQD+9MGVFNdvGXHo2kjKhORc8M\nK2eqZS//jZ+p5i23QFQzM4tDKSKqt6lwN81UKzRTDYF714aUEdVpyW1TOLKKMWVENR/zynkDgk3R\nc6uy7I2q5fjpsZ/nDRDVTzF3gSUHVfduSBFRbVMEF5guqj/OS6GYqlAEuX8uTxlRTTKhxuMIGufG\nU2Xr/mGQDeZh3o/l3P3XNanu6YRTqlYaIKrvoGemFaKau2hWioiqGIRqpltvXirt/kt7IW/JFykj\nqo9HM0cnE1LNjPDsxhP5GHPnl3OWpWue6sKEk/+NENWJaE3xv8zH7g+lgqhuROdBC+b576dOnupK\nzN0C4psvp4yolj9HMx5VjIRTRlSnoPuDcs4T/lii4/MTP6ZqhKhac6IKADo28qeCqL6W7JlEOlEV\nZxHmrQa49w4tVUS1/KeJ4lFF9UjKiOpLaJ9YTlGd/6Gu3+C8eMtHWCCqtyrmb7OUvpdtWkEKiOoV\nAbjZAuvdPzCYKqI6FT0zAbqfXZQacpLMufd4VFH3DAjrrPBkLL2cIZDMp0bpGv6Ycaz0X6Hponpm\nEZxviaiC98dPuRfVKIpBqGWB8QwoaGTVaBxenP4IQC23mhpysjPpA3aeHWtTRlTvC0F5rz+8saeu\nWZYRrBdv+02mi6oYNL1s3dG0vOEDgsg5q9C12xLjGVB606rR2N0H1wCk5ei6cEn0KoivdG/Ol5j7\na7LH5D5PGVHtVv7L79o11PnsQ/6xxLH/M1VUj2COBlZRVwyGOBfVoWHHs5bYLi0rLKeIqNYKQHMA\n8P5oTDpI2T/6VzEaHs7+v2QD5eNiqSKqNQPQrJzNF7KLda4HctzFf7fg3lN85iPdRXUpev+0TFTB\nu2o215IaQbcKZ1hjO8/fq1JCVIvjd1RB+oP6homtEtWmPjg3SZ/eeXOKVP4/5tTypbTsWq3z9wjh\nBcddUX0PzkX/cYN3M7553BXW+onqizHnW9aJKgzoEeBZVL9Czx9WmU764NWUuE11KXr+ii//6vr5\nF9UizAlCVpI+1f1GWatE9c+kbm13vv2i7l1aw77/8rgT6+MZWAuzT/htK1yq2zO7+qC3haIq2YIF\nHItqHyX9Xstsd1MPfyqI6j93xKXb5L28x9hxNuYuTf6cnCMUSwlR/bzc56kAAKBPV0O69HtYvcwX\nax0cjyW6Pa0EbSHItVBUwf3ZCxFex88BtGsWWq+aEIymgKh29MHlRyMaX03jXlT7a5kjkvepc/8f\nKSGqQ8PZjycTDrSFig35PkGcht2OHQf456c69sV5qK8CLUXPVrCWlh5N43T8jCh2vW2l6Vy7f+Ne\nVIOYEwbpaIt6d/TzLalBFIJQuwIrt/cnpcRF3Y390DmpOdbWJQZ+Kw2X4vv4Ej6NL+E7OBe3GbP0\niphftO4/0vDd61Eex48PBQ3qWWk559QXosg5i9B7XD3nbLv8N9fNyUdvxUq+3XiZn39RPZJ0XDn7\nqUHcZ1k28MN5VosqdKyihjm03ZMlro8sttzFzfy898D+WvYjx2fVTB1TwnNzugfgtgq5tKojFOFe\nVGeh98ck219PDIa57tCrUTxk9i2gJ52r/vJOjDfb+dCpQWOLDZcuHlnP+WrZ8a/VcqfaMr/NOYQ5\nWnIHVI8bDDt/5T6ufGcw/cGkMwV/n8t12+8L2Z4BFujgUX2c2e7ekPSe9Yazj3+I6/f6TPT++94R\nadvX3DbniWLpw4q61PbMfZwfiClGUYMGSRvg7is5zrIsQZcKTZkQVXBOH8TVbtU6dPghjwHDtfCq\nEY7HX7cA3PqfqOKZnA4qBSUVmlTYpfVdWjHXovo5elZXZKpu0/Zz2/bZ6F4LrOAR/L9xY7kotpGz\n7mTDcK5NX3LbA3ejTQXh3y3KcO79icvmPBdxf67LWFj3BdeiermcUaHB4XhzOLdz9ZYyXMOMqELG\nHWfKvGxlvxVz/c5CLJrviR3i4LD4ysm6wp3nc9ikIHpUaKVLpPyeXhzHlQsxJwjuChmgtoPTE0Hf\noLQT0tkRVUiTfn2Ki2XPFhRUaM3O28i550cue+BBtGtQ42RNyhIOLeGuOS9EXF/r5FKPXdvHrai+\nFHHPqfA5yw+f4DIC0l7OuAnYoppY9B3zdgthcyXnXpbMlnHH+VxObMo6OnF9I5mvUbUfRR0r64iT\nH+B0ARxCr5rcrQcn0EjU+EsW/BHFvZABrHGRl/kY9V0haT5jVssSC/jLwjmCDg3qnPpkzU8TuNqA\n66U69LyTiNsF8Bsx9yI9DCB9OISz10oEm7E3Ty1NEXq+q8LyYJoRE/f+c6iSnblqmwBvib53Bcs+\n4ttYUPdw05iFKO4Hm67pMO+N4nABXIzVlKTLHp5IruD/nau2T4pKq5jZaDmRTGnJHcyeU/sJHTK0\nYdBqaa61U7k6sLoKhaLT7GbYx/VU+WiMirUVuEJnlzYUtSLuRPWdmGe5XgZI/99ZHM0UDqCoQnNg\nFYdr3SgmE9rXo6TCpYxarbVL42e9GMXWcsZpT3PanFuncPGmuDXoytffo8K0/3F2Ct6HHhU66GaA\ndOe6d7lR1es15wRgmTxh5wTmDoDvxipKxg3sGk1883Zujk+8FpV+S2Sl1ERQ1jDfmBkxYTc4jUnd\n5itUfk9Qmq6rBdpJ6nYuWv5ZTNz/34RrxqgnHH6XqUnKLqyt5Axl2maSUMDHMYAtKKjQMrFg8Y21\nVbZTVjejoBoVEcoY0ELmJ6iz1oBDhjkPtZTZP4a9EyUVzgH2OUM48DwzkfoNWEW1j2DeZp1d2g7m\ne2AImys5gxN/VXzUR2N3DejDhkrWXQaGytdM5kRVo9hGybhDfwuI3wxhPAhSjG3knGHABzWkvwaH\nWehSv6JbybiFB5PZHm+jsL5nfHdI+qJc+SDS6vuDrL4fOisGX/DWUlA3cSGqo4ul5YbsfXuFg/OY\nbvl9IekbRnf9T5qr6FzVV7V6QM1Bkd3tqf/G9hc/xHR638wkUtIk55ZxDL4qothLk+YafSgx656G\nCvux8sUo+KCmQSboJKqrmW35GxFhD3iAJ+zS3DOUzRbO7B8ICYfgbI4sVkU48C6zK8ZlKCjQrvyN\nqikcYC9jbFDQuRxyjPeo67M7GF8AH8RcQ+cdGVe7GZ2vz40JPh3qkpm/pB3gVD6yJKq2C9vJrkXW\nXouYBI2FotlMRiG3oEc5dsVfOWkqFL3DkKxGcVDIudGQPf//4hT3fMxwalEEz1eF5w2er/evobBX\nDWExOuRk5ghM0EbY3U8zu4h1Pro0+0iOgiX/cLag/MxcD9yD1dSsCuxkNBT3PsFInl0Y+2iuVeAy\nzaFnivJiZkV1QFD62fgT744nmipsJWKvQEmFC4FfnMJ0t2ze6/ovvEiVtkMnbu11iUtlqzrtAWyg\n2B+uWKOqO7fcE7R+uqrghYr4DdhNdeiFospmueHHiqU/K3qBTIKyOraOsp2Zdi9AUc24CnjnLNfG\njsofhlsrjM8W27XspyGbZ2NlXONUvmemB27FWpr4lA47l9KqazRr81b/xuaK8x3zaxFl9HKrW1jc\nptkL1cyyQdZ9XpWNwyCzYmIAukAqkJE1xC7fETTuDuMQTo5VVaT5UCsFrNVZ9H/CRChuHebqVizR\n5pxe28JTVrNjTi1nuDX+zLm3lsJWGvK7UeEI1DdVAa53KtYHQsZHhAJoAalDbvbTNrmXtsGAVd0r\nsTxN+gU6p4ytzhSOvGp5ya/v0Kll9NZzYF0r+F+2oFnF+GBIOGTlyZmcIXkqO5fnPl8iHoJmphuh\nm+AfV2LdZCGA12rOv8qoWckrku0Jh/8S+XNM/gTbS3h8Xec/8MGwS3N9CW1TzFL1ndtv1BQLN8nH\nFAs+OF/vZjVxbrlC3W1qU1ZiM0X6qoLXhFT8hdJHUli4vyuGI8LOHRZJS23Xmi7qAUvavQEbKM5P\nwQGpiQMGSCsEbaC2LCnrOFCNb6C8HGsmOwuFl1i5V1ZnbK636ihrLemBBXiRIq0yJpRisz3jUF8o\nMedMQCEODIn+jP5MOLS7Q55lcVQniNdrrjUWprxnCi9XUX80/UXyelRQ2SxDrSt1s59w7fGo18nT\nsDyRVhkF/AqHh8/w5WiumdCNqbu69J/e9LfLb0XMHojfYa4qPG/kjk4j148NA0YPrShOj3k01zSr\n56jH0U44cF/QujIjm7GZ6p5rcvbDf7lcOHKLdsi0Vq/FdrJrPY+J/knSAO70zBF8VeUr/I9E3sdf\n0XeKoNhmnIsv4K1K00BaLHd19mg4D7IqhYWaS392lP8wrQcewBs04RBcYnzD+ogHzwkYleZQgh/E\n6smu36E9a/Ev6YsW8lZLJPWzmKRatVX378Wq8zlJfTlqfHhdwVFBIZA1jMH7p4ynGfTNfNIzx7sl\nO5hd7NKqy02KzirsVNTMV9efKztC6RFpf95P9lfgbvgf/FrJbJOe0V/wDw4bn48UxekRl+qYbNJx\nI0iHvuLOZko+6jsVD+N7sdqK63foyaQ70zKHOxWzkzv8eHtQ3MPU1RetXb+1kOejcYbQcFLUq0gf\ncnew0piYa1VoCO2hK1wMHaA51DkhBNQT5lVCm1SVZuYpk2PGVVyJ4ed4huxaYfa9EunQ17W1pvx/\nJfpk263AQSGn5v5Rp9uWjKKDc+v5snm5qx/HvKr0vlnvysRfL9BH2tLYn4/6HwuR8YWIR3Mv1OF2\n2MrAnTC1kra8o/SdRxkf0T8jIIIfY2PVswl6WSYy4hSbv23RW7Hk8wI24NhoPcV1wDEGGnDgzMyc\n4TZlcNj49I4t2FVxbWW2EHMaXOFeV0d+NabfQdbNOLJY1KQ50IrUMkEehWcrcevbuL9waaNK/tKt\nBx7EibGasnsNXGZ107Kgp2eeLVAzMECbiQcTbsBf+Bb2ll2q84BzKhc13P+hpjSvivJGzLhCVttw\ngGaXs4YwH1G80DU7R7vY9xlWbCl2GF+LtQ6Ifun1SrQtpQcTYFglt0Az8Q2H70zf5FhhBbNr8rG7\nbA96P9M/G7UiM5fW6Q/kfm9TRa1t0W3KizgXl+DvuA2PYAhVPIjbcBUuxpk4JnqtfIbPFhaPuD+D\n26Eup85s6/pSUp+I6F9zaCvertlU+3huIopO6O9dKQSvCLyGG8u9LbkUn4529NmC7s+hR6XclKoY\nH8CtZATIhCvc82zBzr6x0WVY3gpQf+AkvMzvCHqXw23s3nlWDS6EgY5JeT/lrvdulw7ZlIySrGJ7\nwHkwd2uVtbkLssfBbdDRxHpTxnGme75TGxZep9tG3Wy8RHb4bU+Ut6Y4A1SHW1wfOw+61V6BsbFP\ncW0Zc9ci/BXfw0ciF/hsIc9W+ytwBfMX+LHKAm5q+Zvxcr/K8ap7my10oe/RyAe4An1lzEt/x3x8\nOtoz4NKc+6UP4CbzqmkQp6dJzvNCQWP/+Oj+CgnqMhwYEoO5v2XcwfnZofpwW/bzuQvduzKLqyhN\nfe0Lu/l6BW5X+ylX+i/wtS1qVOTSsoPezZ45mU9AL87q97PHmpQ7kFpxcqF35pO587xbskMurVFR\n26ILfFcF+sm3q70CF/naFzYpylMyi907c7/NHge3/H97d/4kVXlGcfxhpqenp7fpWdjCFiEshXEh\nLkQBWVQQBYxBkHIPKsRCooigIhiDilJKFGICUUzEuOCKoihGLZTFWEAkghGBwgUEQYSeXm53T89M\nP/khxFQqZVzy9txlvp/+D87pOnX71r1vu/aXsueVyKDKpeVW97op+RX/8S721/tQF+voVMyq3O2f\n5bGCS6WLHCeDZISMkwlyhYyRM6S/HCvt+MIY86knzqEqnvZyrPSXM2SMXCETZJyMkEFynHTmRpN7\n7uyc7JtVs9GfO7LugvRcXaYfaP4rfv6+rUv0+sbhidapULxqmYxv3nOn4BGtJOfu01KBbyYg/eTy\nintq34zuLWmqyFanOyZ71vWNH3uoe7xtKpIpy/uz1duqlvlmyRjpSVz4zmJyiBDQEr/4HaWXHC+n\nySnyI+kqrW1/gx9e0UO2EQIAmNJf1hACAJhyjjxDCABgykRZRAgAYMosmU0IAGDKAplMCABgylI5\njxAAwJTXZQghAIApWzh5FgDM2S9tCAEAzCiRevERAwCY0Vo+JwQAMKW3vEcIAGDKIFlFCABgylh5\nghAAwJRJ8htCAABTbpGbCQEATPmdXEkIAGDK0zKaEADAlNUygBAAwJSt0osQAMCUg1JNCABghk/q\npRUxAIAZ7WUvIQCAKcfI3wgBAEw5TV4lBAAw5Xx5lBAAwJRr5B5CAABTbpcZhAAAptwvlxMCAJjy\nnJxNCABgyltyEiEAgCk7pBshAIApCYkSAgCYEZAsIQCAKZ1kFyEAgCnHyUZCAABThstLhAAAplws\nSwgBAEy5Tu4iBAAwZa5MJwQAMOWPcikhAIApL8qZhAAApqyXEwgBAEz5WLoQAgCYYkmQEADAjLCk\nCAEATOkqOwkBAEzpK28TAgCYMlKWEwIAmHKZLCYEADDlBrmDEADAlHlyLSEAgCl/kgsJAQBMeUWG\nEgIAmPKO9CEEADDlU+lACABgSk78hAAAZsQkTggAYEoP2UYIAGBKP1lDCABgyjnyLCEAgCkTZREh\nAIAps2Q2IQCAKQtkMiEAgCmPyzhCAABTXpchhAAAJvilSrbJOdJbukiVlBIIAHw73WSkXFf1WM3m\nUKK0sbQxmCspdEp0TtSmgrmSgi8fOVizPrJYrpLT5XuEBQBf5QgZX7UsFK9ND6y7pv73ukr3al5V\nVYdpg/5LVj/WV3SBXpHtGw9nonuiD8lYaUN4APBv3QNzIvuqrNGpxfqhfnMF3az3Fk5PBHOxHb6p\n0pYgAbR0Mbky8m6lNTm7Sb+7Rl2lF1jBXO1aGScBQgXQMrUN3Vth/SS9QhvVBEsf0f7JUNw/XcKE\nC6Bl6RxcWJ4Zn9ulpm3RselQMnCbVBMygJYhFJoXykyr36/Fsl0vzFQkyybzABYA7xsZ2j/K2qfF\ntl37JyPb5SQCB+DhH/2Vq7qk3tDmUdBHCtWZ6BKJEjwAb16jJm9ryGtzqtOfZcN7+CdWAF7ji9zR\nOr1W7fBsIWqVX0sFALyjQ2Tz0PRBtcsO7W1VviQhigDgBb1C++c0FNROOb0oF31PaigDgNsdH4w/\n0KS2K+jMfPgT6UwhANxsSDj5ojrFgsbgQTmaUgC41alR6y11kscKobj8gGIAuNEx4eRqdZqHm8L7\npD3lAHCbbsFDzxTUgW7LR3ZKFQUBcJN2oX2Lm9ShJuUqN4qfkgC4RWn07Rl5dawmPTMTXUhNAFwi\ncOuJqUZ1sri2t0p/SlMA3GBgzNqjTrdeK5JyBGUBcLrWoUOvqhvMa4xsER+FAXC06NKrc67YVC3o\ngHT5VBoD4GT9aq2UusUODaalA6UBcCpfZMdTBXWRG/Ox56kNgEOVXzcwra6S0XZpOZXmADhRpCK1\nTd1mmVZuozoADuSfMSbtuk3VgvZIyBm0B8BpAqH4FnWjpRrbQn0AHKbs6uEpV26qNmrHlAykQQBO\nUho6sEHd6g+FqrVUCMBJhvVOuHZTNauhrHSkRACOUfnsgiZ1sUsz/htpEYBThAKZA27eVF2j0U+o\nEYBTXDos6epN1YK2S0kfigTgCNVrnizK1B1QUVHRbs0wqzMaKu6mSQBO4CvPHHT9qK7W6g+oEoAT\nnNyjTl0/qvVanpMYZQKw/0J11pR694+q6sl1MpI2AdiuZsMK9cKozmkK/5Y2AditVVku4YlRXcdd\nVQAO0LmmaGdTNe+oxrU8S50A7Db0x3XeGFXVSEbaUSgAe02ekPXKqB4b57QqADaLLF6gXhnViy2Z\nQKMAbFWzboVnRvVOrfg1jQKwd1T//pZnRnWRxh6mUQC2in282TOj+qjWLKdRALaKHPjIM6O6XGvf\npFEAtgqkvvDMqK7S2k00CsBWvnzGM6O6Qau30ygAW/mzCc+M6jqteY9GAdgqHP/UM6P6srb+C40C\nsFVsz1bPjOqTWrOSRgHYqmb7Bs+M6oNatZRGAdiq9q+ve2ZU52t4IY0CsPdK9bklnhnVKfmS62kU\ngK1KZt3Q4JVRHVwno2gUgL3GDE94ZVTbJ6UnhQKw19Hf98io5tWXlzIKBWCvirJ8oydGdatG91In\nANvFdr/jiVFdotUraBOA7SIPzit4YVTPt2QibQKw37lDinRX9fPDo9q9WUa1dVq6UyYA+9UEcsV5\nquqTw6PapxkmdYeG4lQJwBFiO98uytBtOTyqA5phVO/X2DM0CcARAndckyvG0L1weFTHNcOo9kvI\nWJoE4Azdq6xiPFZ10+FRvbXok7pHyy2poEgADlH1/krjQ9eg3Q6P6mtFH9W5TbFHaBGAY5RcNTpl\nelKvPDypbbSx6KPaNSEDaBGAc9QEsoeMzFu9LtT5OvXLq1TRO5vhv6nC+6UVJQJwkOjjt+RNDFz8\nyzH956ev5os+qiPSvmtpEICzdItkksZH9WxNFn1St2pFUsIUCMBp16rP39VoZlRLtEaP1km6plne\npDovE5hFewCc56gqK6tus1MrUhKlPAAOVPnS7LzbRnWUFfwVzQFwpk7B9IeumtQ/a/gzCVAcAIcK\nzBycds+k1muntJxFawCcyx/+5HnXjOrN+cqVVAbA2QbXpr9wxaS+q8G0dKYwAA4XundwuuD4SU1r\nl3TZJbQFwPl80U1zHf8UwLgsR6gAcIuOocRaR0/qA4XoRxKkKABuMaLW+sixk7pagynpRUkAXKR8\nUgdrnyMndYtGLRlKQwBcJjindyrluEndra3TpefRDgAXijx0StpZpwHs085WxdU0A8CdSiNPn5iu\nc9DhKR2s4C+pBYB7tQrP72rtdsi91Np0+SQqAeByFVPbpj+wfVJXaSRTyp9QA/CCssui1jIbX7Iq\n6N0NoaQMpAkAXnFc+LPxuXpbJrVOR1qR96UrJQDwklh05ZGpnc0+qW9pGyt6n5RRAACvaVU+JWjN\naWi+YwHiOjEbrJORRA/AqzpWvdwh/UqzTOryQm06/KTUEjoAbzs7/Ploa1tRB3WdnpiKbpUTCBtA\nSxD03xxIjEq+W5RBfU37pqL7yy6XEoIG0HKEyqeF4qelXtMmY3Oa06f0qGTlrtKLxEfAAFqeQMmV\nsR211vT8+//3k6jrdHwmlK1eL6O5QgXQsh0Zuid0sGdiZuMqzX3rOU3oC/qL+vapyl3+m6QjYQKA\niEiJDCqfG9viz51wcHbjMt2q//vBK0s36RM6veGHyfL6thv9M6UPEQLAf4vIWRXzat+I7vXl2ycH\n141NTshOa7xT79P5ertOaxifOTd1Ul1typev+rhmpf9XcoqUExoAfL0y6Skj5RKZJNf77wo/EF5U\nMkeul5/LhTJMjuC+qZP8A4zyrPgI2n3BAAAAAElFTkSuQmCC\n" + } + }, + "cell_type": "markdown", + "id": "e606b619-c770-4437-9a7e-b5af87141aaf", + "metadata": {}, + "source": [ + "# Recursive Data Structures\n", + "\n", + "## Outline\n", + "\n", + "- Trees\n", + "\n", + "- Anatomy, tree traversal methods\n", + "\n", + "- Binary Search Trees\n", + "\n", + "- Graphs\n", + "\n", + "- Nearest Neighbor Problem\n", + "\n", + "# Trees\n", + "\n", + "## Introduction to Trees\n", + "\n", + "- Not all data has a natural linear order. Organization charts and\n", + " file storage systems have a *hierarchical structure*, in which each\n", + " entity is linked to multiple entities below it\n", + "\n", + "- This type of data is represented using a *tree*. A tree is either\n", + "\n", + " - Empty\n", + "\n", + " - Has a *root value* connected to any number of other trees,\n", + " called *subtrees*\n", + "\n", + "- We draw the root at the top of the tree\n", + "\n", + "## Anatomy of a Tree\n", + "\n", + "- The *size* of a tree is the number of values in the tree\n", + "\n", + "- A *leaf* is a value with no subtrees. The leaves of this tree are\n", + " labeled E, F, G, J, and I\n", + "\n", + "- The *height* of a tree is the longest path from its root to its\n", + " leaves. The height of this tree is 4\n", + "\n", + "![](attachment:images/tree.png)\n", + "\n", + "## Anatomy of a Tree\n", + "\n", + "- The *children* of a value are all values directly connected\n", + " underneath that value. The children of A are B, C, and D\n", + "\n", + "- The *descendants* of a value are it’s children, the children of its\n", + " children, etc. This can be defined recursively\n", + "\n", + "- The *parent* of a value is the value immediately above and connected\n", + " to it. The parent of H is C\n", + "\n", + "- The *ancestors* of a value are its parent, the parent of its parent,\n", + " etc.\n", + "\n", + "![](attachment:images/tree.png)\n", + "\n", + "## Tree Traversal Methods\n", + "\n", + "- Linear data structures only have one logical way to traverse them.\n", + " Trees can be traversed in different ways\n", + "\n", + "- We’ll look at the following methods of tree traversal and their\n", + " applications\n", + "\n", + " - *Depth First Search* (DFS): Inorder, Preorder, and Postorder\n", + " traversal\n", + "\n", + " - *Breadth First Search* (BFS)\n", + "\n", + "- Note there are other methods not covered\n", + "\n", + "## DFS: Inorder Traversal\n", + "\n", + "1. Traverse the left subtree\n", + "\n", + "2. Visit the root\n", + "\n", + "3. Traverse the right subtree\n", + "\n", + "**Result: 4 2 5 1 6 3**\n", + "\n", + "![](attachment:images/tree_num.png)\n", + "\n", + "## DFS: Inorder Traversal Code\n", + "\n", + "Let’s look at the code to do this" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "4914a874", + "metadata": {}, + "outputs": [], + "source": [ + "class Node:\n", + " \"\"\"Tree class\n", + " \"\"\"\n", + " def __init__(self, key):\n", + " self.left = None\n", + " self.right = None\n", + " self.val = key\n", + " \n", + "def print_inorder(root):\n", + " if root:\n", + " print_inorder(root.left)\n", + " print(root.val, end = \" \")\n", + " print_inorder(root.right)" + ] + }, + { + "cell_type": "markdown", + "id": "abb121a0-9014-4411-8250-bb0fe5a46eee", + "metadata": {}, + "source": [ + "## DFS: Inorder Traversal Code" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "8e4b78cb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4 2 5 1 6 3 " + ] + } + ], + "source": [ + "root = Node(1)\n", + "root.left = Node(2)\n", + "root.right = Node(3)\n", + "root.left.left = Node(4)\n", + "root.left.right = Node(5)\n", + "root.right.left = Node(6)\n", + "print_inorder(root)" + ] + }, + { + "attachments": { + "images/insertion.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnkAAAFXCAIAAABRJc8tAAA6BklEQVR42u3deVyTd74v8G8WCEkg\nD4QEwh6QVUVEBHfArb062mpPz9hjN2tn7Eyn7XROb29775l27DLnTM/pnN650+l0mdF2etV27pm2\no5ZOq6hgVUQRES2bkkBAAgmBhJCNLPePx2aoSwQkSJLP+9XXDGZ5fjzfh0++efL88jwceoAAAADA\nH7Zv3P6Le37BZ39COQAAACa50X56pb3y2f/7xT2/QFEAAAAmy0ufvOT9mYtyAAAATD4OodcCAAD4\nkwe9FgAAYKqg1wIAAKDXAgAAoNcCAAAAei0AAMAUwjxkAAAA/8I8ZAAAgCmDXgsAAIBeCwAAgF4L\nAAAA6LUAAABTCPOQAQAAsF8LAAAQyPCdHwAAAOzXAgAABDIcrwUAAPAvfIYMAAAwZdBrAQAA0GsB\nAADQawEAAAC9FgAAYAphHjIAAIB/XT0PmYOSAAAA+Av2awEAANBrAQAA0GsBAAAAvRYAAGAKYR4y\nAAAA9msBAAACGa49AAAAgP1aAACAQIbjtQAAAP6Fz5ABAACmDHotAACAf/FRglBjtPbrhnqMVoN1\nZNjtdnG5PGGYmBFK5VEJjDAW9QFkAVkA9FqYoBZtQ2vv2XZ9s8lquNFjJEJphiw3O35ujqIAFQNk\nAVkA9FoYE6fbebL9QF1HtfHblxUBX8iIZGKBJJwv5HJ5brfL4bQO201Gi95kNZzVHD+rOc4IpUVp\npQsyVvO5+AsBZAFZgAnhoNeGhrqO6urWfWa7iYgYkTxFmqVglIxIdqPHGy16rVGtMbQZLbpDzZ/V\nqg6VZq8vSitFJQFZQBZg3DxX9VoPShJszDZjReOult4GIoqTpGQpChWM8qbPYkQyRiTLSZivNarb\ntPV9Jk1F465LuvNrZ98fGcGgqoAsIAswMdivDUKdhrZP63eYrAYBX5ifsjRNljfeJSgYpYJRduib\nGjVft2gbeoyajYVbU6VZqC0gC8gCTAC+8xNsLvad//DEGyarQcEoV83ePIEXF680Wd6q2ZsVjNJk\nNXx44o2LfedRXkAWkAVAr8W7+LaPT73l9rjS5bOWZN8VESa+xQVGhImXZN+VLp/l9rg+PvVWp6EN\nRQZkAVkA9NrQZbYZP63fwb64zFOunMQlz1OuZF9iPq3fYbYZUWpAFpAFuDmcDzkoVZzfxX5cNrkv\nLt6XGPYDtIrGXSg1IAvIAtwczoccfOo6qlu0DQK+sCh9pZ+GKEpfKeALW3ob6jqqUXBAFpAFGDv0\n2mDgdDurW/cRUX7K0ls/LnUjEWHi/JSlRFTdus/pdqLsgCwgC4BeG0JOth8w201xkpRbmWk5Fmmy\nvDhJitluOtl+AGUHZAFZAPTaEMJ+kJWlKJyCsdhR8NEZIAvIAowdzmUR8Fq0DUargRHJrz0bjtPl\nfP2r1x3OkRfXvzD6do1B8+rnv6xpr+Fz+Stylz9zxzMKRjHGexWMkhHJjRZdi7YBp2UHZAFZAOzX\nhoTW3rNElHLNiWzsTvtbR97afXLPVber9OpHdm7tHuh+Yd3Pn1zxRK3q1JN7ntIN6cZyL4sdix0X\nAFlAFgD7tcGvXd/MvsX23uIhT7uu/ZV9r5xSn77qwR7yfHLmL3we/52H3k6KTiKikoySbR88tvfs\n3keXPer73tFv5893HWfHBUAWkAXAfm2QM1r72XO9jr5iicFs+Omep5u1Lc+veX5p1tLRjzdZTbWq\nU0szlyRGJ7K3ZMozS9JLTnfUWR1W3/d6F8KIZAK+0GQ1GK392ASALCALgF4b5HRDPWzgR9/I4XDn\npRV+9Niee4v+gcvhfvfxuh5jj1KWzvn2jCbh/PBsRXZnf6fZbvZ97+jlsCOyowMgC8gCXAeuXxtE\n7+UNRCQWSEbfKBXHvHz3y0Q0+g04y+V2ud3uFGnK6BsjBZFGq9EwbCAiH/fKo+TeG9kRvdfcBkAW\nsAngajhvVNCwjgwTUThfOMbHj7hGnG4nn8ubwL2jsSOyowMgC8gC+IZeG9jcbhcRccfwisAK44Xx\nuXyn2zWBe7/zd8PleUcHQBaQBUCvDertN86c87g8LperMWhG32i2mxkhIxVLfd97K69rAMgChDIc\nrw1swjAxETmc1jE+Xh4lT2AS1HqVhzzspA+H09GqbU2KSRQLxOH8cB/3jl4OO6LQb+ebBUAWAPu1\nMF0wQikRDdtNY3y8RCgpSS/++uKxy4OX2Vsu6i7WqmoXpC8QhYt83zt6OeyI7OgAyAKyANeBechB\nQx6VQERGi37Mm56zvuCu/Q2fb9356A9Lf2C2mXceez9eEr+uYN1N7x2NHZEdHQBZQBbgOjAPOYje\ny8dKhFK70zr2l5js+KydW3coZcpX9r/620NvlqQX/+7+N+Ml8WO51/viYndaJUIpI4zFJgBkAVmA\nm8J+bcDLkOWe1RzXGtVXfYufiIThwt8/8Na1T1HGKt958O0bLdD3vUSkNarZcVF8QBaQBRgL7NcG\nvOz4uUSkMbRN2YjsWOy4AMgCsgDotcEvR1HACKVGi459i+1vWqPaaNExQikuIgbIArIA6LUhpCit\nlIjatPVTMBY7CjsiALKALAB6bahYkLE6UiDpM2k69E1+HahD39Rn0kQKJAsyVqPsgCwgC4BeG0L4\nXH5p9noiatR8bfPbeVltI8ONmq+JqDR7PZ+LWXWALCALgF4bYorSSnPiC+xOa52q0k9D1Kkq7U5r\njqIAH5oBsoAsAHptiFqbf79EKNUa1WfUk/8Sc0ZdqTWqJULp2tn3o9SALCALcHMc9NpgFBnBbCzc\nyuXwVLoLk/sSc0ZdqdJd4HJ4Gwu3RkYwKDUgC8gC3BzOGxWsUqVZm4of53K4Kt2FY617b/14lW1k\n+FjrXvbFZVPx46nSLBQZkAVkAcYLR/WDjTDsyonRtUb1wfO781OWpsnyJraoDn1To+Zru9MqDBN/\nv/jHeHEBZAFZAPRaoGG76bOzO90ed37SAofL1qJtOK060NnfnKUoVDDKsS9Ha1S3aev7TFcu3mlz\nWiP4IpQXkAVkAdBrgT6r32EY7kuX5W0o3EpEdR3V1a37+kyaPpOGEclTpFkKRnntqWK9jBa91qjW\nGNqMFh0RRQokpdnrLw+qz2qOVZzftWXx/0CFAVlAFgC9NqR9fu7/tuubYsRy9sWFiIrSSgtSFp9s\nP1DXUW206IwW3fmu4wK+kBHJxAJJOF/I5fLcbpfDaR22m9grlrBPZITSorTSBRmr+Vz+3JTF3YMq\njeHSgW/+a/XMe1FnQBaQBRgTXL82+By7+MWZzqMcDnfD3K2RAsnfNzCXvyRzzZLMNS3ahtbes+36\nZpPV4P1A7CoSoTRDlpsdP3f0+V15XP7a/M0fHH+9pv1Ackx6XkIRqg3IArIAN+dBrw0uFy6fOtT8\nGRFtLNyaHJNx3cfkKArYVw2jtV831GO0Gqwjw263i8vlCcPEjFAqj0q40TU4U6VZK/PuqWz6pKJx\nd1J0hkQYg5oDsoAswNih1wa87oH2z+p3ENGK3A2zEotv+nhGGDuB61ovnnFn94CqWVtfcX7XfcVP\noOyALCALMHb4fm1g8062nJe6bEnmGr+OtTZ/c1REdFtv49G2ClQekAVkAdBrQ4V3suX35jzg77HE\nAsma/M1EdKTlryo/X0QFAFkA9FqYFryTLTd+O9nS33LiC9g9horG3Q6nHZsAkAVkAdBrg9noyZbi\nUZMt/W1F7gZlbI5huK/i/G5sBUAWkAVArw1aY5ls6T9r8jeH8cIbu2pOq49gWwCygCwAem0QGu9k\ny0kni1SwB6u+OL+nx9iBLQLIArIA6LVBZSonW/pQkLyIvUp2RSM+PQNkAVmA68H1awPXVE629G1t\n/maFJOXyoPrLCx9juwCygCwA9muDxNRPtvT9no399KxWdeh8dy22DiALyAJ8B64VH4i8ky03Tu1k\nSx+SYzLumPV9Iqpo3D1g0WEbAbKALAD2awPY6MmWSVM+2dKHBekrZyXOtzutOFgFyAKyAN+B47WB\n5bZPtvRtTf5mRhjbrvumqnUfNhYgC8gCYL828EyTyZY+CMPEa/M3E1F16/6LfeexyQBZQBYAvTbA\nTJ/Jlj5kxs0uzV5HRBWNu60jFmw1QBaQBUCvDRjTbLKlL2XZ6zPkM43W/i8ad2HDAbKALADmIQeG\naTjZ0re1+ZsFfOGFy6dPqiqx+QBZQBYAvXa6m7aTLX2IEcnZg1VfXfhz10A7NiIgC8hCSMM85Glu\nmk+29GF2UklJ+nIi+gJfewBkAVkA9Nppa/pPtvTtzln3JUYrtSZNBQ5WAbKALIQyHK+dzgJisqVv\n7KdndR3VDV0nsEEBWUAWAL12egmgyZY+JDBpa2b/ExFVNO7qN2uxWQFZQBbQa2G6CLjJlj7MV5bn\nJy9wukZwvjpAFpAFQK+dLgJxsqVva2ffLxXHqftbDjV/iu0LyAKyEHIwD3m66R5QBehkSx/C+QL2\nYNWxi39r6W3AVgZkAVnAfi3cNsN202dndwTuZEsf0mV55Tl3E9EXjbuG7SZsa0AWkIUQgnnI00oQ\nTLb0YVnW2qz4/CGbEQerAFlAFrBfC7dHcEy29G3t7M2i8Mhmbf3xS19iiwOygCyEChyvnSaCabKl\nDxKhdE3+ZiKqbPqk09CG7Q7IArKA/VqYIsE32dKHmQlFCzNWE1FF4y6X24mtD8gCsoBeC34XlJMt\nfVs9894U6QzdUA8OVgGygCyg14LfBfFkS9/WzN7M5XDPao7Vdx7FnwEgC8hCkMM85NuLnWyZEaST\nLX2IlySzB6sqGnf3DXXjLwGQBWQB+7XgF97JlhuCd7KlD/NSl81NWeL2uPHpGSALyEKQwzzk2yVE\nJlv6tiZ/szwyQWO4eOCb/8KfBLKALCAL2K+FyRRSky194HP57KdnNe0HmnrO4A8DWUAWkIXghOO1\nUy8EJ1v6kBabvTLvHiKqaNxlsg3gzwNZQBaQhSB/X4US+I/R2q8b6jFaDSaroa6z2u1xp0oz4yUp\nRms/I4wN8eIsnnFn94CqWVtf0bj7vuKfeGtlHRl2u11cLk8YJmaEUnlUwjSp1Y6qHZXfVL736Hui\ncJFfB9IP6V+veP3FjS/6Huj5j5/XGDSjf58dVTse/cOjRJQmS/vi2S/yEvOQBWQB0GuDVou2obX3\nbLu+2WQ1XHVXp+FiZ+1viUgilGbIcrPj5+YoCkK2UGvyN6sNLW29ja9/+c/WkeEbPWya1Gpr2dat\nZVMxhef1itc1Bo3vx1Q1V722/7XNizePfivw7uF3dW/pZFGyHVU7Hnn3kf3P7JdFyZAFZAHQa4OK\n0+082X6grqPa+O3LioAvZEQysUASzhdyuTy32+VwWoftJqNFb7IazmqOn9UcZ4TSorTSBRmr+Vx+\nCNbK5rAQkXVkGLUa147vcx89d9Ut7x5+d9vybWxzvW/RfZXfVO49s3dq3hwgC8gCXB8HvXay1XVU\nV7fuM9tNRMSI5CnSLAWjZEQ33KswWvRao1pjaDNadIeaP6tVHSrNXl+UVopaTdtaeT9Dttgt6369\n7pm1z/y64tcnL50koufWPferTb/y7nGW/7Kc/Xnz4s2jP+N9/uPnX9v/Gn33M179kP7hdx6+c86d\nP/3wp6mxqXNS5uw/u5+IjrUeu9HnwK9XvF6eV16eV+7d/dUN6TzkWZS1iP2nKFy0cubKym8q71t0\nn78/8UYWUCvAfu1UMNuMFY272Os/x0lSshSFCkZ502cxIhkjkuUkzNca1W3a+j6TpqJx1yXd+bWz\n74+MYFCr6V+rZ/c8y/ZCtrmuKVhTlltW1Vz18DsPf/PaN3mJeRaH5Yd//OHLn77MtuHnP37+SNMR\n9jPequaqmc/NPPIvR8pyy4io39y/+/hu9i663oHY0aqaqz6q+eiLZ7/44OgH3hv7TH0c4sij5KMf\nean3ksVumcpeiyygVvAdHvTaSdJpaPu0fofJahDwhfkpS9Nk456NomCUCkbZoW9q1Hzdom3oMWo2\nFm5NlWahVtO8Vi9ueJHd6SzOKN68ePMXDV+U5ZZd6r2kYBRszxOFi3b9eBf74KbLTR/VfPTBYx+w\n3bQst+y5dc+9e/jd4owrs3C9H//6ZnFY3j38rndobF9kIehrFTTwnZ+Ju9h3/sMTb5isBgWjXDV7\n8wQC45Umy1s1e7OCUZqshg9PvHGx7zxqNc1rNSN+xrU3LspapDVq5Y/Lq5qrRt9+ou2EglHMSprl\nvWVNwRp2v9PH0q710YmPiOi+Rfdh+yILoVCrgIfzRk3KO9OPT73l9rjS5bOWZN8VESa+xQVGhImX\nZN+VLp/l9rg+PvVWMF3bMnRqlZeYd/rl0wtmLCj/ZTnnQY7yZ8qmy03sXScvnZQ/Luc8yGH/8x7T\nHbumy03vHH7n53f/fOoPwWL7olaA/drbwGwzflq/gw3MPOXKSVzyPOVKNjaf1u8w24yoVcDVShYl\nq9le4/nQo3tLp2AUj7z7iH5IT0QLZizQvaXzfOjx/lezvWZc38k50Xai9lLtzOdmst36tf2v7T6+\ne+ZzM5suN8VJ4jzk0Q3prtrzFglE2L7IAqDXBqqK87vYj4AmNzDe2LAfClU07kKtArdWsijZzm07\n2RY4I36G1qgd3Qt3VO24//f3WxyWsS9wa9nW0a36uXXPbV68mZ2HJY+Sc4hzou0E+0iLw1L5TeXK\nmSunYA8YWUCtAL3WL+o6qlu0DQK+sCh9pZ+GKEpfKeALW3ob6jqqUasAqtWOqh0Lty9kd2SJ6IOj\nH2TGZ6bJ0spyy+5beJ93H7fpctPLn728bfm2yeqFsijZtuXbXv7sZfYj649OfHSp99Jd8+7C9kUW\n4HbC+ZAnzOl2VrfuI6L8lKW3fqzlRiLCxPkpS4mounWf0+1ErQKlVlvLtm5bvs17XPZI05HfPPAb\ntqH+atOvyvPK2btmPjfzg8c+YL/wc62Hlz18rPWY+FHxVROsbjr0ixteZD9hfvmzl3du2+nvk0Yh\nC6gVjB2HHqDtG7f/4p5foBZjceziF4eaP4uTpCzL2ejvsY62fNpn0qzI3bAkcw1qFdy1wvZFFlCr\n4PPSpy9t/2Q722GxXzs+7IczWYrCKRiLHSVwPw5CrZAFbF/UClg4l8U4tGgbjFYDI5Lf6AwvHvLU\nd9T/54E3GrsbPR7PzMSZ/+POZwvTCjnffs1KY9C8+vkva9pr+Fz+itzlz9zxjIJR3Gg4BaNkRHKj\nRdeibQi4U41fWyvbiO2ZP//3Iy1HRj9sU/GmF9e/MJbi+L43oGuFLCALyEJwwvHaiWntPUtEKTc+\nOUt1S/UP/7SNiH658dV/veeXRPTDP22rbrnyBlOlVz+yc2v3QPcL637+5IonalWnntzz1FXf07gK\nOxY7bqDXatg+3NHfUZRW9OCiB7z/zUsrHEtxxlK6wK3V1Hv/6PtqvRpZQBYA+7XTUbu+mX3beN17\nzXbzByf+NF85/9fffz1SEElEpVmlT+156oMTfypSFokF4k/O/IXP47/z0NtJ0UlEVJJRsu2Dx/ae\n3fvoskd9vJ0/33WcHTfQa6Uz6wYsA8/+t2fLskuv3QfyURzf9wZBraaeUqZM/1n6lmVbfnHPL5Qy\nJbKALIC/Yb92rIzWfvb8pTe6CoferO8z9S2ZsZh9cSEiiVAyX1ncZ+qzj9hNVlOt6tTSzCWJ0Yns\nvZnyzJL0ktMddVaH9UaDMiKZgC80WQ1Ga3+g16rX1MchjkISf+3jfRdnjKUL0FrdFuV55WW5Ze8f\nfT/9Z+mPvPvIePdxkQVkAdBr/UU31MP+Ed9wXyFWuf+pfQ8tfsh7i91pv9jXJhaI+Ty+bkjXY+xR\nytK9x6vC+eHZiuzO/k6z3exjXHZEdvSArlWHXi0VS89qGlb/5x1zthfc9+4/nek44yEPEfkuzthL\nF4i1ul2237Od/WECHRdZQBZgTHA+5Am9PzUQkVggGftTai7VHG37+o6Zqxkh43K73G53ijRl9AMi\nBZFGq9EwbPCxEHZE7zW3A7RWLrerWdt8SXdpX8O+n6566sX1L5htZu8BPN/FGXvpArFWt3fX1vtP\ntuO+9OlLg5ZBZAFZAOzX3jbWkWEiCucLx/j40+rT2/e+tDBj4aaSTUQ04hpxup18Lm+847IjsqMH\nbq1sIzbriG157vK3H/z9ujnr7i269//+4MPZSbPfPPw7w/CA7+KMvXS3WKvtn2znPMjZ/sn26f9z\n4c8L3z/6Ptsjl//r8on9vKFow7UVGEvHRRaCPgswOTAPeQLcbhcRccfwV+4hz+Hmw0/sfjJbkf3K\nhpfZQ1ZhvDA+l+90u8b9bojL844euLUSC8RvbPrPNzf/1nsAL1oUvXrm6o7+jq4Bje/ijL10gVir\niTnbcVatUxORWqc+0nRkYj9ft6EOWga3f7J97r/M9fGRMrKALMB4YR7yJOfc7XHvObnn37/8j+/l\nf+9/fe9/euPE4/K4XK7GoBn9YLPdzAgZqVg6KT1+mtfK7XG73W4+7+9/cinSlGH78JBtSCQR+SiO\n0WocY+lusVbb79nuPYo5zX/eULQhWhxNRFtKt5TnlSvlygn87D1v82iMiHn6zqef/m9PR4uikYWQ\nzQJMDg567fgJw8RE5HBafTzG6XL+vurtPx794w+W/eDHZT8anSV5lDyBSVDrVR7ysPMaHE5Hq7Y1\nKSZRLPB1flR2RKHfzqE6NbVq0bY8+v4PHlj0wI/KHvPe2NTTFBsZGy+J912ccH74GEsXiLWamLlp\nc9kflDKl90s74/p50DK46/h3LgiTJku70sVv3GWRBWQBJviuCyUYI0YoJaJhu8nHx2Ufn/r4j0f/\n+Oyd//2JFT8Z/eJCRBKhpCS9+OuLxy4PXmZvuai7WKuqXZC+wPfFXtgR2dEDt1ZJMUnZiuwDFw70\nmnrZW7RG7d8a/zYvtTBFmuK7OGMvXSDW6nb533/7397PkNNkaTu37VS/od6ybMtNGy2ygCzABGC/\ndqzkUQlEZLTob/QAtb5j57H3Y0Qx7fr21754bVTYmAcXPRgpiFxfcNf+hs+37nz0h6U/MNvMO4+9\nHy+JX1ewzve47Ijs6IFbq0hB5MOLHvrnPz/zow9/9MiSRxwux3vVf3A4HY+VPSbgC4jIR3E4xBlj\n6QKxVrfFoGXwN1/+xrsvu2XZFmQBWQD02mny/jRWIpSarAajRX/dbxae62roMfYQ0Ue1H4++PV2W\n/v35348URGbHZ+3cuuPfKn71yv5XvScyjb/e99lHB8butEqEUkYYG+i1Ks0pfe+hd//9y//4+Wcv\nhPHCyrLLfrb6ae+3F3wXZyylC9Ba3a6dWkbEvPHAG+PtssgCsgDj4EGvnZAMWe5ZzXGtUX3d15e7\n595999y7fS9BGat858G3xz6i1qhmxw2CWnGIMy9t3kfb9kysODctXeDWaurNTZurvkeNLCALMGVw\nvHYcsuPnEpHG0DZlI7JjseOiVsFaq6l37TdrsX2RBZh8OG/UxOQoChih1GjRsW8b/U1rVBstOkYo\nDcQLY6FWyAK2L2oF6LUTVJRWSkRt2vopGIsdhR0RtQruWmH7IguoVRDCeaMmbEHG6kiBpM+k6dA3\n+XWgDn1Tn0kTKZAsyFiNWgV9rbB9kQXUCvu18Hd8Lr80ez0RNWq+tvntXKO2keFGzddEVJq9ns/l\no1ZBXytsX2QBtUKvhe8oSivNiS+wO611qko/DVGnqrQ7rTmKgkD/IAi1QhawfVErQK+doLX590uE\nUq1RfUY9+bE5o67UGtUSoXTt7PtRq5CqFbYvsoBaBRXMQ75FkRHMxsKtXA5PpbswubE5o65U6S5w\nObyNhVsjIxjUKqRqhe2LLKBW2K+F70iVZm0qfpyNzbHWvbd+DMY2MnysdS8bmE3Fj6dKs1CrEKwV\nti+ygFoFj1HzkHk0h8rzysvzylGW8ZKK45SybJW+ud/c06lvFoSJokXyiS2qQ99Uc/Fzo1UvEUo3\nFT+eLstDrUK2Vti+yAJqFRyqmqqONB9hOyx67S1hhLGzE4sHLH29pq7Lg+395suCMGFkRPTYl6A1\nqus7Drf11rvczpz4gk3zH5dHJaJWIV4rbF9kAbUKhl7bXHWk6UqvxbzwWxUZwXx//uN1HdVfXvio\nz6TpM2kYkTxFmqVglNc9VSzLaNFrjWqNoc1o0RFRpEBSmr0+6GcPemv11YU/o1bIArKALIQO9NrJ\nwSFyuV0SYQyHOEaLzmjRne86LuALGZFMLJCE84VcLs/tdjmc1mG7ib0Kh/e58ZLkrUv/Z+h8H64o\nrTRaJPv83Iduj3tctWKE0qK00gUZq/HdQWQBWUAW0GtD0Sn1ESJakbMhP3lhi7ahtfdsu77ZZDX0\nmTTXfbxEKM2Q5abEZO4796deU5du6HICkxo65Zohn/nUyn8jorHXKjt+Ls7viiwgC8gCem3ounD5\nVN9Qd2ykIj95IRHlKArYJBit/bqhHqPVYB0ZdrtdXC5PGCZmhFJ5VIL3upK9Q921qsqT7Qc3FG4N\nwdKNq1aALCAL+BsLJLh+rT/eyBcry6+6nRHG3jQbCzNW1aoqG7tPLpqxOl6SErI1HEutAFlAFiBA\n4fu1t+pi33mN4WKkgClWLp9QrqTsE2vaK1FMQBaQBQgeOG/UJDp9gzfyY7cgYxURnes60TfUjXoC\nsoAsAPZr4Tu6Bi619TXyeeHF6csnvJAYkWx+WhkRnWw/iJICsoAsQJDA9WsnC3t0qkRZLuALb2U5\n7Nv5s5rjOnMPqgrIArIA2K+FK3RDl8931xLRfOXyW1yUVBw3L3UZ3s4DsoAsAHotXOeN/LzUZYxQ\neutLW5ixiojqO7/uN/eitoAsIAuAXgtksg3UdVQR0a0cnRotNlJRmLqUiGpUeDsPyAKyAIEP85Bv\nHTvlclbi/LiopMla5oL0VUR0pqPaMNyHCgOygCwA9mtDmsNpO6U+TETFyuWTuFh5VEJBymIiOqnC\n9wsBWUAWIMBhHvItOqU+4nDaZ8hnpUgzJ3fJ7JGq0+ojgxY96gzIArIA2K8N5deXwzR5R6dGi4tK\nmpO8kIhqMAkTkAVkAdBrQ9bpjqoh22ByTEZWXL4/ls9+v/CU+rDRakC1AVlAFgC9NiRfX1STf3Rq\nNIUkJT9pAeH7hYAsIAuAXhuaznfX6sw98qiE2Ukl/htlQcZKIjqpqjTZBlBzQBaQBUCvDS3+mHJ5\nrQQmbVZiMRGdxAVPAFlAFgC9NqS09TV2DbRHRUQXpZX5eyx2EubJ9oNmuxGVB2QBWQD02pB5I6+a\nijfyrMRo5cyEIg95MAkTkAVkAdBrQ0Wn4eIl3YVwvmBqXl/o20mYJ9srh+1DqD8gC8gCoNcGv9Pf\nHp0K5wumZsTkmIzchEK3x3USZ4UFZAFZAPTaoNdn6r5w+TRN1YdmXgvTrxypsjrM2AqALCALgF4b\nzNgpl0VpZVER0VM5boo0M0cx1+l21uCssIAsIAuAXhvEjFbDmc6jU/9GnrUgfSX7dt42YsG2AGQB\nWQD02mB+Iz87qUQelTD1o6fFZmfFzxlxOXDBE0AWkAVArw1OthEre3nO2/JGnsUeqappP2h32rBF\nAFlAFgC9NticVh8ecTmy4vKTYzJu1++glOVkxs12OG04KywgC8gCoNcGIf9dMmxcrny/UHVwxOXA\nRgFkAVkA9NqgenEx200p0swZ8lm39zfJkOXNkM+0jVjxdh6QBWQB0GuD8Y28cvl0+GXYt/M1qoNO\n9wg2DSALyAKg1waDc101/ebeuKikWYnzp8PvM0M+K12WZ3UM44IngCwgC4BeGySuTLlMXz59fqWF\nGVe+X+j2uLCBAFlAFgC9NrC19jZ0D6okQum81GXT57fKjMtXxuYMO4ZwwRNAFpAFQK8NeOzRqRLl\n8un2i3kveOLxeLCZAFlAFgC9NlB19Le265oEfGHx9Ht9yY6fkyrNMtuNuOAJIAvIAqDXBvQb+SNE\nVJy+nM8Lm4a/3sKMK6fOwZYCZAFZAPTagKQ1aZp66mjafL3hWjmKuSnSzCHbIM4KC8gCsgDotQHJ\nex3sSIFk2v6S3gueYHsBsoAsAHptgBm06Os7j03nN/KsvIR5yTEZRquBnbcCgCwgC4BeGzDYo1P5\nyQtjI+On+a+6IB1HqgBZQBYAvTbQWEeGp9WJ6HybmViUGK0ctOjZ8wwAIAvIAqDXBsIbedVhl9uZ\nHV+QFK0MiF944ZULnmBWCCALyAJMa/xQWMkBi14/dNloNVhHhl1uF4/LE4aJGaFUFpUYI5Kxj3F7\n3Fe+3qAsD5T1mpVYfOLSVz3GzrqO6qK00nGtL4QmZAFZAPTaSdasrW/RNqj0TUO2wRs9JioiOl2W\nl6MoMFkNFsdQWmx2hnxmAK3jgoxVn9XvOKk6WJRWOq71zVUU4q8/dCALyAKg106yEZejpv1gXUeV\nN2YRYSJGJBMLmHB+BJfDc3tcDqdt2G40WvRDtsFzXSfOdZ3gcrhEVJi6NLBWNj9pwfFLX/aZuv/j\ny5/ZRixjX9+oiOiitLKFGavCeOGIQbBCFpAFQK/1i9PqqqrWfRbHEBFFi+JSpFmKaKVEGHujx5us\n/dpBtcbQNmjpI6KvLvzZPmKbrywLoPUdtPQTkW3EMt71PdLy11pVZVn2XQG0voAsIAuAXns7DdkG\nKxp3tfaeI6J4JjUrvjCeSbvpsyTCWIkwNjuhqNfY0dZb32vs/OL87ou689/Lvz8qIhrrC8gCsgCA\nXntFR3/rp/U7hmwDEWGi/JSlqbG5411CPJMWz6R19rc0ao629Z77o7FzY+GjabHZWF9AFpAFgFvE\nozlUnldenlceuOvQ1te4u/a3dqc1ITp9SfbdsZEJE14UI5KlxuaabQP9Zu257pMJ0Wmx4nisLyAL\nyALAeFU1VR1pPsJ22ID/fm1Hf+vHp97yeNzp8tmLs9ZHhIlucYERYaLFWevT5bM9HvfHp97q6G/F\n+gKygCwA3IrA7rVDtsHP6newYZunXDGJS56nXMFG7rP6HT6+NoD1BfxtYH0BgrzXVjTuMtkGEqLT\nJzds3sglRKebbAMVjbuwvoAsIAsAodhr6zqqWnvPCcJE/gjbt5FbKQgTtfaeq+uowvoCsoAsAIRW\nr3W6Rqpa9xHRnJSlEWFiP40SESaak7KUiKpa9zldI1hfQBaQBYAQ6rU1qoPD9qE4SeoEpviPS2ps\nbpwkddg+VKM6iPUFZAFZAAihXst+sJM1JScyZUe5vR8lhdr6Av42sL4QTALyXBYt2rMm60C0SK64\n2dlhnC7n61+97nCOvLj+hdG3awyaVz//ZU17DZ/LX5G7/Jk7nlEwihstRMGkRYvkgxZdi/ZsjmLu\n9Fzfxu7GX3/56zOd9WG8sDX5a55a+WRcVFyAri8gC8gCYL92Gry+9DYQUbI0y/fD7E77W0fe2n1y\nz1W3q/TqR3Zu7R7ofmHdz59c8USt6tSTe57SDel8LIodix13Gq5vU0/TU7t/anPa//WeXz654omj\nrUd//OHjvabeAF1fQBaQBcB+7e2n0jcRkeLGV7H2kKdd1/7KvldOqU9fe9cnZ/7C5/HfeejtpOgk\nIirJKNn2wWN7z+59dNmjN3x7G60833WcHXe6ra/D6Xiv+g8x4pjf3PebeEkcERWmFj724Y8Otxy5\nr3hTIK4vIAvIAmC/9jYbtPabrAMCvpAR3vBSzwaz4ad7nm7Wtjy/5vmlWd+5NJjJaqpVnVqauSQx\nOpG9JVOeWZJecrqjzuqw3miBjFAmCBOarAOD1v7ptr7DjmGj1VieU8a+uBBRtChaLBA7Xc5AXF9A\nFpAFQK+9/fRDPUTEiGQ+HsPhcOelFX702J57i/6BvRinl25I12PsUcrSOcRhbwnnh2crsjv7O812\ns49lsvFmR59W6xsjivnjlj88tfIpdk+le7D7zUNvut3ukvSSQFxfQBaQBQg+gfcZstFqICKxgPHx\nGKk45uW7Xyaia9+uutwut9udIk0ZfWOkINJoNRqGDfIo+Y2WKRYwRBp29Om2vqx+c//DO7ao9CpG\nyPznpl9nx2cF4voCsoAsAPZrbz/ryDARhfMjJvb0EdeI0+3kc3njfSI7Ijv6tF3fp1c//cqGVxKj\nE3+y64mqlqpAXF9AFpAFwH7t7ed2u4iIO/7AsMJ4YXwu3+l2jftdCZfnHX16rm9sZOyqvJVEtCpv\n5VN7nnrz8O/yk+cE3PoCsoAsAPZrbz/erf3d87g8LperMWhG32i2mxkhIxVLb5pz3kRf16ZyfSVC\nyYrcFT2DPbqhvoBbX0AWkAVAr739hGFiInI4rRN7ujxKnsAkqPUqD3nYWxxOR6u2NSkmUSzwdW5V\ndkSh386/OuH1bde1f+836/5y5pPRN1pGrFwul8flBdz6ArKALAB67e0nEUqJaNhumujTJSXpxV9f\nPHZ58DJ7y0XdxVpV7YL0BaJwX9eaZkdkR59W6xsbGRsZEbnv7F6T9cpjek29By4cyIzLVDCKgFtf\nQBaQBQg+gXe8Vh6VSERGi35iT+cQZ33BXfsbPt+689Eflv7AbDPvPPZ+vCR+XcE6309kR2RHn1br\nywiZx8t//M9/fubxXT+5r2STbcT2/rEPhu3Dr258JVIQSUSBtb6ALCALgP3a248RShmh1O60Tvgl\nJjs+a+fWHUqZ8pX9r/720Jsl6cW/u//NeEm877DZnVZ26Gm4vqU5pe899K7T7fxfn/zLv1X8Kjs+\ne+fWHXkJeYG4voAsIAuA/dppIV2Wd1ZzrMeo9v0tfiIShgt//8Bb196ujFW+8+DbYx+xx6hmx52e\n68shzry0eR9t23OjJQTW+gKygCwA9mtvvxxFARF1GVqnbER2LHZcrC8gC8gCQPD32uz4AkYoNVr0\nWqN6CobTGtVGi54RSrPjC7C+gCwgCwAh0WuJqCitjIjatPVTMBY7Cjsi1heQBWQBIFR67cKMVZEC\nps+k6fDzta469E19Jk2kgFmYsQrrC8gCsgAQQr2Wx+WX5awnonOar60Os59GsTrM5zRfE1FZznoe\nl4/1BWQBWQAIoV5LRPNSl+Uo5jqc1jPqSj8NcUZd6XBacxRz56Uuw/oCsoAsAIRcryWitfn3M8JY\nrbGjzg+Rq1NXao0djDB2bf79WF9AFpAFgBDttZECycbCrTwuX627MLmRq1NXqnUXeFz+xsKtkQIJ\n1heQBWQBIER7LRGlSDM3FT/ORu7r1r/e+vEbq8N8rPWvbNg2FT+eIs3E+gKygCwA3AoezaHyvPLy\nvPLAXQepOE4Zm6vSN/ebezr6myLCRNEi+cQW1aFvOnHxc6O1nxHGbir+iVKWg/UFZCHoszDictS2\n/+1sZ9WQbQBZgMlS1VR1pPkI22GDodcSESOUzk4qHrDoe01dlwfb9ebucH5EVETM2JfQM6iq7zh8\nsfesy+3MVRRuKv6xLCoB6wvIQihk4UzHoT6TxuPxZMhmbl7wJLIAk95rg2cuu1gg+cf5P6rvPFrV\nuk9n6tKZuhihLFmapYhW+nirO2jRaQfVXYY2o1VPRFERTFn2+sJAmHkYausL+Nvw6/qG8cJHXI4Y\nsUyMY7TgB8H2vbHC1GUFKYtr2g/WdVQNWvTGbv2F7hPh/AhGJBMLJAK+kMvhuT0u+4h12G4yWvUO\np419YrQotiitbGHGKi6Hh/UFZCHUsjBDPvPd6lfrOqoXZdwRI5bj7wfQa2+Cy+EtnnHn4hl3tvae\na+1tUOmbBi39OlOX7noPjhbFpsvysuMLsuPnYH0BWQjlLBSkLGrQnKhRHVwz+5/wxwPotWOVHT+H\nTZHJNqAf6jFaDdaRYZfbyePyhWFiRiiVRSVIxnNcB+sL+NsI4vVdkL6qQXPitPrIoozV0Te7RiEA\neu3VJBExIdVjQm19AX8bk7K+8ZLk/OSFjV01J1WVd87ahL8WmERclAAAgLUwfSUR1aoOGa0GVAPQ\nawEAJp+CSZ2dVEJEJ1WVqAag1wIA+MWC9FVEdLL94JBtENUA9FoAgMmXGJ02K3E+225RDUCvBQDw\nz65txioiqlFVmu0mVAPQawEAJl9SdHpewjyPx41dW0CvBQDwl4UZq4jopKrS4hhCNQC9FgBg8iXH\nzMhVFLrczpp2TEgG9FoAAP9YkLGSiE6qDlpHhlENQK8FAJh8qdKs7PgCp2sER20BvRYAwF+uHLVt\nr7SNWFENQK8FAJh8abHZWfH5Dpf9pAq7toBeCwDgH9+eRqrS4bSjGoBeCwAw+dJluZlxs+1OK3Zt\nAb0WAMB/u7Yriaim/eCIy4FqAHotAMDky5DPzJDPtI1YcPEfQK8FAPDfru2Vi/+43E5UA9BrAQAm\nX2bcrHRZrsVhrsF3bQG9FgDAX7u2354h2e1xoxqAXgsAMPmy4vLTYrOH7SacRgrQawEA/MV78R8i\nD6oB6LUAAJMvO74gVZo1ZBvExX8AvRYAwF+8F/9BKQC9FgDAL3IVhSkxM0zWgVrVIVQD0GsBAPy0\na7uKiPDlH0CvBQDwl7yEeUnR6UZr/yn1YVQD0GsBAPy4a3sSM6QAvRYAwE9mJc5PjFYOWHR1HVWo\nBqDXAgD4Z9f224v/oBSAXgsA4Bezk0oUTKphuO9M51FUA9BrAQD8YmH6SiLCKRsBvRYAwF/ykxfG\nS5L1Zm195zFUA9BrAQD84tuL/2DXFtBrAQD8oyB5UVxUom7ocoPmOKoB6LUAAH7dtcV3bQG9FgDA\nP+amLJFFJvSaus511aAagF4LAOCnXVtMSAb0WgAAf5qXuixWHK81ac5316IacF18lAAA4NZ3bSsa\nd9e0H5ydVMLeou5v6Rpo7zN1D1p0w44hp2uEw+FG8IVRwhhZpCKBSUuLzWaEUpQOvRYAAMakKK3s\nRPuBHmNHVetek3WwSXvGPmK99mFDNKgz97TrvmH/mRyTMSuxuDB1aRgvHDVErwUAgJvIlM86NXyk\nuvVz9p+MSCaPSo4WySMjoiPCxDwu3+Nxj7jsFvuQ0dpvMPf0mjq7Btq7BtoPt/x1YcaqpZlreVwe\nyoheCwAA12EdGT7wzf9r0JwgonB+RIY8PyU2R3K9z4eFFCkRxiqilUTkIU+Xoa1D/02vsbO6dX+D\n5vjKvH+YlTgf9USvBQCA72jXfbP/3IdGq4GIZiYtzEko4nLGtHvKIU6KNDtFmt1n0jRfPqUb6vrk\nzHtdA5funLUJVUWvBQCAK85qju1r+BMRxTNpBamlURExE1hInCQlTpLS1lt/rvNorerQwLDu3vmP\n8blhKG8wwXd+AAAm4kxHNdtosxXzlmbfPbFG65UVX1iWe68oPKqtr3HPyd+63C5UGL0WACCkNfWc\n+bxxFxHNTl6cn7J0UpYpi0pclrsxKkKq7m/5y5l3UWT0WgCA0NVv7t3b8D4R5SWW5CRM5mymSEH0\noqzvRYSJW7RnK5s+QanRawEAQtTfLnzkcNpTYnNmJi2c9IVHRcQUZ9xBRMcvfXmxrxHVRq8FAAg5\ndR1V7bpvhOGRhWnL/TREnCRlVtJCIqps+hQFR68FAAg1nqNtFUQ0O3mxX0/2lJtYEi2S9w1116oO\noejotQAAIaRWdXjINiiLSkyNzfX3WOyR4FpcGRe9FgAgpJzVHCOiGXEFUzBWsjSLEckHLPqmnjpU\nHr0WACAkdA+qek1dwvDIZGnWTR98Sn266JX5xy4eG32jxqB57MMfFbw0t+iV+c/+v2e1Rq3vhaTJ\nconowmX0WvRaAIDQcLHvPBElRs+46SN7Tb2/qviVbcQ2+kaVXv3Izq3dA90vrPv5kyueqFWdenLP\nU7ohnY/lJMVkElFb3zkUH70WACAkdPa3EVEck+L7YU6X873q9/qG+gR8gfdGD3k+OfMXPo//zkNv\n31t075YlW37/4Fs9gz17z+71sShReFS0SO50jXQaLqL+6LUAAMGvx9hBRLFihY/HeMjz8amPz3TW\nv3z3S6Jwkfd2k9VUqzq1NHNJYnQie0umPLMkveR0R53VYfWxwBhxPBFpjZ2oP3otAECQG7IN2p02\nQZhIECby8bDmnuY/nfjwpyuf8vZUlm5I12PsUcrSOcRhbwnnh2crsjv7O812s48FstfmMwz3YROg\n1wIABDmz3UhEwrBIH48ZsAy8tO/lNflrSnNKr7rL5Xa53e4U6Xc+f44URBqtRsOwwccyheGRRDRk\nH8QmQK8FAAhydqeNiHycv8Lpcr5T9U6sOPYHyx717rx6jbhGnG4nn8sb77jsiI7vTrMC9FoAgGDk\nISK6pof+XWVz5VcXvnpixU8iBZHXa5lhfC7fOZEr5XG8g0PgwrXiAQDGsH/JDycip2vkuvdaHdbP\n6v/aa+q79/f/OPr2bX96LEYU88ctf+BxeVwuV2PQjL7XbDczQkYqlvoYlx0x3J/ngwT0WgCAaUEc\nLiEi28jwde8N54c/VrptU/H3vbd0DXT/n8r/s2Xxw3OS5yRGJ7o97gQmQa1XecjDfsLscDpata1J\nMYligdjHuLYRMxGJBRJsAvRaAIAgFy2K5XH5Vod5xOW49qgtj8ubmzp39C0t2pZwXnhBSsGSzCVE\n5CFPSXrxgW8OXh68nBSdREQXdRdrVbWPLNky+qtB1xqyDRJRjDgOmyCg4XgtAMCYKCQpRDQw3DuB\n53KIs77gLvuIfevOR/+r7r/eP/b+jz98PF4Sv65gne8nssMpJMmoP3otAEDwS5FmEpHOpJnY07Pj\ns3Zu3aGUKV/Z/+pvD71Zkl78u/vfjJfE+3jKiMveb+4homTpDNQ/oOEzZACAMZkhn1XTfuDyYPus\n5MU3fXCOIufr549edaMyVvnOg2+PfcTugUtElCGfGc4ToP7YrwUACH4Z8jxGKDVZDX0T3bUdr87+\nZiKamTAPxUevBQAIFQUpi4no0pRceEc31KUzdQn4wjnJi1B59FoAgFBRrCzncfmXBy71mfx+MYCW\nnjoiKklfwePiYB96LQBAyBCFRy3NXENE57tO+HUgte5Cr7FDLIhanHknyo5eCwAQWkqz18VFJQ4M\n9zZqjvlpiCHbQENnNREtz9mAWVHotQAAoejOWZuIqFVbp9ZdmPSFu92u06oDTvfI7KSSwtSlqDZ6\nLQBAKFLKcu+Y9X0iqlNXagytk7hkj8dz4uJ+g1mrYFLXz3kIpUavBQAIXQvSVy7JXENEtZf+1t7X\nOCnLtI0MH235VGvsiBbJ/mHeD/m8MNQ5aGB6GwDARKzI3cDhcL5uq6jvOGyyGeamlt3K0rSD6vqO\nwxbHkCwy4R/nPybFCZDRawEAgIiW59wdJYj+4vzuS70NfcbOmUkLk6VZE9idbbpcy+4cZ8bNvnvu\nFlF4FGqLXgsAAFfMV5YlMKlfffPnroH2k5e+uNTXkC7PT43NGctzjdZ+te7Cpb4Gj8dDROU5dy3L\n+h5Kil4LAABXS4pJf2TJc7WqQ8cu/U0/dFk/dPlsx5GE6HRZVFKMOC4yIprP/fuRV4tjyGTt7zf3\n9Bo7vZcMmpk4f1nW2rioJBQTvRYAAG6oJH1FSfqK0x1V5zQnugdVnf3N7NmMiYjPC+dx+R6Pe8Rl\nZ3dhWQJ+xOykkrkpSxOj01BA9FoAABiT+Wll89PK9GatSt+kMVzqG+oasOidLofT5WAfEClgZJGK\nhOi0tNjsrLh8VAy9FgAAJkIWqZBFKoqVy9l/2p02p8vB4XAjwoRcDg/1Qa8FAIBJJuBHCPgRqEMo\nw7ksAAAA0GsBAADQawEAAAC9FgAAAL0WAAAAvRYAAADQawEAANBrAQAA0GsBAAAAvRYAACAwXDlH\n40ufvEQcIg/5+t9r+X68v5dz7dKmw3Km1W91Lc5tXQ5+q1tc2o2GAIDp32u3f7odhQAAAPBXr92+\ncfuV98venaer3kdfdeN4H3m7njv6Rs539w7H8shJH8V/z73pI723T2CUKXju9P8NfT936n9DAAgg\nHiIizugLFwMAAMCk+/9DYs/zghEsygAAAABJRU5ErkJggg==\n" + }, + "images/tree_num.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAENCAYAAAAMmd6uAAAelHRFWHRteGZpbGUAJTNDbXhmaWxl\nJTIwaG9zdCUzRCUyMmFwcC5kaWFncmFtcy5uZXQlMjIlMjBtb2RpZmllZCUzRCUyMjIwMjMtMTIt\nMjhUMjAlM0EwNCUzQTQ4LjcyM1olMjIlMjBhZ2VudCUzRCUyMk1vemlsbGElMkY1LjAlMjAoTWFj\naW50b3NoJTNCJTIwSW50ZWwlMjBNYWMlMjBPUyUyMFglMjAxMC4xNSUzQiUyMHJ2JTNBMTIxLjAp\nJTIwR2Vja28lMkYyMDEwMDEwMSUyMEZpcmVmb3glMkYxMjEuMCUyMiUyMGV0YWclM0QlMjJpTmst\nT0tyQ1RfbS1BaVlFZURpdSUyMiUyMHZlcnNpb24lM0QlMjIyMi4xLjE1JTIyJTNFJTBBJTIwJTIw\nJTNDZGlhZ3JhbSUyMG5hbWUlM0QlMjJQYWdlLTElMjIlMjBpZCUzRCUyMjEwYTkxYzhiLTA5ZmYt\nMzFiMS1kMzY4LTAzOTQwZWQ0Y2M5ZSUyMiUzRSUwQSUyMCUyMCUyMCUyMCUzQ214R3JhcGhNb2Rl\nbCUyMGR4JTNEJTIyOTg0JTIyJTIwZHklM0QlMjI2NjIlMjIlMjBncmlkJTNEJTIyMSUyMiUyMGdy\naWRTaXplJTNEJTIyMTAlMjIlMjBndWlkZXMlM0QlMjIxJTIyJTIwdG9vbHRpcHMlM0QlMjIxJTIy\nJTIwY29ubmVjdCUzRCUyMjElMjIlMjBhcnJvd3MlM0QlMjIxJTIyJTIwZm9sZCUzRCUyMjElMjIl\nMjBwYWdlJTNEJTIyMSUyMiUyMHBhZ2VTY2FsZSUzRCUyMjElMjIlMjBwYWdlV2lkdGglM0QlMjIx\nMTAwJTIyJTIwcGFnZUhlaWdodCUzRCUyMjg1MCUyMiUyMGJhY2tncm91bmQlM0QlMjJub25lJTIy\nJTIwbWF0aCUzRCUyMjAlMjIlMjBzaGFkb3clM0QlMjIwJTIyJTNFJTBBJTIwJTIwJTIwJTIwJTIw\nJTIwJTNDcm9vdCUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214Q2VsbCUyMGlkJTNE\nJTIyMCUyMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214Q2VsbCUyMGlk\nJTNEJTIyMSUyMiUyMHBhcmVudCUzRCUyMjAlMjIlMjAlMkYlM0UlMEElMjAlMjAlMjAlMjAlMjAl\nMjAlMjAlMjAlM0NteENlbGwlMjBpZCUzRCUyMlhyQ09JTDBUeHAzbUdUUWJzYjFpLTQlMjIlMjBz\ndHlsZSUzRCUyMnJvdW5kZWQlM0QwJTNCb3J0aG9nb25hbExvb3AlM0QxJTNCamV0dHlTaXplJTNE\nYXV0byUzQmh0bWwlM0QxJTNCZW50cnlYJTNEMSUzQmVudHJ5WSUzRDAlM0JlbnRyeUR4JTNEMCUz\nQmVudHJ5RHklM0QwJTNCZXhpdFglM0QwJTNCZXhpdFklM0QxJTNCZXhpdER4JTNEMCUzQmV4aXRE\neSUzRDAlM0JlbmRBcnJvdyUzRG5vbmUlM0JlbmRGaWxsJTNEMCUzQiUyMiUyMHBhcmVudCUzRCUy\nMjElMjIlMjBzb3VyY2UlM0QlMjJYckNPSUwwVHhwM21HVFFic2IxaS0xJTIyJTIwdGFyZ2V0JTNE\nJTIyWHJDT0lMMFR4cDNtR1RRYnNiMWktMyUyMiUyMGVkZ2UlM0QlMjIxJTIyJTNFJTBBJTIwJTIw\nJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhHZW9tZXRyeSUyMHJlbGF0aXZlJTNEJTIyMSUy\nMiUyMGFzJTNEJTIyZ2VvbWV0cnklMjIlMjAlMkYlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAl\nMjAlM0MlMkZteENlbGwlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteENlbGwlMjBp\nZCUzRCUyMlhyQ09JTDBUeHAzbUdUUWJzYjFpLTElMjIlMjB2YWx1ZSUzRCUyMiUyNmx0JTNCZm9u\ndCUyMHN0eWxlJTNEJTI2cXVvdCUzQmZvbnQtc2l6ZSUzQSUyMDQycHglM0IlMjZxdW90JTNCJTI2\nZ3QlM0IxJTI2bHQlM0IlMkZmb250JTI2Z3QlM0IlMjIlMjBzdHlsZSUzRCUyMmVsbGlwc2UlM0J3\naGl0ZVNwYWNlJTNEd3JhcCUzQmh0bWwlM0QxJTNCYXNwZWN0JTNEZml4ZWQlM0IlMjIlMjBwYXJl\nbnQlM0QlMjIxJTIyJTIwdmVydGV4JTNEJTIyMSUyMiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUy\nMCUyMCUyMCUyMCUzQ214R2VvbWV0cnklMjB4JTNEJTIyNDkwJTIyJTIweSUzRCUyMjc2JTIyJTIw\nd2lkdGglM0QlMjI2MCUyMiUyMGhlaWdodCUzRCUyMjYwJTIyJTIwYXMlM0QlMjJnZW9tZXRyeSUy\nMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQyUyRm14Q2VsbCUzRSUwQSUy\nMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214Q2VsbCUyMGlkJTNEJTIyWHJDT0lMMFR4cDNtR1RR\nYnNiMWktMyUyMiUyMHZhbHVlJTNEJTIyJTI2bHQlM0Jmb250JTIwc3R5bGUlM0QlMjZxdW90JTNC\nZm9udC1zaXplJTNBJTIwNDJweCUzQiUyNnF1b3QlM0IlMjZndCUzQjIlMjZsdCUzQiUyRmZvbnQl\nMjZndCUzQiUyMiUyMHN0eWxlJTNEJTIyZWxsaXBzZSUzQndoaXRlU3BhY2UlM0R3cmFwJTNCaHRt\nbCUzRDElM0Jhc3BlY3QlM0RmaXhlZCUzQiUyMiUyMHBhcmVudCUzRCUyMjElMjIlMjB2ZXJ0ZXgl\nM0QlMjIxJTIyJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhHZW9tZXRy\neSUyMHglM0QlMjIzNzAlMjIlMjB5JTNEJTIyMTcwJTIyJTIwd2lkdGglM0QlMjI2MCUyMiUyMGhl\naWdodCUzRCUyMjYwJTIyJTIwYXMlM0QlMjJnZW9tZXRyeSUyMiUyMCUyRiUzRSUwQSUyMCUyMCUy\nMCUyMCUyMCUyMCUyMCUyMCUzQyUyRm14Q2VsbCUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUy\nMCUzQ214Q2VsbCUyMGlkJTNEJTIyWHJDT0lMMFR4cDNtR1RRYnNiMWktNSUyMiUyMHZhbHVlJTNE\nJTIyJTI2bHQlM0Jmb250JTIwc3R5bGUlM0QlMjZxdW90JTNCZm9udC1zaXplJTNBJTIwNDJweCUz\nQiUyNnF1b3QlM0IlMjZndCUzQjMlMjZsdCUzQiUyRmZvbnQlMjZndCUzQiUyMiUyMHN0eWxlJTNE\nJTIyZWxsaXBzZSUzQndoaXRlU3BhY2UlM0R3cmFwJTNCaHRtbCUzRDElM0Jhc3BlY3QlM0RmaXhl\nZCUzQiUyMiUyMHBhcmVudCUzRCUyMjElMjIlMjB2ZXJ0ZXglM0QlMjIxJTIyJTNFJTBBJTIwJTIw\nJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhHZW9tZXRyeSUyMHglM0QlMjI2MTAlMjIlMjB5\nJTNEJTIyMTcwJTIyJTIwd2lkdGglM0QlMjI2MCUyMiUyMGhlaWdodCUzRCUyMjYwJTIyJTIwYXMl\nM0QlMjJnZW9tZXRyeSUyMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQyUy\nRm14Q2VsbCUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214Q2VsbCUyMGlkJTNEJTIy\nWHJDT0lMMFR4cDNtR1RRYnNiMWktNiUyMiUyMHN0eWxlJTNEJTIycm91bmRlZCUzRDAlM0JvcnRo\nb2dvbmFsTG9vcCUzRDElM0JqZXR0eVNpemUlM0RhdXRvJTNCaHRtbCUzRDElM0JlbnRyeVglM0Qw\nJTNCZW50cnlZJTNEMCUzQmVudHJ5RHglM0QwJTNCZW50cnlEeSUzRDAlM0JleGl0WCUzRDElM0Jl\neGl0WSUzRDElM0JleGl0RHglM0QwJTNCZXhpdER5JTNEMCUzQmVuZEFycm93JTNEbm9uZSUzQmVu\nZEZpbGwlM0QwJTNCJTIyJTIwcGFyZW50JTNEJTIyMSUyMiUyMHNvdXJjZSUzRCUyMlhyQ09JTDBU\neHAzbUdUUWJzYjFpLTElMjIlMjB0YXJnZXQlM0QlMjJYckNPSUwwVHhwM21HVFFic2IxaS01JTIy\nJTIwZWRnZSUzRCUyMjElMjIlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0Nt\neEdlb21ldHJ5JTIwcmVsYXRpdmUlM0QlMjIxJTIyJTIwYXMlM0QlMjJnZW9tZXRyeSUyMiUzRSUw\nQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214UG9pbnQlMjB4JTNEJTIy\nNTE5JTIyJTIweSUzRCUyMjEzMSUyMiUyMGFzJTNEJTIyc291cmNlUG9pbnQlMjIlMjAlMkYlM0Ul\nMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteFBvaW50JTIweCUzRCUy\nMjQ2MSUyMiUyMHklM0QlMjIxODklMjIlMjBhcyUzRCUyMnRhcmdldFBvaW50JTIyJTIwJTJGJTNF\nJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDJTJGbXhHZW9tZXRyeSUzRSUwQSUy\nMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQyUyRm14Q2VsbCUzRSUwQSUyMCUyMCUyMCUyMCUyMCUy\nMCUyMCUyMCUzQ214Q2VsbCUyMGlkJTNEJTIyWHJDT0lMMFR4cDNtR1RRYnNiMWktNyUyMiUyMHZh\nbHVlJTNEJTIyJTI2bHQlM0Jmb250JTIwc3R5bGUlM0QlMjZxdW90JTNCZm9udC1zaXplJTNBJTIw\nNDJweCUzQiUyNnF1b3QlM0IlMjZndCUzQjQlMjZsdCUzQiUyRmZvbnQlMjZndCUzQiUyMiUyMHN0\neWxlJTNEJTIyZWxsaXBzZSUzQndoaXRlU3BhY2UlM0R3cmFwJTNCaHRtbCUzRDElM0Jhc3BlY3Ql\nM0RmaXhlZCUzQiUyMiUyMHBhcmVudCUzRCUyMjElMjIlMjB2ZXJ0ZXglM0QlMjIxJTIyJTNFJTBB\nJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhHZW9tZXRyeSUyMHglM0QlMjIyOTUl\nMjIlMjB5JTNEJTIyMjgwJTIyJTIwd2lkdGglM0QlMjI2MCUyMiUyMGhlaWdodCUzRCUyMjYwJTIy\nJTIwYXMlM0QlMjJnZW9tZXRyeSUyMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUy\nMCUzQyUyRm14Q2VsbCUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214Q2VsbCUyMGlk\nJTNEJTIyWHJDT0lMMFR4cDNtR1RRYnNiMWktOCUyMiUyMHZhbHVlJTNEJTIyJTI2bHQlM0Jmb250\nJTIwc3R5bGUlM0QlMjZxdW90JTNCZm9udC1zaXplJTNBJTIwNDJweCUzQiUyNnF1b3QlM0IlMjZn\ndCUzQjUlMjZsdCUzQiUyRmZvbnQlMjZndCUzQiUyMiUyMHN0eWxlJTNEJTIyZWxsaXBzZSUzQndo\naXRlU3BhY2UlM0R3cmFwJTNCaHRtbCUzRDElM0Jhc3BlY3QlM0RmaXhlZCUzQiUyMiUyMHBhcmVu\ndCUzRCUyMjElMjIlMjB2ZXJ0ZXglM0QlMjIxJTIyJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIw\nJTIwJTIwJTIwJTNDbXhHZW9tZXRyeSUyMHglM0QlMjI0NDUlMjIlMjB5JTNEJTIyMjgwJTIyJTIw\nd2lkdGglM0QlMjI2MCUyMiUyMGhlaWdodCUzRCUyMjYwJTIyJTIwYXMlM0QlMjJnZW9tZXRyeSUy\nMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQyUyRm14Q2VsbCUzRSUwQSUy\nMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214Q2VsbCUyMGlkJTNEJTIyWHJDT0lMMFR4cDNtR1RR\nYnNiMWktOSUyMiUyMHZhbHVlJTNEJTIyJTI2bHQlM0Jmb250JTIwc3R5bGUlM0QlMjZxdW90JTNC\nZm9udC1zaXplJTNBJTIwNDJweCUzQiUyNnF1b3QlM0IlMjZndCUzQjYlMjZsdCUzQiUyRmZvbnQl\nMjZndCUzQiUyMiUyMHN0eWxlJTNEJTIyZWxsaXBzZSUzQndoaXRlU3BhY2UlM0R3cmFwJTNCaHRt\nbCUzRDElM0Jhc3BlY3QlM0RmaXhlZCUzQiUyMiUyMHBhcmVudCUzRCUyMjElMjIlMjB2ZXJ0ZXgl\nM0QlMjIxJTIyJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhHZW9tZXRy\neSUyMHglM0QlMjI1MzUlMjIlMjB5JTNEJTIyMjgwJTIyJTIwd2lkdGglM0QlMjI2MCUyMiUyMGhl\naWdodCUzRCUyMjYwJTIyJTIwYXMlM0QlMjJnZW9tZXRyeSUyMiUyMCUyRiUzRSUwQSUyMCUyMCUy\nMCUyMCUyMCUyMCUyMCUyMCUzQyUyRm14Q2VsbCUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUy\nMCUzQ214Q2VsbCUyMGlkJTNEJTIyWHJDT0lMMFR4cDNtR1RRYnNiMWktMTIlMjIlMjBzdHlsZSUz\nRCUyMnJvdW5kZWQlM0QwJTNCb3J0aG9nb25hbExvb3AlM0QxJTNCamV0dHlTaXplJTNEYXV0byUz\nQmh0bWwlM0QxJTNCZW50cnlYJTNEMSUzQmVudHJ5WSUzRDElM0JlbnRyeUR4JTNEMCUzQmVudHJ5\nRHklM0QwJTNCZXhpdFglM0QwJTNCZXhpdFklM0QwJTNCZXhpdER4JTNEMCUzQmV4aXREeSUzRDAl\nM0JlbmRBcnJvdyUzRG5vbmUlM0JlbmRGaWxsJTNEMCUzQiUyMiUyMHBhcmVudCUzRCUyMjElMjIl\nMjBzb3VyY2UlM0QlMjJYckNPSUwwVHhwM21HVFFic2IxaS04JTIyJTIwdGFyZ2V0JTNEJTIyWHJD\nT0lMMFR4cDNtR1RRYnNiMWktMyUyMiUyMGVkZ2UlM0QlMjIxJTIyJTNFJTBBJTIwJTIwJTIwJTIw\nJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhHZW9tZXRyeSUyMHJlbGF0aXZlJTNEJTIyMSUyMiUyMGFz\nJTNEJTIyZ2VvbWV0cnklMjIlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAl\nMjAlM0NteFBvaW50JTIweCUzRCUyMjU0OSUyMiUyMHklM0QlMjIxMzElMjIlMjBhcyUzRCUyMnNv\ndXJjZVBvaW50JTIyJTIwJTJGJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIw\nJTIwJTNDbXhQb2ludCUyMHglM0QlMjI0MzElMjIlMjB5JTNEJTIyMTg5JTIyJTIwYXMlM0QlMjJ0\nYXJnZXRQb2ludCUyMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUz\nQyUyRm14R2VvbWV0cnklM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0MlMkZteENlbGwl\nM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteENlbGwlMjBpZCUzRCUyMlhyQ09JTDBU\neHAzbUdUUWJzYjFpLTEzJTIyJTIwc3R5bGUlM0QlMjJyb3VuZGVkJTNEMCUzQm9ydGhvZ29uYWxM\nb29wJTNEMSUzQmpldHR5U2l6ZSUzRGF1dG8lM0JodG1sJTNEMSUzQmVudHJ5WCUzRDElM0JlbnRy\neVklM0QwJTNCZW50cnlEeCUzRDAlM0JlbnRyeUR5JTNEMCUzQmV4aXRYJTNEMCUzQmV4aXRZJTNE\nMSUzQmV4aXREeCUzRDAlM0JleGl0RHklM0QwJTNCZW5kQXJyb3clM0Rub25lJTNCZW5kRmlsbCUz\nRDAlM0IlMjIlMjBwYXJlbnQlM0QlMjIxJTIyJTIwc291cmNlJTNEJTIyWHJDT0lMMFR4cDNtR1RR\nYnNiMWktMyUyMiUyMHRhcmdldCUzRCUyMlhyQ09JTDBUeHAzbUdUUWJzYjFpLTclMjIlMjBlZGdl\nJTNEJTIyMSUyMiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214R2VvbWV0\ncnklMjByZWxhdGl2ZSUzRCUyMjElMjIlMjBhcyUzRCUyMmdlb21ldHJ5JTIyJTNFJTBBJTIwJTIw\nJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhQb2ludCUyMHglM0QlMjI1NTklMjIl\nMjB5JTNEJTIyMTQxJTIyJTIwYXMlM0QlMjJzb3VyY2VQb2ludCUyMiUyMCUyRiUzRSUwQSUyMCUy\nMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214UG9pbnQlMjB4JTNEJTIyNDQxJTIy\nJTIweSUzRCUyMjE5OSUyMiUyMGFzJTNEJTIydGFyZ2V0UG9pbnQlMjIlMjAlMkYlM0UlMEElMjAl\nMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0MlMkZteEdlb21ldHJ5JTNFJTBBJTIwJTIwJTIw\nJTIwJTIwJTIwJTIwJTIwJTNDJTJGbXhDZWxsJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIw\nJTNDbXhDZWxsJTIwaWQlM0QlMjJYckNPSUwwVHhwM21HVFFic2IxaS0xNSUyMiUyMHN0eWxlJTNE\nJTIycm91bmRlZCUzRDAlM0JvcnRob2dvbmFsTG9vcCUzRDElM0JqZXR0eVNpemUlM0RhdXRvJTNC\naHRtbCUzRDElM0JlbnRyeVglM0QxJTNCZW50cnlZJTNEMCUzQmVudHJ5RHglM0QwJTNCZW50cnlE\neSUzRDAlM0JleGl0WCUzRDAlM0JleGl0WSUzRDElM0JleGl0RHglM0QwJTNCZXhpdER5JTNEMCUz\nQmVuZEFycm93JTNEbm9uZSUzQmVuZEZpbGwlM0QwJTNCJTIyJTIwcGFyZW50JTNEJTIyMSUyMiUy\nMHNvdXJjZSUzRCUyMlhyQ09JTDBUeHAzbUdUUWJzYjFpLTUlMjIlMjB0YXJnZXQlM0QlMjJYckNP\nSUwwVHhwM21HVFFic2IxaS05JTIyJTIwZWRnZSUzRCUyMjElMjIlM0UlMEElMjAlMjAlMjAlMjAl\nMjAlMjAlMjAlMjAlMjAlMjAlM0NteEdlb21ldHJ5JTIwcmVsYXRpdmUlM0QlMjIxJTIyJTIwYXMl\nM0QlMjJnZW9tZXRyeSUyMiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUy\nMCUzQ214UG9pbnQlMjB4JTNEJTIyNDg5JTIyJTIweSUzRCUyMjE1MSUyMiUyMGFzJTNEJTIyc291\ncmNlUG9pbnQlMjIlMjAlMkYlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAl\nMjAlM0NteFBvaW50JTIweCUzRCUyMjM3MSUyMiUyMHklM0QlMjIyMDklMjIlMjBhcyUzRCUyMnRh\ncmdldFBvaW50JTIyJTIwJTJGJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTND\nJTJGbXhHZW9tZXRyeSUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQyUyRm14Q2VsbCUz\nRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUzQyUyRnJvb3QlM0UlMEElMjAlMjAlMjAlMjAlM0MlMkZt\neEdyYXBoTW9kZWwlM0UlMEElMjAlMjAlM0MlMkZkaWFncmFtJTNFJTBBJTNDJTJGbXhmaWxlJTNF\nJTBBRmQdUgAAIABJREFUeF7tXQm0jdX7fpFIFJGhUioVGkgoZCgR0UCIlDkqKkSimQwN5pQxZE7m\nopJQUUSaadBEShrILOrfs/uf+zv33HPu+Yb9zc+71l2tlT0++93P2d/e75Djn39FKESACBABIhB6\nBHKQ8EO/xpwgESACREAhQMKnIhABFxH46quvZN26dbJhwwbZvHmz5M2bV9asWSN79+6VypUry/vv\nvy/58+eX6tWry4EDB6Rs2bJyySWXSJUqVaR06dIujpRdhREBEn4YV5Vz8hUCb7zxhuBv2rRpki9f\nPmnRooUUKlRIypQpowj9uOOOUyR//PHHy759+xT5g+w3bdqk/nbt2iUzZ86UgwcPSqtWraRevXpy\n5ZVX+mqOHEwwECDhB2OdOMqAIfDXX3/J0KFDZfjw4XLBBRdIp06dpFq1anLqqadansm2bdtk9erV\nMm7cOPVDcM8990jPnj0lV65clttkxWghQMKP1npzti4g0L9/f8HfoEGD1Im8ePHi2nv96aef1BdD\nnz59pF+/ftK3b1/tfbDB8CFAwg/fmnJGHiEwY8YM6dixozz55JPStWtX10YxatQoRfgTJkyQm266\nybV+2VHwECDhB2/NOGIfIgCix707SBd38m4L7v0xhgIFCsj48ePd7p79BQQBEn5AForD9CcCsLip\nWbOmLFmyxBcPqcuWLZMbbrhBVq5cqax+KEQgHgESPvWBCFhE4KWXXpJXXnlFxowZI3ny5LHYiv5q\n+/fvlzvuuEMaN26syJ9CBGIIkPCpC0TAAgIvv/yyTJkyRebMmWOhtjtVQPidO3eW+vXru9Mhe/E9\nAiR83y8RB+g3BED2sJCZNWuW34aWZTzNmzeXtm3byjXXXOP7sXKAziNAwnceY/YQIgRwjTN79mxf\nn+wT4cZJv02bNrzeCZEeWp0KCd8qcqwXOQQQ9mD06NEyefLkwM29devWylELYRoo0UWAhB/dtefM\nTSKAuDe7d+925IH2xx9/VPftMXn44YdV/BxdgpANxYoVU2EbKNFFgIQf3bXnzE0gABv3li1bSp06\ndUzUMl50xIgR0q1bt4wKeAxu2rSp8QYMlHz99ddl7ty5MnbsWAOlWSSMCJDww7iqnJNWBOBBC/PL\n6dOna203vjFctXzwwQeOEj4ahyfujTfeKHjMpUQPARJ+9NacMzaJACJc/vbbb4550E6cOFF5ycaL\nEyd8tL9nzx4VwO3PP/80iQKLhwEBEn4YVpFzcAyBxx9/XAoWLOhIbBzcp+PrIf7uPjYRpwgf7eP6\nCM5ZCLxGiRYCJPxorTdnawIBhDhGjPrDhw+bqJW6KEIaIwHKl19+KRs3blRkn0qcJHz0mTNnTjl6\n9KjkyJFDy9zYSDAQIOEHY504Sg8QeOKJJyR37tzSo0cPLb2bIVenCR8RPUH6iKdPiQ4CJPzorDVn\nahKBEiVKqJO4rnj2fiJ8JFOpWrWqbN261SQqLB5kBEj4QV49jt0xBJCSECd8RJ/UJX4ifMzpiiuu\nkEceeURq166ta4psx+cIkPB9vkAcnjcI3H///cortVmzZtoG8MUXX8ihQ4eytAdnLoRYjhenr3TQ\nF2IBffLJJzJgwABtc2RD/kaAhO/v9eHoPELgtNNOk7Vr19rKQWt06DCRPPHEE10n/O+//15q1aol\n3333ndGhslzAESDhB3wBOXz9CMCSpmHDhsqaxg3xivAxt7POOkuWL18uZ555phtTZR8eI0DC93gB\n2L3/EIBHLcj+sccec2VwXhL+Aw88IBdddBFz4bqy0t53QsL3fg04Ap8hADPMkiVLSvfu3V0ZmZeE\n/9RTT8nOnTtV4nVK+BEg4Yd/jTlDkwggWchdd90lDRo0MFnTWnEvCX/x4sUq6fmiRYusDZ61AoUA\nCT9Qy8XBuoFAkyZNZOjQoVKqVCk3ulNxbbx4tMXktmzZIr179xYkdqGEHwESfvjXmDM0iQAcrT76\n6CMVP94N8ZLwf/rpJ2V+un37djemyj48RoCE7/ECsHv/IZA/f37ZsWOHiqPjhnhJ+AjgBo9iRNGk\nhB8BEn7415gzNIkAPFBXrFhhspb14l4SPkbt9nytI8WadhEg4dtFkPVDh0CUTviMjx869c12QiT8\naK03Z2sAgSjd4ePuvnLlyoKcupTwI0DCD/8ac4YmEUAKwCFDhkTCSufrr78WxA2ilY5JJQlocRJ+\nQBeOw3YOAdrhO4ctW/YWARK+t/izdx8icO+996qgaboSn6SbopePtvCwRb5ehIKmhB8BEn7415gz\nNIkAUg8ilDFj6ZgEjsV9jwAJ3/dLxAG6jQDutRFWAVEz3RAvT/iIkgkTVLe8it3Ak32kRoCET+0g\nAkkQQPC0d999VxAX32nxivARBx82+N9++63TU2T7PkGAhO+TheAw/IVAnz59pEKFCq6EDfaK8GfO\nnCmfffaZPP744/4Cn6NxDAESvmPQsuEgI/Dmm2+q1H9IDuK0eEX4yHbVv3//LOkVnZ4v2/cOARK+\nd9izZ58jcMopp8iGDRtUrBknZf/+/Vni9iBc8bXXXutYt1u3bpXq1avLDz/84FgfbNh/CJDw/bcm\nHJFPEIDJYo4cOaRXr14+GZG+YQwaNEiOPfZYgQkqJToIkPCjs9acqUkEjh49Knny5JEjR46YrOn/\n4vgh++eff/w/UI5QKwIkfK1wsrGwITBw4EApUKCAyoAVFhk+fLgcPHhQhVSgRAsBEn601puztYAA\nCB+JQhBFM+iya9cuge39H3/8EfSpcPwWECDhWwCNVaKFwOzZs2X+/Pkya9aswE+8adOm0rJlS0GA\nOEr0ECDhR2/NOWMLCNx2223SrFkzqVevnoXa/qiydOlSWbhwoYwZM8YfA+IoXEeAhO865OwwqAgg\n5eHOnTslX758gZsCbP3hPbx79+7AjZ0D1ocACV8flmwp5AisX79eRo0aJVOmTAncTG+99Vbp2bOn\nlC9fPnBj54D1IUDC14clW4oAAgsWLFCEjzv9oAgcuDp37iyNGjUKypA5TocQIOE7BCybDS8CiB2/\nbt06mTt3ru8nWaNGDeWxe9999/l+rByg8wiQ8J3HmD2ECIGOHTsKwhJ07dpVnn/+eV+f9EH0d955\npwwdOlSZYo4bNy5EK8GpWEGAhG8FNdaJHAKvvvqqNG/eXIYNGyYdOnRQ88f1zrx58+S5557LEgvH\nS4DwQNulSxcV6TN2jTN+/Hh1yn/xxRelbt26Xg6PfXuIAAnfQ/DZdTAQAMFv375dkSWcsOIFD7m1\na9dWJ30/ECl+mED0q1atUuGd4wVOV/jROuOMMwQ/AJToIUDCj96ac8YGEYDdOghyxIgR0r59+2xr\n4VEUhDphwoQsPwoGu7NVDH3juqlIkSJp7ewxRgRNww/Y1VdfbatfVg4WAiT8YK0XR+sSAu3atZMd\nO3YoUjQaUgFlQbr9+vWTbt26uTRSUddM6BNEbtSDFtc++DFDRi/Uo0QDARJ+NNaZszSIwJIlS5RH\n7ejRo6Vt27YGa2UuhoBrDz74oAwePFhuvvlmR9Ik4uF42rRp0rdvX9VP7969LY114sSJ0r17d/XD\nVr9+fUttsFJwECDhB2etOFKHEQDBw5N2zpw5tr1pEXp4yJAh6jqodOnSyg6+atWq6v7cqiAHLfLs\nIjQC8tDiK6JHjx5Wm8uot2fPHnXaR6IXWB5RwosACT+8a8uZGUTg5ZdfVoQHa5s2bdoYrGW82MqV\nK2XZsmUyffp0yZkzpwpeVrBgQSlTpoyUK1dO/bjgMRhXRyBf/CEL1qZNm9QfwiHMmDFDddiqVSsV\nz6dmzZrGB2Cw5KRJk1QYaPzgNWjQwGAtFgsSAiT8IK0Wx6odgdatW6tQwbjSOO6447S3n9ggTuZw\n2kLqxM2bN6usU2vWrFEkX6lSJfX/Qf7VqlWTQ4cOSdmyZaVixYpy6aWXSqlSpRwf3759+9SVVrFi\nxQQ/AJRwIUDCD9d6cjYGEVi8eLE61cMZCXFmKJkRmDx5srLlxw9hw4YNCU9IECDhh2QhOQ3jCIDg\ncU0CMsubN6/xihEriWsl/CgWLlw4kAHjIrZchqZLwjcEEwuFAQHEggeBwTLllltuCcOUXJnDCy+8\nILfffrv6gWQANlcgd6wTEr5j0LJhPyEAgt+7d68iLdybU8whcODAAfVjWahQIcEPACWYCJDwg7lu\nHLVBBBDvBkSFB0hYuFDsITB16lRB9i/8cF533XX2GmNt1xEg4bsOOTt0CwE4PeFkCnLKnTu3W92G\nvh9YD+FH9IQTThD8AFCCgwAJPzhrxZEaRACBzGBaCDKCzTvFGQTg6YvAcvhBvf76653phK1qRYCE\nrxVONuY1AiB4nEDhPJQrVy6vhxP6/g8fPqxO+8j3C8cyir8RIOH7e304OoMIIPsUiAek06JFC4O1\nWEwXAvAEhpcyfmhvuOEGXc2yHc0IkPA1A8rm3EcA8d+PHj2qrhYQuoDiDQJHjhxRV2nwWI6FgvBm\nJOw1FQIkfOpGYBF46aWX1Kl+1qxZ6r8UfyAwc+ZM5b2MH+AmTZr4Y1AchUKAhE9FCCQCIHhEpASp\n5MiRI5BzCPOg8cWFNYJ1FH6QKf5AgITvj3XgKAwiAILHFQ7+i+sDir8RmD17tsoJgPUympzF3zMK\n9uhI+MFev8iMHqd5nBhxRw8SoQQHgb///lutHaymuHberhsJ31v82bsBBEASMLfEKbFp06YGarCI\nHxHg15n3q0LC934NOIIUCPAeOJyqEXtgxw8AxV0ESPju4s3eDCKAhz4EPKOlh0HAAlYM9vogfny9\n0cLKvcUj4buHNXsygABsuUEAefLkEZj3UcKNAH0o3F1fEr67eLO3bBCIeWviVN+4cWNiFREE6CXt\n3kKT8N3Dmj2lQIDxWKgaQAAP89AF/OAzDpIzOkHCdwZXtmoQAcS+ad++PSMuGsQr7MXmzZunrvQY\n6dSZlSbhO4MrW02DQCymeoECBQRhdilEIB4B5jJwRh9I+M7gylazQYBZk6geRhCIZSubPHmy8tal\n2EeAhG8fQ7ZgEIGDBw+qcAjMi2oQMBZTCCA15b59+5iPWIM+kPA1gMgm0iOAxNedO3dW8dIbNWqU\nvgJLEIE4BBYuXKju9idOnKj8MyjWECDhW8ONtQwisH//frVRCxcuLFOmTDFYi8WIQHIEEHZ59+7d\n6uAAXw2KOQRI+ObwYmkTCODutUuXLupTvGHDhiZqsigRSI3A4sWL1dXg+PHjVdx9inEESPjGsWJJ\ngwjgvhWn+qJFi8qkSZMM1mIxImAOgdatW8sff/yhDhTIskVJjwAJPz1GLGECARD8XXfdpTbhNddc\nY6ImixIB8wi8/PLL6nDx3HPPqZy6lOwRIOFTQ7QgsGfPHrXxSpQoIc8//7yWNtkIETCKQNu2beXX\nX39VB418+fIZrRa5ciT8yC25/gmD4Lt166Y2W/369fV3wBaJgAEEXnnlFXXoGD16tOAHgJIVARI+\ntcIyAn/++afaYKeeeqoyl6MQAT8g0K5dO9mxY4c6gOTPn98PQ/LNGEj4vlmKYA1kwoQJcu+996pN\ndfXVVwdr8Bxt6BFYunSpOoyMHDlS8ANA+Q8BEr7PNOGrr76SdevWyYYNG2Tz5s2SN29eWbNmjezd\nu1cqV64s77//vjq1VK9eXQ4cOCBly5aVSy65RKpUqSKlS5d2fDawgYZJ3BlnnKHM4ihEwM8IIDDf\nTz/9pA4miNvktPh9/5LwndYAA+2/8cYbgj8EEcODU4sWLVT4gTJlyihCh8kZSP74449XLuYgf5D9\npk2b1N+uXbtUshCELoAber169eTKK6800LO5IiD4Xr16KaeXunXrmqvM0kTAIwReffVVddofNmyY\ndOjQQfsogrJ/ecLXvvTGG/zrr79k6NChMnz4cLngggukU6dOUq1aNXUfblW2bdsmq1evlnHjxqkf\ngnvuuUd69uxpO7Y4bJ2xYc4880zVNoUIBBGBjh07ytatW9WB5YQTTrA1hSDt3/iJ8oRva9mtVe7f\nv7/gb9CgQepEXrx4cWsNZVMLn7H4YujTp4/069dP+vbta6mPsWPHqjbwSXzVVVdZaoOViIBfEHj9\n9dfVleSQIUMEPwBWJEj7N3F+JHwrK26xDlL4QcmefPJJ6dq1q8VWzFcbNWqUInw8tCKHqBH5/fff\n1ake7wJjxowxUoVliEBgELjtttvk+++/VweZggULGhp3kPZvqgmR8A0ttf1CIHrcu4N0vXADx70/\nxoCHq3SPrSD4Bx54QG2GOnXq2J88WyACPkRg2bJl6lDzxBNPqCvV7CRI+ze7eZDwHVZEWNzUrFlT\nlixZ4shDqtnhQ8lvuOEGWblypbL6iRd4KmIDnHfeecpVnUIEooAAwnZ/88036oADY4l4CdL+NbJW\nJHwjKFks89JLLwm8/3Bi9lMoV4QsvuOOO6Rx48aK/CEg+Icfflgp/RVXXGFxxqxGBIKJACxtcNjB\nuxp+ACBB2r9GUSfhG0XKZDkEdUL8d1gE+FVA+DBTwwMWzD+fffZZvw6V4yICriBw++23C2zpEQBw\n+vTpvt+/+HEyE86EhO+AGoHsYSEza9YsB1rX22STJk2UExe8ZilEgAiIDBw4UHD1uWLFCt/Dga8S\nxA0yGpmWhK95SfEZOHv2bF+fDBKnjJM+QsvGrnc0Q8LmiEBgEAj7/iXha1RFhD1ApD5kegqaIJkE\nHLUQpoFCBKKIQBT2Lwlfo2Yj7g1izeh4oP3uu+9k3rx5yprmxx9/FHjRwqzzoosukgsvvFBZ0pQr\nV045Q+XMmdP2LBCyoVixYipsA4UIRBEBXfsXIU5wJYSrXdj6w7sXkWXhqX7uueeq/8K7Hmk/jznm\nGC1QG92/JHwtcIuycW/ZsqVtu/XffvtN7rzzTmUtY0Rq166t0giWKlXKSPFsy8ALce7cuQLvWgoR\niBICuvYv3u1g04+EQOkE5A8v+KZNm9oOf4K+jOxfEn66VTHw7/DAg/klXvXtyGeffaZs9X/55RfT\nzcAiCNcydgWeuDfeeKMyUaMQgSggoGv/3n333QKvdrNy/fXXq695HV/q6fYvCd/s6iQpjwiXOJnb\n8aDFJx8cob788kvLI8IdZKVKlSzXR0WcTBDADeOhEIEoIKBj/+Ldzk7c/aeeekoFOrQr6fYvCd8m\nwo8//riKxWE3Nk737t1V5MxE6d27t4qiiR+DIkWKKI9A3A0mUw6Ueffdd21/Ho4YMULgnIWgaRQi\nEGYEdOxfRJM96aSTssAEc2f8CFSoUEH5uSA+1XvvvafCliQ72H388cfqfc6uZLd/Sfg20EWIVMSo\nP3z4sI1WRD3G4sE08d4P9/iI7JdM8Bh0+eWXq8fceMF9vo58nvi8PHr0qOTIkcPW3FiZCPgVAV37\nF29ecNiKF5g644o32Vf/kSNHVJTcxHe6Z555Rrp06aIFrlT7l4RvA14EXcqdO7f06NHDRiv/uXAn\nEjuCrKVL1gB38MREJDfffLPttwRMBhE9oTQ6PjNtgcPKRMAhBHTtX5gyf/DBBxmjhCEFrHSys8CB\nVQ0SHMUf2LDfse91SKr9S8K3gW6JEiVk48aNtuPZwyonPljZaaedJj/88IOh03XVqlXVZ2JM8PL/\nxRdf2JjVf1WhiGgbJmUUIhBGBHTsX5zWceiLl+y+zOPLIZ5VfOjxihUrqtSmOiTV/iXhW0QXp2uc\nEPBLblcaNWqkrHxigi8GxLcxIolKgzo4PeAhyq4giNojjzwiOLFQiECYENC1f5Fo6JRTTskEzc8/\n/6yuaNMJclQgWFtMzjrrLNmyZUu6aob/Pdn+JeEbhi9zwfvvv195paa6YzfT7Pnnny+ff/55RhX8\n6sci9qVr57777hO88McLctyeeOKJ6aqm/XfYFH/yyScyYMCAtGVZgAgECQFd+xcPreXLl8809b//\n/tvQ1zlyTbz55psZdeGIBYMMXZJs/5LwLaKLa5e1a9faykEb6xqngXjb+0WLFsm1115raGSJSoNx\n6bqGwcNwrVq1BF6/FCIQJgR07V9c6axZsyYDmmOPPVYuu+yytFBt3749C3f06tVLvZ3pkmT7l4Rv\nAV2ET8WvsR2b+fhu4YoNi5iYwMU7V65caUf26aefZjHjwheHUS/dtB38WwCfmcuXL1fu4BQiEAYE\ndO9fs5igfzhYJlrYbd68WYVM0SmJ+5eEbwFdmFuB7B977DELtfVUOXTokFSpUkXwSRkvI0eOVLG8\ndQlshhG/x2guXF39sh0i4BQCbu5fPML+888/gnv9Dz/8UNavX6+ucRJNsHE1izdB3ZK4f0n4FhDG\no2rJkiUFzlJeyM6dO1XoAwRWixcEU4OC4QtBl+B9AP3p/NTUNTa2QwSsIODm/jXixwI7fiRVN1LW\n7HwT9y8J3yyC/5ZHsgGcohs0aGChtr0qeNSBvW6yeDsge5h26ZTFixerpOd4V6AQgTAg4Ob+NULi\nMMlGPgo7oVlSrUvi/iXhW9BgZIkaOnSolgiVRrvHQyyyUqVKmYj0hDDR1C0wE0N4BziHUYhAGBBw\nc/8aIXxgCtNnkHP+/Pm1Qpy4f0n4FuAtXry4fPTRR4ZsbS00n6kKYtrgx+Whhx5K2lSBAgVk4cKF\njiUeh50xzE9hVUAhAmFAwM39iwMaAhH++uuvag/BKfK1115LCiNuDJYsWaIV4sT9S8K3AC9+hXfs\n2KHi6DgpOFXjnSDxNT/WJz4D8dBjxMnD6jiREAUeiUbie1vtg/WIgJsIuLV/U80JX+v4Ih88eHCW\nIm+99ZbUqFFDGxyJ+5eEbwFaeLA5meAY0fcQjCmVeSUeZ+GcpVMxsoPB6flaWAJWIQKWEfCLPuOr\nHdE64wXGGMiJrVPi50vCt4CskycE/MLDlj7Zoyyub3C9g2iYulKjpZt+uvja6erz34mA3xBwcv+a\nmSs8cs855xwV8jwmOMwhEZIuSdy/JHwLyDp1BwgzS/waJxOcBuCJB9J3U3DviDj7yKtLIQJhQEDn\n/oWFDUKZxAQOmfBbMSoIk4yMW/FiNDSDkT4S9y8J3whqCWWQAhDBzXTkkY01jcccEGviXTmSKEyc\nOFG7B57RaX/99deCuCO00jGKGMv5HQGd+zcxLAriTiEomlFBcELktY0XxOnX9QWfuH9J+EZXJq6c\nbjteLDCy2CeGaoCtP65wdC2+hakqUzHa4VtBjnX8ioDO/Vu/fv1MVje33HKLTJ061fDUcT2LfNQx\n0X2lQzt8w0uRuiDs4ZH31W7ik1gPCI2MEMnxcuuttypFMGrHq2FaSZuAhy3y9Trh9u3UmNkuEcgO\nAZ37NzE1Ka5c4ZmeJ0+etIuAwGuInRN/h68zCQoGkLh/ecJPuyxZC+DODVcwumLptG7dOtOpAN6y\nyE2LyHteC2PpeL0C7F83Ajr3L75+O3XqlGmIuIJt37592mE/+uijWThk3LhxKsyCLmEsHQ1I4l4M\nThKIemdXYCeb+BCLONZ+CVaGKJkwQdX5XmEXM9YnAnYQ0Ll/d+/ereJqJb69IT5O4g9BbMw42ePf\nu3btmmUaCGl8+umn25leprqJ+5cnfIvQYpFxCkdcbTuyevVqlYxclxQtWlQ5hekQxMGH1dC3336r\nozm2QQR8g4Cu/YsJJUtijv+P/NLIJ4H3OWTFinnaPv3005kSHsVAmTRpkjK51iXJ9i8J3yK6ffr0\nkQoVKtg+ieOBB1c6OgXhWHXIzJkzlU1wonOIjrbZBhHwEgFd+xdzSGV0YWZ+jRs3lnnz5pmpkrZs\nsv1Lwk8LW/ICiGkNEywkB7Ejye7x7LSHuroIH6eT/v37S82aNe0OifWJgK8Q0LV/Y5NCvPuOHTtm\nyk1tdMJ33323Ms3UkZY0vs9k+5eEb3RVkpTDZxpCEiPWjFW55557BElLdAneAxCsya4g3gd8AH74\n4Qe7TbE+EfAlAjr2b/zEcNDCoyvCohgRhEZ55plnTDlqGWkXZVLtXxK+UQSTlIPJE8wm4QEbNhk0\naJCyEoIJG4UIhBEBp/YvYmFt2rRJWfIhbSGuReE9i/c+hFLA39lnn63u9p0yu061f0n4NjQZeWhh\nb4tX97AJFFHX1VDYsOF8woFAFPcvCd+m7g4cOFCZVerMI2tzSLarDx8+XJBYHSEVKEQgzAhEbf+S\n8DVoMwgfiQZ0Z6vRMDTTTSAQFGx38VlKIQJRQCBK+5eEr0GjEb96/vz5AoepoEvTpk2lZcuWggBT\nFCIQBQSitH9J+Jo0Gu7QiGNfr149TS2638zSpUtVukQkV6EQgSghEJX9S8LXqNVIeYjASfny5dPY\nqjtNwZQT3odwFacQgSgiEIX9S8LXqNnr16+XUaNGZQp3qrF5R5tCdM6ePXtK+fLlHe2HjRMBvyIQ\nhf1LwtesfQsWLFCEjzv9oMi1114rnTt3zhKiOSjj5ziJgC4Ewr5/Sfi6NCWunUWLFqnEJUhZ6HeB\n+3Xv3r0FSSEoRIAIiARp/+LdEFE569ata2jpSPiGYDJXCAuQN29e5d7s55M+TvYwwYTj2LPPPmtu\nkixNBEKKQJD2L+LwGCV7LBcJX7PS4tH2/PPPl19++UXweYgIeEh0jAchvwgeaLt06aIifSLT1kkn\nnSRbtmyRQoUK+WWIHAcR8ASBIO5fM0CR8M2gZaAsgqEhTgZ+eSF4CKpdu7Y66Zv5JTbQlaUir776\nqiL6VatWqfDOEFw//fjjjyoxO4UIRBmBIO5fM+tFwjeDVpqyyF6FyJmJ2W9QDY+i8GKdMGFClgxX\nGoeQsin0jfCtRYoUSWpnf9xxxynvWlxFUYhAFBEI8v41ul4kfKNIGSiHpAqIaZ0qBs2LL76oSBex\nr7t162agRT1Fhg0bpvrEj00qD1okOTl06JCKf08hAlFEIMj71+h6kfCNIpWmnJnIewjY9OCDD8rg\nwYNVGjS7aRKTDQ0PxtOmTZO+ffuqfmCJk04YITMdQvz3sCIQhv1rZG1I+EZQMlAGJ2gozWOPPWYB\nFh7wAAAbWUlEQVSg9H9ZqXBnPmLECCldurS68qlataqcccYZhuonK4Qclsizi9AIyEOLr4gePXoY\nbg8Z7vG4jB8JChGIEgJh2L9G1ouEbwQlA2WQLGTfvn2SO3duA6UzF4G9/rJly2T69OmSM2dOFbys\nYMGCUqZMGSlXrpwK1YCIfojGifcB/O3fv18lWcAfwiHMmDFDNdqqVSsVz8dKWsIDBw5I4cKFVdsU\nIhAlBMKwf42sFwnfCEppyjz11FMqhg4y6NgVnMzXrVunUiciWw4Ucc2aNYrkK1WqpP4/yL9atWrq\nzr1s2bJSsWJFufTSS6VUqVJ2u1dfBIip0717d9ttsQEiEAQEwrR/0+FNwk+HkIF/x0Mt7sxPOOEE\nA6X9XeT3339XKdh+++03fw+UoyMCmhAI0/5NBwkJPx1Caf4dSYiRuxJB08Iid9xxhwqiZjQZc1jm\nzXlED4Ew7t/sVpGEb1PHYXe/ceNGKV68uM2W/FN927Zt6gEZXy0UIhBmBMK4f0n4DmnsxIkTlVUM\n7NvDJm3btpUrrrhC2rRpE7apcT5EQCEQ5v2baol5wreh/GeddZYsX75cBSALm3z11VfSsGFD+fLL\nL8M2Nc6HCCgEwrx/SfialRxmkK+88ooypQyrIOYOPHObN28e1ilyXhFFIAr7N9nS8oRvUeEREXPO\nnDnKTj6s8vHHHwsyYX300UdhnSLnFVEEorB/SfialDuIWXGsTp3ZsKwix3p+RSBK+zdxDXjCt6CV\ncIAaO3asXHLJJRZqB6vK2rVrBSFj33vvvWANnKMlAikQiNL+JeHb3AavvfaaIPok4spHRa666ipB\nJME6depEZcqcZ0gRiOL+jV9KnvBNKnaNGjVk0KBBcvnll5usGdziiPWDoHArVqwI7iQ4ciLwLwJR\n3L8kfIuq/9Zbb8lDDz2kskVFTapXry6IOYIYPhQiEEQEorx/Y+vFE74Jzb366qvl3nvvVdEooyZL\nliyR0aNHK1NUChEIIgJR3r8kfJMa+/7776vE34hkGVVBVE54J1588cVRhYDzDigC3L//LRxP+AYV\n+IYbbpB27drJ9ddfb7BG+IrNnTtXZs6cKS+99FL4JscZhRoB7l8SvmEF//TTT1VSkk8++cRwnbAW\nRPz9+fPnq+QsFCIQBAS4f/+3SjzhG9BYkD1O9i1atDBQOtxFkCcXpm1Tp04N90Q5u9AgwP1Lwjes\nzFu2bBE89nz99deG64S9IDJrwVLJTv7dsGPE+fkDAe7fzOvAE34avWzfvr2y3cX9PeU/BMaPHy94\nBBs3bhwhIQK+RoD7l4RvWEF/+uknFT5h+/bthutEpWDRokXls88+k5NPPjkqU+Y8A4YA92/WBeMJ\nPxslhhkmourdeeedAVN154c7cuRIwefyiBEjnO+MPRABCwhw/5LwDavNrl27VGKTP/74w3CdqBUs\nUKCA4BSVP3/+qE2d8/U5Aty/yReIJ/wUituzZ09Bvkt41lKSI/DEE0+oH8TBgwcTIiLgKwS4f0n4\nhhXy0KFDcuKJJ8rBgwcN14lqwWOOOUaAV65cuaIKAeftMwS4f1MvCE/4SbB5+OGHJXfu3CpQGiV7\nBB555BFF9sCMQgT8gAD3LwnflB7mzJlTjh49Kjly5DBVL4qF//rrLzn++OPl8OHDUZw+5+xDBLh/\nSfiG1RKx7vfs2SMDBw40XCfqBe+77z5lntmrV6+oQ8H5e4wA92/2C8ArnQR8cFrduXOn5MuXz2PV\nDU73f/75p5QsWVJ2794dnEFzpKFEgPuXhG9YsYcPHy7ff/+9SmFIMYfAXXfdJeedd5507drVXEWW\nJgKaEOD+TQ8kT/hxGOFaYtOmTVKkSJH0yLFEJgR+/vlnFScfdvkUIuAFAty/6VEn4f8/RmPHjpWN\nGzfKmDFj0qPGEkkR6Nixo1StWlU6dOhAhIiAqwhw/xqDm4T//zidfvrpsnr1anUXTbGGwLfffit1\n6tSRb775xloDrEUELCLA/WsMOBL+vzi98MILsnz5cpkyZYox1FgqJQKtWrWShg0bys0330yUiIAr\nCHD/GoeZhP8vVnhsXLx4sZx77rnGkWPJpAh8/vnn0qxZMxVJk0IE3ECA+9c4ypEnfORnnT17tsyZ\nM8c4aiyZLQKNGzeWNm3aCPKIUoiAkwhw/5pDN/KEX6FCBXWVU758eXPIsXRKBDZs2CCdO3eW9evX\nEyUi4CgC3L/m4I004b/yyivy3HPPycsvv2wONZZOi0D9+vWle/fuKj0khQg4gQD3r3lUI034MCGE\nk9Vll11mHjnWyBaBd955R/r06SNvv/02kSICjiDA/Wse1sgS/ptvvikDBgxQ1jkUZxCoVauW9O/f\nX2rWrOlMB2w1sghw/1pb+sgS/pVXXqnCH19xxRXWkGOttAgsW7ZMnnrqKXn99dfTlmUBImAGAe5f\nM2j9r2wkCf/dd99VmazWrFljDTXWMoxAlSpVZPTo0VK5cmXDdViQCGSHAPevdf2IJOE3atRI7rjj\nDuUgRHEWgYULF8qkSZNkwYIFznbE1iODAPev9aWOHOF/+OGH0q5dOxU3h+IOAhdeeKHMnDlTLrjg\nAnc6ZC+hRYD7197SRo7w4QV60003SdOmTe0hx9qGEZg1a5bgpA/SpxABOwhw/9pBTyRShP/FF1/I\n9ddfL5s3b7aHGmubRqB06dLy2muvydlnn226LisQASDA/WtfDyJF+K1bt5a6devKrbfeah85tmAK\nAdzjwyb/+eefN1WPhYlADAHuX/u6EBnC37p1q1SvXl1++OEH+6ixBUsInHLKKYKwCyVKlLBUn5Wi\niwD3r561jwzhI7bLJZdcIp06ddKDHFsxjcCzzz6romjCTJNCBMwgwP1rBq3UZSNB+L/++quULVtW\nJSeneItAoUKFBIlSChYs6O1A2HtgEOD+1bdUrhD+V199JevWrVOf83gwzZs3r3J62rt3r3LIef/9\n9yV//vzqyuXAgQOKnHEah9MOHvvsSrdu3eTMM8+Ue+65x25TrG8TgSFDhqi8t08//bTNlkS81ivb\nEwhIA17jzP2rT1EcI/w33nhD8Ddt2jTJly+ftGjRQnC6K1OmjCL04447TpH88ccfL/v27VPkD7JH\nEnH87dq1S5nxHTx4UJBFqV69egJ3arOCtosVK6bap/gDAfzg7969W/LkyWN6QH7RK9MDD1gFv+DM\n/atXcbQS/l9//SVDhw6V4cOHKycb3JdXq1ZNTj31VMuj3rZtm8o1O27cOPVDgFN6z549JVeuXIba\n7Nu3rxQoUEBFbqT4AwEEVIOu9OvXz9CA/KhXhgYesEJ+xJn7V68SaSN8bGL8DRo0SJ3Iixcvrnek\n/7aGqwB8MYC8QRZQhuzk77//lty5c8vRo0e1j4UNWkfgn3/+UT/YWJ904ke9SjfmIP67H3Hm/tWv\nSbYJf8aMGdKxY0d58sknpWvXrvpHmKLFUaNGKcKfMGGC8pxNJmZPkq4Nnh2ptcvuy8vPehWm5fMz\nzty/+jXNFuGD6HHvDtLFnbzbgnt5jAHEMX78+Czd4454z549cuyxx7o9NPaXBoH9+/fLySefrN5v\nEsXvehWWxfU7zty/+jXNEuHD4gZJLZYsWWLpIVX3NBB3HQmzV65cmRGGF1YgO3bsUPHYKf5EACkQ\nzzjjDIEVBiQIeuVPJM2NKgg4c/+aW1OjpU0TPrLEI5fkmDFjLFlZGB2Y2XI4MSLkcePGjRX5w877\n+++/lxNPPNFsUyzvEgK//fabnHfeeQI766DolUvQONZNUHDm/nVGBUwRPpJ9T5kyRebMmePMaDS0\nCsKHC3+OHDnkmWee0dAim3ASgdtvv12OOeYY9TXmd72CtyeSswdVuH+DunL6xm2Y8KEssJBBqFu/\nC9IW4poAkTEp/kZg3rx56ocZOUr9Ls2bN5e2bdvKNddc4/ehZhkf92/glsyRARsifHwGzp4929cn\nsER0cNJv06aNut6h+BMB6pU760Kc3cE5CL2kJXyEPUCwq8mTJwdhPpnGiHCqcNRCmAaKvxCgXrmz\nHsTZHZyD0ktawrfjBm8UhCNHjsh1110n77zzTkaVr7/+WooWLWq0iaTl6JZtCz5HK9vVK4TLXbt2\nreUxwgMcbz1WJEh6ZRfnRHw+//xzeeGFF1RMrFgIFJhmI1YVQp8A19q1ayuTW7sSJJztztWt+tkS\nPux0W7ZsKXXq1HF0PPDOTfSaRdz6kiVL2u739ddfl7lz58rYsWNtt8UG9CCgQ6/w1WnH0Q8JWXAf\nb1WCoFc6cI7hg/34yCOPGPrSh18MroAbNGhgFd6MekHA2fYkXWwgJeHDAw/ml9OnT3d0OO+9955U\nrVo1Sx+6CB8NwxP3xhtvFDy6UbxFQJde4apu5MiRlidjl/D9rle6cMY8v/vuO7n00kvll19+MYU3\n4mrB18KucP/aRfB/9VMSPiJcwk7aSQ9aRExEkDUESEsUnYQPb1sEcPvzzz/1IceWLCGgS69gKbN0\n6VJLY0AlHYTvZ73ShTNySFx++eXy5ZdfJsX6rLPOkm+++SblOuDqB74WdsTPONuZlxd1kxL+448/\nrhyX7HwyG5kMcsvC1DOZ6CR8tD9ixAiBcxajZhpZGWfK6NQrXPfFHxTMfr3hCwH3zXbFj3qlE+cm\nTZrI/PnzM8F02mmnqf1Uo0YNdVeP4IS4z2/fvr3KbREvMI1esGCBXZi5f20j+F8DWQgfIVIRo/7w\n4cOaukjeDIg+u2Tiugkfo8iZM6dSTjhlUdxFQKdeHTp0SCXRiQkS58Q/+Ls7M3/plU6cP/74Yylf\nvnwWsgfWCImRKDhQ4Qfitddey/RP+ALAo65d4f61i2ASwn/iiSdUSOEePXrYbz1FC7DAOeecc7Jt\n3wnCR0RPKA3i6VPcRUCnXiED07nnnpsxgdtuu03lS/BK/KRXOnFGmHO8BcQEj7GffPJJUrKPlUHu\nClwBxcuiRYvk2muvtb08fsLZ9mQ8aiDLCb9EiRKyceNGR+LZY444geBEFv/pB/d6xOaJFycIH1cA\neCCGSR/FXQR06tWrr76ayQIEgbbuvfdedycU15uf9EoXztu3b8+SuOjBBx9UOS+yE+Q6QFrS+Ht9\nWOHdf//9ttfHTzjbnoxHDWQifKQ1wwkB0SedkgceeEAGDhyY0TzIH6kMTz/9dMcJHx0g7ALMy2Ar\nTHEHAd169eyzz0qXLl0yBq/rBGkHDT/olU6c4Z3brFmzTJBs2bJF8EibTnAVFH+ouvDCC7Ps73Rt\npPp3P+Bsdex+qJeJ8PErDK/UxIXWNdAVK1ZkCacMJYIlUKITjBMnfMwDsYDwWTpgwABd02I7aRDQ\nrVe4bhw2bFhGr3AGQp5kL8UPeqUT50SMGzZsKIjH47X4AWevMbDTfybCx+s7vBft5KBNNRiEwD3/\n/PMz2fLCYw8Pt0hd6BbhI2RyrVq1lG0xxR0EdOtVo0aNlI9ITODpiUdceGbCDBA/AEiOA3NA/BDg\nmsNp8YNe6cQZj7U4qccEX1UIPx6TXbt2yY8//igw20QIcmANU1CnxQ84Oz1HJ9vPIHw8hOFXPJW9\nrZ1B4F4Pjk/x5l0wo4M3HsRNwkd/+Cxdvny5FssBO7hEoa4TenX22Wdn3BGD5B599FGVYjOV7uKx\nEV6nKHfCCSc4BruXeqUTZ/xYArN4QbIjhIbGnoXXOpINJQrmH7ty0eEln2qhvMTZMeVxqeEMwodH\nLTbMY489pr1rKAgeZmOCGDmw2z3ppJM8IXy8I1x00UUpc+FqByDCDerWKzz6W01ZCb2DcQAiqToh\nXuqVTpzx9ZtoRon3gSFDhhh2dsNDLUKUx5vP6sLcS5x1zcGrdjIIH3d2+FXW4QodP5nPPvtMedPG\nC2Kf4yQQE7dP+Eh7iE9RnAopziKgW6+MmPSmmxEck0AausVLvdKJ80cffSQVKlTIBE86j9pkWNat\nW1dgUQVTaJ3iJc465+FFWxmED1f1u+66S0vAo9hEcLdaqVIldacak969e8vgwYMzzdVtwl+8eLFK\neg7rDoqzCOjWK5w0QSTJBF9teJ8pV66cul+G6W+iE1Cs3rvvviuXXXaZ1sl7qVc6cV61alVaKzb8\nAFx88cXKZ+eDDz5IeZ02fPhwFaJcp3iJs855eNFWBuHDQw7BjkqVKqVtHPhawILHBBsSCZSRjT5e\n3CZ8WAbhhwemZxRnEdCtV4nXgxg99AqPuLjPT5S3335bXSfGHzpQBmU//fRTrTmPvdQrnTgvXLgw\nZeIgED0ylCVGwkRcrHbt2mUJwwCsYRWX+JVvR+u8xNnOuP1QN4PwixcvLviUK1asmJZxYQPCmiJe\ncL2D01eiuE346A/mp3AuoTiLgG696tevn/KjiMnVV18tL774YraPsQi+hSuKxCBfzz33XKa3JbtI\neKlXOnGeOnWqIHlQosC7Gad5hF5JJghbgvhbiU6UuDmwE9k0GV9w/1rT1gzCz58/v0oknWoxzTQP\nIi1Tpoxgo8UE8cvvvPPOpM24TfiwQoCpXvz4zMyPZY0joFOvYr3C6gsmmFg/BO9CEvR0smbNGuXh\nHS+6QzJ4qVc6cU4V5wom21WqVMkW6t9//10KFy6cqQycHOGDo0u8xFnXHLxqJ4Pw8Yiqa1ES7aRh\n7ol7t1RBy9wmfICtc75eLV4Q+vUTzojxglgvMcFVEL5qdYpX89XZL962EOUyXvAlhQdYI5J4lQsT\nT92hyXXO18icwlLGkRM+bJ0TT8/J7ldjICIyZ2JyBSgJHDpigpf5Fi1aaMGd8bW1wGioEZ0nT0Md\nZlMIVwu4f44XRN60auaZ2JWXeqUT52Qe8YhVhJhFRgTesMiUFy/46tflAOclzkbm7+cyjtzhJyN8\nuyBgo8bHT7HTHpSvcuXKypKD4iwCOu+W7Y4UhNWrVy/HCN9LvdKJM4InVqxYMRNO2V3JJq5Lsusz\neO0ipo4O8RJnHeP3so0MwocnLBwrdFjp+J3wYcuNuCO00nFe9XTqld3RJsaHwSPkF198YbfZjPpe\n6pVOnBHXPvEtDw6ZDz/8sCGsEHMnMRwyTuX4CtEhXuKsY/xetuGIHT7u8HEvb1QOHjyYxWwO5l/I\nuhWThx56KKWpmNF+YuVox2sWMevlddqHJ1ro4BS6YcMGw4PDvW98SID48B6GG8mmoJd6pRNnTBFx\nr+JNWc1ghcB28fk0sJdhSqlLvMRZ1xy8aieD8HFHh6BpTiY+STXJZCcKp6JlYgzwsEW+XoSCpjiL\ngE69QviAW265JdOAYUsPckonya4pzJxa07XvtV7pxBlzgUUdzFbjxcg9/N9//60csuIDryGUxbx5\n84xAaKgM968hmJIWyiB8ZLbB560TsXTSDc9twmcsjnQrou/fdeoVYqwn5k1I5rmdbPQI/JXodQub\ncpCTLvFSr3TiDDzee+89lSwoXjp06CATJkzIFi4ESIQTWLyYuf83shZe4mxkfH4uk0H4uBeD9xyi\n7rktbhM+AkPBEkHHe4XbWAWtP916FR8pM4YF7pbhjJUsZgt0C562cCaKl7Zt28qkSZO0wumlXunG\nGcAkXuvg/+FA2Ldv36S+D/Bqhgl2vIUe3kngaavLEgpj8BJnrQrjQWOZ4uEjeBpijGRnQunEGN0k\nfEQCxF3ut99+68RU2GYSBHTq1eTJk5ULf6LgsIKHS3jUIsE2vGrh2Y3QHvHXC7F6SJenM++DH/RK\nJ87ACY5WyeIN1ahRQ1354AcB72y4GQDZ440lUZA976qrrtK2L/yAs7bJeNBQJsLv06eP2jA33XST\nq0Nxk/CRThFEgIiJFHcQ0K1XuMaxE+lU9xUDUPSDXunGGfMaMWKECnNsRZDcCEmOdIofcNY5H7fb\nykT4CFuM1H9IDuKmuEn4iKaIRMw1a9Z0c4qR7ku3XiFmC2K94N7ajCAePuLuQAd0ix/0SjfOMYwQ\nobRVq1ZZnCOzwxAm3vih0B0a2Q8469YdN9vLRPjoGKkGYeqmyyvOyGRglom8tvECs044k+gUPPoh\nngosgCjuIuCEXsHBB+a6ILp0ArNCBPUqVKhQuqKm/91PeuUEzgAEKUqRNQyRNLMTmGDC0xaOjbrF\nTzjrnptb7WUhfHwqI+ZNokeiWwNysh9k4cHjEUzYKO4i4KReweQS13QwOEBOWwRXQ1RWBPBDrlU8\nHOoICpgKMT/plZM4Y/4///yzfPjhhypq5vr169XjLWISwYsWd/p4UM2VK5cjyuUnnB2ZoAuNZiF8\nfC4jXv2RI0dc6N7dLvBDBjKguI8A9codzImzOzgHtZcshI+JDBw4UCUxRrCpsAisNXB1hJAKFG8Q\noF65gztxdgfnIPaSlPAxERA+7tF1xb/wEpxdu3apT80//vjDy2Gwb+qVazrA/esa1IHqKCXhz549\nW6UrwwNM0KVp06YqXCvstCneIkC9cgd/4uwOzkHrJSXhYyLICNSsWTOpV69e0OaVMd6lS5cqy4LE\ntGuBnVAIBk69cmcRibM7OAepl2wJHxOBdcPOnTslX758QZqXGiuy7MD7EAmWKf5CgHrlznoQZ3dw\nDkovaQkfplejRo2SKVOmBGVOGeOEp1/Pnj2lfPnygRt72AdMvXJnhYmzOzgHpZe0hI+JLFiwQBE+\n7vSDIkjA0LlzZ0Fsfoo/EaBeubMuxNkdnIPQiyHCx0SQwPj5559Xrul+F7w7dOrUSerWrev3oUZ+\nfNQrd1SAOLuDs997MUz4mMiSJUtk/Pjxvj7p42R/9913k+z9rnlx46NeubNYxNkdnP3ciynCj13v\nIHsNsuE46a5uFjQ80CLJOSJ98hrHLHrel8e1A/XK+XUgzs5j7OceTBM+JoOHoNq1a6uTvh+uTfC5\nCqJftWqVCu9MCSYC1Ct31o04u4OzH3uxRPixieBRFF6sSHsGzz63BX0jgl+RIkVoZ+82+A72R71y\nENy4pomzOzj7qRdbhI+J4BEXpItsN1YTJVgBZNiwYapP/NjQg9YKgv6uQ71yZ32Iszs4+6UX24Qf\nmwgCNj344IMyePBgufnmmx1Jk4h42NOmTVM5NdEPMh9Rwo0A9cqd9SXO7uDsdS/aCB8TQehhZLpB\nWrTSpUsrO3hkvkeOUauCHJbIs4vQCMhDi6+IHj16WG2O9QKIAPXKnUUjzu7g7GUvWgk/fiIrV64U\nJDCePn26SnOG4GVIeIykFEhOgVANuPdHNE5kuccfUh1u2rRJ/SEcQiyFHdKrIZ4P0xJ6qSr+6Jt6\n5c46EGd3cHa7F8cIP34iOJmvW7dOpU5ERiJknUJ6OpB8pUqV1P8H+VerVk0OHTokZcuWlYoVK8ql\nl14qpUqVchsT9hcQBKhX7iwUcXYHZzd6cYXw3ZgI+yACRIAIEIHsESDhU0OIABEgAhFB4P8A0rjK\nuooofdIAAAAASUVORK5CYII=\n" + }, + "images/tree_unbal.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASkAAAG4CAYAAAAZoxFkAAAeo3RFWHRteGZpbGUAJTNDbXhmaWxl\nJTIwaG9zdCUzRCUyMmFwcC5kaWFncmFtcy5uZXQlMjIlMjBtb2RpZmllZCUzRCUyMjIwMjMtMTIt\nMjhUMjAlM0E1MyUzQTUxLjczM1olMjIlMjBhZ2VudCUzRCUyMk1vemlsbGElMkY1LjAlMjAoTWFj\naW50b3NoJTNCJTIwSW50ZWwlMjBNYWMlMjBPUyUyMFglMjAxMC4xNSUzQiUyMHJ2JTNBMTIxLjAp\nJTIwR2Vja28lMkYyMDEwMDEwMSUyMEZpcmVmb3glMkYxMjEuMCUyMiUyMGV0YWclM0QlMjJrSjRy\nVzFOTHgzaUFqMGJJdDZGciUyMiUyMHZlcnNpb24lM0QlMjIyMi4xLjE1JTIyJTNFJTBBJTIwJTIw\nJTNDZGlhZ3JhbSUyMG5hbWUlM0QlMjJQYWdlLTElMjIlMjBpZCUzRCUyMjEwYTkxYzhiLTA5ZmYt\nMzFiMS1kMzY4LTAzOTQwZWQ0Y2M5ZSUyMiUzRSUwQSUyMCUyMCUyMCUyMCUzQ214R3JhcGhNb2Rl\nbCUyMGR4JTNEJTIyOTg0JTIyJTIwZHklM0QlMjI2NjIlMjIlMjBncmlkJTNEJTIyMSUyMiUyMGdy\naWRTaXplJTNEJTIyMTAlMjIlMjBndWlkZXMlM0QlMjIxJTIyJTIwdG9vbHRpcHMlM0QlMjIxJTIy\nJTIwY29ubmVjdCUzRCUyMjElMjIlMjBhcnJvd3MlM0QlMjIxJTIyJTIwZm9sZCUzRCUyMjElMjIl\nMjBwYWdlJTNEJTIyMSUyMiUyMHBhZ2VTY2FsZSUzRCUyMjElMjIlMjBwYWdlV2lkdGglM0QlMjIx\nMTAwJTIyJTIwcGFnZUhlaWdodCUzRCUyMjg1MCUyMiUyMGJhY2tncm91bmQlM0QlMjJub25lJTIy\nJTIwbWF0aCUzRCUyMjAlMjIlMjBzaGFkb3clM0QlMjIwJTIyJTNFJTBBJTIwJTIwJTIwJTIwJTIw\nJTIwJTNDcm9vdCUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214Q2VsbCUyMGlkJTNE\nJTIyMCUyMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214Q2VsbCUyMGlk\nJTNEJTIyMSUyMiUyMHBhcmVudCUzRCUyMjAlMjIlMjAlMkYlM0UlMEElMjAlMjAlMjAlMjAlMjAl\nMjAlMjAlMjAlM0NteENlbGwlMjBpZCUzRCUyMlhyQ09JTDBUeHAzbUdUUWJzYjFpLTQlMjIlMjBz\ndHlsZSUzRCUyMnJvdW5kZWQlM0QwJTNCb3J0aG9nb25hbExvb3AlM0QxJTNCamV0dHlTaXplJTNE\nYXV0byUzQmh0bWwlM0QxJTNCZW50cnlYJTNEMSUzQmVudHJ5WSUzRDAlM0JlbnRyeUR4JTNEMCUz\nQmVudHJ5RHklM0QwJTNCZXhpdFglM0QwJTNCZXhpdFklM0QxJTNCZXhpdER4JTNEMCUzQmV4aXRE\neSUzRDAlM0JlbmRBcnJvdyUzRG5vbmUlM0JlbmRGaWxsJTNEMCUzQiUyMiUyMHBhcmVudCUzRCUy\nMjElMjIlMjBzb3VyY2UlM0QlMjJYckNPSUwwVHhwM21HVFFic2IxaS0xJTIyJTIwdGFyZ2V0JTNE\nJTIyWHJDT0lMMFR4cDNtR1RRYnNiMWktMyUyMiUyMGVkZ2UlM0QlMjIxJTIyJTNFJTBBJTIwJTIw\nJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhHZW9tZXRyeSUyMHJlbGF0aXZlJTNEJTIyMSUy\nMiUyMGFzJTNEJTIyZ2VvbWV0cnklMjIlMjAlMkYlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAl\nMjAlM0MlMkZteENlbGwlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteENlbGwlMjBp\nZCUzRCUyMlhyQ09JTDBUeHAzbUdUUWJzYjFpLTElMjIlMjB2YWx1ZSUzRCUyMiUyNmx0JTNCZm9u\ndCUyMHN0eWxlJTNEJTI2cXVvdCUzQmZvbnQtc2l6ZSUzQSUyMDQycHglM0IlMjZxdW90JTNCJTI2\nZ3QlM0IxJTI2bHQlM0IlMkZmb250JTI2Z3QlM0IlMjIlMjBzdHlsZSUzRCUyMmVsbGlwc2UlM0J3\naGl0ZVNwYWNlJTNEd3JhcCUzQmh0bWwlM0QxJTNCYXNwZWN0JTNEZml4ZWQlM0IlMjIlMjBwYXJl\nbnQlM0QlMjIxJTIyJTIwdmVydGV4JTNEJTIyMSUyMiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUy\nMCUyMCUyMCUyMCUzQ214R2VvbWV0cnklMjB4JTNEJTIyNDkwJTIyJTIweSUzRCUyMjc2JTIyJTIw\nd2lkdGglM0QlMjI2MCUyMiUyMGhlaWdodCUzRCUyMjYwJTIyJTIwYXMlM0QlMjJnZW9tZXRyeSUy\nMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQyUyRm14Q2VsbCUzRSUwQSUy\nMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214Q2VsbCUyMGlkJTNEJTIyWHJDT0lMMFR4cDNtR1RR\nYnNiMWktMyUyMiUyMHZhbHVlJTNEJTIyJTI2bHQlM0Jmb250JTIwc3R5bGUlM0QlMjZxdW90JTNC\nZm9udC1zaXplJTNBJTIwNDJweCUzQiUyNnF1b3QlM0IlMjZndCUzQjIlMjZsdCUzQiUyRmZvbnQl\nMjZndCUzQiUyMiUyMHN0eWxlJTNEJTIyZWxsaXBzZSUzQndoaXRlU3BhY2UlM0R3cmFwJTNCaHRt\nbCUzRDElM0Jhc3BlY3QlM0RmaXhlZCUzQiUyMiUyMHBhcmVudCUzRCUyMjElMjIlMjB2ZXJ0ZXgl\nM0QlMjIxJTIyJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhHZW9tZXRy\neSUyMHglM0QlMjIzNzAlMjIlMjB5JTNEJTIyMTcwJTIyJTIwd2lkdGglM0QlMjI2MCUyMiUyMGhl\naWdodCUzRCUyMjYwJTIyJTIwYXMlM0QlMjJnZW9tZXRyeSUyMiUyMCUyRiUzRSUwQSUyMCUyMCUy\nMCUyMCUyMCUyMCUyMCUyMCUzQyUyRm14Q2VsbCUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUy\nMCUzQ214Q2VsbCUyMGlkJTNEJTIyWHJDT0lMMFR4cDNtR1RRYnNiMWktNSUyMiUyMHZhbHVlJTNE\nJTIyJTI2bHQlM0Jmb250JTIwc3R5bGUlM0QlMjZxdW90JTNCZm9udC1zaXplJTNBJTIwNDJweCUz\nQiUyNnF1b3QlM0IlMjZndCUzQjMlMjZsdCUzQiUyRmZvbnQlMjZndCUzQiUyMiUyMHN0eWxlJTNE\nJTIyZWxsaXBzZSUzQndoaXRlU3BhY2UlM0R3cmFwJTNCaHRtbCUzRDElM0Jhc3BlY3QlM0RmaXhl\nZCUzQiUyMiUyMHBhcmVudCUzRCUyMjElMjIlMjB2ZXJ0ZXglM0QlMjIxJTIyJTNFJTBBJTIwJTIw\nJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhHZW9tZXRyeSUyMHglM0QlMjI1MjYlMjIlMjB5\nJTNEJTIyMTU5JTIyJTIwd2lkdGglM0QlMjI2MCUyMiUyMGhlaWdodCUzRCUyMjYwJTIyJTIwYXMl\nM0QlMjJnZW9tZXRyeSUyMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQyUy\nRm14Q2VsbCUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214Q2VsbCUyMGlkJTNEJTIy\nWHJDT0lMMFR4cDNtR1RRYnNiMWktNiUyMiUyMHN0eWxlJTNEJTIycm91bmRlZCUzRDAlM0JvcnRo\nb2dvbmFsTG9vcCUzRDElM0JqZXR0eVNpemUlM0RhdXRvJTNCaHRtbCUzRDElM0JlbnRyeVglM0Qw\nJTNCZW50cnlZJTNEMCUzQmVudHJ5RHglM0QwJTNCZW50cnlEeSUzRDAlM0JleGl0WCUzRDAuNSUz\nQmV4aXRZJTNEMSUzQmV4aXREeCUzRDAlM0JleGl0RHklM0QwJTNCZW5kQXJyb3clM0Rub25lJTNC\nZW5kRmlsbCUzRDAlM0IlMjIlMjBwYXJlbnQlM0QlMjIxJTIyJTIwc291cmNlJTNEJTIyWHJDT0lM\nMFR4cDNtR1RRYnNiMWktMSUyMiUyMHRhcmdldCUzRCUyMlhyQ09JTDBUeHAzbUdUUWJzYjFpLTUl\nMjIlMjBlZGdlJTNEJTIyMSUyMiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUz\nQ214R2VvbWV0cnklMjByZWxhdGl2ZSUzRCUyMjElMjIlMjBhcyUzRCUyMmdlb21ldHJ5JTIyJTNF\nJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhQb2ludCUyMHglM0Ql\nMjI1MTklMjIlMjB5JTNEJTIyMTMxJTIyJTIwYXMlM0QlMjJzb3VyY2VQb2ludCUyMiUyMCUyRiUz\nRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214UG9pbnQlMjB4JTNE\nJTIyNDYxJTIyJTIweSUzRCUyMjE4OSUyMiUyMGFzJTNEJTIydGFyZ2V0UG9pbnQlMjIlMjAlMkYl\nM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0MlMkZteEdlb21ldHJ5JTNFJTBB\nJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDJTJGbXhDZWxsJTNFJTBBJTIwJTIwJTIwJTIwJTIw\nJTIwJTIwJTIwJTNDbXhDZWxsJTIwaWQlM0QlMjJYckNPSUwwVHhwM21HVFFic2IxaS05JTIyJTIw\ndmFsdWUlM0QlMjIlMjZsdCUzQmZvbnQlMjBzdHlsZSUzRCUyNnF1b3QlM0Jmb250LXNpemUlM0El\nMjA0MnB4JTNCJTI2cXVvdCUzQiUyNmd0JTNCNiUyNmx0JTNCJTJGZm9udCUyNmd0JTNCJTIyJTIw\nc3R5bGUlM0QlMjJlbGxpcHNlJTNCd2hpdGVTcGFjZSUzRHdyYXAlM0JodG1sJTNEMSUzQmFzcGVj\ndCUzRGZpeGVkJTNCJTIyJTIwcGFyZW50JTNEJTIyMSUyMiUyMHZlcnRleCUzRCUyMjElMjIlM0Ul\nMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteEdlb21ldHJ5JTIweCUzRCUyMjU1\nMiUyMiUyMHklM0QlMjIyNTUlMjIlMjB3aWR0aCUzRCUyMjYwJTIyJTIwaGVpZ2h0JTNEJTIyNjAl\nMjIlMjBhcyUzRCUyMmdlb21ldHJ5JTIyJTIwJTJGJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIw\nJTIwJTNDJTJGbXhDZWxsJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhDZWxsJTIw\naWQlM0QlMjJYckNPSUwwVHhwM21HVFFic2IxaS0xMiUyMiUyMHN0eWxlJTNEJTIycm91bmRlZCUz\nRDAlM0JvcnRob2dvbmFsTG9vcCUzRDElM0JqZXR0eVNpemUlM0RhdXRvJTNCaHRtbCUzRDElM0Jl\nbnRyeVglM0QwLjUlM0JlbnRyeVklM0QwJTNCZW50cnlEeCUzRDAlM0JlbnRyeUR5JTNEMCUzQmV4\naXRYJTNEMC41JTNCZXhpdFklM0QxJTNCZXhpdER4JTNEMCUzQmV4aXREeSUzRDAlM0JlbmRBcnJv\ndyUzRG5vbmUlM0JlbmRGaWxsJTNEMCUzQiUyMiUyMHBhcmVudCUzRCUyMjElMjIlMjBzb3VyY2Ul\nM0QlMjJQOFJheDZ3VjNXVkdmZFQ1REduVS0xJTIyJTIwdGFyZ2V0JTNEJTIyUDhSYXg2d1YzV1ZH\nZmRUNURHblUtMiUyMiUyMGVkZ2UlM0QlMjIxJTIyJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIw\nJTIwJTIwJTIwJTNDbXhHZW9tZXRyeSUyMHJlbGF0aXZlJTNEJTIyMSUyMiUyMGFzJTNEJTIyZ2Vv\nbWV0cnklMjIlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteFBv\naW50JTIweCUzRCUyMjU0OSUyMiUyMHklM0QlMjIxMjYlMjIlMjBhcyUzRCUyMnNvdXJjZVBvaW50\nJTIyJTIwJTJGJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhQ\nb2ludCUyMHglM0QlMjI0MzElMjIlMjB5JTNEJTIyMTg0JTIyJTIwYXMlM0QlMjJ0YXJnZXRQb2lu\ndCUyMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQyUyRm14R2Vv\nbWV0cnklM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0MlMkZteENlbGwlM0UlMEElMjAl\nMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteENlbGwlMjBpZCUzRCUyMlhyQ09JTDBUeHAzbUdUUWJz\nYjFpLTEzJTIyJTIwc3R5bGUlM0QlMjJyb3VuZGVkJTNEMCUzQm9ydGhvZ29uYWxMb29wJTNEMSUz\nQmpldHR5U2l6ZSUzRGF1dG8lM0JodG1sJTNEMSUzQmVudHJ5WCUzRDAuNSUzQmVudHJ5WSUzRDEl\nM0JlbnRyeUR4JTNEMCUzQmVudHJ5RHklM0QwJTNCZXhpdFglM0QwLjUlM0JleGl0WSUzRDAlM0Jl\neGl0RHglM0QwJTNCZXhpdER5JTNEMCUzQmVuZEFycm93JTNEbm9uZSUzQmVuZEZpbGwlM0QwJTNC\nJTIyJTIwcGFyZW50JTNEJTIyMSUyMiUyMHNvdXJjZSUzRCUyMlA4UmF4NndWM1dWR2ZkVDVER25V\nLTElMjIlMjB0YXJnZXQlM0QlMjJYckNPSUwwVHhwM21HVFFic2IxaS05JTIyJTIwZWRnZSUzRCUy\nMjElMjIlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteEdlb21ldHJ5JTIw\ncmVsYXRpdmUlM0QlMjIxJTIyJTIwYXMlM0QlMjJnZW9tZXRyeSUyMiUzRSUwQSUyMCUyMCUyMCUy\nMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214UG9pbnQlMjB4JTNEJTIyNTU5JTIyJTIweSUz\nRCUyMjExNiUyMiUyMGFzJTNEJTIyc291cmNlUG9pbnQlMjIlMjAlMkYlM0UlMEElMjAlMjAlMjAl\nMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteFBvaW50JTIweCUzRCUyMjQ0MSUyMiUyMHkl\nM0QlMjIxNzQlMjIlMjBhcyUzRCUyMnRhcmdldFBvaW50JTIyJTIwJTJGJTNFJTBBJTIwJTIwJTIw\nJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDJTJGbXhHZW9tZXRyeSUzRSUwQSUyMCUyMCUyMCUyMCUy\nMCUyMCUyMCUyMCUzQyUyRm14Q2VsbCUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214\nQ2VsbCUyMGlkJTNEJTIyWHJDT0lMMFR4cDNtR1RRYnNiMWktMTUlMjIlMjBzdHlsZSUzRCUyMnJv\ndW5kZWQlM0QwJTNCb3J0aG9nb25hbExvb3AlM0QxJTNCamV0dHlTaXplJTNEYXV0byUzQmh0bWwl\nM0QxJTNCZW50cnlYJTNEMC41JTNCZW50cnlZJTNEMCUzQmVudHJ5RHglM0QwJTNCZW50cnlEeSUz\nRDAlM0JleGl0WCUzRDAuNSUzQmV4aXRZJTNEMSUzQmV4aXREeCUzRDAlM0JleGl0RHklM0QwJTNC\nZW5kQXJyb3clM0Rub25lJTNCZW5kRmlsbCUzRDAlM0IlMjIlMjBwYXJlbnQlM0QlMjIxJTIyJTIw\nc291cmNlJTNEJTIyWHJDT0lMMFR4cDNtR1RRYnNiMWktNSUyMiUyMHRhcmdldCUzRCUyMlhyQ09J\nTDBUeHAzbUdUUWJzYjFpLTklMjIlMjBlZGdlJTNEJTIyMSUyMiUzRSUwQSUyMCUyMCUyMCUyMCUy\nMCUyMCUyMCUyMCUyMCUyMCUzQ214R2VvbWV0cnklMjByZWxhdGl2ZSUzRCUyMjElMjIlMjBhcyUz\nRCUyMmdlb21ldHJ5JTIyJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIw\nJTNDbXhQb2ludCUyMHglM0QlMjI0ODklMjIlMjB5JTNEJTIyMTQwJTIyJTIwYXMlM0QlMjJzb3Vy\nY2VQb2ludCUyMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUy\nMCUzQ214UG9pbnQlMjB4JTNEJTIyMzcxJTIyJTIweSUzRCUyMjE5OCUyMiUyMGFzJTNEJTIydGFy\nZ2V0UG9pbnQlMjIlMjAlMkYlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0Ml\nMkZteEdlb21ldHJ5JTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDJTJGbXhDZWxsJTNF\nJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhDZWxsJTIwaWQlM0QlMjJQOFJheDZ3VjNX\nVkdmZFQ1REduVS0xJTIyJTIwdmFsdWUlM0QlMjIlMjZsdCUzQmZvbnQlMjBzdHlsZSUzRCUyNnF1\nb3QlM0Jmb250LXNpemUlM0ElMjA0MnB4JTNCJTI2cXVvdCUzQiUyNmd0JTNCNyUyNmx0JTNCJTJG\nZm9udCUyNmd0JTNCJTIyJTIwc3R5bGUlM0QlMjJlbGxpcHNlJTNCd2hpdGVTcGFjZSUzRHdyYXAl\nM0JodG1sJTNEMSUzQmFzcGVjdCUzRGZpeGVkJTNCJTIyJTIwdmVydGV4JTNEJTIyMSUyMiUyMHBh\ncmVudCUzRCUyMjElMjIlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteEdl\nb21ldHJ5JTIweCUzRCUyMjU3NiUyMiUyMHklM0QlMjIzNTAlMjIlMjB3aWR0aCUzRCUyMjYwJTIy\nJTIwaGVpZ2h0JTNEJTIyNjAlMjIlMjBhcyUzRCUyMmdlb21ldHJ5JTIyJTIwJTJGJTNFJTBBJTIw\nJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDJTJGbXhDZWxsJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIw\nJTIwJTIwJTNDbXhDZWxsJTIwaWQlM0QlMjJQOFJheDZ3VjNXVkdmZFQ1REduVS0yJTIyJTIwdmFs\ndWUlM0QlMjIlMjZsdCUzQmZvbnQlMjBzdHlsZSUzRCUyNnF1b3QlM0Jmb250LXNpemUlM0ElMjA0\nMnB4JTNCJTI2cXVvdCUzQiUyNmd0JTNCMTAlMjZsdCUzQiUyRmZvbnQlMjZndCUzQiUyMiUyMHN0\neWxlJTNEJTIyZWxsaXBzZSUzQndoaXRlU3BhY2UlM0R3cmFwJTNCaHRtbCUzRDElM0Jhc3BlY3Ql\nM0RmaXhlZCUzQiUyMiUyMHZlcnRleCUzRCUyMjElMjIlMjBwYXJlbnQlM0QlMjIxJTIyJTNFJTBB\nJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhHZW9tZXRyeSUyMHglM0QlMjI2MDIl\nMjIlMjB5JTNEJTIyNDUxJTIyJTIwd2lkdGglM0QlMjI2MCUyMiUyMGhlaWdodCUzRCUyMjYwJTIy\nJTIwYXMlM0QlMjJnZW9tZXRyeSUyMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUy\nMCUzQyUyRm14Q2VsbCUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUzQyUyRnJvb3QlM0UlMEElMjAl\nMjAlMjAlMjAlM0MlMkZteEdyYXBoTW9kZWwlM0UlMEElMjAlMjAlM0MlMkZkaWFncmFtJTNFJTBB\nJTNDJTJGbXhmaWxlJTNFJTBBy0htaAAAIABJREFUeF7tfQm8TtX6/4MQEW4qSqZUxC1R5oyR8Rap\nS66hiDKEEEnJUKaIZJZLkZSQTBnCvZGMqQwZMlQKmStDuv3vd/1/59z3vOc9593vu9fee+39fp/P\n53zu53bWXutZ37V9z1prP8/3yfDnf01oRIAIEAFDEchAkjJ0ZegWESACCgGSFF8E2wjs3btXNm7c\nKFu2bJHdu3fLlVdeKevXr5dffvlF7rnnHtm0aZPkyJFDKleuLOfPn5cSJUpI2bJlpVy5clKsWDHb\n47ODYCNAkgr2+jo2u5UrVwp+Zs6cKdmzZ5dmzZpJnjx5pHjx4oqEsmXLpojpqquukl9//VURFghq\n165d6uf06dMye/ZsuXDhgrRo0ULq1KkjNWvWdMxfduxfBEhS/l071z3//fffZdSoUTJ69GgpVaqU\ntG/fXipVqiQ33nhj3L58//33sm7dOpk8ebIir65du0rPnj0lU6ZMcffJB4OFAEkqWOvp2GwGDRok\n+BkyZIja+eTLl0/7WD/++KPamT333HMycOBA6du3r/Yx2KH/ECBJ+W/NXPX4nXfekXbt2snw4cOl\nc+fOro09duxYRVJTp06Vv//9766Ny4HMQ4AkZd6aGOMRyAn3SCAK3DG5bbjHgg85c+aUKVOmuD08\nxzMEAZKUIQthkhv4Ule1alVZsmSJEZfZK1askAcffFDWrFmjvhbSEgsBklRirXfU2c6dO1cWL14s\nEydOlKxZs0Zt71aD3377TZ566ilp3LixIixa4iBAkkqctY4600WLFsmMGTPk/fffj9rWqwYgqQ4d\nOkjdunW9coHjuowAScplwE0dDgSFL2vvvvuuqS4m+/XII49ImzZtpH79+sb7SgftI0CSso+h73vA\nEW/OnDlG76DCQcaOqnXr1jz6+f7tiz4BklR0jALdAikr48aNk+nTp/tunq1atVLBn0ixoQUXAZJU\ncNfW0syQZ3fmzBlHLsl/+OEHdX+UZC+++KLK19NlSLe5/vrrVcoNLbgIkKSCu7ZRZ4YYpObNm0ut\nWrWito2nwZgxY6Rbt27Jj+JCvmnTpvF0leYzy5cvlw8++EAmTZqktV92Zg4CJClz1sJVTxBJjlCD\nWbNmOTYujmFbt251lKTQOSLSH3roIcGFOi14CJCkgremlmYE5YITJ044Fkn+5ptvqmjxUHNiJ4X+\nz507p5Kcz549a2nubOQvBEhS/lovLd4OHjxYcufO7UguHu6HsEsLvYtKctopkkL/OFoi4BPJybRg\nIUCSCtZ6Rp0N5Fag8XTp0qWoba00gLwKRO/27Nkj27ZtUwSVljlJUhgzY8aM8scff0iGDBmsuM42\nPkGAJOWThdLl5rBhwyRz5szyzDPPaOkyFkJwmqSg1ACigh4VLTgIkKSCs5aWZpI/f36149GlB2US\nSUFAr2LFivLdd99ZwoKN/IEAScof66TFS8j9YicFVQFdZhJJYU41atSQ/v37S/Xq1XVNkf14jABJ\nyuMFcHP4Pn36qOjshx9+WNuw33zzjVy8eDFVfwgQhdxLqDl93MNYyD386quv5OWXX9Y2R3bkLQIk\nKW/xd3X0AgUKyOeff25Lk9yqwwgHyJUrl+skdejQIalWrZocPHjQqqtsZzgCJCnDF0iXe/gC16BB\nA/UVzg3ziqQwt6JFi8qqVaukSJEibkyVYziMAEnKYYBN6R6R5SCoAQMGuOKSlyT1/PPPyx133EFt\ndFdW2vlBSFLOY2zECAg5uOmmm6R79+6u+OMlSY0YMUKOHz+uikfQ/I8AScr/a2hpBhCI69Kli9Sr\nV89Se7uNvCSpjz76SBVuWLhwod1p8HkDECBJGbAIbrjQpEkTVdizcOHCbgyn8ui8uDjH5Pbv3y+9\ne/cWiPnR/I8AScr/a2hpBgje3L59u9JfcsO8JCkUGUWoxZEjR9yYKsdwGAGSlMMAm9J9jhw55OjR\noypvzw3zkqSQ5IzIeqgj0PyPAEnK/2toaQaIxF69erWltjoaeUlS8N/t+erAjH1ERoAklSBvRiLt\npKgvFayXmiQVrPVMczaJdCeFuyhUOobGOs3/CJCk/L+GlmYAed2RI0cmxNe9ffv2CfIU+XXP0qth\nfCOSlPFLpMdBxknpwZG9uI8AScp9zD0ZsUePHiqxWJfYXbRJeHlxjkhz6LdDlobmfwRIUv5fQ0sz\ngKwvZFWYu2cJLjYyCAGSlEGL4aQruKdBSgzUENwwL3dSUD9AuIVb0fVu4JnIY5CkEmj1kWD82Wef\nCXSlnDavSAo6UoiROnDggNNTZP8uIUCScgloE4ZBuafSpUu7ImHiFUnNnj1bduzYISjbRQsGAiSp\nYKyjpVl88sknSlYXgnBOm1ckBVXOQYMGpZIudnq+7N85BEhSzmFrZM833HCDbNmyReW2OWko1Bme\nJwjplEaNGjk2LKrEVK5cWQ4fPuzYGOzYfQRIUu5j7umI+DyPCi+9evXy1A8nBh8yZIhkyZJFEG5B\nCw4CJKngrKWlmaDCb9asWeXy5cuW2vupEcj3zz//9JPL9NUCAiQpCyAFrckrr7wiOXPmVEqdQbHR\no0fLhQsXVDoMLVgIkKSCtZ6WZwOSgjgc1BH8bqdPn1aVYU6dOuX3qdD/CAiQpBL0tZgzZ47Mnz9f\nFdP0uzVt2lSaN28uSKKmBQ8BklTw1tTyjJ544glVzbhOnTqWnzGt4dKlS+XDDz+UiRMnmuYa/dGE\nAElKE5B+7QZhAij/lD17dt9NAbFYiKJHSXdacBEgSQV3bS3NbPPmzTJ27FiZMWOGpfYmNWrZsqX0\n7NlT7rzzTpPcoi+aESBJaQbUj90tWLBAkRTuqPxiCArt0KGDNGzY0C8u0884ESBJxQlc0B6D9tLG\njRvlgw8+MH5quEdr37691K5d23hf6aB9BEhS9jH0fQ/t2rUTpJR07txZpk2bZvSOCjuop59+mgTl\n+7fO+gRIUtaxClzLZcuWySOPPCKvvfaatG3bVs0PR7958+bJhAkTXKvRZwVYXJJ36tRJKTjwiGcF\nseC0IUkFZy1jmglICVVV3nvvPRV9Hmq4TK9evbraUZlwpAKZgpzWrl2rpGZoiYUASSqx1lsQV4Td\n05gxY+Txxx9Pd/a4mEY099SpU1MRmRuwYWwcRfPmzcs4KDcAN3QMkpShC+OEW4899pgqtY7dk9V0\nGLQFUQwcOFC6devmhFsR+8QRFGOCIBlJ7hrsRg5EkjJyWfQ6tWTJEhVZPm7cOGnTpk1cnSMpuV+/\nfjJ06FB59NFHHZEgxuX9zJkzpW/fvmqc3r17x+UrHwoWAiSpYK1nqtmAlBBR/v7779uOKocMCgqM\n4qhYrFgxFadUsWJFKVSoUNwoQpMcuutIa4EuOXZrbpXdittpPugqAiQpV+F2b7BFixapuyd8pWvd\nurX2gdesWSMrVqyQWbNmScaMGVWCb+7cuaV48eJy++23K0LEhTyOlefOnVM/UOvctWuX+kEqC8ps\nwVq0aKHyB6tWrardT3bofwRIUv5fw1QzaNWqlZItwX1StmzZHJ8hdkAIBIUs8e7du5U65vr16xUx\n4dIbhTpBWJUqVZKLFy9KiRIlpEyZMlK+fHmWnXJ8dfw/AEnK/2uYPIOPPvpI7Z4mT54syGszwSBC\nlydPHt4vmbAYPvWBJOXThQt3G6SEIxR2T1deeaUxs8KO7uabb5aTJ08a4xMd8RcCJCl/rVcqb6Gl\nhN3Tm2++Kf/4xz+MnA3y7O655x6BfhWNCMSKAEkqVsQMag9S+uWXX9TuCfdAptr+/fvl/vvvF5R6\npxGBWBEgScWKmAHtkV+H3dM///lP9WXMD0aJXz+skpk+kqTMXJc0vUIg5fnz59XuKXPmzL7xftOm\nTSpBGF8BaUQgFgRIUrGg5WFbJPsiavztt99WMUl+tJo1a8oLL7wgNWrU8KP79NkjBEhSHgEfy7Ag\nJcQXIWo8U6ZMsTxqVNuPP/5YycJA1YBGBKwiQJKyipQH7aCSibsnRHU3a9bMAw/0DwmpFUgVU5dc\nP7ZB7ZEkZejKQj8JJdFx94S0k6DY7NmzBUGnSSkxQZkX5+EcAiQp57CNq+e5c+eq3ROKduJ/g2gF\nCxaUdevWqXJUNCIQDQGSVDSEXPw9SAlKA9g9ZciQwcWR3R0KkjFIMn7jjTfcHZij+RIBkpQBywZS\nwvEO/4sveIlgUEeAAB+Kk9KIQHoIkKQ8fD+wa8LuCXdOc+bM8dAT94ceNGiQ/P7770p9k0YESFIG\nvgMgJYQWYPeEaOxEs0uXLin5FoRW0IgAScqgdwBf7LB7QrQ4LscT2aDAicvz7t27JzIMnHsUBHjc\nc/EVASkhKRi7pyZNmrg4splD4U4K8VI//fSTmQ7SKyMQIEm5sAyXL19Wu6esWbMK4oRo/0MAGuxI\nk3FC4pg4BwMBkpTD64igRfwDxO6pcePGDo/mv+4RioCSVTt37vSf8/TYFQRIUg7BjIth7J7wiR1p\nLbS0Efjb3/6mBPEaNWpEmIhAKgRIUg68FCAlVAfG7umBBx5wYIRgdYnoc9TY+/TTT4M1Mc5GCwIk\nKS0w/v9O8Dkduyd8WkeRS5p1BKpUqSLDhg2TypUrW3+ILRMCAZKUpmWGzhOOLNg94fhCiw0BJB1P\nmTJFFi5cGNuDEVrv3bs3RYktFKZAiS1ILUNrHQJ8iHgHIUJAECW2ypYtK+XKlVNFT2lmIUCSsrke\nFy5cUKksKNv01ltv2ewtsR9HUVHI04A0YrWVK1cKfrCDRWFSSNtgTVCsFP2h/iCICXeEv/76qyIs\nEFRSsdLTp0+rL69Yz6RipRDpo3mPAEnKxhqAlFBqHGJ0DRs2tNETHwUC0JlavXq1TJ8+3RIgSKsZ\nNWqUjB49WkqVKiWoSoMCpDfeeKOl5yM1+v7775VCA2oXgsC6du0qPXv29LXYYNxgGPIgSSqOhUC5\ncNw9XXPNNeofFk0fAvny5ZPt27fL9ddfn26nyP3Dz5AhQ9TOB8/pth9//FHtzJ577jmVY9i3b1/d\nQ7A/CwiQpCyAFNoEf+VRUAB3Tw0aNIjxaTaPhgDkhb/77ju1Q4pkiDtr166dDB8+XDp37hytO22/\nHzt2rCKpqVOnKsUKmnsIkKQsYo17DOyerrvuOlVKiuYcAqghCLzDq+GAnHCPBKLAHZPbhnss+ICv\nt7jkp7mDAEnKAs4gpS5duqjdU/369S08wSZ2EEBFGaQQ9evXT3WDMlhVq1aVJUuWiAmX2StWrJAH\nH3xQ1qxZo74W0pxFgCSVDr7nzp1Tu6f8+fPLtGnTnF0J9p6MAHYswBz4Q0558eLFMnHiREVcphju\nJZ966imV6gTCojmHAEkqDWxBSt26dVO7p7p16zq3Auw5IgK494Mo4PHjx9XXU1MNJIUvvHxHnFsh\nklQYtmfPnlW7J3zGfvPNN51Dnj2ni8C8efOUBvonn3xiPFJ4X6DmwKsAZ5aKJBWCKy5ke/TooXZP\n999/vzOIs9eoCOCIB+VSk3dQ4ZPAjgpqFzz6RV3emBu4QlKmpymcOXNGRY0XKlSIX21ifoX0PoCU\nFVSTsRrQqXd0e721atVKBX8ixYamDwHHSMovaQr4lNyrVy/1V7t27dr6kGVPcSGAPDv80bB7SY70\nFnyFW7RokRw6dEjFXuEoX6RIEbn11lvV/yJKHbFuV1xxRVy+hj+EsAkEoeLin6YPAa0k5ac0hVOn\nTqm7J7ysSIGgeY8AYpBQnKJWrVq2nIFMM1Jk8HUwmoGwEE2OYhiZMmWK1jzq75cvX67yDydNmhS1\nLRtYQ0AbSfkpTQEvEFIdcPd03333WUOKrRxFAJHkCDWwKxD49NNPC6LDYzXofuGyXkdJe0SkQ200\nqBWoY8XWbnvbJOWnNIWTJ0+qFwdyHIi7oZmDAJQLTpw4YSuSHPdYjz32WNyTGjFihEomtmvYweHr\nMI6XNPsI2CIpP6UpgJSef/55tXuye5ywDzt7CEVg8ODBkjt3blu5eDi+/+Uvf0kFLDSjQFylS5dW\nki34Q7Vhwwb1LuzZsydV+y+//FL++te/2l6gMWPGCAI+sWOn2UMgLpLyU5rCzz//rHZPt912m0yY\nMMEeWnxaOwK4x4TGEzTh7RiO8E8++WSKLhAWgONjpDw/VPCBegL+aIUaYrMQSKrDcHREncUMGTLo\n6C5h+4iZpPyUpgBSevHFF9WLiLJJNPMQgGQwEolRKNSO4bP/1q1bk7uoXr26+rqX3pc7fI2DKB40\npJKsbdu2KoFZh0GpAUSl4wipwx+/9hETSeFzLvSTTA6yw19PvGgjR45U2/vx48f7dW0Swm/k6G3b\nts2WHhR2ReGKCfjDhNi3aIb8u9D7yTJlysiWLVuiPWbp9yC/ihUrqvAHWvwIWCYpEBQEwPxQGhzV\ngXEXgehxmrkIIJYOOynseOwYxOluuOGGFF2gKnI04Tw8AI0oCOclWdGiRWX//v123EnxLHbw/fv3\nF+zsaPEhYImkmKYQH7h8Kn0E+vTpo6Kzrex40usJl90o1x5q//nPfyzdBeEjSmh+III78QdZl+GP\n+ldffSUvv/yyri4Trp+oJMU0hYR7J1ybcIECBeTzzz+3pUkOZ3HcQzWYJINoXoUKFaLO48iRI6nG\nRvYB7pJ0GaLdq1WrJgcPHtTVZcL1E5WkdKUpAFksFALmIBb2ww8/qAtLKC3ecccd6rMvvsChYggC\nLHUE1TFNwdz3Gfmc2LVECgNww2uMDwG90EtzjLt79271Huo0HCFXrVqlshtosSOQLknpSlNAkF7H\njh1Tfe5Ny12c36GGWbhw4dhnFPYE0xRsQ+hIBwgNAEENGDDAkf5DO8VFOLSpcE/1xRdfyObNm9UR\nLzxt5tlnn1V3ZLoNMVn4Q0xt9PiQTZOkdKUp7NixQ/3FOnbsWMwe4ksiMsvtGtMU7CKo/3mEHNx0\n003SvXt3/Z2H9WglTglxVijuaqVtrA4jkh3ifTqPkbH64Of2aZKUjjQFpAVAA9rOlh53Ynfffbct\njJmmYAs+Rx6GQBx04+vVq+dI/6GdWiEexNRBD8qJAg86qzM7DpaBA0QkKR1pCpgr/kqicGO49e7d\nWxVxBIHlzZtXvv32W/VFJVLQG9p89tlntjPUmaZg1tuHMBGUrdJxpI82MyskhT5wzQBCQaVjnYaQ\nBrzz+EpOix2BVCSlK00BF+KIUwk/96cXZIcvIVWqVEl1mYn7Kciz2jWmKdhFUN/zVouA6hgRwcfY\n1SNFCl/0vvnmG/n4448jdo2dHarS6DTEcSHUAmPTYkcgFUnpSlPAX43w+BekGyAaPD1DgF+4+Nyj\njz5qW8IDYzJNIfYXxKknsFs5evSoytvzwhAFjmyEoUOHphr+X//6l9x7773a3AqtfqOt0wTqKBVJ\n6UhTAH74mhea0IuYmMOHD1u6mEQqATLVkwzCZPjrZ9eYpmAXQX3PIxJ79erV+jqMsyfU+MP1Rqgh\nIR0a6zrNlPnqnJNbfaUgKV1pCnC+YcOGSsQsyfA1B/l0Viw8nwrPIOYJl/l2jWkKdhHU87zXO6mk\nWSAy/ZZbblH3okmGWD18ldZl/HBjD8kUJKUrTQEulSxZUnbu3JnsHZI4UZ/MiiFeBZ9tQ+306dOS\nK1cuK4+n24ZpCrYh1NKBzjsp7NjxfiQZgkQRl2TVINmCkJtQs5pWY2UM3EXhAxACmGmxI5CCpHSl\nKcANXJqHxkYtXLhQGjVqZMnD8Hwq+KUrk5xpCpaWwPFGkNfFzlrH173wdw15ckgctmpIAIbOeajh\nA5KuAg379u0TbAD4dc/qiqRsl0xSutMUUK0Dgl9JhvQaK0L3X3/9dSplRFzAh4uTxTfd//8U0xTs\noKfnWZ1xUqgeHPq17h//+Ie8/fbblh3Fl2MEDieZ7uMe46QsL0XEhskk5WaaQlouX7x4UcqVKyfI\nag+1119/XQX+6TKmKehCMv5+IKMDHXC7YnfwIDweL2fOnCrC20pZLCQnI1cv9E5Kp/Ad/MNXZaSG\nOZFyE/8K+OfJZJJyM00hEjx4qfBVBcnHoYa/asi9wk5MlzFNQReS8feDOyB8sdWRu4faiShhFWpv\nvvmmPP7441EdfOmll1L5gBJnSJHRZfyjaA/JZJLSuf2O1SVEm+OvV6T8PhAU1BJ1GrffOtGMry/c\n0yBwEtcMdg3FRJEHGB44jHy8cPJKGgs7KPy+c+fOqYbHvWXBggXtupX8PNQPEG6h4/5Nm1M+6iiZ\npNxMU0jCB5fh2PanJUeMYDuEI+g2pinoRjS+/kAsSHnChxG7FqkQA/pEIDD0nFCtGOqdSRHnr776\naoqvz0nj68puSOoP8kQIezlw4IDdKSbs88kkpfOTcDQ0UeoHeVsIpItkuFP48MMPHSuewDSFaCvk\nzu9R7gmlpnRImOBrHIjITjI79PGhd6bTZs+erWKuwgNGdY4R9L6SScqt4Dp8hsVFZ7jYWBLQyETH\nBaMVfep4F4dpCvEip/c5aDohXACCcDoMelHQQAsNIrbaLyofIwxBRyxe6JjYxaG6d9WqVa26wnZh\nCCSTlNNh+yjeiLpoaYUS4IIcAZ86c6bSW22n58s3zRoCOILh3hHpWDoM4na4+A6vwZdW33jfUGsv\nluBPq37iOgMFQZAORosfAVd2UkjYRKxTpItxHO1w9EOsiq7guWhwME0hGkLu/R6f5yGlAm1xnYY/\nirt27VJfECEJjCMXoshx/4U0GPzcfPPN6ohoVcolVv9QhQZ666xaFCtyKds7fieFkIK0CnPiTgov\nJ4jKTWOagptopz8WAn4Rz4SvbUEzkB92djR7CCSTlM40hSSX8FcMOUvhn4axBUYci27Be6tQME3B\nKlLutHvllVfUHyqdAbvueJ72KBB7RNYF0mFo9hBwLE4qra8teBFxvHPraBcJHsZJ2XtpnHgaJIWv\nrrpVMZ3wNVqfSHZGbBSOnDT7CCSTlM40BbiFLyyQawm1li1bqhwpp+4ArMLBNAWrSLnXDvpN8+fP\n90WF7GioNG3aVJo3by44ndDsI5BMUjrTFOAWqryEJnkiahyBe7hI9NqYpuD1CkQeH6ko+MBSp04d\nMx204NXSpUtVjB++VNP0IJBMUjrTFBCHFH4ZDh0nHUF7OqbNNAUdKDrTB+SEkcepQ+DQGQ/T7hU6\n6oiiR5oOTR8CKfSkdKUprFu3ThVU0GXXXXed0sPWYUxT0IGic32gcOfYsWNTSKc4N5rennGdgYpH\nd955p96OE7y3FCSlK00BxzwdRT1D10bXp1ymKZj/xi9YsECRFO6o/GIQdITybPg9rF/8N9nPFCSl\nK00hkvyFXRB0kRTTFOyuhDvPL1u2TKZNm6ZV7NApz3GPBrWF8CpHTo2XaP2mqhajI02ha9euAqE6\nXYb7LZz37RrTFOwi6O7zqH8HrSiTd1TYQSHvjwTl3LuRiqScSlNwbgrWe2aagnWsTGmJox+UCVBs\nwasafZGwwB/NTp06qY9BPOI5+7akIimmKTgLOHuPHQFcpqMEOnZUJuxYcBQFOa1du1ZJzdCcRSAV\nSWE4pik4Czp7jw8BXEwjmhuVsN3O94THGBtSMHnz5mUcVHxLGNdTEUkKPTFNIS48+ZDDCEDqB0QB\n7adu3bo5PNr/un/ttdfUmCBIRpK7BrsaKE2SYpqCuwvB0WJDALv9fv36ydChQ5VEsA4J4nAP8KFl\n5syZqoYfxundu3dsTrK1FgTSJCn0zjQFLRizE4cQQFgKCoyOGTNGihUrpuKUKlasKIUKFYp7RAT7\nIn0LaS3QJcduTUfZrbgd4oNp76SSsGGaAt8SPyAA3bIVK1YI6kdmzJhRJfjmzp1bihcvLlB9RZoN\nrjCgsgDpIPxAax/CePhBKktSqXWUXUf+ICV/zVj5dHdScJFpCmYsFL2wjgB2QBs3blSyxFDlRFL7\n+vXrFTHh0huFOkFYlSpVEhSkLVGihCqbVr58eZadsg6zay2jkhQ8YZqCa+vBgRxGAOXYcQmOMAKa\nPxCwRFKYCtMU/LGg9DI6Al5X647uIVuEImCZpPAQ0xT48gQFgZIlS6qitLivopmNQEwklXT0Y5qC\n2YtK76IjgLqP+BKIMAOa2QjETFKYDtMUzF5UemcNARQDQbgBAjRp5iIQF0klTYdpCuYuLD2zhsAj\njzyiJIvxQzMTAVskhSkxTcHMhaVX1hFAaXUc+66++mrrD7GlawjYJqkkT5mm4NqacSDNCGzYsEG6\nd++ujn408xDQRlKYGtMUzFtgemQNAajJotRa//79rT3AVq4hoJWkQr1mmoJra8iBNCGAr30I9KxQ\noYKmHtmNDgQcI6lQ59JLU7j77rtV+gLTFHQsJ/uwgwBLUtlBz7lnXSEp59xnz0RALwII8MQPPgjR\nzECAJGXGOtALgxCAqB6Ofm3btjXIq8R1hSSVuGvPmaeDgK5CuQTZPgIkKfsYsocAIrBz504V4Llj\nx44Azs5fUyJJ+Wu96K2LCOBLH4I8R40a5eKoHCocAZIU3wkikA4CdevWVYGe999/P3HyCAGSlEfA\nc1j/IIAgTwQq07xBgCTlDe4c1UcIUM3T28UiSXmLP0f3CQJU8/RuoUhS3mHPkX2GANU8vVkwkpQ3\nuHNUHyJANU9vFo0k5Q3uHNWnCFDN0/2FI0m5jzlH9DkCVPN0dwFJUu7izdECggDVPN1bSJKUe1hz\npAAhQDVP9xaTJOUe1hwpYAhQzdOdBSVJuYMzRwkoAlTzdH5hSVLOY8wRAowA1TydX1ySlPMYc4SA\nI0A1T2cXmCTlLL7sPUEQoJqncwtNknIOW/acYAhQzdOZBSdJOYMre01ABKjm6cyik6ScwZW9JigC\nVPPUv/AkKf2YsscER4BqnnpfAJKUXjzZWwIhsHfvXtm4caMqbrt792658sorZf369fLLL7/Itdde\nK8ePH5ccOXJI5cqV5fz581KiRAkpW7aslCtXTooVK5ZASNmbKknKHn58OsEQWLlypeBn5syZkj17\ndmnWrJnkyZNHihcvrkh+QrAOAAAgAElEQVQoW7Zsipiuuuoq+fXXXxVhgaB27dqlfk6fPi2zZ8+W\nCxcuSIsWLaROnTpSs2bNBEMxtumSpGLDi60TEIHff/9dVYwZPXq0lCpVStq3by+VKlWSG2+8MW40\noE21bt06mTx5siKvrl27Ss+ePSVTpkxx9xnUB0lSQV1ZzksLAoMGDRL8DBkyRO188uXLp6Xf0E5+\n/PFHtTN77rnnZODAgdK3b1/tY/i5Q5KUn1ePvjuGwDvvvCMI0Bw+fLh07tzZsXHCOx47dqwiqalT\np8rf//5318Y1eSCSlMmrQ988QQDkhHskEAXumNw23GPBh5w5c8qUKVPcHt648UhSxi0JHfIKAXyp\nq1q1qixZssSIy+wVK1bIgw8+KGvWrJF77rnHK1g8H5ck5fkS0AETEJg7d64sXrxYJk6cKFmzZjXB\nJeXDb7/9Jk899ZQ0btxYEVYiGkkqEVedc06BwKJFi2TGjBkCNQNTDSTVoUMHQaBoohlJKtFWnPNN\nRVD4svbuu+8ajwwKQLRp00bq169vvK86HSRJ6USTffkKARzx5syZY/QOKhxQ7Khat26dUEc/kpSv\n/lnRWV0IbNq0ScaNGyfTp0/X1aVr/bRq1UoFfyLFJhGMJJUIq8w5pkIAeXZnzpzRdkkOmZa33npL\n5fAlpb8gjKFIkSLqSyEi1KtXr65y+uwa0m2uv/56lXKTCEaSSoRV5hxTIIAYpObNm0utWrVsI3P4\n8GHp37+/pR0Z4p5wvKxXr57tcZcvXy4ffPCBTJo0yXZfpndAkjJ9heifVgQQSY5Qg1mzZtnu9+DB\ng1K+fHk5duxYTH0hD7B79+4xPROpMSLSH3roIcGFepCNJBXk1eXcUiEA5YITJ07YjiSHDEuVKlVk\nz549EVEuWrSofPvtt2muAI6Ft912m60VOnfunEpyRsWaIBtJKsiry7mlQGDw4MGSO3duLbl4TZo0\nkfnz56fov0CBAjJmzBi599571d3TH3/8oe6nHn/8ccFFfag98MADsmDBAtsrhPEQ8Ink5KAaSSqo\nK8t5pUAAcivQeLp06ZJtZL788ku58847UxHUp59+KoUKFUrVP0gEpPbxxx+n+B12WrhYt2sZM2ZU\nhJghQwa7XRn5PEnKyGWhU7oRGDZsmGTOnFmeeeYZ211DsgV3W0mGC/GvvvoqIkEltYF2FI6HobZw\n4UJp1KiRbX+g1ACigh5VEI0kFcRV5ZxSIZA/f37Ztm2bbT2oI0eOpBK769evn9KcSs/+/PNPJRkc\nek8Fjao+ffrYXi0I6KHc+3fffWe7LxM7IEmZuCr0SSsCkPvFTgqqAnYNUeoPP/xwim72798vuCiP\nZjgmhhLJX//6VylYsGC0xyz9vkaNGioUArFYQTOSVNBWlPNJhQB2K4jODieXeKDCcRFlq5KsQYMG\nggRlrw25hzhyvvzyy167on18kpR2SNmhaQjgq9vnn39uS5M8aU64MMeOKMnGjx+vpFSSDIUWfvjh\nB1UpJleuXCrMAGEPTtuhQ4ekWrVqgtitoBlJKmgryvmkQABlp7DbSSueKRa4kIaCS/JQg0Ae5FMQ\nSY7obwjUhRuOgknHMZRid8owzqpVq7R8MXTKx3j6JUnFgxqf8Q0CiCwHQQ0YMMC2z9ilhIcM4L5r\n5MiRsnTpUkv947K8W7duqkafbnv++efljjvuCJw2OklK95vC/oxCAHdI2L3oSEPZvn27lC5dOsX8\nokWWRwKjdu3asmzZMhU2oNNGjBihjpkISQiSkaSCtJqcSyoEIBDXpUsXLUm9a9eujfr1DKR11113\nqZisrVu3pnnMRA0/yK3otI8++kgVbkD8VZCMJBWk1eRcUiGASG8k9BYuXNg2Oh9++GGaYnMgpzfe\neCMVGUIO5rHHHkuVQgNn8DUOxUZ1GUIhevfuLQiTCJKRpIK0mpxLKgRQzBPHNOgv2bW3335bIDgX\nbrfeeqvaNSHtJpIhZQW1+1DkIdSww3v99dftupX8PIqMItQCAadBMpJUkFaTc0mFQI4cOeTo0aNp\nEkgskEELvWXLlqkeQXhDuXLl0u3q5MmTcs0116Rog8DL1atXx+JCum3x9RGR9VBHCJKRpIK0mpxL\nKgTw6V8XEeCuB+oFoXb//ferS3Arhst73EUlGcIZdMus6JyvlTm50YYk5QbKHMMzBHTupEB2kAIO\ntR49esirr75qaX6ICociaKjhaIbdjw4Lqr4USUrH28E+jEVA550UEpTLlCmTYq4o5tCxY0dL81+/\nfr1Urlw5RVtEryOHT4eB8FDpGBHvQTKSVJBWk3NJhQDkdRFsqePrHnShwi/HEST64osvWkIeOX7h\n0izY/WC3p8P27dunVBX4dU8HmuyDCLiEgM44KbhcsmRJQWWYJIO+OFJirBgSk0P1rBC2gLABXcY4\nKV1Ish8i4CICuDOCDrgOsTu4jaPdhAkTUszAyr3Sf/7zHxXkGZqcjEKf8+bN04YGIs2h3w5ZmiAZ\nj3tBWk3OJRUCUND85ptvtOTuofMNGzYogblQa9u2rUydOjVd9KGHjsDSUIvlPsvK0jJ3zwpKbEME\nDEMA9zSocwc1BF0WfuRDv7ib6tu3r1xxxRWphvn3v/+tlBhC45cQAIqI8yxZsuhySyU/4wukjvs3\nbU5p6Ig7KQ0gsguzEUCC8WeffSbQldJhCN6sUKFCqq5QJQbHQZAYqtJgBweCGjhwYKq2UAm97777\ndLij+oBCA2KkDhw4oK1PUzoiSZmyEvTDMQRQ7gnqBSimqctQSgqSK/EYotZRkl2nzZ49W3bs2CEo\n2xU0I0kFbUU5n1QIfPLJJ0pWF4JwOg1aUqgcE0sFY4RDgNx0y7RAlRPFIKpWrapzikb0RZIyYhno\nhNMI3HDDDbJlyxZt0d1J/v7888/Srl07gUJCeoZwA0ScI9hSt6G4A4JEDx8+rLtrI/ojSRmxDHTC\naQTweR7FM3v16uXIUD/99JN88cUXSg1h8+bN6gIdKpmIJscdFS61M2XK5MjYUPvEBTzCLYJoJKkg\nrirnlAoByKVkzZpVLl++HDh0QL6o6xdUI0kFdWU5r1QIvPLKK6qQAnScgmJQVbhw4YKWIqOmYkKS\nMnVl6JcjCICkIA6nK1/OESctdoryWThGnjp1yuIT/mxGkvLnutHrOBFAnh2iv3GJ7Xdr2rSpkn5B\nEnWQjSQV5NXl3CIi8MQTT6hqxnXq1PEtQiihhS+K4ZLEvp1QOo6TpIK4qpxTVAQguYLyT25UF47q\nTIwNoOaJKHoUeUgEI0klwipzjqkQQJjA2LFjZcaMGb5DBxHrPXv2FJR8TwQjSSXCKnOOERFYsGCB\nIincUfnFIJrXoUMHadiwoV9ctu0nSco2hOzAzwigiMK0adPkvffeM34auEdr3769oAJyIhlJKpFW\nm3ONiMCSJUtU5V+Td1TYQT399NMJR1BYMJIU/+ESgf8igKMfVDKhuplWkU8vgMIleadOnZSCQyId\n8UKxJkl58eZxTCMRwGU6CnZiR2XCkQpHUZDT2rVrldRMohpJKlFXnvNOEwFcTCOaG5LAiFB32zA2\nlBXy5s2bEHFQ0fAlSUVDiL9PSARwkQ6igKpmvOJ28QCHijIYEwQZ9Ehyq/iQpKwixXYJiQCSkvv1\n6ydDhw6VRx99VJsEcSiY0IOaOXOm0kjHOL17905IrNOaNEmKrwMRiIIAZFCgqAnJ4GLFiqk4JVSM\nKVSoUNzYQZMcuutIa4EuOXZruspuxe2UoQ+SpAxdGLplJgJr1qwRFFGYNWuWkgBGgi+KLhQvXlxu\nv/12lWaDeyyoLKA6DH5Q+XjXrl3qB6ksKLMFg/Qw8geDKPmrc/VIUjrRZF8JhQB2QBs3blSyxLt3\n71bqmOvXr1fEhEtvFOoEYVWqVEkuXrwoJUqUkDJlykj58uUDV3bKyYUnSTmJLvtOWAT8mHJj6mKR\npExdGfrlewTatGmjauG1bt3a93PxcgIkKS/R59iBRyBXrlyCr3dXX3114Ofq1ARJUk4hy36JwH8R\nQNlz1MND7T9afAiQpOLDjU8RAcsIIDH4lltuCVQBCMuT19CQJKUBRHZBBKIhULBgQVm3bp1S1KTF\nhgBJKja82JoIxIUAwhQQBIokZlpsCJCkYsOLrYlA3Ai88MILqkAp0mxo1hEgSVnHii2JgG0ESpUq\nJSirhdLrNGsIkKSs4cRWREALAvv27ZN69erJ3r17tfSXCJ2QpBJhlTlHoxAYMWKEKqc1fPhwo/wy\n1RmSlKkrQ78CjUDlypUFZIW8Plr6CJCk+IYQAQ8QwE4K91LHjh3zYHR/DUmS8td60dsAITB58mSl\noDBp0qQAzUr/VEhS+jFlj0TAMgL169dXkei4TKdFRoAkxTeDCHiIAHSmkIR84cIFD70we2iSlNnr\nQ+8SAAHETaGM1rvvvpsAs419iiSp2DHjE0RAOwLNmjWTxo0bqzp7tJQIkKT4RhABQxC48sorlQY6\nUmdo/0OAJMW3gQgYgsDSpUtl7NixsmTJEkM8MsMNkpQZ60AviIBCAEoJZcuWlfbt2xOR/0OAJMVX\ngQgYhsB1110nO3bskGuvvdYwz7xxhyTlDe4clQikiQDKYvXq1UuJ5NFESFJ8C4iAgQiApK6//nrp\n2bOngd656xJJyl28ORoRsIwAdNFxmY7S7olsJKlEXn3O3WgEcC+FuKmvv/7aaD+ddo4k5TTC7J8I\n2EBg8ODBqkQ7ymIlqpGkEnXlOW/fIHD33XcrpQSEJiSikaQScdU5Z18hgArIEMk7fPiwr/zW5SxJ\nSheS7IcIOIgAItGhi/766687OIqZXZOkzFwXekUEUiFQs2ZNQVmsGjVqJBQ6JKmEWm5O1s8InD17\nVlVARhJyIhlJKpFWm3P1PQIzZsyQ1atXy/Tp030/F6sTIElZRYrtiIAhCEB3qnXr1vLggw8a4pGz\nbpCknMWXvROBuBHARfnGjRtVsYbdu3cL9KaQ1/fLL78IotHx+xw5cqgvf+fPn5cSJUqoMIVy5coF\nKkqdJBX3K8QHiYB+BFauXCn4mTlzpmTPnl2g2JknTx4pXry4IqFs2bIpYrrqqqvk119/VYQFgtq1\na5f6OX36tMyePVtpprdo0ULq1KkjuHD3s5Gk/Lx69D0QCPz+++8yatQoGT16tJQqVUppSaFo6I03\n3hj3/L7//nulooCyWSCvrl27qmTlTJkyxd2nVw+SpLxCnuMSgf8igHQX/AwZMkTtfPLly6cdlx9/\n/FHtzJ577jkZOHCg9O3bV/sYTnZIknISXfZNBNJA4J133pF27drJ8OHDpXPnzq7hhKBQkNTUqVN9\nU/SBJOXa68GBiMD/RwDkhHskEAXumNw23GPBh5w5c8qUKVPcHj7m8UhSMUPGB4hAfAjgS13VqlVV\noQUTLrNXrFihwhjWrFkj99xzT3yTcuEpkpQLIHMIIjB37lxZvHixTJw40aiSVb/99ps89dRTquaf\nqXFXJCn++yECDiOwaNEiQaT4+++/7/BI8XcPkkKlmrp168bfiUNPkqQcApbdEgEgAILClzU/lFB/\n5JFHpE2bNlK/fn2jFo8kZdRy0JkgIYAj3pw5c4zeQYXjbWLKDUkqSP8qOBdjENi0aZOMGzfOl4nA\nrVq1UsGfpiiBkqSMea3pSJAQQJ4dJFWyZs1qeVpQ3sQXQJ2GPL6CBQvG1CXSbVBOC6EKJhhJyoRV\noA+BQgAxSM2bN5datWrFNC/svHQHdr7xxhvSqVOnmPxA4+XLl8sHH3ygtNW9NpKU1yvA8QOFACLJ\nEWowa9asmOdlEknBeZTTeuihhwQX6l4aScpL9Dl24BCAcsGJEyfiiiQ3jaTOnTunkpyhCOqlkaS8\nRJ9jBwoB1MjLnTt33Ee2efPmyYABA+LG5Msvv0z1LKLJq1WrFnefY8aMEQR8IjnZKyNJeYU8xw0U\nApBbgcbTpUuXPJnXvn37pEyZMoLdT5KNHz9eRZPbtYwZM8off/whGTJksNtVXM+TpOKCjQ8RgZQI\nDBs2TDJnzizPPPOM69Bgp1OxYkUJ3UnhAh6KBzoMSg0gKuhReWEkKS9Q55iBQyB//vyybds2R/Sg\nooGFuKa33347udkdd9whGzZsiOteLNJYENADCaJIqRdGkvICdY4ZKAQg94udFFQF3La33npLFWUI\ntZ07dyqpYZ2GWn/9+/eX6tWr6+zWUl8kKUswsRERSBuBPn36qOjshx9+2FWYjh49qgoyhN5DjRw5\n0pEjJ3IPv/rqK3n55ZddnSMGI0m5DjkHDBoCBQoUkM8//9yWJnk8mEBuGHFZSVa0aFHBLiqWKHer\n4x46dEh9JTx48KDVR7S1I0lpg5IdJSICKCvVoEED2bNnj6vTX7ZsmdSrVy/FmAhhQIKwUwYSXLVq\nlRQpUsSpISL2S5JyFW4OFjQEEFkOgrIT3xQrJsitQ4krXGgn2b333itr1651NEzg+eefF1zKIxLd\nTSNJuYk2xwocAgg5uOmmm6R79+6uzW3EiBHy7LPPphgPBUQRJ+WkYdzjx4+r4hFuGknKTbQ5VuAQ\ngEBcly5dUh29nJooin9C1SD0shxCdf/85z+dGjK5348++kgVbli4cKHjY4UOQJJyFW4OFjQEmjRp\nogp7Fi5c2JWp4Vj50ksvpRgLxz47hUStOr5//37p3bu3QMzPTSNJuYk2xwocAijmuX37dqW/5LTh\nqHXdddelGAaxS+Gk5ZQfKDKKUIsjR444NUTEfklSrsLNwYKGQI4cOQTxSsjbc9qQwPzCCy+kGOaH\nH36QG264wemhVf8QwUNkfehR042BSVJuoMwxAosAIrFXr17t+PyQwIx4rGPHjiWP1bJlS0HEuZvm\n1nxD50SScnOFOVbgEHBrJwWVzKZNm6bA77PPPpMKFSq4hqlX+lIkKdeWmAMFEQG37qSwg4E2VJLd\nfvvtsmPHDlchxV0UKh3jiOmmkaTcRJtjBQ4ByOsiX87Jr3v4qlasWLEU2A0ZMkSQM+imQbMKY/Lr\nnpuocywiYBMBN+KkRo8enSpYFOk44cRlcypRH2ecVFSI2IAImIdAjx49VIySk2J3VapUkXXr1iVP\nHqkpCHtw2xBpDv12yNK4aTzuuYk2xwocAlAh+OabbxzL3UNsUniIAQIqhw4d6jqWzN1zHXIOSATs\nI4B7GqgR4PjlhEFxE8qbobZ06VKpW7euE8Ol2yfUDxBu4eT9WyQHuJNyfak5YNAQQIIxwgEQx6Tb\nOnbsKBMmTEjR7alTp1RVGjcNOlL4wnjgwAE3h1VjkaRch5wDBg0BlHsqXbq0IxImd955Z4oCC16E\nHmC9Zs+erUIeEPXutpGk3Eac4wUOgU8++UTJ6kIQTqchePLqq69O0eWTTz6Zamelc8y0+oIq56BB\ng6Rq1apuDJdiDJKU65BzwCAigMttaDoht02XQQq4ZMmSKbqDJAukWdw0VImpXLmyHD582M1hk8ci\nSXkCOwcNGgL4PI/imb169Qra1ASBo1myZBGEW3hhJCkvUOeYgUMAFX5RAOHy5cuBmxvI988///Rs\nXiQpz6DnwEFD4JVXXpGcOXMqpc6gGKLdL1y44HoKTih+JKmgvE2chxEIgKQQgAl1BL8bpIoRG4WQ\nBy+NJOUl+hw7cAjMmTNH5s+fLyim6XeDNEzz5s0FSdReGknKS/Q5diAReOKJJ1Q14zp16vh2fohq\n//DDD2XixImez4Ek5fkS0IEgIgA5YWiSZ8+e3XfTO3v2rCrTdebMGSN8J0kZsQx0ImgIbN68WcaO\nHSszZszw3dQgS9yzZ09BtLsJRpIyYRXoQyARWLBggSIp3FH5xRo1aiQdOnSQhg0bGuMyScqYpaAj\nQURg2bJlMm3aNHnvvfeMnx7u0dq3by+1a9c2yleSlFHLQWeCiMCSJUtU5V+Td1TYQT399NPGERTe\nB5JUEP9VcE7GIYCj37x581RysBs1+qwCgEvyTp06KQUHk454of6TpKyuJtsRAZsI4DK9evXqakdl\nwpEKR1GQ09q1a5XUjKlGkjJ1ZehXYBHAxTSiuadOnarSaNw2jN2uXTvJmzevEXFQ0eZPkoqGEH9P\nBBxAABfpIIqBAwdKt27dHBghcpevvfaaGhME6XUkudVJk6SsIsV2RMABBJCU3K9fP1VY4dFHH3VE\nghh6UDNnzpS+ffuqcVDIwU9GkvLTatHXQCIAGRQUGB0zZoyqpYfjYMWKFaVQoUJxzxea5NBdR1oL\ndMmxW3Oy7Fbcjlp4kCRlASQ2IQJuIYBS6itWrJBZs2ZJxowZVYIvii4UL15coG+ONBvcY0FlAfLC\n+Pntt99k165d6gepLCizBWvRooXKH/RC8lcnXiQpnWiyLyKgEQHsgDZu3KhkiXfv3q3UMdevX6+I\nCTsulF8HYVWqVEkuXrwoJUqUkDJlykj58uVdLzulcdqpuiJJOYku+yYCDiGAenzYcb311lsOjWBO\ntyQpc9aCnhCBmBBArBUuwe+7776YnvNbY5KU31aM/hKB/0Pgp59+krvuukspgQbZSFJBXl3OLfAI\noErNiRMnZNiwYYGdK0kqsEvLiSUKAqVKlRLIFofX6AvK/ElSQVlJziNhEdi2bZu0bdtWtm7dGkgM\nSFKBXFZOKtEQ6N69uwr+dDPFxi2MSVJuIc1xiIDDCFxzzTWyd+9e+ctf/uLwSO52T5JyF2+ORgQc\nQwDieuPGjZPFixc7NoYXHZOkvECdYxIBhxBo1qyZNG7cWOlEBcVIUkFZSc6DCPwXgUuXLqlUGaTJ\nBMVIUkFZSc6DCPwfAm+++aZSQIBmVBCMJBWEVeQciEAYAtWqVZNBgwb5XgEB0yJJ8fUmAgFE4NCh\nQwKigq6U340k5fcVpP9EIA0EBg8erO6msKPys5Gk/Lx69J0IREHg1ltvVSEJt9xyi2+xIkn5duno\nOBGIjsCGDRsE0ei4SPerkaT8unL0mwhYRADFP5F83LFjR4tPmNWMJGXWetAbIuAIAoidgu4UtNH9\nZiQpv60Y/SUCcSCAqsmQHEapd78ZScpvK0Z/iUCcCDRp0kRatmyp0mb8ZCQpP60WfSUCNhD45Zdf\nJH/+/KrajJ+MJOWn1aKvRMAmAuPHj5cdO3YotQS/GEnKLytFP4mAJgRQHfm1116TChUqaOrR2W5I\nUs7iy96JgHEIQBivQYMGsmfPHuN8i+QQScoXy0QniYBeBF544QXJmjWr9OvXT2/HDvRGknIAVHZJ\nBPyAQOHChWXt2rVKG91kI0mZvDr0jQg4iMC//vUvwY4KRGWykaRMXh36RgQcRqBdu3aCi3SUxDLV\nSFKmrgz9IgIuIYC7KcROZcmSxaURYxuGJBUbXmxNBAKHAKofI23m3XffNXJuJCkjl4VOEQF3EUBI\nAtQS6tev7+7AFkYjSVkAiU2IQNAROHnypBLGO3HihHFTJUkZtyR0iAh4g8Do0aMF2uiIRjfJSFIm\nrQZ9IQIeI1CmTBlBSay77rrLY0/+NzxJypiloCNEwHsEkHyM6sdff/219878nwckKWOWgo4QATMQ\n6N27t1xzzTXy7LPPGuEQScqIZaATRMAsBKA7tW3bNsmXL5/njpGkPF8COkAEzENg5cqVMmzYMFmx\nYoXnzpGkPF8COkAEzESgVatWUrt2bSU57KWRpLxEn2MTAQMQgL7Uxo0bZcuWLbJ792658sorZf36\n9QK5YcRO4feoMlO5cmU5f/68lChRQsqWLSvlypWTYsWKOT4DkpTjEHMAImAeAjjO4WfmzJmSPXt2\nadasmeTJk0eKFy+uSChbtmyKmK666ir59ddfFWGBoHbt2qV+Tp8+LbNnz5YLFy5IixYtpE6dOlKz\nZk1HJkqScgRWdkoEzEPg999/l1GjRgmCNkuVKiXt27eXSpUqyY033hi3s99//72sW7dOJk+erMir\na9eu0rNnT8mUKVPcfYY/SJLSBiU7IgLmIjBo0CDBz5AhQ9TOx4mvdig+ip3Zc889JwMHDpS+fftq\nAYQkpQVGdkIEzETgnXfeEWhGDR8+XDp37uyak2PHjlUkNXXqVBUcasdIUnbQ47NEwGAEQE64RwJR\n4I7JbcM9FnxAifcpU6bEPTxJKm7o+CARMBMBfKmrWrWqLFmyxLHL7FhmjlirBx98UNasWSP33HNP\nLI+qtiSpmCHjA0TAXATmzp0rixcvlokTJ6pqMKbYb7/9Jk899ZQq8Q7CisVIUrGgxbZEwGAEFi1a\nJDNmzJD333/fWC9BUh06dJC6deta9pEkZRkqNiQC5iIAgsKXNVMlgEORe+SRR6RNmzaWVUBJUua+\nd/SMCFhCAEc86JSbvIMKnwh2VK1bt7Z09CNJWXoN2IgImInApk2bZNy4cTJ9+nQzHUzHK+QGIvgT\nKTbpGUnKd0tLh4nA/xBAnt2ZM2csX5KPHDlSVq9erTpAXp4dqWAEb2IHt2fPHvnmm2/k4sWLKsWm\nYMGCStkTx7prr702zeVCus3111+vUm5IUnyriUAAEUAMUvPmzaVWrVqWZnfp0iXJmzevqrEHu/XW\nWxW5xGqnTp1SwaFDhw6N+iiKjiINB3mAkWz58uXywQcfyKRJk9LsizupqDCzAREwDwFEkiPUYNas\nWZadQ/uGDRsmt4+HpM6ePSv33Xef4Jhp1W6//XZZuHCh3HzzzREfQUT6Qw89pHZekYwkZRVptiMC\nBiGAYxXKT1mNJMfup0qVKrJz5864SQqKB6jP98knn8SMBIhq8+bNEf3Fzg5JziBAklTM0PIBImAe\nAoMHD5bcuXNbzsX76quvVOHPf//73ykmE+tOCvdXzzzzTCpA8N+wu4LeFIgMR7j+/fvLt99+m6Jt\nt27d0rwDGzNmjCDgE8nJ4cadlHnvID0iAmkiALkVaDzhfimSQecJlV4gVIf7pqVLl8qXX34ZsW0s\nJIVLbuieJ91nJXWI+6QmTZqk6v/48eNSvXr1FDs3NPr5559VkYdIljFjRvnjjz8kQ4YMKX5NkuI/\nCCLgIwSgO545c9Zba+AAAAhLSURBVOaIOxpMA5fU3bt3tzSjWEgKOx3shEINF+eoLJOWbdiwQSpW\nrJji16jp9/jjj0d8BJfxICroUYUaScrScrIRETADgWhVXJwiKZANSCfJrrvuOkEIAkglPQt/Dprp\nOA5GMgjoof13331HkjLjdaMXRCA2BKxUcHGCpHDEu/rqq1M4i2Th8ePHR53Aiy++qMT2Qu3IkSPq\n6BjJatSooe6zcFRMMu6kosLMBkTADAT69OmjorMffvjhNB1CYOehQ4ci/h5HRYQuJJnV4x7IETug\nUEOuIL70RbNIz6Z1j4W+kHuIi/6XX36ZJBUNXP6eCJiGQIECBeTzzz+PW5McX85CAzCtktSAAQPk\npZdeSgEHosRxgR/NIu3CJkyYIE8++WTER0Gw1apVk4MHD5KkooHL3xMBkxDA1zrsXJCCEq/FS1KP\nPfZYitzAokWLyv79+y27gdSXY8eOJbcH6eEYmJah/1WrVkmRIkVUEx73LEPNhkTAOwQQWQ6Cwj/w\neC1ekvrb3/4mH330UfKwUNeE+qdVK1myZIpQhI4dO6qk6LTs+eeflzvuuCNZG50kZRVptiMCHiKA\ngMmbbrrJcnhBJFfjJanwL3T16tVT0sRWDVLGoYGkSIGBvExaNmLECEGcFUISuJOyijLbEQGPEahf\nv7506dJFQBDxWrwkddttt6U4ZqLs+ltvvWXZDQR7zp8/P7k9ItM//fTTNJ/Hrg2FG5DvR5KyDDMb\nEgFvEcA/dBT2LFy4cNyOxEtSCD8IjTRPL70lknMgNaiGJlk0ksJ9F4JEk3ZbPO7FveR8kAi4hwCK\neW7fvl3pL8Vr8ZIU1AtC8/BQvw919awa1A1CVUMfeOABWbBgQZqPI0gUoRaIp+JOyirKbEcEPEYA\nekxHjx619Nk/LVfjJanwO6VYj3uQh4FMTJKhvHt6+lEIbwjNE+ROyuOXj8MTASsIIBI7SVHTSvtI\nbeIlKeg9vffee8ldNmrUKPm+yIov4RfvqGwcGqwZqY/Q+ZKkrKDMNkTAYwS83EkhYRnpNklWoUIF\n+eyzzywjEh4nBcmX8GTl0M7C9aVIUpahZkMi4B0CXt5JIUo9XOcJUjFQY4hm0IgKj0xHag5kj9My\n3EUhFuuHH35QTUhS0VDm74mAAQggtghFFLz4uodwA5SfCjWobEar8oL269atU4qgoXbgwIF057Fv\n3z5BniK/7hnw4tEFImAVAS/jpLCzgbxvqL3xxhtK7TOa4e6pX79+yc0gI7xjx450H2OcVDRU+Xsi\nYCACPXr0UEQRSb7XqrvxXpyjf5RF//jjj1OQDdQK0tOTgooo8vCgE5VkkGEJT1YO9x+R5tBvh2oD\njMc9qyvMdkTAQwRwjwM5YC9y9zBtBGMi9CDU8MUvPdkYpLc8++yzKZ6BcF758uXTRZK5ex6+aBya\nCMSLAO5pkBIDNYR4zc5OCpVccuXKlWroL774Qu68885U/z0SQZUpU0YlJmfKlCndKUD9AOEWSfdv\n3EnFu+J8jgi4jAASjPHpH7pS8ZgdksJ42OG88sorqYbGEQ5R5CAfRMVDEC80rirpAWhhlStXLl3X\noSOFGClcricZSSqe1eYzRMADBEAypUuXTpYwidUFuySFsAN8qYulMGiSj4i1Qu5hNJs9e7a6WEfZ\nLpJUNLT4eyJgGAIoyomvZRCEi8fskhTGxCU4dk1bt2617AII6tVXX41atAEdQpUTmuhIxSFJWYaY\nDYmAOQjccMMNsmXLljQLGaTn6cCBA1WRgySDsByOZ7EaAjShUoAwhPQMx1J8yWvbtq2lIVAlBgoJ\nhw8fTtGexz1L8LERETADAXyeR/HMXr16ee7QyZMn1d0TjmfQJsf/L1SokAo7wCU5cvyuuOIKy34O\nGTJEsmTJIgi3CDWSlGUI2ZAIeI8AKvxmzZpVLl++7L0zmj0A+f7555+peiVJaQaa3REBpxHAF7ac\nOXMqpc6gGBKYL1y4oNJhwo0kFZRV5jwSCgGQFMThoI7gdzt9+rSqDHPq1KmIUyFJ+X2F6X9CIjBn\nzhylG45imn63pk2bKlUEJFFHMpKU31eY/icsAk888YRKS6lTp45vMVi6dKl8+OGHMnHixDTnQJLy\n7fLScSIgSqsJ5Z+yZ8/uOziQaoMoepSGT89IUr5bWjpMBP6HAHSdUBRhxowZvoMFCcs9e/aMmPsX\nOhmSlO+Wlg4TgZQIoPIKSCq0tp3pGCGGqkOHDoIiDdGMJBUNIf6eCPgAgWXLlsm0adMiJvaa5j7u\n0VAxpnbt2pZcI0lZgomNiID5CKD0OSr/mryjwg7q6aeftkxQQJ0kZf67Rw+JgGUEcPSbN2+eTJgw\nwVaNPssDWmyIS3LIDaM8lpUjHu+kLALLZkTAjwjgMr169epqR2X1SOXkPHEUBTmtXbtWSc3EatxJ\nxYoY2xMBnyCAi2lEc0+dOlWl0bhtGLtdu3aSN2/edOOgovlFkoqGEH9PBHyMAFQKQBSQaUmvIKfu\nKaIAKMYEQaYVSW51TJKUVaTYjgj4GAEkJaO0FAp9Pvroo3FLEKcHAfSgULABZdQxDjSndBhJSgeK\n7IMI+AAByKCgwOiYMWOkWLFiKk6pYsWKSgMqXoMmOXTXkdYCXXLs1uyU3YrkB0kq3tXhc0TAxwis\nWbNGVqxYIbNmzVKyvkjwzZ07txQvXlxQwBNpNrjHgsrCuXPn1A8UOXft2qV+kMqCMluwFi1aqPzB\nUMlfndCQpHSiyb6IgA8RwA4IpaYgS7x7926ljrl+/XpFTHfffbf67yCsSpUqycWLF6VEiRJKeRP1\n8+yUfbcKFUnKKlJsRwSIgCcIkKQ8gZ2DEgEiYBWB/wfKfiHXlPB/PgAAAABJRU5ErkJggg==\n" + } + }, + "cell_type": "markdown", + "id": "91306dbf-a4f2-47f3-a88a-1c5da831baae", + "metadata": {}, + "source": [ + "In binary search trees (next section), inorder traversal gives the nodes\n", + "in a non-decreasing order.\n", + "\n", + "## DFS: Inorder Traversal Complexity\n", + "\n", + "Time complexity\n", + "\n", + "- Each node is visited exactly once. The work done at each node is\n", + " constant. $O(n)$\n", + "\n", + "Space complexity\n", + "\n", + "- Dependent on the maximum depth of the recursion, which is the height\n", + " of the tree. $O(h)$\n", + "\n", + "## DFS: Preorder Traversal\n", + "\n", + "1. Visit the root\n", + "\n", + "2. Traverse the left subtree\n", + "\n", + "3. Traverse the right subtree\n", + "\n", + "**Result: 1 2 4 5 3 6**\n", + "\n", + "Preorder traversal is used to create a copy of the tree\n", + "\n", + "![](attachment:images/tree_num.png)\n", + "\n", + "## DFS: Postorder Traversal\n", + "\n", + "1. Traverse the left subtree\n", + "\n", + "2. Traverse the right subtree\n", + "\n", + "3. Visit the root\n", + "\n", + "**Result: 4 5 2 6 3 1**\n", + "\n", + "Preorder traversal is used to delete subtrees. (why?)\n", + "\n", + "![](attachment:images/tree_num.png)\n", + "\n", + "## BFS\n", + "\n", + "BFS (or Level Order Traversal) traverses nodes present in the same level\n", + "before traversing the next level\n", + "\n", + "1. For each node\n", + "\n", + "- The node is visited\n", + "\n", + "- The child nodes are enqueued in a FIFO queue\n", + "\n", + "1. First node is dequeued\n", + "\n", + "2. Child nodes are enqueued\n", + "\n", + "3. Repeat until the queue is empty\n", + "\n", + "**Result: 1 2 3 4 5 6**\n", + "\n", + "![](attachment:images/tree_num.png)\n", + "\n", + "# Binary Search Trees\n", + "\n", + "## BST Definitions\n", + "\n", + "- You can think of a BST as a sorted tree\n", + "\n", + "- A *binary tree* is a tree in which every item has at most two\n", + " subtrees\n", + "\n", + " - The tree used in illustrating DFS and BFS methods is a binary\n", + " tree\n", + "\n", + "- A binary tree is a *binary search tree property* if its value is\n", + " greater than or equal to all items in the left subtree\n", + "\n", + "- A binary tree is a *binary search tree* if every item in the tree\n", + " satisfies the binary search tree property\n", + "\n", + "## BST Efficiency\n", + "\n", + "- Consider the BST on the right. Verify that it is a BST.\n", + "\n", + "- The worst-case run time is $O(h)$, $h$ being the height of the tree\n", + "\n", + " - So the tree on the right is $O(n)$\n", + "\n", + "- A tree of height $h$ can have at most $2^h - 1$ nodes. So we need at\n", + " least log$n$ height to store all of them.\n", + "\n", + " - So if the tree was balanced, then it would be $O(\\text{log}n)$\n", + "\n", + "![](attachment:images/tree_unbal.png)\n", + "\n", + "## BST Efficiency\n", + "\n", + "- Convince yourself that for a balanced BST the search, insert, and\n", + " delete Big-O is all $O(\\text{log}n)$\n", + "\n", + "- Ensuring that a tree is balanced is important\n", + "\n", + " - Red-Black trees (not covered) are trees that balance themselves\n", + "\n", + " - You may also be interested in B-trees, which are used in\n", + " databases\n", + "\n", + "## Live Coding\n", + "\n", + "Given a BST, insert a new node in this BST.\n", + "\n", + "![](attachment:images/insertion.png)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0fffca91", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "61fb5b0a", + "metadata": {}, + "source": [ + "\n", + "# Graphs\n", + "\n", + "## Introduction\n", + "\n", + "- We looked at lists and trees, which represent linear and\n", + " hierarchical relationships respectively\n", + "\n", + " - But many relationships are neither\n", + "\n", + " - Friend networks, internet connections, flight connections\n", + "\n", + "- Graphs consist of two parts, *nodes* and *edges*\n", + "\n", + " - A node connected to another is a *neighbor*\n", + "\n", + "![](attachment:images/graph_anat.png)\n", + "\n", + "## Types of Graphs\n", + "\n", + "There are directed and undirected graphs to represent different\n", + "situations\n", + "\n", + "- Friendships: undirected\n", + "\n", + "- Twitter followers: directed\n", + "\n", + "- Who owes who money: directed\n", + "\n", + "- Note that trees are special cases of directed graphs\n", + "\n", + "Graphs can also be weighted, to differentiate strengths between nodes\n", + "\n", + "There are two questions we ask about graphs: Is there a path from node A\n", + "to B? What is the shortest path from node A to B? BFS answers both!\n", + "\n", + "![](attachment:images/graph_weight.png)\n", + "\n", + "## BFS of Graphs\n", + "\n", + "- *Breadth First Search* (BFS) searches graph for a node that meets a\n", + " set of criteria. It starts at the root of the graph and visits all\n", + " nodes at the current depth level before moving on to the nodes at\n", + " the next depth level\n", + "\n", + " - If there are multiple nodes meeting the criteria, then BFS will\n", + " also find the nearest node!\n", + "\n", + "- The issue is that graphs contain *cycles*, so we may visit the same\n", + " node more than once\n", + "\n", + " - Let’s split edges into visited and not visited\n", + "\n", + "- We use a list to keep track of visited nodes\n", + "\n", + "- All the adjacent unvisited nodes of the current level are pushed\n", + " into the queue and the nodes of the current level are marked visited\n", + " and popped from the queue\n", + "\n", + "- Is BFS a recursive or iterative graph search method?\n", + "\n", + "## BFS Example\n", + "\n", + "- Let’s traverse a graph with BFS starting at node “1”\n", + "\n", + "- Visited list and queue start as empty\n", + "\n", + "Visited: \\[ , , , , \\]\n", + "\n", + "Queue: \\[ , , , , \\]\n", + "\n", + "![](attachment:images/graph_bfs.png)\n", + "\n", + "## BFS Example\n", + "\n", + "- We’re at node 1, so we push it onto the visited list and push it\n", + " onto the queue\n", + "\n", + "Visited: \\[1, , , , \\]\n", + "\n", + "Queue: \\[1, , , , \\]\n", + "\n", + "![](attachment:images/graph_bfs.png)\n", + "\n", + "## BFS Example\n", + "\n", + "- Now we visited 1, so it is dequeued.\n", + "\n", + "- At the first level away from node 1, there is 3 and 6.\n", + "\n", + "- We visit 3 and 6, but we have not visited any of it’s neighbors\n", + " (other than 1), so 3 and 6 are enqueued.\n", + "\n", + "Visited: \\[1, 3, 6, , \\]\n", + "\n", + "Queue: \\[3, 6, , , \\]\n", + "\n", + "![](attachment:images/graph_bfs.png)\n", + "\n", + "## BFS Example\n", + "\n", + "- Visit the neighbors of node 3, so we dequeue it\n", + "\n", + "- But we need to enqueue 10, because we haven’t visited its neighbors\n", + "\n", + "Visited: \\[1, 3, 6, 10, \\]\n", + "\n", + "Queue: \\[6, 10, , \\]\n", + "\n", + "![](attachment:images/graph_bfs.png)\n", + "\n", + "## BFS Example\n", + "\n", + "- Visit the neighbors of node 6, which is just 7, so we dequeue it\n", + "\n", + "- But we need to enqueue 7\n", + "\n", + "Visited: \\[1, 3, 6, 10, 7\\]\n", + "\n", + "Queue: \\[10, 7, , \\]\n", + "\n", + "![](attachment:images/graph_bfs.png)\n", + "\n", + "## BFS Example\n", + "\n", + "- Visit the neighbors of node 10, and dequeue 10\n", + "\n", + "- But we already visited those nodes, so the visited list does not\n", + " change\n", + "\n", + "Visited: \\[1, 3, 6, 10, 7\\]\n", + "\n", + "Queue: \\[7, , , , \\]\n", + "\n", + "![](attachment:images/graph_bfs.png)\n", + "\n", + "## BFS Example\n", + "\n", + "- Visit neighbors of 7, which are also all visited\n", + "\n", + "- The queue is empty, so the algorithm ends\n", + "\n", + "Visited: \\[1, 3, 6, 10, 7\\]\n", + "\n", + "Queue: \\[ , , , , \\]\n", + "\n", + "![](attachment:images/graph_bfs.png)\n", + "\n", + "## Time and Space Complexity of BFS\n", + "\n", + "- Each edge and each node must be visited once, so the time complexity\n", + " is $O(n + e)$\n", + "\n", + "- Since we need to store each node of the graph by the end of the\n", + " algorithm, the space complexity is $O(n)$\n", + "\n", + "## Implementing Graphs and BFS\n", + "\n", + "We can represent graphs using the *adjacency list* representation\n", + "\n", + "- Other options include adjacency matrix or using a Python library" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "23428e44", + "metadata": {}, + "outputs": [], + "source": [ + "from collections import deque\n", + "\n", + "class Graph:\n", + " def __init__(self):\n", + " self.graph = {}\n", + "\n", + " def add_edge(self, vertex, neighbors):\n", + " self.graph[vertex] = neighbors" + ] + }, + { + "cell_type": "markdown", + "id": "9f393b7b-3af9-4a07-861c-9e14bc7bea47", + "metadata": {}, + "source": [ + "## Implementing Graphs and BFS" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "32ada213", + "metadata": {}, + "outputs": [], + "source": [ + "def bfs(graph, start):\n", + " visited = set()\n", + " queue = deque([start])\n", + "\n", + " while queue:\n", + " current_vertex = queue.popleft()\n", + "\n", + " if current_vertex not in visited:\n", + " # Process the current vertex\n", + " print(current_vertex, end=' ')\n", + " visited.add(current_vertex)\n", + "\n", + " # Enqueue unvisited neighbors\n", + " for neighbor in graph.graph.get(current_vertex, []):\n", + " if neighbor not in visited:\n", + " queue.append(neighbor)" + ] + }, + { + "cell_type": "markdown", + "id": "3965d53d-8ca1-4372-8e0b-35a2a1486159", + "metadata": {}, + "source": [ + "## Implementing Graphs and BFS" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "3b8d278a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1 3 6 10 7 " + ] + } + ], + "source": [ + "# Represent graph from above\n", + "ex_graph = Graph()\n", + "ex_graph.add_edge(1, [3, 6])\n", + "ex_graph.add_edge(3, [10, 6])\n", + "ex_graph.add_edge(6, [3, 7])\n", + "ex_graph.add_edge(10, [3, 7])\n", + "ex_graph.add_edge(7, [10, 6])\n", + "\n", + "# Perform BFS starting from vertex 1\n", + "bfs(ex_graph, 1)" + ] + }, + { + "cell_type": "markdown", + "id": "909bfd55-42c3-4c3c-8279-6489791e4f51", + "metadata": {}, + "source": [ + "## Recursive Graph Search: Preorder Traversal\n", + "\n", + "- Using the same `Graph` class, let’s implement preorder traversal" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "d883118d", + "metadata": {}, + "outputs": [], + "source": [ + "def recursive_preorder_traversal(graph, start, visited=None):\n", + " if visited is None:\n", + " visited = set()\n", + "\n", + " # Process the current vertex\n", + " print(start, end=' ')\n", + " visited.add(start)\n", + "\n", + " # Recursive traversal of neighbors\n", + " for neighbor in graph.graph.get(start, []):\n", + " if neighbor not in visited:\n", + " recursive_preorder_traversal(graph, neighbor, visited)" + ] + }, + { + "cell_type": "markdown", + "id": "60bf08d2-4747-41c3-b128-ff00d1bc771d", + "metadata": {}, + "source": [ + "## Recursive Graph Search: Preorder Traversal" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "c4b48ff8", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1 3 6 10 7 " + ] + } + ], + "source": [ + "bfs(ex_graph, 1)" + ] + }, + { + "cell_type": "markdown", + "id": "c3b6c651-0046-4740-babf-41a312cf51bc", + "metadata": {}, + "source": [ + "# Nearest Neighour Problem\n", + "\n", + "## Nearest Neighbour Problem\n", + "\n", + "- As you may have encountered already, machine learning and\n", + " statistical methods often depend on finding the nearest neighbor to\n", + " a data point\n", + "\n", + " - K-nearest neighbors regression, propensity score matching\n", + "\n", + "- In a $k$ dimensional space, if we conduct a linear search for\n", + " points, the running time will be $O(kn)$ for $n$ data points.\n", + "\n", + "- Can we do better?\n", + "\n", + "## k-d Trees\n", + "\n", + "- k-d trees is short for k dimensional tree (notation is a bit\n", + " unfortunate, different K than KNN)\n", + "\n", + " - It is useful for multidimensional searches\n", + "\n", + "- Let’s discuss the properties of k-d trees and why they work\n", + "\n", + "- Binary tree where each node represents an axis-aligned\n", + " hyperrectangle in the k-dimensional space\n", + "\n", + " - hyperrectangle: rectangle in higher dimensions\n", + "\n", + "- Nodes in the left subtree have coordinates less than the splitting\n", + " dimension of the current node, while nodes in the right subtree have\n", + " coordinates greater than the splitting dimension.\n", + "\n", + "- At each level of the tree, a specific dimension is chosen to split\n", + " the data. The choice of dimension alternates as we traverse down the\n", + " tree.\n", + "\n", + "- Each leaf represents a single point in the k-dimensional space\n", + "\n", + "## k-d Trees Animation\n", + "\n", + "\n", + "\n", + "## Applications and Issues\n", + "\n", + "- Notice k-d trees can also find values within a certain range very\n", + " quickly, not just a specific point\n", + "\n", + "- GIS (geographic information systems) queries\n", + "\n", + "- KNN algorithm\n", + "\n", + "- Computer graphics, such as ray tracing to facilitate efficient space\n", + " partitioning\n", + "\n", + "- Issues occur in high-dimensional spaces and trees can become\n", + " imbalanced\n", + "\n", + "# Recommended Problems and References\n", + "\n", + "## Recommended Readings\n", + "\n", + "- Bhargava: Chapter 6\n", + "\n", + "- Bhargava: Chapter 11, pages 203 to 206 about Trees\n", + "\n", + "## Recommended Problems\n", + "\n", + "- Cormen: Chapter 10 exercises\n", + "\n", + " - 10.3-1, 10.3-2, 10.3-3\n", + "\n", + "- Bhargava: Chapter 6 exercises\n", + "\n", + " - 6.1 to 6.5\n", + "\n", + "## Recommended Problems\n", + "\n", + "- Implement preorder, postorder, and level order traversal. Determine\n", + " the time and space complexity in each case\n", + "\n", + "- Implement a function that find an element in a BST and deletes it.\n", + " The descendants of the deleted node are given to the deleted node’s\n", + " parent.\n", + "\n", + "- Using the `graph` class from the slides, implement BST search such\n", + " that it stops and tell you the distance the node is from the\n", + " starting point.\n", + "\n", + " - For instance, if we searched for 7 in the graph given in the\n", + " slides, it would return `\"Found! Distance 2\"`.\n", + "\n", + " - If we searched for 100 in the graph, it would return\n", + " `\"Not found!\"`\n", + "\n", + "- Implement postorder graph traversal using the `graph` class from the\n", + " slides.\n", + "\n", + "- Implement a function using recursion to find the sum heterogeneous\n", + " nested lists such as \\[\\[1, \\[2\\]\\], \\[\\[\\[3\\]\\]\\], 4, \\[\\[5, 6\\],\n", + " \\[\\[\\[7\\]\\]\\]\\]\\].\n", + "\n", + "## References\n", + "\n", + "- Bhargava, A. Y. (2016). *Grokking algorithms: An illustrated guide\n", + " for programmers and other curious people.* Manning. Chapter 6, 10,\n", + " 11.\n", + "\n", + "- Cormen, T. H. (Ed.). (2009). *Introduction to algorithms* (3rd ed).\n", + " MIT Press. Chapter 12 and 20.\n", + "\n", + "- Horton, D., & Liu, D. (2023, November 19). *CSC148 Lecture Notes*.\n", + " https://www.teach.cs.toronto.edu/~csc148h/winter/notes/" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": "3" + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/slides-resources/1_motivation-big-o/images/big-o-viz.jpg b/01_slides/images/big_o_viz.jpg similarity index 100% rename from slides-resources/1_motivation-big-o/images/big-o-viz.jpg rename to 01_slides/images/big_o_viz.jpg diff --git a/slides-resources/3_recursion/images/box-recursion.png b/01_slides/images/box_recursion.png similarity index 100% rename from slides-resources/3_recursion/images/box-recursion.png rename to 01_slides/images/box_recursion.png diff --git a/slides-resources/5_optimization/images/dynamic.png b/01_slides/images/dynamic.png similarity index 100% rename from slides-resources/5_optimization/images/dynamic.png rename to 01_slides/images/dynamic.png diff --git a/slides-resources/4_recursive-ds/images/graph-anat.png b/01_slides/images/graph_anat.png similarity index 100% rename from slides-resources/4_recursive-ds/images/graph-anat.png rename to 01_slides/images/graph_anat.png diff --git a/slides-resources/4_recursive-ds/images/graph-bfs.png b/01_slides/images/graph_bfs.png similarity index 100% rename from slides-resources/4_recursive-ds/images/graph-bfs.png rename to 01_slides/images/graph_bfs.png diff --git a/slides-resources/4_recursive-ds/images/graph-weight.png b/01_slides/images/graph_weight.png similarity index 100% rename from slides-resources/4_recursive-ds/images/graph-weight.png rename to 01_slides/images/graph_weight.png diff --git a/slides-resources/4_recursive-ds/images/insertion.png b/01_slides/images/insertion.png similarity index 100% rename from slides-resources/4_recursive-ds/images/insertion.png rename to 01_slides/images/insertion.png diff --git a/slides-resources/2_ds-search-sort/images/insertion-sort.png b/01_slides/images/insertion_sort.png similarity index 100% rename from slides-resources/2_ds-search-sort/images/insertion-sort.png rename to 01_slides/images/insertion_sort.png diff --git a/slides-resources/6_slow-code/images/memo.png b/01_slides/images/memo.png similarity index 100% rename from slides-resources/6_slow-code/images/memo.png rename to 01_slides/images/memo.png diff --git a/slides-resources/3_recursion/images/merge-sort.png b/01_slides/images/merge_sort.png similarity index 100% rename from slides-resources/3_recursion/images/merge-sort.png rename to 01_slides/images/merge_sort.png diff --git a/slides-resources/3_recursion/images/rec-call-1.png b/01_slides/images/rec_call_1.png similarity index 100% rename from slides-resources/3_recursion/images/rec-call-1.png rename to 01_slides/images/rec_call_1.png diff --git a/slides-resources/3_recursion/images/rec-call-2.png b/01_slides/images/rec_call_2.png similarity index 100% rename from slides-resources/3_recursion/images/rec-call-2.png rename to 01_slides/images/rec_call_2.png diff --git a/slides-resources/3_recursion/images/rec-call-3.png b/01_slides/images/rec_call_3.png similarity index 100% rename from slides-resources/3_recursion/images/rec-call-3.png rename to 01_slides/images/rec_call_3.png diff --git a/slides-resources/4_recursive-ds/images/tree.png b/01_slides/images/tree.png similarity index 100% rename from slides-resources/4_recursive-ds/images/tree.png rename to 01_slides/images/tree.png diff --git a/slides-resources/4_recursive-ds/images/tree-num.png b/01_slides/images/tree_num.png similarity index 100% rename from slides-resources/4_recursive-ds/images/tree-num.png rename to 01_slides/images/tree_num.png diff --git a/slides-resources/4_recursive-ds/images/tree-unbal.png b/01_slides/images/tree_unbal.png similarity index 100% rename from slides-resources/4_recursive-ds/images/tree-unbal.png rename to 01_slides/images/tree_unbal.png diff --git a/02_assignments/assignment_1.ipynb b/02_assignments/assignment_1.ipynb new file mode 100644 index 0000000..66a2645 --- /dev/null +++ b/02_assignments/assignment_1.ipynb @@ -0,0 +1,337 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Coding Problems\n", + "\n", + "## Objective\n", + "\n", + "This assignment aims to demonstrate how to study a data structures or algorithms question in depth to prepare for an industry coding interview. Leetcode is a popular coding practice site that many use to practice for technical interviews. Like behavioral interviews, it's important to practice and keep your skills sharp.\n", + "\n", + "## Group Size\n", + "\n", + "Please complete this individually.\n", + "\n", + "## Part 1:\n", + "\n", + "_*You will be assigned one of three problems based of your first name. Execute the code below, and that will tell you your assigned problem. Include the output as part of your submission (do not clear the output). The problems are based-off problems from Leetcode.*_\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print((hash('your first name') % 3) + 1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + " Question 1\n", + "\n", + " # Question One: Check Duplicates in Tree\n", + "\n", + " Given the `root` of a binary tree, check whether it is contains a duplicate value. If a duplicate exists, return the duplicate value. If there are multiple duplicates, return the one with the closest distance to the root. If no duplicate exists, return -1.\n", + "\n", + " ## Examples\n", + "\n", + " ### Example 1\n", + "\n", + " ![](images/q1_ex1.png \"Example 1\")\n", + "\n", + " Input: `root = [1, 2, 2, 3, 5, 6, 7]` *What traversal method is this?*\n", + "\n", + " Output: 2\n", + "\n", + " ### Example 2\n", + "\n", + " ![](images/q1_ex2.png \"Example 2\")\n", + "\n", + " Input: `root = [1, 10, 2, 3, 10, 12, 12]`\n", + "\n", + " Output: 10\n", + "\n", + " ### Example 3\n", + "\n", + " ![](images/q1_ex3.png \"Example 3\")\n", + "\n", + " Input: `root = [10, 9, 8, 7]`\n", + "\n", + " Output: -1\n", + "\n", + "
\n", + "\n", + "#### Starter Code for Question 1" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Definition for a binary tree node.\n", + "# class TreeNode(object):\n", + "# def __init__(self, val = 0, left = None, right = None):\n", + "# self.val = val\n", + "# self.left = left\n", + "# self.right = right\n", + "def is_symmetric(root: TreeNode) -> int:\n", + " # TODO" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + " Question 2\n", + "\n", + " # Question Two: Path to Leaves\n", + "\n", + " Given the `root` of a binary tree, return all root to leaf paths in any order.\n", + "\n", + " ## Examples\n", + "\n", + " ### Example 1\n", + "\n", + " ![](images/q1_ex1.png \"Example 1\")\n", + "\n", + " Input: `root = [1, 2, 2, 3, 5, 6, 7]` *What traversal method is this?*\n", + "\n", + " Output: [[1, 2, 3], [1, 2, 5], [1, 2, 6], [1, 2, 7]]\n", + "\n", + " ### Example 2\n", + "\n", + " ![](images/q1_ex3.png \"Example 2\")\n", + "\n", + " Input: `root = [10, 9, 8, 7]`\n", + "\n", + " Output: [[10, 7], [10, 9, 8]]\n", + "\n", + "
\n", + "\n", + "#### Starter Code for Question 2" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Definition for a binary tree node.\n", + "# class TreeNode(object):\n", + "# def __init__(self, val = 0, left = None, right = None):\n", + "# self.val = val\n", + "# self.left = left\n", + "# self.right = right\n", + "def bt_path(root: TreeNode) -> List[List[int]]:\n", + " # TODO" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + " Question 3\n", + "\n", + " # Question Three: Missing Number in Range\n", + " \n", + " You are given a list containing `n` integers in the range `[0, n]`. Return a list of numbers that are missing from the range `[0, n]` of the array. If there is no missing number, return -1. Note, all the integers in the list may not be unique.\n", + " \n", + " ## Examples\n", + "\n", + " ### Example 1\n", + "\n", + " Input: `lst = [0, 2]`\n", + "\n", + " Output: [1]\n", + "\n", + " ### Example 2\n", + "\n", + " Input: `lst = [5, 0, 1]`\n", + "\n", + " Output: [2, 3, 4]\n", + "\n", + " ### Example 3\n", + "\n", + " Input: `lst = [6, 8, 2, 3, 5, 7, 0, 1, 10]`\n", + "\n", + " Output: [4, 9]\n", + "\n", + "
\n", + "\n", + "#### Starter Code for Question 3\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def missing_num(nums: List) -> int:\n", + " # TODO" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## Part 2:\n", + "\n", + "- Paraphrase the problem in your own words\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Your answer here" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "- In the .md file containing your problem, there are examples that illustrate how the code should work. Create 2 new examples that demonstrate you understand the problem.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Your answer here" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "- Code the solution to your assigned problem in Python (code chunk). Try to find the best time and space complexity solution!\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Your answer here" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "- Explain why your solution works\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Your answer here" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "- Explain the problem’s and space complexity\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Your answer here" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "- Explain the thinking to an alternative solution (no coding required, but a classmate reading this should be able to code it up based off your text)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Your answer here" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Submission Requirements\n", + "\n", + "Create and submit a public GitHub repository with the following:\n", + "\n", + "- The PDF of the problem you have solved\n", + "\n", + "## Evaluation Criteria\n", + "\n", + "- Problem is accurately stated in the student’s own words\n", + "\n", + "- Two examples are correct and easily understandable\n", + "\n", + "- Correctness, time, and space complexity of the coding solution\n", + "\n", + "- Clarity in explaining why the solution works, its time and space complexity\n", + "\n", + "- Clarity in the proposal to the alternative solution\n", + "\n", + "## Submission Deadline\n", + "TBD\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.7" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/02_assignments/assignment_2.ipynb b/02_assignments/assignment_2.ipynb new file mode 100644 index 0000000..5cee768 --- /dev/null +++ b/02_assignments/assignment_2.ipynb @@ -0,0 +1,200 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Practice Interview\n", + "\n", + "## Objective\n", + "\n", + "_*The partner assignment aims to provide students with the opportunity to practice coding in an interview context. You will analyze your partner's Assignment 1. Moreover, code reviews are common practice in a software development team. This assignment should give you a taste of the code review process.*_\n", + "\n", + "## Group Size\n", + "\n", + "Each group should have 2 people. You will be assigned a partner\n", + "\n", + "## Part 1:\n", + "\n", + "You and your partner should send to each other your Assignment 1 submission." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## Part 2:\n", + "\n", + "Create a Jupyter Notebook, create 6 of the following headings, and complete the following about the your partner's assignment 1:\n", + "\n", + "- Paraphrase the problem in your own words.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Your answer here" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "- Create 1 new example that demonstrates you understand the problem. Trace/walkthrough 1 example that your partner made and explain it.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Your answer here" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "- Copy the solution your partner wrote. \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Your answer here" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "- Explain why their solution works in your own words.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Your answer here" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "- Explain the problem’s time and space complexity in your own words.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Your answer here" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "- Critique your partner's solution, including explanation, if there is anything should be adjusted.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Your answer here" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## Part 3:\n", + "\n", + "Please write a 200 word reflection documenting your studying process from assignment 1, and your presentation and reviewing experience with your partner at the bottom of the Jupyter Notebook under a new heading \"Reflection.\" Again, export this Notebook as pdf.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Reflection" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Your answer here" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## Submission Requirements \n", + "\n", + "In the same repository you submitted assignment 1, please ADD the following:\n", + "\n", + "- The PDF of the Jupyter Notebook you created for Assignment 2.\n", + "\n", + "Please name your files appropriately!\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## Evaluation Criteria\n", + "\n", + "We are looking for the similar points as Assignment 1\n", + "\n", + "- Problem is accurately stated in the student’s own words\n", + "\n", + "- New example is correct and easily understandable\n", + "\n", + "- Correctness, time, and space complexity of the coding solution\n", + "\n", + "- Clarity in explaining why the solution works, its time and space complexity\n", + "\n", + "- Quality of critique of your partner's assignment, if necessary\n", + "\n", + "## Submission Deadline\n", + "\n", + "TBD\n" + ] + } + ], + "metadata": { + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/assignments/images/q1_ex1.png b/02_assignments/images/q1_ex1.png similarity index 100% rename from assignments/images/q1_ex1.png rename to 02_assignments/images/q1_ex1.png diff --git a/assignments/images/q1_ex2.png b/02_assignments/images/q1_ex2.png similarity index 100% rename from assignments/images/q1_ex2.png rename to 02_assignments/images/q1_ex2.png diff --git a/assignments/images/q1_ex3.png b/02_assignments/images/q1_ex3.png similarity index 100% rename from assignments/images/q1_ex3.png rename to 02_assignments/images/q1_ex3.png diff --git a/03_homework/1_motivation_big_o_homework.ipynb b/03_homework/1_motivation_big_o_homework.ipynb new file mode 100644 index 0000000..5d2bb01 --- /dev/null +++ b/03_homework/1_motivation_big_o_homework.ipynb @@ -0,0 +1,48 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "79078d67-1cad-401a-81b3-4d4c6b9548f3", + "metadata": {}, + "source": [ + "# 1: Motivation and Big-O\n", + "\n", + "- Cormen: Chapter 1 exercises\n", + "\n", + " - 1.2-1, 1.2-2, 1.2-3\n", + "\n", + "- Bhargava: Chapter 1 exercises\n", + "\n", + " - 1.3 to 1.5\n", + "\n", + "- Additional (for the mathematically inclined)\n", + "\n", + " - In CS, log is usually base 2, but a strong distinction is not\n", + " made because *logs of different bases only differ by a constant\n", + " factor* and constants are dropped in Big-O. Show this is true\n", + "\n", + " - Show that exponents of different bases **do not** differ by a\n", + " constant factor\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4b64abc2", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/03_homework/2_ds_search_sort_homework.ipynb b/03_homework/2_ds_search_sort_homework.ipynb new file mode 100644 index 0000000..03215bb --- /dev/null +++ b/03_homework/2_ds_search_sort_homework.ipynb @@ -0,0 +1,116 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "c967b351", + "metadata": {}, + "source": [ + "# 2: Data Structures, Searching, and Sorting\n", + "\n", + "- Bhargava: Chapter 5\n", + "\n", + " - 5.1 to 5.4\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "46689452", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "cdde6e73", + "metadata": {}, + "source": [ + "\n", + "- Give examples of 2 situations to use a queue and 2 situations to use\n", + " a stack\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f167b945", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "69af89ae", + "metadata": {}, + "source": [ + "\n", + "- In Python, code a `stack` class with `is_empty`, `push`, and `pop`\n", + " methods using the end of a Python list as the top of the stack.\n", + " Bonus: Compare the run time of using the start of the list versus\n", + " the end of the list as the top of the stack using the `timeit`\n", + " library!\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b7469ec3", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "1ab22994", + "metadata": {}, + "source": [ + "\n", + "- In Python, code a `binary_search` function.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b6220791", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "a19b4c47", + "metadata": {}, + "source": [ + "\n", + "- In Python, code a `hash_table` that can hash 4 values.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e5fe66d6", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/03_homework/3_recursion_homework.ipynb b/03_homework/3_recursion_homework.ipynb new file mode 100644 index 0000000..e0a7c03 --- /dev/null +++ b/03_homework/3_recursion_homework.ipynb @@ -0,0 +1,192 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "bc8494e5", + "metadata": {}, + "source": [ + "# 3: Recursion\n", + "\n", + "- Bhargava: Chapter 4 exercises\n", + " - 4.1 to 4.8\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b91dc2a6", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "c6f4ba73", + "metadata": {}, + "source": [ + "\n", + "- Write a recursive function that produces the\n", + " `RecursionError: maximum recursion depth exceeded` error.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "aad8ef5f", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "812428fe", + "metadata": {}, + "source": [ + "\n", + "- Write a iterative function to calculate the $n$th Fibonacci number.\n", + " What is its time and space complexity?\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8707a768", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "4f69b976", + "metadata": {}, + "source": [ + "\n", + "- Write a recursive function to determine if a string is a palindrome.\n", + " What is its time and space complexity?\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1e77b6d6", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "a25c6ecc", + "metadata": {}, + "source": [ + "\n", + "- Write a recursive function to check if a given positive integer is a\n", + " prime number. What is its time and space complexity?\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "09f85e69", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "abe26857", + "metadata": {}, + "source": [ + "\n", + "- Suppose you have a plot of land and want to divide the land into\n", + " even square plots, while keeping the plots as big as possible. How\n", + " would you do this using D&C? See Bhargava pg. 52.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ffb7e377", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "7b8b36ed", + "metadata": {}, + "source": [ + "\n", + "- Explain why the “merge” step in mergesort is $O(n)$\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b3176290", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "2ded9965", + "metadata": {}, + "source": [ + "\n", + "- Implement mergesort. You might find using helper functions useful.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f9447db8", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "44d62627", + "metadata": {}, + "source": [ + "\n", + "- Write a recursive function to perform binary search on a sorted list\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b6a972f3", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/03_homework/4_recursive_ds_homework.ipynb b/03_homework/4_recursive_ds_homework.ipynb new file mode 100644 index 0000000..7362380 --- /dev/null +++ b/03_homework/4_recursive_ds_homework.ipynb @@ -0,0 +1,144 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "df8050ef", + "metadata": {}, + "source": [ + "# 4: Recursive Data Structures\n", + "\n", + "- Cormen: Chapter 10 exercises\n", + " - 10.3-1, 10.3-2, 10.3-3\n", + "\n", + "- Bhargava: Chapter 6 exercises\n", + " - 6.1 to 6.5\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "305754c9", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "572471d3", + "metadata": {}, + "source": [ + "\n", + "- Implement preorder, postorder, and level order traversal. Determine\n", + " the time and space complexity in each case\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "677f9d8f", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "0bf7e104", + "metadata": {}, + "source": [ + "\n", + "- Implement a function that find an element in a BST and deletes it.\n", + " The descendants of the deleted node are given to the deleted node’s\n", + " parent. (Hard)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "517880a2", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "3f935680", + "metadata": {}, + "source": [ + "\n", + "- Using the `graph` class from the slides, implement BST search such\n", + " that it stops and tell you the distance the node is from the\n", + " starting point.\n", + " - For instance, if we searched for 7 in the graph given in the\n", + " slides, it would return `\"Found! Distance 2\"`.\n", + " - If we searched for 100 in the graph, it would return\n", + " `\"Not found!\"`\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1a51097c", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "24183ade", + "metadata": {}, + "source": [ + "\n", + "- Implement postorder graph traversal using the `graph` class from the\n", + " slides.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d6d4674c", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "da38771b", + "metadata": {}, + "source": [ + "\n", + "- Implement a function using recursion to find the sum heterogeneous\n", + " nested lists such as \\[\\[1, \\[2\\]\\], \\[\\[\\[3\\]\\]\\], 4, \\[\\[5, 6\\],\n", + " \\[\\[\\[7\\]\\]\\]\\]\\]." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "dd765491", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/04_instructors/README.md b/04_instructors/README.md new file mode 100644 index 0000000..49ca7e3 --- /dev/null +++ b/04_instructors/README.md @@ -0,0 +1,55 @@ +# Technical Facilitator Playbook + +## How do you interact with the repo? +The Technical Facilitator will teach using the content provided in the `/01_slides` directory. You are allowed to live code with them during your lecture. Just make sure you upload the live_coding files to a new directory called `/live_coding` under `/01_slides` to this repository using a new branch and open up a pull request for it to be merged. + +## How does the module flow? +The module is organized into 4 main directories: +1. Slides +2. Assignments +3. Homework + +The `/01_slides` directory would be the first directory anyone would see, and contains the lecture slides, learning outcomes, and anything related to the learning outcomes such as live_coding files. + +The `/02_assignments` directory is the second directory containing the assignments that would be marked as a `pass` or `fail`. Compared to `/04_homework`, the assignments are slightly more difficult and help encapsulate the learnings for the week. All assignments are mandatory to complete and deliver. + +The `/04-homework` directory contains all the homework, a learner can do to demonstrate mastery of the learning contents. Unlike the `/02_assignments` directory, all homework is optional but is highly encouraged to attempt. + +### Week 1 + +| Lesson | Topic | Resources | +|--------|-------------------------------------------------------------|------------| +| 1 | Motivation and Big-O Notation | [Slides](https://github.com/UofT-DSI/algorithms_and_data_structures/blob/main/lessons/1_motivation-big-o.pdf) | +| 2 | Data Structures, Sorting, and Searching | [Slides](https://github.com/UofT-DSI/algorithms_and_data_structures/blob/main/lessons/2_ds-search-sort.pdf) | +| 3 | Recursion | [Slides](https://github.com/UofT-DSI/algorithms_and_data_structures/blob/main/lessons/3_recursion.pdf) | + +### Week 2 + +| Lesson | Topic | Resources | +|--------|-------------------------------------------------------------|------------| +| 4 | Recursion | [Slides](https://github.com/UofT-DSI/algorithms_and_data_structures/blob/main/lessons/3_recursion.pdf) | +| 5 | Recursive Data Structures | [Slides](https://github.com/UofT-DSI/algorithms_and_data_structures/blob/main/lessons/4_recursive-ds.pdf) | + +## How do you assign assignments? +Assignments are given and assigned at the start of each week at the end of the first lecture. The Technical Facilitator will announce to the learners what the assignment is about, and how everything they will learn within the week will equip them to work on the assignment. + +## How an assignment is expected to be completed and delivered? +Learners are expected to complete the assignment before the first lecture of the following week. They will deliver the assignment by opening up a pull request on their copied repo. The learner will also add a Learning Support Staff as a reviewer indicating they delivered a completed assignment, and it is ready to be graded as a `pass` or `fail`. + +## What are the criteria for `pass` or `fail`? +The criteria for a `pass` or `fail` is if all parts of the program are working, and nothing in the code is broken. For some assignments, a rubric will be given outlining the criteria needed to pass. + +## How to mark? +If the learner's solution works, then they `pass`! You or the Learning Support Staff would only need to focus on providing them constructive feedback on how they can improve their code. If the solution does not work, then they `fail`, and you would provide any constructive feedback on their existing code, and encourage them to get their solution working. + +## How will feedback be given? +Feedback will be given through the pull request a learner had made, allowing them to make revisions if needed. To maximize learning, feedback must be constructive, and specific. + +
+ +## Definitions +**Lecture**: A Lecture is a synchronous period, lasting up to 3 hours, where the Technical Facilitator will facilitate and deliver the contents and learning outcomes online through Zoom. Learners are encouraged to participate and ask questions as they learn. Breaks are given if the lecture goes past an hour, with a 10-minute break given for every hour still in a lecture. + +**Work Period**: A Work Period is an asynchronous period, lasting up to 3 hours. The learners will work on their assignments and/or homework during this block of time. A Learning Support Staff will be present online through Zoom to assist the learners and answer any questions they may have. As work periods are asynchronous and flexible, learners can choose to work on their own time. However, it is encouraged to work during the block of time when a Learning Support Staff is present. + +**Assignments**: An Assignment is a work assigned as part of the certification. They are slightly more difficult, providing an opportunity for learners to integrate and synthesize what they have learned throughout the week to meet the set learning outcomes. diff --git a/05_additional_resources/homework/5_optimization_homework.ipynb b/05_additional_resources/homework/5_optimization_homework.ipynb new file mode 100644 index 0000000..78d3795 --- /dev/null +++ b/05_additional_resources/homework/5_optimization_homework.ipynb @@ -0,0 +1,97 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "7b7386ac", + "metadata": {}, + "source": [ + "# 5: Optimization\n", + "\n", + "- Bhargava: Chapter 9 exercises\n", + " - 9.1, 9.2\n", + " - Read the knapsack problem FAQs on page 171\n", + " - Follow the example about longest common substring on page 178\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "992abc26", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "5349aa98", + "metadata": {}, + "source": [ + "\n", + "- Write the code to brute force the diet problem. Compare the run\n", + " times using the `timeit` library.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "402edd57", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "12f36004", + "metadata": {}, + "source": [ + "\n", + "- Modify the code from the slide such that there is an upper bound for\n", + " calories and vitamins.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "93376267", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "12fe4558", + "metadata": {}, + "source": [ + "\n", + "- Page 17 of Bhargava covered the traveling sales person problem. Is\n", + " it possible to improve the proposed solution using any method we\n", + " learned today?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a88cb091", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/05_additional_resources/homework/6_slow-code_homework.ipynb b/05_additional_resources/homework/6_slow-code_homework.ipynb new file mode 100644 index 0000000..20e29de --- /dev/null +++ b/05_additional_resources/homework/6_slow-code_homework.ipynb @@ -0,0 +1,91 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "55954002", + "metadata": {}, + "source": [ + "# 6: Slow Code\n", + "\n", + "- Bhargava: Chapter 8 exercises\n", + " - 8.1 - 8.8\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8643da00", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "4a726575", + "metadata": {}, + "source": [ + "\n", + "- Vectorize the second code chunk in the Parallelization section of the lesson 6 slides\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "286b4a12", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "6e608f44", + "metadata": {}, + "source": [ + "\n", + "- [Find the longest palindrome from a string](https://leetcode.com/problems/longest-palindrome/) Hint: use a greedy algorithm\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "48666b82", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "9a3f618a", + "metadata": {}, + "source": [ + "\n", + "- [Computing Pascal’s triangle](https://leetcode.com/problems/pascals-triangle/) Hint: use dynamic programming" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bb5fb8be", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/05_additional_resources/lessons/5_optimization.ipynb b/05_additional_resources/lessons/5_optimization.ipynb new file mode 100644 index 0000000..629d63f --- /dev/null +++ b/05_additional_resources/lessons/5_optimization.ipynb @@ -0,0 +1,436 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "c69aac2a", + "metadata": {}, + "source": [ + "# Optimization\n", + "\n", + "## Outline\n", + "\n", + "- Setting up an Optimization Problem\n", + "\n", + "- Dynamic Programming\n", + "\n", + "# Setting up an Optimization Problem\n", + "\n", + "## Types of Optimization Problems\n", + "\n", + "- *Optimization* refers to maximizing or minimizing a function with respect to its inputs\n", + "\n", + "- Continuous optimization is when all the variables in the problem are continuous\n", + "\n", + "- Discrete optimization occurs when some or all of the variables in the problem are discrete\n", + "\n", + " - Continuous: how many hours should workers in a factory work to maximize profits?\n", + "\n", + " - Discrete: how do I allocate TAs to teach within a department?\n", + "\n", + "## Autocorrect Example\n", + "\n", + "- Autocorrect in an optimization algorithm. It has two parts\n", + "\n", + " - We need a list of known words and their use frequency\n", + "\n", + " - Classify errors are either: add a letter, remove a letter, substitute a letter, or switched two adjacent letters\n", + "\n", + "- We quantify the error distance as the of errors in a string.\n", + "\n", + " - \"ovon\" -\\> \"oven\" is error distance 1\n", + "\n", + " - \"ovvvn\" -\\> \"ovven\" -\\> \"oven\" is error distance 2\n", + "\n", + "## Autocorrect Example\n", + "\n", + "1. Check whether a word is in the dictionary\n", + "\n", + "2. If the word is not in the dictionary, generate words that are error distance 1 or 2 from the given word\n", + "\n", + "3. Rank the most likely correction given the error distance and use frequency\n", + "\n", + "- \"thene\" could be \"then\" or \"the,\" but but \"the\" is more common\n", + "\n", + "## Autocorrect Example\n", + "\n", + "What are the steps to model the problem?\n", + "\n", + "- We have the specification of possible inputs\n", + "\n", + " - Text, discrete\n", + "\n", + "- The *objective function* is the function you are trying to maximize more minimize\n", + "\n", + " - Function with 2 variables: error distance and frequency\n", + "\n", + "- Are we maximizing or minimizing the objective function\n", + "\n", + " - Minimize error distance and maximize frequency\n", + "\n", + "- Identify the *constraints* in the problem\n", + "\n", + " - Only looking for words in the dictionary, only looking for words with error distance 1 or 2\n", + "\n", + "## Shortest Path in a Graph Example\n", + "\n", + "- Finding the shortest path between two nodes on a graph is a discrete optimization problem\n", + "\n", + "- The range of inputs are all possible paths from A to B\n", + "\n", + "- The objective function is the length of the path\n", + "\n", + "- We are minimizing the objective function\n", + "\n", + "- And there are no constraints\n", + "\n", + "## Brute Force\n", + "\n", + "Consider the following problems and proposed solutions\n", + "\n", + "- You want to consume all necessary nutrients and calories at the lowest cost. So, you find all valid combinations of foods and find their cost.\n", + "\n", + " - If there are 10 foods, and 15 nutritional categories, then there are $2^{10 \\times 15} = 1.42 \\times 10^{45}$ combinations to evaluate\n", + "\n", + " - We will fix this with *linear programming*\n", + "\n", + "- You are robbing a store but the escape vent can only carry 4 kg of goods. To steal the maximum money's worth of goods, you calculate every set of goods and find the one giving the most value\n", + "\n", + " - If there are 3 goods in the store, then there are 8 combinations. But with 4 goods, there are 16 combinations. This solution is $O(2^n)$ time.\n", + "\n", + " - We will fix this with *dynamic programming*\n", + "\n", + "# Linear Programming\n", + "\n", + "## Linear Programming\n", + "\n", + "- Linear programming (LP) takes advantage of a program being linear. (what does that mean?)\n", + "\n", + "- If we're considering a food that already fills one nutrition category, we can eliminate all other combinations that use the food\n", + "\n", + " - Sounds obvious, but brute forcing doesn't consider this!\n", + "\n", + "- By this process of elimination, we make the problem much faster to solve.\n", + "\n", + "## Implementing LP in Python\n", + "\n", + "Let's consider a very simple diet problem where the goal is to minimize the cost. There are 3 foods: apples (\\$3), bananas (\\$1), and oranges (\\$3). We want to meet 3 constraints: of vitamin A, a number of vitamin B, and a number of calories.\n", + "\n", + "- Assume there is no upper limit on calories or vitamins\n", + "\n", + "- The PuLP library is a popular linear programming library to do this in Python\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "76bd880b", + "metadata": {}, + "outputs": [], + "source": [ + "from pulp import LpProblem, LpMinimize, LpVariable, lpSum" + ] + }, + { + "cell_type": "markdown", + "id": "c2b917d4", + "metadata": {}, + "source": [ + "## Implementing LP in Python\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6760b8ad", + "metadata": {}, + "outputs": [], + "source": [ + "#| output: false\n", + "diet_problem = LpProblem(\"Diet_Problem\", LpMinimize)\n", + "\n", + "# Define output variables\n", + "x1 = LpVariable(\"Apples\", lowBound=0)\n", + "x2 = LpVariable(\"Bananas\", lowBound=0)\n", + "x3 = LpVariable(\"Oranges\", lowBound=0)\n", + "\n", + "# Define objective function (minimize cost)\n", + "diet_problem += 3 * x1 + x2 + 3 * x3, \"Total_Cost\"\n", + "\n", + "# Define nutritional constraints\n", + "diet_problem += 50 * x1 + 120 * x2 + 60 * x3 >= 2000, \"Calories\"\n", + "diet_problem += 2 * x1 + 3 * x2 + 5 * x3>= 40, \"Vitamin A\"\n", + "diet_problem += 12 * x1 + x2 + 2 * x3>= 50, \"Vitamin B\"\n", + "\n", + "diet_problem.solve()" + ] + }, + { + "cell_type": "markdown", + "id": "09f0b203", + "metadata": {}, + "source": [ + "## Implementing LP in Python\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b5cd1297", + "metadata": {}, + "outputs": [], + "source": [ + "print(\"Optimal Diet:\")\n", + "print(f\"Apples: {round(x1.value(), 2)} units\")\n", + "print(f\"Bananas: {round(x2.value(), 2)} units\")\n", + "print(f\"Oranges: {round(x3.value(), 2)} units\")\n", + "print(f\"Total Cost: {round(diet_problem.objective.value(), 2)}\")" + ] + }, + { + "cell_type": "markdown", + "id": "4686b0d5", + "metadata": {}, + "source": [ + "# Dynamic Programming\n", + "\n", + "## Problem\n", + "\n", + "The escape vent can carry only 4 kg of goods. The items are:\n", + "\n", + "- Stereo: \\$3000, 4 kg\n", + "- Laptop: \\$2000, 3 kg\n", + "- Guitar: \\$1500, 1 kg\n", + "\n", + "We've established the brute force is not a valid general solution (although feasible in this case)\n", + "\n", + "- The idea behind dynamic programming is that we'll solve subproblems that will lead to a solution to the big problem. We can pack items starting by considering smaller, sub backpacks\n", + "\n", + "## Guitar Row\n", + "\n", + "- Each dynamic programming problem starts with a grid\n", + "- Each cell contains a list of items that can fit at that point\n", + "- For cell Guitar 1, a guitar will fit there. It will also fit in cell Guitar 2, 3, 4\n", + "- Sounds redundant, but let's keep going\n", + "\n", + "![](images/dynamic.png)\n", + "\n", + "## Stereo Row\n", + "\n", + "- In the second row, we can steal the stereo or the guitar.\n", + "- At 1 kg, you can only steal the guitar, same as for every other cell until Stereo 4, at which point you can steal the stereo and only the stereo.\n", + "\n", + "![](images/dynamic.png)\n", + "\n", + "## Laptop Row\n", + "\n", + "- Now we can steal all 3 items\n", + "- In the first two columns, we still can only steal the guitar. But in Laptop 3, we can steal the laptop\n", + "- Laptop 4 is the interesting step. We could steal only the stereo, or the laptop and something else for 1 kg. What is that 1 kg item?\n", + "- According to the above row, the max value for 1 kg is the guitar!\n", + "\n", + "![](images/dynamic.png)\n", + "\n", + "## Solution\n", + "\n", + "- If we stole the guitar and laptop, the total value is 3500, which is greater than just stealing the stereo\n", + "- Thus, we should steal guitar and laptop\n", + "\n", + "![](images/dynamic.png)\n", + "\n", + "## Formula for each cell\n", + "\n", + "- We skipped some very trivial steps in calculating cells aside from the last one\n", + "- Here's the explicit formula to calculate each cell's value\n", + "\n", + "Let $i$ be the row and $j$ be the column.\n", + "\n", + "$$\n", + "\\text{cell}[i][j] = \\max\n", + " \\begin{cases}\n", + " \\text{the previous max at cell}[i-1][j]\\\\\n", + " \\text{value of current item + value of remaining space}\n", + " \\end{cases}\n", + "$$\n", + "\n", + "The value of remaining space is cell\\[i-1\\]\\[j-item's weight\\]\n", + "\n", + "## Python Implementation\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "06dd385b", + "metadata": {}, + "outputs": [], + "source": [ + "def initialize_table(rows, cols):\n", + " return [[0] * cols for _ in range(rows)]" + ] + }, + { + "cell_type": "markdown", + "id": "3fe47df4", + "metadata": {}, + "source": [ + "## Python Implementation\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c930c579", + "metadata": {}, + "outputs": [], + "source": [ + "def knapsack_dynamic_programming(values, weights, capacity):\n", + " n = len(values)\n", + " dp = initialize_table(n + 1, capacity + 1)\n", + "\n", + " # Fill the table using dynamic programming\n", + " for i in range(1, n + 1):\n", + " for w in range(capacity + 1):\n", + " # Include the current item if it fits in the knapsack\n", + " if weights[i - 1] <= w:\n", + " dp[i][w] = max(dp[i - 1][w], \\\n", + " values[i - 1] + dp[i - 1][w - weights[i - 1]])\n", + " else:\n", + " dp[i][w] = dp[i - 1][w]\n", + "\n", + " selected_items = traceback(dp, values, weights, capacity)\n", + "\n", + " return dp[n][capacity], selected_items" + ] + }, + { + "cell_type": "markdown", + "id": "8e43fb8a", + "metadata": {}, + "source": [ + "## Python Implementation\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b9969e85", + "metadata": {}, + "outputs": [], + "source": [ + "def traceback(dp, weights, capacity):\n", + " selected_items = []\n", + " i, w = len(dp) - 1, capacity\n", + "\n", + " while i > 0 and w > 0:\n", + " if dp[i][w] != dp[i - 1][w]:\n", + " selected_items.append(i - 1)\n", + " w -= weights[i - 1]\n", + " i -= 1\n", + "\n", + " selected_items.reverse()\n", + " return selected_items" + ] + }, + { + "cell_type": "markdown", + "id": "f76524a7", + "metadata": {}, + "source": [ + "## Python Implementation\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b7312b2e", + "metadata": {}, + "outputs": [], + "source": [ + "values = [3000, 2000, 1500]\n", + "weights = [4, 3, 1]\n", + "capacity = 4\n", + "\n", + "max_value, selected_items = \\\n", + "knapsack_dynamic_programming(values, weights, capacity)\n", + "\n", + "print(\"Maximum value:\", max_value)\n", + "print(\"Selected items:\", selected_items)" + ] + }, + { + "cell_type": "markdown", + "id": "f7630cbc", + "metadata": {}, + "source": [ + "## Live Coding\n", + "\n", + "Let a substring be *upper-lower* if for every letter of the alphabet that the string contains, it appears both in uppercase and lowercase. For example, `aaA` is upper-lower because it has both \"A\" and \"a.\" `aAbb` is not upper-lower because it lacks an upper case \"B.\"\n", + "\n", + "Given string, return the longest substring that is *upper-lower.*\n", + "\n", + "### Example\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8ada5a46", + "metadata": {}, + "outputs": [], + "source": [ + "#| eval: false\n", + "# INPUT\n", + "string = \"AqeQEfa\"\n", + "# OUTPUT\n", + "\"qeQE\"" + ] + }, + { + "cell_type": "markdown", + "id": "a8afc9a9", + "metadata": {}, + "source": [ + "# Recommended Problems and References\n", + "\n", + "## Recommended Problems and Readings\n", + "\n", + "- Cormen (highly optional):\n", + "\n", + "- Chapter 14, more advanced dynamic programming\n", + "\n", + "- Chapter 29, more advanced linear programming\n", + "\n", + "- Bhargava: Chapter 9 exercises\n", + "\n", + " - 9.1, 9.2\n", + "\n", + " - Read the knapsack problem FAQs on page 171\n", + "\n", + " - Follow the example about longest common substring on page 178\n", + "\n", + "## Recommended Problems\n", + "\n", + "- Write the code to brute force the diet problem. Compare the run times using the `timeit` library.\n", + "\n", + "- Modify the code from the slide such that there is an upper bound for calories and vitamins.\n", + "\n", + "- Page 17 of Bhargava covered the travelling sales person problem. Is it possible to improve the proposed solution using any method we learned today?\n", + "\n", + "## References\n", + "\n", + "- Bhargava, A. Y. (2016). *Grokking algorithms: An illustrated guide for programmers and other curious people.* Manning. Chapter 1.\n", + "\n", + "- Cormen, T. H. (Ed.). (2009). *Introduction to algorithms* (3rd ed). MIT Press. Chapter 1 and 3." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/05_additional_resources/lessons/6_slow_code.ipynb b/05_additional_resources/lessons/6_slow_code.ipynb new file mode 100644 index 0000000..7392192 --- /dev/null +++ b/05_additional_resources/lessons/6_slow_code.ipynb @@ -0,0 +1,462 @@ +{ + "cells": [ + { + "attachments": { + "./images/memo.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABcoAAAK2CAIAAADxLzguAAAAIGNIUk0AAHomAACAhAAA+gAAAIDo\nAAB1MAAA6mAAADqYAAAXcJy6UTwAAAAGYktHRAD/AP8A/6C9p5MAAIAASURBVHja7N13WFRn2gbw\nd/rQe0csNAVFKaKCAgqWaIwoYjfNxJRNXZNsSb5kk91NsptqTLKJaZtEo6JYYokioqigIqBS7IgF\nBhh6nX7O9wdZHEZhBqacmeH+XXt9F+edd855mC8cZ+4553lZNE0TAAAAAAAAAAAYLDbTBQAAAAAA\nAAAAWDbEKwAAAAAAAAAAekG8AgAAAAAAAACgF8QrAAAAAAAAAAB6QbwCAAAAAAAAAKAXxCsAAAAA\nAAAAAHpBvAIAAAAAAAAAoBfEKwAAAAAAAAAAekG8AgAAAAAAAACgF8QrAAAAAAAAAAB6QbwCAAAA\nAAAAAKAXxCsAAAAAAAAAAHpBvAIAAAAAAAAAoBfEKwAAAAAAAAAAekG8AgAAAAAAAACgF8QrAAAA\nAAAAAAB6QbwCAAAAAAAAAKAXxCsAAAAAAAAAAHpBvAIAAAAAAAAAoBfEKwAAAAAAAAAAekG8AgAA\nAAAAAACgF8QrAAAAAAAAAAB6QbwCAAAAAAAAAKAXxCsAAAAAAAAAAHpBvAIAAAAAAAAAoBfEKwAA\nAAAAAAAAekG8AgAAAAAAAACgF8QrAAAAAAAAAAB6QbwCAAAAAAAAAKAXxCsAAAAAAAAAAHpBvAIA\nAAAAAAAAoBfEKwAAAAAAAAAAekG8AgAAAAAAAACgF8QrAAAAAAAAAAB64TJdAAAAAADoSywW5+Tk\ntLe383i8yZMnjx492mSHvnjxYlFRkVQqdXBwSElJcXd3Z/rFAAAAYACLpmmmawAAAAAAvUyaNKmg\noKD7Z19f3+rqapMd2sPDo6Ghofvn+Pj4kydPMv1iAAAAMAA3BwEAAABYtry8vJ5shRASHBxsyqOr\nH06jEgAAgKED8QoAAACAZfvkk0/UN9euXWvKo2scTqMYAACAIQI3BwEAAACYgkgkWrFiRX5+/oDe\nfXG53MzMzLlz5/Y1obKyMjg4WKVSdW+6u7tXVVUJBIL7Ts7Ly1u7du3Vq1cHVHlYWFhxcTGHw7nv\noxKJxNfXt6WlpafgyspKf39/072yAAAAZgBXrwAAAACYwhdffJGbm6tQKJQDIZVKs7Ky+tnthg0b\nerIVQshjjz3WV7ZCCPn6668vXrw4oAKUSmVJScnly5f72qeNjc3q1at7NpVK5YYNG5h+sQEAAEwN\n8QoAAACAKTQ2Ng7uic7Ozn091N7e/t133/Vsslisp556qp9d1dTUDK4GqVTaz6MaB924cWNnZ6e+\nrxcAAIBFQbwCAAAAYNaUSmVfD+3Zs6etra1nMyUlJTAw0Bg19L/b8PDwqVOn9my2tLTs27ePgVcK\nAACAOVymCwAAAAAYilxcXNLS0rRO43K5TzzxRF+P7tixQ30zPT19QDXMmTNHl2mJiYn9XEHTbfHi\nxepLMmdmZi5dutTwrxoAAIC5QrwCAAAAcB+y0izZ2UwWz4bFE7J4QsK3YfGEhCfoHiE8AYv/+0Ms\nnpDFE5CeR/k2hMtnsVj97z8uLu6bb77Rp8KOjo5Dhw6pj8yePVv3pwuFwt9++81QL5dGUnPgwAGJ\nRGJjY2Oo/QMAAJg5xCsAAAAA98ELnNS5+22ikAz0iSyhg+NTmzhuw4xd4YEDB9RboowZMyYgIMDE\nr1KP0NDQkSNHVlZWdm92dnYePHhw4cKFTNUDAABgYui9AgAAAHAfbFsnQeSCAT+NxbFL/5cJshVy\nz51BOt7pYzwa185kZmYyWw8AAIApIV4BAAAAuD/hlOWENbA3SzazXuYHTzZBbTKZ7MCBA+ojjMcr\nGgXs3bu3n6a8AAAAVgbxCgAAAMD9cdyG8UfP0H2+YPxDNvErTFNbSUmJ+uLHAoEgISHBxK+PhuTk\nZA6H07PZ1tZWVlbGbEkAAAAmg3gFAAAAoE+80bpmFhy/CNuH/mKywgoLC9U3Q0NDhUKhKV+Ze9nb\n22us31xUVMRsSQAAACaDeAUAAADgPhQVZ9t/eqlz15u6TGbZezgs/4DFE5isPI3kIiwszMSvz32F\nh4erb2pkQAAAAFYMKwcBAAAA3EWrlPKyw9KTP6vqLuv6HA7PYdkHbEcPU9apkVyYSbwSFha2a9eu\nnk1cvQIAAEMH4hUAAAAAQgihpB2ywt3SU7/Q7bUDeqLd/Ne5ARGmLFUqlZaXl6uPDCJeoSiqpaWl\nra1NqVRSFMXhcPz9/Xk8nj6FaVy9UlJSolAo9NwnAACARUC8AgAAAEOdqkUkPZUhK9pB5F0Dfa5g\n8kpB1EMmLrisrExjUZ5BxCtyudzFxUV9hMPhDB8+PDg4OCQkZPz48atWrRIIBna7k0YZMpns0qVL\nEREmzZ4AAAAYgXgFAAAAhi5V9UVp3i+y8kOEVg3i6dyRk21nv2j6smtqajRGgoKCDPBqqFQ3bty4\ncePGoUOHCCH/+Mc//v73v69cuZLFYum4h+DgYI2R2tpaxCsAADAUoLUtAAAADDk0TcuvnGz77qnW\nr1fJyg70n62wbFyEiWsFscs0xtkuw+yXvsfiDPLLqv3799vp4KWXXrr3uc3Nzeqb9vb2Ot6Ao3tQ\nQgi5efPm6tWro6KiiouLdXyKra0tn8/vp1QAAABrhatXAAAAYAihFTLZhd+keZuoxhtaJ7Ndhwun\nrBREzWfxBFR7o6wok6gUvz/Gt7Vf8THb1kmfYrq6tN+LtH///k8//VRjsKmpSX3T0dFRxyOOGTPm\n8OHDAyry/PnzqampJSUlzs7Ousx3dHRsaGjo2Wxpaeln8rac6lu1nTMnekaMcuJwBhD9AAAAmBvE\nKwAAADAkUJ0tsoJM6ZktdFeT1sncYZHC+NW80Qks9u+X+rId3AQR82XndnZv2i/6B9cr0ARly+Xy\newcHHa+89tprnp6eMpnM1dXV1dXV2dnZ0dFRLpeLRKLq6uqqqqpff/1VJBJpPOvOnTtPPfXUtm3b\ndDmERrzS/9UrD0z2PFJU/+3+W+Jm2cwYr5kxHiN9bE3wqgIAABgc4hUAAACwcqqG29JTW2Tn9hCl\nVMtUFoc/JtkmfhVn2Nh7HxTELe+OV4RJT/PDkkxTvKen572DGvGKg4ODjnvz8/N7/fXX+5mwfv36\nzZs3//vf/758ude61BkZGXPnzn3kkUe0HkIj6+k/XnG05S2c5rtwmq+oQXqwQPzWD5d4XNacWK/E\n8e6eLgPrqgsAAMAsxCsAAABgtZS3LkjzNskvH9E+lWcjiFoojFvOcfHrawrXK5AXlMDi8W2mP6l/\nbZ6enqtXr9Y6LTU19d5BjcxC93hFKz6f/9hjjy1evDgmJubq1avqD/3444+6xCsaxdz36pt7+boL\nH58b8PjcgJKK1sOF4qc/Ph/qb5880WNKmKudEO9XAQDAAuCfKwAAALA2NKWSXzwqzdukqi7ROpll\n7yWcvEwwcRHbRntIYTvrD2wX/wE1iO3LxIkTP/zww0H+gjTdz6b+HBwcduzYMWnSJIlE0jN44cKF\nQdTGZg9sIYWIQKeIQKcX0qi88qYjheLPMyvjwl1SYjzHB6I5CwAAmDXEKwAAAGA9aJlEVrxXeupn\nqqVa62SOZ4gwbiU/Yg6Lq9OyO4QQjnewjjONSqPLbFtbm8EPMW7cuMWLF//88889I01NTbdv3w4I\nCOj/iRrFcDicQRydx2UnjXdPGu/e3qU8UiT+7rdb4ibZzBjPlGjPUb5ozgIAAOYI8QoAAABYA6qt\nQXpmm+xsBi1t1zqZO2qKMH4VP3gK01UPkgniFUJIRESExsiFCxcGGq/ouN5QXxxsuanTfFOn+dY0\nyg4W1L3930scLmvORO+kCW5ozgIAAGYF8QoAAABYNmXddVneFlnpvrurJveFzRWMfUA4dZWZXIQy\naKaJV0JDQzVGdLkLybDxSg8fN8FjDwQ89kBAaUXr4aL6Zz65E+xnlxztGTcWzVkAAMAs4F8jAAAA\nsFSK6wXS/M2K6ye0zmQJHAUxacIpy9iOHkxXbQCmiVdaWlo0RpRKpdZntbf3unrIUPFKj3GBTuMC\nnV5IG5VX3nTkrPiLXZVTwlxSJnpMCHRGcxYAAGAQ4hUAAACwMLRKKS/NkuZtUtVd1jqZ7eQnnLJC\nEL2AJbCenh0amYVEIpFIJDY2NoY9yr29bO+7SrS69vZ2haLXNUQGj1e6cTnsxAj3xAj39i7lkeL6\nH367Xdd0LSXaMyXGMxDNWQAAgAmIVwAAAMBiUJIOWeEu6elf6PY6rZM5vuOE8Sv54cks9mC6q5oz\nDw/Na3CuXLkyYcIEwx7l/PnzGiOBgYH9P+XKlStaSzUsB1tu6lSf1Kk+3c1Z3vm9OYtn4nh3L1eh\nUQ8NAACgDvEKAAAAWABVs0h6epusKJPIu7RO5ockCeJX80ZGMl21sdzbdLa8vNyw8cqRI0eOHj2q\nPhIVFeXj49P/sy5evKi+yeFwwsPDTfOa9DRnKbvReriw/tlPLwT52qXEeMaFu9rZ4B0vAAAYHf6x\nAQAAALOmqiqX5v8iK88itErLVC5fOH6BIH4Fx30401Ubl5ubW0BAwO3bt3tGysvL+38KTdOVlZUj\nRoxgs9la919XV7dq1SqKotQH09LStD5Ro4zQ0FBbW1PfqjN2lNPYUU7Pp43KL286Ulj/xa7KyWEu\nKTEekUFozgIAAEaEeAUAAADMEU3TiisnpHmblbfOap3MsnUVxKYLJy1l2zkzXbiJREZGDihe+emn\nnx599NHhw4evW7duzZo1/aQehw8ffuWVV2pra9UHx40b98c//lFrVRpXr0RGMnYBEZfDTohwT4hw\n75AojxTV/3jo9vubr6bEeKVEewT52TFVFQAAWDHEKwAAAGBeaIVMduGANG8T1VipdTLbbaRwygpB\n5IMsnoDpwk0qMjJyz549PZta45Xurii3bt164YUX/vKXv8yePfvBBx8MCQnx8/Pz9vZubm6urKys\nqKj47rvvcnNzNZ5rY2OzdetWoVB7KxPziVd62NtwF0z1WTDVp6ZRduhs3T9+usxis+ZM9Eqa4Ibm\nLAAAYECIVwAAAMBcUJ0tsoLt0jPb6K4mrZO5AdHC+FW80Qks1lC840MjuaisrGxubnZxcelrvvqd\nPp2dnTt37ty5c6eOx/r000/DwsK0TuvOaPopklk+boJH5wQ8Oieg/EZbVpG4uzlLcrRn/Fg0ZwEA\nAAPAvyUAAADAPFXDLVn+Fun53UQp1zKVxRGEpQjjV3H8TdQz1TzFxsayWCyaprs3KYrKzs5OT0/v\na/7gVvARCASvvPLK2rVrdZmcnZ3dUw8hhMvlRkdHM/063Uf4KMfwUY7PLxp16mJT9tn6L3dXTh7j\nnDLRc0KQE5ejvTENAADAfSFeAQAAACYpbp6X5W2SX8nRPpVvK4haKJyynOPiy3TVzPP29p48efKp\nU6d6Rg4dOtRPvLJy5crt27efOXNG90MsW7bs3XffHTlypI7zDx48qL6ZlJTk5OTE9OvUJy6HPW2c\n+7Rx7h0SZU5x/c+Hbr+/WZoc7TUz2iPIH81ZAABgwBCvAAAAAANoSiW/eFR68meVqFTrZJaDl3DS\ncsHERWwbe6YLH7ygoCD1zVGjRum5w7S0NI14pZ/J3t7ep0+fzsvL27x5c3Z29rVr1+47jcVi+fv7\nT5gw4Y033oiNjR1QPVlZWRrlGeFVNDx7G+5D8T4PxfvUNkkPFdT/Y/NlQsicid5JE9y80ZwFAAB0\nxlK/hhMAAADA2GiZRFb8qzR/E9VarXUyxzNUGL+SP242i8tjunADaG5uFovFLBbL1dXV3d1dz73d\nvHlT49KSsrKy8HCd7plqbGwsLi6ura1tbGxsbm62sbEJDg4OCQkJCgqysbEZRDHl5eVjx47t2WSz\n2dXV1d7e3kZ/TY2gvLLtcKH4ZGnjKB+75GiP+HFu9mjOAgAA2iBeAQAAABOh2uqlpzNkZ7fTsjat\nk7mBccK4VfzgyUxXbdaio6OLi4t7Nj/88MN169YxUsnHH3+sfuipU6eeOHGC6ZdHL0oVdepi85FC\n8fnrbZPGOKfEeEYGozkLAAD0CUk8AAAAGJ2q9po0b7Os9AChlFqmsrmCcXOF8Ss53sFMV20AciV1\nsrRxf37tP58ME/I5Bt9/WlqaerySkZHBVLySkZGhvrlo0SJGyjAgLoc9bZzbtHFund3NWQ7f+dcv\nV5OjPFNiPIL9LfgmNQAAMBJcvQIAAABGpLh+RpL3s7IiX+tMltBBEJMunLyM7ajvXTPmoLVD8VuB\neOfx6uGetmlJvpPDXI1xlJs3bwYFBalUqp6RkpKScePGmfiXLSkpGT9+fM8mn8+vrKz09bW2DsS1\nTdKss/VHz9fThJ4T4504wd3HTcB0UQAAYC4QrwAAAIDh0UqFvDRLmvezSnxV62S2s59w8kpB9AKW\nYDBdP8zNrVrJnjzR0XP1ceGuS2YMG+5l3F9q+fLlW7du7dl84YUX1q9fb+Jf+fnnn//88897Nh99\n9NEffvjBxDWY0sXKtsNF9SdKGkZ62yXHeExFcxYAAEC8AgAAAIZFSdplZ3dJT2+hO+q0Tub4RQjj\nVvLDZ7DYhr9xxvQuXG/JzBVdudPxwGTvhVN9nOxN0Y733LlzUVFRPZuurq4ikUggMN1VFRKJxNfX\nt6WlpXuTxWKVlpbq2GHXoqlU9KlLTUfOis9db4sd7Zwy0SMq2BnNWQAAhizEKwAAAGAYquZq6amt\nsqKdRCHROpkfOkMQv5I3IpLpqg1ArqCOnW/YdqyKx2HPj/OeFePJ45r0M/bMmTOzs7N7Nn/55Zfl\ny5eb7Og///zzww8/3LM5d+7c/fv3m/LXZ1ynRJlzrv5IUf2deklylGdKtEfIMDRnAQAYchCvAAAA\ngL5Ud8qk+ZtlF7MJrdIylSsUTpgviFvJcQ9gumoDaGqTHzgt3pMnCvazW5ToGxPqwkgZhw8fnjVr\nVs9mSkrK4cOHTXb06dOnHzt2rGfz6NGjSUlJjLwOjKtrkh7qbs5C0bNjvZPQnAUAYChBvAIAAACD\nRFOU4spJad7PyttFWiezbF0FsUuEk5aw7ZyZLtwArld37s2rOV7SkBDhnj7d399DyGw9UVFR586d\n6/7Zzc2toaHBZId2cXHpuTMoNjb2zJkzzL4U5uDSze7mLI3DvWxSoj3jx7k52KI5CwCAlUO8AgAA\nAANGK2Syc/uk+ZuopltaJ7PdRgnjVggmzGPxLP6bfJqmi6627MwVVdZ2zZvskzrN20x6mtbX1+/f\nv7+trY3P50dERMTFxZns0MePHy8rK1OpVI6OjvPmzXN3t4aFnwxCpaLPXGrKLhQXX2ubONp5ZoxH\nVAiaswAAWC3EKwAAADAAVEeztCBDVrCd7mrSOpk7PEYYv4oXOo3FYjFduL4kMlXOufrtR6sFfHZa\ngl9ylAeHY/G/FJhGp1R59FzDkSLxbbFkRqTnzBj3kGEOTBcFAAAGhngFAAAAdKKqvynL3yK9sIco\n5VqmsjiCsJnCqas4fmFMV20A9S2yfafq9p2qCR/usHSGf/hIR6YrAkslbpYdOis+er5epaRnx3pN\nj/RAcxYAAKuBeAUAAAC0UFSek+X9LL96TPtUvq0gapEwbhnH2Zfpqg2gQtS1M7fqVHnL9Cj39CRf\nb1eGG6yA1bh0q/1wofhESeNwT5vkGM+paM4CAGD5EK8AAADA/dEqpfxijjRvs0pUqnUyy8FbOHmZ\nIGYR28bil6SlKLrgcvO2nKr6FvmDcT4PxXnZCvHRFwxPpaILLjcdPltffK11YqhTSoxnVIiziVf1\nBgAAQ0G8AgAAAJpoWZesaI/01GaqVaR1MsdrtDB+FX/cLBbH4jOILqnycGH99mPVTg68tATfxPHu\nHDYarIDRdUqVx841HCkS3xJLpkd6zox2Dw1AcxYAAAuDeAUAAADuolrF0tPbZIWZtKxN62Ru4FSb\n+FW8oFimqzaA2ibpvvy6A6frJgQ5Lp3hhw+3wAhxsyzrbP3R82Klkp410Wt6pLuvO25JAwCwDIhX\nAAAAgBBCVDVXpXmbZWW/EUqpZSqHJxg3VxC/iusVyHTVBnDldvvO46LCqy0pUZ6Lk3w9nNFqFJh3\n+Vb74aL64xcaAjxtkqM9pkW4ozkLAICZQ7wCAAAwpNE0rbh+Wpq3SXnjlNbJLKGTYOJi4eSlbAd3\npgvXl0pF519s3JpT3dmlnB/nPXeyt42Aw3RRAL10N2fJLqwvutoaE+qUEuMZjeYsAADmCvEKAADA\nEEUrFfKSg9K8Tar6a1ons539hVNWCaLns/g2TBeurw6J8lBB3Y5ckberYFGi79SxbiwWGqyAWeuU\nKo+dbzhSVH+ztmtGpMfMGA/cvwYAYG4QrwAAAAw5VFeb7OxO6ZktdEe91skc//E2cat5YYkstsVf\n3FFVL92bX5t1tjZ2tEv6dP8gPzumKwIYGHGz7HBhfc55sUJBz0ZzFgAAc4J4BQAAYAhRNVVJT22T\nFe8kComWqSw2PzRJGL+aO3w801UbQHllW2auqLSybdZEr7QEH1dHPtMVAejlyu32w4X1uRcahv3e\nnMXN0ZbHdFEAAEMa4hUAAIAhQXWnVJK3WX4pm9CUlqlcoSBygTBuBcdtGNNV60uhpE6UNmYcrVYo\nqYfifB6Y5MXnoW8FWA+Vij57pTm7UFx4pTU6xCklxiMm1AXNWQAAGIF4BQAAwJrRFKW4fFyav0l5\nu1jrZJadmzB2mSA2jW3nzHTh+mrtUBwsEO88Xh3gaZuW5Ds5zJXpigCMqOt/zVkqa7umR3rMjPYY\nPRzNWQAATArxCgAAgHWi5VLZuX3SU5uppltaJ7PdA4VxKwXjH2DxLH5Z4lt1kl/zanKKxVPCXJfM\nGDbC2+J78QLorqc5i1xOzZ7oPT3K3Q/NWQAATALxCgAAgLWhOpqkZ7bLCjJoSbPWydwRE4Xxq3kh\n8Vawes6F6y2ZuaLLdzoemOS9cJqPsz1aUcDQdeV2++GihuMX6v3dhcnRntPGozkLAIBxIV4BAACw\nHpS4Upq/RXphD1EptExlcwVhs4RTV3J8xzBdtb7kCurY+YaMY1VsNmtBvM+sGE/0ngDopqLowsvN\n2YXis1dao4KdZk70iA514eMPBADACBCvAAAAWAPFjSJZ/mb51WPap/LtBNFpwilLOc4+TFetr+Z2\n+YHT4t0nRcF+dosSfWNCXZiuCMBMdUmVuRcajxSKb9R2JU1wnxnjOQbNWQAADArxCgAAgAWjVUp5\neY4072dVTbnWySxHH+Hk5YKYVLbQnunC9XVD1LXnpOh4ScO0CPclSf7+nuguAaCT+hbZ4cL67GKx\nQkHNmug1PdLD3wN/PgAABoB4BQAAwCLR0k5p0R7Zqc1UW43WyRzvMcL4VfyxM1kcLtOF6/db03TR\n1ZaduaIbNV0PTvFZMNXbwdayfyMAplyv6jx0Vpx7od7PXZgc7ZkQ4eZoh+YsAACDh3gFAADAwqha\n62Snt0kLdxBZh9bJvKAEYfxKXuBEpqvWl1Suyimuz8itFnDZaQl+yVEeHI7F9+IFYJyKoouuNB8u\nrD97uSUq2DElxjNmNJqzAAAMBuIVAAAAi6GquSLN2ywrO0gopZapHJ4gYr4gfgXXcxTTVeuroVW2\n71Td3vyasOEOy6b7h49yZLoiACskkalyzzdkF4lviCRJkW4zoz1GD3ewggXFAABMBvEKAACAuaNp\nWnHttDTvZ2Xlaa2TWTbOgonpwklL2A5uTBeurwpR187cqlPlLUmRbulJ/j5uAqYrArB+Da2yw4UN\n2UV1cgU1M8ZrRhSaswAA6ATxCgAAgPmilXJ5yUFJ3iaq/rrWyWyXYcIpKwVR81l8G6YL1wtF0QWX\nmzOOVtc1y+bH+cyP87ITosEKgKldr+7MOivOPV/v4yZMjvZIiHB3skdzFgCAPiFeAQAAMEdUV6vs\n7E7p6S10Z4PWyRz/CTbxq3ljEllsy+6Y0CVVZhfVbz9W7WjPS0vwTRzvzmHj3gQAJqkouuhqc/bZ\n+oLLLZFBjskTPWPRnAUA4H4QrwAAAJgXVeMd6amtsnO7iUKiZSqLzR89Qxi3kjt8PNNV66uuSbo3\nv+7AmdoJgY5LpvuPHu7AdEUA0ItEpsq90HCksL5C1JU4wW1mtMeYEWjOAgBwF+IVAAAAc6G8XSLN\n2yy/fITQlJapPBtB5ALhlOUct2FMV62vK7fbdx4Xnb3SMjPaMy3R19MFDVYAzFpDqyy7sOFwcZ1M\nRs2a6DUj0sPfE81ZAAAQrwAAADCNpijF5ePSvJ+Vd85pncyycxdOWiaITWPbOjFduF5UKjr/YlPG\n0aq2DuVD8d5zJ3vbCDhMFwUAA1Ah6soqqDt2vt7LTTgzyiNhPJqzAMCQhngFAACAMbRcKju3T5q/\niWq+rXUy2yNIGLdSMP4BFpfPdOF66ZAoD50VZ+ZWezoL0pJ848Pd2GiwAmCxVBRdfLUlu1B85lLL\nhCDH5BjPSaNd+Dw0ZwGAIQfxCgAAAAOo9kbpme2ysxm0pEXrZO7IScK4VbyQOEtvcyBqkO7Jq806\nWzsx1GXJdP8gfzumKwIAg5HIVMcvNBwpqr9e3ZUw3nVmjGcYmrMAwFCCeAUAAMCklOIbsrxfZCV7\niUqhZSqbKwifJYxfxfEdzXTV+iqvbMvMFZXcaJ0d670owcfN0bIvwAGAfjS0yrKLGrKL6qQyamaM\n14wo92Gelr1aPACALhCvAAAAmIjiRqE0b5Pi2nHtUwX2wug0wZRlHCcvpqvWi1JFnSht3Ha0Wq6g\nFsT5zJnkKeChwQrAUFEh6so6K849X+/lwk+O9kwY7+6M5iwAYL0QrwAAABgXrVLKy7KleT+rai9p\nncx29BFMXiGMSWUJLfvGmbZOxW9nxLtOiPw9hGmJvpPDXHGPAMDQRFF08bWW7LPi05daxgc6pkz0\nmDTaFc1ZAMD6IF4BAAAwFkraISvcIz39C91Wo3UyxztMGL+KPzaFxeEyXbhebtdJ9uTV5BSLp4S5\npk/3H+ljy3RFAGAWJDLViZLGI0Xia1Vd08a7zor2DBuJ5iwAYD0QrwAAABieqqVGdjpDWriDyDu1\nTuYFJwjjV/FGxTBdtb5KKlp3HKu+fKfjgUneqVO9XRzQYAUA7qOhVXakqCG7WNwlVc2M8ZwR6RHg\nheYsAGDxEK8AAAAYkkp0SZq3WVaeRSillqkcniBivk38SrbnSKar1otcSeWeb8g4Vs0iZMFUn5kx\nnnwuLvsHAO1uiLqyCsXHztV7uPBTojwTJ6A5CwBYMMQrAAAABkDTtOJqvjTvZ+XNAq2TWTYugonp\nwslL2PauTBeul+Z2+YHT4t0nRUG+dmlJvjGhLkxXBACW5/fmLIX1py82jw90TI7xmDwGzVkAwPIg\nXgEAANALrZTLLvwmzdtMNVzXOpntEiCMWyWIfJDFFzJduF4qa7p2nxAdL2mYFuGenuSHVVcBQH8S\nmepkaWN2ofhqVUdChPvMGI/wkY5ozgIAlgLxCgAAwCBRXa2ygkzpmS10Z6PWydxhkcL41bzRCSy2\nBX8lS9N08bWWzGOiGzVdD07xeWiql6MtruQHAANrbJMfKRJnF9V3SpQpMV7JUWjOAgAWAPEKAADA\ngKka70jzf5Gd20OUUi1TWWz+6GRh/EpuQATTVetFKlflFNdvzxUJ+ezUeJ/kaA8ux4JzIgCwCJU1\nXVlnxUfP1bs781OiPRPHu6FnNgCYLcQrAAAAA6C8dUGav1l+OYfQlJapPBtBZKowbjnH1Z/pqvXS\n0Crbd6puX37NmOEOaYm+E4Kcma4IAIYWiqLPXW/JPlt/6mJzxCiH5Imek8e4CHgcpusCAOgF8QoA\nAIB2NKVSXDouyftJVXVB62SWvYdw0jLBxDS2rSPThevlWlXH7hOiU+UtSZFuixP9fN0tu18MAFg6\nqVx1oqTxSJH4yp2OaRHuM6M9xo5CcxYAMBeIVwAAAPpDyyWy4r3SU5up5jtaJ3M8goXxK/kRc1hc\nC758naLos5ebM3NF1Q2S+fG+86d42dlwmS4KAOCuxjb5kaKG7OK6zi5lSozXjCiP4WjOAgBMQ7wC\nAABwf1R7g/R0huzsdlraqnUyd+RkYfxqXvBki/4eVSJTHS4U78gVOdhy0xJ9E8e7c9gW/OsAgNWr\nrOk6XCjOKa53c+bPjPJInOCO5iwAwBTEKwAAAJqUdRWy/C2ykr1EpdAylc0VjJ0jjF/F8Qlhumq9\niJtlv+bVHjhTOyHQMX26/5jhDkxXBACgK4qiz19vzS4U55c3jxvlkBzjOSUMzVkAwNQQrwAAANyl\nqDgrzdusuH5c60yWwFEQs0g4eRnbyZPpqvVy9U77zlxRwZWWmdGeaYm+ni4CpisCABgkqVx1sqzx\nyNn6y3fap45zmxnjOQ7NWQDAVBCvAAAAEFqllJdmSfM2qeoua53MdvIVTF4hjEllCWyZLnzwVBSd\nX96042hVU7tiQbzPvCneNgJ80wsAVqKpTX6kuD67SNzepUyJ9kqO8hjujeYsAGBciFcAAGBIo6Qd\nssLd0lO/0O21WidzfMcJ41byw2ewOBbc6rVTojx4VrzzuMjDib8o0XfqWDc2GqwAgJWqrOk6XFh/\n9JzY1ZGfEu2RhOYsAGA0iFcAAGCIUrWIpKcyZEWZRN6pdTI/JEkQv4o3MorpqvVS0yjbfbLm8Flx\nTKjT4iS/kGH2TFcEAGAKFEVfqGg9fFZ86mLT2BGOyTEeU8Jd0ZwFAAwL8QoAAAw5quqL0rxfZOWH\nCK3SMpXDE45fIIhfzvEYyXTVerlY2ZZ5XHShonV2rPfCad7uTmiwAgBDkVSuyitrPFJYf+n2781Z\nxo50xBV8AGAQiFcAAGCooGlaceWkNH+T8uZZrZNZNi6C2CXCSUvY9i5MFz54ShV1orRx+7FqiYxa\nEO8zJ9ZTyMe3tQAApLldfqSoPru4vq1TkRzllRztMQLNWQBAP4hXAADA+tEKmezCb9K8TVTjDa2T\n2a7DhXGrBJEPsngWfIlHW5fit9PiXSdE/h7CtETfyWGuWDsDAOBeN2slhwvFOcViF0deSpTn9Eg0\nZwGAQUK8AgAA1ozqbJEVZErPbKG7mrRO5gZECeNW8UYnsNhspgsfvDtiyZ6TNUeKxVPCXNOn+4/0\nseDljQAATKO7OUt2oTi/vCl8uGPyRI8pYa643A8ABgTxCgAAWCdVw23pqS2yc3uIUqplKovDH5Ns\nE7+KM2ws01XrpaSiNTNXdPFW+9zJ3qlTvfEFLADAQMkUqryypuyz4ku32+PHus2M8Rg3ygnNWQBA\nF4hXAADA2ihvXZDm/Sy/nKN9Ks9GELVIOGUpx9Wf6aoHT66kcs83bM+tpmmSGu8zc6Inn2vBV98A\nAJiD5nZ5TnH94eL61nZFSrRncrQnmrMAQP8QrwAAgJWgKZXiYq4k7ydVdYnWySx7L+HkZYKJi9g2\nDkwXPngtHYr9p+r25IkCfezSknxjQi24Cy8AgHm61d2c5ZzYyZ6XEu05fYK7qyOuDQSA+0C8AgAA\nFo+WSWTFe6WnfqZaqrVO5niGCONW8iPmsLg8pgsfvMqart0nRccvNEyLcF+c6Bfghe9UAQCMiKa7\nm7PU55U1hg13SI7xjAtHcxYA6AXxCgAAWDCqrUF6ZpvsbAYtbdc6mTtqijB+FT94CtNVDx5N08XX\nWjKPiW7UdM2b4r0g3tvRzoJDIgAAi9PdnOVIobj8ZsfUca4pMR4RaM4CAIQQxCsAAGChlHXXZXmb\nZaUHiEqhZSqbKxg3Vxi/kuMdzHTVgydTqI4U1WceF/F47IXxPsnRHlwOGqwAADCmuV2ec64hu0jc\n3NbdnMUDK7UBDHGIVwAAwMIorhdI8jYpK05qnckSOApi0oRTlrEdPZiuevAa2+T78uv25ovGDHdI\nS/SdEOTMdEUAAHDXrTpJdqE4p1jsYM+bGeUxPdIDzVkAhibEKwAAYBlolVJemiXN26Squ6x1MtvJ\nTzhlhSB6AUtgwd8lXq/q3H1SlF/WnBTplpbo5+cuZLoiAAC4P5qmSypaDxfW55U1jglwSJmI5iwA\nQw7iFQAAMHeUpENWuFN6egvdXqd1Msd3nDB+JT88mcW21De1FEWfvdycmSuqapA8FOf7YJyXvQ2X\n6aIAAEAnMoUqv7zpyNn6spvt8WNdUmI8xweiOQvAkIB4BQAAzJeqWSQ9tVVWvJPIu7RO5odOF8St\n4o2MZLrqwZPIVIcLxZm5Intbblqib2KEO4eDd+QAABapuV1+9FxDdrG4qVWRHO2ZguYsANYO8QoA\nAJgjVdVFad4m2cXDhFZpmcrlC8cvEMSv4LgPZ7rqwRM3y/bm1+4/XTsh0HFxol/YSEemKwIAAMO4\nVSfJLqzPKa5zsOOlRHlMj/JwQ3MWAGuEeAUAAMwITdOKKyekeZuUtwq1TmbZugpi04WTlrLtnJku\nfPCu3mnfmSsquNKSEu2ZluDj5YoGKwAAVoim6dIbbYcLxSdLG8cEOCTHeMSFu9kILPU+VgC4F+IV\nAAAwC7RCJju/X5q/mWqs1DqZ7TZSOGWFIPJBFk/AdOGDpKLo/PKmzGPVjW3yBfE+cyd72QrRYAUA\nwPrJFVR+eeORwvrSyva4cJeZE9GcBcBKIF4BAACGUZ0t0jMZsoIMuqtJ62RuQLQwfjUvdCqLzWa6\n8EHqlCoPFYh3Hhe5O/EXJfpOHeuGd9UAAENQS4fi6Ln67KL6xlb5jCjPlGiPUb46NWdRKCke11L/\nEQSwYohXAACAMaqGW7L8X6Tn9xClXMtUFkcQliKMX8XxD2e66sGraZTtyavJKhBHhzqlJ/mGDHNg\nuiIAAGDe7TpJdlH9kWKxvQ0nJdpzeqS7u1N/12Z+sOVqYqR77GhXpgsHgF4QrwAAAAMUN8/J8jbJ\nrxzVPpVvK4haKJyyjOPix3TVg3exsi3zuOh8Revsid6LErz7f98MAABDUE9zlrzS5tBhdskTPeLv\n15ylS6pc8rdCmibvrR0TEejEdNUAcBfiFQAAMB2aUsnLc6T5m1XVJVonsxy8hJOWCyYuYtvYM134\nIKlU9PHShh3HRJ0yZWq875xYTyEfXQwBAKA/cgWVf7HpSKG49EZ7XLhLSoznhKC7zVkOFdR9uO06\nIcRGwP3g6bDQAFwICWAuEK8AAIAp0DKJrGiP9NRmqrVa62SOZ6gwfhV/3CwWl8d04YPU3qX87Uzt\nrhM1fu7CtETfyWGuLBYarAAAwAC0dCiOnas/XFzf2CKfEeWREu05ytf2tf+Unbve2j3B3obz8R8i\nRvro1LEFAIwN8QoAABgX1VYvPb1NVridlrZrncwNjLOJX80LmsR01YNXJZbuPik6UiyeEuaaluQf\nqFufQgAAgL7cEUuyi+qzi8R2Qs7N2i71D3DO9rxP/hDh7ylkukYAQLwCAABGo6q9Js3bLCs9QCil\nlqlsrmDcXGH8So53MNNVD15JRWtmrujirfa5k70XxHu7OvKZrggAAKwHTdMbdt7Ym1+rMe7hzP/0\nuQhPF3T1AmAY4hUAADA8+bXT0vxNyop8rTNZQgdBzBLh5KVsR3emqx4khZI6dr5hR261iqIXTvWd\nGePJ52G9TAAAMLwnPii+VSu5d9zXTfjJc+MQ6wMwC/EKAAAYDK1UyEsPSfM2qcRXtU5mO/sJp6wS\nRD3EEtgwXfggtXYo9p2q+zVPNNLHdnGSX0yoC9MVAQCA1bpe1fnMJ+f7enSEj+1Hz451tLXUnmUA\nVoDLdAEAAGANKEm77OxO6emtdEed1skcvwhh/Cp+2HQW21KX0blVK9l5ovr4hYap49z+/fS44d6W\nmhABAIClOFxUf++gkM/xcOF7OQncnfnllW1Twt2YLhNg6MLVKwAAoBda2tmV85WsaCdRSLRO5ofO\nEMSv4o2YwHTVg/1labr4WkvmMVGFqPPBOJ+H4ryd7PE9IQAAmMLff7zM5bA8nIUeznwvV4G7k8DT\nhY/LVQDMB+IVAADQC61Stn6ygGqr6W8SVyic8JAgbgXHPYDpegdJrqCOFNfvOF7N47AXTvWZEeXB\n46LBCgAAAAD8DvEKAADoS5L3i+TQh/d9iGXrKpy0VBCbzrZzZrrMQWpqk+/Nr9t3qmb0MPtFib6R\nwZb6iwAAAACA8SBeAQAAfdHSzuaPHiCyDvVBttsoYfxKwfi5LJ6lLhVZIeradbw6r6xxeqTHogQ/\nfw8h0xUBAAAAgJlCvAIAAAbQdegzad5/u3/mDp8ojF/FC53KYrGYrmswaJo+e7l5xzHRnXrJgnjf\neVO8HGzRCR4AAAAA+oN4BQAADEDVWte6foFgdLIwbiXHP4zpcgZJIlNlF4ozj4vsbLlpCb6JEe4c\njkUmRAAAAABgYohXAADAMKiuNratI9NVDFJ9i+zXvNoDZ2ojRjqmJfqOHeXEdEUAAAAAYEkQrwAA\nwJB25Xb7ruOigsutKTEeC6f5+rhZaqcYAAAAAGAQ4hUAABiKVBR96mLTzlyRuFmWOtXngcledkI0\nWAEAACP5jJBCpmswH/8hxI7pGgAMD28lAQAshlgszsnJaW9v5/F4kydPHj16tGmOe/HixaKiIqlU\n6uDgkJKS4u7uzvQroZcuqfJggXjXCZGLIz8t0XfqWDcOGw1WAADAqC4RspnpGszHZ0wXAGAUuHoF\nAMBiTJo0qaCgoPtnX1/f6upq0xzXw8OjoaGh++f4+PiTJ08y/UoMUm2TdPfJ2qwCcXSo0+JE39AA\nB6YrAgCAIeIZQjYyXYP5aCTEmekaAAwPV68AAFiGvLy8nmyFEBIcHGyyQwcHB/fEK91lxMbGMv16\nDMylm207ckXnK1pnT/T++pXxHs5osAIAAAAAhoR4BQDAMnzyySfqm2vXrh3cfmiarqur6+rqoihK\nIBB4eHgIhcL+n7J27dpTp06pV7JlyxamXw+dqFT0idKGHbmiji5l6jTfV5YF2wg4TBcFAAAAAFYI\nNwcBABiMSCRasWJFfn7+gE6tXC43MzNz7ty5/cyprKwMDg5WqVTdm+7u7lVVVQLBgC/B2LZt2x/+\n8IfGxsaeERaLNWPGjKysLDab3dezJBKJr69vS0tLT8GVlZX+/v4mfXEHqEOiPHC6dvfJGl9XYVqS\n76Qxrmw0WAEAAMbg5iB1uDkIrBNb/10AAEC3L774Ijc3V6FQKAdCKpVmZWX1v+cNGzb0ZCuEkMce\ne2wQ2Uptbe3atWvVsxVCCE3TR44ckclk/TzRxsZm9erVPZtKpXLDhg1Mv9h9qm6Qfr7zxup/Ft6s\n6Xrn8bAP/zBuSrgbshUAAAAAMCrEKwAABqORXOjO2dm5n0fb29u/++67nk0Wi/XUU08N4ih/+tOf\n2traBlehxhE3btzY2dmp36tleCUVrW99f+mlDSV2NtxvX4t6bUVIkB/WfQQAAAAAU0DvFQAA5imV\nyn4e3bNnj3oskpKSEhgYONBD5Ofn//zzz4OuMDw8fOrUqT1rBrW0tOzbt2/p0qWMvWRqFErq2PmG\nzOMihZJaOM33r6tDBDw0WAEAAAAAk0K8AgBgLC4uLmlpaVqncbncJ554op8JO3bsUN9MT08faCUU\nRT3//PN6NttavHix+pLMmZmZjMcrrR2Kfafqfs0TjfSxXTN3eEyoM4uFm4AAAAAAgAGIVwAAjCUu\nLu6bb77RcycdHR2HDh1SH5k9e/ZAd7Jx48bi4uKeTT6fL5fLB7qTOXPmqG8eOHBAIpHY2NgY9kXT\n0a06yc7j1ccvNEwd5/avp8eN8GamDAAAAACAbui9AgBg1g4cOCCVSns2x4wZExAQMKA9NDY2vv76\n6+oj69evH0QloaGhI0eO7Nns7Ow8ePCg6V+Q4qstr39T/up/St2dBD/8OXrd0mBkKwAAAADAOMQr\nAABmTePOII1LSHTxxhtvNDU19WympqYOYifdNC6cyczMNNnrIFdQv52pe+KD4q/2Vk4b777pjZjV\ns4Y52/NMVgAAAAAAQD9wcxAAgPmSyWQHDhxQHxloMlJcXLxx48aeTRsbm08++WTQ9cyZM+err77q\n2dy7d69SqeRyjftPSXO7/Ne8un2nakYPs/9D6qjIYGejHg4AAAAAYBAQrwAAmK+SkhL19Y8FAkFC\nQoLuT6dp+rnnnqMoqmfktddeGzFixM2bNwdXT3JyMofDUalU3ZttbW1lZWUTJkww0q9/Q9S183h1\nXlnj9EiPT/4Q4e8pNNKBAAAArINYTOfk0O3thMdjxcWRkBATdXwvL6eKi1lSKe3gQFJSiLs7bpKA\noQjxCgCA+SosLFTfDA0NFQoHEDH89NNPp06d6tkcMWLEn//8Z33qsbe3DwwMvHr1as9IUVGRweMV\nmqbPXm7OzBXdqpMsmOr7419HONriJiAAAADt5j9IF5zt/pH28yNVVSaKV5KSSEPD7wsUxscTtZUG\nAYYQxCsAAOarqKhIfTMsLEz357a1tf3pT39SH/nkk08GlM7cV3h4uHq8UlhYuGbNGkP9vlK56vBZ\nceZJkZ2AuyjBJ3G8O5eDr78AAAB0kpdH/S9bIYSQoCDTHTokhDQ09JRBCgro2FgTJTsA5gPxCgCA\n+dK4emVA8crf/va3urq6ns3Zs2enpqbqX1JYWNiuXbt6NjUCoL5U1nQplKqQYQ59TWhole05WXvg\nTG3ESMdX0oPGjnIy2IsIAAAwNGh0V1u7VqdnNTVRFy8SkYjU1JCWFuLnxwoOooNDWL6+A8hHnnyS\nlZ9Pq1VCb9mCeAWGHMQrAABmSiqVlpeXq4/oHq+Ul5dv2LChZ5PP5w9uMeZ7hYeHq2+WlJQoFAoe\nr7+bd1o7FP/33cXRAfZvPDz63kev3unYeVxUcKklJcbj8xcn+LgJjPNyAgAAmAWRiF6xgs7PJzQ9\ngGdxuSQzk8yd2+dFnZWV1O7ddzfd3UlaWn8BR1MT9e235NdfyenT5H9N1bp1l0Xb2dGLF5N339Up\nZ1m6lH75ZdLS8vvmjh3kgw8of39cggpDC/6LBwAwU2VlZUqlUn1E93jlhRdeUH/uSy+9FBoaapCq\nNGqQyWSXLl3qZ75SRb394+W6ZtmJkkZxs6xnnKLok2WNf/yi9O0fLwf62f38etSzqSORrQAAgNX7\n4gs6N5coFESpHMD/pFKSldXfbjds6JWSPPYYEQjuH4tIpeT//o8eMYL86U8kL08jW7mrs5P8+CMJ\nCaH/+U9KJtMSBdnYsFevvrupVBK1b3kAhgrEKwAAZqqmpkZjJEi3u6i3b9+ek5PTs+nn5/d///d/\nhqoqODhYY6S2traf+Z9l3ii90UYIoWiy60QNIaRLqtx5XPTIe0UZR6sXTPP56a/R6Ul+dja4mhIA\nAIaExsZBPtHZuc+H2tup7767u8likaeeuv8HvdZWOjaW+sc/6PZ2nQ7a2UneeIOsW6f9Spunnuq1\nuXEj6ewcyPU5AJYPb2cBAIxl//79dnZ2Wqc9+eSTn3766b3jzc3N6pv29vb934PTrbOzc926deoj\nH3zwgb29vaF+KVtbWz6fL5fL+6pT3c7jot/O3O3/8tuZOpqQrLN10SHOr68KHT3cgQAAAIBuel/S\n2suePaSt7e5mSgoJDLz/zC1bSGnpgA/95Zdk4UIqObm/7+bDw9lTp1I9awa1tJB9++ilS9GBBYYQ\nxCsAAEbU1dWldc7+/fvvG680NTWpbzo6OupyxHfffffOnTs9mwkJCcuXLzfsL+Xo6NjQszwAIS09\nd1r3VnS1+etfK9VHOqXKG9UdX/1xgqcLbgICAAD43RNPaJ/D5bKeeKLPi0F27Oi1mZ7e537E4l47\n4fPJkiVk9mwSFsYaPpx1+zZdWkq//z7RuPGXpsnjj5Nr1yg+v7+EZfHiXksyZ2aSpUuZeEEBGIJ4\nBQCAYepXgqgbRLxy/fr1jz76qGeTw+FsMMKtzxrxyn2vXrkjlvz9x6vUPe8Da5qk7k58g5cEAABg\noebNI998o2PHhvtfCdLRQQ4d6jUye3af14xwOL//IBCQl19mvfgi7e199+hubqzISNayZdSrr5LP\nPuv1xNu3yaVLZPz4/uqbM4dNCNWzeeAAkUgoGxv0o4ChAv+tAwAwzNPT877jGvGKg4P2W2leeukl\nmexu+9hnn302IiLC4AVrBD33xisdEuX//XCxU3qfi5hrm2SnLzYRAAAA69LUJv/nz1eqxFLTH/rA\nAUqqdtgxY0hAQJ/xSng44fHI4sWkvJz93nss9WylB5/P/vhj1r1JSlmZlkpCQ8nIkXc3OzvJwYN3\nK9mWs+yzzJdrGr1N/xIBmAauXgEAMBZPT8/V6m30+5CamnrfcY3YQmu8sm/fvv379/dsenh4vPPO\nO8b4vTQq0bj6RkXR//jpcnXf7y8zc0VxY92MURgAAAAjcs7V/2d35ZxYby9XBq7Q1LgzaM6c/ian\nprL7uGq2Fw6H9eabdFpar8GyMu2NVGbPZn311d2LVzMz6YULf3/WrIm/7T65+Ln1G6OC76QncUOG\nGawxHICZQLwCAGAsEydO/PDDDwf9dJqm+9nUIJPJXnrpJfWR9957z7mfNQb0oFEJm93ri6/aJtmE\nYJfQAEepTCWRq7r/r0SmksipLplKIlVViLquV3cG+Wlv+gsAAGDmGlpln+2oqG2RvftkWLA/A3mB\nTEYfONBrpP94RXcTJrAI6fUv/u3bdF83KKkdnf7qq7ube/cSpZJwuYQQ4uLQ+tgD3y2b8cuBM+fe\n/u8lfw+bpTP8o0KcTf+iARgJ4hUAADOlEY60qS8JcI/PP/+8oqKiZzM2Nvbxxx83UmEalXB6buMm\nhBDi5y5cNsPPtC8VAAAAAw4XijfuvTlvivebj47mcpjpulBSQjo7724KBCQhwTCVcDia8Yq3Drf1\nJCezORxKpfp9s62NlJVREybcLclGIElL8FgQH3j0XMN/fq3ksFlLZ/glRLhz2FhjCCwe4hUAADM1\noHjlxx9/VN+UyWRPPfVUX5Pr6+s1Rp5++mmBQEAIsbOzS0lJmTdvXj/H0qjESNfIAAAAmK36Ftmn\n2683dij+9dTYUb62DFZSWNgrAQkNJUKhYfZ87hylMRIUpP1Z9vYkMJBcvXp3pKiITJigOY3LYc+M\n8ZwZ41lwqWlbTvX3+28tTvSbHesp5HO0HwPAXCFeAQAghBBK0k7aG2h5FyWX0goJLZcQhYSWS2m5\nlFZ00XIJSy6l5V20QkLJJUQhpeUSWt5Fy7uIUu6waj13+Hj9a9AwoHjl+vXr6psXLly4cOGC7sf6\n6aefen7eunVrTU1NP5MRrwAAwFB28Ezdt/tvpk71W57sx+EwfM1FUVGvzbAwg+05J0dzJDhYpyeG\nh7OuXr0b+hQWstas6XNy7BjX2DGul2+1b8up2nT4zkPxPgvivR3teEZ/4QCMAPEKAAAhhNAtotav\nVhKaGugThfGPGiNbIQOMV+S69KnTTWdnp0Kh4PH6fGfT3t7eT50AAADWqq5J+sn26+1S1YfPRozw\ntmG6HEIIKSzstWmoeCX3GPXll71Ghg0jCQk6PTcsjN616+5mUZH2ji2jhzu89diYKrE041jVo++d\nS472SEv08XY10HU4AKaChZkBAAghhOMTKhg/f6DPYnsE2SQ/baSSNGILiUQikUj6mmxvb7B2ejRN\na7RTUdfe3q5QKPqpEwAAwPrQNL3/VO2zn14YH+Ty2fPmkq1IpaS8vNeIQeKVy5eplatIT/+Ubq+/\nTvh8nT48hof3ClNKSohCodPXV/6ewj8uCfr2tQkCHvvZTy68v+lKhajLqC8ggGHh6hUAgN/ZJD8j\nKztElFJdn8DmOqS9w+IaawlGDw8PjZErV65MuPf2ZUIIIU8//fTWrVv7X12oR2dnZ2Njo/qIn59f\nT6Ty8MMPaywGpFGD1joBAACsSU2j7ONt1+RK1Sd/iAjwMotgpVtZGaVU9hrRM16pqaHeeYf17bdE\nY7eTYonuHfPDwnq9G5HJyKVLrIgIXZ/u6sh/4sHhK1L89p2qff2b8lE+tktn+I0PcjbeywhgKIhX\nAAB+x3byFMY9LD2+Ucf5NolPcXxHG6+eiHveiZSXl/cVr7z//vvvv/++jnu+efPmyJEj1UeuXbtm\nY6PT+8WLFy+qb3I4nPDwcOO9CAAAAAyiafrXvNqfsm4vne63ONGPbWar29TUaC7uo0v32W7HjlLb\nd5Du72W6ukhFBbl2jdTVEY0dEkLmzCE7drB4PF1/93tbtNTW0hERA3vpbIXcJdP9F07zPVJc/9nO\nG0I+Z+kMv6lj3czt/wUA6hCvAADcZTPtYVnRTrqzQetMju84YcIjRi3Gzc0tICDg9u3bPSPlGlcA\nM0GjhtDQUFtbJldMAAAAMJLqBulH264Rml7//Hh/D2P1ATl4kNjZab935sknyaefal5b2tzcKwqx\ntyc8nq7NH156mWhtgu/jQ9asYb35Jq17tkIIsbVl8/mUelO45uZBvjg8LntOrNfsiZ6nLzZty6n+\ndt+t9CTf2RO9+Dr/mgCmhHgFAOB3NEXJL+bo1N2Wy7dP+xuLY/RTaGRkpLnFKxpXr0RGRjJdEQAA\ngIFRFL37ZM3m7DsrUoYtmubDYhnxigmVinTp0GBk/37y6aeag01Nva5ecXQcwHHr67XPGTOGODrS\nVVWk9zWv2jk6kga176paWvR6iVgs1pRwtynhbuWVbdtyqn7OurMg3veheG8HW3yYBfOC2A8AgBBC\nFBVn2/6zqnPXm3RXk9bJtikvcjwG+EZjUDTCC8QrAAAAxnZHLHnpi9L8ssbPX5yQluBr1GxFd/dd\nIbCpqdfVKwOKV9zctM/JySGvvUbCw8mGDRQ9kNUVNSppbjbMaxg+0vGdNWEfPDOuplHyyLvF/9lz\nU9wsM8ieAQwCgR8ADHXKugrJoQ2K68d1nM8dMVEwZZlpatMILyorK5ubm11cXEz8EvVobm6urKzs\np0IAAADLpaLozNyabUfvrJ4VsCDe20yClW6eXvcZbOr9lZCDwwB2+NZbZONGQlGEEEJRpLqa3L5N\n7rtEoURCXniB7NtHdu2ibG11+nr+nnhF+9rMuhvuZfPKsuCGVtnO4zVPf3x+8hiX9On+I31wqzIw\nD/EKAAxdVHuj9OhGadFOQqt0fQ7fzm7hWyZ7vxUbG8tisXrWA6IoKjs7Oz09nYlXixBCsrOz1Rcn\n4nK50dHRTBUDAABgQLdqJR9su2on4Hzx0nhvV2N1WrmvP/5RywQWi6Sm3mdco6fJgOKVtDR2Wprm\nYF0dKSqi/v1vkpur+VBWFvnzn8lnn+m0c41K5HLDv3FydxKsnT9iZYr/3vy6P39dFuJvv2S637hA\nJ4MfCEB3iFcAYCii5VJp/i+Sk98TuQ63O6uxfeAVjouvyer09vaePHnyqVOnekYOHTrEYLxy8OBB\n9c2kpCQnJ7yPAQAAy6ZS0duPiXbkVj36wPAHp3ib+Ojz5pGPPhpkxwaa7m9zELy8yNy57LlzSV4e\ntWYNuXKl16Off07SFlGJSdqr1aiEzTbk1Svq7Gy4y5L9FiX6HC4Uf7TjuoMNd+kM/7gwVywwBIxA\n7xUAGFpoipIV721Zv1CS83k/2QrHO4wbOFVjkB+SJIxe0M/Og3ovhzhq1Cj9C07r/dXSoUOH9N+n\no6Ojeizi4+PD5/N1eWJWVlY/tQEAAFicypqu5z67UFLR8uXLE0yfrejJ2bnXZlu7wfYcH8/et4+4\nuvYapGnyzt91enpbW69NDse4rwOfy5432fv7V6OWTPffllP1+AfFB07XypUDaBYDYBC4egUAhhDF\n9YKuQ5+q6i73M4fl6GOb/Ax/wjy6rb5lfSpRSn8ft3G2XfDX/vf/yiuvrFmzRiwWs1gsV1dXd3d3\n/WtOS0t75ZVXejarqqrKy8vDw8P12aerq2tdXV1VVZVcLre1tfXz8+Po8ManvLy8qqqqZ5PNZqfe\n90plAAAAS6BUUVuPiHafrF4zb8QDk7z036HpacYrrYbceVAQe9Mmeu7cXheiFBURmqZYLC1f0mvE\nKxp1GgmbzZo2zm3aOLeSitaMnOofD95emOA3f4qXnQ0+84KJ4D81ABgSlOIbkkMbFNdy+5vEt7OZ\n+pgwfiWLJyCEsJw8hXEPS49v7H7Q9sG/sB20xyUuLi6GbT07YsSIqKio4uLinpGDBw/qGa8QQgQC\nQWBg4ICeonHhTFxcnLe39m/5tuVUN7TKFyX4+rgJDPiyAAAA6ON6VecH2656Ogu+WjfB3clS/4XS\njFfaBrebPs2eTTs69tptayu5cYOt9R0EI/FKj4hAp4hAp8qaru1Hq1a/WzQn1ntRgrfl/n8ZLAhu\nDgIAK0e1N3b9+n7bF0v7y1ZYHGFMuvNLv9okPd6drXSzmfYwy86dECIYO1cwbiZTv4LGPTgZGRmM\nlKFx3EWLFunyrFkTPfg89nPrz/9r89Xr1Z2MVA4AANBDoaR+PHjnL9+UL070+/uaMIv+1G3seIXN\nZt/bwr6tTXuLl/betymZOF7pNtLH9rUVIV/9cYJKRa394MJH267dqpPov1uAfiBeAQCrRculkmPf\nt6xfIC3M6GdtIF5wotNzGbYP/YVtr3nVCUtgazPjaZa9l82DrzH4i6xYsUL95p2CgoLS0lIT11BS\nUnLmzJmeTT6fv3TpUl2e6OLAf/LB4T//NXqEj90b315845uLpRUGvXYZAABAZ1fvtD/76YXKmo6v\n102YGePJdDn60ogtJBIikRi44YhQqNkjtrNTS7zS3k4pFP3VaUqeLoJnUkf++Ncob1ebV74sfev7\nSxcrDZ1CAfwPbg4CACtEU5T8/P6uI1/S7XX9TOP4hNvOfpE3KqafOYLoBTzvELatI4O/zogRI9LT\n07du3doz8u23365fv96UNXzzzTfqmytWrPD1HcAKSrZC7tIZfosSfA4Xij/NrBAKOCuT/SejsT8A\nAJiKXEn9fKjqYEHtM6kjZ0R6MF2OYXi4swjpFXZcuUImTDDkIcrKNMMUrXcGa6w3RAjx8GD4n3sH\nW+7Kmf7pSb6HCure33LN3ZG3ZIb/pDEuLBbeh4AhsWj91+8CADAnioqzXQc/0bF/raX8s3ru3Lmo\nqKieTVdXV5FIJBCY6HpmiUTi6+vb0tLSvclisUpLSwfd/4Wm6ZNlTdtyqjq6lEtn+CdHe/C5uJQS\nAACM6NKt9g+3XRvuaft82igXB50WyzO0Zwj5vZvb009TX39994F588i+fYP8d7Cxkbi797pcZdMm\nsnKlwf5VLSigJ03q9WnRzo40NrIEgv7ePv30E/XII3c3ORzS1kZsbdWraiTE2VBFDhRF0cdLG7cf\nrZYqVEsS/WZEefDwPgQMBFevAID1GET/WksRGRmZkpKSnZ3dvdnU1LRz587ly5eb5ug7duzoyVYI\nIQ888IA+vXVZrN8b+5fdaP0lu+q/v91KS/SdN9kbjf0BAMDgZArVjwerjhTV/WHRqIQIA6zoZ1bc\n3EhAALl9++5IeXl/8ysqyMsv0ykp9BNPaOQd99HVRa1erTk4a5aWbOXeGkJDtR/LlNhsVtJ496Tx\n7ueutWTkVP/34O1FCb7zJnvZCvE+BPRlRv+hAwAMmj79ay3Fa6/16v/y/fffm+zQGsd69dVXDbLb\nsaOc3l0b/v5TY2+Iula/W/Td/lsNrTKT/VIAAGD1yivbnvr4fH2L9JtXI60vW+kWGdn7V+43XsnK\novbupV98kYwaRT7+mGps7HPmtWtUaiq5erXXIItFnn1W+60PFy/2V6H5iAx2fu+p8L+vCbte1bHq\nn0Xf7b/d1CZnuiiwbIjoAMCy0XKpNP8Xycnvibyrn2m84AS72S+yPUcyXe8AyJVU1llxyfXWv64O\nJYTMnDkzMjLy3Llz3Y/2/GAC58+f7/k5NjY2KSnJgDsf6WP755Uh4mZZxjHR2g8uTBvvujjRb5in\njcl+OwAAsD5SueqH3+7knq9/IW1U3Fg3pssxoshIsmfP3c3+45Wmpt9/qKsj69aRP/+ZmjOH9dBD\nJCiQHjmK7eFB3bzJunqVPnqU/Oc/RKM9LSHk5ZdJSor2r+ctJV7pFuRn95dVobVN0h3HRE/8+/y0\nCNf0JH9/TyHTdYFFQrwCAJaKpij5hd+6sr+g22v7mcbxDrOd81L//WvNjVxJHSqo+yW7apSP7SNz\nAnrGDx06tH///ra2Nj6fHxERYbJ69uzZU1ZWplKpHB0d582bZ4xDeLoInls48uHZ/rtP1P7xi9Jx\nIx2XTPcbPdzBZL8jAABYjZKK1g+3XQ8f7vDNq5EOtlb+eUcjvKisJM3NlIvL/UMQe/temwoF2buX\n3ru3e6u7h0ufF6dERZH33tNeT3MzVVnZu8IJFnDDhLer8LlFox6ePWz3ydqXvygZN9JhyXR/vA+B\ngUJrWwCwSAPoXzt+LottAf+ud5MrqEMFdZuzq4J87R6eExAyzF7/fVocmUJ14HTdzuMibxfh0mS/\nmFAX/fcJAABDgUSm+m7/rbyyxpfTA2PHuDJdjjqjtLYlhNTWUr6+RP0jXUYGKz39/u1RCgup2Fgy\niM9/I0aQrCwSHKy9zu3b6SVL7h6AyyUNDSwnJ416mGxtq5VUrjpYIN5xrNrbRbA02X/iaLwPAV1Z\neZoLANZHKb4hzfpcfvVYf5MssH+tXEEdLKj7Jbsq2M/u72vGBPsPxWClm4DHWTjN96F4n2Pn67/d\nf2vj3pvLkv0TI9w5HMtY5gkAABhx7lrLxxnXxwc6fftq5NBpl+7tzZ48mTp16u7IoUN0X/FKTAx7\n507qT3/SbKrSDxcX8vrr5LnntHe07XbwYK/wJimJ3JOtmDshn5M61Wd+nHfuhYbvDtz6Zt/NJTP8\npo/3wPsQ0GqonHcAwApQHU3SnI3SokxCq/qcxOIIoxcJZzzFtjer76z6I1dQB87UbT1SFexv9481\nYUH+dkxXZBY4bFZylGdylOfZy83bjlR9t/9WepLfnFhPIZ/DdGkAAGBeuqTKb/bdKrjU9PKSIPO/\n5jEoiKV+D86oUfruMC2N9I5X+pucmspesIDKzmZt3kwfO0Zu3br/NC6XjBxJFixg/fWvdF+3Gt1X\nVpZGbZYaSXDYrBmRHjMiPYquNm87Uv3D/luLEv3mTvKyEeB9CPQJNwcBgAWg5VLpqS2SE99ZWf9a\nmUL12+m6rTnVocPsV88OCPJDsNKnq3fat2RXlVa2LZjq+1Cct5M9j+mKAADALBReaf4k43p0qMtT\nD42wM9+1de/eHEQIaW6mxGI2i0W7utLu7vrewnzzJjWy93ufsjISHq7Tbm/epC5fJmIxEYtZra3E\n05MODibBwezhwwl34K9leTk1duzdTTabVFcTb+97KzHrm4Pu6+qdjoyjVeevt86b4pM61dvFgc90\nRWCOEK8AgFnTuX/tGNvZL/ECJzJdr66624tsPVI1OsDh4TnDA31tma7IMlTVSzOOVp0saUqJ8ViU\n4OPtisb+AABDV6dE+dWvleeuta5bGhQZ7Mx0Of3rFa8YXHQ0VVx8d/PDD8m6dQw0nvv4Y2rdurub\nU6eSEyfuW4blxSvdRA3SHbnVR8/VT4/0WJzo5+uO9yHQC+IVADBfOvWvdfC2TX6GP2GepfSvlcpV\nB07Xbc2pChvu8PDs4aMQrAxcU5s883jNb2dqJ49xWZzkj9cQAGAIKrjU9Mn2iinhrk8+OMIS7tcw\nbrzy7rvU66/f3YydSM4UMPC+aPIk6kzB3c2PPyYvv2xV8Uq35nb57pO1+0/VRAY5pU/3H5oLEcB9\nIV4BAHOkW/9aW5upj1tQ/1qpXLX/VO22o9Xhwx0enjN8pA9CAb10SZW/5tftPiEK8rVbOsNvXKAT\n0xUBAIAptHcpv9pzo7Sy/ZWlQREWc/I3brxy8yYVFERUar3pSkrIuHEmTVhKSujx4+9+tOTzSWUl\ny9f3vr1XLDte6SaRqQ6cqduZW+3vYbNkhl90iLk3/QETQLwCAOZF1/61UYuEyRbTv1Yi+z1YGTfS\ncfXsAAQrBqRQUlmF4szjIlsBZ0Wy/+QwVzbbUrvoAQCAVqfKG9fvuDE1wv2JeQEW1ezcuPEKIWT5\ncmrr1rubL7xA1q83abzy/PP055/f/Wj56KPkhx/6KsAa4pVuKhWdc65++7FqNpu1ZLpf4nh3Dt6H\nDGGIVwDAXFhl/1qJTLXvVG3G0eqIUY6rZw8f4W3DdEXWiabpk2VNO45WtUqUy5L8Z0R78LmWcbMY\nAADoqK1T8eWuG5fvdLy6NDh8lCPT5QyU0eOVc+foqKi7n+xcXYlIpOtqyvqTSChfX9LS8vsmi0VK\nS/tpr2s98UqPgstNGUeqa5tli7HQ4RCGeAUAmGeV/WslMtXe/Lrtx6rGBzqunjV8OIIVkyipaN16\npOpGTdeiBL95UzzNeAkJAAAYgBOljZ9nVkyP8nzsgWECniV+cDV6vEIImTmTys6+u/nLL6zly00U\nr/z8M/3ww3c/V86dS/bv7+d7DiuMV7pdvtWecbSqtLJ9fpxP6lRvRzssdDi0IF4BAIYpKs52HfpU\nVXupnzmW1b9WIlP9mle7I7d6QqDjqtnDh3shWDG1ypqubUfuFFxpmTfZO3Waj5sjVk8EALBULR2K\nz3dW3KjtenVp8JjhDkyXM2imiFcOH6Znzbr74S4lhRw+bKI3TtOn08eO3T300RySNH0oxivdqsTS\n7ceqTpQ0zYj2WJyIhQ6HEMQrAMAYSlzZlbVBp/61cStYfAv4l6m72WpmbnVkkNOqWQEBCFYYJW6W\nZRytzilumDbeNT3R39/TAv4TAgAAdcfO13+5u3JmjNcjc4ZZ+F2fpohXCCFRUdS5c7//7O5O6utN\n9KK5uFA9dwbpsG6Rlccr3Zra5LtO1Ow/XRsb6rx4un+Qnx3TFYHRIV4BAAZQHU2So9/ICndYTf/a\nLqny17y6HblV0SHOq2YFDPNEsGIu2joVu0/W7s2viRjluGS6X2iA5X7zCQAwhDS1yTdkVtxpkLy6\nNNgqTt0milfq66n9+1ltbTSfz4qIYMXFmejXO36clJVRKhVxdCTz5hF3d8Qrv+uSKvedEu86UT3S\n23bJDL8JQUPlFx+aEK8AgElZX//aTqny17y6zNyqmBDnVbOG4xIJ8ySVq347U5eZK/J1Ey6Z4RcT\nitUTAQDM15Fi8Vd7bs6d7L1qpj/Psi9a6WGieMVCDKF4pZtCSR0prt+eWy3gsZfO8J821g0LHVol\nxCsAYCI0RclLDnYd/txq+td2SpS7T9buOlEdE+qyalaAvweCFXOnouij5+u3H62mCVk2wz8xwp3D\nwZsbAAAz0tAqW7+jQtwie3VpSJC/Nd1MgXhF3ZCLV7rRNH36YlPG0erGNkV6ku/siV58nnWkh/A7\nxCsAYApW1r+2O1jZeaJ60miXlbMC/NwRrFiYntUT05P8ZmP1RAAA83CooO7b/bfmx/msSPHjcsz9\nzcAAIV5RN0TjlR4XK9u2Ha2+eKs9darvQ/HeDrZY6NBKIF4BAOPStX9t/GPC+JXm37+2Q6LcfaJ2\n18nqSaNdVs0K8EWwYsmu3G7feqSq7Gb7gnjfh+K9sHoiAABTxM2yT7dfb+5UvLo0ZJSvLdPlGAPi\nFXVDPV7pdqtOsv1oVX5Z88yJnmkJPp4uAqYrAn0hXgEAY7Gy/rUdEuWuEzW7T4omj3FZNWu4jxv+\nCbQSVWLptqN38kqbU2I80hJ8vLB6IgCAaR04Xfv9gVsLp/ktm+FnvfdsIl5Rh3jlroZW2c7jNQcL\n6iaPcUmf7j/SxyrjxaEC8QoAGB6tkEnzf9HevzYowWbOC1zPUUzXq0V71+/BSly468qZAQhWrFJT\nm3xHbs3Bglq8uQEAMJm6JunHGdc7ZKpXl4aM8LbuRfcQr6hDvKKpU6Lcm1+3+6QoyNdu6Qy/cYFO\nTFcEg4F4BQAM6ff+tdlf0G01/UzjeI22nfOy+fevbetS7DpeuydPFD/WdUUKghXr1ylV7s2v231C\nFOxnt3SG39hReHMDAGAUNE3vO1X734O305P805N8Oda/iso1QlqYrsF8RBGCrmf3IVdS2YXijNxq\nBxvu0hn+cWGuWGDIsiBeAQCDsab+tW1dip3Ha37Nq4kf67py5jBv3DAylCiUVFaheEeuyN6GsyLZ\nf9IYvLkBADCkmkbZR9uuylX0K0uCA7ys+6IVgAGjKDr/YtP2nKpWiTI90W9mjCffSpYnt36IVwDA\nAKypf21bpyLzeM3e/Jqp49xWpvijE8eQRVF0XnljxtHqDolqaZJfcrQHD29uAAD0Q9P0npM1Px++\ns2yGf1qCL8JrgH6UVrRuy6m+Vt2xcJrf/DgvOxssMGTuEK8AgF4G0L92xlq2gxvT9fantUORebxm\n36maaePcVs4chv7t0O3C9ZZtOdU3aroWJfjNm+JpJ8SbGwCAwaiql36ccY0Q8sclwf4e+PYCQCeV\nNV3bj1advtQ8J9ZrUYKPuxPeoJovxCsAMEi0QibN3yI58R2Rd/YzzSL617Z2KHbk1uw/VZsw3nVF\nCoIVuI8boq6MnDsFV1rmTfZZOM3b1ZHPdEUAABaDouhdJ0S/HKlaNXNY6lQfFgsXrQAMjLhZlnm8\n5vBZcdxYl/Tp/sNxV51ZQrwCAANmTf1rWzoUmbmi/afqEie4rUjx93BGsAL9qWuSbj8myiluSBjv\nujjJH9++AgBodbtO8mHGNT6HtW5pCJrEA+ijvUv5a17tnjzRmACHJdP9wkc6Ml0R9IJ4BQAGRnGj\nsOvgp6rai/3MYTl42yY/zZ/woDn3r21ul2fm1hw4XZcU6bY8GcEKDEBbp2LXidp9p2oiRjkume4X\nGuDAdEUAAOZIRdE7jokyjlU9Mjtgfpw3LloBMAi5gjp0tm7HMZGrI2/JdL/JYa744zITiFcAQFeq\n+krJIWvoX9vcLt9+rObgmbqkSLcVKf64hRUGRypXHThdl3lc5OcmXJrsFx3iwnRFAABm5Gat5INt\nV+0FnD8uCUKfeACDoyj6RFljRk61VK5KT/JLjkIPfuYhXgEA7aiOZsnRjdr710YuFCY/Zc79a5vb\n5duPiQ6eEc+Icl+W7IdgBfSnUtFHL9RnHK1mEbIs2T8hwp2DhTAAYGhTqehtR6t3Hq9+bO7weZO9\nmS4HwMqdv96S8b8e/A9O8bRFD37mIF4BgP5YTf/apjb59mOiQwXiGdEey5P93NCXFAyt4HLTtiPV\ndc2y9CS/OZM8BTwO0xUBADDghqjrg21XXex4L6UHoVU8gMlUiLq2/96D33vhNB/04GcE4hUAuD+a\npuUXfrOC/rVNbfKMY6KsAnFytMcyBCtgZJdvtW/NqSq/2b4g3vehqV6OtjymKwIAMBGlivolu3pv\nfs2aecPnxHoxXQ7AUFTbJN2RW5NTVD8twjU9yd/fE/flmRTiFQC4D93613rZJj9jzv1rG9vkGTnV\nhwvrU2I8ls3wQ4oPJnNHLMk4WpVX2jwzxiMt0Rff3wKA1bte1fnBtquezoIXFwfi3lsAZrV1Knaf\nrN2bXzNupMOS6f6jh6MHv4kgXgGAXqyjf21DqyzjqCi7sH7mRM9lM3xdHBCsAAMa2+SZuTUHC2on\nj3FJn+4/0seW6YoAAAxPoaQ2Ha46cLr2qQUjUqI8mS4HAH4nlasOFogzc6u9nAVLkv0mhrpggSFj\nQ7wCAL+zjv61Da2ybTmiI0X1s2I9l05HsALM65Qo9+bX7TpRHeJvv3SG39hRTkxXBABgMFdut3+w\n7Zq/u80LaYG4ShTADKkoOvdCQ8axapWKXpLkNz3Sncsx0wvPrQDiFQAYSP/a2c9zvQKZrvf+6ltk\n246KcorqZ8d6LkGwAmZGrqQOnxVvP17tZMNdluw/OcwV3yABgEWTK6mfD905dLbumdSR0yd4MF0O\nAGhRdLU5I6f6Tr0kLdFv7iQvGwF68Bse4hWAIW0A/Wtnv8QLimW63vurb5Ftzak+WtwwZ5Lnkul+\nzvZoJgpmiqLovPLGbTnVXTLVkiS/5CgPHhffIAGA+Sq41BQ7xvXe8Uu32j/Ydm2Ut+1ziwLxzy6A\nBbl6p2P70ari660PTvFJneqN7yMNC/EKwNBlBf1rxc2yrTlVx843PDDJe0mSrxPe4YGFuHC9ZVtO\n9Y2arrRE33mTvWyFXKYrAgDQVF7Z9vIXpR8+MzYi8O5djTKF6r+/3ckpFj+XNmraOHemawSAwahp\nlG0/VnX0XH3SBI/0JD9fdzNtp2hxEK8ADEU69699RBi/2jz71/YEK3MneacjWAHLVCHqysi5U3i1\nZe4kn0UJ+AYJAMwITdPPrS+5eqfDx0248ZUJQj6HEFJ+o+2DbddCh9n/YeEoRzv8ywtg2Vo6FLtO\n1Ow/VTMhyGnJdL+QYVhgSF+IVwCGFivoX1vXJN2aU517oWHeZO/0JF+8vQNLV9sk3X5MdLS4IWG8\na/p0fz98gwQAZuBgQd1H2653/7xwmu/jcwO+P3D7+IWGFxePmhJujm8PAGBwJDLVb2fqMnOr/dxt\nlib7RYe4MF2RBUO8AjBU6Ny/dprN7BfMs39tbZN0y5GqEyWN8yb7pE/3cbRFsALWo7VDsftk7d58\nEb5BAgDGdUmVj75f3Nyu6N5ksYiHs2D8KMdnUkc52OJmRgArpFLRRy/UZ+RUs9msJdP9EiPcORz0\n4B8wxCsA1s8K+tfWNkm3ZFedKG2cH+eTlohgBaxWzzdI/h42S2bgGyQAYMa3+25tO1qlPuLhzP/h\nz1ECHpYaAbByZy83bztSVdssW5zoO2eSV/eNgaAjxCsAVk5xo6jr4CeW27+2plG25cidk6WN8+N8\nFif64kszGApUKjrnXP32Y9VsNmvpDL+ECHcOG98gAYCJiBqka/5drFRpfkZYnOj31EMjmK4OAEzh\nyu32bTlVpZXt8+N8FsR7o8uhjhCvAFgtVX2lJOtz+ZWj/U3i2dhMfdQ8+9fWNMp+yb6dX97UHazY\n2yBYgSGn4FLTtpxqcYssPclvdqwnvjcGABN46/tL+eVN946zWGT98xFjhuPWRYChoqpeuv1Y1YkL\nTTOi3Bcn+Xq7mt3nBXODeAXACv3ev7Yok1DKPieZcf9aUYP0l+w7py42PRTnm5bog2AFhrhLt9q3\n5VSV32xPneo7P96rr5vjVBR94HTt/DgfpusFAAt27lrLa1+V9/VogJfNf/44gc81u2tdAcB4mtrk\nu07UHjhTExPinD7dP8jPjumKzBfiFQCrQitk0lNbJce/tdD+tdUN0i3Zd05dbFoQ75uW4GOHYAXg\nf27XSbYfq8orbZ4Z45GW6OvpItCYkHOu/r1NV996bPTUsWaXmQKARVBR9NMfn79Z09Uz4mjH9XIV\neDsLPFxsvFz43q6CiEAnfO0BMAR1SZX7T9ftPC4a4WW7ZIZfZLAz0xWZI8QrAFaiu3+tJPsLSnv/\n2hd5QZOYrldTVb10S/btM5eaF0z1XTQNwQrA/TW0ynYerzlYUDd5jMuSGcNGeNv0PPT0x+crqjtt\nBNwNL0YM97LR4yAAMERViLpyzzd4ufC9XAWezkJPFz66WgKAOqWKOlJUn5FbLeCxl0z3nzbODe3h\n1CFeAbAGihtFXYc+VdWU9zOH5eBlO+MZfqTZ9a+tEkt/yb5dcLk5darfwgRvOyGCFQAtOiXKvfl1\nu05UhwyzXzbdP3yUY+GV5r9s/L2Dtb+nzecvRuBPCQAAAIyBpukzl5ozcqoa2hTpib6z0B7ufxCv\nAFg2Vf1NSdYG3frXrmLxzesL7TtiyS+H75y90rxwml/qNAQrAAMjV1KHz4q3H6t2tudJFVRF9d1b\nAqeEubz9+BgWC18oAQAAgLFcrGzbdrT64i0t7eGGDsQrAJZKx/61gshUm+Sn2A7uTNfby+06yS/Z\nd4qutiyc5ps61dsWwQrAYFEU/Ut29Y+HbmmMr54V8PDsYUxXBwAAAFZOa3u4oQPxCoDlsej+tbfq\nJFsO3y661roowS91qreNAFcSAujrnf9ePlHaeO/4P9aMmRTmynR1AAAAYP0aWmU7j9ceLKidPMYl\nfbr/SB/bfiZ3SJRW2SQb8QqAJbHo/rW3aiW/ZN8uvtaaluC3AMEKgIFU1Usf/1fRff8xtxNyP39x\nvL+nkOkaAQAAYEjolCj3nqrbfUIU5Gu3ZIZfRKDTfaf97YdLCRPcZ0R6MF2vgSFeAbAYisriroOf\naOlfa+9lm2zq/rUqFc3h9Nfi4WatZPPh2+evt6Yl+i2IR7ACYEifbL9+4HRdX48GeNt8/sJ4/NEB\nmKtqQr5jugbzMYWQmUzXAAAGIFdS2YXi7bkiexvOkun+8eGubLUFhm7XSdb8u1jA46x/ISLQ11aP\n45gdxCsAFsCc+9fKldTrGy++9djo+17gd7NWsjnr1vmKtvQk3/lxPviMB2BYnVLlK/8pownhc9l8\nDovPZfO4bD6XxeOyuVx29+bkMOfxQc5MVwoA91VCSCTTNZiP9wh5jekaAMBgKIrOv9i0PaeqVaJM\nT/SbGePJ57IJIR9tu3awQEwI8XYVfPHyeGtqiIt4BcCsUZ0tkqMbZYU7+u1fyxZELmSqf+1nmRV7\n82tXzQx4ZE6vJpqVNV2bD98uudG2ONH/oXgvIR/BCgAAgAbEK+oQrwBYp7Ibrdtyqq9WdSyc5jdl\nrOvTH51Tqn5PIaKCnd5dG85hW8lah4hXAMzU7/1rT3xHZB39TOMFTbOZ/TzXK4iRIo9daPjnT1cI\nIXZC7qY3orsvYKms6dqUdbu0si09yW9+nDeCFQDDqSWkhekazEcgIdbzfRcMVYhX1CFeAbBmlTVd\n249WHT3f0JOtdEtP8l87fzjT1RmGFXbrBbB0NE3LSw5KDn+upX+tZ6jtnJcY7F9bVS/9eFtF98+d\nUuXO4zVTx7ltyrpVfrM9PcnvtRXBAh6CFQDD+oyQfzFdg/m4QYiVvBsDAACweiN9bP+waFReWbNS\n1euq/O3HqkKG2SZNsIY2t4hXAMyL2fav1SBXUP/4+bJEdvfkuOXInQOna9On+/1pZQiCFQAAAAAA\nULcvv65Ldp+OBx9urQjwtBtl+W1uEa8AmAsd+9cK4x+xmbraxP1r7/Xl7hsV1Z3qI0oVPXeyd1qC\nL7OFAQAAAACAuVEoqZ3Hq+/7kEyheuuHi1bQ5paxr74BoAfV2dK579+tXyzpL1thsQVRac4v7bGd\nsZbxbCXnXP3++y0Eu/O4qFOiHPj+AAAAAADAmmUX1Te1K/p6tLZJ9t7PVynKsjvD4uoVACbp2L+W\nGzjVds4LTPWv1VAlln6SUXHfhzqlyl0nalfN8me6RgAAAAAAMCP+7sI3Hx0t4LH4XDaPw+Zx2Xwe\nh89l8bgsPpfN57H5XDbbwpcQQrwCwBhVzZX2zX/U2r/WZvaL/ODJTBf7O5lC9c7Pl6RyVV8TMo9X\nLUzwthPi3AIAAAAAAL8bF+jEdAlGh49AAIxhuw6jVfK+HjWH/rX3ampTLpnuRwihqV7j3Su8dy/0\n3t6lRLwCAAAAAABDCj4CATCGJbC1mf50175/aj5gNv1r7+XjJvBx82S6CgAAAAAAAPOCeAWASYKY\nVOnpbVTD9d+3WWxB5EKb5KfYDu5MlwYAAAAAAAC6MqObDgCGIBabYzv7he6fuYFTHZ/dapf6OrIV\nAAAAAAAAy4KrVwAYxg+dKpi4lDc60Xz61wIAAICVEYvpnBy6vZ3weKy4OBISYqLlOcrLqeJillRK\nOziQlBTi7o4vdwGgT2KxOCcnp729ncfjxcXFhYSEmOa45eXlxcXFUqnUwcEhJSXF3X2Q33YjXgFg\nnt38PzFdAgAAAFiz+Q/SBWe7f6T9/EhVlYnilaQk0tBAd/8cH09OnmT6hQAAMzZ//vyCgoLun/38\n/Kqqqkxz3KSkpIaGhu6f4+PjTw72VIX8GAAAAADAmuXlUf/LVgghJCjIdIdW/+45L48UFNBMvxgA\nYKby8vJ6shVCSJAJT1Xql8lolDEguHoFAAAAAMCaffJJr821a3V6VlcXVVJCqqpIdTVpbSUBAawx\nY+gxY4ij4wC+oH3ySVZ+/t1I5ZNP6C1bTHThDABYlk96n6rW6niqUiOTyS5evCiRSLhcrp+fn5+f\nn45PfPLJJ/Pz89Ur2bJlyyB+BRZNI0IGAACwCH8l5F8mOIyF9Gi4Qchw0xQGYDQlhER2/yQS0StW\n0Pn5ZEDvzblckplJ5s7t74+lspIKDiYq1e+b7u6kqoolEPT5dy2RUJs2kd27SU4OkUrvM8HXl8yf\nT959l7i6as9ZJBLK15e0tNwtuLKS+Pvf94nvEfKa0V5qADAAkUi0YsWK/Pz8AcUIXC43MzNz7ty5\n/cyprKwMDg5W/e9U5e7uXlVVJRAIdD9KZmbm888/X1NT0zNy9uzZmJgYXZ4rkUh8fX1b/neq4nK5\nlZWV/v7+A319cHMQAAAA9DL/QXr5crJ2LXnsMXrGDNN9DZOURB5+mF67lixfTlJTmX4VAEzriy/o\n3FyiUBClcgD/k0pJVpaWPW/YcDdbIYQ89hjpK1tRKskHH1AjRpC1a8mBA/fPVgghIhH5+msyejT5\n6SdK6+9lY8NevbrXITZsYPq1BoDB+uKLL3JzcxUKhXIgpFJplrZT1YYNG1Rqp6rHHntM92xFJBIt\nXLhw8eLF6tkKIaS1tVXHPdjY2KxWO1UplcoNgzpVIV4BAACAu9CjAYARjY2DfKKzc3+PtrdT3313\nd5PFIk89df/3/y0tVHwc9dprRCzW6bj19eSRR8jTT2tPWJ56qtfmxo2ksxN/3QAWqXGwpyrnfk9V\n7e3t36mdqlgs1lMaJ44+0DS9cePGsLCw3bt36/mraRxx48aNnZ2dA90J4hUAAAC4a9A9Gk6fpnbs\noNavp955h/rvf+kzZ6i2Nu2fu9Q9+WSvb9Q/+QQfwAC0Uyr7e3TPHtLWdnczJYUEBt5/5o8/EvVo\nVUdff02ys7X8pYeHs6dOvbvZ0kL27cNfN8DQouz3VLVnz542tVNVSkpKYF+nKjVXr15NSkp66qmn\ndL9KpR/h4eFT1U5VLS0t+/btG+hO0NoWwHwxtfA7Mdza7wBgJEZq01BZSal//ePuTtLS+mu80neP\nht/L8vWldO/RsHQp/fLLd3s07NhBPviA6qNHA4D1e+IJ7XO4XNYTT/R3Ftixo9dmenqfM++9aGXk\nSJKUREaPJr6+5OZNVnEx2bOHpu7JUtauJaWltJ1df+eKxYt7LcmcmUmWLjXdKwkAxvOEDqcqLpfb\n/7QdvU9V6f2cqgghhCgUig8++OCdd96RyWQG/F0WL16sviRzZmbm0gGeqhCvAJgvphZ+J4Zb+x0A\njKS7TcNAKZUkK4v001puQD0aPvmE+vBDLfcRdPdo2LmTfPgh9fDDWoISGxv26tVUz83O3T0a/mWK\nZr4AZmfePPLNNzpmi33mGh0d5NChXiOzZ/c5mav2sSA+nrz6Kpk/n7DZvWo4eZJ++GFSWdnriZWV\nZNs2+vHH+4tX5sxhE3I3mDlwgEgklI0NwlMAyzZv3rxvvvlGz510dHQc6n2qmj17dj/za2tr58yZ\nc+HCBY1xJycnPS9jmTNnjvrmgQMHJBKJjY2N7nvASQ3ATDG48Dsx3NrvAGAkxmjTgB4NAFbmwAFK\n/bKyMWNIQECfIUhwMCGE+PuTTZvIyZPsBQvYGtkKIWTqVHZ2Nkso1HxuSYmWSkJDyciRdzc7O8nB\ng1ieGQAIIeTAgQNStVPVmDFjAgIC+pn/448/amQrXC533bp1V65c0bOS0NDQkWqnqs7OzoMHDw5o\nD4hXAMzUoBd+b2pqOnnyZEZGxvr1699+++1vv/02NzdXJBIN6OhPPvlkP8UAgOXq595n9GgAsDIa\ndwb1/l5W0/LlrOJi1o0bZOXK/j4gjBrFevVVzUGt8Qq558KZzEz8aQMAIffcGTSn/1MVIU1NTeqb\nM2bMuHDhwocffujo6Kh/MRoXzmRmZg7o6bg5CEAvRlr7vbKyUr39tbu7e1paWv/7bGpq+vbbb3/9\n9dfTp0+rr2rWw87ObvHixe+++66vr6/WCpcuXfryyy/3rP2+Y8eODz74YBBrvwOAyejfpgE9GgCs\niUxGHzjQa6T/zywcDisykvRzq1GPhQtZf/97rzNJebn2eubMob/66u7m3r1Eqex1RxIADEEymexA\n71OV1nilZ8Fmf3//jz76aMmSJQasZ86cOV+pnar27t2rVCq5Op+qcEoD0Ev32u8DfZZSqczKyuon\nXhnQwu9SqfSf//zn+vXr29vb+zloZ2fnjz/+uGPHjr/85S+vvPJK/yvJd6/93rPee/fa7/9CCwQA\nc6V/mwb0aACwMiUlRH1RUYGAJCQY5u9ozBhWT/vqbgqF9mclJ7M5HKrn3U1bGykroyZMwJ82wJBW\nUlKivv6xQCBISEjo/ynz5s07ffr09OnTX3jhBTs7O8PWk5yczOFwej6ItbW1lZWVTZgwQcen44wG\noBdjrP0+oIXfW1tbY2Nj//GPf/SfrfTo7Ox844031q1bp3WmQdZ+BwBLgR4NAFamsLBXAhIaSu79\nexwcFkvzIjhPT+3PsrfXvN+wqIjJ1wcAzEFhYaH6ZmhoqFDbqWrSpElZWVl/+ctfDJ6tEELs7e01\n1oQuGsipCvEKADP6Wft9QAu/b9mypbS0dKBH//LLL48cOdL/HIOs/Q4AlgI9GgCsjMYngrAwg+25\npkbzT9LLS6cnhof3+tMuLERyCjDUaYQXYQY8VQ1WeHi4+qZGANQ/3BwEYGD6r/0+oIXfxb1bIPD5\n/CVLlsyePTssLGz48OG3b98uLS19//33L126pD6NpunHH3/82rVrfD6/n53rv/Y7AFgE9GgAsD4a\nnwgM+JklP19zxM9PpyeGhdG7dt3dLCqidTmNAIAV0wgvzCFeCQsL26V2qhrQ1St4qwJgSPqv/T7Q\nhd85HE73DwKB4OWXX37xxRe9vb17HnVzc4uMjFy2bNmrr7762WefqT/x9u3bly5dGj9+fD8713/t\ndwCwCOjRAGBlpFLNKNOAn1m2btX8u543T6cnhof3emJJCVEoKB4Pf9oAQ5RUKi3vfaoyh3hF4+qV\nkpIShULB4/F0eS5OZwDmZaALv4eHh/N4vMWLF5eXl7/33nvq2UoPPp//8ccf35uklJWV9V+M/mu/\nA4BFQI8GACtTVkZp3IVsqM8szc3UoUO9/q5tbcmCBTp9pggL6/VEmYxcuoSrVwCGrrKyMo2GCeYQ\nr2jUIJPJNO4D6AfiFQDzMtCF31NTU+Vy+fbt2/vpz0II4XA4b775psag1niF6L32OwBYBPRoALAy\nNTWafzJBQYbZ87/+ReTyXiPz5xN7e52e290VW11tLTorAQxdNTU1GiNBhjpV6SH4nlNVbW2tjs9F\nvAJgRgax8Lvu7l1R7Pbt21qfpVFA99rvDL5EAGAM5tmjQX2zqAifwWBoOXiQ2NlRWv/30kvUfZ/e\n3NzrT8benhjkHpyLF+mPP9YcfGqtrumnrS1bo+dbc7OJXk8AMIaDBw/a6eCll16679Obe58C7O3t\ndbwHx6hsbW012lM263yqQrwCYEYGsfC77nq6tPS4751EGrrXfu/Z7F77nenXCQAMyfg9GnoZSI+G\nu7p7NDDzAgEwQaUiXV3a/7d///2f3tTU6y/I0dEwVf3hD5rtkxYsINNnDODiMo1KWlqM/koCgPGo\nVKouHezv41TV1NSkvuloqFOV3jQqadH5VIV4BcCMDGLhd92dO3dOY0SXq+/0XPsdAMwfejQAWC6N\n+3R6NDX1+gsyyGeW//6XPnas127t7MjHHw/sD1OjkuZm/F0DWD95H6cqS4lXcPUKgF5oSiU7t0+S\n+18TH9eoC7/n5ORojNx7Y+F96bP2OwCYP/RoALBcnn00M+r9mYU4OOh7oLIy6rnnNP8G168no0bp\nGa/g7xrA+nn20dZeI15x0P9UZSCDjlewMDNALzRNKy4e6zryJdVQYTvnVRMf3XgLv+fm5n755Zfq\nI8OGDdPxziN91n4HANPobtOgddqTT5JPP9X8ZsWMezRQ6ukMejTAUPPHP2qZwGKR1NT7P6Tx96Ln\nZ5bmZmrhwl7LtxNC0tLImjUDPldoVCKX4+oVAMv2R22nKhaLldrHqUojtjCfeEWjkr6uvrkX4hWA\nu+TXTkuO/EclKu3eZHuM1G9/A2O8hd8vX768cuVKlUqlPvj6669rNG3qiz5rvwOAaXS3adBq/37y\n6aeag01NLELuJixm1aOhoeHuJno0wJAybx756KPBB5003d/mgEilZMECcv16r8Fx48h//zuY8jQq\nYbNpQpCwAFiqefPmffTRR4N+Ot37jEDrc6oyKI1K2GxdT3e4OQiAEEKUty60ffdUx8/P9mQrhBCO\nx3BT1mCMhd9ramqeeeaZcePGVVdXq49PmjTp8ccf13En+qz9DgBm5b7fvqBHA4D1cXbutdnWPsj9\nUBS1YgV94kSvQQ8P8uuvut7op6GtrdfmPW33AWAIce59qmrTOEEwR6MSjs6nKly9AkOdquaq5MhX\n8qvHNB/g27KdtC+sY0B6Lvx+7Nix7du3d0etXV1dFRUV165dq6uru3fmnDlzduzYofvlJ/dd+z0i\nIsKULw4AGMR92zQYp0eD5qCBejQgYQHQiWa80jrI/Tz9NNm1S7NB9Z49rBEjBvnHqPHpSaNOABhS\nLCVecdb5VIV4BYYuVcNtac7XsrLf7vsoxz2QxRrwW4futd+1TnvyySc/vecCfT0Xfn/ppZcuXLjQ\n/xwfH581a9a8+eabA9pz99rv6vcc6t7eCQBMZtBtGtCjAcD6aMYrg/rMsm4d9c03vUb4fLJrF5ky\nZfB/jIhXAKAH4hUAa6BqrZMe/VZ2bjehVX3N4Q6q8Ur32u9ap+3fv//eeEXPlcnq6+u1zhkzZoyj\no2NVVdXIkQP77RwdHRvUWiDovvY7AJiGPm0a0KMBwProH6+88w6l0Z2azSabNrFmzdLrz7C9921K\niFcAhjKzjVfae5+qdI9X0HsFhhaqs6Xzt09aP31IVpzZT7ZCCGF7jDJeGfftPq1nvOLm5qZ1Tk5O\nzmuvvRYeHr5hw4YB9Y4a9OJkAGD+0KMBwPpo/F1LJEQi0b64WI9PP6XfeqvXCItFvvmGpKfrma1Q\nGh2vEa8ADGUasYVEIpFIJEwXRdrb2xW9T1W4egVAEyXtkOZtkp7aROQ6rK5BCMdzhPGKue/a73ou\n/P7WW29t3LiRoihCCEVR1dXVt2/fvu8ZSiKRvPDCC/v27du1a5etra0uO0e8AmDF0KMBwPp4uPda\nEYwQcuUKmTBBp+d+9x11782Gn33GevxxfS8fu3Llnjo9cEkawNDl4eGhMXLlypUJOp6qjObKPaeq\ne+vsC+IVGBJoiurc/obi2nHdn8IZ7KrMg177Xc+F39PS0tLS0jQG6+rqioqK/v3vf+fm5mo8lJWV\n9ec///mzzz7TZeeDXvsdAMwfejQAWJ+I8ZrxSnm5TvFKRga1dq3mrXnvv0+ee84AOcjFi702ORwS\nHo6b/gCGrnvXyigvL2c8XrnY+1TF4XDCw8N1fC7iFRgSWGy2/YoPJTkbpSe/J7QOF8dyeGwX30Ec\nSJ+1342x8LuXl9fcuXPnzp2bl5e3Zs0ajSz2888/T0tLS0xMHGhtuq/9DgDmDz0aAKyPmxsJCCC3\nb98dKS/X/qwDB6hVqwjV+43Sm2+SP/3JMP/ua9QQGkpsbfGOAmDocnNzCwgIuK12qirX5VRlZBo1\nhIaG6ni9P0HvFRg6WByu7cxnHR7dyHLQvtwyx20Ui23qu/yN2tspPj5+3759rq6u6oM0Tb/zzju6\nPH3Qa78DgPlDjwYAqxQZ2WtT62eW06epxYuJxt/dunXk7bcN9nlB4+oVjQoBYAiK7H0iMId4RePq\nlciBnKpw9QoMLbyRUU5/2NqZ+ZbiWm4/0wa3bJCejN06OygoaNOmTXPnzlUfLCoqomla6xLUg16c\nDADMH3o0AFilyEiyZ8/dzf4/s9A09fDD5N6ObR0d5JlndLqc1taWfuMN4uLSXxaDeAUANERGRu5R\nO1XpGK/8+uuv9/aCvLd9waFDh6qqqtRHuFzuggUL7PttuY94BWAAWDYONKXofw7b0wrjFULI7Nmz\nHR0d1ffc2tp648aNwMDA/p+IeAXAiqFHA4BV0vhEUFlJmpupvuKPmzfJtWv3Gf/6a6JxfuiHtzd5\n9dU+H21upiore1c4AdfRAwx1GuFFZWVlc3Ozi4tLP085ceLEggULdNn5Bx98cO/gW2+99be//a2v\npzQ3N1f2PlUNKF7BSQ2GHOmJn5UV+f3PYVvj1SuEEDabHR0drTGoy4EGvfY7AJi/7h4N6tCjAcAK\nxMYS9YtTKYpkZ/cZULa3GyC7VKn620l2Nks9jeVySXSMAdrMAYBFi42NVb+OnqKo7Ozs/p9y78o+\nA9L/Z5/s7Gz1ppNcLvfeT0/9wDsVGFpUokuSnM+1Thv0skH6MM3C70KhUGOks7Oz/6fos/Y7AFgE\n9GgAsD7e3uzJk3uNHDrUZ5zh4GCApKO9vb+dHDzY69GkJOLkhOvRAIY6b2/vyb1PVYcOHer/KTwe\nT58jdnR09PPowYMH1TeTkpKcnJx03zluDoIhhJZL2jP+Siilxrgg4kF5xSm6s/H3bRaH4zbM9OWZ\nZuH3srIyjRFvby29fvVZ+x0ALAJ6NAAwLiio1216o0YZYJ9paeTUqbub/XxmGTGCzJlDsrI0L0nT\nnUBA5szpLy7JytKoDdkKgOUJCgpS3xxliFNVWlraKbVTldZ4JTEx0dnZuaWlZRDH4nA4s2bN6mdC\nVu9TVVpa2oD2j3gFhpCuvf+imm5pDHIDom0XvWXT1dq5823F9ROEELaLP4vLN315Jlj4vaCg4M6d\nO+ojdnZ2w4ZpyZL0WfsdACwCejQAMO6VV1hr1tBiMZvFol1daXd3A/w3n5ZGXnnl7mZVFSkvp8LD\n77NnFov9229G/O3Kyyn1/pJsNklNRTclAMvzyiuvrFmzRiwWs1gsV1dXd3d3/feZlpb2itqpqqqq\nqry8vJ+PGyNGjLi3r61BlJeXq7fCZbPZqampA9oD3qzAUCEry5Zd+FVjkCV0sFv8DovNYdu72q/+\n1Gb2K4TD43oGDuoI+upe+F19RGvr7IqKioceeuizzz7r6urSuv+urq7Vq1drDM6aNUsgEPT/RH3W\nfgcAi4AeDQDmwMWFHRpKQkJYBslWCCEjRrCjonqN9L7s3XQ0vo2OiyPe3vgYAmCRXFxcQkNDQ0JC\nDJKtEEJGjBgR1ftUdZChU5XGhTNxcXFaL/PXgPMaDAmqFlHXr3+/d9wu9W2Os0/3zywWyyZ+hdPa\nn3ihCUzVOdCF37Oysvbu3fviiy+OGjXq448/bmxs7GvmtWvXUlNTr169qj7IYrGeffZZrVXpszgZ\nAFgE9GgAsFYaF7ZnbGOmDI3jLlrE1OsBAOZI4x6cjIwMRsrQOO6igZ+qEK+A9aMpVeeON2lpu8a4\nMCadH5akMcjxCRVEP8RUqQONV5qamrp/qKurW7dunY+Pz0MPPfTtt98eO3bs1q1bXV1dFy9e3L17\n94svvhgeHn748GGNp7/88sspKSlaq0K8AmCGgoJ6xQ363/us8RlMa48Gth7vINCjAcBkVqwgHM7d\nzYKzpLR0sO1VBqukhD5TcHeTzydLl+KPGgDuWrFiBUftVFVQUFBaWmriGkpKSs6cOdOzyefzly5d\nOtCdoPcKWD/J0W+Ut4s1BtluI23mvMR0aZoGuvC7vb29+qZCodi7d+/evXt1OVZUVNR7772ndZqe\na78DgJEYvE0DejQAWKURI9jp6dTWrXdHvv2WrF9v0hq++abX5ooVxNcXf9EAcNeIESPS09O3qp2q\nvv322/WmPVV90/tUtWLFCl9f34HuBFevgJVT3rogPf6d5iiH55D+TxbfhunqNA104ff4+Hj1+bob\nMWLE1q1b+XztHXz1XPsdAIzHsG0a0KMBwFq99lqvtwqbNhGZzHTNB4gwWgAAgABJREFUjCQSatOm\nu4djsXoluQAA3V577TX1zU2bNslkMpMdXSKRbNq0qWeTxWK9MqhTFd6vgDWjpB0dO94gtEpj3Hbm\nyxzf0UxXdx8DXfg9JiZm586dISEhuh/CxcXlww8/vHz5cnBwsC7z9Vz7HQAsCHo0AFilyEiW+q3A\nTU1k507THX3HDpb68qkPPEDue1kcAAxxkZGR6l0LmpqadprwVLVjxw71lZ4feOCBwa2UirMbWDPJ\nnnep1mqNQW5gnGDKgO+j64vB137XaOykdeH31NTUy5cvZ2VlPfLII8OHD+9rGpfLDQ4OfuWVVyoq\nKtatW6d1taAeeq79DgAWBD0aAKyVxgUs339vuqtXvv++1+aruHQFAPqgcQHL9xqnD2PSONarr746\nuP2w1C/7B7Am0sLdXb++ozHIsnV1+sM2toObAQ/U3NxswLXfb968OXLkSPWRsrIy3dPTmzdvXr58\nWSwWi8Xi1tZWT0/P4ODg4ODg4cOHc7kD7rVUXl4+duzYnk02m11dXT3Q9ckAwHD+Ssi/jHqA5ct7\n9Wh44QWyfr1Jv4l5/nn688/vvjN59FHyww99FXCDkOG67RXAbJUQYqKOZlFR1Llzv//s7k7q6030\np+3iQvV8JRw7kZwp6Oe47xHymi77BABrFRUVde5/pyp3d/f6+nrTHNfFxaXn6pXY2Fj1HrcDgta2\nYJ1UjXe6fvvg3nG7hW8bNlshhLi4uPTTfXaguhd+Ly6+24v34MGDuscrI0aMGDFihKGK0X/tdwCw\nLK+9xtq69W66sWkT+fe/aYHARNePSCSU2o3P6NEAYEiHDpH9+1ltbTSfz4qIMN1FYXv2sMvKKJWK\nODqSefOYfhUAwLwdOnRo//79bW1tfD4/IiLCZMfds2dPWVmZSqVydHScp8epCvEKWCFapezY/gZR\nSDTGBVNW80Pjma5Ou7S0NPV4JSMjY926dYxUov/a7wBgWSIjWSkpdE9P7e4eDcuXm+joO3awWlru\nhjvo0QBgQB4e7EcfJaZfhCshgSQk4A8ZAHTi4eHx6KOPmv64CQkJCQkJ+u8HJzuwQl1Zn6tEmiul\nczxDbVOeZbo0nZjDwu/EQGu/A4DFQY8GAAAAgEFAvALWRlFxVnbqJ81RrtBuyT9ZPF37uTKre+F3\n9ZFvv/3W9GUYZO13ALA4M2eyItV6QZw/b7pDnz9/N8qJnUiSpuNdCgAAAFgMtLYFq0J1trR+sZzu\nqNMYt33oTWFMKtPVDcC5c+eioqJ6Nl1dXUUike7L/ehPIpH4+vr2dHhisVilpaWDW58MAAzH6K1t\nu9XXU+o9GuLiTPTrHT9O1Hs0uLv3H6+gtS1YAdO1trUEaG0LAJYNvVfAqnTteufebIU/eoZRs5WC\nS00qip4SbsiOud0Lv2f/r/9B98Lvyw3a/yDjaFVcuLu/p/C+jxpq7XcAsETo0QAAAAAwUHgTA9ZD\nemqb/OoxjUGWg5dt6v8Z76BtXYqPMyocbXgG37OxF363EXDe33JFpbr/9WuGWvsdAAAAAABgKMDV\nK2AllHXXuw5/ojnKYtun/Z1t62S8436x80ZSpEf4KEeD73nmzJmRkZE9C7+fN3T/g/lxPqfKmjZn\nVz08e9i9j6ofLjY2NikpyeC/IAAAwJDnT8hWpmswHyFMFwAAoBfEK2ANaIWsM+N1opRrjAunPcEb\nFWO8454sa7xS3fH10iAj7d/YC7+vWxb89EfnJ41xDg1w0HjIUGu/AwAAQN9cCUnXfy8AAGAO0NoW\nrEHXr+9LCzM0Bjl+EY5PfMviGCtDbOtUPPnBubceGR020vCXrphMbknDf3+7/dUfxwt4HP33BgBG\nZqLWthYCrW0BAADAjODqFbB48svH781WCN/WPv0fxstWCCEbMiuSo70sOlshhCRGuJ8ubdq499bz\ni0YxXQsAaOVHyINM12A+TLeYGgAMQsZRUcQoh9HDHfTfFQCARcDVK2DZqLaG1i+W0pJmjXG7Rf8Q\nTJhrvOOeKG344bfbX708gc+z+P7QnRLl2g/P/XFpUHSIC9O1AAAAgJUouNz04dbrHz8b0dcyhQAA\nVsbiPxnCUEbTdMfOt+7NVgTjHzJqttLSodiQeeO1pcFWkK0QQuxsuK8uD/5w6/X2LiXTtQAAAICV\niB3tumbu8L98U9bUJtd/bwAA5s8aPhzCkCU9/qPyximNQbazv+08464i/PnOilkxXtZ0seuEIOeE\n8R4bMiuYLgQAAAB0VXil+WRZI9NV9Gd2rNe8yT5//fZipxRf4QCA9UO8ApZKVX1RcvRLzVE2137x\nP1hCO+Md99j5+sq6rofnDNN/V2ZlzdyAitrOnHP1TBcCAEYhU6j+s7tSrqSYLkS7jKOiClEX01UA\nmLsuqfKTjOsOQnPvTL8s2S98hOPbP1xWWML5BwBAH4hXwCLRMkn79tcJpflNiM2MP3ADDL+AcY/m\ndvmXuytfWxrM51rb3w6fx/7z8pD/7K5saJUxXQsAGN6GzButnQqLOHd5uvL/9sPF1g4F04UAmLVv\n9t2KGe0yPsiZ6UK0+0PqSAdb7gdbrqHnIwBYNwt4mwVwr66971NNtzQGucMnCqeuNupxN2RWzIn1\nDg2wntuC1AX72y+c5vvhVrz7AbA2+0/XXr7T/uLiQKYL0UnSePcZUZ7/+OmKSoVzEcD9ld1oPVXe\ntPbBEUwXohM2m/WnlSFNbfKv9txkuhYAACNCvAKWR1aaJSvZqzHIEjrZLX6HxTbif9I55+rvNEhX\nz/Jn+gUwoqUz/Lrk1O6TNUwXAgAGc72q84cDt956ZIyNwNxvIujxyOxhQj77yz2VTBcCYI7kCurD\n7ddfXDzKzobLdC264nPZbz8+5tz1lm051UzXAgBgLIhXwMKomkVdv75777jdgjc5Tl7GO25zu/w/\nuytfXRrMs4RL6weNw2b9aXnI5sN3btdJmK4FAAygQ6J8+8dLzy8OHOZpw3QtA8Bms/68MqT4WsvB\ngjqmawEwOz8duhPsaz8l3I3pQgbGzob77pNhv+bXZBeLma4FAMAorPmDIlgfmlJ17vg/WtamMS6M\nWcIPn27UQ3+6vWLeFO+QYfZMvwZG5+cufOyB4f/achWX5QNYOpqmP9hyLW6se2KEO9O1DJidDfed\nx8Z8t//WpVvtTNcCYEauV3UeOlv3bOpIpgsZDHcnwbtPhn+952bR1WamawEAMDzEK2BJJDnfKO+c\n0xhku42ymfOSUY+bXSyuaZKuTLHm24LUzZvi7WrP+/nwHaYLAQC9bDlS3dqpePLBAKYLGaRhnjav\nLgt658fLjW1ypmsBMAsqFf3h9mtr549wceAzXcsgDfeyefvR0e9tunr1TgfTtQAAGBjiFbAYipvn\npSe+0xzl8ByW/JPFFxrvuI1t8q/33HxtWYh13xak4eUlQQdO117Gl8YAFqukonXPSdEbD4dyORZ8\n7ood47pgqu/f/nvJIpaUBjC2jGMiVzvezBhPpgvRS9hIx3VLg978/pKoQcp0LQAAhmTBb7lgSKEk\nHZ2ZbxBapTFuO+uPHJ9Qox56/fbr8+N8gvztmH4NTMrVkf98WuD7v1yVylX67w0ATKyxTf7upqt/\nXhni7iRguhZ9LZvh5+0s+GxHBdOFADCsSizdkVtlKUuA9W9KuNvq2cP+srG8uR3XpgGA9UC8Apah\na88/qFaRxiAvaJpg8hKjHjfrrFjcKl+R4sf0C8CAaePcwkc4fP3rTaYLAYCBUanof/50ecFU38hg\nZ6ZrMYx1y4KvVXdkHhfpvysAC0XT9Mfbrz08K8DL1YhX7JrSvMneKTGer393USLDFzkAYCUQr4AF\nkBbukl/M0hhk2bnZLXqLxWIZ77gNrbJv9t18dVmIRV9ar49nF44quNxceAX95wAsycZ9t+yE3GUz\nfJkuxGCEfM7bj43ZllN14XoL07UAMGNvfi1F0fPjvJkuxJBWzxoW7Gf/zn8vK1W4+w8ArMEQ/dAI\nFkTVcKvrtw/vHbdb+A7b3tWoh/40o2JBvG+gry3TrwFj7ITcPy0P/nDr9bYuBdO1AIBOTpQ25pc1\nvLYixKjps+l5uwpfXxXyz01Xa5vQrAGGHHGz7KdDt/+4JJjNtqq/a0LIC2mBfB77o63XaRrrFQKA\nxUO8AmaNVio6Ml4nConGuDDuEX7IFKMe+uCZusYO+fLkoXhbkLqIQKfpkR7oegBgEarqpeu3X/+/\nh0c72HKZrsXwxgc5r0wZ9tYPl9ATCoaaDZkVixL8ArxsmC7E8Dhs1l9Xh9Q2S7/Zd4vpWgAA9IV4\nBcxa1+HPVbUXNQY5XqNtUp4x6nHrW2Tf7r/52rIQDsfaviYahMfmBtwSS7KLxUwXAgD9kSlU7/x4\n6bG5w0OG2TNdi7EsmOoT7Gf/4dZrTBcCYDrZxWJxq2zJdOu53U+DgMd55/GwM5eb0F8JACwd4hUw\nX4rrZ2SnftYc5Qrtl/yTxeUb9dCfZFxflOA30mfo3hakjs9l/2l5yNd7boqbZUzXAgB9Wr+9IsjX\nbt5kq2rNcK8XFgfWt8g2H65iuhAAU2jpUHy95+a6JcHW3QbOwZb73hPhmbnVR8/XM10LAMDgWfOZ\nGiwa1dnSsfPNe8dt5/2J4zHSqIfef7q2tUu5dPpQvy1IXZCfXVqi34dbr+HWaADztDe/5rqo8wWr\nWLG1f3wu+81Hx+w7VVNwqYnpWgCM7stdN2ZN9LLiS9J6eLoI/vlE+Je7Ks+jgzUAWCzEK2CmOne+\nTXdofoPBH5MijF5g1OOKm2U/HLj1Km4LuseSJF+FitqJC3cBzM/VOx0/Hrz95iNjhHwO07WYgpsj\n/61HRn+w9fodsUT/vQGYrTMXm67c6Xh4tj/ThZjISB/bNx8O/efPV69XdzJdCwDAYCBeAXMkzd+i\nuJarMchy9LFd8IaxD/1xxrXFSf4jvK2we5ye2GzWa8tDtxypulWLzzMAZqS9S/n3ny6/mB7k7yFk\nuhbTGT3cYc284W/+cKlTomS6FgCj6JQq12dWrFsaJOANidi027hApxcWB77x7UWsEQYAlgjxCpgd\nVe21rsOfao6y2PZpf2fbOhr10PtO1XZIVelJVts9Tk8+boI180a8v+WKUkUxXQsAEEIITdP//uXq\ntAj3aePcmK7F1ObEesWGury36SpF4aZFsELf7L0ZO9olItCJ6UJMbdo4txUp/n/+pry1Q8F0LQAA\nA4N4BcwLrZC1b3+dqDT/QRUmPMEbGWXUQ9c1Sf/7261Xl4Vw2LgtqE8PTPLycOT/dAhNJQHMwi/Z\n1Z1S5Zq5w5kuhBlr54+QKajvD9xmuhAAAyutaD1zqfnJ+SOYLoQZD8X7JEZ4vPH9RazCDgCWBfEK\nmBfJgY+p+usagxz/8TZJTxj1uDRNf5xxfcl0v+FeuC1Ii5eXBB0sqL10s43pQgCGunPXWvbm1/x1\ndeiQ7RXF4bD+75HQ3Av1xy40MF0LgMHIFdRHGddfXBxoJ+QyXQtjHnsgYISX7T9+vKJS4fI0ALAY\niFfAjMgv5UqLtmuO8u3sF/+dxTHuO4y9+bVSuSotEasFaefiwH9pceD7v1yTyPCdEgBjGlpl72++\n+peVwe5OAqZrYZKjHe9vj4V9nllRIepiuhYAw/jvwTuhw+wnh7kyXQjDXlocxGKRT7Zf139XAACm\ngXgFzAXVVt+5++17x+3m/5Xjatye+TWNsh8P3X4FtwXpLG6sW0Sg41e/VjJdCMAQpVRR//jpysIE\nv/FBzkzXwrxAX9vnFwe+9f1FdGoAK3CtquNwYd0zqaOYLoR5HA7r9YdDb4m7vtuPGwABwDIgXgGz\nQFNUR+abtKRFY1ww/iHB+AeMe2ia/mjb1eUz/Id54ragAXhmwcjiqy0Fl5qYLgRgKPr611uOttyl\n09GH+3eJEe7J0Z5//+ky7iMAi6ZS0R9lXH96wQhnex7TtZgFIZ/zzzVhJ8sa9pysYboWAADtEK+A\nWZCe+FFZeUZjkO0yzPbB14x96D0na5QqelECPqUMjK2Q+6flwR9nVODrYgATyy1pOH2x8bUVISwW\nLri765HZw2z4nC9232C6EIDB25pT7ebAS47yZLoQM+Jox3vvybAtR6pOlKLFEgCYO8QrwDxVVbnk\n6H80R9lch8X/ZAlsjXpoUYP058N3XlkWwsZtQQM3dpRTcrTn+h24KRrAdO6IJRt2VLz1yBh7m6Hb\n8/K+2GzWn1eFnLveevBMHdO1AAzGHbFk54nqFxcHMV2I2fF2Ff7zyfDPdtworWhluhYAgP4gXgGG\n0bKu9u2vE0qpMW4z4znOsLHGPTRNf7Tt2sqUYf4eQqZfBkv16JxhVY3SrLNipgsBGBKkctXbP15a\nM29EkL8d07WYIzsh953Hxnx34NalW+1M1wIwMDRNf5xx7ZHZAZ4uQ7pZdV8CfW3fWB3yzk9XKmvQ\nxBoAzBfiFWBY175/U82aHcu4I2KFU1cZ+9C7TtTQhKRO9WH6NbBgPC77z8tDN+6trGuSMl0LgPX7\ndHvFmACHByZ5MV2I+RrmafPq8qC3/3u5oVXGdC0AA7Anr5ZFyPw4b6YLMV/jg5z/sHDk69+Wi5vx\n1w0AZgrxCjBJdv6A7MKvGoMsG2f7tHdYbOP+x1ndIN2cfWfd0mDcFqSnUb62S6b7fbD1Gk2joySA\nEf2aV1NZ2/ncIqwnokXsaNfUab5v/3hZrqSYrgVAJ+Jm2c9Zt19eEoyGSv1LmuCxONHvL9+Ut3Wh\n7xsAmCPEK8AYVXN15/737x23W/Am28m4Td0oiv5o69XVM4f5ueO2IANYnOhH02RHrojpQgCs1pXb\n7T9n3XnrkTECHofpWizAshl+3s6Cz3ZUMF0IgE7W77ienvj/7d13QBPn/wfwu2wS9hIQEZQhoLZq\nq9aJ24pbEavVukftdtTW1tXW2jraamvdq7aKiqtqXbWuWvdAQJaAyBLZgSwyfn/w/dH0AmEkuct4\nv/7yPrnc88lzF8l97p7n8ATDBhndy+e1MLelOx7Lq1RM5wIAQIXyCjBDo1JWHPqckFdQ4vxXo3lh\nEaZu/ciVXBZJjsCwICNhsciFbwTFXMzGiGgAUyiXVH2xN/nDqNY+qAg32PzxQak5FbFXUPYFc3f+\nTkGRuCoqAk8wbKjpkX4+boJVv6So1LhtFgDMC8orwAzpxa2q7AeUIMs9UDjofVM3nV0g238xe/54\nPNPUmLxcBTOH+n+zP6UKd+MDGJVGo1m9LyXiZY9ubd2YzsWSCHjslVNDYy5mP0grZToXgDqViBVb\nf8+cPy6QzcZvkoYiSfKj6MAqpXpDLO5QAwDzgvIKMKAq477s2k5qlM11GPcVyTPttVm1WvNtTMpb\ng/y83TAzv5EN6tzMy4W/58wzphMBsCq/nMuWV6mnDvFjOhHL08xV8NmkkFX7UvKKMBEmmKlNR9MH\nd24W5GvPdCIWhsNmff5Wm7ScSvzqAACzgvIK0E0tFVfEfkZoqPc4CAfNZ3sFmbr1w5dz+GwWZuY3\nkQ+iAs/feZ6QUc50IgBW4l5K6ekb+UsmhbAxCXeTtG/tNLF/i2W7E6VyTNMAZuefhKLUvMpJA1sw\nnYhFsuOzv5weevFewal/8pnOBQDgf1BeAbpJjn2pKc+jBLlBvfhdokzddNZzacxfOfPHB2JYkIk4\n23M/HBe4+rcUnMkAGK6gRL76t5Qlbwa7OvKYzsWCjejhHeJrv/ZAKtOJAPxHpVS5ITZ9/thAHhe/\nxpvIxYH39azwX849+yehiOlcAAAIAuUVoJns9hHF4/OUIClyF41aZuqSh0qtWROTMvX1ll6umBvS\nhLqGuXYIct50LJ3pRAAsm1Kl/uqXpLG9fdu1dmI6F4v33pjWhWXyX89nM50IwL+2/p75WrgrvuAG\n8nEXfDE9dP3BJ7hzFgDMAcorQB/Vi0zJmXW6cdHolSx7F1O3fuhSrpDHjuzajOlusH5zRwQ8SCu7\nkVjMdCIAFmzz8UwXB964PniYiBFwOaylU0JP/pN3E/8vgXmIe1J2O7lkemRLphOxBkG+9p9MDF6+\nO+npcynTuQCArUN5BWiiUSoqDi0hqqh/+QTd3uIFdTV160/zpYcvZc+PDsKwIBrY8dmLJwR/dzCt\ntKKK6VwALNJfD17cTipZON7k01HZDjdH3rK32qyNScvCCRgwTV6lWheT9sHY1iIBh+lcrETHYOc5\nI/w/3ZZQWIZ5rAGASSivAE0k535U5T+mBNleoXb93zZ10yq15tuYlKlDWnq64GlBNAkPcBz4qtd3\nB9OYTgTA8jx9Lv3pSPrSKaEiO5x6GVOblg4zIlsu3Z1YKVUynQvYtD1nnoX62XcOdWU6EavSr6Pn\nyB7en2xLrMAXHACYg/IK0EGR+o/8xj5qlGtnH/UVyeGauvWYizmOAk5kVzwtiFaTB/k+L5Wfufmc\n6UQALIlUrlq55/HMof6tfYRM52KFBnVu1iXE9et9KWq1hulcwEalPBNfuFswd2QrphOxQlERzTsG\nuSzb+VihVBu+NQCAJkB5BUxOXVFceWSZblw05GO2h7+pW8/Ikxy5kvPhuECmu8HmcDmsj98I3n4q\nM79YxnQuABbju4Npbf0dB3XGLFGmMmuYv0Kp3nE6i+lEwBYpVeq1B9PmjAhwsjf5tSXbNGd4SzdH\n3mqUUAGAISivgGlpNJrKIys1lYWUOC9sIL/TcFO3rlJp1sSkzIj0x7AgRgR4C8f39f12fyp+5QA0\nxLGruVmF0nmjcFnbhNhs8rPJIVcevrj04AXTuYDNOfBnbjMnft8OHkwnYrVIklz4RlClTPnjUTzB\nEAAYgPIKmJbs+v6qtCuUIMvRWzhiCQ2t7/8zx0XEHdwF14EZM6a3D4skDl3KZToRAHOX9FT864Xs\nZZNDeVz8aTYtRxF3xdSwH4+kp+VUMp0L2JCnz6XHruW8N7Y104lYOS6HtWxKm8SnYjyLHQDoh99w\nYEKqvBTphR+oUZIlGvsly87B1K2n50qOXcOwIIaRJLnojeBDl7LTcyVM5wJgvsoqqr7YmzQ/OtDb\nDbfa0aGVj/C9sa2X73pchgecAS3Uas13B1PfGuzn4YzvuMkJBZxVM8LO3Mo/cwsTwAEArVBeAVPR\nKGTiQ0sIFfWXq6D3TK5/B1O3rlSpv41JmTUswN0Jv2MY5unCnz08YPX+5CpMNQdQG7Vas/rXlL4d\nm3UNw5NE6NOrvXu/Tp5f7ElSqTB6EUzu+N95bBY59DXMsk8TV0fe17Pa7jr99NbjYqZzAQAbgvIK\nmIr09Hp14RNKkNOig13v6TS0/tuFHA8H3sBXPZnuBiAIghjwiqevm2DXH8+YTgTAHO0990yp0kx5\nvQXTidictwa1sBOwfzqGORrAtJ4Xy/adf/ZhVBBJkkznYkN8PQQrp4V+uz816amY6VwAwFagvAIm\noUi8JLt3mBrl24vGriTZHFO3npZT+fv1vPejMLzZjLw/NvDivYJHT8qYTgTAvNxJLjl76/mnk4LZ\nLJx30Y3FIhdPDH7wpOwPPEIeTOmHw0+iInx9PQVMJ2JzQvwcPp4QvHTX4+wCPMQQAOiA8goYn7qs\noPLYCt24aNgStktzU7euVKnXHEiZNcwfw4LMipM996Po1t8eSJXIlEznAmAuCkrk3/yW+tmbIS4O\nPKZzsVEiAWfllLCdp58+zixnOhewTuduF5RUVkX19mE6ERv1ahuX6UNafrItvqhcwXQuAGD9UF4B\nI9Oo1RWxn2tk1JsU+C+P4LcfREMC+85ne7kIBryCYUFmp3Mb107BzpuOZTCdCIBZqFKqV+5NGt+3\neXgrR6ZzsWm+noJFbwSt2JNcWCZnOhewNiVixbaTmfPHBbHZuD2NMYM6NxvS1fvTbQmVuMADACaG\n8goYmezKbmXmbUqQ5eInjFxIQ+up2RWn/sl/H089NFezhwc8Si+/Hl/EdCIAzPv5eIanE39Mb5Pf\n0wf1erWNy8iePst3JykwAzcY1Y9H0l/v4hXYXMR0IrbujX7N2wU4rdiVhFn2AcCkUF4BY1I9eyS9\ntJkaZXEcolaRfKGpW69SqtccSJ07MsDVEbfZmyk7PnvxhKDvDz8pEeMeXbBpF++/uJdWOn88nhxv\nLsb3be7tKvjhUBrTiYD1uB5flJ4veXOAL9OJAEEQxNsjAxyEnG/3p2o0eFgYAJgKyitgNBpZpfjQ\nEkJNvfHSrt87bN8wGhL45Vy2j5ugbwcPpnsC9An1d3y9i9d3B3EOA7YrM1+66Wj6ssmhIoHJp/qG\nhpsfHfgkTxJ7JZfpRMAaVEiVG2LTF0QF8rj4sW0WWCzy44nBJeWKn49nMp0LAFgt/I8PRiP5fbW6\nNJsS5AR0FXR/k4bWU56J/7iJYUGWYdJA3xflitM38plOBIABEplyxZ7Hs4cHBHib/J4+aBQBj71i\nSpuYi9kP0kqZzgUs3pYTGd3buWFmJbPC47BWTAt9kFYaczGH6VwAwDqhvALGIX9wWv7oFCVI2rnY\nj1lBskx+mCmU6m8PpM4bFYCnb1gEDpu1+I2Qnaef5hVhIkmwOd8dTHuplSOm3zZPzVwFn00KWbUv\nBf87gSEepJXeSymdPsSP6USASmTHWTUz7MT1vPN3CpjOBQCsEMorYASq4uzKk1/rxkUjl7Ec6Riq\n88vZZ34ewoiXMSzIYrT0spvQv8W3+5PVagyBBhsSeyU3p1j29qhWTCcCdWrf2unNAS2W7UqUylVM\n5wIWSaZQrT/45IOoQCFG/5kldyf+1zPDt/6eeSe5hOlcAMDaoLwChtKolBWHPiMUlZQ4v/N4Xmgv\nGhJIzhKfvf38PQwLsjSjenpz2ayYvzDNAdiKx5nlB/7MXjq5DY+DP75mbXh375AW9msPYApMaIrd\nZ56Ft3R4tY0L04lAnfya2a2Y0mb1rykpzyqYzgUArAp+4YGhpBe3qHLiKEGWR6Bw0Ps0tK6oUn97\nIHXe6FbO9lymewIahyTJBeODjlzJScupNHxrAGautKLqi1+SF44P9HIVMJ0L1O+9Ma1flCt+PY8J\nGqBxkrPEF+8VzB0ZwHQiUI+wAMf50YGf70jMLZQxnQsAWA+UV8AgVel3Zdd2UaNsrv24VSSXT0MC\nu888a+Ul7N3enemegKbwdOHPGeH/zf4UhVLNdC4AJqRWa77elzzglWadQ12ZzgUahMthLX+rzakb\neTcSi5nOBSyGUqVedzDt7ZEBjiJc8rEAr4W7TR7st3hrQolYwXQuAGAlUF6BplNLyitiPyc01BNj\n4aAFnGaBNCTw+Kn4z7vP3xmNYUEWrF9Hz5aedjtPZzGdCIAJ7Tn7jCCItwa1YDoRaARXR97yKW3W\nxaRlPZcynQtYhv1/5ni58DETnAWJ7Oo14BXPJTsw1xIAGAfKK9B0kmNfaMTUZ+vygiMEXaNoaL16\nWNA7Y1o7YViQhXtvbOtL91/EPSljOhEAk7iVVHz+zvNP3gxhsUimc4HGCfFzmDnUf+nuxAqpkulc\nwNw9zZcev5aLmeAszqSBLYKb26/cnaRU4UZaADAUyivQRLJbsYqkPylB0t5DOGopPQns/CMruLmo\nZzs3pnsCDOUo5C4YH/jN/tRKGU5gwNrkF8vW7E/77M0QzA9loQa+6tklxPXrfXjMGeijVmvWH0yZ\n+npLdyc6RkaDcb07pjWfx1p3IA2zWQOAgVBegaZQF2RIzqzTjduP/oIlcqYhgYSM8kv3X8zDw02t\nxSshLl1CXX46ks50IgDGpFCqV+5NeqOfb1iAI9O5QNPNGu6vVGl2YAwj1O3otTwumzWkazOmE4Gm\nYLPIT98MyS+RbTv5lOlcAMCyobwCjaZRKsSHlhBK6kTrgu5TuYGdaUhAXqVacyD1vTGtMHWcNZk1\nzD/xmfjqo0KmEwEwmp+Opvu4Ckb38mE6ETAIm0UumRRy5eGLvx68YDoXMEf5xbLfLjz7MDqIJDEA\n0FLxuKyV08JuJhXHXsllOhcAsGAor0CjSc5uVD1PogTZ3uF2/ebQk8COU1lt/By6tcWwIKsi4LEX\njw/eGJteXI4J/MEanL9TEJde/tE4Oub5BlNzFHFXTgv76Uh6WjYeJA9U3x9Ki+7TvLk7nrlu2RyE\nnK9nhMdezkEhFQCaDOUVaBxFynX5zV+pUa6dfdRXJIeOe0ni08uuPCzEsCCr1KalQ2RX7/UxaUwn\nAmCojDzJlhMZy94KFQo4TOcCxhHgLXxvbOtlux+XVlQxnQuYkTO3npdLlWN6N2c6ETACTxf+VzPC\nNx3NuJ9aynQuAGCRUF6BRlCLiyqP1DJzrShyMdvdj4YEZArVmgNpH0S1dhDijMU6vTnAt6Sy6uQ/\n+YZvCoAplTLlir2P544M8PeyYzoXMKZe7d37d/L8ck+SSoX5L4EgCKK4XLHj1NP544LZeC6YtQjw\nFi57K2TVvpS0HNyqBgCNhvIKNJRGo6k4skIjKabE+eGD+B2H0ZPD9lNZ4f4OXcNcme4MMBU2m/z4\njeDdfzzNKZQZvjUARqw7kNYx0LlfR0+mEwHjmzK4hVDA/ukY5uEGgiCIH4+kD+nq1dpHyHQiYExt\nWzm9N7b1Z9sT84rkTOcCABYG5RVoKNn1/con1yhBlpOP3fAl9CQQ96Ts70eFb2NYkLXza2b35oAW\n3+xPUeExqGCBDl/KeV4mnzsigOlEwCRIkvx4YvDDJ2Wnb+AmO1t39VFRZoFk4gBfphMB4+vZzm1i\nf99PtseXYTAgADQGyivQIKq8ZOmFH6hRkm0/9iuWnT0NCUjlqjUHUj8c19reDsOCrN+IHt5CHuvA\nnzlMJwLQOAnp5TF/5Syb3IbLwZ9XqyUScFZMCdv1R1ZiRjnTuQBjKqTKn46kL4gK5OHLbqWGdffu\n3d5jyY5EqVzFdC4AYDHwJwHqp1FIxQeXECpq/V7Qeyan5Uv05LDtZOZLrZ06t8GwIJtAkuSC8UHH\nruWmZlcwnQtAQ5WIFV/uS/54QpCnC5/pXMC0fD0Fi94IWrk3ubAMYwds1ObjGT3au4cFODKdCJjQ\n1Nf9AryEX+1NxnRLANBAKK9A/SSn16uLqOPMOX4d7SKm05PAg7TSG4nFuNneprg78d8eFbB6f4qi\nSs10LgD1U6k1q35JGdzZ65UQF6ZzATq82sZlVE+fZbuT8H+UDbqfWno/rWz6EDom9QdmfTA2kCSJ\n7w7hmYYA0CAor0A9FAl/ye/FUoIk31E0diXJYtOQgFSuWnsg7aNxgSIMC7IxfV72aO0l2n7qKdOJ\nANRv9x9ZHDY5aSBmYbAh0X2bN3cVfI/zLhsjU6jWH0z7MKq1HZ+OX0HALDabXDI55FmBZMepLKZz\nAQALgPIK6KMqzas8vlw3Lhy+hO3sQ08OW05kdAhywgVh2/TumNZX4wofpJUynQiAPjcSiy/eK1g8\nMZiFh7PamI+iA9OfS2IvY6IoG7LrdFa7AEf8LLEdAh77i+lh1+ILj1/LYzoXADB3KK9AnTRqVWXs\nMo1MTInzO4zmtxtATw73U0tvJ5XMwbAgW+Ug5CwcH7Rmf2qFVMl0LgC1yyuSr4tJ+3xyGyd7LtO5\nAN0EPPbKKaEH/8q5n1rKdC5Ah6Sn4ksPXswZiZ8ltsVRxP16ZtiBi9lX4gqZzgUAzBrKK1An2eXd\nyqd3KEGWa0vhkPn0JCCRKdfGpM2PDhIJMCzIdnUMdn4t3O3HI+mGbwrA6BRV6hV7H08c0KJNSwem\ncwFmeLrwl0wKWbUvJa8I09xauSqleu3B1LmjWjkKUUu1OV6ugi9nhG+MTY97UsZ0LgBgvlBegdop\ns+KklzZToyyOQ9RXJN+Onhy2nMh8JcS5Y7Az050BDJs5rGVydsVlXDIC8/Pj0XQ/d7uRPbyZTgSY\n1L6106SBLZbtwgNcrdz+P3Oau9lFvOTOdCLAjNY+ws8mBX+xNzkjT8J0LgBgplBegVqoZRUVh5cQ\nGurPRLv+77Gbh9GTw92UkrsppbOH+TPdGcA8Ppf9yYSgH2PTi8oVTOcC8K+zt54nZJZ/OC6Q6USA\necO7e7fxc1izP1WjwQNcrVNGnuTE37nvjmnFdCLApJcCneeNbrVke0JBCe5WA4BaoLwCtZCeWK0u\npU7Ux2n1mqD7RHoSqJQp18ekzY8OFGJYEBAEQRDBLRyGd/dedyCV6UQA/udJrmTbycylb4Xi6SFQ\n7d3RrYrFil/PY5pbK6RWa9YdTJ02pKW7E5/pXIBhES+5R0U0/2RbQrmkiulcAMDsoLwCVPL7p+Tx\npylBUuhqP2YFSdL0UIzNxzO6hLl2CHJmujPAjEzo51suVZ74G/P2A91kCuqtfJVS5crdj+eNbtWy\nGU2DJcH8cTmspW+1OX0z75+EIqZzASM7ejXXjsse0tWL6UTALIzq6fNamNvSHY/lVRgPCAD/gfIK\n/Ieq6Fnlqa9146KRy1gOJhlsrFSpLz38z5wat5NKHqSVzRzqz3RngHlhs8nFb4TsOZuVXSBjOhew\nLVfjipbvelyp9fiqNQdSXw117fOyB9OpgXlxdeQte6vN+oNPnj6XMp0LGE1ekfy3P7MxDBC0TY/0\n83ETrPolRaXGeEAA+BfKK/AvjUpZcegzQkGdr4vf+Q1em54mavR5ieKrvclf7k0qragiCKJCqlx/\nMG1BdCDutwddvp6Ctwb5fXMgWaXCrxmgT1p25d/xxW9/9/BJroQgiIN/ZZeIFXOGt2Q6LzBHIX4O\ns4b5L9uZiMfJW43vD6WO7+vr4y5gOhEwIyRJfhQdWKVUbzj8hOlcAMCMoLwC/5L+uVmV+4gSZHsG\nCwe9Z7pGC0pkBEFcflg049t7Vx8V/nwsvXtbt5cCnZnuDDBTw7t7Owg4v/2ZzXQiYEPScioIgsgt\nkr33Q9z2k08PX85dMqkNh40/oFC7Aa94dgl1XfVLshqXtS3fHzefV8hVo3v5MJ0ImB0Om/X5W23S\nciv3nn3GdC4AYC7w6xD+p+rJbdm1ndQohyeK+orkmnAit9yi/w30KKtUrtydfPF+4bg+zZnuDDBr\nH0UHnvg7L+WZmOlEwCZoNJq0nP/d06dQqmL+yg5qLnK25zKdF5i1WcP9VWrNjtNZTCcCBikqV+w8\n/XTBuCA2i6a558Cy2PHZX80I+/Nuwal/8pnOBQDMAsorQBAEoa4srTiyVDcuHLSA06y1SZvOL/rP\no3aVKs287x9ej8e8gFAndyf+vNGtVu9PxZRyQIPcIrlE/p9RHreSSt/7MS6vCE/lhDqxWeSSySFX\nHr64eP8F07lA0/0Y+yTyNa8AbyHTiYD5crbnrp7d9pdzzzCnNQAQKK9ANcmxLzXi55QgL6SPoMtY\nUzddUEKd/6+0omrZrqTV+5LxxDuoS8RL7sHN7bedxJVhMLnUnArd4JPsyrnrH9xILGY6OzBfjkLu\nymlhm46mp2VXMp0L1K9SqpTK/1OyvxJXmFUondjfl+nUwNx5u/G/mB66/uCThIxypnMBAIahvAKE\nKjdJkXqFEiTtmwlHfk5D6/nFtT8F5u+EkqtxuA4AdXpndKt/4gvvpZQynQhYubRntZ8bSxXKa3FF\niio10wmC+QrwFr4f1XrZ7sfVc7fXeFYgLSpXNHWrYBJJz8Qz19y/m1JSvSiWKDcdzVgQFcjl4Kcy\n1C/I1/6TicHLdyc9zcdTwwBsGv5mAMH2aeM0fSfLpYV20H7MSpbImYbW84qpN9iTJDHoVc/dn3SM\n7OrFdN+A+bK34ywYH7Q2JlUsweM5wITScqiz/HDZ5NDXvPZ80mnB+CAeF39GQZ+e7dwHvOL5xZ4k\npep/lbhbScXv/hD38EkZ06nBfxSUKJ6XyBdvSVx7IFUsUW45kdGzvXuovyPTeYHF6BjsPGeE/6fb\nEwrLMHQUwHbhdyEQBEGwW7R1ens/v/2w6kVBj2nc1q/S0K68SlUi/s81vZdaOW764OUF44PcHHlM\n9wqYuw5Bzj3auW+MxTMRwYRSc/69e4XPZY/u6bN3Saf3x7b2csVTWqFB3hrUwt6Os+lYBkEQ+//M\n+Wz740qZMjEDk3Oblxel/7uf6Oztgre+vnvzccm0IX5MJwUWpl9Hz5E9vD/ZhueyA9gu9vLly5nO\nAcwCyeHywvqwXFtqZJWiUZ+TLDpKbzmF8hN/51X/28uV/1F00Myh/q4orECDvdTa6ZfzzxxFnAAv\nEdO5gBUqKJHv/zObIAghnzOmd/PPJgf3bO8mFHCYzgssCUmSXUJddp3JOnen4MKdguqghiBwh6ZZ\nuXC3IO3/a6mKKrVMoX72XNKutZOQz2Y6NbAk4f6OOS/kRy7n9OngwWb/54FTJWKFHQ4nAGuHu1fg\nP/gvDXacuolk03TyUFAiIwhCyOfMHNpy58cde7ZzY7oDwMLwuKzFE4I3Hc3AvbhgCmk5FQ523MmD\n/H79vNP0SD88jxmaRixRstlkSta/0yQ/yanEs8/MSlEZdTaca/HF07+5f+bm8yZtD2zXnOEt3Z14\nq39NVqs11RGNRrP95NPNxzOYTg0ATA7lFWDS8xJ5ZNdmez7tOK6PL2aPg6YJ8rUf2cNn7YFUjUbD\ndC5gbfw8Rb9+3mnSwBb2drhjBZoo7knZ298/zMiVaAdVak1dsyYDI57XVqOvlCnXH0o7///3HAE0\nBEmSC8YHVcpUPx5NJwhCpdKs2Z8a81f23ZRS/FABsHokvufAIKVKzWGjqgKGUqk1H/0Y16ej58ge\n3jXBjDwJl83y9cQEGQDAmGPX8n4+nq6u7QFTM4cGjOvjw3SC8D8jPr0pkVPnywj1d3hnZKvgFvZM\nZweWRyJTfvRzfJc2rqnPxLeTS6uDP33wEg4nAOuGy3HQIAUFBRcvXhSLxVwut2vXrm3atDHKZuut\nrSQmJt69e1cmkzk4OPTv39/d3Z3pngBzxGaRiyaEvLfhYadg5xaedmq1JvZK7q7TT98f2xrlFQBg\nilKl1mg0Hk785yW13BmR9LSMIFBeMQuVMiWltuLiwJ051L9/Jw+SJJu6VbBpQgHn4/HBs9be1w7e\nTSlDeQXAuqG8Ag0ybNiwW7duVf/bx8cnJyeHnnZ79+5dWFhY/e/u3btfu3aN6Z4AM9XcXTD19Zar\nf0tZ8mbI+pjUh+nlBEHkFmFCFgBgDIfNGtXTZ3h376txhYcu5aY8q9B+NfFpRVM3DEZWWPrvQwzZ\nLHJUT59JA30xiTUYIq9IvnzXY0rwbnLxG/2aM50aAJgQ/nJA/f7++++a2gpBEEFBQbQ1HRQUVFNe\nqU6jc+fOTPcHmKmhr3n9fj1v6uq7/z+XHJH7QmLQFgEADMZmkREve0S87BH3pOzQXzk3HpdUx4vK\nFQUlck8XPtMJAvGiTFb9j1eCneeObOXXzI7pjMCypWZXfLotsbSiihJPyBRL5So8PwjAiqG8AvX7\n7rvvtBdnzZrVkHdJJJK4uLjs7OycnJyysjI/P7/Q0NDQ0FBHR8eGNz1r1qx//vlHO5P9+/cz3R9g\njsoqqn44nJb+38kjnxXJmM4LAOB/2rd2at/a6elz6eFL2X/efVGl0iRmiVFeMQcvShVervy5IwK6\ntcUTDMFQGXmS+ZsSpDpT+RAEoVRp4p6UdQlzZTpHADAVTG1rPXJzcydMmHD9+vVG7VMOhxMbGztk\nyJC6VsjIyAgKClKp/vf8SHd39+zsbD6/zp+DUql03759x44du3jxokxWy8mtj4/PsGHDVq1a5epa\n/18XqVTq4+NTWlpak21GRoavry8zXQzm6tbj4rUxaSVi6mUiOz7nxKouTGcHAEBVXK44di2fz2VN\nHIC/aMzLei71cuXzuJhrH4wjI09y+sbzC3efV0ipz18f0cPnnVEBTCcIAKaCPyTW46effrp8+XJV\nVZWyMWQy2blz5/RsduPGjTW1FYIgpk6dWldtRalUrlmzxt/ff9asWadPn661tkIQRG5u7pYtW9q0\nabN37956P5Sdnd2kSZO0m9i4cSPTPQ3mJS27ctW+VN3aCkEQUrmyRKxgOkEAACpXR960IX6orZgJ\nv2Z2qK2AEQV4C+eNCohZ1nnxxKCXWv3nru27KSVMZwcAJoS/JdajqKioaW90dnau6yWxWLxjx46a\nRZIkZ8+eXeuapaWl3bt3X7RoUUFBQUMaffHixVtvvTVnzpx616S0uHXr1srKSuN3H1isQF/R3k87\njurpw2HX8nyH3BcYHwQAAAB043FZ/Tp6rp3XbtfiTlERvs72XIIgsgukz4vxywTAaqG8AoRSqazr\npePHj5eXl9cs9u/fv3Xr1rWuuWfPHu3pbxtoy5YtFy5c0L9OeHh4jx49ahZLS0tPnjzJdJ+BeXEU\ncd8eGbDz404RL1GHzWcXSpnODgAAAGyXr4dg1rCW+5e+snRKyKshzvdSy5jOCABMBVPbWi0XF5cx\nY8bUuxqHw5kxY0Zdrx4+fFh7MSoqqq41dW9aCQgIiIiIaNOmjY+PT2Zm5r17944fP65WqymrzZo1\n69GjRyKRSE+SY8eO1X4kc2xsbHR0NAN9CubN242/ZHKbsVnirb9nxqX/ryyYU4hnMwMAAADDOGxW\nz3buPdu5VynVhm8NAMwTyitWq1u3btu2bTNkCxUVFWfPntWODBo0qK6VOZx/j6Xu3bsvXLhw2LBh\nLNZ/bo+6du3a5MmTMzIytIMZGRkxMTHTpk3Tk8ngwYO1F0+fPi2VSu3s8NxEqEWIn8O6ee1uJBZv\nO5mZ9VyaW4hnMwOAOSooKLh48aJYLOZyud26dQsODqan3YSEhHv37slkMgcHh/79+7u7uzPdE+YI\neweMC0cUgI1AeQXqRJmeNjQ01M/Pr66Vg4KCCILw9fVdvXr1xIkTa12nR48eFy5cCA8Pp8x6GxcX\npz+TkJCQgICAmrpMZWXlmTNnRo0axXQPgfnqGub6ahuXMzef/xNfzHQuAAC1GDZsWM2g2ubNm2dn\nZ9PTbkRERGFhYfW/u3fvrn1zKNTA3gHjwhEFYCNQXoE6UUYGUW4hoXjjjTfCw8Pbtm3L5XL1rNaq\nVauFCxd+8cUX2sF6yysEQQwaNGjz5s01i7GxsSivQI1aLwqxWWTka14DX/U0Xbu4KGRlcHURaPP3\n339rT1gWGBhIW9PBwcE1p1vVaXTu3Jnp/jAv2DtgXDiiAGwHyitQO7lcfvr0ae2I/vIKm83u0KFD\nQ7Y8atQoSnklISGh3ncNHjxYu7zy+++/K5VK7RFJYMv0XBTickw4gTcuClkZXF0E2nz33Xfai7Nm\nzWrgG6VS6cOHD3Nzc3Nzc4uKipycnLy8vLy9vTt16mRvb9+QLcycOfP69evamezfv5/p/jAvTd47\nNeRyeWJiolQq5XA4zZs3b968eQPfiL1jlfB9B7AhGrAWlAcYR0ZGGrI1ymOA+Hy+VCo1Sp5SKfVJ\nLi4uLvW+SywWs9ls7Xfdv3+fln4Fc0c5F+3duzdtTXfr1k276Zs3bzLdGdB0OJBAV05OTu/evblc\nLqcxBALBqVOn9Gw2PT1d+y+au7u7TCarN5kbN27MmDHD0dGx1p9zdnZ248aNO3/+fL3bkUgkzs7O\nNW/kcDjPnj1juqebwqz2jrbDhw97e3tr753bt2838L1Ws3csjokOJw2+7wA2Bg9mhtrduXNHezEk\nJEQgEBhlyyRJUiKenvUP37C3t6c8E/ru3bsM9xGYB8MvMxIEIZfL79+/f/369Vu3buXk5DTwXTNn\nztSTCVgWo1yvbsJRROBAMmM//fTT5cuXq6qqlI0hk8nOnTunZ7MbN25UqVQ1i1OnTuXz+XrWVygU\nH330UdeuXbdv315eXl7rOlKp9ODBgwMGDJgzZ45Eom9Kbzs7u0mTJtUsKpXKjRs3Mt3TTWEme0db\nbm7uqFGjxo4dm5eXpx0vK2vog3itZu9YHBMdTgS+7wC2hun6DhiNce9emT59uvbWxo8fb6w8KU8O\nIgiiV69eDXkjZbKVOXPmmLpLwYjM9jKjxoArjbgoRDNzu7qoDderrRLlD2vDLVu2rK5tlpeXa1+R\nJkkyLS1NTw7l5eWvvvpqo1rv3Lmz/htO4+Pjtdd3dnauqKhgurMtcu/UUKvVW7ZscXJyqrXFCxcu\nNPxzWcfesTimOJw0+L4D2B7cvQK1o9y9EhYWZqwtaw8BrdbAMcmUHHD3imUxw8uMhMFXGnFRiGbm\nc3VRG65Xgy6lUlnXS8ePH9e+It2/f3/KvZnaNBrN5MmTb9++3ajWb926NXfuXD0rhIeH9+jRo2ax\ntLT05MmTTPcZfYy1d2qkpKRERETMnj274d96PWx871gcPYcTge87gO3BzKBQC5lMRplu1ojllQMH\nDlAikZGRDXljeHi49mJcXFxVVZX+BxWB+SgqKmraG7Wv6lOIxeIdO3bULJIk2fCrTxqNZtu2bYsW\nLTLw1/Ds2bO1z4S3bt26dOlSkUhkvJ6Df5niKCIMOJCMdRQROJAsx4wZM+pdh8Ph6FmN8lS+qKgo\nPZtau3btsWPHKMGhQ4d+8MEHbdu2dXBwSE9Pv3LlyooVKwoKCrTX2b1798iRI0eMGFHXlseOHas9\n31BsbGx0dDQjXWpENO8dgiCqqqrWrFmzcuVKuVxuxA9ilXvH4hh+OBH4vgPYIKZvnwGjMeLgIN3C\neWJiolGSLC4u5vF42lsWCoVisbgh733w4AElq4cPH9LTt2C4Jt92u2TJkrq2+csvv2ivOWDAgAYm\nk5yc3KtXLz2NNupGbu2LQgRBHDhwgOnOtlqmOIo0TT2QjHsUaXAgmSXjjrrVaDRisZgykdnTp0/r\nWrm8vJxSGWSxWL/88ovumqWlpYMGDaIcgV27dtWTSVJSkvbKIpFIIpEw3d+Nw+ze0Wg0eXl5L730\nku53X3eIUGP/N7CCvWNxjH44afB9B7BJuHsFakG5xZ0giMDAQKNs+ZtvvlEoFNqRYcOGNfDZckFB\nQZRIfn5++/btGesmMAz9lxkJ01xpxEUhBtF/dZHA9WowwOnTp2UyWc1iaGion59fXStv2rSptLRU\nO7Ju3bo333xTd00nJ6d9+/a9/PLL2nMq37hx49q1a5SyXY2QkJCAgICa2dAqKyvPnDlDmePM1jRq\n7xAEsWfPnocPH2pHOBzO+++/v3DhQi8vL0Mywd6xDvi+A9gglFes1qlTpxpyY/nMmTO///57SrCk\npER70d7e3ihjcBITE9evX08JNvxytFAo5PF42tUZSp5gQSIjI7dt22bIFioqKs6ePasd0b2YQ5Gf\nnz948GDKr2GCIJycnAwZ3DF48GDtxdOnT0ulUjs7O1P0G2gz/CgiGn8gmegoInAg2QZKLY+y0yk2\nbdqkvdiuXbt33323rpXd3d2///57SnHw6NGjdZ1uEQQxaNCgzZs31yzGxsba+OlWo/YOQRDFxcXa\ni3379t24cWNYWJhUKjU8GewdK4DvO4ANwtS21kzSAKdOndJ9I+UXg/ac54aYN29eVVWVdmTEiBF9\n+vRp+BYomVDK/GBTGnuZkajjSuP8+fOTk5MNyaT6olDNYvVFIaa7BxrKKNerDT+KCBxINkAul58+\nfVo7oud06/Hjx1lZWdqRefPmaT/fStewYcMow1L++usvPetTWv/999/1T9Jp3Rq1d6rVTIDt6+sb\nExPz559/GnGiOuwdS4fvO4BtQnnF1lGG6lQzRXll9+7dly5d0o6IRCLdm1n0o2SCu1dsWWMvMxK1\nXWl8+PDh2rVrDT/CKfc7xMbGMt090FCGX6821lFE4ECydnFxcZWVlTWLfD5fz/Q9uo+7qvdqBJ/P\np1yOfvjwoZ4/lP369dM+fysvL6c8wNWmNGrvVIuMjBwwYMCqVauSkpLGjRtn3Hywdywdvu8Atgnl\nFVvn6empG6ScPzg4OBjYSnx8/DvvvEMJ/vDDD61atWrUdlBegWpNuMxImPJKIy4KWShcrwY63blz\nR3sxJCSEMu2ltqtXr2ov+vj4BAcH19tEv379tBfVavXjx4/rWtne3p7yjNi7d+8y3UmMadTeqdal\nS5dz58598sknpnjIF/aOpcP3HcA2Ye4Vq+Xp6Tlp0qR6Vxs5cqRukFK2MLC8UlJSMmrUKO0SPkEQ\nY8aMmT59emM3Rcmk1ltvwBY04TIjQRCRkZE3btzo06fPe++9Z9xfw9UXhVQqVfVi9UWhl19+mel+\ngno07Xq1iY4iAgeStaOczOgvzOXm5movRkRENKSJkJAQSuTp06fdunWra/3w8PCUlJSaxTt37jTh\nT7N1aNTeoQf2jkXD9x3ANqG8YrVeffXVtWvXNu29Go1Gz2KjyGSyESNGpKWlaQfbtWu3e/duwxNj\nsXD7lY1qwmVG4v+vNJoin+qLQtq/Wu7evYuzYvPX5OvVJsoHB5J1oxxv+k+3nj9/rr2oZ8ZKbbpX\nvDMzM/WsHxYWdvTo0ZpFW76a3ai9Qw/sHYuG7zuAbcLZKdTC2dlZe7G8vLxp21Gr1RMmTKDc8ejh\n4XHixIkGPoyZgpKJ/km/wIqZ52VG7UXK7yowTziQgDYymSwhIUE7ov94Kygo0F708PBoSCtOTk7N\nmjXTjmRnZ+tZn3K8xcXFUWagtxGN3Tv0wN6xXPi+A9gslFegFsYqr8yZM0e7TE4QhFAoPH78uL+/\nf9M2SMmEkifYDvO8zKi9iItCFgEHEtAmPj6eMpOOnuNNIpFUVFRoRxo+d7Kbm5v2ImU7FJQc5HK5\nnrkbrFij9g5tsHcsF77vADYL5RWohVHKK/Pnz9+2bZt2hMfjHT169LXXXmtyYiivAIHLjGAkOJCA\nTnl5eZRIYGBgXStTRgoQjTndEgqF2otSqVTPykFBQZRIfn4+o/3EjEbtHdpg71gufN8BbBbKK1AL\nw8srK1eupDx0mcVi7du3b+DAgYYkJhaL9eQJNgKXGcEocCBBY505c0bUAB988IHueylzxtvb23O5\n3LoaoowUIEx2uiUUCnk8np48LQhte4c21rR3LI4hhxOB7zuADUN5BWpBKVtIpVL9/19TfP/998uW\nLdOOkCS5bdu2qKgoQ7ISi8WUq7gor9gmXGYEo8CBBI2lUqkkDXDq1Cnd9xYXF2sv6j990j3davgj\n/CinW/XO1kzJpLS0lM4uNSLa9g6drGbvWBxDDicC33cAG4byCtRCd0qt5OTkBr53x44dH330ESW4\nYcOGadOmGZiVbg4NnPoLzBAuM4Lh6Ly6SBscSFZAoVDoBht1uqW7BZIkG9g65YCpd3AZJROrP94M\n3zt0srW9Y3FqPZwIfN8BbBjKK1CL9u3bUyKUGQrqcvDgwVmzZlEen7x69ep33nnH8KwSExO1F9ls\nNmWSArAguMwIhqPz6iKdcCBZOk9PT90g5XjTf3Xazs6OEpHL5Q1snXJfp5OTk/71be10y/C9Qydb\n2zsWp9bDicD3HcCGcZhOAMyRm5ubn59fVlZWTaQh5ZXTp0+/+eabarVaO7h06dKPP/7YKFlRcggJ\nCaHcEgnWx+IuMxYWFtYs4leLmTDK1UU64UAyZ7q3Z1KQJDly5EjdOGU/mu50izKYt67Tv7oyqev7\nYhHo2Tt0sqa9Y3GafDgR+L4D2DCUV6B2HTp0aFR55caNG2PHjqXclDh//vwVK1YYKyXK3SsdOnRg\nupPA5HCZEQxnlKuLdMKBZLYiIyPXrVvXtPdS7uukLFLonm41fI75xp5uUTJhsSz1vmba9g6drGbv\nWBxDDicC33cAG4byCtSuQ4cOx48fr1nUX17RaDSTJ0/Wnf62oqJi7ty5DWlOKBR+9tlnLi4uetZB\necXK4DIjGI62q4t0woFklRr1SD57e3tKJDc3t4EN5eTkaC/We7pFyYTNZjPZTQwx/IGJJoK9Y6Hw\nfQewWSivQO0oxYuMjIySkpK6yh+ZmZmpqam68S1btjS8RS8vr4ULF9b1aklJSUZGhp4MwbLgMiMY\njs6ri3TCgWSVGnW65evrS4noPuiqVjKZjLJmY0+3bPORfJZSXrHNvWOJ8H0HsFn40Qa169y5s/a8\n5Wq1+sKFC3WtLBaLDW9RpVLpefXChQvapxwcDqdTp05MdxIww1J+B+OikJnDgQR0atTx5uzsTBkj\n9uTJk4a0kpGRQSnP4XSrISzlfwPb3DuWCN93AJuF8grUzsvLq2vXrtqRs2fP1rWyUW6q11+jOXPm\njPZiREREvbOjg7XC72AwChxIQKfGHm8tW7bUXrx9+3ZDWrlz5w4l4u3trf8tlD++tnm8me3/Btg7\nFgrfdwCbhfKK9QgMDNRebNWqlYEbHDNmjPainvKKv7//4MGDDbmDnc/nDx48WM8K586d05Mb2BSz\n/R2Ms2LLggMJ6ETZj1KpVHfCMm1t27bVXrx37x5l8vhanThxQnsxICDAx8dHz/pisZiyWds83hq7\nd+iBvWO58H0HsFkor1iPBQsWFBcXJyUlJScnv3jxYsOGDQZukFLCyM7OrmuCW5Ik//jjD5VKpWkq\nmUzWs2fPujJJSEjIzs6uWWSxWHXNVQm2wGzPinFRyLLgQAI6eXh4UCLJycl61o+IiNBelEgkJ0+e\n1N+EXC6n3Ok5cOBA/W/RzUE3T1vQ2L1DD+wdy4XvO4DNQnnFqri4uISEhAQHB7u7uxu+NX9//44d\nO2pHKP+P04Zy40y3bt28vLwYyQTMAS4zglHgQAI6tW/fnhLR/0i+Pn36UCLbtm3T38SGDRsqKiq0\nI4MGDdL/Fsoj+dhsdnh4ONNdxYDG7h16YO9YLnzfAWwWyiugD+UGloMHDzKSBqXd0aNHM9gnwDhc\nZgSjwIEEdHJzc/Pz89OO6D/dCgoKCgsL04788ccflLEA2jIzM5cvX64d8fPzGzp0qP6sKDmEhIQI\nhUKmu4oBjd079MDesVz4vgPYLJRXQJ8JEyZoP7Ti1q1bjx49ojmHuLi4mzdv1izyeLzo6GimOwaY\nhMuMYBQ4kIBmHTp00F6s93hbuHAhJTJ9+nTtP4g1EhMThw8fLpFIKG/ncrn6m6Acb5QMbUpj9w4N\nsHcsGr7vALaJw3QCYNb8/f2joqIOHDhQE9m+ffsPP/xAZw6U2yMnTJigf+IusHrVF4WysrJqIubw\nOxgXhSwODiSgWYcOHY4fP16zWO/xNnHixKVLlz579qwmUlhY2Lt37/Hjx/fs2bNnz54eHh6PHj26\ndOnS119/LZPJtN8bGBg4Y8aMelPC6Zb2Z2/U3ql24sSJkpISSlChUFAiZ8+e1Z5CjiAIDoczYsQI\ne3t7PRvH3rFo+L4D2CaUV6AeixYt0i6v7Nu379tvv+Xz+fS0LpVK9+3bV7NIkuSCBQuY7hJgXocO\nHcztrBi/WiwRDiSgE2VvZmRklJSUuLi41LU+l8v95Zdf+vfvr1Qqa4JyuXzPnj179uzR05C9vf2x\nY8cEAoH+fEpKSjIyMvRkaFMau3cIgrh69eqIESMasvE1a9boBpctW0YZ36ENe8fS4fsOYJtQXrEG\niuRrVSl/i4Z9bIqNd+jQoX///hcuXKheLC4uPnLkyBtvvEHPRzt8+HBpaWnN4uuvv4775IFo6mVG\nwpRXGnFWbIlwvRro1LlzZ5IkNRpN9aJarb5w4UJUVJSet/Tu3Xv9+vXvvfdew1sRCAT79u1ryN/K\nCxcu1CRDEASHw+nUqRPTncSYJuwdA2dr0v+0MuwdS4fvO4BtQnnFsilS/5Fe3KLKieN3HGP41uqy\naNGimvIKQRA7d+6krbyyc+dO7UXdgalgm5pwmZEw5ZVGXBSyULheDXTy8vLq2rXrP//8UxM5e/as\n/tMtgiDefffd5s2bz5w5s7i4uN4mQkNDY2Ji2rVr15B8KE8DjIiIcHJyYrqTGNOEvVPvVBf6UR77\nQoG9Y+nwfQewTZja1lJVpd0q3za94pd5qpw4giDYzQJN19aAAQO0f+Lfv3+fto/54MGDmn937tw5\nIiKirjUrYz6VXtqpKsxqwFbB4lVfFKpZrL4oVO+7THelEReFLFQTDiRcr7YpgYH/+dvaqlUrAzdI\neR7f2bNnG/Ku0aNHP3r06OOPP6Y8i0Tba6+9tnnz5jt37jTwXIsgiHPnzunJzfwxvnd69+7d5Oem\ns9nsgQMH6lnB0veOxTH64UTg+w5gk3D3iuWpSr8rvbhZmXVXO8hu1tqkjZ49e/bUqVPl5eU8Hk/3\ncRumc/z48fj4eJVK5ejoGBkZqWdN0qOl9OKP0os/sr1CeW0H8tr2Y7v60pYn0KxpF4VMd6URF4Us\nFK5Xg34LFiyYPn16QUEBSZKurq7u7u4GbnDMmDHaM4hlZ2cnJCQ05MZ+Hx+f1atXf/311/fv38/M\nzMzLyysoKODxeD4+Pj4+PiEhIf7+/o3KJCEhQXvwGovFGjlyJI1dawSM7x1/f3/dcYJGYQV7x+IY\n/XAi8H0HsEkor1iSqswH0oublZm3dF9ie5q2vOLh4TFlyhT6P3KvXr169erVkDV54f1kl7YQBKHK\nfyzNfyy98APbpx2v7QBe275sZzxpiHmmuMxIOSuu9y3VVxq1Z/NpOP1XGnFRiB4murrYqAPJdEcR\ngQPJLLm4uNQ78LDh/P39O3bseO/evZrImTNnGj6nGEmSHTt27Nixo+GZUA71bt26eXl5Getj0sas\n9o4RWcfesTjGPZwIfN8BbBIGB1kGZVZc+e554p3Taq2tkCI3lr0x/x5YIk6zQJZbgHZElftIem59\n2fqhZVunya7vV5cVMJ2jTVuwYEFxcXFSUlJycvKLFy82bNhg4AYpZ57VF4X0v6X6SqOmSZRK5dix\nY2vdLC4K0cboRxHR+APJREcRgQPJZlAOuYMHDzKSBqXd0aNHM9gn5gN7B4wLRxSArUF5xdypshPE\nez8o3z5Fmf5PXeuwmwUznaZZ4IX3rzWuyn4gObOmdN3g8u0zZDcOqsWFTGdqo1xcXEJCQoKDg41y\nz231RSHtCGVgBW1wUYhOxj2KCBxIQLsJEyaw2eyaxVu3bj169IjmHOLi4m7evFmzyOPxoqOjme4Y\ns4C9A8aFIwrA1qC8Yr5UuY8r9n1UtnVSVdoV/WuadF5bC8IP76t/BWXWPcnp1aVrB5fvnC27Fauu\nMMmQaaANLgqBUeBAAjr5+/tT5vfZvn07zTls27ZNe3HChAk+PhhFSxDYO2BsOKIAbM2/z2MH86HK\nT5Ve3KJIutjA9UUjl/M7Dmc6a7NQ+t0Idcmzhq5NsvkvjxCN+ozprKGJMjMzAwMDVSpVTSQuLq7h\ns+gbRVxc3EsvvVSzyOPxMjIy8MPFsuBAAprdv39f+54pV1fX3NxcPp9PT+tSqdTHx6dm/iCSJB89\nesTIDCPmCXsHjAtHFIBNwd0r5kgef6HhtRWCIDieuHvlf3jhAxq+MsvRSxAxjemUoelwUQiMAgcS\n0KxDhw79+/87mrW4uPjIkSO0tX748GHtuZlff/11nGtpw94B48IRBWBTUF4xR8L+cx0m/0yK3Bq0\nNslieRrh8RnWgR/Wt4Frspx9HaZvYbvgBMayLVq0SHtx3759crmcttalUum+fftqFkmS1H4EI1gQ\nHEhAM8oht3PnTtqaprS1cOFCpjvD7GDvgHHhiAKwHSivmCluYBentw9wArrWuybLpQXJEzCdr7lg\n+4axnOqvmLBcWjhM24IHNlsBXBQCo8CBBDQbMGBAhw4dahYfPHhAW9PabXXu3DkiIoLpzjA72Dtg\nXDiiAGwH5l4xaxq1WnJqjfx2jJ51eKH97d/41vC28orklx8Wju/bnOkPbSjJmR9k1/foW4Nr5/Tu\nIdRWrMb58+cHDhxYs9i/f//z58/T03SfPn0uXbpUs/jXX3/hh4vlwoEENHvx4sWpU6fKy8t5PF77\n9u27detGT7tXrlyJj49XqVSOjo6RkZHGegiXlcHeAePCEQVgI1BeMWuaKnn51qmq50l61hFEzBb2\nnW1oQxrNop8Tuoa7jOltqvLKwb9yw1qK2rZyMtH2ayiz4sq3T9G/jqBTlN3wxSRJmjoZoEfHjh3v\n379f/W93d/cXL17Q066Li0vNTQedO3fWfvAhWCIcSAAAAADQZBymEwB9pKfW6a+tEATBaRZseEMn\n/s6Xq9Sjeprwho4gX+GKPckrprQJC3A0XSsEQbBbtCMdvDTifD3ryO4eIjQauxGfoMJiHc6ePat9\nUYi2do8fP659UYjpbgBD4UACAAAAgCbD3SvmSxF/seJg/bMbOr13lO3e0pCG8otl875/+P077Vt4\n2pn0E91LKf3615SV00JDWzqYtKHK0+vkN36tdzX+q9GiYR+bNBMAAAAAAACwBZja1kypirMrji/X\njQt6TGc5a43f4fBYrr6GNKTRaL47mBbdp4WpaysEQXQMdv54QtDSnY+Ts8QmbYgX1o8aIms51OW3\nYyp//8bUnxoAAAAAAACsHsor5kijrKo4uISQV1Di/HZDhAPnOc7dzwv73/yLbI8gksU2pK2T/+RL\nFKoxvb3p+WivhLgsHB/42Y7HKc8qDN9aXTh+7Ul7j5pFlnug0zuH2F5humvKb8dUnl5Hz2cHAAAA\nAAAAa4XyijmSnNugyn1ECbJcWwqHf0oQBMvO3n78amHkpwSby2kWaEhDBSXyPWeyFkQHs1n0TUHS\nOdR1fnTgku2JadmVJmqCZLF4oX2r/832CHKctoXtEeAwZRPbK1R3ZfmNXyv/+I62jw8AAAAAAADW\nh718+XKmc4D/UCRdlf6h86BlNtdx8o8sl3/vMeH4hvFCepMiV7ZnQJPb+mJvUr9Ozbq3c6X5M/p6\n2Pl6CL7al9wp2MXFgWuKJkiuQPHgd7ZnsMO0LSx7F4IgSC6fF96/KvWmprKQsrIqO04jl3EDu9Lc\nDwAAAAAAAGAdcPeKeVGXFVQeXaYbFw5eyPZpQwmyvYN54X2a3Napf/LFMtXYCBM+LUiPbm3d3h3T\navHW+Iw8iSm2z/HvwGn1msPUzSyRc02QJXRymLKJ7Rmiu77s+h7J2Y2MdAUAAAAAAABYOpRXzIhG\nrao4tEQjLaXEeW36CbqMNW5bBSXyXX88XUjvsCCKnu3c3x7VavGW+Kf5UqNvnGSxHSZv1K6tVGOJ\nnB2m/sz2CNJ9i+zvXZJzPzHVGwAAAAAAAGC5UF4xI9ILm5VZdylBllNz4ailRm/r+0NpY3r7+nuZ\n/GlB+kW85D57RMDHW+KznpuiwlL74c0SOTtM3czyqGXaGtm1HZLzm5jtEwAAAAAAALA4KK+Yi6q0\nW7K/d1GjLI591FcsOwfjtvXHzeelkqpxDA0LoujbwWPGsJaLNsdnF8hoa5Rl7+I4dTPLvbYKy9Xt\nkj83M90rAAAAAAAAYElQXjELanFRRexnhEZNidv1f5/j1964bRWWyXecylwYHcxmMzYsiKJ/R89p\nQ1ou3Pwop5DOCour49SfWW6tdF+SXd4qubiF6V4BAAAAAAAAi4HyCvM0anVF7FLdx9lwA3sJuk8w\nenPfH3wyqmfzAG8h05/7Pwa+6jl5kN+inx/lFclpa5Tl4OY4bTPLrZZHL8kubZH+tYPpXgEAAAAA\nAADLgPIK82SXdynT/6EESftmojHLSdLIN5icufW8sEIxvm9zpj90LV7v0mxC/xYLfn6UX0zjPSwO\n7o5Tt7BcW+q+JP3rJ8nFrUz3CgAAAAAAAFgAlFcYVpX5QHpJZ6YPkmUf9ZXuU28MVFgm33HqqVkN\nC6KIfM1rfJ/mCzbFP6ezwuLo7jhtK8vFT/cl2aXN0su7me4VAAAAAAAAMHcorzBJLSmrOLyE0Kgo\ncbs+b3MDOhq9uR8OPxne3bu1j3kNC6IY1t17bETzBT/HF5TQOErI0cNx2laWSwvdl6R/bpBe3ct0\nrwAAAAAAAIBZQ3mFMRqNRnJkhaY8jxLn+HcW9Jpi9ObO3ykoKJW/0c8chwVRjOzhPbKnz8Kf4wvL\naKywOHk6TN3McvbVfUl6/nvptX1M9woAAAAAAACYL5RXGCP7+1dFyiVKkBS62o/9kmQZeb8Ulyu2\n/p65cHwwh20Ze3xML5+h3bwWbIovKlfQ1ijb2dth2maWcy0VKOm59dK/f2O6VwAAAAAAAMBMWcbJ\ntvVRZSdKL2zQjYvGfMFydDd6cz8cfjKsm3dgcxHTn7sRoiKaD+7iteDn+GJaKyw+DlO3sJx8dF+S\nnl0ru36A6V4BAAAAAAAAc4TyCgPUsgrxwcWEWkmJC3pO5wW9ZvTm/rxXkFcss4hhQRTj+zYf0Mlz\n4eb4EjGNFRYXH4dpW1iO3rovSc58K/vnINO9AgAAAAAAAGYH5RUGSI59qS7NpgTZvi/b9Z1t9LZK\nxIrNxzMXjg/icixyX0/o7xvxssfCzfGlFVW0Ncp2ae4wbQtZa4Xlj9WyG4eY7hUAAAAAAAAwLxZ5\nym3RZDcPKxLPUYKkwMl+3Jckm2P05jYcfjKkq1eQrz3Tn7vpJg1s0au9x6LN8eWVNFZYXH0dp24m\nHbx0X5Kc/lp28zDTvQIAAAAAAABmBOUVWqnyUyVn1+rGRSOXsZ19Gr+9ely8/+JZofTNAb6Gb4pZ\nkwe16BrmtmhLQrmExgqLWwvHaVtIh2a6L0lOrZLdimW6VwAAAAAAAMBcoLxCH41CKo75hFBSpxHh\nd32TFxZh9OZKxIqfj2UssthhQRTThvi9Euzy8ZYEsURp+NYaiO3WwnHqFtK+tgrLya9kd44x3SsA\nAAAAAABgFqzhxNtSSH7/Rl2UTgmyvcKEA98xRXM/Hkkf3NkruIUD05/baGYMbflya+fFWxMqpTRW\nWNz9HKf+TNp76L4kObFSfvcE070CAAAAAAAAzEN5hSbyeyfkD3VOxXki++ivSQ7P6M1deliYWSCZ\nNMjihwVRzB7u39bfcfG2hEoZjRUWD3/HqZtJUS0PzK48vlx+73emewUAAAAAAAAYhvIKHVQvMitP\nfaMbFw3/jO3WwujNlVZUbTqavig6iGcVw4Io5o4MCPF1+GRbooTWCkuA09QtpMhN96XK4yvk908x\n3SsAAAAAAADAJCs8/TY3mip5RcwnRJWUEhd0iuK3H2SKFn888mTgK81C/KxnWBDFO6NbBfqIlmxP\nlMpVtDXK8gxwmLKZFLpSX9CoK48tkz84zXSvAAAAAAAAAGNQXjE56al1qoJkSpDtEWT3+oemaO7q\no8L0fMnkQca/KcasvDu6lV8z4Wf0Vlg4zVo7TK2jwnJ0qfzhGaZ7BQAAAAAAAJiB8oppyeMvyO4d\npkY5AlH01yRPYPTmyiurfoxNXxgdxONa+Z4lSfKDsa193AVLdzyWKeissAQ6TvmZtHOhvqBRVx75\nXB53jumOAQAAAAAAAAZY+Uk4s1TF2ZXHV+rGRUM/4Xi2MkWLPx5J79fJM7Sl1Q4L0kaS5IdRgZ4u\nvGU7H8ur6KuwsL2CHKf8TNo5U1/QqCpjl8gfnWe6YwAAAAAAAIBuKK+YikZZVXFwCSGvoMT57SL5\nHYeZosXr8UUpuRVvDbbyYUHaWCxyfnSQqwNv+c4kRZWatnbZ3sGOb20iBU7UFzSqytgliviLTHcM\nAAAAAAAA0ArlFVORnNugyn1ECbJcWwqHf2KK5solVRti0xeNC+Jz2Ux/dFqxWOSCN4IcRZwVux8r\nlDRWWHzaOE7ZRAp0bhRSKysOL1Yk/MV0xwAAAAAAAAB9UF4xCUXSVfmNX6lRNtchejXJF5qixU1H\n0iM6eIQFODL90RnAZpGLJgQL+ewvdidV0VphCXWc/DPJ1+lztbLi0MeKxEtMdwwAAAAAAADQBOUV\n41OVPa88ukw3Lhy8kO0dYooW/0koSnpWMfV1GxoWRMFmkYsnhnA5rC/3JitVNFZYfMMc3/qJ4NtT\nX1ArKw4uUjy+wnTHAAAAAAAAAB1QXjEyjUpZeWiJRlpKifNC+wu6jDVFi2KJ8ofD6QuiA21tWBAF\nm01+OimYJImv9iarVBr62vUNd5pcR4UlZoEi6SrTHQMAAAAAAAAmh/KKkUn/3KLMukcJspyaC0d+\nbqIWfz6W3usl97atnAzflKXjsFmfTQ5RqTWr9tFbYWnRznHSjwRPRH2husKS/DfTHQMAAAAAAACm\nhfKKMVWl3ZJd20GNsjgO41ax7EzysORbj4vjM8XThvgx/dHNBYfN+vytNooq9erfUlRq+iosHL/2\njpN+JHg6E+uoqioOfKRIuc50xwAAAAAAAIAJobxiNGpxUUXsZ7pxu/7vs1u0M0WLFVLld4eeLIgO\nFPBselgQBZfD+nxKm0qpcs1vKWo6KywtX3J480eCa0d9QVVVsf9DReo/THcMAAAAAAAAmArKK8ah\nUasrYpdqKgspcW5gL0H3CSZq9Odj6d3bubdvjWFBVDwOa/nU0NLKqrUHUumssHD9X3aYVGeFpSrt\nJtMdAwAAAAAAACaB8opxyC7vUqZTb08gHZqJxiwnSdIULd5OKolLL5+OYUF14HFZK6aFFpUr1h9M\n02jorLB0cHhzYy0VFqVC/Nv7VU9uM90xAAAAAAAAYHworxhBVeYD6aXN1CjJsh/7FUvkbIoWK6XK\n7w6lLYgOtONjWFCd+Fz2immh+cUyuissAR0dJv5AcATUF5QK8a/vV6XfYbpjAAAAAAAAwMhQXjGU\nWlJWcehTQqOixO36vM0N6GiiRjefyOga5vpSoDPTn97cCXjsL6aH5RTKvj/8hNYKS6tX6qiwyMS/\nvl+VfpfpjgEAAAAAAABjQnnFIBqNRnJkhUacT4lz/DsLek0xUaN3kkvup5bNHOrP9Ke3DHZ89lcz\nwrKeSzYeSaezXW7rVx0mfE9weNQXqqTiX9+ryrjPdMcAAAAAAACA0aC8YhDZ378qUi5RgqTQ1T7q\nS5Jlkr6tlCm/O5g2H8OCGqO6wvIkp+LHoxl0tssN7Gz/xvcEm0t9oUoq3vdOVeYDpjsGAAAAAAAA\njAPllaZTZSdIL2zQjYvGfMFycDdRo1tOZL7axqVDkDPTn97CCAWcVbPCk7LKfz5Ga4WFF9RVT4VF\n+fQh0x0DAAAAAAAARoDyShOpZRXig58QaiUlLug5nRf0mokavZ9aejeldNYwf6Y/vUUSCTirZ4XH\nZ5Zv/T2TznZ5wa/Zj19fS4VFISn/5R1lVhzTHQMAAAAAAACGQnmliSTHvlSXZlOCnBYd7PrONlWL\nMuXamLT54wKFAg7Tn95S2dtxVs8Kv5dWuv3kUzrb5YV0t49eW1uFpbJ87zzVs0dMdwwAAAAAAAAY\nBOWVppDdPKxIPEcJkgInUdQXJNtUtY+tv2e+EuzcMdiZ6U9v2RyEnG9nh99OLt71Rxad7fLa9LSP\nXkOwdA4PRWXZ3nmqZ/FMdwwAAAAAAAA0HcorjabKT5WcXasbF41aznb2MVGjD9JKbyeVzBruz/Sn\ntwaOQu63s9v+k1C058wzOtvltelVe4VFXlG+9x1VdiLTHQMAAAAAAABNhPJK42jkUnHMYkKpoMT5\nXd/khfY2UaNSuWpdTNqH4wJFGBZkJE723G/ntL366MXes/RWWEJ724/7VrfCopGXl++dq8pBhQUA\nAAAAAMAiobzSOJKT36iLqI+eYXuHCwe+Y7pGt53MfDnQ6ZUQF6Y/vVVxtueumdP28sMX+//MobNd\nXliEfdQ3tVRYZOLyPfNUuUlMdwwAAAAAAAA0GsorjSC/d0L+8AQ1yhPZj1tFcngmajTuSdk/CcVz\nhgcw/emtkIsDb82ctufuPI+5SG+FJbyPaOwqgmRT4hpZWfmet1V5yUx3DAAAAAAAADQOyisNpXqR\nUXnqG924aPjnbLcWJmpUKletOZD64bjWIjsMCzIJV0femjnhf9zMP3yJ1goLv21/0divaqmwSEvL\nd89V5acy3TEAAAAAAADQCCivNIimSl4R8ylRJaXEBZ2i+O0Hmq7dHaeevtTaqXMbV6Y7wJq5O/HX\nvt32xPX8I1dy6WyX326gaMyXBEn9DmqkpeW75qDCAgAAAAAAYEFQXmkQ6en1qgLqkA22R5DdkI9M\n1+ijJ2XXHhXNGYFhQSbn7sRfO7ft0au5x67l0dkuv/0g0egvaquwlJTvnqt8/oTpjgEAAAAAAIAG\nQXmlfvJH52V3D1GjXDuH6NUkl2+iRmUK1dqYtA+iWttjWBAtPF34a+e2PXwp5/fr9FZYXnpdNGpl\nLRUWSbF412xlQTrTHQMAAAAAAAD1Q3mlHqri7MoTX+jGRZGLWZ4mvK9k5+mscH+HrmEYFkSfZq6C\nNXPbHbiYc+pGPp3t8l8eIhq5XDdeXWFRvcho9BYBAAAAAACAXiiv6KNRVlUcXELIKyhxfrtIfsdh\npms3Ib38ysPCuSNbMd0BNsfbjb9mTttfzz87c/M5ne3yOwwVjViuG9dUFpXvnK16kcl0xwAAAAAA\nAIA+KK/oIzm3QZX7iBJkubYUDv/EdI3Kq1RrYlLfH9vKQYhhQQzwcRd8O6fdnrNZ524X0Nkuv9Nw\n4fClunFNZWH5rtmqwqdMdwwAAAAAAADUCeWVOimSrshv/EqNsrkO0atJvtB07e48/ayNn8Nr4W5M\nd4Dt8vUQfDun7c7TTy/co7XCInhlpHDYZ7pxTcWL8p1zVEXPmO4YAAAAAAAAqB3KK7VTlT2vPLpc\nNy4cvJDtHWK6dhMzyi/dL3h7JJ4WxLAWnnbfzGm7/fenF++/oLNdwaujhUOX6MY1Fc/Ld85GhQUA\nAAAAAMA8obxSC41KWXloiUZaSonzQvsLuow1XbuKKvWag2nvjm3tKOIy3QdAtGxmt3p22y3HMy49\nLKSzXUHnMcLIT3XjGnF++a45quJspjsGAAAAAAAAqFBeqYX04hZl1j1KkOXUXDhyaZO211C7z2QF\n+Yh6tMWwIHPh72W3enbbTUfTrz6it8LSZaxwyGLduKY8T7xzNiosAAAAAAAA5gblFaqqtJuyqzuo\nURbHYdwqlp296dpNeir+827BvFF4WpB5CfAWfj2r7cbY9OvxRXS2K+g6Tjh4kW5cXZ4n3jVHVZLL\ndMcAAAAAAADAv1Be+Q+1uKgitpa5Re36v89u0c507SqU6jUxqfNGt3Kyx7Ags9PaR7hqRvh3h57c\nSCyms11Bt/F2gxboxtVlueKds1WlqLAAAAAAAACYC5RX/qVRqysOf66ppN6kwA3qJeg+waRN7znz\nrJWXsFd7d6b7AGoX6Cv6akbYupi0W0m0Vljsuk+wGzhfN64uyxHvnK0qzWO6YwAAAAAAAIAgUF7R\nJru8S5lxgxIkHZqJRi8nSdJ07SZnic/feT5vdGumOwD0CW5h/+X00DX70+4kl9DZrl2PiXYDPtSN\nq0tzxLvmqMqeM90xAAAAAAAAgPLK/6vKvC+9tJkaJdn2Y1exRM6ma1ehVH8bk/r2qFbOGBZk9kL8\nHFZOC/3mt9R7KaV0tmvXc5Jd//d14+qSZ+Kds9VlBUx3DAAAAAAAgK1DeYUgCEJdWVpxaAmhUVHi\ndn3mcgM6mLTpX85mt/Swi3gJw4IsQ2hLh+VT2nz9a8qDtFI627Xr9ZZdv3d14+qSrPJds9XlL5ju\nGAAAAAAAAJuG8gqh0Wgqj6zQiPMpcU5AF0GvKSZtOuVZxZlb+e+OwbAgSxIe4LjsrZAv9ybHPSmj\ns1273lPt+szTjauLn5bvnKUW0/roaAAAAAAAANCG8goh+/u3qtTLlCApdLUf+wXJMmH/VCnVa2JS\n3x4V4OLAY7oPoHHatnJa+lablXuS4tPprbD0mS6ImKMbVxc/Ld85Ry2m9dHRAAAAAAAAUMPWyyuq\n7ATphR9046IxX7IcTDtgZ9/57OZugj4vezDdB9AU7Vs7fTY5ZMWe5MSMcjrbFfadJYiYrRtXF6WX\n75qjrqD1wUYAAAAAAABQzabLK2pphfjgYkKtpMQFPafzgrqatOm07MrTN/Lfw7AgS/ZyoPMnE4OX\n7U56/FRMZ7vCvrMFvWbqxtWFT8p3zVFX0PpgIwAAAAAAACBsvLwiOf6lujSHEuS06GDXd3aTttdQ\nSpX625iUOSP8XR0xLMiydQx2/nhC0NKdj5Oz6K2w9J8r6DldN65+kSbeNUddWcp0xwAAAAAAANgW\n2y2vyG4eViSeowRJgZMo6kuSzTFp07+ez/Fy5vfr6Ml0H4ARvBLisvCNwM92PE55VkFnu8IB8wQ9\npunGVS9SUWEBAAAAAACgmY2WV1R5KZIza3TjolHL2c7eJm06Lafy5D9570cFMt0HYDSd27jOjw5c\nsj0xLbuSznaFA98RdHtLN64qSBHvflstoXXaXQAAAAAAAFtmi+UVjVwqPvgJoaqixPld3+SF9jZp\n00qVem1M6qxh/m4YFmRduoa5fhjV+tPtCU9yJXS2Kxz8Pv+1ybpx1fMk8a65agmt0+4CAAAAAADY\nLFssr0h+X60uyqAE2d7hwoHvmrrp/X/meDjyBryCYUFWqFtbt3fHtPpka3xGHq0VFtHrH/C7vqkb\nVz1PEu9+GxUWAAAAAAAAGthceUV+73d53O/UKE9kP24VyeGatOn0XMmJv/Pej8LTgqxWz3bub49q\ntXhL/NN8KZ3tioZ8xO8yUTeuyk8U75mnltI67S4AAAAAAIANsq3yiupFRuWp1bpx0YjP2W4tTNu0\nSrMmJmVGZEt3Jz7T3QAmFPGS++wRAR9vic96Tm+FJXI+v/N43bgqL0G85x21lNZpdwEAAAAAAGyN\nDZVXNFXyiphPiCrqSa+gUxS/3UBTt37gYo6rPXdQ52ZMdwOYXN8OHjOGtVy0OT67QEZnu8LIhfxX\no3XjqtxH4r3vqGWosAAAAAAAAJiKDZVXpKfXqwpSKEG2Z7DdkI9M3XRGnuTo1ZwP8LQgm9G/o+e0\nIS0Xbn6UU0hfhYUkSeHQRYJXonRfUuXEife+q5HR+mAjAAAAAAAA22Er5RX5o/Oyu4eoUa6dw7iv\nSa5pR+uo1Jq1ManTI/09nDEsyIYMfNXzrUF+i35+lFckp61RkiTthi0WdByr+5Iq+2H53nc1clqn\n3QUAAAAAALARNlFeURVnV574QjcuilzM8gwwdesH/8p1tOO83gXDgmzO4C7NJgxosYD+CsuIT/gd\nRuu+pMp+IEaFBQAAAAAAwASsv7yiUVZVHFxCyKkTT/DbD+V3HGbq1p/mS2MvZ384DsOCbFRkV6/x\nfZov/PnR82J6RwmN+JT/8ijdl5TP7ot/eV8jp3XaXQAAAAAAAKtn/eUVybkNqtxH1I/t2lI47BNT\nN61Sa9bEpEwd0tLTBcOCbNew7t5jI5ov+Dm+oITGe1hYLOHIJfyXhuu+pMy6K973vkaBCgsAAAAA\nAIDRWHl5RfH4ivzGr9Qom+sQ/Q3JtzN164cu5Yr47MiuXkx3AzBsZA/vUT19FvwcX1hGb4Vl1FJ+\n+6G6Lymf3hHv+0CjoPXBRgAAAAAAAFbMmssrqtK8ymPLdePCwQvZ3sGmbj3rufTwpeyPMCwICIIg\niNG9fIZ181qwifYKy+hl/HZDdF9SZt4W//ohKiwAAAAAAABGYbXlFY1KWXnoM420lBLnhQ4QdBnb\nlC02hlqtWReT8tZgv2auAqZ7AsxFVETz17t4LdycUFyuoK1RksUWjlnBb/u67kvKjJviXz/SVNFX\n7gEAAAAAALBWVltekV7conx2n/ppnZsLR35OQ+uHL+fxueyhr2FYEPxHdN/mAzp5LtwcXyKmt8Iy\ndiU/fJDuS8qMG6iwAAAAAAAAGM46yytVaTdlV3fofFaOQ9TXLDt7U7f+rEAa89ezj6IDSZJkuifA\n7Ezo79vnZc+Fm+NLK6poa5RksYVjv+CFDdR9SZn+j/i3haiwAAAAAAAAGMIKyytqcWFF7Ge6cbv+\n77NbtDV562rNupjUtwb5eWFYENThzYG+vdp7LNocX15JY4WFzRFFfckLHaD7kvLJtYr9H2uU9N1Q\nAwAAAAAAYGWsrbyiUasrDi/VVBZR4tygXoLuE2hI4MiVXA6bHNYNw4JAn8mDWrwW7rZwc3y5hN4K\ny7iveG366b5UlXYFFRYAAAAAAIAms7byiuzyLmXGDUqQdGgmGr2chqE62S9k+y9mz48OxrAgqNfU\n1/1eDXH9eEuCWKKkrVGSzRFFf80L6av7UlXq5coDizVK+so9AAAAAAAAVsOqyitVmfellzZToyTb\nfuwqlsjZ1K2r1Zr1MSmTBrTwduMz3RNgGWYMbdkh0Hnx1oRKKe0VluAI3ZcUKZcqYxZrVPQlAwAA\nAAAAYB2sp7yiriytOLSE0KgocbuIOdyADjQkcOxaHkGSI3p4M90TYElmDfNv6+/48daEShmNFRYO\nVzT+G25Qb92XFMl/ocICAAAAAADQWFZSXtFoNJVHVmjE+ZQ4J6CLoPdUGhLILZT9euHZ/OggDAuC\nxpo7MqCNn+Mn2xIl9FZY7N/4hhvYS/clRdLFyoOfosICAAAAAADQcFZSXpH9/VtV6mVKkBS52Y/9\ngmSZ/DNqNJp1MakT+7do7o6nBUFTvDMqINBHtGR7olSuMnxrDURyePZvfMNp3UP3JcXjC5WHPkOF\nBQAAAAAAoIGsobyiehYvvfCDblw0+guWgzsNCRz/O1+t0YzEsCAwwLujW/k1E35Gc4WFy3eYsIbT\nupvuS4rEc5LDn6PCAgAAAAAA0BAWX15RSyvEhz4h1NSTQEHP6bygrjQkkFck/+Vc1vzoYBYLw4Kg\n6UiS/GBsax93wec7EmUKmiss6zitXtN9SZ5wVhK7TKOmLxkAAAAAAAALZfHlFcmxL9SlOZQgp0UH\nu76zaWhdo9Gsi0l5o6+vrweGBYGhSJL8MCrQy1WwbOdjeRW9FZaJ6zkBXXRfksf/gQoLAAAAAABA\nvSy7vCK7eVjx+DwlSAqcRFFfkmwODQn8fj1fodKM7uXDdE+AlWCxyI/GBbo58pbtfKyoUtPWLsnl\nO0z8juP/qu5L8kenJUdWaNT0JQMAAAAAAGBxLLi8onqRITmzRjcuGrWC7UzHNCj5xbI9Z7MWRgdh\nWBAYEYtFzh8f5CziLt/1WKGkscLCEzi8+T2nZW0VlriTkqMrUWEBAAAAAACoiwWXV1hufoIeUwny\nPx+B33UiL7RXUzfZCBqN5ruDadF9mrfwtGO6J8DasFnkwgnBIjvOF7uTqmitsNg5vPk9x6+T7kvy\nhyckx75AhQUAAAAAAKBWFlxeIVlsYb85DpN/Ju09qiNsn3bCge/R0/qpG88lCtWY3s2Z7gawTmwW\nuXhCMI/L+nJvslJFY4WFb+cwaQOnRQfdl+QPjkuOr9JoNEz3DQAAAAAAgNmx4PJKNW7rV53e3s9p\n3Y3g29uP+4rkcI3ehEqtoYzRKCiR7/7j6YLoYDaGBYHJsNnkp2+GsEjiq73JKhV9RQ2Sb+cweWPt\nFZb7R1BhAQAAAAAA0EVax5mSRqNRvcjgeLYyxcZzC2Wf70xcGB3UpqVDdWTxlviXg1zG98WtK2By\nSpX6iz3JHDb56ZshbDZ95TyNrLJ87zuq7Ie6Lwk6RdkNX0ySqC0CAAAAAAD8j8XfvVKNJEkT1VYI\ngigolWU9l76/MW7byaeKKvWpG/limSoqAk8LAjpw2KzPJocoqtSrf01WqanFUIlMaaJ2SYHIYfJG\ndvP2ui/J7h6SnPzWOiqzAAAAAAAARmEl5RWTyi+SEwSh1hAH/8qevf7BrtNPF2JYENCIy2F9PqVN\npUy15rcU7QpLWk7lOxvidGsuxsIS2DtM/pHt0073JfntGMmpNY3fJAAAAAAAgHVCeaV+z0sUNf/O\nLpCWS5Rnbz2XV6mYzgtsCI/DWj41tKxSue5AqlqtIQgiNbti0c8Jz55LH6WXma5dlp29w1u1V1g0\n5QUalanunQEAAAAAALAsKK/U73mxVHtRoyEOX86Zvf5BQkY506mBDeFxWcuntSkqV6w/mJacJV74\nc4JYWkUQxJWHRSZtl2Xn4PDWj2yvsP8kE9pfFL2aZHOY7hUAAAAAAACzgPJK/QpK5LrBnALZhz89\nOvF3HtPZgQ3hc9krpoU+K5C8tyGu8v9nXfn7UZHaZOODqrHsHBymbGJ7hVYv8sIGisatQm0FAAAA\nAACgBsor9cuvrbxib8eeMzwgsqsX09mBbcnIrczMl2mXU4rFVY8zxaZulyV0dJiyid2sDS9soCjq\nS9RWAAAAAAAAtOEcqR4qteZF2X/KKyySiHzNa8pgP0cRl+nswLYkpJd/sv2xVE6d8eRKXFF4K0dT\nt84SOjlM20Ly7FBbAQAAAAAAoMBpUj2KyhRq9b+LHYOc5oxoFeAtZDovsDmPnpR9uv2xTFHLnMrX\nHhXOHRlAQw4sOwemuwEAAAAAAMAcobxSj4ISWfU/fNwEc0b4vxbuxnRGYKPEUmXHIKdbSSVKFXWm\nlYJSRXKWOMQPtQ8AAAAAAABmoLxSj7xiuZDPmTig+aiePlwOpqoBxnRr69atrVulVHntUdHlB4V3\nU0u176u6EleM8goAAAAAAABTSI3GtM8csXTJWWJPF76LA4/pRAD+o7yy6mpc0eUHhQ+elGk0hLeb\nYO+nnZhOCgAAAAAAwEahvAJg2UrEissPi648ePHO6MBWPpgVCAAAAAAAgAEorwBYCY1GQ5Ik01kA\nAAAAAADYIpRXAAAAAAAAAAAMgrlaAQAAAAAAAAAMgvIKAAAAAAAAAIBBUF4BAAAAAAAAADAIyisA\nAAAAAAAAAAZBeQUAAAAAAAAAwCAorwAAAAAAAAAAGATlFQAAAAAAAAAAg6C8AgAAAAAAAABgEJRX\nAAAAAAAAAAAMgvIKAAAAAAAAAIBBUF4BAAAAAAAAADAIh+kE6FZQUHDx4kWxWMzlcrt16xYcHExP\nuwkJCffu3ZPJZA4ODv3793d3d2e6JwAAAAAAAADAOEiNRsN0DrTq0qXLrVu3qv/dvHnz7Oxsetr1\n8PAoLCys/nf37t2vXbvGdE8AAAAAAAAAgHHY1uCgv//+u6a2QhBEYGAgbU1r3yZDSQMAAAAAAAAA\nLJptlVe+++477cVZs2Y1dgtyufz+/fvXr1+/detWTk5Ow984c+ZMPZkAAAAAAAAAgOUyx8FBubm5\nEyZMuH79eqNy43A4sbGxQ4YMqWuFjIyMoKAglUpVveju7p6dnc3n8xveRGxs7LvvvpuXl1cTuX37\n9iuvvNKQ90qlUh8fn9LS0ppsMzIyfH196etWAAAAAAAAADANc5za9qeffrp8+XJj36VUKs+dO6en\nvLJx48aa2gpBEFOnTm14bSU3N3fevHnHjh2jxMvKyhq4BTs7u0mTJm3cuLEm240bN37zzTcm7EeA\nBtCe7Llr165t2rShp93ExMS7d+9ismcAAAAAALAO5lheKSoqatobnZ2d63pJLBbv2LGjZpEkydmz\nZzdkmxqNZtu2bYsWLWp4JaUus2fPrimvEASxdevWpUuXikQi4/UcQKMNGzasZiYgHx+fRg15M0Tv\n3r0x2TMAAAAAAFgNq5p7RalU1vXS8ePHy8vLaxb79+/funXrejeYkpISERExe/Zsw2srBEGEh4f3\n6NGjZrG0tPTkyZMMdxnYNsosy0FBQbQ1rd0WJnsGAAAAAABLZ453r+iaMWNG/Z+Ew9Gz2uHDh7UX\no6Ki9G+tqqpqzZo1K1eulMvlRvwgY8eO1b5KHxsbGx0dbaJOA6hXkyd7lkqlDx8+zM3Nzc3NLSoq\ncnJy8vLy8vb27tSpk729fUO2MGvWrH/++Uc7k/379zPdHwAAAAAAAE1kjlPbzpkzZ8uWLTWLkZGR\nBt7lUVFR4eHhIZPJaiJPnz718/Ora/38/PzBgwc/fPiQEndycqLcxnLhwoV+/fo1PJPk5GTtuS1E\nItGLFy/s7OxM26FgyUw00zPR1Mmeb968uX379oMHD2rfDlbDzs5u2LBhM2fO7N+/v/7tYLJnAAAA\nAACwJlY1OKgup0+f1q6thIaG6qmtEASxZ88eSm2Fw+HMnz8/OTnZwExCQkICAgJqFisrK8+cOcN0\n94BZq57puaqqStkYMpns3Llz+rfc2MmeFQrFRx991LVr1+3bt9daWyEIQiqVHjx4cMCAAXPmzJFI\nJHq2Vj3Zc81i9WTPTHc2AAAAAABAE9lEeYUyMmjw4MH61y8uLtZe7Nu378OHD9euXevo6Gh4MoMG\nDdJejI2NZbp7wKyZYqZnovGTPYvF4h49elAGE+mxZcuWPn36aJc1dVFa3Lp1a2VlpTH7DgAAAAAA\ngC7WX16Ry+WnT5/WjtRbXqm5hu/r6xsTE/Pnn3+GhYUZKx9K67///rueGXkBmkz/cdWoyZ41Gs3k\nyZNv377dqARu3bo1d+5cPStgsmcAAAAAALAaljG1rSHi4uK0L4nz+fxevXrpf0tkZOSNGzf69Onz\n3nvvGf3Byf369WOz2TWDMsrLy+Pj419++WWm+wksg4uLy5gxY+pdTf9Mz0QjJ3teu3btsWPHKMGh\nQ4d+8MEHbdu2dXBwSE9Pv3LlyooVKwoKCrTX2b1798iRI0eMGFHXljHZMwAAAAAAWAfrL6/cuXNH\nezEkJEQgEOh/S5cuXeqdt6LJ7O3tW7dunZKSUhO5e/cuyivQQN26ddu2bZuBG6moqDh79qx2hDJm\nTZtYLF61apV2hMVi7dmz580336yJtG3btm3bthMnToyOjqZsefXq1XrKK5SbuU6fPi2VSjHZMwAA\nAAAAWBzrHxx09+5d7UUjDvNpsvDwcO1FSgEIwNQaNdnzpk2bap7vU23dunXatZUaTk5O+/bta968\nuXbwxo0b2venUGCyZwAAAAAAsA7WX16hFC/MobxCyYFSAAIwtUZN9rxp0ybtxXbt2r377rt1rezu\n7v79999TgkePHtWzfUz2DAAAAAAAVsDKyysymSwhIUE7Yg7lFcrdK3FxcVVVVUwnBbaiUZM9P378\nOCsrSzsyb948NputZ/vDhg1zcnLSjvz111961sdkzwAAAAAAYAWsvLwSHx9POVUzh/IKJQe5XP74\n8WOmkwJb0ajJnnUnIerTp4/+7fP5/FGjRmlHHj58WFJSUtf61ZM91yxWT/bMdCcBAAAAAAA0jpWX\nV/Ly8iiRwMBAppMigoKCKJH8/HymkwJb0ajJnq9evaq96OPjExwcXG8T/fr1015Uq9V6CojVkz1r\nRzBcDgAAAAAALI4FlFfOnDkjaoAPPvhA972Ua+b29vZcLpfpD0QIhUIej6cnTwDTadRkz7m5udqL\nERERDWkiJCSEEnn69Kme9THZMwAAAAAAWDoLKK+oVCpJA5w6dUr3vcXFxdqLjo6OTH+a2jOhPJkF\nwHQaNdnz8+fPtRd79OjRkCZ073DJzMzUsz4mewYAAAAAAEtnAeWVBlIoFLpBSymv4O4VoEdjJ3su\nKCjQXvTw8GhIK05OTs2aNdOOZGdn61kfkz0DAAAAAICls57yiqenp26QUl5xcHBgOs3/QXkFGNGo\nyZ4lEklFRYV2pOEFSjc3N+1FynYoMNkzAAAAAABYOg7TCTTIRx99pH8FkiRHjhypG6eULcynvELJ\npNZbbwCMrlGTPVNGBhGNKa8IhULtRalUqmflWid7bt++PaNdBQAAAAAA0AgWUF6JjIxct25d096r\n0Wj0LDKIkgmLZT23EYFJnTp1SiQS1bvazJkzv//+e914oyZ7powMIkxWXqme7Fm7yIj7uQAAAAAA\nwLJY+Vm9s7Oz9mJ5eTnTGdWeCZvNZjojsBhNnumZaORsRLrllYbf/0Upr+h59nOtmWCyZwAAAAAA\nsCworzCDkgklTwAD1TXcrFHlFd2NkCTZwAQot5/UO1UtZiMCAAAAAACLhvIKM1BeAZOqdaZnopGT\nPdvZ2VEicrm8gQlQDmknJyf966O8AgAAAAAAFs0C5l4xhNmWV8RisZ48Aeri6ek5adKkelerdaZn\nopGTPRtSXqFMtlJXuaeuTDDZMwAAAAAAWBbbKq9IpVKpVKp70kgzsVhMGSuB8go00Kuvvrp27dom\nv71Rkz3rflMaXqBsbHkFkz0DAAAAAIBFs/JzGA8PD0okOTmZ6aRqyUE3TwBTaNT9XPb29pRIbm5u\nAxvKycnRXqy3vILJngEAAAAAwKJZeXmlffv2lEhCQgLTSRGJiYnai2w2Ozw+CV1/AAAGd0lEQVQ8\nnOmkwCY0qrzi6+tLieTl5TWkFZlMRlmzseUV3M8FAAAAAACWxcrLK25ubn5+ftoRcyivUHIICQmh\nPMUWwEQaVV5xdnamzDj75MmThrSSkZFBGeyD8goAAAAAAFg3Ky+vEATRoUMH7UVzKK9Q7l6hZAhg\nOo2d7Llly5bai7dv325IK3fu3KFEvL299b8Fkz0DAAAAAIBFs/KpbQmC6NChw/Hjx2sWG1heOXHi\nhO6jYXWfZnL27Nns7GztCIfDGTFihO6kFdpQXgGmNHay57Zt2z569Khm8d69e1VVVVwuV38rJ06c\n0F4MCAjw8fHRsz4mewYAAAAAAEtnE+UV7cWMjIySkhIXFxc9b7l69eqIESMasvE1a9boBpctW7Z8\n+fK63lJSUpKRkaEnQwDTqXWy55dffrmu9SMiIvbv31+zKJFITp48OWrUKD1NyOXyM2fOaEcGDhyo\nPytM9gwAAAAAAJbO+gcHde7cmSTJmkW1Wn3hwgX9bzHw6UL6B1xcuHBBe1oKDofTqVMnpjsJbEVj\nJ3vu06cPJbJt2zb9TWzYsKGiokI7MmjQIP1vwWTPAAAAAABg6ay/vOLl5dW1a1ftyNmzZ/W/pd6x\nD/pRzi0pKBf2IyIinJycGO4jsBmNnew5KCgoLCxMO/LHH39Qxv5oy8zMpNy65efnN3ToUP1ZYbJn\nAAAAAACwdOZYXgkMDNRebNWqlYEbHDNmjPZiveWV3r17N3nqBzabrX8oxLlz5/TkBmBqjZ3seeHC\nhZTI9OnTb968qbtmYmLi8OHDJRIJ5e311isxGxEAAAAAAFg6cyyvLFiwoLi4OCkpKTk5+cWLFxs2\nbDBwg5QSRnZ2tv5TSn9//5KSEk2TKJXKsWPH1rXlhIQE7alwWSzWyJEjme5vsC2NLa9MnDixRYsW\n2pHCwsLevXtPmTJlx44dKSkpJSUlV65cWblyZadOnbTnwSUIIjAwcMaMGfWmhPIKAAAAAABYOjOd\n2tbFxUX/7LON4u/v37Fjx3v37tVEzpw5w8jkDpQbZ7p16+bl5UV/GmDLGjvZM5fL/eWXX/r3769U\nKmuCcrl8z549e/bs0dOQvb39sWPHBAKB/nww2TMAAAAAAFgBc7x7xRQoN7AcPHiQkTQo7Y4ePZrB\nPgHb1ITJnnv37r1+/fpGtSIQCPbt29eQIiYmewYAAAAAACtgK+WVCRMmsNnsmsVbt25RRjHQIC4u\nTnvGCh6PFx0dzXTHgM1pwmTPBEG8++67sbGxrq6uDWkiNDT01q1bDXy6OSZ7BgAAAAAAK2Ar5RV/\nf/+oqCjtyPbt22nOgfJE2wkTJvj4+DDdMWDujD7TM9H4yZ6rjR49+tGjRx9//DHl2UPaXnvttc2b\nN9+5c6ddu3YNTAaTPQMAAAAAgBUgtW/Lt27379/v2LFjzaKrq2tubi6fz6endalU6uPjU1paWr1I\nkuSjR48Ymf8FLE5JSUlBQQFJkq6uru7u7oZvMDMzMyAgQDsSHx/f8KNRo9Hcv38/MzMzLy+voKCA\nx+P5+Pj4+PiEhIT4+/s3KpOEhIS2bdvWLLJYrJycHExIBAAAAAAAFsdMp7Y1hQ4dOvTv379mmoni\n4uIjR4688cYb9LR++PDhmtoKQRCvv/46aivQQMad6ZkweLJnkiQ7duyoXaxsMkz2DAAAAAAA1sFW\nBgdVW7Rokfbizp07aWua0tbChQuZ7gywaZjsGQAAAAAAwIhsaHBQtY4dO96/f7/63+7u7i9evKCn\nXRcXl5q7Vzp37qw9xy0A/TIzMwMDA1UqVU0kLi6u4ROmGEVcXNxLL71Us8jj8TIyMjAhEQAAAAAA\nWCIbGhxU7ezZs6dOnSovL+fxeO3bt6et3ePHj8fHx6tUKkdHx8jISKa7AWxd9WTPBw4cqIls3779\nhx9+oDMHTPYMAAAAAABWw+buXgGAapjsGQAAAAAAwFhsa+4VAKhRPdlzzWL1ZM+0tY7JngEAAAAA\nwJqgvAJguzDZMwAAAAAAgFFgcBCATdOe7NnNza2wsJCedjHZMwAAAAAAWBObm9oWALRhsmcAAAAA\nAADD4e4VAAAAAAAAAACDYO4VAAAAAAAAAACDoLwCAAAAAAAAAGAQlFcAAAAAAAAAAAyC8goAAAAA\nAAAAgEFQXgEAAAAAAAAAMAjKKwAAAAAAAAAABkF5BQAAAAAAAADAICivAAAAAAAAAAAY5P8AFKUs\n7ZfoBJQAAAAldEVYdGRhdGU6Y3JlYXRlADIwMjQtMDEtMDJUMTk6NDE6NTIrMDA6MDCagbymAAAA\nJXRFWHRkYXRlOm1vZGlmeQAyMDI0LTAxLTAyVDE5OjQxOjUyKzAwOjAw69wEGgAAACh0RVh0ZGF0\nZTp0aW1lc3RhbXAAMjAyNC0wMS0wMlQxOTo0MTo1MiswMDowMLzJJcUAAAAASUVORK5CYII=\n" + } + }, + "cell_type": "markdown", + "id": "8be3d6b3-42a8-45cc-b9f7-4d8ee3288731", + "metadata": {}, + "source": [ + "# Why is my code slow?\n", + "\n", + "## Outline\n", + "\n", + "- Caching, Memoization, and Vectorization\n", + "\n", + "- Parallel Computing\n", + "\n", + "- Greedy and Exhaustive Algorithms\n", + "\n", + "- Faster Implementations versus Faster Algorithms\n", + "\n", + "# Caching, Memoization, and Vectorization\n", + "\n", + "## Caching\n", + "\n", + "- *Caching* refers to storing things for later use\n", + "\n", + " - Your browser probably does by temporarily downloading page\n", + " details on your local disk\n", + "\n", + " - Faster, reduces server load\n", + "\n", + " - Other examples include 3D rendering and saving common database\n", + " queries\n", + "\n", + "- However, caching usually takes space in exchange for faster run\n", + " times\n", + "\n", + "- The *space-time* trade off is a case where an algorithm trades\n", + " increased space usage for faster runtimes\n", + "\n", + "## Memoization\n", + "\n", + "- *Memoization* refers to storing results of function calls to use for\n", + " later\n", + "\n", + " - Specific method of caching\n", + "\n", + "- This is useful for methods with a lot of repeated computations\n", + "\n", + "- For instance, in our recursive Fibonacci number function.\n", + "\n", + "- `fib(12)` is called by `fib(13)`, `fib(14)` etc.\n", + "\n", + " - And `fib(3)` is called many many times\n", + "\n", + "- $F(5) = F(4) + F(3) = F(3) + F(2) + F(2) + F(1)$ Which calculates\n", + " repeated subproblems\n", + "\n", + "## How Memoization Works\n", + "\n", + "- Since we store the results, each function call is only made once,\n", + " making the time complexity $O(n)$, much better than $O(2^n)$ [1]\n", + "\n", + "- Memoization can also avoid the maximum recursion depth error because\n", + " the call stack is smaller\n", + "\n", + "![](attachment:./images/memo.png)\n", + "\n", + "## Memoization Python\n", + "\n", + "[1] From Bhargava chapter 8" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "41c39807", + "metadata": {}, + "outputs": [], + "source": [ + "cache = {0: 0, 1: 1}\n", + "\n", + "def fib(n):\n", + " if n in cache:\n", + " return cache[n]\n", + " else:\n", + " cache[n] = fib(n - 1) + fib(n - 2)\n", + " return cache[n]" + ] + }, + { + "cell_type": "markdown", + "id": "6bc77d06-4eb3-4a2b-a782-a24d86bfb804", + "metadata": {}, + "source": [ + "For the base cases, we replace calling `fib(0)` and `fib(1)` by getting\n", + "the values from the dictionary\n", + "\n", + "## Memoization Python\n", + "\n", + "- We can use the `functools` library, which is included in the\n", + " standard library (no pip install needed!)\n", + "\n", + " - `functools` does memoization for you!\n", + "\n", + "- We can use the `@cache` decorator, but the cached dictionary can\n", + " grow to massive sizes\n", + "\n", + "- Instead, `@lru_cache(maxsize = n)` uses the LRU (least recently\n", + " used) `n` computations\n", + "\n", + "- Alternatively, we can use `joblib` to store the memoized results in\n", + " a file\n", + "\n", + "## Memoization Python" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "0574f8be", + "metadata": {}, + "outputs": [], + "source": [ + "from functools import lru_cache\n", + "\n", + "@lru_cache(maxsize=10)\n", + "def fib_rec(n):\n", + " if n == 0 or n == 1:\n", + " return n\n", + " else:\n", + " return fib_rec(n-1) + fib_rec(n-2)" + ] + }, + { + "cell_type": "markdown", + "id": "e9bacef3-929c-4e5d-a3c1-cdbdb4fc23c0", + "metadata": {}, + "source": [ + "## Vectorized Operations\n", + "\n", + "- *Vectorization* is a technique of implementing array operations\n", + " without for loops\n", + "\n", + "- We use functions defined by various modules that are highly\n", + " optimized for the specific problem\n", + "\n", + "- NumPy provides a lot of functions that vectorized and are faster\n", + " than for loops\n", + "\n", + " - Array add/subtract/multiply/divide by scalar\n", + "\n", + " - Sum of array\n", + "\n", + " - Max/min of array\n", + "\n", + "- Keep this in mind for some ML processes that are iterative, such as\n", + " gradient descent\n", + "\n", + "## Why Vectorized Operations Work\n", + "\n", + "- Python is an interpreted language. There is no compiler and the\n", + " languages are dynamic\n", + "\n", + "- C language, for instance, makes optimization at the compiler level\n", + " (before execution) to speed up your code\n", + "\n", + "- Thus, NumPy implements arrays in C, which speeds things up\n", + "\n", + "- The other reason vectorization works in because of parallelization\n", + "\n", + "# Parallel Computing\n", + "\n", + "## Parallelization\n", + "\n", + "Compare the following codes. What are their run times?" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "e1b91069", + "metadata": {}, + "outputs": [], + "source": [ + "def fib(n):\n", + " if n <= 1:\n", + " return n\n", + " else:\n", + " return fib(n - 1) + fib(n - 2)" + ] + }, + { + "cell_type": "markdown", + "id": "18dfe855-fac7-4682-bd2b-65a3de0c7974", + "metadata": {}, + "source": [ + "## Parallelization" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "655a10db", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy\n", + "\n", + "def add_one(n, x):\n", + " y = np.zeros(n)\n", + " for i in range(n):\n", + " y[i] = x[i] + 1\n", + " \n", + " return y" + ] + }, + { + "cell_type": "markdown", + "id": "97f89aea-133d-4596-852b-e5b56963ae5b", + "metadata": {}, + "source": [ + "## Parallelization\n", + "\n", + "- Both are $O(n)$, but the second code chunk can be done in *parallel*\n", + " because the $n$ computations are independent.\n", + "\n", + "- Fibonacci depends on the previous two values\n", + "\n", + "- The requirements for code to the parallelized and vectorized are\n", + " similar, but not the same\n", + "\n", + "- The Numba library can help will parallelizing your code\n", + "\n", + "- Note parallel means the process takes place on one machine, but\n", + " *distributed* means the computation is shared across many machines\n", + "\n", + "# Greedy and Exhaustive Algorithms\n", + "\n", + "## Greedy Approach (literally)\n", + "\n", + "- Let’s revisit the knapsack problem, taking a different approach.\n", + "\n", + "- The items are:\n", + "\n", + " - Stereo: \\$3000, 4 kg\n", + "\n", + " - Laptop: \\$2000, 3 kg\n", + "\n", + " - Guitar: \\$1500, 1 kg\n", + "\n", + "- If we follow the rule “get the most valuable item, then get second\n", + " most valuable etc.” we would make \\$3000 by taking the stereo, which\n", + " isn’t the optimal \\$3500\n", + "\n", + "- A *greedy algorithm* picks the optimal move at each step, which\n", + " hopefully leads to the overall optimal solution\n", + "\n", + " - But it finds the solution in $O(n)$ time\n", + "\n", + "## Greedy Apporach\n", + "\n", + "- Let’s say you could take fractions of an item and we tried the\n", + " greedy approach\n", + "\n", + " - Peanuts: \\$7/kg\n", + "\n", + " - Rice: \\$5/kg\n", + "\n", + " - Tea: \\$12/kg\n", + "\n", + "- We would take tea until it runs out, followed by peanuts and rice.\n", + " This is the optimal solution in $O(n)$ time!\n", + "\n", + "## Classroom Scheduling Problem\n", + "\n", + "- Suppose we want to hold as many classes in a classroom as possible\n", + " [1]\n", + "\n", + "| Class | Start | End |\n", + "|--------------|---------|---------|\n", + "| Yoga | 9AM | 10AM |\n", + "| Music Theory | 9:30AM | 11AM |\n", + "| Painting | 10AM | 11AM |\n", + "| Algorithms | 10:30AM | 11:30AM |\n", + "| Calculus | 11AM | 12PM |\n", + "\n", + "2 Minutes: write down a greedy algorithm to solve this problem\n", + "\n", + "## Classroom Scheduling Problem\n", + "\n", + "Algorithm\n", + "\n", + "1. Pick the class that ends the soonest. This is the first class you’ll\n", + " hold in this classroom\n", + "\n", + "2. Now, you have to pick a class that starts after the first class.\n", + " Again, pick the class that ends the soonest. This is the second\n", + " class you’ll hold\n", + "\n", + "3. Repeat the second step\n", + "\n", + "This not only produces the correct solution but also does so in $O(n)$\n", + "time, for $n$ classes!\n", + "\n", + "## Classroom Scheduling Problem\n", + "\n", + "- An alternative algorithm is the *exhaustive approach*\n", + "\n", + " - We try every combination of classes. At the end, we see which\n", + " solution fits the most classes\n", + "\n", + " - We try every combination of items to steal. At the end, we see\n", + " which solution has the most value\n", + "\n", + "- While brute forcing might sound always unnecessary, there are cases\n", + " where it is needed to get the optimal solution\n", + "\n", + " - When performing subset selection for regression or decision\n", + " tree, we can’t guarantee the variables are uncorrelated. So\n", + " forward/backward stepwise selection isn’t guaranteed to produce\n", + " the best outcome\n", + " - More on this in a few slides\n", + "\n", + "- 2 minutes: what is the time complexity of best subset selection?\n", + "\n", + "## Greedy Approximation Algorithms\n", + "\n", + "- Problems involving finding the best subset of a variable to max/min\n", + " an objective value are generalized as the problem of finding the\n", + " best *power set*.\n", + "\n", + " - There are $2^n$ power sets, which becomes impossible to\n", + " calculate past $n=100$ (depending on the constants)\n", + "\n", + "- *Approximation algorithms* are judged by how fast they are and how\n", + " close they are to the optimal solution\n", + "\n", + " - Forward/backwards stepwise selection is an approximation\n", + " algorithm to best subset selection\n", + "\n", + "## N-P Complete Problems\n", + "\n", + "- In the power set problem, we need to brute force all combinations\n", + " and test them. Such problems are called *N-P Complete*\n", + "\n", + " - A lot of smart people think it’s not possible to solve these\n", + " with efficient algorithms\n", + "\n", + "- It’s hard to tell if a problem is N-P complete\n", + "\n", + " - Finding the shortest path between two points is N-P complete\n", + " (travelling salesman)\n", + "\n", + " - But the knapsack problem isn’t N-P complete because we can solve\n", + " it using dynamic programming\n", + "\n", + "## Live Coding\n", + "\n", + "You are given an integer array prices where `prices[i]` is the price of\n", + "a given stock on the $i$th day.On each day, you may decide to buy and/or\n", + "sell the stock. You can only hold at most one share of the stock at any\n", + "time. However, you can buy it then immediately sell it on the same day.\n", + "\n", + "Find and return the maximum profit you can achieve.\n", + "\n", + "[1] From Bhargava chapter 8" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "e075d171", + "metadata": {}, + "outputs": [], + "source": [ + "# INPUT\n", + "prices = [7,1,5,3,6,4]\n", + "# OUTPUT\n", + "7" + ] + }, + { + "cell_type": "markdown", + "id": "f5564358-201d-4342-960f-fd7b7a5228c9", + "metadata": {}, + "source": [ + "From\n", + "[leetcode](https://leetcode.com/problems/best-time-to-buy-and-sell-stock-ii/description/)\n", + "\n", + "# Faster Implementations versus Faster Algorithms\n", + "\n", + "## Faster Implementations versus Faster Algorithms\n", + "\n", + "- There are two ways we speed up our code\n", + "\n", + " - Use a faster algorithm, such as dynamic programming instead of\n", + " brute force. Algorithms are concerned with the approach to the\n", + " problem\n", + "\n", + " - Use a faster implementation, such as vectorization instead of\n", + " loops\n", + "\n", + "- It is useful to think about these separately when developing a\n", + " programming, then combining them to create a super-fast approach!\n", + "\n", + "# Recommended Problems and References\n", + "\n", + "## Recommended Problems and Readings\n", + "\n", + "- Cormen: Chapter 34 on NP-Completeness (highly optional)\n", + "\n", + "- Bhargava: Chapter 8 exercises\n", + "\n", + " - 8.1 - 8.8\n", + "\n", + "- Vectorize the second code chunk in the Parallelization section\n", + "\n", + "- [Find the longest palindrome from a\n", + " string](https://leetcode.com/problems/longest-palindrome/) Hint: use\n", + " a greedy alogrithm\n", + "\n", + "- [Computing Pascal’s\n", + " triangle](https://leetcode.com/problems/pascals-triangle/) Hint: use\n", + " dynamic programming\n", + "\n", + "## References\n", + "\n", + "- Bhargava, A. Y. (2016). *Grokking algorithms: An illustrated guide\n", + " for programmers and other curious people.* Manning. Chapter 1.\n", + "\n", + "- Cormen, T. H. (Ed.). (2009). *Introduction to algorithms* (3rd ed).\n", + " MIT Press. Chapter 1 and 3." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": "3" + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/README.md b/README.md index db202aa..fecb490 100644 --- a/README.md +++ b/README.md @@ -1,23 +1,37 @@ -# Algorithms and data structures - -## Contents: -1. [Description](https://github.com/UofT-DSI/algorithms_and_data_structures#description) -2. [Learning Outcomes](https://github.com/UofT-DSI/algorithms_and_data_structures#learning-outcomes) -3. [Logistics](https://github.com/UofT-DSI/algorithms_and_data_structures#logistics) -4. [Marking Scheme](https://github.com/UofT-DSI/algorithms_and_data_structures#marking-scheme) -5. [Policies](https://github.com/UofT-DSI/algorithms_and_data_structures#policies) -6. [Folder Structure](https://github.com/UofT-DSI/algorithms_and_data_structures#folder-structure) -7. [Acknowledgements and Contributions](https://github.com/UofT-DSI/algorithms_and_data_structures#acknowledgements-and-contributions) - -## Description: -The course was created by the University of Toronto's Data Science Institute. An understanding of data structures and algorithms (DSA), will aid the implementation of data science or machine learning methods in practice. Machine learning places emphasis on prediction, scalability, and autonomy. Understanding DSA is essential to the latter two aims of ML. For instance, students will be able to describe how an algorithms will perform when scaled or find practical methods for computers to solve problems autonomously. Finally, the industry often requires knowledge on DSAs and the ability to communicate the solving process. This course will provide the knowledge and terminology necessary to succeed in these situations. - -The beginning of the course will introduce students to terminology to discuss algorithms. This includes Big-O notation, time and space complexity. The next section will explore array-based data structures, searching, and sorting. Students should be able to justify algorithm or data structure choices based off time and space complexity analysis. Then, students will be introduced to recursion. We will solve problems using recursion and implment data structures that are best understood from a recursive perspective. Again, students will justify their design choices. The last portion of the course will be dedicated to solving optimization problems quickly. Students will be introduced to a variety of techniques to solve problems, identify when and how a solution can be optimized. +# Algorithms and Data Structures + +## Content +* [Description](#description) +* [Learning Outcomes](#learning-outcomes) +* [Logistics](#logistics) + + [Course Contacts](#course-contacts) + + [Delivery instructions](#delivery-instructions) +* [Delivery of Module](#delivery-of-module) + + [How the Technical Facilitator will deliver](#how-the-technical-facilitator-will-deliver) + + [Expectations](#expectations) + + [Requirements](#requirements) + + [Lesson Schedule](#lesson-schedule) + + [Textbooks](#textbooks) +* [Marking Scheme](#marking-scheme) +* [Resources](#resources) + + [Documents](#documents) + + [Videos](#videos) + + [How to get help](#how-to-get-help) +* [Folder Structure](#folder-structure) +* [Acknowledgements and Contributions](#acknowledgements-and-contributions) +* [Achnowledgements](#achnowledgements) + + [Contributions ](#contributions) + +## Description +The course was created by the University of Toronto's Data Science Institute. An understanding of data structures and algorithms (DSA), will aid the implementation of data science or machine learning methods in practice. Machine learning emphasizes prediction, scalability, and autonomy. Understanding DSA is essential to the latter two aims of ML. For instance, students will be able to describe how algorithms will perform when scaled or find practical methods for computers to solve problems autonomously. Finally, the industry often requires knowledge of DSAs and the ability to communicate the solving process. This course will provide the knowledge and terminology necessary to succeed in these situations. + +The beginning of the course will introduce students to terminology to discuss algorithms. This includes Big-O notation, time and space complexity. The next section will explore array-based data structures, searching, and sorting. Students should be able to justify algorithm or data structure choices based on time and space complexity analysis. Then, students will be introduced to recursion. We will solve problems using recursion and implement data structures that are best understood from a recursive perspective. Again, students will justify their design choices. The last portion of the course will be dedicated to solving optimization problems quickly. Students will be introduced to a variety of techniques to solve problems and identify when and how a solution can be optimized. This course is designed for those who have a degree in something other than Computer Science/Statistics who are looking to enhance their data science skills for their career. ## Learning Outcomes -Students will know how to... +By the end of the module, learners will: + 1. Assess options and choices around fundamental algorithms and data structures using Big-O notation. 2. Develop comfort with recursive functions. 3. Decide on appropriate data structures @@ -27,21 +41,39 @@ Students will know how to... ## Logistics ### Course Contacts -* Instructor: **Salaar Liaqat** [s.liaqat@mail.utoronto.ca](s.liaqat@mail.utoronto.ca) - * Please include the keyword "DSI Algorithms" in your emails and use professional language. -* TA: **Jenny Du** [junni.du@mail.utoronto.ca](junni.du@mail.utoronto.ca) - * Please include the keyword "DSI Algorithms" in your emails and use professional language. +**Questions can be submitted to the #questions channel on Slack** + +* Technical Facilitator: **{Name}** {Pronouns}. Emails to the Technical Facilitator can be sent to {first_name.last_name}@mail.utoronto.ca. +* Learning Support Staff: **{Name}** {Pronouns}. Emails to the Technical Facilitator can be sent to {first_name.last_name}@mail.utoronto.ca. ### Delivery instructions -The workshop will be held over three weeks, three days a week. Two of the three days will be 2-hours long and the last day will be 3-hours. Being mindful of online fatigue, there will be one break during each class where students are encouraged to stretch, grab a drink and snacks, or ask any additional questions. +The workshop will be held over three weeks, three days a week. Two of the three days will be 2 hours long and the last day will be 3 hours. Being mindful of online fatigue, there will be one break during each class where students are encouraged to stretch, grab a drink and snacks, or ask any additional questions. + +There will be a live coding component in most classes. Students are expected to follow along with the coding and ask questions throughout. + +## Delivery of Module +The module will run synchronously three times a week on Zoom. The first three days are used as "lectures" and will last a maximum of 3 hours. During this time, the Technical Facilitator will introduce the concepts for the week. The last day is used as an optional, asynchronous work period. The work periods will also last for up to 3 hours. During the work period, a Technical Facilitator or Learning Support staff will be present on Zoom to assist learners reach the intended learning outcomes. + +### How the Technical Facilitator will deliver +The Technical Facilitators will introduce the concepts through a collaborative live coding session using the Python notebooks found under `/01_slides`. All Technical Facilitators will also upload any live coding files to this repository for any learners to revisit under `/live_code`. -There will be a live coding component in most classes. Students are expected to follow along with the coding and ask questions throughout. +### Expectations +Learners are encouraged to be active participants while coding and are encouraged to ask questions throughout the module. -### Technology Requirements -1. Camera is optional although highly encouraged. We understand that not everyone may have the space at home to have the camera on. +### Requirements +* Learners are not expected to have any coding experience, we designed the learning content for beginners. +* Learners are encouraged to ask questions and collaborate with others to enhance learning. +* Learners must have a computer and an internet connection to participate in online activities. +* Learners must have VSCode installed with the following extensions: + * [Jupyter](https://marketplace.visualstudio.com/items?itemName=ms-toolsai.jupyter) + * [Python](https://marketplace.visualstudio.com/items?itemName=ms-python.python) +* Learners must not use generative AI such as ChatGPT to generate code to complete assignments. It should be used as a supportive tool to seek out answers to questions you may have. +* We expect learners to have completed the [onboarding repo](https://github.com/UofT-DSI/Onboarding/tree/tech-onboarding-docs). +* Webcam is optional although highly encouraged. We understand that not everyone may have the space at home to have the camera on. ### Lesson Schedule + | Lesson | Topic | Resources | |--------|-------------------------------------------------------------|------------| | 1 | Motivation and Big-O Notation | [Slides](https://github.com/UofT-DSI/algorithms_and_data_structures/blob/main/lessons/1_motivation-big-o.pdf) | @@ -49,64 +81,83 @@ There will be a live coding component in most classes. Students are expected to | 3 | Recursion | [Slides](https://github.com/UofT-DSI/algorithms_and_data_structures/blob/main/lessons/3_recursion.pdf) | | 4 | Recursion | [Slides](https://github.com/UofT-DSI/algorithms_and_data_structures/blob/main/lessons/3_recursion.pdf) | | 5 | Recursive Data Structures | [Slides](https://github.com/UofT-DSI/algorithms_and_data_structures/blob/main/lessons/4_recursive-ds.pdf) | -| 6 | Recursive Data Structures | [Slides](https://github.com/UofT-DSI/algorithms_and_data_structures/blob/main/lessons/4_recursive-ds.pdf) | -| 7 | Optimization | [Slides](https://github.com/UofT-DSI/algorithms_and_data_structures/blob/main/lessons/5_optimization.pdf) | -| 8 | Optimization | [Slides](https://github.com/UofT-DSI/algorithms_and_data_structures/blob/main/lessons/5_optimization.pdf) | -| 9 | Why is my code slow? | [Slides](https://github.com/UofT-DSI/algorithms_and_data_structures/blob/main/lessons/6_slow-code.pdf) | ### Textbooks -The course content, slides, and recommended problems follow these two textbooks. They are freely available online after a quick google search. - -* Bhargava, A. Y. (2016). *Grokking algorithms: An illustrated guide for programmers and other curious people.* Manning. +The course content, slides, and recommended problems follow these two textbooks. They are freely available online after a quick Google search. +* Bhargava, A. Y. (2016). *Grokking algorithms: An illustrated guide for programmers and other curious people.* Manning. ([link](https://www.manning.com/books/grokking-algorithms-second-edition)) * This textbook is easy to understand and very accessible. We will go deeper than this text. - * Cormen, T. H. (Ed.). (2009). *Introduction to algorithms (3rd ed).* MIT Press. - * We won't cover the majority of this textbook. Many topics are too advanced and it goes into a lot of detail. ## Marking Scheme -| Assessment | Weight | Description | Due Date | -|------------------|-----------|----------------------|----------| -| [Assignment 1](https://github.com/UofT-DSI/algorithms_and_data_structures/blob/main/assignments/assignment%201.md) | 40% | DSA coding practice | Sat April 6, 11:59pm | -| [Assignment 2](https://github.com/UofT-DSI/algorithms_and_data_structures/blob/main/assignments/assignment%202.md) | 60% | mock interview | Fri April 12, 11:59pm | - -## Policies -Students should be active participants while coding and are encouraged to ask questions throughout. +| Assessment | Description | Due Date | +|------------------|----------------------|----------| +| [Assignment 1](https://github.com/UofT-DSI/algorithms_and_data_structures/blob/main/assignments/assignment%201.md) | DSA coding practice | TBD | +| [Assignment 2](https://github.com/UofT-DSI/algorithms_and_data_structures/blob/main/assignments/assignment%202.md) | mock interview | TBD | **How to submit assignments, late policy, academic integrity.** -Please submit your assignment by uploading the PDFs to your google drive folder used for assignment submissions. +Please submit your assignment by uploading the PDFs to your Google Drive folder used for assignment submissions. -Late policy: Everyone has a 24 hours grace period available in total for both assignments. Meaning if you submit the first assignment 12 hours late, you can submit the second assignment 12 -hours late with no penalty. Or if you submit the first assignment on time, you can submit the second assignment upto 24 hours late. After using your grace period time, there will be a 20% +Late policy: Everyone has a 24-hour grace period available in total for both assignments. Meaning if you submit the first assignment 12 hours late, you can submit the second assignment 12 +hours late with no penalty. Or if you submit the first assignment on time, you can submit the second assignment up to 24 hours late. After using your grace period time, there will be a 20% penalty for 24 hours, and a 100% penalty after that. -If there are any extenuating circumstances, pleaese contact the course instructor as soon as possible for accommodations. +If there are any extenuating circumstances, please contact the course Technical Facilitator as soon as possible for accommodations. -## Folder Structure -Below are the folders contained in this repo with a description of what they contain and information on how to use them. +## Resources +Feel free to use the following as resources: -### 1 *assignments*: -This folder contains the assignments. +### Documents +- [Big O Cheatsheet](https://www.bigocheatsheet.com/) +- [Sorting Cheatsheet](https://www.interviewcake.com/sorting-algorithm-cheat-sheet) +- [Visual Go - Graph Traversal](https://visualgo.net/en/dfsbfs?slide=2) +- [Codecademy Explanation](https://www.codecademy.com/article/tree-traversal) -### 2. *homework*: -This folder contains a pdf file with all the recommended problems. The problems are also found after each coresponding set of slides. +### Videos +- [15 Sorting Algorithms in 6 minutes](https://www.youtube.com/watch?v=kPRA0W1kECg) (Warning: This video could cause seizures for people with photosensitive epilepsy) +- [Big O Notation](https://www.youtube.com/watch?v=g2o22C3CRfU) +- [Breadth-first Search in 4 minutes](https://www.youtube.com/watch?v=HZ5YTanv5QE) +- [Depth-first Search in 4 minutes](https://www.youtube.com/watch?v=Urx87-NMm6c) +- [Nearest Neighbour Algorithm](https://www.youtube.com/watch?v=zPgsNsOfxQ8) +- [K-d Trees](https://www.youtube.com/watch?v=Glp7THUpGow) +- [Sorting Playlist](https://www.youtube.com/playlist?list=PL9xmBV_5YoZOZSbGAXAPIq1BeUf4j20pl) -Homework is just a suggestion but will help students throughout the workshop, as content is cumulative and will only get more difficult. Unfortunately, there is not enough time to review previous content each class so while this homework is **not** graded, it is highly recommended. +### How to get help +![image](/steps_to_ask_for_help.png) -### 3. *lessons*: -This folder contains the pdf version of the slides. +
-pdf slides should be referenced before class to prepare or after class to review. They contain all information that was discussed in class and are a great resource in the future if students need to reassess their knowledge. At the end of each set of slides, there are recommended problems, readings, and additional resources should students desire to learn more. +## Folder Structure -### 5. *slides-resources*: -This folder contains all editable slides. The slides were created using Quarto. +```markdown +. +├── 01_slides +├── 02_assignments +├── 03_homework +├── 04_instructors +├── LICENSE +├── README.md +└── steps_to_ask_for_help.png +``` + +* **slides:** Course slides as interactive notebooks (`.ipynb` files) +* **html slides:** Course slides as HTML files that can be downloaded and viewed in a web browser +* **pdf slides:** Course slides as PDF files +* **live_coding:** Notebooks from class live coding sessions +* **homework:** Optional homework to practice concepts covered in class +* **assignments:** Graded assignments +* **instructors:** Instructions for the Technical Facilitator on what to teach +* **additional resources:** Additional materials not covered by the module +* README: This file! +* .gitignore: Files to exclude from this folder, specified by the Technical Facilitator ## Acknowledgements and Contributions -## Achnowledgements -* The course was devloped by [Alex Yu](https://www.linkedin.com/in/kunzhi-yu/) under the supervision of Rohan Alexander. -* We wish to acknowledge this land on which the University of Toronto operates. For thousands of years it has been the traditional land of the Huron-Wendat, the Seneca, and most recently, the Mississaugas of the Credit River. Today, this meeting place is still the home to many Indigenous people from across Turtle Island and we are grateful to have the opportunity to work on this land. + +### Achnowledgements +* The module was developed by [Alex](https://www.linkedin.com/in/kunzhi-yu/) Yu](https://www.linkedin.com/in/kunzhi-yu/) under the supervision of Rohan Alexander. +* We wish to acknowledge this land on which the University of Toronto operates. For thousands of years, it has been the traditional land of the Huron-Wendat, the Seneca, and most recently, the Mississaugas of the Credit River. Today, this meeting place is still the home to many Indigenous people from across Turtle Island and we are grateful to have the opportunity to work on this land. ### Contributions * `algorithms_and_data_structures` welcomes issues, enhancement requests, and other contributions. To submit an issue, use the [GitHub issues](https://github.com/UofT-DSI/algorithms_and_data_structures/issues). diff --git a/assignments/.Rapp.history b/assignments/.Rapp.history deleted file mode 100644 index e69de29..0000000 diff --git a/assignments/.Rhistory b/assignments/.Rhistory deleted file mode 100644 index e69de29..0000000 diff --git a/assignments/assignment 1.md b/assignments/assignment 1.md deleted file mode 100644 index 394b3b0..0000000 --- a/assignments/assignment 1.md +++ /dev/null @@ -1,56 +0,0 @@ -# Coding Problems - -## Objective - -This assignment aims to demonstrate how to study a data structures or algorithms question in depth to prepare for an industry coding interview. Leetcode is a popular coding practice site that many use to practice for technical interviews. Like behavioral interviews, it's important to practice and keep your skills sharp. - -## Group Size - -Please complete this individually. - -## Outline - -### Part 1: - -You will be assigned one of three problems based of your first name. Excute "(hash('your first name')%3)+1" in python, and that will tell you your assigned problem. Include this line of code in your submitted notebook pdf. You can find the problem description in q[assigned number].md. They are based-off problems from Leetcode. - -### Part 2: - -In a Jupyter Notebook (.ipynb) file, create 6 headings are write down the following: - -- Paraphrase the problem in your own words - -- In the .md file containing your problem, there are examples that illustrate how the code should work. Create 2 new examples that demonstrate you understand the problem. - -- Code the solution to your assigned problem in Python (code chunk). Try to find the best time and space complexity solution! - -- Explain why your solution works - -- Explain the problem’s and space complexity - -- Explain the thinking to an alternative solution (no coding required, but a classmate reading this should be able to code it up based off your text) - -Alternatively, you may use a Quarto file, or Word document with code screenshotted. However, we highly recommended you learn how to use a Jupyter Notebooks. - -Export each .ipynb file as a pdf. There are online converters, you can use the print option, or Google Collab has a printing feature. Please ensure all code and text is visible. - -## Submission Requirements - -Submit to your Google Drive folder with the following: - -- The PDF of the problem you have solved - -##Evaluation Criteria - -- Problem is accurately stated in the student’s own words - -- Two examples are correct and easily understandable - -- Correctness, time, and space complexity of the coding solution - -- Clarity in explaining why the solution works, its time and space complexity - -- Clarity in the proposal to the alternative solution - -## Submission Deadline -Tuesday Feb 20, 2024 at 11:59pm diff --git a/assignments/assignment 2.md b/assignments/assignment 2.md deleted file mode 100644 index 5384776..0000000 --- a/assignments/assignment 2.md +++ /dev/null @@ -1,61 +0,0 @@ -# Practice Interview - -## Objective - -The partner assignment aims to provide students with the opportunity to practice coding in an interview context. You will analyze your partner's Assignment 1. Moreover, code reviews are common practice in a software development team. This assignment should give you a taste of the code review process. - -## Group Size - -Each group should have 2 people. You will be emailed details about your assigned partner shortly after submitting Assignment 1. - -## Outline - -### Part 1: - -You and your partner should send to each other your Assignment 1 submission. - - -### Part 2: - -Create a Jupyter Notebook, create 6 of the following headings, and complete the following about the your partner's assignment 1: - -- Paraphrase the problem in your own words. - -- Create 1 new example that demonstrates you understand the problem. Trace/walkthrough 1 example that your partner made and explain it. - -- Copy the solution your partner wrote. - -- Explain why their solution works in your own words. - -- Explain the problem’s time and space complexity in your own words. - -- Critique your partner's solution, including explanation, if there is anything should be adjusted. - -### Part 3: - -Please write a 200 word reflection documenting your studying process from assignment 1, and your presentation and reviewing experience with your partner at the bottom of the Juypter Notebook under a new heading "Reflection." Again, export this Notebook as pdf. - -## Submission Requirements - -In the same Google Drive folder you submitted assignment 1, please ADD the following - -- The PDF of the Jupyter Notebook you created for Assignment 2. - -Please name your files appropriately! - -## Evaluation Criteria - -We are looking for the similar points as Assignment 1 - -- Problem is accurately stated in the student’s own words - -- New example is correct and easily understandable - -- Correctness, time, and space complexity of the coding solution - -- Clarity in explaining why the solution works, its time and space complexity - -- Quality of critique of your partner's assignment, if necessary - -## Submission Deadline -Monday Feb 26, 2024 at 11:59pm diff --git a/assignments/q1.md b/assignments/q1.md deleted file mode 100644 index 7baa477..0000000 --- a/assignments/q1.md +++ /dev/null @@ -1,42 +0,0 @@ -# Question One: Check Duplicates in Tree - -Given the `root` of a binary tree, check whether it is contains a duplicate value. If a duplicate exists, return the duplicate value. If there are multiple duplicates, return the one with the closest distance to the root. If no duplicate exists, return -1. - -## Examples - -### Example 1 - -![](images/q1_ex1.png "Example 1") - -Input: `root = [1, 2, 2, 3, 5, 6, 7]` *What traversal method is this?* - -Output: 2 - -### Example 2 - -![](images/q1_ex2.png "Example 2") - -Input: `root = [1, 10, 2, 3, 10, 12, 12]` - -Output: 10 - -### Example 3 - -![](images/q1_ex3.png "Example 3") - -Input: `root = [10, 9, 8, 7]` - -Output: -1 - -## Starter Code - -``` -# Definition for a binary tree node. -# class TreeNode(object): -# def __init__(self, val = 0, left = None, right = None): -# self.val = val -# self.left = left -# self.right = right -def is_symmetric(root: TreeNode) -> int: - # TODO -``` diff --git a/assignments/q2.md b/assignments/q2.md deleted file mode 100644 index 5a030ff..0000000 --- a/assignments/q2.md +++ /dev/null @@ -1,34 +0,0 @@ -# Question Two: Path to Leaves - -Given the `root` of a binary tree, return all root to leaf paths in any order. - -## Examples - -### Example 1 - -![](images/q1_ex1.png "Example 1") - -Input: `root = [1, 2, 2, 3, 5, 6, 7]` *What traversal method is this?* - -Output: [[1, 2, 3], [1, 2, 5], [1, 2, 6], [1, 2, 7]] - -### Example 2 - -![](images/q1_ex3.png "Example 2") - -Input: `root = [10, 9, 8, 7]` - -Output: [[10, 7], [10, 9, 8]] - -## Starter Code - -``` -# Definition for a binary tree node. -# class TreeNode(object): -# def __init__(self, val = 0, left = None, right = None): -# self.val = val -# self.left = left -# self.right = right -def bt_path(root: TreeNode) -> List[List[int]]: - # TODO -``` diff --git a/assignments/q3.md b/assignments/q3.md deleted file mode 100644 index 9dffc12..0000000 --- a/assignments/q3.md +++ /dev/null @@ -1,30 +0,0 @@ -# Question Three: Missing Number in Range - -You are given a list containing `n` integers in the range `[0, n]`. Return a list of numbes that are missing from the range `[0, n]` of the array. If there is no missing number, return -1. Note, all the integers in the list may not be unique. - -## Examples - -### Example 1 - -Input: `lst = [0, 2]` - -Output: [1] - -### Example 2 - -Input: `lst = [5, 0, 1]` - -Output: [2, 3, 4] - -### Example 3 - -Input: `lst = [6, 8, 2, 3, 5, 7, 0, 1, 10]` - -Output: [4, 9] - -## Starter Code - -``` -def missing_num(nums: List) -> int: - # TODO -``` diff --git a/homework/.Rhistory b/homework/.Rhistory deleted file mode 100644 index e69de29..0000000 diff --git a/homework/homework.pdf b/homework/homework.pdf deleted file mode 100644 index d9a0592..0000000 Binary files a/homework/homework.pdf and /dev/null differ diff --git a/homework/homework.qmd b/homework/homework.qmd deleted file mode 100644 index c4bbbe0..0000000 --- a/homework/homework.qmd +++ /dev/null @@ -1,132 +0,0 @@ ---- -title: "Recommended Homework Problems" -format: - beamer: - institute: Data Sciences Institute, UofT - theme: Boadilla - colortheme: rose -execute: - echo: true -editor: visual -author: Salaar Liaqat ---- - - -## 1: Motivation and Big-O - -- Cormen: Chapter 1 exercises - - - 1.2-1, 1.2-2, 1.2-3 - -- Bhargava: Chapter 1 exercises - - - 1.3 to 1.5 - -- Additional (for the mathematically inclined) - - - In CS, log is usually base 2, but a strong distinction is not made because *logs of different bases only differ by a constant factor* and constants are dropped in Big-O. Show this is true - - - Show that exponents of different bases **do not** differ by a constant factor - -## 2: Data Structures, Searching, and Sorting - -- Bhargava: Chapter 5 - - - 5.1 to 5.4 - - -- Give examples of 2 situations to use a queue and 2 situations to use a stack - -- In Python, code a `stack` class with `is_empty`, `push`, and `pop` methods using the end of a Python list as the top of the stack. Bonus: Compare the run time of using the start of the list versus the end of the list as the top of the stack using the `timeit` library! - -- In Python, code a `binary_search` function. - -- In Python, code a `hash_table` that can hash 4 values. - -## 3: Recusion - -- Bhargava: Chapter 4 exercises - - - 4.1 to 4.8 - -- Write a recursive function that produces the `RecursionError: maximum recursion depth exceeded` error. - -- Write a iterative function to calculate the $n$th Fibonacci number. What is its time and space complexity? - -- Write a recursive function to determine if a string is a palindrome. What is its time and space complexity? - -- Write a recursive function to check if a given positive integer is a prime number. What is its time and space complexity? - -## 3: Recusion - -- Suppose you have a plot of land and want to divide the land into even square plots, while keeping the plots as big as possible. How would you do this using D&C? See Bhargava pg. 52. - -- Explain why the "merge" step in mergesort is $O(n)$ - -- Implement mergesort. You might find using helper functions useful. - -- Write a recursive function to perform binary search on a sorted list - -## 4: Recursive Data Structures - -- Cormen: Chapter 10 exercises - - - 10.3-1, 10.3-2, 10.3-3 - -- Bhargava: Chapter 6 exercises - - - 6.1 to 6.5 - -## 4: Recursive Data Structures - -- Implement preorder, postorder, and level order traversal. Determine the time and space complexity in each case - -- Implement a function that find an element in a BST and deletes it. The descendants of the deleted node are given to the deleted node's parent. (Hard) - -- Using the `graph` class from the slides, implement BST search such that it stops and tell you the distance the node is from the starting point. - - - For instance, if we searched for 7 in the graph given in the slides, it would return `"Found! Distance 2"`. - - - If we searched for 100 in the graph, it would return `"Not found!"` - -- Implement postorder graph traversal using the `graph` class from the slides. - -- Implement a function using recursion to find the sum heterogeneous nested lists such as [[1, [2]], [[[3]]], 4, [[5, 6], [[[7]]]]]. - - -## 5: Optimization - -- Bhargava: Chapter 9 exercises - - - 9.1, 9.2 - - - Read the knapsack problem FAQs on page 171 - - - Follow the example about longest common substring on page 178 - -## 5: Optimization - -- Write the code to brute force the diet problem. Compare the run times using the `timeit` library. - -- Modify the code from the slide such that there is an upper bound for calories and vitamins. - -- Page 17 of Bhargava covered the travelling sales person problem. Is it possible to improve the proposed solution using any method we learned today? - - -## 6: Slow Code - -- Bhargava: Chapter 8 exercises - - - 8.1 - 8.8 - -- Vectorize the second code chunk in the Parallelization section of the lesson 6 slides - -- [Find the longest palindrome from a string](https://leetcode.com/problems/longest-palindrome/) Hint: use a greedy alogrithm - -- [Computing Pascal's triangle](https://leetcode.com/problems/pascals-triangle/) Hint: use dynamic programming - -## References - -- Bhargava, A. Y. (2016). *Grokking algorithms: An illustrated guide for programmers and other curious people.* Manning. Chapter 1. - -- Cormen, T. H. (Ed.). (2009). *Introduction to algorithms* (3rd ed). MIT Press. Chapter 1 and 3. diff --git a/lessons/1_motivation-big-o.pdf b/lessons/1_motivation-big-o.pdf deleted file mode 100644 index ca151ea..0000000 Binary files a/lessons/1_motivation-big-o.pdf and /dev/null differ diff --git a/lessons/2_ds-search-sort.pdf b/lessons/2_ds-search-sort.pdf deleted file mode 100644 index 30f1619..0000000 Binary files a/lessons/2_ds-search-sort.pdf and /dev/null differ diff --git a/lessons/3_recursion.pdf b/lessons/3_recursion.pdf deleted file mode 100644 index 6382bef..0000000 Binary files a/lessons/3_recursion.pdf and /dev/null differ diff --git a/lessons/4_recursive-ds.pdf b/lessons/4_recursive-ds.pdf deleted file mode 100644 index 4aeb9a8..0000000 Binary files a/lessons/4_recursive-ds.pdf and /dev/null differ diff --git a/lessons/5_optimization.pdf b/lessons/5_optimization.pdf deleted file mode 100644 index e1860ee..0000000 Binary files a/lessons/5_optimization.pdf and /dev/null differ diff --git a/lessons/6_slow-code.pdf b/lessons/6_slow-code.pdf deleted file mode 100644 index 33c6f85..0000000 Binary files a/lessons/6_slow-code.pdf and /dev/null differ diff --git a/slides-resources/1_motivation-big-o/.Rhistory b/slides-resources/1_motivation-big-o/.Rhistory deleted file mode 100644 index 1c07172..0000000 --- a/slides-resources/1_motivation-big-o/.Rhistory +++ /dev/null @@ -1,512 +0,0 @@ -library(tidyverse) -library(caret) -knitr::opts_chunk$set(message = FALSE) -set.seed(20231101) -# train data -x <- rnorm(n = 300, mean = 3, sd = 1) -epsilon <- rnorm(n = 300) -y <- 0.5 + 0.1 * x + 0.2 * x^2 + epsilon -train <- data.frame(y, x, epsilon) -# test data -x <- rnorm(n = 300, mean = 3, sd = 1) -epsilon <- rnorm(n = 300) -y <- 0.5 + 0.1 * x + 0.2 * x^2 + epsilon -test <- data.frame(y, x) -x_grid <- seq(0, 6, by = 0.02) -knn <- function(x, y, x_grid, k) { -n <- length(x_grid) -predictions <- rep(NA, n) -for (i in 1:n) { -differences <- abs(x - x_grid[i]) -nearest_indices <- order(differences)[1:k] -predictions[i] <- mean(y[nearest_indices]) -} -return(data.frame(x_grid, predictions)) -} -ggplot() + -geom_point(aes(x = x_grid, y = predictions, color = "blue"), data = knn(train$x, train$y, x_grid, 5)) + -geom_point(aes(x = x, y = y, color = "red"), data = train) + -scale_color_manual(labels = c("KNN k = 5", "Train Data"), values = c("blue", "red")) + -theme_minimal() -ggplot() + -geom_point(aes(x = x_grid, y = predictions, color = "blue"), data = knn(train$x, train$y, x_grid, 20)) + -geom_point(aes(x = x, y = y, color = "red"), data = train) + -scale_color_manual(labels = c("KNN k = 20", "Train Data"), values = c("blue", "red")) + -theme_minimal() -ggplot() + -geom_point(aes(x = x_grid, y = predictions, color = "blue"), data = knn(train$x, train$y, x_grid, 50)) + -geom_point(aes(x = x, y = y, color = "red"), data = train) + -scale_color_manual(labels = c("KNN k = 50", "Train Data"), values = c("blue", "red")) + -theme_minimal() -ggplot() + -geom_point(aes(x = x_grid, y = predictions, color = "blue"), data = knn(train$x, train$y, x_grid, 100)) + -geom_point(aes(x = x, y = y, color = "red"), data = train) + -scale_color_manual(labels = c("KNN k = 100", "Train Data"), values = c("blue", "red")) + -theme_minimal() -w_tricubic <- function(x0, xi) { -abs_x <- abs(x0 - xi) -max_abs_x <- max(abs_x) -return((1 - (abs_x / max_abs_x)^3)^3) -} -knn_weighted <- function(x, y, x_grid, k) { -n <- length(x_grid) -predictions <- rep(NA, n) -for (i in 1:n) { -differences <- abs(x - x_grid[i]) -nearest_indices <- order(differences)[1:k] -weights <- w_tricubic(x_grid[i], x_grid[nearest_indices]) -predictions[i] <- sum(weights * y[nearest_indices]) / sum(weights) -} -return(data.frame(x_grid, predictions)) -} -ggplot() + -geom_point(aes(x = x_grid, y = predictions, color = "blue"), data = knn_weighted(train$x, train$y, x_grid, 5)) + -geom_point(aes(x = x, y = y, color = "red"), data = train) + -scale_color_manual(labels = c("KNN k = 5", "Train Data"), values = c("blue", "red")) + -theme_minimal() -ggplot() + -geom_point(aes(x = x_grid, y = predictions, color = "blue"), data = knn_weighted(train$x, train$y, x_grid, 20)) + -geom_point(aes(x = x, y = y, color = "red"), data = train) + -scale_color_manual(labels = c("KNN k = 20", "Train Data"), values = c("blue", "red")) + -theme_minimal() -ggplot() + -geom_point(aes(x = x_grid, y = predictions, color = "blue"), data = knn_weighted(train$x, train$y, x_grid, 50)) + -geom_point(aes(x = x, y = y, color = "red"), data = train) + -scale_color_manual(labels = c("KNN k = 50", "Train Data"), values = c("blue", "red")) + -theme_minimal() -ggplot() + -geom_point(aes(x = x_grid, y = predictions, color = "blue"), data = knn_weighted(train$x, train$y, x_grid, 100)) + -geom_point(aes(x = x, y = y, color = "red"), data = train) + -scale_color_manual(labels = c("KNN k = 100", "Train Data"), values = c("blue", "red")) + -theme_minimal() -ggplot() + -geom_point(aes(x = x_grid, y = predictions, color = "blue"), data = knn_linreg(train$x, train$y, x_grid, 5)) + -geom_point(aes(x = x, y = y, color = "red"), data = train) + -scale_color_manual(labels = c("KNN k = 5", "Train Data"), values = c("blue", "red")) + -theme_minimal() -knn_linreg <- function(x, y, x_grid, k) { -n <- length(x_grid) -predictions <- rep(NA, n) -for (i in 1:n) { -differences <- abs(x - x_grid[i]) -nearest_indices <- order(differences)[1:k] -weights <- w_tricubic(x_grid[i], x_grid[nearest_indices]) -model <- lm(y[nearest_indices] ~ x[nearest_indices], weights = weights) -predictions[i] <- predict(model, newdata = data.frame(x_train = x_grid[i])) -} -return(data.frame(x_grid, predictions)) -} -ggplot() + -geom_point(aes(x = x_grid, y = predictions, color = "blue"), data = knn_linreg(train$x, train$y, x_grid, 5)) + -geom_point(aes(x = x, y = y, color = "red"), data = train) + -scale_color_manual(labels = c("KNN k = 5", "Train Data"), values = c("blue", "red")) + -theme_minimal() -ggplot() + -geom_point(aes(x = x_grid, y = predictions, color = "blue"), data = knn_linreg(train$x, train$y, x_grid, 20)) + -geom_point(aes(x = x, y = y, color = "red"), data = train) + -scale_color_manual(labels = c("KNN k = 20", "Train Data"), values = c("blue", "red")) + -theme_minimal() -ggplot() + -geom_point(aes(x = x_grid, y = predictions, color = "blue"), data = knn_linreg(train$x, train$y, x_grid, 50)) + -geom_point(aes(x = x, y = y, color = "red"), data = train) + -scale_color_manual(labels = c("KNN k = 50", "Train Data"), values = c("blue", "red")) + -theme_minimal() -ggplot() + -geom_point(aes(x = x_grid, y = predictions, color = "blue"), data = knn_linreg(train$x, train$y, x_grid, 100)) + -geom_point(aes(x = x, y = y, color = "red"), data = train) + -scale_color_manual(labels = c("KNN k = 100", "Train Data"), values = c("blue", "red")) + -theme_minimal() -mse <- function(y_pred, y){ -return(mean((y_pred-y)^2)) -} -knn(train$x, train$y, x_grid, 5) -mse(knn(train$x, train$y, x_grid, 5)[2], test$y) -knn(train$x, train$y, x_grid, 5)[2] -class(knn(train$x, train$y, x_grid, 5)[2]) -as.vector(knn(train$x, train$y, x_grid, 5)[2]) -mse(as.vector(knn(train$x, train$y, x_grid, 5)[2]), test$y) -mse(c(1,2,3), c(1,1,1)) -mse(as.vector(knn(train$x, train$y, x_grid, 5)[2]), as.vector(test$y)) -test$y -class(test$y) -mse(knn(train$x, train$y, x_grid, 5)$predictions, as.vector(test$y)) -mse(knn(train$x, train$y, x_grid, 5)$predictions, as.vector(test$y)) -mse(knn(train$x, train$y, x_grid, 20)$predictions, as.vector(test$y)) -mse(knn(train$x, train$y, x_grid, 50)$predictions, as.vector(test$y)) -mse(knn(train$x, train$y, x_grid, 50)$predictions, as.vector(test$y)) -mse(knn(train$x, train$y, x_grid, 100)$predictions, as.vector(test$y)) -mse(knn_weighted(train$x, train$y, x_grid, 5)$predictions, as.vector(test$y)) -mse(knn_weighted(train$x, train$y, x_grid, 20)$predictions, as.vector(test$y)) -mse(knn_weighted(train$x, train$y, x_grid, 50)$predictions, as.vector(test$y)) -mse(knn_weighted(train$x, train$y, x_grid, 5)$predictions, as.vector(test$y)) -mse(knn_weighted(train$x, train$y, x_grid, 100)$predictions, as.vector(test$y)) -mse(knn_linreg(train$x, train$y, x_grid, 5)$predictions, as.vector(test$y)) -mse(knn_linreg(train$x, train$y, x_grid, 20)$predictions, as.vector(test$y)) -mse(knn_linreg(train$x, train$y, x_grid, 50)$predictions, as.vector(test$y)) -mse(knn_linreg(train$x, train$y, x_grid, 100)$predictions, as.vector(test$y)) -pi -x <- c(1,2,3) -x * -1 -?lgamma -estimate_binom <- function(data) { -n <- length(data) -mean <- mean(data) -theta_est <- 1 - (sum((data - mean) ^ 2) / sum(data)) -n_est <- mean / theta_est -leave_one_out_theta <- rep(NA, n) -leave_one_out_n <- rep(NA, n) -for (i in 1:n) { -data_i <- data[-i] -leave_one_out_theta[i] <- 1 - (sum((data_i - mean(data_i)) ^ 2) / sum(data_i)) -leave_one_out_n[i] <- mean(data_i) / leave_one_out_theta[i] -} -theta_std_err <- sqrt((sum(leave_one_out_theta - mean(leave_one_out_theta))^2) * (n - 1) / n) -n_std_err <- sqrt((sum(leave_one_out_n - mean(leave_one_out_n))^2) * (n - 1) / n) -return(list("theta estimate" = theta_est, "theta std err" = theta_std_err, "N estimate" = n_est, "N std err" = n_std_err)) -} -estimate_binom(data) -data <- scan("bugs.txt") -estimate_binom <- function(data) { -n <- length(data) -mean <- mean(data) -theta_est <- 1 - (sum((data - mean) ^ 2) / sum(data)) -n_est <- mean / theta_est -leave_one_out_theta <- rep(NA, n) -leave_one_out_n <- rep(NA, n) -for (i in 1:n) { -data_i <- data[-i] -leave_one_out_theta[i] <- 1 - (sum((data_i - mean(data_i)) ^ 2) / sum(data_i)) -leave_one_out_n[i] <- mean(data_i) / leave_one_out_theta[i] -} -theta_std_err <- sqrt((sum(leave_one_out_theta - mean(leave_one_out_theta))^2) * (n - 1) / n) -n_std_err <- sqrt((sum(leave_one_out_n - mean(leave_one_out_n))^2) * (n - 1) / n) -return(list("theta estimate" = theta_est, "theta std err" = theta_std_err, "N estimate" = n_est, "N std err" = n_std_err)) -} -estimate_binom(data) -max(x) -LETTERS -x[-2] -estimate_binom <- function(data) { -n <- length(data) -theta_est <- 1 - (sum((data - mean(data)) ^ 2) / mean(data)) -n_est <- mean(data) / theta_est -leave_one_out_theta <- rep(NA, n) -leave_one_out_n <- rep(NA, n) -for (i in 1:n) { -leave_one_out_theta[i] <- 1 - (sum((data[-i] - mean(data[-i])) ^ 2) / mean(data[-i])) -leave_one_out_n[i] <- mean(data[-i]) / leave_one_out_theta[i] -} -theta_std_err <- sqrt((sum(leave_one_out_theta - mean(leave_one_out_theta))^2) * (n - 1) / n) -n_std_err <- sqrt((sum(leave_one_out_n - mean(leave_one_out_n))^2) * (n - 1) / n) -return(list("theta estimate" = theta_est, "theta std err" = theta_std_err, "N estimate" = n_est, "N std err" = n_std_err)) -} -estimate_binom(data) -estimate_binom <- function(data) { -n <- length(data) -theta_est <- 1 + sum(data) - (sum(data ^ 2) / sum(data)) -n_est <- mean(data) / theta_est -leave_one_out_theta <- rep(NA, n) -leave_one_out_n <- rep(NA, n) -for (i in 1:n) { -leave_one_out_theta[i] <- 1 + sum(data[-i]) - (sum(data[-i] ^ 2) / sum(data[-i])) -leave_one_out_n[i] <- mean(data[-i]) / leave_one_out_theta[i] -} -theta_std_err <- sqrt((sum(leave_one_out_theta - mean(leave_one_out_theta))^2) * (n - 1) / n) -n_std_err <- sqrt((sum(leave_one_out_n - mean(leave_one_out_n))^2) * (n - 1) / n) -return(list("theta estimate" = theta_est, "theta std err" = theta_std_err, "N estimate" = n_est, "N std err" = n_std_err)) -} -estimate_binom(data) -estimate_binom <- function(data) { -n <- length(data) -theta_est <- 1 - (sum((data - mean(data)) ^ 2) / sum(data)) -n_est <- mean(data) / theta_est -leave_one_out_theta <- rep(NA, n) -leave_one_out_n <- rep(NA, n) -for (i in 1:n) { -leave_one_out_theta[i] <- 1 - (sum((data[-i] - mean(data[-i])) ^ 2) / sum(data[-i])) -leave_one_out_n[i] <- mean(data[-i]) / leave_one_out_theta[i] -} -theta_std_err <- sqrt((sum(leave_one_out_theta - mean(leave_one_out_theta))^2) * (n - 1) / n) -n_std_err <- sqrt((sum(leave_one_out_n - mean(leave_one_out_n))^2) * (n - 1) / n) -return(list("theta estimate" = theta_est, "theta std err" = theta_std_err, "N estimate" = n_est, "N std err" = n_std_err)) -} -estimate_binom(data) -?var -muhat <- NULL -sumx <- NULL -for (i in 1:10000) { # computation of the Venter estimates and sample sums -x <- rgamma(100,2) -muhat <- c(muhat,venter(x,tau=1/2)) -sumx <- c(sumx,sum(x)) -} -data <- scan("stamp.txt") -venter <- function(x, tau=1/2) { -x <- sort(x) -n <- length(x) -m <- ceiling(tau*n) -x1 <- x[1:(n-m+1)] -x2 <- x[m:n] -j <- c(1:(n-m+1)) -len <- x2-x1 -k <- min(j[len==min(len)]) -(x[k]+x[k+m-1])/2 -} -plot(density(data, bw = 0.0012)) -venter(data, 0.9) -venter(data, 0.5) -venter(data, 0.1) -venter(data, 0.01) -mse <- function(y_pred, y){ -return(mean((y_pred-y)^2)) -} -mc_venter <- function(n, alpha, tau) { -sim_data <- rgamma(n, alpha) -return(venter(sim_data, tau)) -} -set.seed(0) -N <- 10000 -est_2_05_3 <- rep(NA, N) -for (i in 1:N) { -est_2_05_3[i] <- mc_venter(100, 2, 0.5) -} -mse_2_05_3 <- mse(est_2_05_3, 1) -est_2_01_3 <- rep(NA, N) -for (i in 1:N) { -est_2_01_3 <- mc_venter(100, 2, 0.1) -} -mse_2_01_3 <- mse(est_2_01_3, 1) -est_10_05_3 <- rep(NA, N) -for (i in 1:N) { -est_10_05_3 <- mc_venter(100, 10, 0.5) -} -mse_10_05_3 <- mse(est_10_05_3, 9) -est_10_01_3 <- rep(NA, N) -for (i in 1:N) { -est_10_01_3 <- mc_venter(100, 10, 0.1) -} -mse_10_01_3 <- mse(est_10_01_3, 9) -est_2_05_4 <- rep(NA, N) -for (i in 1:N) { -est_2_05_4[i] <- mc_venter(100, 2, 0.5) -} -mse_2_05_4 <- mse(est_2_05_4, 1) -est_2_01_4 <- rep(NA, N) -for (i in 1:N) { -est_2_01_4 <- mc_venter(100, 2, 0.1) -} -mse_2_01_4 <- mse(est_2_01_4, 1) -est_10_05_4 <- rep(NA, N) -for (i in 1:N) { -est_10_05_4 <- mc_venter(100, 10, 0.5) -} -mse_10_05_4 <- mse(est_10_05_4, 9) -est_10_01_4 <- rep(NA, N) -for (i in 1:N) { -est_10_01_4 <- mc_venter(100, 10, 0.1) -} -mse_10_01_4 <- mse(est_10_01_4, 9) -muhat <- NULL -sumx <- NULL -for (i in 1:10000) { # computation of the Venter estimates and sample sums -x <- rgamma(100,2) -muhat <- c(muhat,venter(x,tau=1/2)) -sumx <- c(sumx,sum(x)) -} -y <- min(muhat) + (max(muhat)-min(muhat))*c(0:5000)/5000 # range of y values for f(y) -fmuhat <- NULL -for (z in y) { # calculate f(y) for each y value defined above -fmuhat <- c(fmuhat,mean(dgamma(z,shape=200,scale=muhat/sumx))) -} -plot(y,fmuhat,type="l",ylab="density",lwd=3,col="red") -source("~/.active-rstudio-document", echo=TRUE) -source("~/.active-rstudio-document", echo=TRUE) -# Example usage: -set.seed(42) -data <- rbinom(100, size = 1, prob = 0.3) # Simulated binary data -result <- estimate_binomial_parameters(data) -cat("Method of Moments Estimation:\n") -cat("p_mom =", result$p_mom, "\n") -cat("q_mom =", result$q_mom, "\n") -cat("Jackknife Standard Error Estimates:\n") -cat("p_se =", result$p_se, "\n") -cat("q_se =", result$q_se, "\n") -# Function to estimate binomial parameters using Method of Moments and Jackknife -estimate_binomial_parameters <- function(data) { -n <- length(data) -# Method of Moments Estimation -p_mom <- mean(data) / length(data) -q_mom <- 1 - p_mom -# Jackknife Standard Error Estimation -p_jack <- numeric(n) -q_jack <- numeric(n) -for (i in 1:n) { -data_i <- data[-i] -p_jack[i] <- mean(data_i) / (n - 1) -q_jack[i] <- 1 - p_jack[i] -} -p_se <- sqrt((n - 1) / n * sum((p_jack - mean(p_jack))^2)) -q_se <- sqrt((n - 1) / n * sum((q_jack - mean(q_jack))^2)) -result <- list( -"p_mom" = p_mom, -"q_mom" = q_mom, -"p_se" = p_se, -"q_se" = q_se -) -return(result) -} -# Example usage: -set.seed(42) -data <- rbinom(100, size = 1, prob = 0.3) # Simulated binary data -result <- estimate_binomial_parameters(data) -cat("Method of Moments Estimation:\n") -cat("p_mom =", result$p_mom, "\n") -cat("q_mom =", result$q_mom, "\n") -cat("Jackknife Standard Error Estimates:\n") -cat("p_se =", result$p_se, "\n") -cat("q_se =", result$q_se, "\n") -result -estimate_binom <- function(data) { -n <- length(data) -n_est <- mean(data) ^ 2 / (sd(data)^2 + mean(data) - mean(data)^2) -theta_est <- mean(data) / n_est -leave_one_out_theta <- rep(NA, n) -leave_one_out_n <- rep(NA, n) -for (i in 1:n) { -leave_one_out_n[i] <- mean(data[-i]) ^ 2 / (sd(data[-i])^2 + mean(data[-i]) - mean(data[-i])^2) -leave_one_out_theta[i] <- mean(data[-i]) / leave_one_out_n[i] -theta_std_err <- sqrt((sum(leave_one_out_theta - mean(leave_one_out_theta))^2) * (n - 1) / n) -n_std_err <- sqrt((sum(leave_one_out_n - mean(leave_one_out_n))^2) * (n - 1) / n) -return(list("theta estimate" = theta_est, "theta std err" = theta_std_err, "N estimate" = n_est, "N std err" = n_std_err)) -} -estimate_binom <- function(data) { -n <- length(data) -n_est <- mean(data) ^ 2 / (sd(data)^2 + mean(data) - mean(data)^2) -theta_est <- mean(data) / n_est -leave_one_out_theta <- rep(NA, n) -leave_one_out_n <- rep(NA, n) -for (i in 1:n) { -leave_one_out_n[i] <- mean(data[-i]) ^ 2 / (sd(data[-i])^2 + mean(data[-i]) - mean(data[-i])^2) -leave_one_out_theta[i] <- mean(data[-i]) / leave_one_out_n[i] -} -theta_std_err <- sqrt((sum(leave_one_out_theta - mean(leave_one_out_theta))^2) * (n - 1) / n) -n_std_err <- sqrt((sum(leave_one_out_n - mean(leave_one_out_n))^2) * (n - 1) / n) -return(list("theta estimate" = theta_est, "theta std err" = theta_std_err, "N estimate" = n_est, "N std err" = n_std_err)) -} -estimate_binom(data) -estimate_binom <- function(data) { -n <- length(data) -n_est <- mean(data) ^ 2 / var(data) + mean(data) - mean(data)^2) -estimate_binom <- function(data) { -n <- length(data) -n_est <- mean(data) ^ 2 / var(data) + mean(data) - mean(data)^2) -estimate_binom <- function(data) { -n <- length(data) -n_est <- mean(data) ^ 2 / (var(data) + mean(data) - mean(data)^2) -theta_est <- mean(data) / n_est -leave_one_out_theta <- rep(NA, n) -leave_one_out_n <- rep(NA, n) -for (i in 1:n) { -leave_one_out_n[i] <- mean(data[-i]) ^ 2 / (var(data[-i]) + mean(data[-i]) - mean(data[-i])^2) -leave_one_out_theta[i] <- mean(data[-i]) / leave_one_out_n[i] -} -theta_std_err <- sqrt((sum(leave_one_out_theta - mean(leave_one_out_theta))^2) * (n - 1) / n) -n_std_err <- sqrt((sum(leave_one_out_n - mean(leave_one_out_n))^2) * (n - 1) / n) -return(list("theta estimate" = theta_est, "theta std err" = theta_std_err, "N estimate" = n_est, "N std err" = n_std_err)) -} -estimate_binom(data) -estimate_binom <- function(data) { -n <- length(data) -n_est <- mean(data) / (1 - var(data)) -theta_est <- mean(data) / n_est -leave_one_out_theta <- rep(NA, n) -leave_one_out_n <- rep(NA, n) -for (i in 1:n) { -leave_one_out_n[i] <- mean(data[-i]) / (1 - var(data[-i])) -leave_one_out_theta[i] <- mean(data[-i]) / leave_one_out_n[i] -} -theta_std_err <- sqrt((sum(leave_one_out_theta - mean(leave_one_out_theta))^2) * (n - 1) / n) -n_std_err <- sqrt((sum(leave_one_out_n - mean(leave_one_out_n))^2) * (n - 1) / n) -return(list("theta estimate" = theta_est, "theta std err" = theta_std_err, "N estimate" = n_est, "N std err" = n_std_err)) -} -estimate_binom(data) -estimate_binom <- function(data) { -n <- length(data) -n_est <- mean(data) / (1 - var(data)) -theta_est <- mean(data) / n_est -leave_one_out_mean <- rep(NA, n) -leave_one_out_var <- rep(NA, n) -for (i in 1:n) { -leave_one_out_mean[i] <- mean(data[-i]) -leave_one_out_var[i] <- var(data[-i]) -} -mean_n <- mean(leave_one_out_mean) -mean_theta <- mean(leave_one_out_var) -theta_std_err <- sqrt((sum(leave_one_out_theta - mean(leave_one_out_theta))^2) * (n - 1) / n) -n_std_err <- sqrt((sum(leave_one_out_n - mean(leave_one_out_n))^2) * (n - 1) / n) -return(list("theta estimate" = theta_est, "theta std err" = theta_std_err, "N estimate" = n_est, "N std err" = n_std_err)) -} -estimate_binom(data) -estimate_binom <- function(data) { -n <- length(data) -n_est <- mean(data) / (1 - var(data)) -theta_est <- mean(data) / n_est -leave_one_out_theta <- rep(NA, n) -leave_one_out_n <- rep(NA, n) -for (i in 1:n) { -leave_one_out_n[i] <- mean(data[-i]) / (1 - var(data[-i])) -leave_one_out_theta[i] <- mean(data[-i]) / leave_one_out_n[i] -} -#mean_n <- mean(leave_one_out_mean) -#mean_theta <- mean(leave_one_out_var) -theta_std_err <- sqrt((sum(leave_one_out_theta - mean(leave_one_out_theta))^2) * (n - 1) / n) -n_std_err <- sqrt((sum(leave_one_out_n - mean(leave_one_out_n))^2) * (n - 1) / n) -return(list("theta estimate" = theta_est, "theta std err" = theta_std_err, "N estimate" = n_est, "N std err" = n_std_err)) -} -estimate_binom(data) -data <- scan("bugs.txt") -estimate_binom <- function(data) { -n <- length(data) -theta_est <- 1 - (sum((data - mean(data)) ^ 2) / sum(data)) -n_est <- mean(data) / theta_est -leave_one_out_theta <- rep(NA, n) -leave_one_out_n <- rep(NA, n) -for (i in 1:n) { -leave_one_out_theta[i] <- 1 - (sum((data[-i] - mean(data[-i])) ^ 2) / sum(data[-i])) -leave_one_out_n[i] <- mean(data[-i]) / leave_one_out_theta[i] -} -theta_std_err <- sqrt((sum(leave_one_out_theta - mean(leave_one_out_theta))^2) * (n - 1) / n) -n_std_err <- sqrt((sum(leave_one_out_n - mean(leave_one_out_n))^2) * (n - 1) / n) -return(list("theta estimate" = theta_est, "theta std err" = theta_std_err, "N estimate" = n_est, "N std err" = n_std_err)) -} -estimate_binom(data) -data -getwd() -x <- "2023-11-27 09:50" -y <- as.POSIXlt(x) -rm(list = ls()) # remove the existing environment -source("utils.R") -source("discriminant_analysis.R") -## Load the training and test data -train <- Load_data("./data/digits_train.txt") -test <- Load_data("./data/digits_test.txt") -x_train <- train$x -y_train <- train$y -x_test <- test$x -y_test <- test$y -priors <- Comp_priors(y_train, 10) -getwd() -plot(rpois(1000, 10) + 18) -plot(rpois(1000, 10) + 18) -plot(dpois(1000, 10) + 18) -plot(ppois(1000, 10) + 18) -hist(rpois(1000, 10) + 19) -hist(rpois(1000, 10) + 18) -getwd -getwd() -source("~/.active-rstudio-document", echo=TRUE) -source("~/.active-rstudio-document", echo=TRUE) -source("~/.active-rstudio-document", echo=TRUE) -reticulate::repl_python() -quarto check -reticulate::repl_python() -reticulate::repl_python() diff --git a/slides-resources/1_motivation-big-o/1_motivation-big-o.aux b/slides-resources/1_motivation-big-o/1_motivation-big-o.aux deleted file mode 100644 index 2a35953..0000000 --- a/slides-resources/1_motivation-big-o/1_motivation-big-o.aux +++ /dev/null @@ -1,104 +0,0 @@ -\relax -\providecommand\hyper@newdestlabel[2]{} -\providecommand\HyField@AuxAddToFields[1]{} -\providecommand\HyField@AuxAddToCoFields[2]{} -\providecommand\BKM@entry[2]{} -\@writefile{nav}{\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {1}{1}}} -\@writefile{nav}{\headcommand {\slideentry {0}{0}{2}{2/2}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {2}{2}}} -\@writefile{nav}{\headcommand {\slideentry {0}{0}{3}{3/3}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {3}{3}}} -\@writefile{nav}{\headcommand {\slideentry {0}{0}{4}{4/4}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {4}{4}}} -\@writefile{nav}{\headcommand {\slideentry {0}{0}{5}{5/5}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {5}{5}}} -\BKM@entry{id=1,open,dest={4F75746C696E65302E31},srcline={286}}{5C3337365C3337375C3030304D5C3030306F5C303030745C303030695C303030765C303030615C303030745C303030695C3030306E5C303030675C3030305C3034305C303030435C3030306F5C303030645C303030655C3030305C3034305C303030445C303030655C3030306D5C3030306F5C30303073} -\@writefile{toc}{\beamer@sectionintoc {1}{Motivating Code Demos}{6}{0}{1}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {1}{5}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {1}{5}}} -\@writefile{nav}{\headcommand {\sectionentry {1}{Motivating Code Demos}{6}{Motivating Code Demos}{0}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{1}{6/6}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {6}{6}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{2}{7/7}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {7}{7}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{3}{8/8}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {8}{8}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{4}{9/9}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {9}{9}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{5}{10/10}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {10}{10}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{6}{11/11}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {11}{11}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{7}{12/12}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {12}{12}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{8}{13/13}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {13}{13}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{9}{14/14}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {14}{14}}} -\BKM@entry{id=2,open,dest={4F75746C696E65302E32},srcline={479}}{5C3337365C3337375C303030545C303030695C3030306D5C303030655C3030305C3034305C303030435C3030306F5C3030306D5C303030705C3030306C5C303030655C303030785C303030695C303030745C303030795C3030303A5C3030305C3034305C303030495C3030306E5C303030745C303030725C3030306F5C303030645C303030755C303030635C303030745C303030695C3030306F5C3030306E5C3030305C3034305C303030745C3030306F5C3030305C3034305C303030425C303030695C303030675C3030302D5C3030304F5C3030305C3034305C3030304E5C3030306F5C303030745C303030615C303030745C303030695C3030306F5C3030306E} -\@writefile{toc}{\beamer@sectionintoc {2}{Time Complexity: Introduction to Big-O Notation}{15}{0}{2}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {6}{14}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {6}{14}}} -\@writefile{nav}{\headcommand {\sectionentry {2}{Time Complexity: Introduction to Big-O Notation}{15}{Time Complexity: Introduction to Big-O Notation}{0}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{1}{15/15}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {15}{15}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{2}{16/16}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {16}{16}}} -\gdef \LT@i {\LT@entry - {2}{69.87485pt}\LT@entry - {1}{76.3619pt}\LT@entry - {1}{69.14519pt}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{3}{17/17}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {17}{17}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{4}{18/18}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {18}{18}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{5}{19/19}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {19}{19}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{6}{20/20}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {20}{20}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{7}{21/21}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {21}{21}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{8}{22/22}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {22}{22}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{9}{23/23}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {23}{23}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{10}{24/24}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {24}{24}}} -\BKM@entry{id=3,open,dest={4F75746C696E65302E33},srcline={715}}{5C3337365C3337375C303030425C303030655C303030735C303030745C3030302C5C3030305C3034305C303030415C303030765C303030655C303030725C303030615C303030675C303030655C3030302C5C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030575C3030306F5C303030725C303030735C303030745C3030305C3034305C303030435C303030615C303030735C30303065} -\@writefile{toc}{\beamer@sectionintoc {3}{Best, Average, and Worst Case}{25}{0}{3}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {15}{24}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {15}{24}}} -\@writefile{nav}{\headcommand {\sectionentry {3}{Best, Average, and Worst Case}{25}{Best, Average, and Worst Case}{0}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{1}{25/25}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {25}{25}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{2}{26/26}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {26}{26}}} -\BKM@entry{id=4,open,dest={4F75746C696E65302E34},srcline={738}}{5C3337365C3337375C303030535C303030705C303030615C303030635C303030655C3030305C3034305C303030435C3030306F5C3030306D5C303030705C3030306C5C303030655C303030785C303030695C303030745C30303079} -\@writefile{toc}{\beamer@sectionintoc {4}{Space Complexity}{27}{0}{4}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {25}{26}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {25}{26}}} -\@writefile{nav}{\headcommand {\sectionentry {4}{Space Complexity}{27}{Space Complexity}{0}}} -\@writefile{nav}{\headcommand {\slideentry {4}{0}{1}{27/27}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {27}{27}}} -\@writefile{nav}{\headcommand {\slideentry {4}{0}{2}{28/28}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {28}{28}}} -\@writefile{nav}{\headcommand {\slideentry {4}{0}{3}{29/29}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {29}{29}}} -\BKM@entry{id=5,open,dest={4F75746C696E65302E35},srcline={780}}{5C3337365C3337375C303030525C303030655C303030635C3030306F5C3030306D5C3030306D5C303030655C3030306E5C303030645C303030655C303030645C3030305C3034305C303030505C303030725C3030306F5C303030625C3030306C5C303030655C3030306D5C303030735C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030525C303030655C303030665C303030655C303030725C303030655C3030306E5C303030635C303030655C30303073} -\@writefile{toc}{\beamer@sectionintoc {5}{Recommended Problems and References}{30}{0}{5}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {27}{29}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {27}{29}}} -\@writefile{nav}{\headcommand {\sectionentry {5}{Recommended Problems and References}{30}{Recommended Problems and References}{0}}} -\@writefile{nav}{\headcommand {\slideentry {5}{0}{1}{30/30}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {30}{30}}} -\@writefile{nav}{\headcommand {\slideentry {5}{0}{2}{31/31}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {31}{31}}} -\@writefile{nav}{\headcommand {\slideentry {5}{0}{3}{32/32}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {32}{32}}} -\@writefile{nav}{\headcommand {\beamer@partpages {1}{32}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {30}{32}}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {30}{32}}} -\@writefile{nav}{\headcommand {\beamer@documentpages {32}}} -\@writefile{nav}{\headcommand {\gdef \inserttotalframenumber {32}}} -\gdef \@abspage@last{32} diff --git a/slides-resources/1_motivation-big-o/1_motivation-big-o.log b/slides-resources/1_motivation-big-o/1_motivation-big-o.log deleted file mode 100644 index e89dac1..0000000 --- a/slides-resources/1_motivation-big-o/1_motivation-big-o.log +++ /dev/null @@ -1,1856 +0,0 @@ -This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) (preloaded format=pdflatex 2023.12.23) 11 FEB 2024 11:21 -entering extended mode - restricted \write18 enabled. - %&-line parsing enabled. -**1_motivation-big-o -(./1_motivation-big-o.tex -LaTeX2e <2023-11-01> -L3 programming layer <2023-12-11> -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamer.cls -Document Class: beamer 2023/05/15 v3.70 A class for typesetting presentations -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasemodes.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/etoolbox/etoolbox.sty -Package: etoolbox 2020/10/05 v2.5k e-TeX tools for LaTeX (JAW) -\etb@tempcnta=\count187 -) -\beamer@tempbox=\box51 -\beamer@tempcount=\count188 -\c@beamerpauses=\count189 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasedecode.sty -\beamer@slideinframe=\count190 -\beamer@minimum=\count191 -\beamer@decode@box=\box52 -) -\beamer@commentbox=\box53 -\beamer@modecount=\count192 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/iftex/iftex.sty -Package: iftex 2022/02/03 v1.0f TeX engine tests -) -\headdp=\dimen140 -\footheight=\dimen141 -\sidebarheight=\dimen142 -\beamer@tempdim=\dimen143 -\beamer@finalheight=\dimen144 -\beamer@animht=\dimen145 -\beamer@animdp=\dimen146 -\beamer@animwd=\dimen147 -\beamer@leftmargin=\dimen148 -\beamer@rightmargin=\dimen149 -\beamer@leftsidebar=\dimen150 -\beamer@rightsidebar=\dimen151 -\beamer@boxsize=\dimen152 -\beamer@vboxoffset=\dimen153 -\beamer@descdefault=\dimen154 -\beamer@descriptionwidth=\dimen155 -\beamer@lastskip=\skip48 -\beamer@areabox=\box54 -\beamer@animcurrent=\box55 -\beamer@animshowbox=\box56 -\beamer@sectionbox=\box57 -\beamer@logobox=\box58 -\beamer@linebox=\box59 -\beamer@sectioncount=\count193 -\beamer@subsubsectionmax=\count194 -\beamer@subsectionmax=\count195 -\beamer@sectionmax=\count196 -\beamer@totalheads=\count197 -\beamer@headcounter=\count198 -\beamer@partstartpage=\count199 -\beamer@sectionstartpage=\count266 -\beamer@subsectionstartpage=\count267 -\beamer@animationtempa=\count268 -\beamer@animationtempb=\count269 -\beamer@xpos=\count270 -\beamer@ypos=\count271 -\beamer@ypos@offset=\count272 -\beamer@showpartnumber=\count273 -\beamer@currentsubsection=\count274 -\beamer@coveringdepth=\count275 -\beamer@sectionadjust=\count276 -\beamer@toclastsection=\count277 -\beamer@tocsectionnumber=\count278 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseoptions.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics/keyval.sty -Package: keyval 2022/05/29 v1.15 key=value parser (DPC) -\KV@toks@=\toks17 -)) -\beamer@paperwidth=\skip49 -\beamer@paperheight=\skip50 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/geometry/geometry.sty -Package: geometry 2020/01/02 v5.9 Page Geometry - -(/usr/local/texlive/2023/texmf-dist/tex/generic/iftex/ifvtex.sty -Package: ifvtex 2019/10/25 v1.7 ifvtex legacy package. Use iftex instead. -) -\Gm@cnth=\count279 -\Gm@cntv=\count280 -\c@Gm@tempcnt=\count281 -\Gm@bindingoffset=\dimen156 -\Gm@wd@mp=\dimen157 -\Gm@odd@mp=\dimen158 -\Gm@even@mp=\dimen159 -\Gm@layoutwidth=\dimen160 -\Gm@layoutheight=\dimen161 -\Gm@layouthoffset=\dimen162 -\Gm@layoutvoffset=\dimen163 -\Gm@dimlist=\toks18 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/math/pgfmath.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/utilities/pgfrcs.sty -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgfutil-common.te -x -\pgfutil@everybye=\toks19 -\pgfutil@tempdima=\dimen164 -\pgfutil@tempdimb=\dimen165 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgfutil-latex.def -\pgfutil@abb=\box60 -) (/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgfrcs.code.tex -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/pgf.revision.tex) -Package: pgfrcs 2023-01-15 v3.1.10 (3.1.10) -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/utilities/pgfkeys.sty -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex -\pgfkeys@pathtoks=\toks20 -\pgfkeys@temptoks=\toks21 - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgfkeyslibraryfil -tered.code.tex -\pgfkeys@tmptoks=\toks22 -))) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathutil.code.tex -\pgf@x=\dimen166 -\pgf@xa=\dimen167 -\pgf@xb=\dimen168 -\pgf@xc=\dimen169 -\pgf@y=\dimen170 -\pgf@ya=\dimen171 -\pgf@yb=\dimen172 -\pgf@yc=\dimen173 -\c@pgf@counta=\count282 -\c@pgf@countb=\count283 -\c@pgf@countc=\count284 -\c@pgf@countd=\count285 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathparser.code.tex -\pgfmath@dimen=\dimen174 -\pgfmath@count=\count286 -\pgfmath@box=\box61 -\pgfmath@toks=\toks23 -\pgfmath@stack@operand=\toks24 -\pgfmath@stack@operation=\toks25 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.code. -tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.basic -.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.trigo -nometric.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.rando -m.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.compa -rison.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.base. -code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.round -.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.misc. -code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.integ -erarithmetics.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathcalc.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfloat.code.tex -\c@pgfmathroundto@lastzeros=\count287 -))) (/usr/local/texlive/2023/texmf-dist/tex/latex/base/size11.clo -File: size11.clo 2023/05/17 v1.4n Standard LaTeX file (size option) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/basiclayer/pgfcore.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics/graphicx.sty -Package: graphicx 2021/09/16 v1.2d Enhanced LaTeX Graphics (DPC,SPQR) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics/graphics.sty -Package: graphics 2022/03/10 v1.4e Standard LaTeX Graphics (DPC,SPQR) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics/trig.sty -Package: trig 2021/08/11 v1.11 sin cos tan (DPC) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics-cfg/graphics.cfg -File: graphics.cfg 2016/06/04 v1.11 sample graphics configuration -) -Package graphics Info: Driver file: pdftex.def on input line 107. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics-def/pdftex.def -File: pdftex.def 2022/09/22 v1.2b Graphics/color driver for pdftex -)) -\Gin@req@height=\dimen175 -\Gin@req@width=\dimen176 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/systemlayer/pgfsys.sty -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgfsys.code.tex -Package: pgfsys 2023-01-15 v3.1.10 (3.1.10) -\pgf@x=\dimen177 -\pgf@y=\dimen178 -\pgf@xa=\dimen179 -\pgf@ya=\dimen180 -\pgf@xb=\dimen181 -\pgf@yb=\dimen182 -\pgf@xc=\dimen183 -\pgf@yc=\dimen184 -\pgf@xd=\dimen185 -\pgf@yd=\dimen186 -\w@pgf@writea=\write3 -\r@pgf@reada=\read2 -\c@pgf@counta=\count288 -\c@pgf@countb=\count289 -\c@pgf@countc=\count290 -\c@pgf@countd=\count291 -\t@pgf@toka=\toks26 -\t@pgf@tokb=\toks27 -\t@pgf@tokc=\toks28 -\pgf@sys@id@count=\count292 -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgf.cfg -File: pgf.cfg 2023-01-15 v3.1.10 (3.1.10) -) -Driver file for pgf: pgfsys-pdftex.def - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-pdftex.d -ef -File: pgfsys-pdftex.def 2023-01-15 v3.1.10 (3.1.10) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-common-p -df.def -File: pgfsys-common-pdf.def 2023-01-15 v3.1.10 (3.1.10) -))) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgfsyssoftpath. -code.tex -File: pgfsyssoftpath.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfsyssoftpath@smallbuffer@items=\count293 -\pgfsyssoftpath@bigbuffer@items=\count294 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgfsysprotocol. -code.tex -File: pgfsysprotocol.code.tex 2023-01-15 v3.1.10 (3.1.10) -)) (/usr/local/texlive/2023/texmf-dist/tex/latex/xcolor/xcolor.sty -Package: xcolor 2023/11/15 v3.01 LaTeX color extensions (UK) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics-cfg/color.cfg -File: color.cfg 2016/01/02 v1.6 sample color configuration -) -Package xcolor Info: Driver file: pdftex.def on input line 274. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics/mathcolor.ltx) -Package xcolor Info: Model `cmy' substituted by `cmy0' on input line 1350. -Package xcolor Info: Model `hsb' substituted by `rgb' on input line 1354. -Package xcolor Info: Model `RGB' extended on input line 1366. -Package xcolor Info: Model `HTML' substituted by `rgb' on input line 1368. -Package xcolor Info: Model `Hsb' substituted by `hsb' on input line 1369. -Package xcolor Info: Model `tHsb' substituted by `hsb' on input line 1370. -Package xcolor Info: Model `HSB' substituted by `hsb' on input line 1371. -Package xcolor Info: Model `Gray' substituted by `gray' on input line 1372. -Package xcolor Info: Model `wave' substituted by `hsb' on input line 1373. -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcore.code.tex -Package: pgfcore 2023-01-15 v3.1.10 (3.1.10) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfint.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepoints.co -de.tex -File: pgfcorepoints.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@picminx=\dimen187 -\pgf@picmaxx=\dimen188 -\pgf@picminy=\dimen189 -\pgf@picmaxy=\dimen190 -\pgf@pathminx=\dimen191 -\pgf@pathmaxx=\dimen192 -\pgf@pathminy=\dimen193 -\pgf@pathmaxy=\dimen194 -\pgf@xx=\dimen195 -\pgf@xy=\dimen196 -\pgf@yx=\dimen197 -\pgf@yy=\dimen198 -\pgf@zx=\dimen199 -\pgf@zy=\dimen256 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathconst -ruct.code.tex -File: pgfcorepathconstruct.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@path@lastx=\dimen257 -\pgf@path@lasty=\dimen258 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathusage -.code.tex -File: pgfcorepathusage.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@shorten@end@additional=\dimen259 -\pgf@shorten@start@additional=\dimen260 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorescopes.co -de.tex -File: pgfcorescopes.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfpic=\box62 -\pgf@hbox=\box63 -\pgf@layerbox@main=\box64 -\pgf@picture@serial@count=\count295 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoregraphicst -ate.code.tex -File: pgfcoregraphicstate.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgflinewidth=\dimen261 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransform -ations.code.tex -File: pgfcoretransformations.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@pt@x=\dimen262 -\pgf@pt@y=\dimen263 -\pgf@pt@temp=\dimen264 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorequick.cod -e.tex -File: pgfcorequick.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreobjects.c -ode.tex -File: pgfcoreobjects.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathproce -ssing.code.tex -File: pgfcorepathprocessing.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorearrows.co -de.tex -File: pgfcorearrows.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfarrowsep=\dimen265 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreshade.cod -e.tex -File: pgfcoreshade.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@max=\dimen266 -\pgf@sys@shading@range@num=\count296 -\pgf@shadingcount=\count297 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreimage.cod -e.tex -File: pgfcoreimage.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreexternal. -code.tex -File: pgfcoreexternal.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfexternal@startupbox=\box65 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorelayers.co -de.tex -File: pgfcorelayers.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretranspare -ncy.code.tex -File: pgfcoretransparency.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepatterns. -code.tex -File: pgfcorepatterns.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorerdf.code. -tex -File: pgfcorerdf.code.tex 2023-01-15 v3.1.10 (3.1.10) -))) (/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/utilities/xxcolor.sty -Package: xxcolor 2003/10/24 ver 0.1 -\XC@nummixins=\count298 -\XC@countmixins=\count299 -) (/usr/local/texlive/2023/texmf-dist/tex/latex/base/atbegshi-ltx.sty -Package: atbegshi-ltx 2021/01/10 v1.0c Emulation of the original atbegshi -package with kernel methods -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/hyperref/hyperref.sty -Package: hyperref 2023-11-26 v7.01g Hypertext links for LaTeX - -(/usr/local/texlive/2023/texmf-dist/tex/generic/infwarerr/infwarerr.sty -Package: infwarerr 2019/12/03 v1.5 Providing info/warning/error messages (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/kvsetkeys/kvsetkeys.sty -Package: kvsetkeys 2022-10-05 v1.19 Key value parser (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/kvdefinekeys/kvdefinekeys.sty -Package: kvdefinekeys 2019-12-19 v1.6 Define keys (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pdfescape/pdfescape.sty -Package: pdfescape 2019/12/09 v1.15 Implements pdfTeX's escape features (HO) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/ltxcmds/ltxcmds.sty -Package: ltxcmds 2023-12-04 v1.26 LaTeX kernel commands for general use (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pdftexcmds/pdftexcmds.sty -Package: pdftexcmds 2020-06-27 v0.33 Utility functions of pdfTeX for LuaTeX (HO -) -Package pdftexcmds Info: \pdf@primitive is available. -Package pdftexcmds Info: \pdf@ifprimitive is available. -Package pdftexcmds Info: \pdfdraftmode found. -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/hycolor/hycolor.sty -Package: hycolor 2020-01-27 v1.10 Color options for hyperref/bookmark (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/letltxmacro/letltxmacro.sty -Package: letltxmacro 2019/12/03 v1.6 Let assignment for LaTeX macros (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/auxhook/auxhook.sty -Package: auxhook 2019-12-17 v1.6 Hooks for auxiliary files (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/hyperref/nameref.sty -Package: nameref 2023-11-26 v2.56 Cross-referencing by name of section - -(/usr/local/texlive/2023/texmf-dist/tex/latex/refcount/refcount.sty -Package: refcount 2019/12/15 v3.6 Data extraction from label references (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/gettitlestring/gettitlestring.s -ty -Package: gettitlestring 2019/12/15 v1.6 Cleanup title references (HO) - (/usr/local/texlive/2023/texmf-dist/tex/latex/kvoptions/kvoptions.sty -Package: kvoptions 2022-06-15 v3.15 Key value format for package options (HO) -)) -\c@section@level=\count300 -) -\@linkdim=\dimen267 -\Hy@linkcounter=\count301 -\Hy@pagecounter=\count302 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/hyperref/pd1enc.def -File: pd1enc.def 2023-11-26 v7.01g Hyperref: PDFDocEncoding definition (HO) -Now handling font encoding PD1 ... -... no UTF-8 mapping file for font encoding PD1 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/intcalc/intcalc.sty -Package: intcalc 2019/12/15 v1.3 Expandable calculations with integers (HO) -) -\Hy@SavedSpaceFactor=\count303 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/hyperref/puenc.def -File: puenc.def 2023-11-26 v7.01g Hyperref: PDF Unicode definition (HO) -Now handling font encoding PU ... -... no UTF-8 mapping file for font encoding PU -) -Package hyperref Info: Option `unicode' set `true' on input line 4064. -Package hyperref Info: Option `bookmarks' set `true' on input line 4064. -Package hyperref Info: Option `bookmarksopen' set `true' on input line 4064. -Package hyperref Info: Option `implicit' set `false' on input line 4064. -Package hyperref Info: Hyper figures OFF on input line 4181. -Package hyperref Info: Link nesting OFF on input line 4186. -Package hyperref Info: Hyper index ON on input line 4189. -Package hyperref Info: Plain pages OFF on input line 4196. -Package hyperref Info: Backreferencing OFF on input line 4201. -Package hyperref Info: Implicit mode OFF; no redefinition of LaTeX internals. -Package hyperref Info: Bookmarks ON on input line 4448. -\c@Hy@tempcnt=\count304 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/url/url.sty -\Urlmuskip=\muskip16 -Package: url 2013/09/16 ver 3.4 Verb mode for urls, etc. -) -LaTeX Info: Redefining \url on input line 4786. -\XeTeXLinkMargin=\dimen268 - -(/usr/local/texlive/2023/texmf-dist/tex/generic/bitset/bitset.sty -Package: bitset 2019/12/09 v1.3 Handle bit-vector datatype (HO) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/bigintcalc/bigintcalc.sty -Package: bigintcalc 2019/12/15 v1.5 Expandable calculations on big integers (HO -) -)) -\Fld@menulength=\count305 -\Field@Width=\dimen269 -\Fld@charsize=\dimen270 -Package hyperref Info: Hyper figures OFF on input line 6065. -Package hyperref Info: Link nesting OFF on input line 6070. -Package hyperref Info: Hyper index ON on input line 6073. -Package hyperref Info: backreferencing OFF on input line 6080. -Package hyperref Info: Link coloring OFF on input line 6085. -Package hyperref Info: Link coloring with OCG OFF on input line 6090. -Package hyperref Info: PDF/A mode OFF on input line 6095. -\Hy@abspage=\count306 - - -Package hyperref Message: Stopped early. - -) -Package hyperref Info: Driver (autodetected): hpdftex. - (/usr/local/texlive/2023/texmf-dist/tex/latex/hyperref/hpdftex.def -File: hpdftex.def 2023-11-26 v7.01g Hyperref driver for pdfTeX - -(/usr/local/texlive/2023/texmf-dist/tex/latex/base/atveryend-ltx.sty -Package: atveryend-ltx 2020/08/19 v1.0a Emulation of the original atveryend pac -kage -with kernel methods -) -\Fld@listcount=\count307 -\c@bookmark@seq@number=\count308 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/rerunfilecheck/rerunfilecheck.sty -Package: rerunfilecheck 2022-07-10 v1.10 Rerun checks for auxiliary files (HO) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/uniquecounter/uniquecounter.sty -Package: uniquecounter 2019/12/15 v1.4 Provide unlimited unique counter (HO) -) -Package uniquecounter Info: New unique counter `rerunfilecheck' on input line 2 -85. -)) (/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaserequires.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasecompatibility.st -y) (/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasefont.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsfonts/amssymb.sty -Package: amssymb 2013/01/14 v3.01 AMS font symbols - -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsfonts/amsfonts.sty -Package: amsfonts 2013/01/14 v3.01 Basic AMSFonts support -\@emptytoks=\toks29 -\symAMSa=\mathgroup4 -\symAMSb=\mathgroup5 -LaTeX Font Info: Redeclaring math symbol \hbar on input line 98. -LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold' -(Font) U/euf/m/n --> U/euf/b/n on input line 106. -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/sansmathaccent/sansmathaccent.sty -Package: sansmathaccent 2020/01/31 -(/usr/local/texlive/2023/texmf-dist/tex/latex/koma-script/scrlfile.sty -Package: scrlfile 2023/07/07 v3.41 KOMA-Script package (file load hooks) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/koma-script/scrlfile-hook.sty -Package: scrlfile-hook 2023/07/07 v3.41 KOMA-Script package (using LaTeX hooks) - - -(/usr/local/texlive/2023/texmf-dist/tex/latex/koma-script/scrlogo.sty -Package: scrlogo 2023/07/07 v3.41 KOMA-Script package (logo) -))))) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetranslator.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator.sty -Package: translator 2021-05-31 v1.12d Easy translation of strings in LaTeX -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasemisc.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetwoscreens.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseoverlay.sty -\beamer@argscount=\count309 -\beamer@lastskipcover=\skip51 -\beamer@trivlistdepth=\count310 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetitle.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasesection.sty -\c@lecture=\count311 -\c@part=\count312 -\c@section=\count313 -\c@subsection=\count314 -\c@subsubsection=\count315 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseframe.sty -\beamer@framebox=\box66 -\beamer@frametitlebox=\box67 -\beamer@zoombox=\box68 -\beamer@zoomcount=\count316 -\beamer@zoomframecount=\count317 -\beamer@frametextheight=\dimen271 -\c@subsectionslide=\count318 -\beamer@frametopskip=\skip52 -\beamer@framebottomskip=\skip53 -\beamer@frametopskipautobreak=\skip54 -\beamer@framebottomskipautobreak=\skip55 -\beamer@envbody=\toks30 -\framewidth=\dimen272 -\c@framenumber=\count319 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseverbatim.sty -\beamer@verbatimfileout=\write4 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseframesize.sty -\beamer@splitbox=\box69 -\beamer@autobreakcount=\count320 -\beamer@autobreaklastheight=\dimen273 -\beamer@frametitletoks=\toks31 -\beamer@framesubtitletoks=\toks32 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseframecomponents. -sty -\beamer@footins=\box70 -) (/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasecolor.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasenotes.sty -\beamer@frameboxcopy=\box71 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetoc.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetemplates.sty -\beamer@sbttoks=\toks33 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseauxtemplates.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseboxes.sty -\bmb@box=\box72 -\bmb@colorbox=\box73 -\bmb@boxwidth=\dimen274 -\bmb@boxheight=\dimen275 -\bmb@prevheight=\dimen276 -\bmb@temp=\dimen277 -\bmb@dima=\dimen278 -\bmb@dimb=\dimen279 -\bmb@prevheight=\dimen280 -) -\beamer@blockheadheight=\dimen281 -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaselocalstructure.s -ty (/usr/local/texlive/2023/texmf-dist/tex/latex/tools/enumerate.sty -Package: enumerate 2023/07/04 v3.00 enumerate extensions (DPC) -\@enLab=\toks34 -) -\beamer@bibiconwidth=\skip56 -\c@figure=\count321 -\c@table=\count322 -\abovecaptionskip=\skip57 -\belowcaptionskip=\skip58 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasenavigation.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasenavigationsymbol -s.tex) -\beamer@section@min@dim=\dimen282 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetheorems.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsmath/amsmath.sty -Package: amsmath 2023/05/13 v2.17o AMS math features -\@mathmargin=\skip59 - -For additional information on amsmath, use the `?' option. -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsmath/amstext.sty -Package: amstext 2021/08/26 v2.01 AMS text - -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsmath/amsgen.sty -File: amsgen.sty 1999/11/30 v2.0 generic functions -\@emptytoks=\toks35 -\ex@=\dimen283 -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsmath/amsbsy.sty -Package: amsbsy 1999/11/29 v1.2d Bold Symbols -\pmbraise@=\dimen284 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsmath/amsopn.sty -Package: amsopn 2022/04/08 v2.04 operator names -) -\inf@bad=\count323 -LaTeX Info: Redefining \frac on input line 234. -\uproot@=\count324 -\leftroot@=\count325 -LaTeX Info: Redefining \overline on input line 399. -LaTeX Info: Redefining \colon on input line 410. -\classnum@=\count326 -\DOTSCASE@=\count327 -LaTeX Info: Redefining \ldots on input line 496. -LaTeX Info: Redefining \dots on input line 499. -LaTeX Info: Redefining \cdots on input line 620. -\Mathstrutbox@=\box74 -\strutbox@=\box75 -LaTeX Info: Redefining \big on input line 722. -LaTeX Info: Redefining \Big on input line 723. -LaTeX Info: Redefining \bigg on input line 724. -LaTeX Info: Redefining \Bigg on input line 725. -\big@size=\dimen285 -LaTeX Font Info: Redeclaring font encoding OML on input line 743. -LaTeX Font Info: Redeclaring font encoding OMS on input line 744. -\macc@depth=\count328 -LaTeX Info: Redefining \bmod on input line 905. -LaTeX Info: Redefining \pmod on input line 910. -LaTeX Info: Redefining \smash on input line 940. -LaTeX Info: Redefining \relbar on input line 970. -LaTeX Info: Redefining \Relbar on input line 971. -\c@MaxMatrixCols=\count329 -\dotsspace@=\muskip17 -\c@parentequation=\count330 -\dspbrk@lvl=\count331 -\tag@help=\toks36 -\row@=\count332 -\column@=\count333 -\maxfields@=\count334 -\andhelp@=\toks37 -\eqnshift@=\dimen286 -\alignsep@=\dimen287 -\tagshift@=\dimen288 -\tagwidth@=\dimen289 -\totwidth@=\dimen290 -\lineht@=\dimen291 -\@envbody=\toks38 -\multlinegap=\skip60 -\multlinetaggap=\skip61 -\mathdisplay@stack=\toks39 -LaTeX Info: Redefining \[ on input line 2953. -LaTeX Info: Redefining \] on input line 2954. -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/amscls/amsthm.sty -Package: amsthm 2020/05/29 v2.20.6 -\thm@style=\toks40 -\thm@bodyfont=\toks41 -\thm@headfont=\toks42 -\thm@notefont=\toks43 -\thm@headpunct=\toks44 -\thm@preskip=\skip62 -\thm@postskip=\skip63 -\thm@headsep=\skip64 -\dth@everypar=\toks45 -) -\c@theorem=\count335 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasethemes.sty)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerthemedefault.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerfontthemedefault.sty -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamercolorthemedefault.st -y) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerinnerthemedefault.st -y -\beamer@dima=\dimen292 -\beamer@dimb=\dimen293 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerouterthemedefault.st -y))) (/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/utilities/pgfpages.sty -Package: pgfpages 2011/01/05 ver 0.02 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/tools/calc.sty -Package: calc 2023/07/08 v4.3 Infix arithmetic (KKT,FJ) -\calc@Acount=\count336 -\calc@Bcount=\count337 -\calc@Adimen=\dimen294 -\calc@Bdimen=\dimen295 -\calc@Askip=\skip65 -\calc@Bskip=\skip66 -LaTeX Info: Redefining \setlength on input line 80. -LaTeX Info: Redefining \addtolength on input line 81. -\calc@Ccount=\count338 -\calc@Cskip=\skip67 -) -\pgf@logicalpages=\count339 -\pgf@firstshipout=\count340 -\pgf@lastshipout=\count341 -\pgf@currentshipout=\count342 -\pgf@cpn=\count343 -\pgf@shipoutnextto=\count344 -\pgfphysicalheight=\dimen296 -\pgfphysicalwidth=\dimen297 -\pgfpages@shipoutbox=\box76 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/base/fontenc.sty -Package: fontenc 2021/04/29 v2.0v Standard LaTeX package -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/base/inputenc.sty -Package: inputenc 2021/02/14 v1.3d Input encoding file -\inpenc@prehook=\toks46 -\inpenc@posthook=\toks47 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/base/textcomp.sty -Package: textcomp 2020/02/02 v2.0n Standard LaTeX package -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/lmodern.sty -Package: lmodern 2015/05/01 v1.6.1 Latin Modern Fonts -LaTeX Font Info: Overwriting symbol font `operators' in version `normal' -(Font) OT1/cmr/m/n --> OT1/lmr/m/n on input line 22. -LaTeX Font Info: Overwriting symbol font `letters' in version `normal' -(Font) OML/cmm/m/it --> OML/lmm/m/it on input line 23. -LaTeX Font Info: Overwriting symbol font `symbols' in version `normal' -(Font) OMS/cmsy/m/n --> OMS/lmsy/m/n on input line 24. -LaTeX Font Info: Overwriting symbol font `largesymbols' in version `normal' -(Font) OMX/cmex/m/n --> OMX/lmex/m/n on input line 25. -LaTeX Font Info: Overwriting symbol font `operators' in version `bold' -(Font) OT1/cmr/bx/n --> OT1/lmr/bx/n on input line 26. -LaTeX Font Info: Overwriting symbol font `letters' in version `bold' -(Font) OML/cmm/b/it --> OML/lmm/b/it on input line 27. -LaTeX Font Info: Overwriting symbol font `symbols' in version `bold' -(Font) OMS/cmsy/b/n --> OMS/lmsy/b/n on input line 28. -LaTeX Font Info: Overwriting symbol font `largesymbols' in version `bold' -(Font) OMX/cmex/m/n --> OMX/lmex/m/n on input line 29. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `normal' -(Font) OT1/cmr/bx/n --> OT1/lmr/bx/n on input line 31. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `normal' -(Font) OT1/cmss/m/n --> OT1/lmss/m/n on input line 32. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `normal' -(Font) OT1/cmr/m/it --> OT1/lmr/m/it on input line 33. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `normal' -(Font) OT1/cmtt/m/n --> OT1/lmtt/m/n on input line 34. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `bold' -(Font) OT1/cmr/bx/n --> OT1/lmr/bx/n on input line 35. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `bold' -(Font) OT1/cmss/bx/n --> OT1/lmss/bx/n on input line 36. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `bold' -(Font) OT1/cmr/bx/it --> OT1/lmr/bx/it on input line 37. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `bold' -(Font) OT1/cmtt/m/n --> OT1/lmtt/m/n on input line 38. -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerthemeBoadilla.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamercolorthemerose.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerinnerthemerounded.st -y) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamercolorthemedolphin.st -y) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerouterthemeinfolines. -sty)) (/usr/local/texlive/2023/texmf-dist/tex/latex/upquote/upquote.sty -Package: upquote 2012/04/19 v1.3 upright-quote and grave-accent glyphs in verba -tim -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/microtype/microtype.sty -Package: microtype 2023/03/13 v3.1a Micro-typographical refinements (RS) -\MT@toks=\toks48 -\MT@tempbox=\box77 -\MT@count=\count345 -LaTeX Info: Redefining \noprotrusionifhmode on input line 1059. -LaTeX Info: Redefining \leftprotrusion on input line 1060. -\MT@prot@toks=\toks49 -LaTeX Info: Redefining \rightprotrusion on input line 1078. -LaTeX Info: Redefining \textls on input line 1368. -\MT@outer@kern=\dimen298 -LaTeX Info: Redefining \textmicrotypecontext on input line 1988. -\MT@listname@count=\count346 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/microtype/microtype-pdftex.def -File: microtype-pdftex.def 2023/03/13 v3.1a Definitions specific to pdftex (RS) - -LaTeX Info: Redefining \lsstyle on input line 902. -LaTeX Info: Redefining \lslig on input line 902. -\MT@outer@space=\skip68 -) -Package microtype Info: Loading configuration file microtype.cfg. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/microtype/microtype.cfg -File: microtype.cfg 2023/03/13 v3.1a microtype main configuration file (RS) -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/parskip/parskip.sty -Package: parskip 2021-03-14 v2.0h non-zero parskip adjustments -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/fancyvrb/fancyvrb.sty -Package: fancyvrb 2023/11/06 4.5b verbatim text (tvz,hv) -\FV@CodeLineNo=\count347 -\FV@InFile=\read3 -\FV@TabBox=\box78 -\c@FancyVerbLine=\count348 -\FV@StepNumber=\count349 -\FV@OutFile=\write5 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/framed/framed.sty -Package: framed 2011/10/22 v 0.96: framed or shaded text with page breaks -\OuterFrameSep=\skip69 -\fb@frw=\dimen299 -\fb@frh=\dimen300 -\FrameRule=\dimen301 -\FrameSep=\dimen302 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tools/longtable.sty -Package: longtable 2023-11-01 v4.19 Multi-page Table package (DPC) -\LTleft=\skip70 -\LTright=\skip71 -\LTpre=\skip72 -\LTpost=\skip73 -\LTchunksize=\count350 -\LTcapwidth=\dimen303 -\LT@head=\box79 -\LT@firsthead=\box80 -\LT@foot=\box81 -\LT@lastfoot=\box82 -\LT@gbox=\box83 -\LT@cols=\count351 -\LT@rows=\count352 -\c@LT@tables=\count353 -\c@LT@chunks=\count354 -\LT@p@ftn=\toks50 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/booktabs/booktabs.sty -Package: booktabs 2020/01/12 v1.61803398 Publication quality tables -\heavyrulewidth=\dimen304 -\lightrulewidth=\dimen305 -\cmidrulewidth=\dimen306 -\belowrulesep=\dimen307 -\belowbottomsep=\dimen308 -\aboverulesep=\dimen309 -\abovetopsep=\dimen310 -\cmidrulesep=\dimen311 -\cmidrulekern=\dimen312 -\defaultaddspace=\dimen313 -\@cmidla=\count355 -\@cmidlb=\count356 -\@aboverulesep=\dimen314 -\@belowrulesep=\dimen315 -\@thisruleclass=\count357 -\@lastruleclass=\count358 -\@thisrulewidth=\dimen316 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tools/array.sty -Package: array 2023/10/16 v2.5g Tabular extension package (FMi) -\col@sep=\dimen317 -\ar@mcellbox=\box84 -\extrarowheight=\dimen318 -\NC@list=\toks51 -\extratabsurround=\skip74 -\backup@length=\skip75 -\ar@cellbox=\box85 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/caption/caption.sty -Package: caption 2023/08/05 v3.6o Customizing captions (AR) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/caption/caption3.sty -Package: caption3 2023/07/31 v2.4d caption3 kernel (AR) -\caption@tempdima=\dimen319 -\captionmargin=\dimen320 -\caption@leftmargin=\dimen321 -\caption@rightmargin=\dimen322 -\caption@width=\dimen323 -\caption@indent=\dimen324 -\caption@parindent=\dimen325 -\caption@hangindent=\dimen326 -Package caption Info: beamer document class detected. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/caption/caption-beamer.sto -File: caption-beamer.sto 2022/01/06 v2.0c Adaption of the caption package to th -e beamer document classes (AR) -)) -\c@caption@flags=\count359 -\c@continuedfloat=\count360 -Package caption Info: hyperref package is loaded. -Package caption Info: Hyperref support is turned off -(caption) because hyperref has stopped early. -Package caption Info: longtable package is loaded. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/caption/ltcaption.sty -Package: ltcaption 2021/01/08 v1.4c longtable captions (AR) -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/float/float.sty -Package: float 2001/11/08 v1.3d Float enhancements (AL) -\c@float@type=\count361 -\float@exts=\toks52 -\float@box=\box86 -\@float@everytoks=\toks53 -\@floatcapt=\box87 -) -\@float@every@codelisting=\toks54 -\c@codelisting=\count362 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/caption/subcaption.sty -Package: subcaption 2023/07/28 v1.6b Sub-captions (AR) -Package caption Info: New subtype `subfigure' on input line 238. -\c@subfigure=\count363 -Package caption Info: New subtype `subtable' on input line 238. -\c@subtable=\count364 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tcolorbox/tcolorbox.sty -Package: tcolorbox 2023/09/26 version 6.1.0 text color boxes - -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/basiclayer/pgf.sty -Package: pgf 2023-01-15 v3.1.10 (3.1.10) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/modules/pgfmoduleshapes.cod -e.tex -File: pgfmoduleshapes.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfnodeparttextbox=\box88 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/modules/pgfmoduleplot.code. -tex -File: pgfmoduleplot.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version --0-65.sty -Package: pgfcomp-version-0-65 2023-01-15 v3.1.10 (3.1.10) -\pgf@nodesepstart=\dimen327 -\pgf@nodesepend=\dimen328 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version --1-18.sty -Package: pgfcomp-version-1-18 2023-01-15 v3.1.10 (3.1.10) -)) (/usr/local/texlive/2023/texmf-dist/tex/latex/tools/verbatim.sty -Package: verbatim 2023-11-06 v1.5v LaTeX2e package for verbatim enhancements -\every@verbatim=\toks55 -\verbatim@line=\toks56 -\verbatim@in@stream=\read4 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/environ/environ.sty -Package: environ 2014/05/04 v0.3 A new way to define environments - -(/usr/local/texlive/2023/texmf-dist/tex/latex/trimspaces/trimspaces.sty -Package: trimspaces 2009/09/17 v1.1 Trim spaces around a token list -)) -\tcb@titlebox=\box89 -\tcb@upperbox=\box90 -\tcb@lowerbox=\box91 -\tcb@phantombox=\box92 -\c@tcbbreakpart=\count365 -\c@tcblayer=\count366 -\c@tcolorbox@number=\count367 -\tcb@temp=\box93 -\tcb@temp=\box94 -\tcb@temp=\box95 -\tcb@temp=\box96 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/tcolorbox/tcbskins.code.tex -Library (tcolorbox): 'tcbskins.code.tex' version '6.1.0' -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/frontendlayer/tikz.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/utilities/pgffor.sty -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgffor.code.tex -Package: pgffor 2023-01-15 v3.1.10 (3.1.10) -\pgffor@iter=\dimen329 -\pgffor@skip=\dimen330 -\pgffor@stack=\toks57 -\pgffor@toks=\toks58 -)) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/frontendlayer/tikz/tikz.cod -e.tex -Package: tikz 2023-01-15 v3.1.10 (3.1.10) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/libraries/pgflibraryplothan -dlers.code.tex -File: pgflibraryplothandlers.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@plot@mark@count=\count368 -\pgfplotmarksize=\dimen331 -) -\tikz@lastx=\dimen332 -\tikz@lasty=\dimen333 -\tikz@lastxsaved=\dimen334 -\tikz@lastysaved=\dimen335 -\tikz@lastmovetox=\dimen336 -\tikz@lastmovetoy=\dimen337 -\tikzleveldistance=\dimen338 -\tikzsiblingdistance=\dimen339 -\tikz@figbox=\box97 -\tikz@figbox@bg=\box98 -\tikz@tempbox=\box99 -\tikz@tempbox@bg=\box100 -\tikztreelevel=\count369 -\tikznumberofchildren=\count370 -\tikznumberofcurrentchild=\count371 -\tikz@fig@count=\count372 - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/modules/pgfmodulematrix.cod -e.tex -File: pgfmodulematrix.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfmatrixcurrentrow=\count373 -\pgfmatrixcurrentcolumn=\count374 -\pgf@matrix@numberofcolumns=\count375 -) -\tikz@expandcount=\count376 - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/frontendlayer/tikz/librarie -s/tikzlibrarytopaths.code.tex -File: tikzlibrarytopaths.code.tex 2023-01-15 v3.1.10 (3.1.10) -))) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tikzfill/tikzfill.image.sty -Package: tikzfill.image 2023/08/08 v1.0.1 Image filling library for TikZ - -(/usr/local/texlive/2023/texmf-dist/tex/latex/tikzfill/tikzfill-common.sty -Package: tikzfill-common 2023/08/08 v1.0.1 Auxiliary code for tikzfill -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tikzfill/tikzlibraryfill.image.co -de.tex -File: tikzlibraryfill.image.code.tex 2023/08/08 v1.0.1 Image filling library -\l__tikzfill_img_box=\box101 -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tcolorbox/tcbskinsjigsaw.code.tex -Library (tcolorbox): 'tcbskinsjigsaw.code.tex' version '6.1.0' -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tcolorbox/tcbbreakable.code.tex -Library (tcolorbox): 'tcbbreakable.code.tex' version '6.1.0' -(/usr/local/texlive/2023/texmf-dist/tex/latex/pdfcol/pdfcol.sty -Package: pdfcol 2022-09-21 v1.7 Handle new color stacks for pdfTeX (HO) -) -Package pdfcol Info: New color stack `tcb@breakable' = 1 on input line 23. -\tcb@testbox=\box102 -\tcb@totalupperbox=\box103 -\tcb@totallowerbox=\box104 -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/bookmark/bookmark.sty -Package: bookmark 2023-12-10 v1.31 PDF bookmarks (HO) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/bookmark/bkm-pdftex.def -File: bkm-pdftex.def 2023-12-10 v1.31 bookmark driver for pdfTeX and luaTeX (HO -) -\BKM@id=\count377 -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/xurl/xurl.sty -Package: xurl 2022/01/09 v 0.10 modify URL breaks -) -LaTeX Font Info: Trying to load font information for T1+lmss on input line 2 -18. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/t1lmss.fd -File: t1lmss.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def -File: l3backend-pdftex.def 2023-11-09 L3 backend support: PDF output (pdfTeX) -\l__color_backend_stack_int=\count378 -\l__pdf_internal_box=\box105 -) -No file 1_motivation-big-o.aux. -\openout1 = `1_motivation-big-o.aux'. - -LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for TS1/cmr/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for PU/pdf/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -*geometry* driver: auto-detecting -*geometry* detected driver: pdftex -*geometry* verbose mode - [ preamble ] result: -* driver: pdftex -* paper: custom -* layout: -* layoutoffset:(h,v)=(0.0pt,0.0pt) -* modes: includehead includefoot -* h-part:(L,W,R)=(10.88002pt, 342.43532pt, 10.88002pt) -* v-part:(T,H,B)=(0.0pt, 273.14662pt, 0.0pt) -* \paperwidth=364.19536pt -* \paperheight=273.14662pt -* \textwidth=342.43532pt -* \textheight=244.6939pt -* \oddsidemargin=-61.38997pt -* \evensidemargin=-61.38997pt -* \topmargin=-72.26999pt -* \headheight=14.22636pt -* \headsep=0.0pt -* \topskip=11.0pt -* \footskip=14.22636pt -* \marginparwidth=4.0pt -* \marginparsep=10.0pt -* \columnsep=10.0pt -* \skip\footins=10.0pt plus 4.0pt minus 2.0pt -* \hoffset=0.0pt -* \voffset=0.0pt -* \mag=1000 -* \@twocolumnfalse -* \@twosidefalse -* \@mparswitchfalse -* \@reversemarginfalse -* (1in=72.27pt=25.4mm, 1cm=28.453pt) - -(/usr/local/texlive/2023/texmf-dist/tex/context/base/mkii/supp-pdf.mkii -[Loading MPS to PDF converter (version 2006.09.02).] -\scratchcounter=\count379 -\scratchdimen=\dimen340 -\scratchbox=\box106 -\nofMPsegments=\count380 -\nofMParguments=\count381 -\everyMPshowfont=\toks59 -\MPscratchCnt=\count382 -\MPscratchDim=\dimen341 -\MPnumerator=\count383 -\makeMPintoPDFobject=\count384 -\everyMPtoPDFconversion=\toks60 -) (/usr/local/texlive/2023/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty -Package: epstopdf-base 2020-01-24 v2.11 Base part for package epstopdf -Package epstopdf-base Info: Redefining graphics rule for `.eps' on input line 4 -85. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg -File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Liv -e -)) -Package hyperref Info: Link coloring OFF on input line 218. -LaTeX Font Info: Overwriting symbol font `operators' in version `normal' -(Font) OT1/lmr/m/n --> OT1/cmss/m/n on input line 218. -LaTeX Font Info: Overwriting symbol font `operators' in version `bold' -(Font) OT1/lmr/bx/n --> OT1/cmss/b/n on input line 218. -LaTeX Font Info: Overwriting symbol font `operators' in version `normal' -(Font) OT1/cmss/m/n --> OT1/lmss/m/n on input line 218. -LaTeX Font Info: Overwriting symbol font `operators' in version `bold' -(Font) OT1/cmss/b/n --> OT1/lmss/b/n on input line 218. -\symnumbers=\mathgroup6 -\sympureletters=\mathgroup7 -LaTeX Font Info: Overwriting math alphabet `\mathrm' in version `normal' -(Font) OT1/lmss/m/n --> T1/lmr/m/n on input line 218. -LaTeX Font Info: Redeclaring math alphabet \mathbf on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `normal' -(Font) OT1/lmr/bx/n --> T1/lmss/b/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `bold' -(Font) OT1/lmr/bx/n --> T1/lmss/b/n on input line 218. -LaTeX Font Info: Redeclaring math alphabet \mathsf on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `normal' -(Font) OT1/lmss/m/n --> T1/lmss/m/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `bold' -(Font) OT1/lmss/bx/n --> T1/lmss/m/n on input line 218. -LaTeX Font Info: Redeclaring math alphabet \mathit on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `normal' -(Font) OT1/lmr/m/it --> T1/lmss/m/it on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `bold' -(Font) OT1/lmr/bx/it --> T1/lmss/m/it on input line 218. -LaTeX Font Info: Redeclaring math alphabet \mathtt on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `normal' -(Font) OT1/lmtt/m/n --> T1/lmtt/m/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `bold' -(Font) OT1/lmtt/m/n --> T1/lmtt/m/n on input line 218. -LaTeX Font Info: Overwriting symbol font `numbers' in version `bold' -(Font) T1/lmss/m/n --> T1/lmss/b/n on input line 218. -LaTeX Font Info: Overwriting symbol font `pureletters' in version `bold' -(Font) T1/lmss/m/it --> T1/lmss/b/it on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathrm' in version `bold' -(Font) OT1/lmss/b/n --> T1/lmr/b/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `bold' -(Font) T1/lmss/b/n --> T1/lmss/b/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `bold' -(Font) T1/lmss/m/n --> T1/lmss/b/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `bold' -(Font) T1/lmss/m/it --> T1/lmss/b/it on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `bold' -(Font) T1/lmtt/m/n --> T1/lmtt/b/n on input line 218. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-basic-dicti -onary-English.dict -Dictionary: translator-basic-dictionary, Language: English -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-bibliograph -y-dictionary-English.dict -Dictionary: translator-bibliography-dictionary, Language: English -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-environment --dictionary-English.dict -Dictionary: translator-environment-dictionary, Language: English -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-months-dict -ionary-English.dict -Dictionary: translator-months-dictionary, Language: English -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-numbers-dic -tionary-English.dict -Dictionary: translator-numbers-dictionary, Language: English -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-theorem-dic -tionary-English.dict -Dictionary: translator-theorem-dictionary, Language: English -) -LaTeX Info: Redefining \microtypecontext on input line 218. -Package microtype Info: Applying patch `item' on input line 218. -Package microtype Info: Applying patch `toc' on input line 218. -Package microtype Info: Applying patch `eqnum' on input line 218. -Package microtype Info: Applying patch `footnote' on input line 218. -Package microtype Info: Applying patch `verbatim' on input line 218. -Package microtype Info: Generating PDF output. -Package microtype Info: Character protrusion enabled (level 2). -Package microtype Info: Using protrusion set `basicmath'. -Package microtype Info: Automatic font expansion enabled (level 2), -(microtype) stretch: 20, shrink: 20, step: 1, non-selected. -Package microtype Info: Using default expansion set `alltext-nott'. -LaTeX Info: Redefining \showhyphens on input line 218. -Package microtype Info: No adjustment of tracking. -Package microtype Info: No adjustment of interword spacing. -Package microtype Info: No adjustment of character kerning. -Package microtype Info: Loading generic protrusion settings for font family -(microtype) `lmss' (encoding: T1). -(microtype) For optimal results, create family-specific settings. -(microtype) See the microtype manual for details. -Package caption Info: Begin \AtBeginDocument code. -Package caption Info: float package is loaded. -Package caption Info: End \AtBeginDocument code. - -No file 1_motivation-big-o.nav. - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 218--218 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 219--219 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[1 - -{/usr/local/texlive/2023/texmf-var/fonts/map/pdftex/updmap/pdftex.map}{/usr/loc -al/texlive/2023/texmf-dist/fonts/enc/dvips/lm/lm-ec.enc}] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 234--234 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[2 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 249--249 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[3 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 264--264 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[4 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 283--283 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[5 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 286--286 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[6 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 288--288 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `1_motivation-big-o.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 322--322 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./1_motivation-big-o.vrb -LaTeX Font Info: Trying to load font information for OT1+lmss on input line -9. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/ot1lmss.fd -File: ot1lmss.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -LaTeX Font Info: Trying to load font information for OML+lmm on input line 9 -. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/omllmm.fd -File: omllmm.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -LaTeX Font Info: Trying to load font information for OMS+lmsy on input line -9. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/omslmsy.fd -File: omslmsy.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -LaTeX Font Info: Trying to load font information for OMX+lmex on input line -9. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/omxlmex.fd -File: omxlmex.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <6> on input line 9. -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <5> on input line 9. -LaTeX Font Info: Trying to load font information for U+msa on input line 9. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsfonts/umsa.fd -File: umsa.fd 2013/01/14 v3.01 AMS symbols A -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/microtype/mt-msa.cfg -File: mt-msa.cfg 2006/02/04 v1.1 microtype config. file: AMS symbols (a) (RS) -) -LaTeX Font Info: Trying to load font information for U+msb on input line 9. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsfonts/umsb.fd -File: umsb.fd 2013/01/14 v3.01 AMS symbols B -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/microtype/mt-msb.cfg -File: mt-msb.cfg 2005/06/01 v1.0 microtype config. file: AMS symbols (b) (RS) -) -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <6> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 9. -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <5> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 9. -LaTeX Font Info: Trying to load font information for T1+lmtt on input line 2 -9. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/t1lmtt.fd -File: t1lmtt.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -)) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[7 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 324--324 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `1_motivation-big-o.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 347--347 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./1_motivation-big-o.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[8 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 349--349 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `1_motivation-big-o.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 373--373 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./1_motivation-big-o.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[9 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 375--375 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `1_motivation-big-o.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 391--391 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./1_motivation-big-o.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[10 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 393--393 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `1_motivation-big-o.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 415--415 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./1_motivation-big-o.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[11 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 417--417 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `1_motivation-big-o.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 436--436 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./1_motivation-big-o.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[12 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 438--438 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `1_motivation-big-o.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 452--452 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./1_motivation-big-o.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[13 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 454--454 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `1_motivation-big-o.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 475--475 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./1_motivation-big-o.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[14 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 479--479 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[15 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 514--514 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -Package microtype Info: Loading generic protrusion settings for font family -(microtype) `lmss' (encoding: OT1). -(microtype) For optimal results, create family-specific settings. -(microtype) See the microtype manual for details. -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <10.95> on input line 514. -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <8> on input line 514. -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <10.95> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 514. -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <8> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 514. -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <9> on input line 514. -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <9> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 514. -LaTeX Font Info: Trying to load font information for TS1+lmss on input line -514. -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/ts1lmss.fd -File: ts1lmss.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[16 - -{/usr/local/texlive/2023/texmf-dist/fonts/enc/dvips/lm/lm-ts1.enc}] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 541--541 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Package longtable Warning: Column widths have changed -(longtable) in table 1 on input line 541. - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[17 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 562--562 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[18 - -{/usr/local/texlive/2023/texmf-dist/fonts/enc/dvips/lm/lm-rm.enc}] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 585--585 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <10> on input line 585. -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <7> on input line 585. -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <10> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 585. -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <7> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 585. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[19 - -{/usr/local/texlive/2023/texmf-dist/fonts/enc/dvips/lm/lm-mathsy.enc}] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 618--618 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -File: images/big-o-viz.jpg Graphic file (type jpg) - -Package pdftex.def Info: images/big-o-viz.jpg used on input line 618. -(pdftex.def) Requested size: 136.95663pt x 77.0381pt. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[20 - - <./images/big-o-viz.jpg>] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 620--620 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `1_motivation-big-o.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 632--632 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./1_motivation-big-o.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[21 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 634--634 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `1_motivation-big-o.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 662--662 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./1_motivation-big-o.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[22 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 664--664 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `1_motivation-big-o.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 676--676 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./1_motivation-big-o.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[23 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 711--711 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[24 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 715--715 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[25 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 735--735 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[26 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 738--738 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[27 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 762--762 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[28 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 764--764 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `1_motivation-big-o.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 776--776 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./1_motivation-big-o.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[29 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 780--780 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[30 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 814--814 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[31 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 826--826 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[32 - -] -\tf@nav=\write6 -\openout6 = `1_motivation-big-o.nav'. - -\tf@toc=\write7 -\openout7 = `1_motivation-big-o.toc'. - -\tf@snm=\write8 -\openout8 = `1_motivation-big-o.snm'. - - - -Package longtable Warning: Table widths have changed. Rerun LaTeX. - -(./1_motivation-big-o.aux) - *********** -LaTeX2e <2023-11-01> -L3 programming layer <2023-12-11> - *********** - ) -Here is how much of TeX's memory you used: - 33617 strings out of 474181 - 688235 string characters out of 5745946 - 1936457 words of memory out of 5000000 - 55011 multiletter control sequences out of 15000+600000 - 647352 words of font info for 164 fonts, out of 8000000 for 9000 - 1141 hyphenation exceptions out of 8191 - 128i,15n,123p,1011b,650s stack positions out of 10000i,1000n,20000p,200000b,200000s - -Output written on 1_motivation-big-o.pdf (32 pages, 298416 bytes). -PDF statistics: - 413 PDF objects out of 1000 (max. 8388607) - 294 compressed objects within 3 object streams - 97 named destinations out of 1000 (max. 500000) - 55432 words of extra memory for PDF output out of 61914 (max. 10000000) - diff --git a/slides-resources/1_motivation-big-o/1_motivation-big-o.nav b/slides-resources/1_motivation-big-o/1_motivation-big-o.nav deleted file mode 100644 index ed2be46..0000000 --- a/slides-resources/1_motivation-big-o/1_motivation-big-o.nav +++ /dev/null @@ -1,84 +0,0 @@ -\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}} -\headcommand {\beamer@framepages {1}{1}} -\headcommand {\slideentry {0}{0}{2}{2/2}{}{0}} -\headcommand {\beamer@framepages {2}{2}} -\headcommand {\slideentry {0}{0}{3}{3/3}{}{0}} -\headcommand {\beamer@framepages {3}{3}} -\headcommand {\slideentry {0}{0}{4}{4/4}{}{0}} -\headcommand {\beamer@framepages {4}{4}} -\headcommand {\slideentry {0}{0}{5}{5/5}{}{0}} -\headcommand {\beamer@framepages {5}{5}} -\headcommand {\beamer@sectionpages {1}{5}} -\headcommand {\beamer@subsectionpages {1}{5}} -\headcommand {\sectionentry {1}{Motivating Code Demos}{6}{Motivating Code Demos}{0}} -\headcommand {\slideentry {1}{0}{1}{6/6}{}{0}} -\headcommand {\beamer@framepages {6}{6}} -\headcommand {\slideentry {1}{0}{2}{7/7}{}{0}} -\headcommand {\beamer@framepages {7}{7}} -\headcommand {\slideentry {1}{0}{3}{8/8}{}{0}} -\headcommand {\beamer@framepages {8}{8}} -\headcommand {\slideentry {1}{0}{4}{9/9}{}{0}} -\headcommand {\beamer@framepages {9}{9}} -\headcommand {\slideentry {1}{0}{5}{10/10}{}{0}} -\headcommand {\beamer@framepages {10}{10}} -\headcommand {\slideentry {1}{0}{6}{11/11}{}{0}} -\headcommand {\beamer@framepages {11}{11}} -\headcommand {\slideentry {1}{0}{7}{12/12}{}{0}} -\headcommand {\beamer@framepages {12}{12}} -\headcommand {\slideentry {1}{0}{8}{13/13}{}{0}} -\headcommand {\beamer@framepages {13}{13}} -\headcommand {\slideentry {1}{0}{9}{14/14}{}{0}} -\headcommand {\beamer@framepages {14}{14}} -\headcommand {\beamer@sectionpages {6}{14}} -\headcommand {\beamer@subsectionpages {6}{14}} -\headcommand {\sectionentry {2}{Time Complexity: Introduction to Big-O Notation}{15}{Time Complexity: Introduction to Big-O Notation}{0}} -\headcommand {\slideentry {2}{0}{1}{15/15}{}{0}} -\headcommand {\beamer@framepages {15}{15}} -\headcommand {\slideentry {2}{0}{2}{16/16}{}{0}} -\headcommand {\beamer@framepages {16}{16}} -\headcommand {\slideentry {2}{0}{3}{17/17}{}{0}} -\headcommand {\beamer@framepages {17}{17}} -\headcommand {\slideentry {2}{0}{4}{18/18}{}{0}} -\headcommand {\beamer@framepages {18}{18}} -\headcommand {\slideentry {2}{0}{5}{19/19}{}{0}} -\headcommand {\beamer@framepages {19}{19}} -\headcommand {\slideentry {2}{0}{6}{20/20}{}{0}} -\headcommand {\beamer@framepages {20}{20}} -\headcommand {\slideentry {2}{0}{7}{21/21}{}{0}} -\headcommand {\beamer@framepages {21}{21}} -\headcommand {\slideentry {2}{0}{8}{22/22}{}{0}} -\headcommand {\beamer@framepages {22}{22}} -\headcommand {\slideentry {2}{0}{9}{23/23}{}{0}} -\headcommand {\beamer@framepages {23}{23}} -\headcommand {\slideentry {2}{0}{10}{24/24}{}{0}} -\headcommand {\beamer@framepages {24}{24}} -\headcommand {\beamer@sectionpages {15}{24}} -\headcommand {\beamer@subsectionpages {15}{24}} -\headcommand {\sectionentry {3}{Best, Average, and Worst Case}{25}{Best, Average, and Worst Case}{0}} -\headcommand {\slideentry {3}{0}{1}{25/25}{}{0}} -\headcommand {\beamer@framepages {25}{25}} -\headcommand {\slideentry {3}{0}{2}{26/26}{}{0}} -\headcommand {\beamer@framepages {26}{26}} -\headcommand {\beamer@sectionpages {25}{26}} -\headcommand {\beamer@subsectionpages {25}{26}} -\headcommand {\sectionentry {4}{Space Complexity}{27}{Space Complexity}{0}} -\headcommand {\slideentry {4}{0}{1}{27/27}{}{0}} -\headcommand {\beamer@framepages {27}{27}} -\headcommand {\slideentry {4}{0}{2}{28/28}{}{0}} -\headcommand {\beamer@framepages {28}{28}} -\headcommand {\slideentry {4}{0}{3}{29/29}{}{0}} -\headcommand {\beamer@framepages {29}{29}} -\headcommand {\beamer@sectionpages {27}{29}} -\headcommand {\beamer@subsectionpages {27}{29}} -\headcommand {\sectionentry {5}{Recommended Problems and References}{30}{Recommended Problems and References}{0}} -\headcommand {\slideentry {5}{0}{1}{30/30}{}{0}} -\headcommand {\beamer@framepages {30}{30}} -\headcommand {\slideentry {5}{0}{2}{31/31}{}{0}} -\headcommand {\beamer@framepages {31}{31}} -\headcommand {\slideentry {5}{0}{3}{32/32}{}{0}} -\headcommand {\beamer@framepages {32}{32}} -\headcommand {\beamer@partpages {1}{32}} -\headcommand {\beamer@subsectionpages {30}{32}} -\headcommand {\beamer@sectionpages {30}{32}} -\headcommand {\beamer@documentpages {32}} -\headcommand {\gdef \inserttotalframenumber {32}} diff --git a/slides-resources/1_motivation-big-o/1_motivation-big-o.pdf b/slides-resources/1_motivation-big-o/1_motivation-big-o.pdf deleted file mode 100644 index c984d9e..0000000 Binary files a/slides-resources/1_motivation-big-o/1_motivation-big-o.pdf and /dev/null differ diff --git a/slides-resources/1_motivation-big-o/1_motivation-big-o.qmd b/slides-resources/1_motivation-big-o/1_motivation-big-o.qmd deleted file mode 100644 index 56a4f4a..0000000 --- a/slides-resources/1_motivation-big-o/1_motivation-big-o.qmd +++ /dev/null @@ -1,382 +0,0 @@ ---- -title: "Motivation and Big-O" -format: - beamer: - institute: Data Sciences Institute, UofT - theme: Boadilla - colortheme: rose -execute: - echo: true -editor: visual -author: Salaar Liaqat ---- - -## Outline - -- Motivation - -- Time Complexity: Introduction to Big-O Notation - -- Average, Best, and Worst Case - -- Space Complexity - -## About Me - -- PhD candidate in the Department of Computer Science at UofT - -- Thesis is on remote patient monitoring using wearables and mobile devices - -- Did BSc from Vancouver (SFU) and MSc from UofT - -- Co-Founder of a remote patient monitoring startup (Tabiat) - -## Why should a Data Scientist take this Course? - -- Problem solving. This course provides you with a framework to solve coding problems you may encounter in your career. - -- Efficient programs. We want to write programs that scale well with big data. - -- Interview preparation. Many data science jobs require a technical interview, which involes solving algorithms problems. - - -## Learning Objectives - -- Assess options and choices around methods to solve problems and data representation methods using Big-O notation. - -- Develop comfort with recursive functions. - -- Decide on appropriate methods to represent data for a problem. - -- Take a client-led problem and translate it into an optimization problem. - -- Identify why code is running slowly and know how to improve its performance. - - -# Motivating Code Demos - -## What are Algorithms and Data Structures - -- An **algorithm** is a procedure to solve a problem - - - Sort a data observations from smallest to largest - - - Find the nearest neighbor to a data point - - - How fast is each algorithm? - -- A **data structure** is a concrete method to store some data. - - - A pandas data set is a good way to store observations with many features. - - - How much space does the data sturcture need? How long does it take to access each observation? - -```{python} -import numpy as np -import timeit -import random -``` - -## Loop Versus Vectorized Operations - -```{python} -size = 10**4 - -# Using Python lists -list_a = list(range(size)) -list_b = list(range(size)) - -# Using NumPy arrays -array_a = np.arange(size) -array_b = np.arange(size) - -# Timing for list addition -list_time = timeit.timeit(lambda: - [a + b for a, b in zip(list_a, list_b)], number=1) - -# Timing for vectorized array addition -array_time = timeit.timeit(lambda: - array_a + array_b, number = 1) -``` - -## Loop Versus Vectorized Operations - -We will learn about what vectorized is in lecture 6. - -```{python} -print(f"List Addition: {list_time:.6f} seconds") -print(f"Vectorized Addition: {array_time:.6f} seconds") -``` - -- Why was the NumPy vectorized operation much faster? - -- How can we describe how much faster the vectorized operation is? - -- This is useful in many iterative algorithms, such as gradient descent. - -## Search in List Versus Set - -We will learn about searching and sorting in lecture 2. - -```{python} -# Python list -list_time = timeit.timeit(lambda: - -1 in list_a, number = 1) - -# Python set -set_a = set(range(size)) -set_time = timeit.timeit(lambda: - -1 in set_a, number = 1) -``` - -## Search in List Versus Set - -```{python} -print(f"List Search: {list_time:.6f} seconds") -print(f"Set Search: {set_time:.6f} seconds") -``` - -- Why was the set search much faster? - -- How can we describe how much faster the vectorized operation is? - -- What are the pros and cons of choosing each data structure? - -## Selection Sort Versus Python Sort - -For context, selection sort is a naive sorting algorithm, while Python implements Tim Sort for the default search function. - -```{python} -def selection_sort(arr): - n = len(arr) - - for i in range(n): - min_index = i - for j in range(i+1, n): - if arr[j] < arr[min_index]: - min_index = j - - arr[i], arr[min_index] = arr[min_index], arr[i] -``` - -## Selection Sort Versus Python Sort - -```{python} -random.shuffle(list_a) -rand_list = list_a.copy() - -sel_time = timeit.timeit(lambda: - selection_sort(rand_list.copy()), number = 1) - -py_time = timeit.timeit(lambda: - sorted(rand_list.copy()), number = 1) -``` - -## Selection Sort Versus Python Sort - -```{python} -print(f"Selection sort: {sel_time:.6f} seconds") -print(f"Tim sort: {py_time:.6f} seconds") -``` - -- Why was selection sort much slower than Tim sort (not in detail)? - -- If we double the size of the list, how much slower will the code be in each case? - -# Time Complexity: Introduction to Big-O Notation - -## An example - -- Imagine you are writing an algorithm to search for a landing position for a rocket. You want it to be simple (to avoid bugs) and fast (since you only have 10 seconds to find a site). [^1] - -- It takes 1 millisecond to check each element. You decide to test a simple search and binary search on 100 elements (more on these methods later). - - - Simple search takes 100ms. Binary search takes 7ms. - -- Then you test binary search with 1 billion elements and it takes 32ms. - - - Binary search is about 15 times faster than simple search, because simple search took 100 ms with 100 elements, and binary search took 7 ms. So simple search will take 30 × 15 = 450ms with 1 billion elements. - -- Since that is within your threshold, you decide to go with simple search. **Is this correct?** - -[^1]: Example from Grokking Algorithms - -## A practical example - -- Definitely wrong!! -- The run time of different algorithms can grow at different rates. -- Big-O tells us how run time increases as the list size increases. - -### Comparing run times of simple and binary search - -| Elements | Simple Search | Binary Search | -|---------------|---------------|---------------| -| 100 | 100 ms | 7 ms | -| 10,000 | 10 s | 14 ms | -| 1,000,000,000 | 11 days | 32 ms | - -## Big-O Notation - -- Big-O tells you how fast an algorithm is in terms of the number of operations, $n$. - -- Simple search needs to take each element, so it will take $n$ operations. The run time in Big-O notation is $O(n)$. - -- Binary search needs log $n$ operations, so the run time in Big-O notation is $O(\text{log}n)$ - - - Note: log in computer science usually refers to log base 2. - -## Big-O is Upper Bound Run Time - -- Big-O notation is about the *worst-case* scenario. - - - If you were conducting linear search through a phone book, even if you were looking for Abe Aberdeen, it is still considered $O(n)$. - -- Formally, it characterizes an upper bound on the asymptotic behavior of the run time. - -- For example, the function $7n^3 + 30n^2 - 200n + 9$ has highest-order term $7n^3$. The function's growth rate is $n^3$ because the function grows no faster than $n^3$. The Big-O is $O(n^3)$. - -## Common Big-O Run Times - -Here are seven Big-O run times that you'll encounter frequently, sorted from fasted to slowest. - -::: columns -::: {.column width="40%"} -![](images/big-o-viz.jpg) -::: - -::: {.column width="60%"} -- $O(1)$, known as *constant time*. Ex: addition, division - -- $O(\text{log}n)$, known as *logarithmic time*. Ex: binary search - -- $O(n)$, known as *linear time*. Ex: Linear search - -- $O(n\text{log}n)$. Ex: Tim Sort - -- $O(n^2)$, known as *quadratic time*. Ex: Selection sort. - -- $O(2^n)$, known as *exponential time*. Ex: Naive recursive solution for nth Fibonacci number - -- $O(n!)$, known as *factorial time*. Ex. Traveling salesperson -::: -::: - -## Determining Time Complexity - -Consider the following code. How can you determine the Big-O? - -```{python} -def f(n): - for i in range(n): - for j in range(n): - print(i, j) -``` - -## Determining Time Complexity - -- With "raw" Python code, you can usually count the number of nested `for` loops to determine the Big-O - - - A loop gives $O(n)$ - - - A nested loop gives $O(n^2)$ - -- It's usually not so simple in Data Science because of packages we use. - -- There are many factors affecting the constants in your run time - - - How complicated is each step? Is it $n$ or $2000n$? - - - How are your algorithms implemented? Is your programming language fast? Are your libraries fast? - -- Implementation issues will be covered later in the course. - -## Big-O with Two Variables - -Consider the following code. What is it's Big-O? - -```{python} -def fun(n,m): - for i in range(n): - for j in range(m): - print("Hello") -``` - -## Big-O with Two Variables - -- The time complexity here is $O(nm)$. - - - If $n = m$, then $O(n^2)$. - -- All terms should be combined into one Big-O - - - $O(nm)$ is correct and $O(n)O(m)$ is incorrect. - - - $O(n + m)$ is correct and $O(n) + O(m)$ is incorrect. - - - $O(n^2 + mn + m)$ is written as $O(n^2 + nm)$. We can't throw away either term because we don't know which term will dominate. - -- Important to think about this when working with datasets. - - - They have $n$ rows and $p$ columns. - - - Can you reason how long it will take to fit a decision tree? - -# Best, Average, and Worst Case - -## Best, Average, and Worst Case - -- Big-O deals with worst case. - -- If we can develop a notion of an "average input," then we can devise the average case of an algorithm. - -- Best case is useful to think about the constants in your algorithm. - - - $O(\text{log}n)$ is always faster than $O(n)$ expect with very small $n$. - -# Space Complexity - -## What is Space Complexity - -- Aside from our algorithm taking too long to run, its also an issue if you run out of memory. - - - Note, memory (RAM), is not the same as disk space. - - - The computer will load data into memory from the disk - -- It will be problematic if you need to load 2 billion observations all at once. - -- We can also analyze space complexity with Big-O notation - -- Notice that time complexity is usually about the *algorithm*, while space complexity is about the *data structure*. - -## Examples - -- Code that prints `hello {your name}` will have $O(1)$ space. - -- Code that sums a list of size $n$ has $O(n)$ space. - -- You have users on Instagram, and you want to store who follows who. The answer depends (why?). The worst case space is $O(n^2)$ - -# Recommended Problems and References - -## Recommended Problems - -- Cormen: Chapter 1 exercises - - - 1.2-1, 1.2-2, 1.2-3 - -- Bhargava: Chapter 1 exercises - - - 1.3 to 1.5 - -- Additional (for the mathematically inclined) - - - In CS, log is usually base 2, but a strong distinction is not made because *logs of different bases only differ by a constant factor* and constants are dropped in Big-O. Show this is true - - - Show that exponents of different bases **do not** differ by a constant factor - -## References - -- Bhargava, A. Y. (2016). *Grokking algorithms: An illustrated guide for programmers and other curious people.* Manning. Chapter 1. - -- Cormen, T. H. (Ed.). (2009). *Introduction to algorithms* (3rd ed). MIT Press. Chapter 1 and 3. diff --git a/slides-resources/1_motivation-big-o/1_motivation-big-o.snm b/slides-resources/1_motivation-big-o/1_motivation-big-o.snm deleted file mode 100644 index e69de29..0000000 diff --git a/slides-resources/1_motivation-big-o/1_motivation-big-o.tex b/slides-resources/1_motivation-big-o/1_motivation-big-o.tex deleted file mode 100644 index 0940596..0000000 --- a/slides-resources/1_motivation-big-o/1_motivation-big-o.tex +++ /dev/null @@ -1,830 +0,0 @@ -% Options for packages loaded elsewhere -\PassOptionsToPackage{unicode}{hyperref} -\PassOptionsToPackage{hyphens}{url} -% -\documentclass[ - ignorenonframetext, -]{beamer} -\usepackage{pgfpages} -\setbeamertemplate{caption}[numbered] -\setbeamertemplate{caption label separator}{: } -\setbeamercolor{caption name}{fg=normal text.fg} -\beamertemplatenavigationsymbolsempty -% Prevent slide breaks in the middle of a paragraph -\widowpenalties 1 10000 -\raggedbottom -\setbeamertemplate{part page}{ - \centering - \begin{beamercolorbox}[sep=16pt,center]{part title} - \usebeamerfont{part title}\insertpart\par - \end{beamercolorbox} -} -\setbeamertemplate{section page}{ - \centering - \begin{beamercolorbox}[sep=12pt,center]{part title} - \usebeamerfont{section title}\insertsection\par - \end{beamercolorbox} -} -\setbeamertemplate{subsection page}{ - \centering - \begin{beamercolorbox}[sep=8pt,center]{part title} - \usebeamerfont{subsection title}\insertsubsection\par - \end{beamercolorbox} -} -\AtBeginPart{ - \frame{\partpage} -} -\AtBeginSection{ - \ifbibliography - \else - \frame{\sectionpage} - \fi -} -\AtBeginSubsection{ - \frame{\subsectionpage} -} - -\usepackage{amsmath,amssymb} -\usepackage{iftex} -\ifPDFTeX - \usepackage[T1]{fontenc} - \usepackage[utf8]{inputenc} - \usepackage{textcomp} % provide euro and other symbols -\else % if luatex or xetex - \usepackage{unicode-math} - \defaultfontfeatures{Scale=MatchLowercase} - \defaultfontfeatures[\rmfamily]{Ligatures=TeX,Scale=1} -\fi -\usepackage{lmodern} -\usetheme[]{Boadilla} -\usecolortheme{rose} -\ifPDFTeX\else - % xetex/luatex font selection -\fi -% Use upquote if available, for straight quotes in verbatim environments -\IfFileExists{upquote.sty}{\usepackage{upquote}}{} -\IfFileExists{microtype.sty}{% use microtype if available - \usepackage[]{microtype} - \UseMicrotypeSet[protrusion]{basicmath} % disable protrusion for tt fonts -}{} -\makeatletter -\@ifundefined{KOMAClassName}{% if non-KOMA class - \IfFileExists{parskip.sty}{% - \usepackage{parskip} - }{% else - \setlength{\parindent}{0pt} - \setlength{\parskip}{6pt plus 2pt minus 1pt}} -}{% if KOMA class - \KOMAoptions{parskip=half}} -\makeatother -\usepackage{xcolor} -\newif\ifbibliography -\setlength{\emergencystretch}{3em} % prevent overfull lines -\setcounter{secnumdepth}{-\maxdimen} % remove section numbering - -\usepackage{color} -\usepackage{fancyvrb} -\newcommand{\VerbBar}{|} -\newcommand{\VERB}{\Verb[commandchars=\\\{\}]} -\DefineVerbatimEnvironment{Highlighting}{Verbatim}{commandchars=\\\{\}} -% Add ',fontsize=\small' for more characters per line -\usepackage{framed} -\definecolor{shadecolor}{RGB}{241,243,245} -\newenvironment{Shaded}{\begin{snugshade}}{\end{snugshade}} -\newcommand{\AlertTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\AnnotationTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{#1}} -\newcommand{\AttributeTok}[1]{\textcolor[rgb]{0.40,0.45,0.13}{#1}} -\newcommand{\BaseNTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\BuiltInTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\CharTok}[1]{\textcolor[rgb]{0.13,0.47,0.30}{#1}} -\newcommand{\CommentTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{#1}} -\newcommand{\CommentVarTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{\textit{#1}}} -\newcommand{\ConstantTok}[1]{\textcolor[rgb]{0.56,0.35,0.01}{#1}} -\newcommand{\ControlFlowTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\DataTypeTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\DecValTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\DocumentationTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{\textit{#1}}} -\newcommand{\ErrorTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\ExtensionTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\FloatTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\FunctionTok}[1]{\textcolor[rgb]{0.28,0.35,0.67}{#1}} -\newcommand{\ImportTok}[1]{\textcolor[rgb]{0.00,0.46,0.62}{#1}} -\newcommand{\InformationTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{#1}} -\newcommand{\KeywordTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\NormalTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\OperatorTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{#1}} -\newcommand{\OtherTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\PreprocessorTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\RegionMarkerTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\SpecialCharTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{#1}} -\newcommand{\SpecialStringTok}[1]{\textcolor[rgb]{0.13,0.47,0.30}{#1}} -\newcommand{\StringTok}[1]{\textcolor[rgb]{0.13,0.47,0.30}{#1}} -\newcommand{\VariableTok}[1]{\textcolor[rgb]{0.07,0.07,0.07}{#1}} -\newcommand{\VerbatimStringTok}[1]{\textcolor[rgb]{0.13,0.47,0.30}{#1}} -\newcommand{\WarningTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{\textit{#1}}} - -\providecommand{\tightlist}{% - \setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}\usepackage{longtable,booktabs,array} -\usepackage{calc} % for calculating minipage widths -\usepackage{caption} -% Make caption package work with longtable -\makeatletter -\def\fnum@table{\tablename~\thetable} -\makeatother -\usepackage{graphicx} -\makeatletter -\def\maxwidth{\ifdim\Gin@nat@width>\linewidth\linewidth\else\Gin@nat@width\fi} -\def\maxheight{\ifdim\Gin@nat@height>\textheight\textheight\else\Gin@nat@height\fi} -\makeatother -% Scale images if necessary, so that they will not overflow the page -% margins by default, and it is still possible to overwrite the defaults -% using explicit options in \includegraphics[width, height, ...]{} -\setkeys{Gin}{width=\maxwidth,height=\maxheight,keepaspectratio} -% Set default figure placement to htbp -\makeatletter -\def\fps@figure{htbp} -\makeatother - -\makeatletter -\makeatother -\makeatletter -\makeatother -\makeatletter -\@ifpackageloaded{caption}{}{\usepackage{caption}} -\AtBeginDocument{% -\ifdefined\contentsname - \renewcommand*\contentsname{Table of contents} -\else - \newcommand\contentsname{Table of contents} -\fi -\ifdefined\listfigurename - \renewcommand*\listfigurename{List of Figures} -\else - \newcommand\listfigurename{List of Figures} -\fi -\ifdefined\listtablename - \renewcommand*\listtablename{List of Tables} -\else - \newcommand\listtablename{List of Tables} -\fi -\ifdefined\figurename - \renewcommand*\figurename{Figure} -\else - \newcommand\figurename{Figure} -\fi -\ifdefined\tablename - \renewcommand*\tablename{Table} -\else - \newcommand\tablename{Table} -\fi -} -\@ifpackageloaded{float}{}{\usepackage{float}} -\floatstyle{ruled} -\@ifundefined{c@chapter}{\newfloat{codelisting}{h}{lop}}{\newfloat{codelisting}{h}{lop}[chapter]} -\floatname{codelisting}{Listing} -\newcommand*\listoflistings{\listof{codelisting}{List of Listings}} -\makeatother -\makeatletter -\@ifpackageloaded{caption}{}{\usepackage{caption}} -\@ifpackageloaded{subcaption}{}{\usepackage{subcaption}} -\makeatother -\makeatletter -\@ifpackageloaded{tcolorbox}{}{\usepackage[skins,breakable]{tcolorbox}} -\makeatother -\makeatletter -\@ifundefined{shadecolor}{\definecolor{shadecolor}{rgb}{.97, .97, .97}} -\makeatother -\makeatletter -\makeatother -\makeatletter -\makeatother -\ifLuaTeX - \usepackage{selnolig} % disable illegal ligatures -\fi -\IfFileExists{bookmark.sty}{\usepackage{bookmark}}{\usepackage{hyperref}} -\IfFileExists{xurl.sty}{\usepackage{xurl}}{} % add URL line breaks if available -\urlstyle{same} % disable monospaced font for URLs -\hypersetup{ - pdftitle={Motivation and Big-O}, - pdfauthor={Salaar Liaqat}, - hidelinks, - pdfcreator={LaTeX via pandoc}} - -\title{Motivation and Big-O} -\author{Salaar Liaqat} -\date{} -\institute{Data Sciences Institute, UofT} - -\begin{document} -\frame{\titlepage} -\ifdefined\Shaded\renewenvironment{Shaded}{\begin{tcolorbox}[boxrule=0pt, enhanced, frame hidden, borderline west={3pt}{0pt}{shadecolor}, interior hidden, sharp corners, breakable]}{\end{tcolorbox}}\fi - -\begin{frame}{Outline} -\protect\hypertarget{outline}{} -\begin{itemize} -\item - Motivation -\item - Time Complexity: Introduction to Big-O Notation -\item - Average, Best, and Worst Case -\item - Space Complexity -\end{itemize} -\end{frame} - -\begin{frame}{About Me} -\protect\hypertarget{about-me}{} -\begin{itemize} -\item - PhD candidate in the Department of Computer Science at UofT -\item - Thesis is on remote patient monitoring using wearables and mobile - devices -\item - Did BSc from Vancouver (SFU) and MSc from UofT -\item - Co-Founder of a remote patient monitoring startup (Tabiat) -\end{itemize} -\end{frame} - -\begin{frame}{Why should a Data Scientist take this Course?} -\protect\hypertarget{why-should-a-data-scientist-take-this-course}{} -\begin{itemize} -\item - Problem solving. This course provides you with a framework to solve - coding problems you may encounter in your career. -\item - Efficient programs. We want to write programs that scale well with big - data. -\item - Interview preparation. Many data science jobs require a technical - interview, which involes solving algorithms problems. -\end{itemize} -\end{frame} - -\begin{frame}{Learning Objectives} -\protect\hypertarget{learning-objectives}{} -\begin{itemize} -\item - Assess options and choices around methods to solve problems and data - representation methods using Big-O notation. -\item - Develop comfort with recursive functions. -\item - Decide on appropriate methods to represent data for a problem. -\item - Take a client-led problem and translate it into an optimization - problem. -\item - Identify why code is running slowly and know how to improve its - performance. -\end{itemize} -\end{frame} - -\hypertarget{motivating-code-demos}{% -\section{Motivating Code Demos}\label{motivating-code-demos}} - -\begin{frame}[fragile]{What are Algorithms and Data Structures} -\protect\hypertarget{what-are-algorithms-and-data-structures}{} -\begin{itemize} -\item - An \textbf{algorithm} is a procedure to solve a problem - - \begin{itemize} - \item - Sort a data observations from smallest to largest - \item - Find the nearest neighbor to a data point - \item - How fast is each algorithm? - \end{itemize} -\item - A \textbf{data structure} is a concrete method to store some data. - - \begin{itemize} - \item - A pandas data set is a good way to store observations with many - features. - \item - How much space does the data sturcture need? How long does it take - to access each observation? - \end{itemize} -\end{itemize} - -\begin{Shaded} -\begin{Highlighting}[] -\ImportTok{import}\NormalTok{ numpy }\ImportTok{as}\NormalTok{ np} -\ImportTok{import}\NormalTok{ timeit} -\ImportTok{import}\NormalTok{ random} -\end{Highlighting} -\end{Shaded} -\end{frame} - -\begin{frame}[fragile]{Loop Versus Vectorized Operations} -\protect\hypertarget{loop-versus-vectorized-operations}{} -\begin{Shaded} -\begin{Highlighting}[] -\NormalTok{size }\OperatorTok{=} \DecValTok{10}\OperatorTok{**}\DecValTok{4} - -\CommentTok{\# Using Python lists} -\NormalTok{list\_a }\OperatorTok{=} \BuiltInTok{list}\NormalTok{(}\BuiltInTok{range}\NormalTok{(size))} -\NormalTok{list\_b }\OperatorTok{=} \BuiltInTok{list}\NormalTok{(}\BuiltInTok{range}\NormalTok{(size))} - -\CommentTok{\# Using NumPy arrays} -\NormalTok{array\_a }\OperatorTok{=}\NormalTok{ np.arange(size)} -\NormalTok{array\_b }\OperatorTok{=}\NormalTok{ np.arange(size)} - -\CommentTok{\# Timing for list addition} -\NormalTok{list\_time }\OperatorTok{=}\NormalTok{ timeit.timeit(}\KeywordTok{lambda}\NormalTok{: } -\NormalTok{ [a }\OperatorTok{+}\NormalTok{ b }\ControlFlowTok{for}\NormalTok{ a, b }\KeywordTok{in} \BuiltInTok{zip}\NormalTok{(list\_a, list\_b)], number}\OperatorTok{=}\DecValTok{1}\NormalTok{)} - -\CommentTok{\# Timing for vectorized array addition} -\NormalTok{array\_time }\OperatorTok{=}\NormalTok{ timeit.timeit(}\KeywordTok{lambda}\NormalTok{: } -\NormalTok{ array\_a }\OperatorTok{+}\NormalTok{ array\_b, number }\OperatorTok{=} \DecValTok{1}\NormalTok{)} -\end{Highlighting} -\end{Shaded} -\end{frame} - -\begin{frame}[fragile]{Loop Versus Vectorized Operations} -\protect\hypertarget{loop-versus-vectorized-operations-1}{} -We will learn about what vectorized is in lecture 6. - -\begin{Shaded} -\begin{Highlighting}[] -\BuiltInTok{print}\NormalTok{(}\SpecialStringTok{f"List Addition: }\SpecialCharTok{\{}\NormalTok{list\_time}\SpecialCharTok{:.6f\}}\SpecialStringTok{ seconds"}\NormalTok{)} -\BuiltInTok{print}\NormalTok{(}\SpecialStringTok{f"Vectorized Addition: }\SpecialCharTok{\{}\NormalTok{array\_time}\SpecialCharTok{:.6f\}}\SpecialStringTok{ seconds"}\NormalTok{)} -\end{Highlighting} -\end{Shaded} - -\begin{verbatim} -List Addition: 0.000337 seconds -Vectorized Addition: 0.000052 seconds -\end{verbatim} - -\begin{itemize} -\item - Why was the NumPy vectorized operation much faster? -\item - How can we describe how much faster the vectorized operation is? -\item - This is useful in many iterative algorithms, such as gradient descent. -\end{itemize} -\end{frame} - -\begin{frame}[fragile]{Search in List Versus Set} -\protect\hypertarget{search-in-list-versus-set}{} -We will learn about searching and sorting in lecture 2. - -\begin{Shaded} -\begin{Highlighting}[] -\CommentTok{\# Python list} -\NormalTok{list\_time }\OperatorTok{=}\NormalTok{ timeit.timeit(}\KeywordTok{lambda}\NormalTok{:} - \OperatorTok{{-}}\DecValTok{1} \KeywordTok{in}\NormalTok{ list\_a, number }\OperatorTok{=} \DecValTok{1}\NormalTok{)} - -\CommentTok{\# Python set} -\NormalTok{set\_a }\OperatorTok{=} \BuiltInTok{set}\NormalTok{(}\BuiltInTok{range}\NormalTok{(size))} -\NormalTok{set\_time }\OperatorTok{=}\NormalTok{ timeit.timeit(}\KeywordTok{lambda}\NormalTok{:} - \OperatorTok{{-}}\DecValTok{1} \KeywordTok{in}\NormalTok{ set\_a, number }\OperatorTok{=} \DecValTok{1}\NormalTok{)} -\end{Highlighting} -\end{Shaded} -\end{frame} - -\begin{frame}[fragile]{Search in List Versus Set} -\protect\hypertarget{search-in-list-versus-set-1}{} -\begin{Shaded} -\begin{Highlighting}[] -\BuiltInTok{print}\NormalTok{(}\SpecialStringTok{f"List Search: }\SpecialCharTok{\{}\NormalTok{list\_time}\SpecialCharTok{:.6f\}}\SpecialStringTok{ seconds"}\NormalTok{)} -\BuiltInTok{print}\NormalTok{(}\SpecialStringTok{f"Set Search: }\SpecialCharTok{\{}\NormalTok{set\_time}\SpecialCharTok{:.6f\}}\SpecialStringTok{ seconds"}\NormalTok{)} -\end{Highlighting} -\end{Shaded} - -\begin{verbatim} -List Search: 0.000036 seconds -Set Search: 0.000000 seconds -\end{verbatim} - -\begin{itemize} -\item - Why was the set search much faster? -\item - How can we describe how much faster the vectorized operation is? -\item - What are the pros and cons of choosing each data structure? -\end{itemize} -\end{frame} - -\begin{frame}[fragile]{Selection Sort Versus Python Sort} -\protect\hypertarget{selection-sort-versus-python-sort}{} -For context, selection sort is a naive sorting algorithm, while Python -implements Tim Sort for the default search function. - -\begin{Shaded} -\begin{Highlighting}[] -\KeywordTok{def}\NormalTok{ selection\_sort(arr):} -\NormalTok{ n }\OperatorTok{=} \BuiltInTok{len}\NormalTok{(arr)} - - \ControlFlowTok{for}\NormalTok{ i }\KeywordTok{in} \BuiltInTok{range}\NormalTok{(n):} -\NormalTok{ min\_index }\OperatorTok{=}\NormalTok{ i} - \ControlFlowTok{for}\NormalTok{ j }\KeywordTok{in} \BuiltInTok{range}\NormalTok{(i}\OperatorTok{+}\DecValTok{1}\NormalTok{, n):} - \ControlFlowTok{if}\NormalTok{ arr[j] }\OperatorTok{\textless{}}\NormalTok{ arr[min\_index]:} -\NormalTok{ min\_index }\OperatorTok{=}\NormalTok{ j} - -\NormalTok{ arr[i], arr[min\_index] }\OperatorTok{=}\NormalTok{ arr[min\_index], arr[i]} -\end{Highlighting} -\end{Shaded} -\end{frame} - -\begin{frame}[fragile]{Selection Sort Versus Python Sort} -\protect\hypertarget{selection-sort-versus-python-sort-1}{} -\begin{Shaded} -\begin{Highlighting}[] -\NormalTok{random.shuffle(list\_a)} -\NormalTok{rand\_list }\OperatorTok{=}\NormalTok{ list\_a.copy()} - -\NormalTok{sel\_time }\OperatorTok{=}\NormalTok{ timeit.timeit(}\KeywordTok{lambda}\NormalTok{:} -\NormalTok{ selection\_sort(rand\_list.copy()), number }\OperatorTok{=} \DecValTok{1}\NormalTok{)} - -\NormalTok{py\_time }\OperatorTok{=}\NormalTok{ timeit.timeit(}\KeywordTok{lambda}\NormalTok{:} - \BuiltInTok{sorted}\NormalTok{(rand\_list.copy()), number }\OperatorTok{=} \DecValTok{1}\NormalTok{)} -\end{Highlighting} -\end{Shaded} -\end{frame} - -\begin{frame}[fragile]{Selection Sort Versus Python Sort} -\protect\hypertarget{selection-sort-versus-python-sort-2}{} -\begin{Shaded} -\begin{Highlighting}[] -\BuiltInTok{print}\NormalTok{(}\SpecialStringTok{f"Selection sort: }\SpecialCharTok{\{}\NormalTok{sel\_time}\SpecialCharTok{:.6f\}}\SpecialStringTok{ seconds"}\NormalTok{)} -\BuiltInTok{print}\NormalTok{(}\SpecialStringTok{f"Tim sort: }\SpecialCharTok{\{}\NormalTok{py\_time}\SpecialCharTok{:.6f\}}\SpecialStringTok{ seconds"}\NormalTok{)} -\end{Highlighting} -\end{Shaded} - -\begin{verbatim} -Selection sort: 1.625933 seconds -Tim sort: 0.000862 seconds -\end{verbatim} - -\begin{itemize} -\item - Why was selection sort much slower than Tim sort (not in detail)? -\item - If we double the size of the list, how much slower will the code be in - each case? -\end{itemize} -\end{frame} - -\hypertarget{time-complexity-introduction-to-big-o-notation}{% -\section{Time Complexity: Introduction to Big-O -Notation}\label{time-complexity-introduction-to-big-o-notation}} - -\begin{frame}{An example} -\protect\hypertarget{an-example}{} -\begin{itemize} -\item - Imagine you are writing an algorithm to search for a landing position - for a rocket. You want it to be simple (to avoid bugs) and fast (since - you only have 10 seconds to find a site). \footnote<.->{Example from - Grokking Algorithms} -\item - It takes 1 millisecond to check each element. You decide to test a - simple search and binary search on 100 elements (more on these methods - later). - - \begin{itemize} - \tightlist - \item - Simple search takes 100ms. Binary search takes 7ms. - \end{itemize} -\item - Then you test binary search with 1 billion elements and it takes 32ms. - - \begin{itemize} - \tightlist - \item - Binary search is about 15 times faster than simple search, because - simple search took 100 ms with 100 elements, and binary search took - 7 ms. So simple search will take 30 × 15 = 450ms with 1 billion - elements. - \end{itemize} -\item - Since that is within your threshold, you decide to go with simple - search. \textbf{Is this correct?} -\end{itemize} -\end{frame} - -\begin{frame}{A practical example} -\protect\hypertarget{a-practical-example}{} -\begin{itemize} -\tightlist -\item - Definitely wrong!! -\item - The run time of different algorithms can grow at different rates. -\item - Big-O tells us how run time increases as the list size increases. -\end{itemize} - -\begin{block}{Comparing run times of simple and binary search} -\protect\hypertarget{comparing-run-times-of-simple-and-binary-search}{} -\begin{longtable}[]{@{}lll@{}} -\toprule\noalign{} -Elements & Simple Search & Binary Search \\ -\midrule\noalign{} -\endhead -100 & 100 ms & 7 ms \\ -10,000 & 10 s & 14 ms \\ -1,000,000,000 & 11 days & 32 ms \\ -\bottomrule\noalign{} -\end{longtable} -\end{block} -\end{frame} - -\begin{frame}{Big-O Notation} -\protect\hypertarget{big-o-notation}{} -\begin{itemize} -\item - Big-O tells you how fast an algorithm is in terms of the number of - operations, \(n\). -\item - Simple search needs to take each element, so it will take \(n\) - operations. The run time in Big-O notation is \(O(n)\). -\item - Binary search needs log \(n\) operations, so the run time in Big-O - notation is \(O(\text{log}n)\) - - \begin{itemize} - \tightlist - \item - Note: log in computer science usually refers to log base 2. - \end{itemize} -\end{itemize} -\end{frame} - -\begin{frame}{Big-O is Upper Bound Run Time} -\protect\hypertarget{big-o-is-upper-bound-run-time}{} -\begin{itemize} -\item - Big-O notation is about the \emph{worst-case} scenario. - - \begin{itemize} - \tightlist - \item - If you were conducting linear search through a phone book, even if - you were looking for Abe Aberdeen, it is still considered \(O(n)\). - \end{itemize} -\item - Formally, it characterizes an upper bound on the asymptotic behavior - of the run time. -\item - For example, the function \(7n^3 + 30n^2 - 200n + 9\) has - highest-order term \(7n^3\). The function's growth rate is \(n^3\) - because the function grows no faster than \(n^3\). The Big-O is - \(O(n^3)\). -\end{itemize} -\end{frame} - -\begin{frame}{Common Big-O Run Times} -\protect\hypertarget{common-big-o-run-times}{} -Here are seven Big-O run times that you'll encounter frequently, sorted -from fasted to slowest. - -\begin{columns}[T] -\begin{column}{0.4\textwidth} -\includegraphics{images/big-o-viz.jpg} -\end{column} - -\begin{column}{0.6\textwidth} -\begin{itemize} -\item - \(O(1)\), known as \emph{constant time}. Ex: addition, division -\item - \(O(\text{log}n)\), known as \emph{logarithmic time}. Ex: binary - search -\item - \(O(n)\), known as \emph{linear time}. Ex: Linear search -\item - \(O(n\text{log}n)\). Ex: Tim Sort -\item - \(O(n^2)\), known as \emph{quadratic time}. Ex: Selection sort. -\item - \(O(2^n)\), known as \emph{exponential time}. Ex: Naive recursive - solution for nth Fibonacci number -\item - \(O(n!)\), known as \emph{factorial time}. Ex. Traveling salesperson -\end{itemize} -\end{column} -\end{columns} -\end{frame} - -\begin{frame}[fragile]{Determining Time Complexity} -\protect\hypertarget{determining-time-complexity}{} -Consider the following code. How can you determine the Big-O? - -\begin{Shaded} -\begin{Highlighting}[] -\KeywordTok{def}\NormalTok{ f(n):} - \ControlFlowTok{for}\NormalTok{ i }\KeywordTok{in} \BuiltInTok{range}\NormalTok{(n):} - \ControlFlowTok{for}\NormalTok{ j }\KeywordTok{in} \BuiltInTok{range}\NormalTok{(n):} - \BuiltInTok{print}\NormalTok{(i, j)} -\end{Highlighting} -\end{Shaded} -\end{frame} - -\begin{frame}[fragile]{Determining Time Complexity} -\protect\hypertarget{determining-time-complexity-1}{} -\begin{itemize} -\item - With ``raw'' Python code, you can usually count the number of nested - \texttt{for} loops to determine the Big-O - - \begin{itemize} - \item - A loop gives \(O(n)\) - \item - A nested loop gives \(O(n^2)\) - \end{itemize} -\item - It's usually not so simple in Data Science because of packages we use. -\item - There are many factors affecting the constants in your run time - - \begin{itemize} - \item - How complicated is each step? Is it \(n\) or \(2000n\)? - \item - How are your algorithms implemented? Is your programming language - fast? Are your libraries fast? - \end{itemize} -\item - Implementation issues will be covered later in the course. -\end{itemize} -\end{frame} - -\begin{frame}[fragile]{Big-O with Two Variables} -\protect\hypertarget{big-o-with-two-variables}{} -Consider the following code. What is it's Big-O? - -\begin{Shaded} -\begin{Highlighting}[] -\KeywordTok{def}\NormalTok{ fun(n,m):} - \ControlFlowTok{for}\NormalTok{ i }\KeywordTok{in} \BuiltInTok{range}\NormalTok{(n):} - \ControlFlowTok{for}\NormalTok{ j }\KeywordTok{in} \BuiltInTok{range}\NormalTok{(m):} - \BuiltInTok{print}\NormalTok{(}\StringTok{"Hello"}\NormalTok{)} -\end{Highlighting} -\end{Shaded} -\end{frame} - -\begin{frame}{Big-O with Two Variables} -\protect\hypertarget{big-o-with-two-variables-1}{} -\begin{itemize} -\item - The time complexity here is \(O(nm)\). - - \begin{itemize} - \tightlist - \item - If \(n = m\), then \(O(n^2)\). - \end{itemize} -\item - All terms should be combined into one Big-O - - \begin{itemize} - \item - \(O(nm)\) is correct and \(O(n)O(m)\) is incorrect. - \item - \(O(n + m)\) is correct and \(O(n) + O(m)\) is incorrect. - \item - \(O(n^2 + mn + m)\) is written as \(O(n^2 + nm)\). We can't throw - away either term because we don't know which term will dominate. - \end{itemize} -\item - Important to think about this when working with datasets. - - \begin{itemize} - \item - They have \(n\) rows and \(p\) columns. - \item - Can you reason how long it will take to fit a decision tree? - \end{itemize} -\end{itemize} -\end{frame} - -\hypertarget{best-average-and-worst-case}{% -\section{Best, Average, and Worst -Case}\label{best-average-and-worst-case}} - -\begin{frame}{Best, Average, and Worst Case} -\protect\hypertarget{best-average-and-worst-case-1}{} -\begin{itemize} -\item - Big-O deals with worst case. -\item - If we can develop a notion of an ``average input,'' then we can devise - the average case of an algorithm. -\item - Best case is useful to think about the constants in your algorithm. - - \begin{itemize} - \tightlist - \item - \(O(\text{log}n)\) is always faster than \(O(n)\) expect with very - small \(n\). - \end{itemize} -\end{itemize} -\end{frame} - -\hypertarget{space-complexity}{% -\section{Space Complexity}\label{space-complexity}} - -\begin{frame}{What is Space Complexity} -\protect\hypertarget{what-is-space-complexity}{} -\begin{itemize} -\item - Aside from our algorithm taking too long to run, its also an issue if - you run out of memory. - - \begin{itemize} - \item - Note, memory (RAM), is not the same as disk space. - \item - The computer will load data into memory from the disk - \end{itemize} -\item - It will be problematic if you need to load 2 billion observations all - at once. -\item - We can also analyze space complexity with Big-O notation -\item - Notice that time complexity is usually about the \emph{algorithm}, - while space complexity is about the \emph{data structure}. -\end{itemize} -\end{frame} - -\begin{frame}[fragile]{Examples} -\protect\hypertarget{examples}{} -\begin{itemize} -\item - Code that prints \texttt{hello\ \{your\ name\}} will have \(O(1)\) - space. -\item - Code that sums a list of size \(n\) has \(O(n)\) space. -\item - You have users on Instagram, and you want to store who follows who. - The answer depends (why?). The worst case space is \(O(n^2)\) -\end{itemize} -\end{frame} - -\hypertarget{recommended-problems-and-references}{% -\section{Recommended Problems and -References}\label{recommended-problems-and-references}} - -\begin{frame}{Recommended Problems} -\protect\hypertarget{recommended-problems}{} -\begin{itemize} -\item - Cormen: Chapter 1 exercises - - \begin{itemize} - \tightlist - \item - 1.2-1, 1.2-2, 1.2-3 - \end{itemize} -\item - Bhargava: Chapter 1 exercises - - \begin{itemize} - \tightlist - \item - 1.3 to 1.5 - \end{itemize} -\item - Additional (for the mathematically inclined) - - \begin{itemize} - \item - In CS, log is usually base 2, but a strong distinction is not made - because \emph{logs of different bases only differ by a constant - factor} and constants are dropped in Big-O. Show this is true - \item - Show that exponents of different bases \textbf{do not} differ by a - constant factor - \end{itemize} -\end{itemize} -\end{frame} - -\begin{frame}{References} -\protect\hypertarget{references}{} -\begin{itemize} -\item - Bhargava, A. Y. (2016). \emph{Grokking algorithms: An illustrated - guide for programmers and other curious people.} Manning. Chapter 1. -\item - Cormen, T. H. (Ed.). (2009). \emph{Introduction to algorithms} (3rd - ed). MIT Press. Chapter 1 and 3. -\end{itemize} -\end{frame} - - - -\end{document} diff --git a/slides-resources/1_motivation-big-o/1_motivation-big-o.toc b/slides-resources/1_motivation-big-o/1_motivation-big-o.toc deleted file mode 100644 index ca91969..0000000 --- a/slides-resources/1_motivation-big-o/1_motivation-big-o.toc +++ /dev/null @@ -1,5 +0,0 @@ -\beamer@sectionintoc {1}{Motivating Code Demos}{6}{0}{1} -\beamer@sectionintoc {2}{Time Complexity: Introduction to Big-O Notation}{15}{0}{2} -\beamer@sectionintoc {3}{Best, Average, and Worst Case}{25}{0}{3} -\beamer@sectionintoc {4}{Space Complexity}{27}{0}{4} -\beamer@sectionintoc {5}{Recommended Problems and References}{30}{0}{5} diff --git a/slides-resources/1_motivation-big-o/1_motivation-big-o.vrb b/slides-resources/1_motivation-big-o/1_motivation-big-o.vrb deleted file mode 100644 index d2212ab..0000000 --- a/slides-resources/1_motivation-big-o/1_motivation-big-o.vrb +++ /dev/null @@ -1,12 +0,0 @@ -\frametitle{Examples} -\protect\hypertarget{examples}{} -\begin{itemize} -\item - Code that prints \texttt{hello\ \{your\ name\}} will have \(O(1)\) - space. -\item - Code that sums a list of size \(n\) has \(O(n)\) space. -\item - You have users on Instagram, and you want to store who follows who. - The answer depends (why?). The worst case space is \(O(n^2)\) -\end{itemize} diff --git a/slides-resources/1_motivation-big-o/texput.log b/slides-resources/1_motivation-big-o/texput.log deleted file mode 100644 index 442d2c6..0000000 --- a/slides-resources/1_motivation-big-o/texput.log +++ /dev/null @@ -1,21 +0,0 @@ -This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) (preloaded format=pdflatex 2023.12.23) 2 JAN 2024 18:01 -entering extended mode - restricted \write18 enabled. - %&-line parsing enabled. -** - -! Emergency stop. -<*> - -End of file on the terminal! - - -Here is how much of TeX's memory you used: - 3 strings out of 474181 - 98 string characters out of 5745946 - 1924457 words of memory out of 5000000 - 22404 multiletter control sequences out of 15000+600000 - 558069 words of font info for 36 fonts, out of 8000000 for 9000 - 1141 hyphenation exceptions out of 8191 - 0i,0n,0p,1b,6s stack positions out of 10000i,1000n,20000p,200000b,200000s -! ==> Fatal error occurred, no output PDF file produced! diff --git a/slides-resources/2_ds-search-sort/.Rhistory b/slides-resources/2_ds-search-sort/.Rhistory deleted file mode 100644 index e69de29..0000000 diff --git a/slides-resources/2_ds-search-sort/2_ds-search-sort.aux b/slides-resources/2_ds-search-sort/2_ds-search-sort.aux deleted file mode 100644 index 235460c..0000000 --- a/slides-resources/2_ds-search-sort/2_ds-search-sort.aux +++ /dev/null @@ -1,88 +0,0 @@ -\relax -\providecommand\hyper@newdestlabel[2]{} -\providecommand\HyField@AuxAddToFields[1]{} -\providecommand\HyField@AuxAddToCoFields[2]{} -\providecommand\BKM@entry[2]{} -\@writefile{nav}{\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {1}{1}}} -\@writefile{nav}{\headcommand {\slideentry {0}{0}{2}{2/2}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {2}{2}}} -\BKM@entry{id=1,open,dest={4F75746C696E65302E31},srcline={256}}{5C3337365C3337375C303030415C303030725C303030725C303030615C303030795C3030305C3034305C303030425C303030615C303030735C303030655C303030645C3030305C3034305C303030445C303030615C303030745C303030615C3030305C3034305C303030535C303030745C303030725C303030755C303030635C303030745C303030755C303030725C303030655C30303073} -\@writefile{toc}{\beamer@sectionintoc {1}{Array Based Data Structures}{3}{0}{1}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {1}{2}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {1}{2}}} -\@writefile{nav}{\headcommand {\sectionentry {1}{Array Based Data Structures}{3}{Array Based Data Structures}{0}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{1}{3/3}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {3}{3}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{2}{4/4}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {4}{4}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{3}{5/5}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {5}{5}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{4}{6/6}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {6}{6}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{5}{7/7}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {7}{7}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{6}{8/8}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {8}{8}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{7}{9/9}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {9}{9}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{8}{10/10}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {10}{10}}} -\BKM@entry{id=2,open,dest={4F75746C696E65302E32},srcline={474}}{5C3337365C3337375C303030535C303030655C303030615C303030725C303030635C303030685C303030695C3030306E5C30303067} -\@writefile{toc}{\beamer@sectionintoc {2}{Searching}{11}{0}{2}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {3}{10}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {3}{10}}} -\@writefile{nav}{\headcommand {\sectionentry {2}{Searching}{11}{Searching}{0}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{1}{11/11}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {11}{11}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{2}{12/12}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {12}{12}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{3}{13/13}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {13}{13}}} -\BKM@entry{id=3,open,dest={4F75746C696E65302E33},srcline={536}}{5C3337365C3337375C303030535C3030306F5C303030725C303030745C303030695C3030306E5C30303067} -\@writefile{toc}{\beamer@sectionintoc {3}{Sorting}{14}{0}{3}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {11}{13}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {11}{13}}} -\@writefile{nav}{\headcommand {\sectionentry {3}{Sorting}{14}{Sorting}{0}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{1}{14/14}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {14}{14}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{2}{15/15}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {15}{15}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{3}{16/16}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {16}{16}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{4}{17/17}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {17}{17}}} -\BKM@entry{id=4,open,dest={4F75746C696E65302E34},srcline={612}}{5C3337365C3337375C303030485C303030615C303030735C303030685C3030305C3034305C3030306D5C303030615C303030705C3030302C5C3030305C3034305C303030685C303030615C303030735C303030685C3030305C3034305C303030745C303030615C303030625C3030306C5C303030655C3030305C3034305C3030305C3035305C303030505C303030795C303030745C303030685C3030306F5C3030306E5C3030305C3034305C303030645C303030695C303030635C303030745C303030695C3030306F5C3030306E5C303030615C303030725C303030795C3030305C3035315C3030302C5C3030305C3034305C303030685C303030615C303030735C303030685C3030305C3034305C303030665C303030755C3030306E5C303030635C303030745C303030695C3030306F5C3030306E5C30303073} -\@writefile{toc}{\beamer@sectionintoc {4}{Hash map, hash table (Python dictionary), hash functions}{18}{0}{4}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {14}{17}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {14}{17}}} -\@writefile{nav}{\headcommand {\sectionentry {4}{Hash map, hash table (Python dictionary), hash functions}{18}{Hash map, hash table (Python dictionary), hash functions}{0}}} -\@writefile{nav}{\headcommand {\slideentry {4}{0}{1}{18/18}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {18}{18}}} -\@writefile{nav}{\headcommand {\slideentry {4}{0}{2}{19/19}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {19}{19}}} -\@writefile{nav}{\headcommand {\slideentry {4}{0}{3}{20/20}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {20}{20}}} -\@writefile{nav}{\headcommand {\slideentry {4}{0}{4}{21/21}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {21}{21}}} -\@writefile{nav}{\headcommand {\slideentry {4}{0}{5}{22/22}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {22}{22}}} -\@writefile{nav}{\headcommand {\slideentry {4}{0}{6}{23/23}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {23}{23}}} -\BKM@entry{id=5,open,dest={4F75746C696E65302E35},srcline={770}}{5C3337365C3337375C303030525C303030655C303030635C3030306F5C3030306D5C3030306D5C303030655C3030306E5C303030645C303030655C303030645C3030305C3034305C303030505C303030725C3030306F5C303030625C3030306C5C303030655C3030306D5C303030735C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030525C303030655C303030665C303030655C303030725C303030655C3030306E5C303030635C303030655C30303073} -\@writefile{toc}{\beamer@sectionintoc {5}{Recommended Problems and References}{24}{0}{5}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {18}{23}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {18}{23}}} -\@writefile{nav}{\headcommand {\sectionentry {5}{Recommended Problems and References}{24}{Recommended Problems and References}{0}}} -\@writefile{nav}{\headcommand {\slideentry {5}{0}{1}{24/24}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {24}{24}}} -\@writefile{nav}{\headcommand {\slideentry {5}{0}{2}{25/25}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {25}{25}}} -\@writefile{nav}{\headcommand {\slideentry {5}{0}{3}{26/26}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {26}{26}}} -\@writefile{nav}{\headcommand {\beamer@partpages {1}{26}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {24}{26}}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {24}{26}}} -\@writefile{nav}{\headcommand {\beamer@documentpages {26}}} -\@writefile{nav}{\headcommand {\gdef \inserttotalframenumber {26}}} -\gdef \@abspage@last{26} diff --git a/slides-resources/2_ds-search-sort/2_ds-search-sort.log b/slides-resources/2_ds-search-sort/2_ds-search-sort.log deleted file mode 100644 index bebab8d..0000000 --- a/slides-resources/2_ds-search-sort/2_ds-search-sort.log +++ /dev/null @@ -1,2034 +0,0 @@ -This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) (preloaded format=pdflatex 2023.12.23) 10 JAN 2024 15:44 -entering extended mode - restricted \write18 enabled. - %&-line parsing enabled. -**2_ds-search-sort -(./2_ds-search-sort.tex -LaTeX2e <2023-11-01> -L3 programming layer <2023-12-11> -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamer.cls -Document Class: beamer 2023/05/15 v3.70 A class for typesetting presentations -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasemodes.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/etoolbox/etoolbox.sty -Package: etoolbox 2020/10/05 v2.5k e-TeX tools for LaTeX (JAW) -\etb@tempcnta=\count187 -) -\beamer@tempbox=\box51 -\beamer@tempcount=\count188 -\c@beamerpauses=\count189 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasedecode.sty -\beamer@slideinframe=\count190 -\beamer@minimum=\count191 -\beamer@decode@box=\box52 -) -\beamer@commentbox=\box53 -\beamer@modecount=\count192 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/iftex/iftex.sty -Package: iftex 2022/02/03 v1.0f TeX engine tests -) -\headdp=\dimen140 -\footheight=\dimen141 -\sidebarheight=\dimen142 -\beamer@tempdim=\dimen143 -\beamer@finalheight=\dimen144 -\beamer@animht=\dimen145 -\beamer@animdp=\dimen146 -\beamer@animwd=\dimen147 -\beamer@leftmargin=\dimen148 -\beamer@rightmargin=\dimen149 -\beamer@leftsidebar=\dimen150 -\beamer@rightsidebar=\dimen151 -\beamer@boxsize=\dimen152 -\beamer@vboxoffset=\dimen153 -\beamer@descdefault=\dimen154 -\beamer@descriptionwidth=\dimen155 -\beamer@lastskip=\skip48 -\beamer@areabox=\box54 -\beamer@animcurrent=\box55 -\beamer@animshowbox=\box56 -\beamer@sectionbox=\box57 -\beamer@logobox=\box58 -\beamer@linebox=\box59 -\beamer@sectioncount=\count193 -\beamer@subsubsectionmax=\count194 -\beamer@subsectionmax=\count195 -\beamer@sectionmax=\count196 -\beamer@totalheads=\count197 -\beamer@headcounter=\count198 -\beamer@partstartpage=\count199 -\beamer@sectionstartpage=\count266 -\beamer@subsectionstartpage=\count267 -\beamer@animationtempa=\count268 -\beamer@animationtempb=\count269 -\beamer@xpos=\count270 -\beamer@ypos=\count271 -\beamer@ypos@offset=\count272 -\beamer@showpartnumber=\count273 -\beamer@currentsubsection=\count274 -\beamer@coveringdepth=\count275 -\beamer@sectionadjust=\count276 -\beamer@toclastsection=\count277 -\beamer@tocsectionnumber=\count278 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseoptions.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics/keyval.sty -Package: keyval 2022/05/29 v1.15 key=value parser (DPC) -\KV@toks@=\toks17 -)) -\beamer@paperwidth=\skip49 -\beamer@paperheight=\skip50 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/geometry/geometry.sty -Package: geometry 2020/01/02 v5.9 Page Geometry - -(/usr/local/texlive/2023/texmf-dist/tex/generic/iftex/ifvtex.sty -Package: ifvtex 2019/10/25 v1.7 ifvtex legacy package. Use iftex instead. -) -\Gm@cnth=\count279 -\Gm@cntv=\count280 -\c@Gm@tempcnt=\count281 -\Gm@bindingoffset=\dimen156 -\Gm@wd@mp=\dimen157 -\Gm@odd@mp=\dimen158 -\Gm@even@mp=\dimen159 -\Gm@layoutwidth=\dimen160 -\Gm@layoutheight=\dimen161 -\Gm@layouthoffset=\dimen162 -\Gm@layoutvoffset=\dimen163 -\Gm@dimlist=\toks18 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/math/pgfmath.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/utilities/pgfrcs.sty -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgfutil-common.te -x -\pgfutil@everybye=\toks19 -\pgfutil@tempdima=\dimen164 -\pgfutil@tempdimb=\dimen165 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgfutil-latex.def -\pgfutil@abb=\box60 -) (/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgfrcs.code.tex -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/pgf.revision.tex) -Package: pgfrcs 2023-01-15 v3.1.10 (3.1.10) -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/utilities/pgfkeys.sty -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex -\pgfkeys@pathtoks=\toks20 -\pgfkeys@temptoks=\toks21 - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgfkeyslibraryfil -tered.code.tex -\pgfkeys@tmptoks=\toks22 -))) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathutil.code.tex -\pgf@x=\dimen166 -\pgf@xa=\dimen167 -\pgf@xb=\dimen168 -\pgf@xc=\dimen169 -\pgf@y=\dimen170 -\pgf@ya=\dimen171 -\pgf@yb=\dimen172 -\pgf@yc=\dimen173 -\c@pgf@counta=\count282 -\c@pgf@countb=\count283 -\c@pgf@countc=\count284 -\c@pgf@countd=\count285 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathparser.code.tex -\pgfmath@dimen=\dimen174 -\pgfmath@count=\count286 -\pgfmath@box=\box61 -\pgfmath@toks=\toks23 -\pgfmath@stack@operand=\toks24 -\pgfmath@stack@operation=\toks25 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.code. -tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.basic -.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.trigo -nometric.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.rando -m.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.compa -rison.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.base. -code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.round -.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.misc. -code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.integ -erarithmetics.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathcalc.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfloat.code.tex -\c@pgfmathroundto@lastzeros=\count287 -))) (/usr/local/texlive/2023/texmf-dist/tex/latex/base/size11.clo -File: size11.clo 2023/05/17 v1.4n Standard LaTeX file (size option) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/basiclayer/pgfcore.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics/graphicx.sty -Package: graphicx 2021/09/16 v1.2d Enhanced LaTeX Graphics (DPC,SPQR) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics/graphics.sty -Package: graphics 2022/03/10 v1.4e Standard LaTeX Graphics (DPC,SPQR) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics/trig.sty -Package: trig 2021/08/11 v1.11 sin cos tan (DPC) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics-cfg/graphics.cfg -File: graphics.cfg 2016/06/04 v1.11 sample graphics configuration -) -Package graphics Info: Driver file: pdftex.def on input line 107. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics-def/pdftex.def -File: pdftex.def 2022/09/22 v1.2b Graphics/color driver for pdftex -)) -\Gin@req@height=\dimen175 -\Gin@req@width=\dimen176 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/systemlayer/pgfsys.sty -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgfsys.code.tex -Package: pgfsys 2023-01-15 v3.1.10 (3.1.10) -\pgf@x=\dimen177 -\pgf@y=\dimen178 -\pgf@xa=\dimen179 -\pgf@ya=\dimen180 -\pgf@xb=\dimen181 -\pgf@yb=\dimen182 -\pgf@xc=\dimen183 -\pgf@yc=\dimen184 -\pgf@xd=\dimen185 -\pgf@yd=\dimen186 -\w@pgf@writea=\write3 -\r@pgf@reada=\read2 -\c@pgf@counta=\count288 -\c@pgf@countb=\count289 -\c@pgf@countc=\count290 -\c@pgf@countd=\count291 -\t@pgf@toka=\toks26 -\t@pgf@tokb=\toks27 -\t@pgf@tokc=\toks28 -\pgf@sys@id@count=\count292 -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgf.cfg -File: pgf.cfg 2023-01-15 v3.1.10 (3.1.10) -) -Driver file for pgf: pgfsys-pdftex.def - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-pdftex.d -ef -File: pgfsys-pdftex.def 2023-01-15 v3.1.10 (3.1.10) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-common-p -df.def -File: pgfsys-common-pdf.def 2023-01-15 v3.1.10 (3.1.10) -))) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgfsyssoftpath. -code.tex -File: pgfsyssoftpath.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfsyssoftpath@smallbuffer@items=\count293 -\pgfsyssoftpath@bigbuffer@items=\count294 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgfsysprotocol. -code.tex -File: pgfsysprotocol.code.tex 2023-01-15 v3.1.10 (3.1.10) -)) (/usr/local/texlive/2023/texmf-dist/tex/latex/xcolor/xcolor.sty -Package: xcolor 2023/11/15 v3.01 LaTeX color extensions (UK) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics-cfg/color.cfg -File: color.cfg 2016/01/02 v1.6 sample color configuration -) -Package xcolor Info: Driver file: pdftex.def on input line 274. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics/mathcolor.ltx) -Package xcolor Info: Model `cmy' substituted by `cmy0' on input line 1350. -Package xcolor Info: Model `hsb' substituted by `rgb' on input line 1354. -Package xcolor Info: Model `RGB' extended on input line 1366. -Package xcolor Info: Model `HTML' substituted by `rgb' on input line 1368. -Package xcolor Info: Model `Hsb' substituted by `hsb' on input line 1369. -Package xcolor Info: Model `tHsb' substituted by `hsb' on input line 1370. -Package xcolor Info: Model `HSB' substituted by `hsb' on input line 1371. -Package xcolor Info: Model `Gray' substituted by `gray' on input line 1372. -Package xcolor Info: Model `wave' substituted by `hsb' on input line 1373. -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcore.code.tex -Package: pgfcore 2023-01-15 v3.1.10 (3.1.10) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfint.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepoints.co -de.tex -File: pgfcorepoints.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@picminx=\dimen187 -\pgf@picmaxx=\dimen188 -\pgf@picminy=\dimen189 -\pgf@picmaxy=\dimen190 -\pgf@pathminx=\dimen191 -\pgf@pathmaxx=\dimen192 -\pgf@pathminy=\dimen193 -\pgf@pathmaxy=\dimen194 -\pgf@xx=\dimen195 -\pgf@xy=\dimen196 -\pgf@yx=\dimen197 -\pgf@yy=\dimen198 -\pgf@zx=\dimen199 -\pgf@zy=\dimen256 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathconst -ruct.code.tex -File: pgfcorepathconstruct.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@path@lastx=\dimen257 -\pgf@path@lasty=\dimen258 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathusage -.code.tex -File: pgfcorepathusage.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@shorten@end@additional=\dimen259 -\pgf@shorten@start@additional=\dimen260 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorescopes.co -de.tex -File: pgfcorescopes.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfpic=\box62 -\pgf@hbox=\box63 -\pgf@layerbox@main=\box64 -\pgf@picture@serial@count=\count295 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoregraphicst -ate.code.tex -File: pgfcoregraphicstate.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgflinewidth=\dimen261 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransform -ations.code.tex -File: pgfcoretransformations.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@pt@x=\dimen262 -\pgf@pt@y=\dimen263 -\pgf@pt@temp=\dimen264 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorequick.cod -e.tex -File: pgfcorequick.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreobjects.c -ode.tex -File: pgfcoreobjects.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathproce -ssing.code.tex -File: pgfcorepathprocessing.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorearrows.co -de.tex -File: pgfcorearrows.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfarrowsep=\dimen265 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreshade.cod -e.tex -File: pgfcoreshade.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@max=\dimen266 -\pgf@sys@shading@range@num=\count296 -\pgf@shadingcount=\count297 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreimage.cod -e.tex -File: pgfcoreimage.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreexternal. -code.tex -File: pgfcoreexternal.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfexternal@startupbox=\box65 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorelayers.co -de.tex -File: pgfcorelayers.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretranspare -ncy.code.tex -File: pgfcoretransparency.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepatterns. -code.tex -File: pgfcorepatterns.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorerdf.code. -tex -File: pgfcorerdf.code.tex 2023-01-15 v3.1.10 (3.1.10) -))) (/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/utilities/xxcolor.sty -Package: xxcolor 2003/10/24 ver 0.1 -\XC@nummixins=\count298 -\XC@countmixins=\count299 -) (/usr/local/texlive/2023/texmf-dist/tex/latex/base/atbegshi-ltx.sty -Package: atbegshi-ltx 2021/01/10 v1.0c Emulation of the original atbegshi -package with kernel methods -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/hyperref/hyperref.sty -Package: hyperref 2023-11-26 v7.01g Hypertext links for LaTeX - -(/usr/local/texlive/2023/texmf-dist/tex/generic/infwarerr/infwarerr.sty -Package: infwarerr 2019/12/03 v1.5 Providing info/warning/error messages (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/kvsetkeys/kvsetkeys.sty -Package: kvsetkeys 2022-10-05 v1.19 Key value parser (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/kvdefinekeys/kvdefinekeys.sty -Package: kvdefinekeys 2019-12-19 v1.6 Define keys (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pdfescape/pdfescape.sty -Package: pdfescape 2019/12/09 v1.15 Implements pdfTeX's escape features (HO) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/ltxcmds/ltxcmds.sty -Package: ltxcmds 2023-12-04 v1.26 LaTeX kernel commands for general use (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pdftexcmds/pdftexcmds.sty -Package: pdftexcmds 2020-06-27 v0.33 Utility functions of pdfTeX for LuaTeX (HO -) -Package pdftexcmds Info: \pdf@primitive is available. -Package pdftexcmds Info: \pdf@ifprimitive is available. -Package pdftexcmds Info: \pdfdraftmode found. -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/hycolor/hycolor.sty -Package: hycolor 2020-01-27 v1.10 Color options for hyperref/bookmark (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/letltxmacro/letltxmacro.sty -Package: letltxmacro 2019/12/03 v1.6 Let assignment for LaTeX macros (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/auxhook/auxhook.sty -Package: auxhook 2019-12-17 v1.6 Hooks for auxiliary files (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/hyperref/nameref.sty -Package: nameref 2023-11-26 v2.56 Cross-referencing by name of section - -(/usr/local/texlive/2023/texmf-dist/tex/latex/refcount/refcount.sty -Package: refcount 2019/12/15 v3.6 Data extraction from label references (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/gettitlestring/gettitlestring.s -ty -Package: gettitlestring 2019/12/15 v1.6 Cleanup title references (HO) - (/usr/local/texlive/2023/texmf-dist/tex/latex/kvoptions/kvoptions.sty -Package: kvoptions 2022-06-15 v3.15 Key value format for package options (HO) -)) -\c@section@level=\count300 -) -\@linkdim=\dimen267 -\Hy@linkcounter=\count301 -\Hy@pagecounter=\count302 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/hyperref/pd1enc.def -File: pd1enc.def 2023-11-26 v7.01g Hyperref: PDFDocEncoding definition (HO) -Now handling font encoding PD1 ... -... no UTF-8 mapping file for font encoding PD1 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/intcalc/intcalc.sty -Package: intcalc 2019/12/15 v1.3 Expandable calculations with integers (HO) -) -\Hy@SavedSpaceFactor=\count303 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/hyperref/puenc.def -File: puenc.def 2023-11-26 v7.01g Hyperref: PDF Unicode definition (HO) -Now handling font encoding PU ... -... no UTF-8 mapping file for font encoding PU -) -Package hyperref Info: Option `unicode' set `true' on input line 4064. -Package hyperref Info: Option `bookmarks' set `true' on input line 4064. -Package hyperref Info: Option `bookmarksopen' set `true' on input line 4064. -Package hyperref Info: Option `implicit' set `false' on input line 4064. -Package hyperref Info: Hyper figures OFF on input line 4181. -Package hyperref Info: Link nesting OFF on input line 4186. -Package hyperref Info: Hyper index ON on input line 4189. -Package hyperref Info: Plain pages OFF on input line 4196. -Package hyperref Info: Backreferencing OFF on input line 4201. -Package hyperref Info: Implicit mode OFF; no redefinition of LaTeX internals. -Package hyperref Info: Bookmarks ON on input line 4448. -\c@Hy@tempcnt=\count304 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/url/url.sty -\Urlmuskip=\muskip16 -Package: url 2013/09/16 ver 3.4 Verb mode for urls, etc. -) -LaTeX Info: Redefining \url on input line 4786. -\XeTeXLinkMargin=\dimen268 - -(/usr/local/texlive/2023/texmf-dist/tex/generic/bitset/bitset.sty -Package: bitset 2019/12/09 v1.3 Handle bit-vector datatype (HO) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/bigintcalc/bigintcalc.sty -Package: bigintcalc 2019/12/15 v1.5 Expandable calculations on big integers (HO -) -)) -\Fld@menulength=\count305 -\Field@Width=\dimen269 -\Fld@charsize=\dimen270 -Package hyperref Info: Hyper figures OFF on input line 6065. -Package hyperref Info: Link nesting OFF on input line 6070. -Package hyperref Info: Hyper index ON on input line 6073. -Package hyperref Info: backreferencing OFF on input line 6080. -Package hyperref Info: Link coloring OFF on input line 6085. -Package hyperref Info: Link coloring with OCG OFF on input line 6090. -Package hyperref Info: PDF/A mode OFF on input line 6095. -\Hy@abspage=\count306 - - -Package hyperref Message: Stopped early. - -) -Package hyperref Info: Driver (autodetected): hpdftex. - (/usr/local/texlive/2023/texmf-dist/tex/latex/hyperref/hpdftex.def -File: hpdftex.def 2023-11-26 v7.01g Hyperref driver for pdfTeX - -(/usr/local/texlive/2023/texmf-dist/tex/latex/base/atveryend-ltx.sty -Package: atveryend-ltx 2020/08/19 v1.0a Emulation of the original atveryend pac -kage -with kernel methods -) -\Fld@listcount=\count307 -\c@bookmark@seq@number=\count308 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/rerunfilecheck/rerunfilecheck.sty -Package: rerunfilecheck 2022-07-10 v1.10 Rerun checks for auxiliary files (HO) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/uniquecounter/uniquecounter.sty -Package: uniquecounter 2019/12/15 v1.4 Provide unlimited unique counter (HO) -) -Package uniquecounter Info: New unique counter `rerunfilecheck' on input line 2 -85. -)) (/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaserequires.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasecompatibility.st -y) (/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasefont.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsfonts/amssymb.sty -Package: amssymb 2013/01/14 v3.01 AMS font symbols - -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsfonts/amsfonts.sty -Package: amsfonts 2013/01/14 v3.01 Basic AMSFonts support -\@emptytoks=\toks29 -\symAMSa=\mathgroup4 -\symAMSb=\mathgroup5 -LaTeX Font Info: Redeclaring math symbol \hbar on input line 98. -LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold' -(Font) U/euf/m/n --> U/euf/b/n on input line 106. -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/sansmathaccent/sansmathaccent.sty -Package: sansmathaccent 2020/01/31 -(/usr/local/texlive/2023/texmf-dist/tex/latex/koma-script/scrlfile.sty -Package: scrlfile 2023/07/07 v3.41 KOMA-Script package (file load hooks) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/koma-script/scrlfile-hook.sty -Package: scrlfile-hook 2023/07/07 v3.41 KOMA-Script package (using LaTeX hooks) - - -(/usr/local/texlive/2023/texmf-dist/tex/latex/koma-script/scrlogo.sty -Package: scrlogo 2023/07/07 v3.41 KOMA-Script package (logo) -))))) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetranslator.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator.sty -Package: translator 2021-05-31 v1.12d Easy translation of strings in LaTeX -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasemisc.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetwoscreens.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseoverlay.sty -\beamer@argscount=\count309 -\beamer@lastskipcover=\skip51 -\beamer@trivlistdepth=\count310 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetitle.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasesection.sty -\c@lecture=\count311 -\c@part=\count312 -\c@section=\count313 -\c@subsection=\count314 -\c@subsubsection=\count315 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseframe.sty -\beamer@framebox=\box66 -\beamer@frametitlebox=\box67 -\beamer@zoombox=\box68 -\beamer@zoomcount=\count316 -\beamer@zoomframecount=\count317 -\beamer@frametextheight=\dimen271 -\c@subsectionslide=\count318 -\beamer@frametopskip=\skip52 -\beamer@framebottomskip=\skip53 -\beamer@frametopskipautobreak=\skip54 -\beamer@framebottomskipautobreak=\skip55 -\beamer@envbody=\toks30 -\framewidth=\dimen272 -\c@framenumber=\count319 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseverbatim.sty -\beamer@verbatimfileout=\write4 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseframesize.sty -\beamer@splitbox=\box69 -\beamer@autobreakcount=\count320 -\beamer@autobreaklastheight=\dimen273 -\beamer@frametitletoks=\toks31 -\beamer@framesubtitletoks=\toks32 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseframecomponents. -sty -\beamer@footins=\box70 -) (/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasecolor.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasenotes.sty -\beamer@frameboxcopy=\box71 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetoc.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetemplates.sty -\beamer@sbttoks=\toks33 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseauxtemplates.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseboxes.sty -\bmb@box=\box72 -\bmb@colorbox=\box73 -\bmb@boxwidth=\dimen274 -\bmb@boxheight=\dimen275 -\bmb@prevheight=\dimen276 -\bmb@temp=\dimen277 -\bmb@dima=\dimen278 -\bmb@dimb=\dimen279 -\bmb@prevheight=\dimen280 -) -\beamer@blockheadheight=\dimen281 -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaselocalstructure.s -ty (/usr/local/texlive/2023/texmf-dist/tex/latex/tools/enumerate.sty -Package: enumerate 2023/07/04 v3.00 enumerate extensions (DPC) -\@enLab=\toks34 -) -\beamer@bibiconwidth=\skip56 -\c@figure=\count321 -\c@table=\count322 -\abovecaptionskip=\skip57 -\belowcaptionskip=\skip58 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasenavigation.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasenavigationsymbol -s.tex) -\beamer@section@min@dim=\dimen282 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetheorems.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsmath/amsmath.sty -Package: amsmath 2023/05/13 v2.17o AMS math features -\@mathmargin=\skip59 - -For additional information on amsmath, use the `?' option. -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsmath/amstext.sty -Package: amstext 2021/08/26 v2.01 AMS text - -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsmath/amsgen.sty -File: amsgen.sty 1999/11/30 v2.0 generic functions -\@emptytoks=\toks35 -\ex@=\dimen283 -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsmath/amsbsy.sty -Package: amsbsy 1999/11/29 v1.2d Bold Symbols -\pmbraise@=\dimen284 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsmath/amsopn.sty -Package: amsopn 2022/04/08 v2.04 operator names -) -\inf@bad=\count323 -LaTeX Info: Redefining \frac on input line 234. -\uproot@=\count324 -\leftroot@=\count325 -LaTeX Info: Redefining \overline on input line 399. -LaTeX Info: Redefining \colon on input line 410. -\classnum@=\count326 -\DOTSCASE@=\count327 -LaTeX Info: Redefining \ldots on input line 496. -LaTeX Info: Redefining \dots on input line 499. -LaTeX Info: Redefining \cdots on input line 620. -\Mathstrutbox@=\box74 -\strutbox@=\box75 -LaTeX Info: Redefining \big on input line 722. -LaTeX Info: Redefining \Big on input line 723. -LaTeX Info: Redefining \bigg on input line 724. -LaTeX Info: Redefining \Bigg on input line 725. -\big@size=\dimen285 -LaTeX Font Info: Redeclaring font encoding OML on input line 743. -LaTeX Font Info: Redeclaring font encoding OMS on input line 744. -\macc@depth=\count328 -LaTeX Info: Redefining \bmod on input line 905. -LaTeX Info: Redefining \pmod on input line 910. -LaTeX Info: Redefining \smash on input line 940. -LaTeX Info: Redefining \relbar on input line 970. -LaTeX Info: Redefining \Relbar on input line 971. -\c@MaxMatrixCols=\count329 -\dotsspace@=\muskip17 -\c@parentequation=\count330 -\dspbrk@lvl=\count331 -\tag@help=\toks36 -\row@=\count332 -\column@=\count333 -\maxfields@=\count334 -\andhelp@=\toks37 -\eqnshift@=\dimen286 -\alignsep@=\dimen287 -\tagshift@=\dimen288 -\tagwidth@=\dimen289 -\totwidth@=\dimen290 -\lineht@=\dimen291 -\@envbody=\toks38 -\multlinegap=\skip60 -\multlinetaggap=\skip61 -\mathdisplay@stack=\toks39 -LaTeX Info: Redefining \[ on input line 2953. -LaTeX Info: Redefining \] on input line 2954. -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/amscls/amsthm.sty -Package: amsthm 2020/05/29 v2.20.6 -\thm@style=\toks40 -\thm@bodyfont=\toks41 -\thm@headfont=\toks42 -\thm@notefont=\toks43 -\thm@headpunct=\toks44 -\thm@preskip=\skip62 -\thm@postskip=\skip63 -\thm@headsep=\skip64 -\dth@everypar=\toks45 -) -\c@theorem=\count335 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasethemes.sty)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerthemedefault.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerfontthemedefault.sty -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamercolorthemedefault.st -y) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerinnerthemedefault.st -y -\beamer@dima=\dimen292 -\beamer@dimb=\dimen293 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerouterthemedefault.st -y))) (/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/utilities/pgfpages.sty -Package: pgfpages 2011/01/05 ver 0.02 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/tools/calc.sty -Package: calc 2023/07/08 v4.3 Infix arithmetic (KKT,FJ) -\calc@Acount=\count336 -\calc@Bcount=\count337 -\calc@Adimen=\dimen294 -\calc@Bdimen=\dimen295 -\calc@Askip=\skip65 -\calc@Bskip=\skip66 -LaTeX Info: Redefining \setlength on input line 80. -LaTeX Info: Redefining \addtolength on input line 81. -\calc@Ccount=\count338 -\calc@Cskip=\skip67 -) -\pgf@logicalpages=\count339 -\pgf@firstshipout=\count340 -\pgf@lastshipout=\count341 -\pgf@currentshipout=\count342 -\pgf@cpn=\count343 -\pgf@shipoutnextto=\count344 -\pgfphysicalheight=\dimen296 -\pgfphysicalwidth=\dimen297 -\pgfpages@shipoutbox=\box76 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/base/fontenc.sty -Package: fontenc 2021/04/29 v2.0v Standard LaTeX package -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/base/inputenc.sty -Package: inputenc 2021/02/14 v1.3d Input encoding file -\inpenc@prehook=\toks46 -\inpenc@posthook=\toks47 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/base/textcomp.sty -Package: textcomp 2020/02/02 v2.0n Standard LaTeX package -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/lmodern.sty -Package: lmodern 2015/05/01 v1.6.1 Latin Modern Fonts -LaTeX Font Info: Overwriting symbol font `operators' in version `normal' -(Font) OT1/cmr/m/n --> OT1/lmr/m/n on input line 22. -LaTeX Font Info: Overwriting symbol font `letters' in version `normal' -(Font) OML/cmm/m/it --> OML/lmm/m/it on input line 23. -LaTeX Font Info: Overwriting symbol font `symbols' in version `normal' -(Font) OMS/cmsy/m/n --> OMS/lmsy/m/n on input line 24. -LaTeX Font Info: Overwriting symbol font `largesymbols' in version `normal' -(Font) OMX/cmex/m/n --> OMX/lmex/m/n on input line 25. -LaTeX Font Info: Overwriting symbol font `operators' in version `bold' -(Font) OT1/cmr/bx/n --> OT1/lmr/bx/n on input line 26. -LaTeX Font Info: Overwriting symbol font `letters' in version `bold' -(Font) OML/cmm/b/it --> OML/lmm/b/it on input line 27. -LaTeX Font Info: Overwriting symbol font `symbols' in version `bold' -(Font) OMS/cmsy/b/n --> OMS/lmsy/b/n on input line 28. -LaTeX Font Info: Overwriting symbol font `largesymbols' in version `bold' -(Font) OMX/cmex/m/n --> OMX/lmex/m/n on input line 29. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `normal' -(Font) OT1/cmr/bx/n --> OT1/lmr/bx/n on input line 31. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `normal' -(Font) OT1/cmss/m/n --> OT1/lmss/m/n on input line 32. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `normal' -(Font) OT1/cmr/m/it --> OT1/lmr/m/it on input line 33. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `normal' -(Font) OT1/cmtt/m/n --> OT1/lmtt/m/n on input line 34. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `bold' -(Font) OT1/cmr/bx/n --> OT1/lmr/bx/n on input line 35. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `bold' -(Font) OT1/cmss/bx/n --> OT1/lmss/bx/n on input line 36. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `bold' -(Font) OT1/cmr/bx/it --> OT1/lmr/bx/it on input line 37. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `bold' -(Font) OT1/cmtt/m/n --> OT1/lmtt/m/n on input line 38. -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerthemeBoadilla.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamercolorthemerose.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerinnerthemerounded.st -y) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamercolorthemedolphin.st -y) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerouterthemeinfolines. -sty)) (/usr/local/texlive/2023/texmf-dist/tex/latex/upquote/upquote.sty -Package: upquote 2012/04/19 v1.3 upright-quote and grave-accent glyphs in verba -tim -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/microtype/microtype.sty -Package: microtype 2023/03/13 v3.1a Micro-typographical refinements (RS) -\MT@toks=\toks48 -\MT@tempbox=\box77 -\MT@count=\count345 -LaTeX Info: Redefining \noprotrusionifhmode on input line 1059. -LaTeX Info: Redefining \leftprotrusion on input line 1060. -\MT@prot@toks=\toks49 -LaTeX Info: Redefining \rightprotrusion on input line 1078. -LaTeX Info: Redefining \textls on input line 1368. -\MT@outer@kern=\dimen298 -LaTeX Info: Redefining \textmicrotypecontext on input line 1988. -\MT@listname@count=\count346 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/microtype/microtype-pdftex.def -File: microtype-pdftex.def 2023/03/13 v3.1a Definitions specific to pdftex (RS) - -LaTeX Info: Redefining \lsstyle on input line 902. -LaTeX Info: Redefining \lslig on input line 902. -\MT@outer@space=\skip68 -) -Package microtype Info: Loading configuration file microtype.cfg. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/microtype/microtype.cfg -File: microtype.cfg 2023/03/13 v3.1a microtype main configuration file (RS) -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/parskip/parskip.sty -Package: parskip 2021-03-14 v2.0h non-zero parskip adjustments -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/fancyvrb/fancyvrb.sty -Package: fancyvrb 2023/11/06 4.5b verbatim text (tvz,hv) -\FV@CodeLineNo=\count347 -\FV@InFile=\read3 -\FV@TabBox=\box78 -\c@FancyVerbLine=\count348 -\FV@StepNumber=\count349 -\FV@OutFile=\write5 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/framed/framed.sty -Package: framed 2011/10/22 v 0.96: framed or shaded text with page breaks -\OuterFrameSep=\skip69 -\fb@frw=\dimen299 -\fb@frh=\dimen300 -\FrameRule=\dimen301 -\FrameSep=\dimen302 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tools/longtable.sty -Package: longtable 2023-11-01 v4.19 Multi-page Table package (DPC) -\LTleft=\skip70 -\LTright=\skip71 -\LTpre=\skip72 -\LTpost=\skip73 -\LTchunksize=\count350 -\LTcapwidth=\dimen303 -\LT@head=\box79 -\LT@firsthead=\box80 -\LT@foot=\box81 -\LT@lastfoot=\box82 -\LT@gbox=\box83 -\LT@cols=\count351 -\LT@rows=\count352 -\c@LT@tables=\count353 -\c@LT@chunks=\count354 -\LT@p@ftn=\toks50 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/booktabs/booktabs.sty -Package: booktabs 2020/01/12 v1.61803398 Publication quality tables -\heavyrulewidth=\dimen304 -\lightrulewidth=\dimen305 -\cmidrulewidth=\dimen306 -\belowrulesep=\dimen307 -\belowbottomsep=\dimen308 -\aboverulesep=\dimen309 -\abovetopsep=\dimen310 -\cmidrulesep=\dimen311 -\cmidrulekern=\dimen312 -\defaultaddspace=\dimen313 -\@cmidla=\count355 -\@cmidlb=\count356 -\@aboverulesep=\dimen314 -\@belowrulesep=\dimen315 -\@thisruleclass=\count357 -\@lastruleclass=\count358 -\@thisrulewidth=\dimen316 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tools/array.sty -Package: array 2023/10/16 v2.5g Tabular extension package (FMi) -\col@sep=\dimen317 -\ar@mcellbox=\box84 -\extrarowheight=\dimen318 -\NC@list=\toks51 -\extratabsurround=\skip74 -\backup@length=\skip75 -\ar@cellbox=\box85 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/caption/caption.sty -Package: caption 2023/08/05 v3.6o Customizing captions (AR) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/caption/caption3.sty -Package: caption3 2023/07/31 v2.4d caption3 kernel (AR) -\caption@tempdima=\dimen319 -\captionmargin=\dimen320 -\caption@leftmargin=\dimen321 -\caption@rightmargin=\dimen322 -\caption@width=\dimen323 -\caption@indent=\dimen324 -\caption@parindent=\dimen325 -\caption@hangindent=\dimen326 -Package caption Info: beamer document class detected. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/caption/caption-beamer.sto -File: caption-beamer.sto 2022/01/06 v2.0c Adaption of the caption package to th -e beamer document classes (AR) -)) -\c@caption@flags=\count359 -\c@continuedfloat=\count360 -Package caption Info: hyperref package is loaded. -Package caption Info: Hyperref support is turned off -(caption) because hyperref has stopped early. -Package caption Info: longtable package is loaded. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/caption/ltcaption.sty -Package: ltcaption 2021/01/08 v1.4c longtable captions (AR) -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/float/float.sty -Package: float 2001/11/08 v1.3d Float enhancements (AL) -\c@float@type=\count361 -\float@exts=\toks52 -\float@box=\box86 -\@float@everytoks=\toks53 -\@floatcapt=\box87 -) -\@float@every@codelisting=\toks54 -\c@codelisting=\count362 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/caption/subcaption.sty -Package: subcaption 2023/07/28 v1.6b Sub-captions (AR) -Package caption Info: New subtype `subfigure' on input line 238. -\c@subfigure=\count363 -Package caption Info: New subtype `subtable' on input line 238. -\c@subtable=\count364 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tcolorbox/tcolorbox.sty -Package: tcolorbox 2023/09/26 version 6.1.0 text color boxes - -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/basiclayer/pgf.sty -Package: pgf 2023-01-15 v3.1.10 (3.1.10) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/modules/pgfmoduleshapes.cod -e.tex -File: pgfmoduleshapes.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfnodeparttextbox=\box88 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/modules/pgfmoduleplot.code. -tex -File: pgfmoduleplot.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version --0-65.sty -Package: pgfcomp-version-0-65 2023-01-15 v3.1.10 (3.1.10) -\pgf@nodesepstart=\dimen327 -\pgf@nodesepend=\dimen328 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version --1-18.sty -Package: pgfcomp-version-1-18 2023-01-15 v3.1.10 (3.1.10) -)) (/usr/local/texlive/2023/texmf-dist/tex/latex/tools/verbatim.sty -Package: verbatim 2023-11-06 v1.5v LaTeX2e package for verbatim enhancements -\every@verbatim=\toks55 -\verbatim@line=\toks56 -\verbatim@in@stream=\read4 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/environ/environ.sty -Package: environ 2014/05/04 v0.3 A new way to define environments - -(/usr/local/texlive/2023/texmf-dist/tex/latex/trimspaces/trimspaces.sty -Package: trimspaces 2009/09/17 v1.1 Trim spaces around a token list -)) -\tcb@titlebox=\box89 -\tcb@upperbox=\box90 -\tcb@lowerbox=\box91 -\tcb@phantombox=\box92 -\c@tcbbreakpart=\count365 -\c@tcblayer=\count366 -\c@tcolorbox@number=\count367 -\tcb@temp=\box93 -\tcb@temp=\box94 -\tcb@temp=\box95 -\tcb@temp=\box96 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/tcolorbox/tcbskins.code.tex -Library (tcolorbox): 'tcbskins.code.tex' version '6.1.0' -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/frontendlayer/tikz.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/utilities/pgffor.sty -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgffor.code.tex -Package: pgffor 2023-01-15 v3.1.10 (3.1.10) -\pgffor@iter=\dimen329 -\pgffor@skip=\dimen330 -\pgffor@stack=\toks57 -\pgffor@toks=\toks58 -)) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/frontendlayer/tikz/tikz.cod -e.tex -Package: tikz 2023-01-15 v3.1.10 (3.1.10) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/libraries/pgflibraryplothan -dlers.code.tex -File: pgflibraryplothandlers.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@plot@mark@count=\count368 -\pgfplotmarksize=\dimen331 -) -\tikz@lastx=\dimen332 -\tikz@lasty=\dimen333 -\tikz@lastxsaved=\dimen334 -\tikz@lastysaved=\dimen335 -\tikz@lastmovetox=\dimen336 -\tikz@lastmovetoy=\dimen337 -\tikzleveldistance=\dimen338 -\tikzsiblingdistance=\dimen339 -\tikz@figbox=\box97 -\tikz@figbox@bg=\box98 -\tikz@tempbox=\box99 -\tikz@tempbox@bg=\box100 -\tikztreelevel=\count369 -\tikznumberofchildren=\count370 -\tikznumberofcurrentchild=\count371 -\tikz@fig@count=\count372 - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/modules/pgfmodulematrix.cod -e.tex -File: pgfmodulematrix.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfmatrixcurrentrow=\count373 -\pgfmatrixcurrentcolumn=\count374 -\pgf@matrix@numberofcolumns=\count375 -) -\tikz@expandcount=\count376 - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/frontendlayer/tikz/librarie -s/tikzlibrarytopaths.code.tex -File: tikzlibrarytopaths.code.tex 2023-01-15 v3.1.10 (3.1.10) -))) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tikzfill/tikzfill.image.sty -Package: tikzfill.image 2023/08/08 v1.0.1 Image filling library for TikZ - -(/usr/local/texlive/2023/texmf-dist/tex/latex/tikzfill/tikzfill-common.sty -Package: tikzfill-common 2023/08/08 v1.0.1 Auxiliary code for tikzfill -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tikzfill/tikzlibraryfill.image.co -de.tex -File: tikzlibraryfill.image.code.tex 2023/08/08 v1.0.1 Image filling library -\l__tikzfill_img_box=\box101 -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tcolorbox/tcbskinsjigsaw.code.tex -Library (tcolorbox): 'tcbskinsjigsaw.code.tex' version '6.1.0' -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tcolorbox/tcbbreakable.code.tex -Library (tcolorbox): 'tcbbreakable.code.tex' version '6.1.0' -(/usr/local/texlive/2023/texmf-dist/tex/latex/pdfcol/pdfcol.sty -Package: pdfcol 2022-09-21 v1.7 Handle new color stacks for pdfTeX (HO) -) -Package pdfcol Info: New color stack `tcb@breakable' = 1 on input line 23. -\tcb@testbox=\box102 -\tcb@totalupperbox=\box103 -\tcb@totallowerbox=\box104 -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/bookmark/bookmark.sty -Package: bookmark 2023-12-10 v1.31 PDF bookmarks (HO) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/bookmark/bkm-pdftex.def -File: bkm-pdftex.def 2023-12-10 v1.31 bookmark driver for pdfTeX and luaTeX (HO -) -\BKM@id=\count377 -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/xurl/xurl.sty -Package: xurl 2022/01/09 v 0.10 modify URL breaks -) -LaTeX Font Info: Trying to load font information for T1+lmss on input line 2 -18. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/t1lmss.fd -File: t1lmss.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def -File: l3backend-pdftex.def 2023-11-09 L3 backend support: PDF output (pdfTeX) -\l__color_backend_stack_int=\count378 -\l__pdf_internal_box=\box105 -) -No file 2_ds-search-sort.aux. -\openout1 = `2_ds-search-sort.aux'. - -LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for TS1/cmr/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for PU/pdf/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -*geometry* driver: auto-detecting -*geometry* detected driver: pdftex -*geometry* verbose mode - [ preamble ] result: -* driver: pdftex -* paper: custom -* layout: -* layoutoffset:(h,v)=(0.0pt,0.0pt) -* modes: includehead includefoot -* h-part:(L,W,R)=(10.88002pt, 342.43532pt, 10.88002pt) -* v-part:(T,H,B)=(0.0pt, 273.14662pt, 0.0pt) -* \paperwidth=364.19536pt -* \paperheight=273.14662pt -* \textwidth=342.43532pt -* \textheight=244.6939pt -* \oddsidemargin=-61.38997pt -* \evensidemargin=-61.38997pt -* \topmargin=-72.26999pt -* \headheight=14.22636pt -* \headsep=0.0pt -* \topskip=11.0pt -* \footskip=14.22636pt -* \marginparwidth=4.0pt -* \marginparsep=10.0pt -* \columnsep=10.0pt -* \skip\footins=10.0pt plus 4.0pt minus 2.0pt -* \hoffset=0.0pt -* \voffset=0.0pt -* \mag=1000 -* \@twocolumnfalse -* \@twosidefalse -* \@mparswitchfalse -* \@reversemarginfalse -* (1in=72.27pt=25.4mm, 1cm=28.453pt) - -(/usr/local/texlive/2023/texmf-dist/tex/context/base/mkii/supp-pdf.mkii -[Loading MPS to PDF converter (version 2006.09.02).] -\scratchcounter=\count379 -\scratchdimen=\dimen340 -\scratchbox=\box106 -\nofMPsegments=\count380 -\nofMParguments=\count381 -\everyMPshowfont=\toks59 -\MPscratchCnt=\count382 -\MPscratchDim=\dimen341 -\MPnumerator=\count383 -\makeMPintoPDFobject=\count384 -\everyMPtoPDFconversion=\toks60 -) (/usr/local/texlive/2023/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty -Package: epstopdf-base 2020-01-24 v2.11 Base part for package epstopdf -Package epstopdf-base Info: Redefining graphics rule for `.eps' on input line 4 -85. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg -File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Liv -e -)) -Package hyperref Info: Link coloring OFF on input line 218. -LaTeX Font Info: Overwriting symbol font `operators' in version `normal' -(Font) OT1/lmr/m/n --> OT1/cmss/m/n on input line 218. -LaTeX Font Info: Overwriting symbol font `operators' in version `bold' -(Font) OT1/lmr/bx/n --> OT1/cmss/b/n on input line 218. -LaTeX Font Info: Overwriting symbol font `operators' in version `normal' -(Font) OT1/cmss/m/n --> OT1/lmss/m/n on input line 218. -LaTeX Font Info: Overwriting symbol font `operators' in version `bold' -(Font) OT1/cmss/b/n --> OT1/lmss/b/n on input line 218. -\symnumbers=\mathgroup6 -\sympureletters=\mathgroup7 -LaTeX Font Info: Overwriting math alphabet `\mathrm' in version `normal' -(Font) OT1/lmss/m/n --> T1/lmr/m/n on input line 218. -LaTeX Font Info: Redeclaring math alphabet \mathbf on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `normal' -(Font) OT1/lmr/bx/n --> T1/lmss/b/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `bold' -(Font) OT1/lmr/bx/n --> T1/lmss/b/n on input line 218. -LaTeX Font Info: Redeclaring math alphabet \mathsf on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `normal' -(Font) OT1/lmss/m/n --> T1/lmss/m/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `bold' -(Font) OT1/lmss/bx/n --> T1/lmss/m/n on input line 218. -LaTeX Font Info: Redeclaring math alphabet \mathit on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `normal' -(Font) OT1/lmr/m/it --> T1/lmss/m/it on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `bold' -(Font) OT1/lmr/bx/it --> T1/lmss/m/it on input line 218. -LaTeX Font Info: Redeclaring math alphabet \mathtt on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `normal' -(Font) OT1/lmtt/m/n --> T1/lmtt/m/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `bold' -(Font) OT1/lmtt/m/n --> T1/lmtt/m/n on input line 218. -LaTeX Font Info: Overwriting symbol font `numbers' in version `bold' -(Font) T1/lmss/m/n --> T1/lmss/b/n on input line 218. -LaTeX Font Info: Overwriting symbol font `pureletters' in version `bold' -(Font) T1/lmss/m/it --> T1/lmss/b/it on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathrm' in version `bold' -(Font) OT1/lmss/b/n --> T1/lmr/b/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `bold' -(Font) T1/lmss/b/n --> T1/lmss/b/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `bold' -(Font) T1/lmss/m/n --> T1/lmss/b/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `bold' -(Font) T1/lmss/m/it --> T1/lmss/b/it on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `bold' -(Font) T1/lmtt/m/n --> T1/lmtt/b/n on input line 218. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-basic-dicti -onary-English.dict -Dictionary: translator-basic-dictionary, Language: English -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-bibliograph -y-dictionary-English.dict -Dictionary: translator-bibliography-dictionary, Language: English -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-environment --dictionary-English.dict -Dictionary: translator-environment-dictionary, Language: English -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-months-dict -ionary-English.dict -Dictionary: translator-months-dictionary, Language: English -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-numbers-dic -tionary-English.dict -Dictionary: translator-numbers-dictionary, Language: English -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-theorem-dic -tionary-English.dict -Dictionary: translator-theorem-dictionary, Language: English -) -LaTeX Info: Redefining \microtypecontext on input line 218. -Package microtype Info: Applying patch `item' on input line 218. -Package microtype Info: Applying patch `toc' on input line 218. -Package microtype Info: Applying patch `eqnum' on input line 218. -Package microtype Info: Applying patch `footnote' on input line 218. -Package microtype Info: Applying patch `verbatim' on input line 218. -Package microtype Info: Generating PDF output. -Package microtype Info: Character protrusion enabled (level 2). -Package microtype Info: Using protrusion set `basicmath'. -Package microtype Info: Automatic font expansion enabled (level 2), -(microtype) stretch: 20, shrink: 20, step: 1, non-selected. -Package microtype Info: Using default expansion set `alltext-nott'. -LaTeX Info: Redefining \showhyphens on input line 218. -Package microtype Info: No adjustment of tracking. -Package microtype Info: No adjustment of interword spacing. -Package microtype Info: No adjustment of character kerning. -Package microtype Info: Loading generic protrusion settings for font family -(microtype) `lmss' (encoding: T1). -(microtype) For optimal results, create family-specific settings. -(microtype) See the microtype manual for details. -Package caption Info: Begin \AtBeginDocument code. -Package caption Info: float package is loaded. -Package caption Info: End \AtBeginDocument code. - -No file 2_ds-search-sort.nav. - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 218--218 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 218--218 - [][][][] - [] - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 219--219 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 219--219 - [][][][] - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) has occurred while \output is active - [][][][] - [] - -[1 - -{/usr/local/texlive/2023/texmf-var/fonts/map/pdftex/updmap/pdftex.map}{/usr/loc -al/texlive/2023/texmf-dist/fonts/enc/dvips/lm/lm-ec.enc}] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 252--252 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 252--252 - [][][][] - [] - -LaTeX Font Info: Trying to load font information for OT1+lmss on input line -252. -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/ot1lmss.fd -File: ot1lmss.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -LaTeX Font Info: Trying to load font information for OML+lmm on input line 2 -52. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/omllmm.fd -File: omllmm.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -LaTeX Font Info: Trying to load font information for OMS+lmsy on input line -252. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/omslmsy.fd -File: omslmsy.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -LaTeX Font Info: Trying to load font information for OMX+lmex on input line -252. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/omxlmex.fd -File: omxlmex.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <6> on input line 252. -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <5> on input line 252. -LaTeX Font Info: Trying to load font information for U+msa on input line 252 -. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsfonts/umsa.fd -File: umsa.fd 2013/01/14 v3.01 AMS symbols A -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/microtype/mt-msa.cfg -File: mt-msa.cfg 2006/02/04 v1.1 microtype config. file: AMS symbols (a) (RS) -) -LaTeX Font Info: Trying to load font information for U+msb on input line 252 -. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsfonts/umsb.fd -File: umsb.fd 2013/01/14 v3.01 AMS symbols B -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/microtype/mt-msb.cfg -File: mt-msb.cfg 2005/06/01 v1.0 microtype config. file: AMS symbols (b) (RS) -) -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <6> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 252. -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <5> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 252. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) has occurred while \output is active - [][][][] - [] - -[2 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 256--256 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 256--256 - [][][][] - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) has occurred while \output is active - [][][][] - [] - -[3 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 290--290 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 290--290 - [][][][] - [] - -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <10> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 290. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) has occurred while \output is active - [][][][] - [] - -[4 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 316--316 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 316--316 - [][][][] - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) has occurred while \output is active - [][][][] - [] - -[5 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 345--345 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 345--345 - [][][][] - [] - -Package microtype Info: Loading generic protrusion settings for font family -(microtype) `lmss' (encoding: OT1). -(microtype) For optimal results, create family-specific settings. -(microtype) See the microtype manual for details. -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <14.4> on input line 345. -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <10> on input line 345. -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <7> on input line 345. -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <14.4> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 345. -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <7> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 345. -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <9> on input line 345. -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <9> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 345. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) has occurred while \output is active - [][][][] - [] - -[6 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 347--347 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 347--347 - [][][][] - [] - -\openout4 = `2_ds-search-sort.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 378--378 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 378--378 - [][][][] - [] - -(./2_ds-search-sort.vrb -LaTeX Font Info: Trying to load font information for T1+lmtt on input line 5 -. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/t1lmtt.fd -File: t1lmtt.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -)) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) has occurred while \output is active - [][][][] - [] - -[7 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 380--380 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 380--380 - [][][][] - [] - -\openout4 = `2_ds-search-sort.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 416--416 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 416--416 - [][][][] - [] - -(./2_ds-search-sort.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) has occurred while \output is active - [][][][] - [] - -[8 - -{/usr/local/texlive/2023/texmf-dist/fonts/enc/dvips/lm/lm-rm.enc}] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 443--443 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 443--443 - [][][][] - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) has occurred while \output is active - [][][][] - [] - -[9 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 471--471 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 471--471 - [][][][] - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) has occurred while \output is active - [][][][] - [] - -[10 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 474--474 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 474--474 - [][][][] - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) has occurred while \output is active - [][][][] - [] - -[11 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 502--502 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 502--502 - [][][][] - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) has occurred while \output is active - [][][][] - [] - -[12 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 533--533 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 533--533 - [][][][] - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) has occurred while \output is active - [][][][] - [] - -[13 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 536--536 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 536--536 - [][][][] - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) has occurred while \output is active - [][][][] - [] - -[14 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 564--564 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 564--564 - [][][][] - [] - -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <10.95> on input line 564. -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <8> on input line 564. -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <10.95> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 564. -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <8> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 564. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) has occurred while \output is active - [][][][] - [] - -[15 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 585--585 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 585--585 - [][][][] - [] - - -File: images/insertion-sort.png Graphic file (type png) - -Package pdftex.def Info: images/insertion-sort.png used on input line 585. -(pdftex.def) Requested size: 136.97606pt x 162.23405pt. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) has occurred while \output is active - [][][][] - [] - -[16 - - <./images/insertion-sort.png>] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 587--587 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 587--587 - [][][][] - [] - -\openout4 = `2_ds-search-sort.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 608--608 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 608--608 - [][][][] - [] - -(./2_ds-search-sort.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) has occurred while \output is active - [][][][] - [] - -[17 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 612--612 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 612--612 - [][][][] - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) has occurred while \output is active - [][][][] - [] - -[18 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 638--638 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 638--638 - [][][][] - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) has occurred while \output is active - [][][][] - [] - -[19 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 640--640 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 640--640 - [][][][] - [] - -\openout4 = `2_ds-search-sort.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 678--678 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 678--678 - [][][][] - [] - -(./2_ds-search-sort.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) has occurred while \output is active - [][][][] - [] - -[20 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 721--721 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 721--721 - [][][][] - [] - - -Overfull \vbox (28.73784pt too high) detected at line 721 - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) has occurred while \output is active - [][][][] - [] - -[21 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 723--723 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 723--723 - [][][][] - [] - -\openout4 = `2_ds-search-sort.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 754--754 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 754--754 - [][][][] - [] - -(./2_ds-search-sort.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) has occurred while \output is active - [][][][] - [] - -[22 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 766--766 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 766--766 - [][][][] - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) has occurred while \output is active - [][][][] - [] - -[23 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 770--770 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 770--770 - [][][][] - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) has occurred while \output is active - [][][][] - [] - -[24 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 772--772 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 772--772 - [][][][] - [] - -\openout4 = `2_ds-search-sort.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 803--803 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 803--803 - [][][][] - [] - -(./2_ds-search-sort.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) has occurred while \output is active - [][][][] - [] - -[25 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 819--819 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) in paragraph at lines 819--819 - [][][][] - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (19.67068pt too wide) has occurred while \output is active - [][][][] - [] - -[26 - -] -\tf@nav=\write6 -\openout6 = `2_ds-search-sort.nav'. - -\tf@toc=\write7 -\openout7 = `2_ds-search-sort.toc'. - -\tf@snm=\write8 -\openout8 = `2_ds-search-sort.snm'. - - (./2_ds-search-sort.aux) - *********** -LaTeX2e <2023-11-01> -L3 programming layer <2023-12-11> - *********** - ) -Here is how much of TeX's memory you used: - 33574 strings out of 474181 - 687130 string characters out of 5745946 - 1937457 words of memory out of 5000000 - 54998 multiletter control sequences out of 15000+600000 - 651637 words of font info for 171 fonts, out of 8000000 for 9000 - 1141 hyphenation exceptions out of 8191 - 128i,15n,123p,1009b,649s stack positions out of 10000i,1000n,20000p,200000b,200000s - -Output written on 2_ds-search-sort.pdf (26 pages, 248523 bytes). -PDF statistics: - 348 PDF objects out of 1000 (max. 8388607) - 249 compressed objects within 3 object streams - 79 named destinations out of 1000 (max. 500000) - 55432 words of extra memory for PDF output out of 61914 (max. 10000000) - diff --git a/slides-resources/2_ds-search-sort/2_ds-search-sort.nav b/slides-resources/2_ds-search-sort/2_ds-search-sort.nav deleted file mode 100644 index 23ad7a1..0000000 --- a/slides-resources/2_ds-search-sort/2_ds-search-sort.nav +++ /dev/null @@ -1,72 +0,0 @@ -\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}} -\headcommand {\beamer@framepages {1}{1}} -\headcommand {\slideentry {0}{0}{2}{2/2}{}{0}} -\headcommand {\beamer@framepages {2}{2}} -\headcommand {\beamer@sectionpages {1}{2}} -\headcommand {\beamer@subsectionpages {1}{2}} -\headcommand {\sectionentry {1}{Array Based Data Structures}{3}{Array Based Data Structures}{0}} -\headcommand {\slideentry {1}{0}{1}{3/3}{}{0}} -\headcommand {\beamer@framepages {3}{3}} -\headcommand {\slideentry {1}{0}{2}{4/4}{}{0}} -\headcommand {\beamer@framepages {4}{4}} -\headcommand {\slideentry {1}{0}{3}{5/5}{}{0}} -\headcommand {\beamer@framepages {5}{5}} -\headcommand {\slideentry {1}{0}{4}{6/6}{}{0}} -\headcommand {\beamer@framepages {6}{6}} -\headcommand {\slideentry {1}{0}{5}{7/7}{}{0}} -\headcommand {\beamer@framepages {7}{7}} -\headcommand {\slideentry {1}{0}{6}{8/8}{}{0}} -\headcommand {\beamer@framepages {8}{8}} -\headcommand {\slideentry {1}{0}{7}{9/9}{}{0}} -\headcommand {\beamer@framepages {9}{9}} -\headcommand {\slideentry {1}{0}{8}{10/10}{}{0}} -\headcommand {\beamer@framepages {10}{10}} -\headcommand {\beamer@sectionpages {3}{10}} -\headcommand {\beamer@subsectionpages {3}{10}} -\headcommand {\sectionentry {2}{Searching}{11}{Searching}{0}} -\headcommand {\slideentry {2}{0}{1}{11/11}{}{0}} -\headcommand {\beamer@framepages {11}{11}} -\headcommand {\slideentry {2}{0}{2}{12/12}{}{0}} -\headcommand {\beamer@framepages {12}{12}} -\headcommand {\slideentry {2}{0}{3}{13/13}{}{0}} -\headcommand {\beamer@framepages {13}{13}} -\headcommand {\beamer@sectionpages {11}{13}} -\headcommand {\beamer@subsectionpages {11}{13}} -\headcommand {\sectionentry {3}{Sorting}{14}{Sorting}{0}} -\headcommand {\slideentry {3}{0}{1}{14/14}{}{0}} -\headcommand {\beamer@framepages {14}{14}} -\headcommand {\slideentry {3}{0}{2}{15/15}{}{0}} -\headcommand {\beamer@framepages {15}{15}} -\headcommand {\slideentry {3}{0}{3}{16/16}{}{0}} -\headcommand {\beamer@framepages {16}{16}} -\headcommand {\slideentry {3}{0}{4}{17/17}{}{0}} -\headcommand {\beamer@framepages {17}{17}} -\headcommand {\beamer@sectionpages {14}{17}} -\headcommand {\beamer@subsectionpages {14}{17}} -\headcommand {\sectionentry {4}{Hash map, hash table (Python dictionary), hash functions}{18}{Hash map, hash table (Python dictionary), hash functions}{0}} -\headcommand {\slideentry {4}{0}{1}{18/18}{}{0}} -\headcommand {\beamer@framepages {18}{18}} -\headcommand {\slideentry {4}{0}{2}{19/19}{}{0}} -\headcommand {\beamer@framepages {19}{19}} -\headcommand {\slideentry {4}{0}{3}{20/20}{}{0}} -\headcommand {\beamer@framepages {20}{20}} -\headcommand {\slideentry {4}{0}{4}{21/21}{}{0}} -\headcommand {\beamer@framepages {21}{21}} -\headcommand {\slideentry {4}{0}{5}{22/22}{}{0}} -\headcommand {\beamer@framepages {22}{22}} -\headcommand {\slideentry {4}{0}{6}{23/23}{}{0}} -\headcommand {\beamer@framepages {23}{23}} -\headcommand {\beamer@sectionpages {18}{23}} -\headcommand {\beamer@subsectionpages {18}{23}} -\headcommand {\sectionentry {5}{Recommended Problems and References}{24}{Recommended Problems and References}{0}} -\headcommand {\slideentry {5}{0}{1}{24/24}{}{0}} -\headcommand {\beamer@framepages {24}{24}} -\headcommand {\slideentry {5}{0}{2}{25/25}{}{0}} -\headcommand {\beamer@framepages {25}{25}} -\headcommand {\slideentry {5}{0}{3}{26/26}{}{0}} -\headcommand {\beamer@framepages {26}{26}} -\headcommand {\beamer@partpages {1}{26}} -\headcommand {\beamer@subsectionpages {24}{26}} -\headcommand {\beamer@sectionpages {24}{26}} -\headcommand {\beamer@documentpages {26}} -\headcommand {\gdef \inserttotalframenumber {26}} diff --git a/slides-resources/2_ds-search-sort/2_ds-search-sort.pdf b/slides-resources/2_ds-search-sort/2_ds-search-sort.pdf deleted file mode 100644 index 30f1619..0000000 Binary files a/slides-resources/2_ds-search-sort/2_ds-search-sort.pdf and /dev/null differ diff --git a/slides-resources/2_ds-search-sort/2_ds-search-sort.qmd b/slides-resources/2_ds-search-sort/2_ds-search-sort.qmd deleted file mode 100644 index f6ff894..0000000 --- a/slides-resources/2_ds-search-sort/2_ds-search-sort.qmd +++ /dev/null @@ -1,316 +0,0 @@ ---- -title: "Array-Based Data Structures, Searching, and Sorting" -format: - beamer: - institute: Data Sciences Institute, UofT - theme: Boadilla - colortheme: rose -execute: - echo: true -editor: visual -author: Salaar Liaqat ---- - -## Outline - -- Array Based Data Structures - - - Stack, queue, Python List - -- Searching - - - Linear, Binary Search - -- Sorting - - - Selection, Insertion Sort - -- Hash map, hash table (Python dictionary), hash functions - -# Array Based Data Structures - -## Abstract Data Types Versus Data Structure - -- Some concepts are generally useful and transcend any programming language - -- An **abstract data type** (ADT) defines some kind of data and operations that can be performed on it - - - Abstract because there is no mention of *how* data is stored or *how* the operations work - - - Concerned about "what" - -- A **data structure** is a concrete method of storing data (and therefore its operations). - - - For instance, Python List is a data structure because it has a specific implementation. - -- ADTs form a common vocabulary for computer scientists to discuss problems. It allows us to focus on the design and worry about implementation later. - -## Important ADTs - -- Set - - - Data: a collection of unique elements - - - Operations: get size, insert a value (without introducing duplicates), remove a specified value, check membership - -- List - - - Data: an ordered sequence of elements - - - Operations: access element by index, insert a value at a given index, remove a value at a given index - -## Important ADTs [^1] - -[^1]: From https://www.teach.cs.toronto.edu/\~csc148h/winter/notes/ - -- Map - - - Data: a collection of key-value pairs, where each key is unique and associated with a single value - - - Operations: look-up a value for a given key, insert a new key-value pair, remove a key-value pair, update the value associated with a given key - -- Iterable - - - Data: a collection of values (may or may not be unique) - - - Operations: iterate through the elements of the collection one at a time. - -## Relation between ADTs and Data Structures - -- A Python `list` is not a ADT. But it is a natural implementation of the List ADT. - - - The designers of Python implemented `list` operations - -- A single ADT can be implemented by many data structures - - - You could implement List ADT using a Python `dict` - - - We can store the list `["DS", 4, "Life"]` like this: `{0: "DS", 1: 4, 2: "Life"}` - -- A data structure can implement many ADTs - - - Practice: how can you implement a set with a Python `list`? - -## Python Lists - -- Each element has an address in memory. The addresses are ordered by index number and adjacent to each other. - -- Run time for `append` method - - - A new address is created and placed at the end of the list - - - $O(1)$ time because it doesn't matter how long the list is - -- Run time for `insert` method - - - The worst case occurs when you insert at the beginning of the list because each element in the list has to be shifted down by 1. - - - $O(n)$ time - -- Run time for `delete` method - - - If you remove the first element, all other elements must be shifted up by one. - - - $O(n)$ time - -## Stack - -- A stack contains zero or more items - - - Items are added at the top of the stack, called *pushing* - - - Items are removed from the top of the stack, called *popping* - -- The first item added to the stack is the last item removed - - - We call this "first-in-last-out" (LIFO) behavior - -- 2 minutes: is it faster to use the front or back of a Python list to implement a stack? What is the Big-O for stack operations under each choice? - -## Queue - -- A queue contains zero or more items - - - Items are added at the rear of the queue, called *enqueue* - - - Items are removed from the front of the queue, called *dequeing* - -- Items come out of the queue in the order they were added - - - We call this "first-in-first-out" (FIFO) behavior - -- 2 minutes: is it faster to use the front or back of a Python list to implement a queue? What is the Big-O for stack operations under each choice? - -# Searching - -## Motivating Example - -- You want to develop a ML method to search through a video to figure out when an bike is stolen. - -- You could start from the beginning of your video feed and run your ML method on each frame until you the bike is not in the frame. - - - This would take $O(n)$, probably a long time since you're using ML - -- What if we started halfway through? If the bike was there, then break the remaining video in half and check again. If the bike wasn't there, then break the previous part of the video in half and check again. - - - This is *binary search* - -## Binary Versus Linear Search - -- How many steps does binary searching through 100 numbers take? 10,000? - - - We can generalize this as $O(\text{log}n)$ - -- What is the big-O of linear searching through 100 numbers? 10,000? - - - $O(n)$ - -- Notice binary search requires the list to be sorted in advance. - - - We implicitly assumed this in the bike theft example (time is "sorted") - -# Sorting - -## Selection Sort - -- Suppose you want to sort prices of all fruits at a supermarket from lowest to highest - -- You go through the list, find the item with the lowest price then place it on top, then find the second lowest price and place it second, etc. - - - You will end up with a sorted list! - -- To find the lowest price, you need to traverse the entire list. You must do this $n$ times until there are no more items. - - - This takes $O(n^2)$ time - -## Insertion Sort - -::: columns -::: {.column width="60%"} -- Compare the current item to its predecessor. If the item is smaller than its predecessor, compare it to the items before. Move the greater items one position up to make space for the swapped item. - -- You need to traverse the list once for each item in the list, so the Big-O is $O(n^2)$. -::: - -::: {.column width="40%"} -![](images/insertion-sort.png) -::: -::: - -## Live Coding: - -The *h-index* is defined by Wikipedia as the maximum value of $h$ such that the given researcher has published at least $h$ papers that have each been cited at least $h$ times. - -Given a list of integers representing a researcher. Each index is their $ith$ publication and the value at the $ith$ index is the number of citation. Calculate the h-index of that researcher. - -### Example - -```{python} -#| eval: false -# INPUT -lst = [2,2,5,6] -# OUTPUT -2 -``` - -# Hash map, hash table (Python dictionary), hash functions - -## Motivating Example - -- Recall from the first lecture that searching in a Python set took (basically) 0 seconds - - - How was this achieved? - - - Binary search only has $O(\text{log}n)$ time, so there must be something else - -- To achieve $O(1)$ time, we need something that immediately knows the where/what the item is. - - - This is the purpose of *hash functions* - -## Hash Functions - -- A hash function is a function where you enter a string and it returns an integer - - - Python objects have hash - -```{python} -hash("DS 4 Life") -``` - -- There are two requirements for a hash function - - - It needs to be consistent. For instance, if you enter "UofT" and get "1827", then every time you enter "UofT" you should get "1827" - - - It maps different words to different numbers. Each string has a unique hash. - -## Using Hash Functions: Example - -- Suppose you have a grocery store catalog with prices and barcodes. When you scan an item at checkout, you want it to instantly return the price. - -- You can put each barcode into a hash function. - - - Let's say barcode "1234" *hashes* to "1" and "2" hashes to "9876" - - - We store the price of item "1234" at address "1". Store the price of item "4321" at address "2" - - - We say the price at "1" is the *hash value* of "1" - -- If there are 8 items sold at the store, then the hash function will only return integers from 1 to 8 - - - The size of the hash table is often referred to as its number of bins or slots. - - - Thus, the hash function depends on the array - -- This implementation is called a *hash table* - - - The hash table is basically a list of lists, and the hash function maps an object to its location in the outer list. - -## Python's Hash Tables: `dict` - -- You will likely never implement a hash table yourself, most languages have an implementation for has tables. - - - In Python, this is the `dict` class - -- Dictionaries have keys and values (barcodes and prices) - -- Dictionaries have really good performance. Search, insert, or delete item are all are $O(1)$ in the average case. - - - Average case assumes you have a "good" hash function that avoids *collisions*. You can read more about collisions in the textbooks. - - - The worst case of Python dictionaries for search, insert, and delete is $O(n)$. - -- Recall Python dictionaries don't allow duplicate keys, that is because has hashes must be unique! - -## Python `set` - -- Recall during the first lecture, we showcased that Python's set search was much faster than list search - -- This is because Python's set implements a hash function to store its values - -# Recommended Problems and References - -## Recommended Problems - -- Bhargava: Chapter 5 - - - 5.1 to 5.4 - - - Read pages 79 to 86 on the use cases of hash functions - -- Additional - - - Give examples of 2 situations to use a queue and 2 situations to use a stack - - - In Python, code a `stack` class with `is_empty`, `push`, and `pop` methods using the end of a Python list as the top of the stack. Bonus: Compare the run time of using the start of the list versus the end of the list as the top of the stack using the `timeit` library! - - - In Python, code a `binary_search` function. - - - In Python, code a `hash_table` that can hash 4 values. - -## References - -- Bhargava, A. Y. (2016). *Grokking algorithms: An illustrated guide for programmers and other curious people.* Manning. Chapter 5. - -- Cormen, T. H. (Ed.). (2009). *Introduction to algorithms* (3rd ed). MIT Press. Chapter 2, 10, 11. - -- Horton, D., & Liu, D. (2023, November 19). *CSC148 Lecture Notes*. https://www.teach.cs.toronto.edu/\~csc148h/winter/notes/ diff --git a/slides-resources/2_ds-search-sort/2_ds-search-sort.snm b/slides-resources/2_ds-search-sort/2_ds-search-sort.snm deleted file mode 100644 index e69de29..0000000 diff --git a/slides-resources/2_ds-search-sort/2_ds-search-sort.tex b/slides-resources/2_ds-search-sort/2_ds-search-sort.tex deleted file mode 100644 index 8a2a546..0000000 --- a/slides-resources/2_ds-search-sort/2_ds-search-sort.tex +++ /dev/null @@ -1,823 +0,0 @@ -% Options for packages loaded elsewhere -\PassOptionsToPackage{unicode}{hyperref} -\PassOptionsToPackage{hyphens}{url} -% -\documentclass[ - ignorenonframetext, -]{beamer} -\usepackage{pgfpages} -\setbeamertemplate{caption}[numbered] -\setbeamertemplate{caption label separator}{: } -\setbeamercolor{caption name}{fg=normal text.fg} -\beamertemplatenavigationsymbolsempty -% Prevent slide breaks in the middle of a paragraph -\widowpenalties 1 10000 -\raggedbottom -\setbeamertemplate{part page}{ - \centering - \begin{beamercolorbox}[sep=16pt,center]{part title} - \usebeamerfont{part title}\insertpart\par - \end{beamercolorbox} -} -\setbeamertemplate{section page}{ - \centering - \begin{beamercolorbox}[sep=12pt,center]{part title} - \usebeamerfont{section title}\insertsection\par - \end{beamercolorbox} -} -\setbeamertemplate{subsection page}{ - \centering - \begin{beamercolorbox}[sep=8pt,center]{part title} - \usebeamerfont{subsection title}\insertsubsection\par - \end{beamercolorbox} -} -\AtBeginPart{ - \frame{\partpage} -} -\AtBeginSection{ - \ifbibliography - \else - \frame{\sectionpage} - \fi -} -\AtBeginSubsection{ - \frame{\subsectionpage} -} - -\usepackage{amsmath,amssymb} -\usepackage{iftex} -\ifPDFTeX - \usepackage[T1]{fontenc} - \usepackage[utf8]{inputenc} - \usepackage{textcomp} % provide euro and other symbols -\else % if luatex or xetex - \usepackage{unicode-math} - \defaultfontfeatures{Scale=MatchLowercase} - \defaultfontfeatures[\rmfamily]{Ligatures=TeX,Scale=1} -\fi -\usepackage{lmodern} -\usetheme[]{Boadilla} -\usecolortheme{rose} -\ifPDFTeX\else - % xetex/luatex font selection -\fi -% Use upquote if available, for straight quotes in verbatim environments -\IfFileExists{upquote.sty}{\usepackage{upquote}}{} -\IfFileExists{microtype.sty}{% use microtype if available - \usepackage[]{microtype} - \UseMicrotypeSet[protrusion]{basicmath} % disable protrusion for tt fonts -}{} -\makeatletter -\@ifundefined{KOMAClassName}{% if non-KOMA class - \IfFileExists{parskip.sty}{% - \usepackage{parskip} - }{% else - \setlength{\parindent}{0pt} - \setlength{\parskip}{6pt plus 2pt minus 1pt}} -}{% if KOMA class - \KOMAoptions{parskip=half}} -\makeatother -\usepackage{xcolor} -\newif\ifbibliography -\setlength{\emergencystretch}{3em} % prevent overfull lines -\setcounter{secnumdepth}{-\maxdimen} % remove section numbering - -\usepackage{color} -\usepackage{fancyvrb} -\newcommand{\VerbBar}{|} -\newcommand{\VERB}{\Verb[commandchars=\\\{\}]} -\DefineVerbatimEnvironment{Highlighting}{Verbatim}{commandchars=\\\{\}} -% Add ',fontsize=\small' for more characters per line -\usepackage{framed} -\definecolor{shadecolor}{RGB}{241,243,245} -\newenvironment{Shaded}{\begin{snugshade}}{\end{snugshade}} -\newcommand{\AlertTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\AnnotationTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{#1}} -\newcommand{\AttributeTok}[1]{\textcolor[rgb]{0.40,0.45,0.13}{#1}} -\newcommand{\BaseNTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\BuiltInTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\CharTok}[1]{\textcolor[rgb]{0.13,0.47,0.30}{#1}} -\newcommand{\CommentTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{#1}} -\newcommand{\CommentVarTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{\textit{#1}}} -\newcommand{\ConstantTok}[1]{\textcolor[rgb]{0.56,0.35,0.01}{#1}} -\newcommand{\ControlFlowTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\DataTypeTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\DecValTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\DocumentationTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{\textit{#1}}} -\newcommand{\ErrorTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\ExtensionTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\FloatTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\FunctionTok}[1]{\textcolor[rgb]{0.28,0.35,0.67}{#1}} -\newcommand{\ImportTok}[1]{\textcolor[rgb]{0.00,0.46,0.62}{#1}} -\newcommand{\InformationTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{#1}} -\newcommand{\KeywordTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\NormalTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\OperatorTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{#1}} -\newcommand{\OtherTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\PreprocessorTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\RegionMarkerTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\SpecialCharTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{#1}} -\newcommand{\SpecialStringTok}[1]{\textcolor[rgb]{0.13,0.47,0.30}{#1}} -\newcommand{\StringTok}[1]{\textcolor[rgb]{0.13,0.47,0.30}{#1}} -\newcommand{\VariableTok}[1]{\textcolor[rgb]{0.07,0.07,0.07}{#1}} -\newcommand{\VerbatimStringTok}[1]{\textcolor[rgb]{0.13,0.47,0.30}{#1}} -\newcommand{\WarningTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{\textit{#1}}} - -\providecommand{\tightlist}{% - \setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}\usepackage{longtable,booktabs,array} -\usepackage{calc} % for calculating minipage widths -\usepackage{caption} -% Make caption package work with longtable -\makeatletter -\def\fnum@table{\tablename~\thetable} -\makeatother -\usepackage{graphicx} -\makeatletter -\def\maxwidth{\ifdim\Gin@nat@width>\linewidth\linewidth\else\Gin@nat@width\fi} -\def\maxheight{\ifdim\Gin@nat@height>\textheight\textheight\else\Gin@nat@height\fi} -\makeatother -% Scale images if necessary, so that they will not overflow the page -% margins by default, and it is still possible to overwrite the defaults -% using explicit options in \includegraphics[width, height, ...]{} -\setkeys{Gin}{width=\maxwidth,height=\maxheight,keepaspectratio} -% Set default figure placement to htbp -\makeatletter -\def\fps@figure{htbp} -\makeatother - -\makeatletter -\makeatother -\makeatletter -\makeatother -\makeatletter -\@ifpackageloaded{caption}{}{\usepackage{caption}} -\AtBeginDocument{% -\ifdefined\contentsname - \renewcommand*\contentsname{Table of contents} -\else - \newcommand\contentsname{Table of contents} -\fi -\ifdefined\listfigurename - \renewcommand*\listfigurename{List of Figures} -\else - \newcommand\listfigurename{List of Figures} -\fi -\ifdefined\listtablename - \renewcommand*\listtablename{List of Tables} -\else - \newcommand\listtablename{List of Tables} -\fi -\ifdefined\figurename - \renewcommand*\figurename{Figure} -\else - \newcommand\figurename{Figure} -\fi -\ifdefined\tablename - \renewcommand*\tablename{Table} -\else - \newcommand\tablename{Table} -\fi -} -\@ifpackageloaded{float}{}{\usepackage{float}} -\floatstyle{ruled} -\@ifundefined{c@chapter}{\newfloat{codelisting}{h}{lop}}{\newfloat{codelisting}{h}{lop}[chapter]} -\floatname{codelisting}{Listing} -\newcommand*\listoflistings{\listof{codelisting}{List of Listings}} -\makeatother -\makeatletter -\@ifpackageloaded{caption}{}{\usepackage{caption}} -\@ifpackageloaded{subcaption}{}{\usepackage{subcaption}} -\makeatother -\makeatletter -\@ifpackageloaded{tcolorbox}{}{\usepackage[skins,breakable]{tcolorbox}} -\makeatother -\makeatletter -\@ifundefined{shadecolor}{\definecolor{shadecolor}{rgb}{.97, .97, .97}} -\makeatother -\makeatletter -\makeatother -\makeatletter -\makeatother -\ifLuaTeX - \usepackage{selnolig} % disable illegal ligatures -\fi -\IfFileExists{bookmark.sty}{\usepackage{bookmark}}{\usepackage{hyperref}} -\IfFileExists{xurl.sty}{\usepackage{xurl}}{} % add URL line breaks if available -\urlstyle{same} % disable monospaced font for URLs -\hypersetup{ - pdftitle={Array-Based Data Structures, Searching, and Sorting}, - pdfauthor={Salaar Liaqat}, - hidelinks, - pdfcreator={LaTeX via pandoc}} - -\title{Array-Based Data Structures, Searching, and Sorting} -\author{Salaar Liaqat} -\date{} -\institute{Data Sciences Institute, UofT} - -\begin{document} -\frame{\titlepage} -\ifdefined\Shaded\renewenvironment{Shaded}{\begin{tcolorbox}[interior hidden, borderline west={3pt}{0pt}{shadecolor}, frame hidden, boxrule=0pt, breakable, sharp corners, enhanced]}{\end{tcolorbox}}\fi - -\begin{frame}{Outline} -\protect\hypertarget{outline}{} -\begin{itemize} -\item - Array Based Data Structures - - \begin{itemize} - \tightlist - \item - Stack, queue, Python List - \end{itemize} -\item - Searching - - \begin{itemize} - \tightlist - \item - Linear, Binary Search - \end{itemize} -\item - Sorting - - \begin{itemize} - \tightlist - \item - Selection, Insertion Sort - \end{itemize} -\item - Hash map, hash table (Python dictionary), hash functions -\end{itemize} -\end{frame} - -\hypertarget{array-based-data-structures}{% -\section{Array Based Data -Structures}\label{array-based-data-structures}} - -\begin{frame}{Abstract Data Types Versus Data Structure} -\protect\hypertarget{abstract-data-types-versus-data-structure}{} -\begin{itemize} -\item - Some concepts are generally useful and transcend any programming - language -\item - An \textbf{abstract data type} (ADT) defines some kind of data and - operations that can be performed on it - - \begin{itemize} - \item - Abstract because there is no mention of \emph{how} data is stored or - \emph{how} the operations work - \item - Concerned about ``what'' - \end{itemize} -\item - A \textbf{data structure} is a concrete method of storing data (and - therefore its operations). - - \begin{itemize} - \tightlist - \item - For instance, Python List is a data structure because it has a - specific implementation. - \end{itemize} -\item - ADTs form a common vocabulary for computer scientists to discuss - problems. It allows us to focus on the design and worry about - implementation later. -\end{itemize} -\end{frame} - -\begin{frame}{Important ADTs} -\protect\hypertarget{important-adts}{} -\begin{itemize} -\item - Set - - \begin{itemize} - \item - Data: a collection of unique elements - \item - Operations: get size, insert a value (without introducing - duplicates), remove a specified value, check membership - \end{itemize} -\item - List - - \begin{itemize} - \item - Data: an ordered sequence of elements - \item - Operations: access element by index, insert a value at a given - index, remove a value at a given index - \end{itemize} -\end{itemize} -\end{frame} - -\begin{frame}{Important ADTs \footnote<.->{From - https://www.teach.cs.toronto.edu/\textasciitilde csc148h/winter/notes/}} -\protect\hypertarget{important-adts-1}{} -\begin{itemize} -\item - Map - - \begin{itemize} - \item - Data: a collection of key-value pairs, where each key is unique and - associated with a single value - \item - Operations: look-up a value for a given key, insert a new key-value - pair, remove a key-value pair, update the value associated with a - given key - \end{itemize} -\item - Iterable - - \begin{itemize} - \item - Data: a collection of values (may or may not be unique) - \item - Operations: iterate through the elements of the collection one at a - time. - \end{itemize} -\end{itemize} -\end{frame} - -\begin{frame}[fragile]{Relation between ADTs and Data Structures} -\protect\hypertarget{relation-between-adts-and-data-structures}{} -\begin{itemize} -\item - A Python \texttt{list} is not a ADT. But it is a natural - implementation of the List ADT. - - \begin{itemize} - \tightlist - \item - The designers of Python implemented \texttt{list} operations - \end{itemize} -\item - A single ADT can be implemented by many data structures - - \begin{itemize} - \item - You could implement List ADT using a Python \texttt{dict} - \item - We can store the list \texttt{{[}"DS",\ 4,\ "Life"{]}} like this: - \texttt{\{0:\ "DS",\ 1:\ 4,\ 2:\ "Life"\}} - \end{itemize} -\item - A data structure can implement many ADTs - - \begin{itemize} - \tightlist - \item - Practice: how can you implement a set with a Python \texttt{list}? - \end{itemize} -\end{itemize} -\end{frame} - -\begin{frame}[fragile]{Python Lists} -\protect\hypertarget{python-lists}{} -\begin{itemize} -\item - Each element has an address in memory. The addresses are ordered by - index number and adjacent to each other. -\item - Run time for \texttt{append} method - - \begin{itemize} - \item - A new address is created and placed at the end of the list - \item - \(O(1)\) time because it doesn't matter how long the list is - \end{itemize} -\item - Run time for \texttt{insert} method - - \begin{itemize} - \item - The worst case occurs when you insert at the beginning of the list - because each element in the list has to be shifted down by 1. - \item - \(O(n)\) time - \end{itemize} -\item - Run time for \texttt{delete} method - - \begin{itemize} - \item - If you remove the first element, all other elements must be shifted - up by one. - \item - \(O(n)\) time - \end{itemize} -\end{itemize} -\end{frame} - -\begin{frame}{Stack} -\protect\hypertarget{stack}{} -\begin{itemize} -\item - A stack contains zero or more items - - \begin{itemize} - \item - Items are added at the top of the stack, called \emph{pushing} - \item - Items are removed from the top of the stack, called \emph{popping} - \end{itemize} -\item - The first item added to the stack is the last item removed - - \begin{itemize} - \tightlist - \item - We call this ``first-in-last-out'' (LIFO) behavior - \end{itemize} -\item - 2 minutes: is it faster to use the front or back of a Python list to - implement a stack? What is the Big-O for stack operations under each - choice? -\end{itemize} -\end{frame} - -\begin{frame}{Queue} -\protect\hypertarget{queue}{} -\begin{itemize} -\item - A queue contains zero or more items - - \begin{itemize} - \item - Items are added at the rear of the queue, called \emph{enqueue} - \item - Items are removed from the front of the queue, called - \emph{dequeing} - \end{itemize} -\item - Items come out of the queue in the order they were added - - \begin{itemize} - \tightlist - \item - We call this ``first-in-first-out'' (FIFO) behavior - \end{itemize} -\item - 2 minutes: is it faster to use the front or back of a Python list to - implement a queue? What is the Big-O for stack operations under each - choice? -\end{itemize} -\end{frame} - -\hypertarget{searching}{% -\section{Searching}\label{searching}} - -\begin{frame}{Motivating Example} -\protect\hypertarget{motivating-example}{} -\begin{itemize} -\item - You want to develop a ML method to search through a video to figure - out when an bike is stolen. -\item - You could start from the beginning of your video feed and run your ML - method on each frame until you the bike is not in the frame. - - \begin{itemize} - \tightlist - \item - This would take \(O(n)\), probably a long time since you're using ML - \end{itemize} -\item - What if we started halfway through? If the bike was there, then break - the remaining video in half and check again. If the bike wasn't there, - then break the previous part of the video in half and check again. - - \begin{itemize} - \tightlist - \item - This is \emph{binary search} - \end{itemize} -\end{itemize} -\end{frame} - -\begin{frame}{Binary Versus Linear Search} -\protect\hypertarget{binary-versus-linear-search}{} -\begin{itemize} -\item - How many steps does binary searching through 100 numbers take? 10,000? - - \begin{itemize} - \tightlist - \item - We can generalize this as \(O(\text{log}n)\) - \end{itemize} -\item - What is the big-O of linear searching through 100 numbers? 10,000? - - \begin{itemize} - \tightlist - \item - \(O(n)\) - \end{itemize} -\item - Notice binary search requires the list to be sorted in advance. - - \begin{itemize} - \tightlist - \item - We implicitly assumed this in the bike theft example (time is - ``sorted'') - \end{itemize} -\end{itemize} -\end{frame} - -\hypertarget{sorting}{% -\section{Sorting}\label{sorting}} - -\begin{frame}{Selection Sort} -\protect\hypertarget{selection-sort}{} -\begin{itemize} -\item - Suppose you want to sort prices of all fruits at a supermarket from - lowest to highest -\item - You go through the list, find the item with the lowest price then - place it on top, then find the second lowest price and place it - second, etc. - - \begin{itemize} - \tightlist - \item - You will end up with a sorted list! - \end{itemize} -\item - To find the lowest price, you need to traverse the entire list. You - must do this \(n\) times until there are no more items. - - \begin{itemize} - \tightlist - \item - This takes \(O(n^2)\) time - \end{itemize} -\end{itemize} -\end{frame} - -\begin{frame}{Insertion Sort} -\protect\hypertarget{insertion-sort}{} -\begin{columns}[T] -\begin{column}{0.6\textwidth} -\begin{itemize} -\item - Compare the current item to its predecessor. If the item is smaller - than its predecessor, compare it to the items before. Move the greater - items one position up to make space for the swapped item. -\item - You need to traverse the list once for each item in the list, so the - Big-O is \(O(n^2)\). -\end{itemize} -\end{column} - -\begin{column}{0.4\textwidth} -\includegraphics{images/insertion-sort.png} -\end{column} -\end{columns} -\end{frame} - -\begin{frame}[fragile]{Live Coding:} -\protect\hypertarget{live-coding}{} -The \emph{h-index} is defined by Wikipedia as the maximum value of \(h\) -such that the given researcher has published at least \(h\) papers that -have each been cited at least \(h\) times. - -Given a list of integers representing a researcher. Each index is their -\(ith\) publication and the value at the \(ith\) index is the number of -citation. Calculate the h-index of that researcher. - -\begin{block}{Example} -\protect\hypertarget{example}{} -\begin{Shaded} -\begin{Highlighting}[] -\CommentTok{\# INPUT} -\NormalTok{lst }\OperatorTok{=}\NormalTok{ [}\DecValTok{2}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{5}\NormalTok{,}\DecValTok{6}\NormalTok{]} -\CommentTok{\# OUTPUT} -\DecValTok{2} -\end{Highlighting} -\end{Shaded} -\end{block} -\end{frame} - -\hypertarget{hash-map-hash-table-python-dictionary-hash-functions}{% -\section{Hash map, hash table (Python dictionary), hash -functions}\label{hash-map-hash-table-python-dictionary-hash-functions}} - -\begin{frame}{Motivating Example} -\protect\hypertarget{motivating-example-1}{} -\begin{itemize} -\item - Recall from the first lecture that searching in a Python set took - (basically) 0 seconds - - \begin{itemize} - \item - How was this achieved? - \item - Binary search only has \(O(\text{log}n)\) time, so there must be - something else - \end{itemize} -\item - To achieve \(O(1)\) time, we need something that immediately knows the - where/what the item is. - - \begin{itemize} - \tightlist - \item - This is the purpose of \emph{hash functions} - \end{itemize} -\end{itemize} -\end{frame} - -\begin{frame}[fragile]{Hash Functions} -\protect\hypertarget{hash-functions}{} -\begin{itemize} -\item - A hash function is a function where you enter a string and it returns - an integer - - \begin{itemize} - \tightlist - \item - Python objects have hash - \end{itemize} -\end{itemize} - -\begin{Shaded} -\begin{Highlighting}[] -\BuiltInTok{hash}\NormalTok{(}\StringTok{"DS 4 Life"}\NormalTok{)} -\end{Highlighting} -\end{Shaded} - -\begin{verbatim} --4234464436397453779 -\end{verbatim} - -\begin{itemize} -\item - There are two requirements for a hash function - - \begin{itemize} - \item - It needs to be consistent. For instance, if you enter ``UofT'' and - get ``1827'', then every time you enter ``UofT'' you should get - ``1827'' - \item - It maps different words to different numbers. Each string has a - unique hash. - \end{itemize} -\end{itemize} -\end{frame} - -\begin{frame}{Using Hash Functions: Example} -\protect\hypertarget{using-hash-functions-example}{} -\begin{itemize} -\item - Suppose you have a grocery store catalog with prices and barcodes. - When you scan an item at checkout, you want it to instantly return the - price. -\item - You can put each barcode into a hash function. - - \begin{itemize} - \item - Let's say barcode ``1234'' \emph{hashes} to ``1'' and ``2'' hashes - to ``9876'' - \item - We store the price of item ``1234'' at address ``1''. Store the - price of item ``4321'' at address ``2'' - \item - We say the price at ``1'' is the \emph{hash value} of ``1'' - \end{itemize} -\item - If there are 8 items sold at the store, then the hash function will - only return integers from 1 to 8 - - \begin{itemize} - \item - The size of the hash table is often referred to as its number of - bins or slots. - \item - Thus, the hash function depends on the array - \end{itemize} -\item - This implementation is called a \emph{hash table} - - \begin{itemize} - \tightlist - \item - The hash table is basically a list of lists, and the hash function - maps an object to its location in the outer list. - \end{itemize} -\end{itemize} -\end{frame} - -\begin{frame}[fragile]{Python's Hash Tables: \texttt{dict}} -\protect\hypertarget{pythons-hash-tables-dict}{} -\begin{itemize} -\item - You will likely never implement a hash table yourself, most languages - have an implementation for has tables. - - \begin{itemize} - \tightlist - \item - In Python, this is the \texttt{dict} class - \end{itemize} -\item - Dictionaries have keys and values (barcodes and prices) -\item - Dictionaries have really good performance. Search, insert, or delete - item are all are \(O(1)\) in the average case. - - \begin{itemize} - \item - Average case assumes you have a ``good'' hash function that avoids - \emph{collisions}. You can read more about collisions in the - textbooks. - \item - The worst case of Python dictionaries for search, insert, and delete - is \(O(n)\). - \end{itemize} -\item - Recall Python dictionaries don't allow duplicate keys, that is because - has hashes must be unique! -\end{itemize} -\end{frame} - -\begin{frame}{Python \texttt{set}} -\protect\hypertarget{python-set}{} -\begin{itemize} -\item - Recall during the first lecture, we showcased that Python's set search - was much faster than list search -\item - This is because Python's set implements a hash function to store its - values -\end{itemize} -\end{frame} - -\hypertarget{recommended-problems-and-references}{% -\section{Recommended Problems and -References}\label{recommended-problems-and-references}} - -\begin{frame}[fragile]{Recommended Problems} -\protect\hypertarget{recommended-problems}{} -\begin{itemize} -\item - Bhargava: Chapter 5 - - \begin{itemize} - \item - 5.1 to 5.4 - \item - Read pages 79 to 86 on the use cases of hash functions - \end{itemize} -\item - Additional - - \begin{itemize} - \item - Give examples of 2 situations to use a queue and 2 situations to use - a stack - \item - In Python, code a \texttt{stack} class with \texttt{is\_empty}, - \texttt{push}, and \texttt{pop} methods using the end of a Python - list as the top of the stack. Bonus: Compare the run time of using - the start of the list versus the end of the list as the top of the - stack using the \texttt{timeit} library! - \item - In Python, code a \texttt{binary\_search} function. - \item - In Python, code a \texttt{hash\_table} that can hash 4 values. - \end{itemize} -\end{itemize} -\end{frame} - -\begin{frame}{References} -\protect\hypertarget{references}{} -\begin{itemize} -\item - Bhargava, A. Y. (2016). \emph{Grokking algorithms: An illustrated - guide for programmers and other curious people.} Manning. Chapter 5. -\item - Cormen, T. H. (Ed.). (2009). \emph{Introduction to algorithms} (3rd - ed). MIT Press. Chapter 2, 10, 11. -\item - Horton, D., \& Liu, D. (2023, November 19). \emph{CSC148 Lecture - Notes}. - https://www.teach.cs.toronto.edu/\textasciitilde csc148h/winter/notes/ -\end{itemize} -\end{frame} - - - -\end{document} diff --git a/slides-resources/2_ds-search-sort/2_ds-search-sort.toc b/slides-resources/2_ds-search-sort/2_ds-search-sort.toc deleted file mode 100644 index ec667ea..0000000 --- a/slides-resources/2_ds-search-sort/2_ds-search-sort.toc +++ /dev/null @@ -1,5 +0,0 @@ -\beamer@sectionintoc {1}{Array Based Data Structures}{3}{0}{1} -\beamer@sectionintoc {2}{Searching}{11}{0}{2} -\beamer@sectionintoc {3}{Sorting}{14}{0}{3} -\beamer@sectionintoc {4}{Hash map, hash table (Python dictionary), hash functions}{18}{0}{4} -\beamer@sectionintoc {5}{Recommended Problems and References}{24}{0}{5} diff --git a/slides-resources/2_ds-search-sort/2_ds-search-sort.vrb b/slides-resources/2_ds-search-sort/2_ds-search-sort.vrb deleted file mode 100644 index 9bfbf86..0000000 --- a/slides-resources/2_ds-search-sort/2_ds-search-sort.vrb +++ /dev/null @@ -1,31 +0,0 @@ -\frametitle{Recommended Problems} -\protect\hypertarget{recommended-problems}{} -\begin{itemize} -\item - Bhargava: Chapter 5 - - \begin{itemize} - \item - 5.1 to 5.4 - \item - Read pages 79 to 86 on the use cases of hash functions - \end{itemize} -\item - Additional - - \begin{itemize} - \item - Give examples of 2 situations to use a queue and 2 situations to use - a stack - \item - In Python, code a \texttt{stack} class with \texttt{is\_empty}, - \texttt{push}, and \texttt{pop} methods using the end of a Python - list as the top of the stack. Bonus: Compare the run time of using - the start of the list versus the end of the list as the top of the - stack using the \texttt{timeit} library! - \item - In Python, code a \texttt{binary\_search} function. - \item - In Python, code a \texttt{hash\_table} that can hash 4 values. - \end{itemize} -\end{itemize} diff --git a/slides-resources/2_ds-search-sort/texput.log b/slides-resources/2_ds-search-sort/texput.log deleted file mode 100644 index 5038a6b..0000000 --- a/slides-resources/2_ds-search-sort/texput.log +++ /dev/null @@ -1,21 +0,0 @@ -This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) (preloaded format=pdflatex 2023.12.23) 25 DEC 2023 19:45 -entering extended mode - restricted \write18 enabled. - %&-line parsing enabled. -** - -! Emergency stop. -<*> - -End of file on the terminal! - - -Here is how much of TeX's memory you used: - 3 strings out of 474181 - 114 string characters out of 5745946 - 1924457 words of memory out of 5000000 - 22404 multiletter control sequences out of 15000+600000 - 558069 words of font info for 36 fonts, out of 8000000 for 9000 - 1141 hyphenation exceptions out of 8191 - 0i,0n,0p,21b,6s stack positions out of 10000i,1000n,20000p,200000b,200000s -! ==> Fatal error occurred, no output PDF file produced! diff --git a/slides-resources/3_recursion/.Rhistory b/slides-resources/3_recursion/.Rhistory deleted file mode 100644 index dd74148..0000000 --- a/slides-resources/3_recursion/.Rhistory +++ /dev/null @@ -1,11 +0,0 @@ -reticulate::repl_python() -source("~/.active-rstudio-document", echo=TRUE) -reticulate::repl_python() -python -python2 -python3 -reticulate::repl_python() -reticulate::repl_python() -reticulate::repl_python() -reticulate::repl_python() -reticulate::repl_python() diff --git a/slides-resources/3_recursion/3_recursion.aux b/slides-resources/3_recursion/3_recursion.aux deleted file mode 100644 index cef6853..0000000 --- a/slides-resources/3_recursion/3_recursion.aux +++ /dev/null @@ -1,100 +0,0 @@ -\relax -\providecommand\hyper@newdestlabel[2]{} -\providecommand\HyField@AuxAddToFields[1]{} -\providecommand\HyField@AuxAddToCoFields[2]{} -\providecommand\BKM@entry[2]{} -\@writefile{nav}{\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {1}{1}}} -\@writefile{nav}{\headcommand {\slideentry {0}{0}{2}{2/2}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {2}{2}}} -\BKM@entry{id=1,open,dest={4F75746C696E65302E31},srcline={239}}{5C3337365C3337375C303030435C303030615C3030306C5C3030306C5C3030305C3034305C303030535C303030745C303030615C303030635C3030306B} -\@writefile{toc}{\beamer@sectionintoc {1}{Call Stack}{3}{0}{1}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {1}{2}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {1}{2}}} -\@writefile{nav}{\headcommand {\sectionentry {1}{Call Stack}{3}{Call Stack}{0}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{1}{3/3}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {3}{3}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{2}{4/4}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {4}{4}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{3}{5/5}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {5}{5}}} -\BKM@entry{id=2,open,dest={4F75746C696E65302E32},srcline={306}}{5C3337365C3337375C303030525C303030655C303030635C303030755C303030725C303030735C303030695C3030306F5C3030306E} -\@writefile{toc}{\beamer@sectionintoc {2}{Recursion}{6}{0}{2}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {3}{5}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {3}{5}}} -\@writefile{nav}{\headcommand {\sectionentry {2}{Recursion}{6}{Recursion}{0}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{1}{6/6}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {6}{6}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{2}{7/7}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {7}{7}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{3}{8/8}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {8}{8}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{4}{9/9}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {9}{9}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{5}{10/10}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {10}{10}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{6}{11/11}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {11}{11}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{7}{12/12}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {12}{12}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{8}{13/13}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {13}{13}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{9}{14/14}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {14}{14}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{10}{15/15}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {15}{15}}} -\BKM@entry{id=3,open,dest={4F75746C696E65302E33},srcline={510}}{5C3337365C3337375C303030545C303030695C3030306D5C303030655C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030535C303030705C303030615C303030635C303030655C3030305C3034305C303030435C3030306F5C3030306D5C303030705C3030306C5C303030655C303030785C303030695C303030745C303030795C3030305C3034305C3030306F5C303030665C3030305C3034305C303030525C303030655C303030635C303030755C303030725C303030735C303030695C3030306F5C3030306E} -\@writefile{toc}{\beamer@sectionintoc {3}{Time and Space Complexity of Recursion}{16}{0}{3}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {6}{15}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {6}{15}}} -\@writefile{nav}{\headcommand {\sectionentry {3}{Time and Space Complexity of Recursion}{16}{Time and Space Complexity of Recursion}{0}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{1}{16/16}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {16}{16}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{2}{17/17}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {17}{17}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{3}{18/18}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {18}{18}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{4}{19/19}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {19}{19}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{5}{20/20}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {20}{20}}} -\BKM@entry{id=4,open,dest={4F75746C696E65302E34},srcline={618}}{5C3337365C3337375C3030304D5C303030655C303030725C303030675C303030655C303030735C3030306F5C303030725C30303074} -\@writefile{toc}{\beamer@sectionintoc {4}{Mergesort}{21}{0}{4}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {16}{20}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {16}{20}}} -\@writefile{nav}{\headcommand {\sectionentry {4}{Mergesort}{21}{Mergesort}{0}}} -\@writefile{nav}{\headcommand {\slideentry {4}{0}{1}{21/21}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {21}{21}}} -\@writefile{nav}{\headcommand {\slideentry {4}{0}{2}{22/22}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {22}{22}}} -\@writefile{nav}{\headcommand {\slideentry {4}{0}{3}{23/23}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {23}{23}}} -\@writefile{nav}{\headcommand {\slideentry {4}{0}{4}{24/24}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {24}{24}}} -\@writefile{nav}{\headcommand {\slideentry {4}{0}{5}{25/25}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {25}{25}}} -\@writefile{nav}{\headcommand {\slideentry {4}{0}{6}{26/26}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {26}{26}}} -\@writefile{nav}{\headcommand {\slideentry {4}{0}{7}{27/27}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {27}{27}}} -\BKM@entry{id=5,open,dest={4F75746C696E65302E35},srcline={769}}{5C3337365C3337375C303030525C303030655C303030635C3030306F5C3030306D5C3030306D5C303030655C3030306E5C303030645C303030655C303030645C3030305C3034305C303030505C303030725C3030306F5C303030625C3030306C5C303030655C3030306D5C303030735C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030525C303030655C303030665C303030655C303030725C303030655C3030306E5C303030635C303030655C30303073} -\@writefile{toc}{\beamer@sectionintoc {5}{Recommended Problems and References}{28}{0}{5}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {21}{27}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {21}{27}}} -\@writefile{nav}{\headcommand {\sectionentry {5}{Recommended Problems and References}{28}{Recommended Problems and References}{0}}} -\@writefile{nav}{\headcommand {\slideentry {5}{0}{1}{28/28}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {28}{28}}} -\@writefile{nav}{\headcommand {\slideentry {5}{0}{2}{29/29}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {29}{29}}} -\@writefile{nav}{\headcommand {\slideentry {5}{0}{3}{30/30}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {30}{30}}} -\@writefile{nav}{\headcommand {\slideentry {5}{0}{4}{31/31}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {31}{31}}} -\@writefile{nav}{\headcommand {\slideentry {5}{0}{5}{32/32}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {32}{32}}} -\@writefile{nav}{\headcommand {\beamer@partpages {1}{32}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {28}{32}}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {28}{32}}} -\@writefile{nav}{\headcommand {\beamer@documentpages {32}}} -\@writefile{nav}{\headcommand {\gdef \inserttotalframenumber {32}}} -\gdef \@abspage@last{32} diff --git a/slides-resources/3_recursion/3_recursion.log b/slides-resources/3_recursion/3_recursion.log deleted file mode 100644 index 0ea33bb..0000000 --- a/slides-resources/3_recursion/3_recursion.log +++ /dev/null @@ -1,1858 +0,0 @@ -This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) (preloaded format=pdflatex 2023.12.23) 10 JAN 2024 15:45 -entering extended mode - restricted \write18 enabled. - %&-line parsing enabled. -**3_recursion -(./3_recursion.tex -LaTeX2e <2023-11-01> -L3 programming layer <2023-12-11> -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamer.cls -Document Class: beamer 2023/05/15 v3.70 A class for typesetting presentations -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasemodes.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/etoolbox/etoolbox.sty -Package: etoolbox 2020/10/05 v2.5k e-TeX tools for LaTeX (JAW) -\etb@tempcnta=\count187 -) -\beamer@tempbox=\box51 -\beamer@tempcount=\count188 -\c@beamerpauses=\count189 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasedecode.sty -\beamer@slideinframe=\count190 -\beamer@minimum=\count191 -\beamer@decode@box=\box52 -) -\beamer@commentbox=\box53 -\beamer@modecount=\count192 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/iftex/iftex.sty -Package: iftex 2022/02/03 v1.0f TeX engine tests -) -\headdp=\dimen140 -\footheight=\dimen141 -\sidebarheight=\dimen142 -\beamer@tempdim=\dimen143 -\beamer@finalheight=\dimen144 -\beamer@animht=\dimen145 -\beamer@animdp=\dimen146 -\beamer@animwd=\dimen147 -\beamer@leftmargin=\dimen148 -\beamer@rightmargin=\dimen149 -\beamer@leftsidebar=\dimen150 -\beamer@rightsidebar=\dimen151 -\beamer@boxsize=\dimen152 -\beamer@vboxoffset=\dimen153 -\beamer@descdefault=\dimen154 -\beamer@descriptionwidth=\dimen155 -\beamer@lastskip=\skip48 -\beamer@areabox=\box54 -\beamer@animcurrent=\box55 -\beamer@animshowbox=\box56 -\beamer@sectionbox=\box57 -\beamer@logobox=\box58 -\beamer@linebox=\box59 -\beamer@sectioncount=\count193 -\beamer@subsubsectionmax=\count194 -\beamer@subsectionmax=\count195 -\beamer@sectionmax=\count196 -\beamer@totalheads=\count197 -\beamer@headcounter=\count198 -\beamer@partstartpage=\count199 -\beamer@sectionstartpage=\count266 -\beamer@subsectionstartpage=\count267 -\beamer@animationtempa=\count268 -\beamer@animationtempb=\count269 -\beamer@xpos=\count270 -\beamer@ypos=\count271 -\beamer@ypos@offset=\count272 -\beamer@showpartnumber=\count273 -\beamer@currentsubsection=\count274 -\beamer@coveringdepth=\count275 -\beamer@sectionadjust=\count276 -\beamer@toclastsection=\count277 -\beamer@tocsectionnumber=\count278 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseoptions.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics/keyval.sty -Package: keyval 2022/05/29 v1.15 key=value parser (DPC) -\KV@toks@=\toks17 -)) -\beamer@paperwidth=\skip49 -\beamer@paperheight=\skip50 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/geometry/geometry.sty -Package: geometry 2020/01/02 v5.9 Page Geometry - -(/usr/local/texlive/2023/texmf-dist/tex/generic/iftex/ifvtex.sty -Package: ifvtex 2019/10/25 v1.7 ifvtex legacy package. Use iftex instead. -) -\Gm@cnth=\count279 -\Gm@cntv=\count280 -\c@Gm@tempcnt=\count281 -\Gm@bindingoffset=\dimen156 -\Gm@wd@mp=\dimen157 -\Gm@odd@mp=\dimen158 -\Gm@even@mp=\dimen159 -\Gm@layoutwidth=\dimen160 -\Gm@layoutheight=\dimen161 -\Gm@layouthoffset=\dimen162 -\Gm@layoutvoffset=\dimen163 -\Gm@dimlist=\toks18 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/math/pgfmath.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/utilities/pgfrcs.sty -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgfutil-common.te -x -\pgfutil@everybye=\toks19 -\pgfutil@tempdima=\dimen164 -\pgfutil@tempdimb=\dimen165 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgfutil-latex.def -\pgfutil@abb=\box60 -) (/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgfrcs.code.tex -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/pgf.revision.tex) -Package: pgfrcs 2023-01-15 v3.1.10 (3.1.10) -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/utilities/pgfkeys.sty -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex -\pgfkeys@pathtoks=\toks20 -\pgfkeys@temptoks=\toks21 - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgfkeyslibraryfil -tered.code.tex -\pgfkeys@tmptoks=\toks22 -))) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathutil.code.tex -\pgf@x=\dimen166 -\pgf@xa=\dimen167 -\pgf@xb=\dimen168 -\pgf@xc=\dimen169 -\pgf@y=\dimen170 -\pgf@ya=\dimen171 -\pgf@yb=\dimen172 -\pgf@yc=\dimen173 -\c@pgf@counta=\count282 -\c@pgf@countb=\count283 -\c@pgf@countc=\count284 -\c@pgf@countd=\count285 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathparser.code.tex -\pgfmath@dimen=\dimen174 -\pgfmath@count=\count286 -\pgfmath@box=\box61 -\pgfmath@toks=\toks23 -\pgfmath@stack@operand=\toks24 -\pgfmath@stack@operation=\toks25 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.code. -tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.basic -.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.trigo -nometric.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.rando -m.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.compa -rison.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.base. -code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.round -.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.misc. -code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.integ -erarithmetics.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathcalc.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfloat.code.tex -\c@pgfmathroundto@lastzeros=\count287 -))) (/usr/local/texlive/2023/texmf-dist/tex/latex/base/size11.clo -File: size11.clo 2023/05/17 v1.4n Standard LaTeX file (size option) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/basiclayer/pgfcore.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics/graphicx.sty -Package: graphicx 2021/09/16 v1.2d Enhanced LaTeX Graphics (DPC,SPQR) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics/graphics.sty -Package: graphics 2022/03/10 v1.4e Standard LaTeX Graphics (DPC,SPQR) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics/trig.sty -Package: trig 2021/08/11 v1.11 sin cos tan (DPC) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics-cfg/graphics.cfg -File: graphics.cfg 2016/06/04 v1.11 sample graphics configuration -) -Package graphics Info: Driver file: pdftex.def on input line 107. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics-def/pdftex.def -File: pdftex.def 2022/09/22 v1.2b Graphics/color driver for pdftex -)) -\Gin@req@height=\dimen175 -\Gin@req@width=\dimen176 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/systemlayer/pgfsys.sty -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgfsys.code.tex -Package: pgfsys 2023-01-15 v3.1.10 (3.1.10) -\pgf@x=\dimen177 -\pgf@y=\dimen178 -\pgf@xa=\dimen179 -\pgf@ya=\dimen180 -\pgf@xb=\dimen181 -\pgf@yb=\dimen182 -\pgf@xc=\dimen183 -\pgf@yc=\dimen184 -\pgf@xd=\dimen185 -\pgf@yd=\dimen186 -\w@pgf@writea=\write3 -\r@pgf@reada=\read2 -\c@pgf@counta=\count288 -\c@pgf@countb=\count289 -\c@pgf@countc=\count290 -\c@pgf@countd=\count291 -\t@pgf@toka=\toks26 -\t@pgf@tokb=\toks27 -\t@pgf@tokc=\toks28 -\pgf@sys@id@count=\count292 -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgf.cfg -File: pgf.cfg 2023-01-15 v3.1.10 (3.1.10) -) -Driver file for pgf: pgfsys-pdftex.def - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-pdftex.d -ef -File: pgfsys-pdftex.def 2023-01-15 v3.1.10 (3.1.10) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-common-p -df.def -File: pgfsys-common-pdf.def 2023-01-15 v3.1.10 (3.1.10) -))) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgfsyssoftpath. -code.tex -File: pgfsyssoftpath.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfsyssoftpath@smallbuffer@items=\count293 -\pgfsyssoftpath@bigbuffer@items=\count294 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgfsysprotocol. -code.tex -File: pgfsysprotocol.code.tex 2023-01-15 v3.1.10 (3.1.10) -)) (/usr/local/texlive/2023/texmf-dist/tex/latex/xcolor/xcolor.sty -Package: xcolor 2023/11/15 v3.01 LaTeX color extensions (UK) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics-cfg/color.cfg -File: color.cfg 2016/01/02 v1.6 sample color configuration -) -Package xcolor Info: Driver file: pdftex.def on input line 274. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics/mathcolor.ltx) -Package xcolor Info: Model `cmy' substituted by `cmy0' on input line 1350. -Package xcolor Info: Model `hsb' substituted by `rgb' on input line 1354. -Package xcolor Info: Model `RGB' extended on input line 1366. -Package xcolor Info: Model `HTML' substituted by `rgb' on input line 1368. -Package xcolor Info: Model `Hsb' substituted by `hsb' on input line 1369. -Package xcolor Info: Model `tHsb' substituted by `hsb' on input line 1370. -Package xcolor Info: Model `HSB' substituted by `hsb' on input line 1371. -Package xcolor Info: Model `Gray' substituted by `gray' on input line 1372. -Package xcolor Info: Model `wave' substituted by `hsb' on input line 1373. -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcore.code.tex -Package: pgfcore 2023-01-15 v3.1.10 (3.1.10) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfint.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepoints.co -de.tex -File: pgfcorepoints.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@picminx=\dimen187 -\pgf@picmaxx=\dimen188 -\pgf@picminy=\dimen189 -\pgf@picmaxy=\dimen190 -\pgf@pathminx=\dimen191 -\pgf@pathmaxx=\dimen192 -\pgf@pathminy=\dimen193 -\pgf@pathmaxy=\dimen194 -\pgf@xx=\dimen195 -\pgf@xy=\dimen196 -\pgf@yx=\dimen197 -\pgf@yy=\dimen198 -\pgf@zx=\dimen199 -\pgf@zy=\dimen256 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathconst -ruct.code.tex -File: pgfcorepathconstruct.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@path@lastx=\dimen257 -\pgf@path@lasty=\dimen258 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathusage -.code.tex -File: pgfcorepathusage.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@shorten@end@additional=\dimen259 -\pgf@shorten@start@additional=\dimen260 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorescopes.co -de.tex -File: pgfcorescopes.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfpic=\box62 -\pgf@hbox=\box63 -\pgf@layerbox@main=\box64 -\pgf@picture@serial@count=\count295 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoregraphicst -ate.code.tex -File: pgfcoregraphicstate.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgflinewidth=\dimen261 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransform -ations.code.tex -File: pgfcoretransformations.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@pt@x=\dimen262 -\pgf@pt@y=\dimen263 -\pgf@pt@temp=\dimen264 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorequick.cod -e.tex -File: pgfcorequick.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreobjects.c -ode.tex -File: pgfcoreobjects.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathproce -ssing.code.tex -File: pgfcorepathprocessing.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorearrows.co -de.tex -File: pgfcorearrows.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfarrowsep=\dimen265 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreshade.cod -e.tex -File: pgfcoreshade.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@max=\dimen266 -\pgf@sys@shading@range@num=\count296 -\pgf@shadingcount=\count297 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreimage.cod -e.tex -File: pgfcoreimage.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreexternal. -code.tex -File: pgfcoreexternal.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfexternal@startupbox=\box65 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorelayers.co -de.tex -File: pgfcorelayers.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretranspare -ncy.code.tex -File: pgfcoretransparency.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepatterns. -code.tex -File: pgfcorepatterns.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorerdf.code. -tex -File: pgfcorerdf.code.tex 2023-01-15 v3.1.10 (3.1.10) -))) (/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/utilities/xxcolor.sty -Package: xxcolor 2003/10/24 ver 0.1 -\XC@nummixins=\count298 -\XC@countmixins=\count299 -) (/usr/local/texlive/2023/texmf-dist/tex/latex/base/atbegshi-ltx.sty -Package: atbegshi-ltx 2021/01/10 v1.0c Emulation of the original atbegshi -package with kernel methods -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/hyperref/hyperref.sty -Package: hyperref 2023-11-26 v7.01g Hypertext links for LaTeX - -(/usr/local/texlive/2023/texmf-dist/tex/generic/infwarerr/infwarerr.sty -Package: infwarerr 2019/12/03 v1.5 Providing info/warning/error messages (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/kvsetkeys/kvsetkeys.sty -Package: kvsetkeys 2022-10-05 v1.19 Key value parser (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/kvdefinekeys/kvdefinekeys.sty -Package: kvdefinekeys 2019-12-19 v1.6 Define keys (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pdfescape/pdfescape.sty -Package: pdfescape 2019/12/09 v1.15 Implements pdfTeX's escape features (HO) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/ltxcmds/ltxcmds.sty -Package: ltxcmds 2023-12-04 v1.26 LaTeX kernel commands for general use (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pdftexcmds/pdftexcmds.sty -Package: pdftexcmds 2020-06-27 v0.33 Utility functions of pdfTeX for LuaTeX (HO -) -Package pdftexcmds Info: \pdf@primitive is available. -Package pdftexcmds Info: \pdf@ifprimitive is available. -Package pdftexcmds Info: \pdfdraftmode found. -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/hycolor/hycolor.sty -Package: hycolor 2020-01-27 v1.10 Color options for hyperref/bookmark (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/letltxmacro/letltxmacro.sty -Package: letltxmacro 2019/12/03 v1.6 Let assignment for LaTeX macros (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/auxhook/auxhook.sty -Package: auxhook 2019-12-17 v1.6 Hooks for auxiliary files (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/hyperref/nameref.sty -Package: nameref 2023-11-26 v2.56 Cross-referencing by name of section - -(/usr/local/texlive/2023/texmf-dist/tex/latex/refcount/refcount.sty -Package: refcount 2019/12/15 v3.6 Data extraction from label references (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/gettitlestring/gettitlestring.s -ty -Package: gettitlestring 2019/12/15 v1.6 Cleanup title references (HO) - (/usr/local/texlive/2023/texmf-dist/tex/latex/kvoptions/kvoptions.sty -Package: kvoptions 2022-06-15 v3.15 Key value format for package options (HO) -)) -\c@section@level=\count300 -) -\@linkdim=\dimen267 -\Hy@linkcounter=\count301 -\Hy@pagecounter=\count302 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/hyperref/pd1enc.def -File: pd1enc.def 2023-11-26 v7.01g Hyperref: PDFDocEncoding definition (HO) -Now handling font encoding PD1 ... -... no UTF-8 mapping file for font encoding PD1 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/intcalc/intcalc.sty -Package: intcalc 2019/12/15 v1.3 Expandable calculations with integers (HO) -) -\Hy@SavedSpaceFactor=\count303 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/hyperref/puenc.def -File: puenc.def 2023-11-26 v7.01g Hyperref: PDF Unicode definition (HO) -Now handling font encoding PU ... -... no UTF-8 mapping file for font encoding PU -) -Package hyperref Info: Option `unicode' set `true' on input line 4064. -Package hyperref Info: Option `bookmarks' set `true' on input line 4064. -Package hyperref Info: Option `bookmarksopen' set `true' on input line 4064. -Package hyperref Info: Option `implicit' set `false' on input line 4064. -Package hyperref Info: Hyper figures OFF on input line 4181. -Package hyperref Info: Link nesting OFF on input line 4186. -Package hyperref Info: Hyper index ON on input line 4189. -Package hyperref Info: Plain pages OFF on input line 4196. -Package hyperref Info: Backreferencing OFF on input line 4201. -Package hyperref Info: Implicit mode OFF; no redefinition of LaTeX internals. -Package hyperref Info: Bookmarks ON on input line 4448. -\c@Hy@tempcnt=\count304 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/url/url.sty -\Urlmuskip=\muskip16 -Package: url 2013/09/16 ver 3.4 Verb mode for urls, etc. -) -LaTeX Info: Redefining \url on input line 4786. -\XeTeXLinkMargin=\dimen268 - -(/usr/local/texlive/2023/texmf-dist/tex/generic/bitset/bitset.sty -Package: bitset 2019/12/09 v1.3 Handle bit-vector datatype (HO) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/bigintcalc/bigintcalc.sty -Package: bigintcalc 2019/12/15 v1.5 Expandable calculations on big integers (HO -) -)) -\Fld@menulength=\count305 -\Field@Width=\dimen269 -\Fld@charsize=\dimen270 -Package hyperref Info: Hyper figures OFF on input line 6065. -Package hyperref Info: Link nesting OFF on input line 6070. -Package hyperref Info: Hyper index ON on input line 6073. -Package hyperref Info: backreferencing OFF on input line 6080. -Package hyperref Info: Link coloring OFF on input line 6085. -Package hyperref Info: Link coloring with OCG OFF on input line 6090. -Package hyperref Info: PDF/A mode OFF on input line 6095. -\Hy@abspage=\count306 - - -Package hyperref Message: Stopped early. - -) -Package hyperref Info: Driver (autodetected): hpdftex. - (/usr/local/texlive/2023/texmf-dist/tex/latex/hyperref/hpdftex.def -File: hpdftex.def 2023-11-26 v7.01g Hyperref driver for pdfTeX - -(/usr/local/texlive/2023/texmf-dist/tex/latex/base/atveryend-ltx.sty -Package: atveryend-ltx 2020/08/19 v1.0a Emulation of the original atveryend pac -kage -with kernel methods -) -\Fld@listcount=\count307 -\c@bookmark@seq@number=\count308 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/rerunfilecheck/rerunfilecheck.sty -Package: rerunfilecheck 2022-07-10 v1.10 Rerun checks for auxiliary files (HO) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/uniquecounter/uniquecounter.sty -Package: uniquecounter 2019/12/15 v1.4 Provide unlimited unique counter (HO) -) -Package uniquecounter Info: New unique counter `rerunfilecheck' on input line 2 -85. -)) (/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaserequires.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasecompatibility.st -y) (/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasefont.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsfonts/amssymb.sty -Package: amssymb 2013/01/14 v3.01 AMS font symbols - -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsfonts/amsfonts.sty -Package: amsfonts 2013/01/14 v3.01 Basic AMSFonts support -\@emptytoks=\toks29 -\symAMSa=\mathgroup4 -\symAMSb=\mathgroup5 -LaTeX Font Info: Redeclaring math symbol \hbar on input line 98. -LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold' -(Font) U/euf/m/n --> U/euf/b/n on input line 106. -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/sansmathaccent/sansmathaccent.sty -Package: sansmathaccent 2020/01/31 -(/usr/local/texlive/2023/texmf-dist/tex/latex/koma-script/scrlfile.sty -Package: scrlfile 2023/07/07 v3.41 KOMA-Script package (file load hooks) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/koma-script/scrlfile-hook.sty -Package: scrlfile-hook 2023/07/07 v3.41 KOMA-Script package (using LaTeX hooks) - - -(/usr/local/texlive/2023/texmf-dist/tex/latex/koma-script/scrlogo.sty -Package: scrlogo 2023/07/07 v3.41 KOMA-Script package (logo) -))))) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetranslator.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator.sty -Package: translator 2021-05-31 v1.12d Easy translation of strings in LaTeX -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasemisc.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetwoscreens.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseoverlay.sty -\beamer@argscount=\count309 -\beamer@lastskipcover=\skip51 -\beamer@trivlistdepth=\count310 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetitle.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasesection.sty -\c@lecture=\count311 -\c@part=\count312 -\c@section=\count313 -\c@subsection=\count314 -\c@subsubsection=\count315 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseframe.sty -\beamer@framebox=\box66 -\beamer@frametitlebox=\box67 -\beamer@zoombox=\box68 -\beamer@zoomcount=\count316 -\beamer@zoomframecount=\count317 -\beamer@frametextheight=\dimen271 -\c@subsectionslide=\count318 -\beamer@frametopskip=\skip52 -\beamer@framebottomskip=\skip53 -\beamer@frametopskipautobreak=\skip54 -\beamer@framebottomskipautobreak=\skip55 -\beamer@envbody=\toks30 -\framewidth=\dimen272 -\c@framenumber=\count319 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseverbatim.sty -\beamer@verbatimfileout=\write4 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseframesize.sty -\beamer@splitbox=\box69 -\beamer@autobreakcount=\count320 -\beamer@autobreaklastheight=\dimen273 -\beamer@frametitletoks=\toks31 -\beamer@framesubtitletoks=\toks32 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseframecomponents. -sty -\beamer@footins=\box70 -) (/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasecolor.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasenotes.sty -\beamer@frameboxcopy=\box71 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetoc.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetemplates.sty -\beamer@sbttoks=\toks33 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseauxtemplates.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseboxes.sty -\bmb@box=\box72 -\bmb@colorbox=\box73 -\bmb@boxwidth=\dimen274 -\bmb@boxheight=\dimen275 -\bmb@prevheight=\dimen276 -\bmb@temp=\dimen277 -\bmb@dima=\dimen278 -\bmb@dimb=\dimen279 -\bmb@prevheight=\dimen280 -) -\beamer@blockheadheight=\dimen281 -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaselocalstructure.s -ty (/usr/local/texlive/2023/texmf-dist/tex/latex/tools/enumerate.sty -Package: enumerate 2023/07/04 v3.00 enumerate extensions (DPC) -\@enLab=\toks34 -) -\beamer@bibiconwidth=\skip56 -\c@figure=\count321 -\c@table=\count322 -\abovecaptionskip=\skip57 -\belowcaptionskip=\skip58 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasenavigation.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasenavigationsymbol -s.tex) -\beamer@section@min@dim=\dimen282 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetheorems.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsmath/amsmath.sty -Package: amsmath 2023/05/13 v2.17o AMS math features -\@mathmargin=\skip59 - -For additional information on amsmath, use the `?' option. -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsmath/amstext.sty -Package: amstext 2021/08/26 v2.01 AMS text - -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsmath/amsgen.sty -File: amsgen.sty 1999/11/30 v2.0 generic functions -\@emptytoks=\toks35 -\ex@=\dimen283 -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsmath/amsbsy.sty -Package: amsbsy 1999/11/29 v1.2d Bold Symbols -\pmbraise@=\dimen284 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsmath/amsopn.sty -Package: amsopn 2022/04/08 v2.04 operator names -) -\inf@bad=\count323 -LaTeX Info: Redefining \frac on input line 234. -\uproot@=\count324 -\leftroot@=\count325 -LaTeX Info: Redefining \overline on input line 399. -LaTeX Info: Redefining \colon on input line 410. -\classnum@=\count326 -\DOTSCASE@=\count327 -LaTeX Info: Redefining \ldots on input line 496. -LaTeX Info: Redefining \dots on input line 499. -LaTeX Info: Redefining \cdots on input line 620. -\Mathstrutbox@=\box74 -\strutbox@=\box75 -LaTeX Info: Redefining \big on input line 722. -LaTeX Info: Redefining \Big on input line 723. -LaTeX Info: Redefining \bigg on input line 724. -LaTeX Info: Redefining \Bigg on input line 725. -\big@size=\dimen285 -LaTeX Font Info: Redeclaring font encoding OML on input line 743. -LaTeX Font Info: Redeclaring font encoding OMS on input line 744. -\macc@depth=\count328 -LaTeX Info: Redefining \bmod on input line 905. -LaTeX Info: Redefining \pmod on input line 910. -LaTeX Info: Redefining \smash on input line 940. -LaTeX Info: Redefining \relbar on input line 970. -LaTeX Info: Redefining \Relbar on input line 971. -\c@MaxMatrixCols=\count329 -\dotsspace@=\muskip17 -\c@parentequation=\count330 -\dspbrk@lvl=\count331 -\tag@help=\toks36 -\row@=\count332 -\column@=\count333 -\maxfields@=\count334 -\andhelp@=\toks37 -\eqnshift@=\dimen286 -\alignsep@=\dimen287 -\tagshift@=\dimen288 -\tagwidth@=\dimen289 -\totwidth@=\dimen290 -\lineht@=\dimen291 -\@envbody=\toks38 -\multlinegap=\skip60 -\multlinetaggap=\skip61 -\mathdisplay@stack=\toks39 -LaTeX Info: Redefining \[ on input line 2953. -LaTeX Info: Redefining \] on input line 2954. -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/amscls/amsthm.sty -Package: amsthm 2020/05/29 v2.20.6 -\thm@style=\toks40 -\thm@bodyfont=\toks41 -\thm@headfont=\toks42 -\thm@notefont=\toks43 -\thm@headpunct=\toks44 -\thm@preskip=\skip62 -\thm@postskip=\skip63 -\thm@headsep=\skip64 -\dth@everypar=\toks45 -) -\c@theorem=\count335 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasethemes.sty)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerthemedefault.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerfontthemedefault.sty -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamercolorthemedefault.st -y) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerinnerthemedefault.st -y -\beamer@dima=\dimen292 -\beamer@dimb=\dimen293 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerouterthemedefault.st -y))) (/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/utilities/pgfpages.sty -Package: pgfpages 2011/01/05 ver 0.02 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/tools/calc.sty -Package: calc 2023/07/08 v4.3 Infix arithmetic (KKT,FJ) -\calc@Acount=\count336 -\calc@Bcount=\count337 -\calc@Adimen=\dimen294 -\calc@Bdimen=\dimen295 -\calc@Askip=\skip65 -\calc@Bskip=\skip66 -LaTeX Info: Redefining \setlength on input line 80. -LaTeX Info: Redefining \addtolength on input line 81. -\calc@Ccount=\count338 -\calc@Cskip=\skip67 -) -\pgf@logicalpages=\count339 -\pgf@firstshipout=\count340 -\pgf@lastshipout=\count341 -\pgf@currentshipout=\count342 -\pgf@cpn=\count343 -\pgf@shipoutnextto=\count344 -\pgfphysicalheight=\dimen296 -\pgfphysicalwidth=\dimen297 -\pgfpages@shipoutbox=\box76 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/base/fontenc.sty -Package: fontenc 2021/04/29 v2.0v Standard LaTeX package -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/base/inputenc.sty -Package: inputenc 2021/02/14 v1.3d Input encoding file -\inpenc@prehook=\toks46 -\inpenc@posthook=\toks47 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/base/textcomp.sty -Package: textcomp 2020/02/02 v2.0n Standard LaTeX package -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/lmodern.sty -Package: lmodern 2015/05/01 v1.6.1 Latin Modern Fonts -LaTeX Font Info: Overwriting symbol font `operators' in version `normal' -(Font) OT1/cmr/m/n --> OT1/lmr/m/n on input line 22. -LaTeX Font Info: Overwriting symbol font `letters' in version `normal' -(Font) OML/cmm/m/it --> OML/lmm/m/it on input line 23. -LaTeX Font Info: Overwriting symbol font `symbols' in version `normal' -(Font) OMS/cmsy/m/n --> OMS/lmsy/m/n on input line 24. -LaTeX Font Info: Overwriting symbol font `largesymbols' in version `normal' -(Font) OMX/cmex/m/n --> OMX/lmex/m/n on input line 25. -LaTeX Font Info: Overwriting symbol font `operators' in version `bold' -(Font) OT1/cmr/bx/n --> OT1/lmr/bx/n on input line 26. -LaTeX Font Info: Overwriting symbol font `letters' in version `bold' -(Font) OML/cmm/b/it --> OML/lmm/b/it on input line 27. -LaTeX Font Info: Overwriting symbol font `symbols' in version `bold' -(Font) OMS/cmsy/b/n --> OMS/lmsy/b/n on input line 28. -LaTeX Font Info: Overwriting symbol font `largesymbols' in version `bold' -(Font) OMX/cmex/m/n --> OMX/lmex/m/n on input line 29. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `normal' -(Font) OT1/cmr/bx/n --> OT1/lmr/bx/n on input line 31. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `normal' -(Font) OT1/cmss/m/n --> OT1/lmss/m/n on input line 32. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `normal' -(Font) OT1/cmr/m/it --> OT1/lmr/m/it on input line 33. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `normal' -(Font) OT1/cmtt/m/n --> OT1/lmtt/m/n on input line 34. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `bold' -(Font) OT1/cmr/bx/n --> OT1/lmr/bx/n on input line 35. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `bold' -(Font) OT1/cmss/bx/n --> OT1/lmss/bx/n on input line 36. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `bold' -(Font) OT1/cmr/bx/it --> OT1/lmr/bx/it on input line 37. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `bold' -(Font) OT1/cmtt/m/n --> OT1/lmtt/m/n on input line 38. -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerthemeBoadilla.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamercolorthemerose.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerinnerthemerounded.st -y) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamercolorthemedolphin.st -y) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerouterthemeinfolines. -sty)) (/usr/local/texlive/2023/texmf-dist/tex/latex/upquote/upquote.sty -Package: upquote 2012/04/19 v1.3 upright-quote and grave-accent glyphs in verba -tim -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/microtype/microtype.sty -Package: microtype 2023/03/13 v3.1a Micro-typographical refinements (RS) -\MT@toks=\toks48 -\MT@tempbox=\box77 -\MT@count=\count345 -LaTeX Info: Redefining \noprotrusionifhmode on input line 1059. -LaTeX Info: Redefining \leftprotrusion on input line 1060. -\MT@prot@toks=\toks49 -LaTeX Info: Redefining \rightprotrusion on input line 1078. -LaTeX Info: Redefining \textls on input line 1368. -\MT@outer@kern=\dimen298 -LaTeX Info: Redefining \textmicrotypecontext on input line 1988. -\MT@listname@count=\count346 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/microtype/microtype-pdftex.def -File: microtype-pdftex.def 2023/03/13 v3.1a Definitions specific to pdftex (RS) - -LaTeX Info: Redefining \lsstyle on input line 902. -LaTeX Info: Redefining \lslig on input line 902. -\MT@outer@space=\skip68 -) -Package microtype Info: Loading configuration file microtype.cfg. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/microtype/microtype.cfg -File: microtype.cfg 2023/03/13 v3.1a microtype main configuration file (RS) -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/parskip/parskip.sty -Package: parskip 2021-03-14 v2.0h non-zero parskip adjustments -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/fancyvrb/fancyvrb.sty -Package: fancyvrb 2023/11/06 4.5b verbatim text (tvz,hv) -\FV@CodeLineNo=\count347 -\FV@InFile=\read3 -\FV@TabBox=\box78 -\c@FancyVerbLine=\count348 -\FV@StepNumber=\count349 -\FV@OutFile=\write5 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/framed/framed.sty -Package: framed 2011/10/22 v 0.96: framed or shaded text with page breaks -\OuterFrameSep=\skip69 -\fb@frw=\dimen299 -\fb@frh=\dimen300 -\FrameRule=\dimen301 -\FrameSep=\dimen302 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tools/longtable.sty -Package: longtable 2023-11-01 v4.19 Multi-page Table package (DPC) -\LTleft=\skip70 -\LTright=\skip71 -\LTpre=\skip72 -\LTpost=\skip73 -\LTchunksize=\count350 -\LTcapwidth=\dimen303 -\LT@head=\box79 -\LT@firsthead=\box80 -\LT@foot=\box81 -\LT@lastfoot=\box82 -\LT@gbox=\box83 -\LT@cols=\count351 -\LT@rows=\count352 -\c@LT@tables=\count353 -\c@LT@chunks=\count354 -\LT@p@ftn=\toks50 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/booktabs/booktabs.sty -Package: booktabs 2020/01/12 v1.61803398 Publication quality tables -\heavyrulewidth=\dimen304 -\lightrulewidth=\dimen305 -\cmidrulewidth=\dimen306 -\belowrulesep=\dimen307 -\belowbottomsep=\dimen308 -\aboverulesep=\dimen309 -\abovetopsep=\dimen310 -\cmidrulesep=\dimen311 -\cmidrulekern=\dimen312 -\defaultaddspace=\dimen313 -\@cmidla=\count355 -\@cmidlb=\count356 -\@aboverulesep=\dimen314 -\@belowrulesep=\dimen315 -\@thisruleclass=\count357 -\@lastruleclass=\count358 -\@thisrulewidth=\dimen316 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tools/array.sty -Package: array 2023/10/16 v2.5g Tabular extension package (FMi) -\col@sep=\dimen317 -\ar@mcellbox=\box84 -\extrarowheight=\dimen318 -\NC@list=\toks51 -\extratabsurround=\skip74 -\backup@length=\skip75 -\ar@cellbox=\box85 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/caption/caption.sty -Package: caption 2023/08/05 v3.6o Customizing captions (AR) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/caption/caption3.sty -Package: caption3 2023/07/31 v2.4d caption3 kernel (AR) -\caption@tempdima=\dimen319 -\captionmargin=\dimen320 -\caption@leftmargin=\dimen321 -\caption@rightmargin=\dimen322 -\caption@width=\dimen323 -\caption@indent=\dimen324 -\caption@parindent=\dimen325 -\caption@hangindent=\dimen326 -Package caption Info: beamer document class detected. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/caption/caption-beamer.sto -File: caption-beamer.sto 2022/01/06 v2.0c Adaption of the caption package to th -e beamer document classes (AR) -)) -\c@caption@flags=\count359 -\c@continuedfloat=\count360 -Package caption Info: hyperref package is loaded. -Package caption Info: Hyperref support is turned off -(caption) because hyperref has stopped early. -Package caption Info: longtable package is loaded. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/caption/ltcaption.sty -Package: ltcaption 2021/01/08 v1.4c longtable captions (AR) -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/float/float.sty -Package: float 2001/11/08 v1.3d Float enhancements (AL) -\c@float@type=\count361 -\float@exts=\toks52 -\float@box=\box86 -\@float@everytoks=\toks53 -\@floatcapt=\box87 -) -\@float@every@codelisting=\toks54 -\c@codelisting=\count362 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/caption/subcaption.sty -Package: subcaption 2023/07/28 v1.6b Sub-captions (AR) -Package caption Info: New subtype `subfigure' on input line 238. -\c@subfigure=\count363 -Package caption Info: New subtype `subtable' on input line 238. -\c@subtable=\count364 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tcolorbox/tcolorbox.sty -Package: tcolorbox 2023/09/26 version 6.1.0 text color boxes - -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/basiclayer/pgf.sty -Package: pgf 2023-01-15 v3.1.10 (3.1.10) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/modules/pgfmoduleshapes.cod -e.tex -File: pgfmoduleshapes.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfnodeparttextbox=\box88 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/modules/pgfmoduleplot.code. -tex -File: pgfmoduleplot.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version --0-65.sty -Package: pgfcomp-version-0-65 2023-01-15 v3.1.10 (3.1.10) -\pgf@nodesepstart=\dimen327 -\pgf@nodesepend=\dimen328 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version --1-18.sty -Package: pgfcomp-version-1-18 2023-01-15 v3.1.10 (3.1.10) -)) (/usr/local/texlive/2023/texmf-dist/tex/latex/tools/verbatim.sty -Package: verbatim 2023-11-06 v1.5v LaTeX2e package for verbatim enhancements -\every@verbatim=\toks55 -\verbatim@line=\toks56 -\verbatim@in@stream=\read4 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/environ/environ.sty -Package: environ 2014/05/04 v0.3 A new way to define environments - -(/usr/local/texlive/2023/texmf-dist/tex/latex/trimspaces/trimspaces.sty -Package: trimspaces 2009/09/17 v1.1 Trim spaces around a token list -)) -\tcb@titlebox=\box89 -\tcb@upperbox=\box90 -\tcb@lowerbox=\box91 -\tcb@phantombox=\box92 -\c@tcbbreakpart=\count365 -\c@tcblayer=\count366 -\c@tcolorbox@number=\count367 -\tcb@temp=\box93 -\tcb@temp=\box94 -\tcb@temp=\box95 -\tcb@temp=\box96 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/tcolorbox/tcbskins.code.tex -Library (tcolorbox): 'tcbskins.code.tex' version '6.1.0' -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/frontendlayer/tikz.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/utilities/pgffor.sty -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgffor.code.tex -Package: pgffor 2023-01-15 v3.1.10 (3.1.10) -\pgffor@iter=\dimen329 -\pgffor@skip=\dimen330 -\pgffor@stack=\toks57 -\pgffor@toks=\toks58 -)) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/frontendlayer/tikz/tikz.cod -e.tex -Package: tikz 2023-01-15 v3.1.10 (3.1.10) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/libraries/pgflibraryplothan -dlers.code.tex -File: pgflibraryplothandlers.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@plot@mark@count=\count368 -\pgfplotmarksize=\dimen331 -) -\tikz@lastx=\dimen332 -\tikz@lasty=\dimen333 -\tikz@lastxsaved=\dimen334 -\tikz@lastysaved=\dimen335 -\tikz@lastmovetox=\dimen336 -\tikz@lastmovetoy=\dimen337 -\tikzleveldistance=\dimen338 -\tikzsiblingdistance=\dimen339 -\tikz@figbox=\box97 -\tikz@figbox@bg=\box98 -\tikz@tempbox=\box99 -\tikz@tempbox@bg=\box100 -\tikztreelevel=\count369 -\tikznumberofchildren=\count370 -\tikznumberofcurrentchild=\count371 -\tikz@fig@count=\count372 - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/modules/pgfmodulematrix.cod -e.tex -File: pgfmodulematrix.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfmatrixcurrentrow=\count373 -\pgfmatrixcurrentcolumn=\count374 -\pgf@matrix@numberofcolumns=\count375 -) -\tikz@expandcount=\count376 - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/frontendlayer/tikz/librarie -s/tikzlibrarytopaths.code.tex -File: tikzlibrarytopaths.code.tex 2023-01-15 v3.1.10 (3.1.10) -))) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tikzfill/tikzfill.image.sty -Package: tikzfill.image 2023/08/08 v1.0.1 Image filling library for TikZ - -(/usr/local/texlive/2023/texmf-dist/tex/latex/tikzfill/tikzfill-common.sty -Package: tikzfill-common 2023/08/08 v1.0.1 Auxiliary code for tikzfill -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tikzfill/tikzlibraryfill.image.co -de.tex -File: tikzlibraryfill.image.code.tex 2023/08/08 v1.0.1 Image filling library -\l__tikzfill_img_box=\box101 -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tcolorbox/tcbskinsjigsaw.code.tex -Library (tcolorbox): 'tcbskinsjigsaw.code.tex' version '6.1.0' -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tcolorbox/tcbbreakable.code.tex -Library (tcolorbox): 'tcbbreakable.code.tex' version '6.1.0' -(/usr/local/texlive/2023/texmf-dist/tex/latex/pdfcol/pdfcol.sty -Package: pdfcol 2022-09-21 v1.7 Handle new color stacks for pdfTeX (HO) -) -Package pdfcol Info: New color stack `tcb@breakable' = 1 on input line 23. -\tcb@testbox=\box102 -\tcb@totalupperbox=\box103 -\tcb@totallowerbox=\box104 -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/bookmark/bookmark.sty -Package: bookmark 2023-12-10 v1.31 PDF bookmarks (HO) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/bookmark/bkm-pdftex.def -File: bkm-pdftex.def 2023-12-10 v1.31 bookmark driver for pdfTeX and luaTeX (HO -) -\BKM@id=\count377 -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/xurl/xurl.sty -Package: xurl 2022/01/09 v 0.10 modify URL breaks -) -LaTeX Font Info: Trying to load font information for T1+lmss on input line 2 -18. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/t1lmss.fd -File: t1lmss.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def -File: l3backend-pdftex.def 2023-11-09 L3 backend support: PDF output (pdfTeX) -\l__color_backend_stack_int=\count378 -\l__pdf_internal_box=\box105 -) -No file 3_recursion.aux. -\openout1 = `3_recursion.aux'. - -LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for TS1/cmr/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for PU/pdf/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -*geometry* driver: auto-detecting -*geometry* detected driver: pdftex -*geometry* verbose mode - [ preamble ] result: -* driver: pdftex -* paper: custom -* layout: -* layoutoffset:(h,v)=(0.0pt,0.0pt) -* modes: includehead includefoot -* h-part:(L,W,R)=(10.88002pt, 342.43532pt, 10.88002pt) -* v-part:(T,H,B)=(0.0pt, 273.14662pt, 0.0pt) -* \paperwidth=364.19536pt -* \paperheight=273.14662pt -* \textwidth=342.43532pt -* \textheight=244.6939pt -* \oddsidemargin=-61.38997pt -* \evensidemargin=-61.38997pt -* \topmargin=-72.26999pt -* \headheight=14.22636pt -* \headsep=0.0pt -* \topskip=11.0pt -* \footskip=14.22636pt -* \marginparwidth=4.0pt -* \marginparsep=10.0pt -* \columnsep=10.0pt -* \skip\footins=10.0pt plus 4.0pt minus 2.0pt -* \hoffset=0.0pt -* \voffset=0.0pt -* \mag=1000 -* \@twocolumnfalse -* \@twosidefalse -* \@mparswitchfalse -* \@reversemarginfalse -* (1in=72.27pt=25.4mm, 1cm=28.453pt) - -(/usr/local/texlive/2023/texmf-dist/tex/context/base/mkii/supp-pdf.mkii -[Loading MPS to PDF converter (version 2006.09.02).] -\scratchcounter=\count379 -\scratchdimen=\dimen340 -\scratchbox=\box106 -\nofMPsegments=\count380 -\nofMParguments=\count381 -\everyMPshowfont=\toks59 -\MPscratchCnt=\count382 -\MPscratchDim=\dimen341 -\MPnumerator=\count383 -\makeMPintoPDFobject=\count384 -\everyMPtoPDFconversion=\toks60 -) (/usr/local/texlive/2023/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty -Package: epstopdf-base 2020-01-24 v2.11 Base part for package epstopdf -Package epstopdf-base Info: Redefining graphics rule for `.eps' on input line 4 -85. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg -File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Liv -e -)) -Package hyperref Info: Link coloring OFF on input line 218. -LaTeX Font Info: Overwriting symbol font `operators' in version `normal' -(Font) OT1/lmr/m/n --> OT1/cmss/m/n on input line 218. -LaTeX Font Info: Overwriting symbol font `operators' in version `bold' -(Font) OT1/lmr/bx/n --> OT1/cmss/b/n on input line 218. -LaTeX Font Info: Overwriting symbol font `operators' in version `normal' -(Font) OT1/cmss/m/n --> OT1/lmss/m/n on input line 218. -LaTeX Font Info: Overwriting symbol font `operators' in version `bold' -(Font) OT1/cmss/b/n --> OT1/lmss/b/n on input line 218. -\symnumbers=\mathgroup6 -\sympureletters=\mathgroup7 -LaTeX Font Info: Overwriting math alphabet `\mathrm' in version `normal' -(Font) OT1/lmss/m/n --> T1/lmr/m/n on input line 218. -LaTeX Font Info: Redeclaring math alphabet \mathbf on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `normal' -(Font) OT1/lmr/bx/n --> T1/lmss/b/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `bold' -(Font) OT1/lmr/bx/n --> T1/lmss/b/n on input line 218. -LaTeX Font Info: Redeclaring math alphabet \mathsf on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `normal' -(Font) OT1/lmss/m/n --> T1/lmss/m/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `bold' -(Font) OT1/lmss/bx/n --> T1/lmss/m/n on input line 218. -LaTeX Font Info: Redeclaring math alphabet \mathit on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `normal' -(Font) OT1/lmr/m/it --> T1/lmss/m/it on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `bold' -(Font) OT1/lmr/bx/it --> T1/lmss/m/it on input line 218. -LaTeX Font Info: Redeclaring math alphabet \mathtt on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `normal' -(Font) OT1/lmtt/m/n --> T1/lmtt/m/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `bold' -(Font) OT1/lmtt/m/n --> T1/lmtt/m/n on input line 218. -LaTeX Font Info: Overwriting symbol font `numbers' in version `bold' -(Font) T1/lmss/m/n --> T1/lmss/b/n on input line 218. -LaTeX Font Info: Overwriting symbol font `pureletters' in version `bold' -(Font) T1/lmss/m/it --> T1/lmss/b/it on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathrm' in version `bold' -(Font) OT1/lmss/b/n --> T1/lmr/b/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `bold' -(Font) T1/lmss/b/n --> T1/lmss/b/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `bold' -(Font) T1/lmss/m/n --> T1/lmss/b/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `bold' -(Font) T1/lmss/m/it --> T1/lmss/b/it on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `bold' -(Font) T1/lmtt/m/n --> T1/lmtt/b/n on input line 218. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-basic-dicti -onary-English.dict -Dictionary: translator-basic-dictionary, Language: English -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-bibliograph -y-dictionary-English.dict -Dictionary: translator-bibliography-dictionary, Language: English -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-environment --dictionary-English.dict -Dictionary: translator-environment-dictionary, Language: English -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-months-dict -ionary-English.dict -Dictionary: translator-months-dictionary, Language: English -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-numbers-dic -tionary-English.dict -Dictionary: translator-numbers-dictionary, Language: English -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-theorem-dic -tionary-English.dict -Dictionary: translator-theorem-dictionary, Language: English -) -LaTeX Info: Redefining \microtypecontext on input line 218. -Package microtype Info: Applying patch `item' on input line 218. -Package microtype Info: Applying patch `toc' on input line 218. -Package microtype Info: Applying patch `eqnum' on input line 218. -Package microtype Info: Applying patch `footnote' on input line 218. -Package microtype Info: Applying patch `verbatim' on input line 218. -Package microtype Info: Generating PDF output. -Package microtype Info: Character protrusion enabled (level 2). -Package microtype Info: Using protrusion set `basicmath'. -Package microtype Info: Automatic font expansion enabled (level 2), -(microtype) stretch: 20, shrink: 20, step: 1, non-selected. -Package microtype Info: Using default expansion set `alltext-nott'. -LaTeX Info: Redefining \showhyphens on input line 218. -Package microtype Info: No adjustment of tracking. -Package microtype Info: No adjustment of interword spacing. -Package microtype Info: No adjustment of character kerning. -Package microtype Info: Loading generic protrusion settings for font family -(microtype) `lmss' (encoding: T1). -(microtype) For optimal results, create family-specific settings. -(microtype) See the microtype manual for details. -Package caption Info: Begin \AtBeginDocument code. -Package caption Info: float package is loaded. -Package caption Info: End \AtBeginDocument code. - -No file 3_recursion.nav. - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 218--218 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 219--219 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[1 - -{/usr/local/texlive/2023/texmf-var/fonts/map/pdftex/updmap/pdftex.map}{/usr/loc -al/texlive/2023/texmf-dist/fonts/enc/dvips/lm/lm-ec.enc}] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 236--236 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[2 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 239--239 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[3 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 241--241 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `3_recursion.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 274--274 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./3_recursion.vrb -LaTeX Font Info: Trying to load font information for T1+lmtt on input line 8 -. - (/usr/local/texlive/2023/texmf-dist/tex/latex/lm/t1lmtt.fd -File: t1lmtt.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -LaTeX Font Info: Trying to load font information for OT1+lmss on input line -14. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/ot1lmss.fd -File: ot1lmss.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -LaTeX Font Info: Trying to load font information for OML+lmm on input line 1 -4. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/omllmm.fd -File: omllmm.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -LaTeX Font Info: Trying to load font information for OMS+lmsy on input line -14. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/omslmsy.fd -File: omslmsy.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -LaTeX Font Info: Trying to load font information for OMX+lmex on input line -14. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/omxlmex.fd -File: omxlmex.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <6> on input line 14. -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <5> on input line 14. -LaTeX Font Info: Trying to load font information for U+msa on input line 14. - - -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsfonts/umsa.fd -File: umsa.fd 2013/01/14 v3.01 AMS symbols A -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/microtype/mt-msa.cfg -File: mt-msa.cfg 2006/02/04 v1.1 microtype config. file: AMS symbols (a) (RS) -) -LaTeX Font Info: Trying to load font information for U+msb on input line 14. - - -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsfonts/umsb.fd -File: umsb.fd 2013/01/14 v3.01 AMS symbols B -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/microtype/mt-msb.cfg -File: mt-msb.cfg 2005/06/01 v1.0 microtype config. file: AMS symbols (b) (RS) -) -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <6> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 14. -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <5> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 14. -) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[4 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 276--276 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `3_recursion.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 303--303 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./3_recursion.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[5 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 306--306 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[6 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 331--331 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -File: images/box-recursion.png Graphic file (type png) - -Package pdftex.def Info: images/box-recursion.png used on input line 331. -(pdftex.def) Requested size: 224.7725pt x 150.5027pt. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[7 - - <./images/box-recursion.png>] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 347--347 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[8 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 371--371 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <10.95> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 371. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[9 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 373--373 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `3_recursion.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 408--408 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./3_recursion.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[10 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 410--410 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `3_recursion.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 442--442 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./3_recursion.vrb -Package microtype Info: Loading generic protrusion settings for font family -(microtype) `lmss' (encoding: OT1). -(microtype) For optimal results, create family-specific settings. -(microtype) See the microtype manual for details. -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <10> on input line 10. -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <7> on input line 10. -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <10> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 10. -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <7> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 10. -) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[11 - -{/usr/local/texlive/2023/texmf-dist/fonts/enc/dvips/lm/lm-rm.enc}{/usr/local/te -xlive/2023/texmf-dist/fonts/enc/dvips/lm/lm-mathsy.enc}] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 453--453 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -File: images/rec-call-1.png Graphic file (type png) - -Package pdftex.def Info: images/rec-call-1.png used on input line 453. -(pdftex.def) Requested size: 167.87054pt x 190.15742pt. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[12 - - <./images/rec-call-1.png>] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 464--464 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -File: images/rec-call-2.png Graphic file (type png) - -Package pdftex.def Info: images/rec-call-2.png used on input line 464. -(pdftex.def) Requested size: 167.87508pt x 189.85016pt. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[13 - - <./images/rec-call-2.png>] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 475--475 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -File: images/rec-call-3.png Graphic file (type png) - -Package pdftex.def Info: images/rec-call-3.png used on input line 475. -(pdftex.def) Requested size: 167.87054pt x 226.10402pt. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[14 - - <./images/rec-call-3.png>] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 477--477 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `3_recursion.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 506--506 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./3_recursion.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[15 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 510--510 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[16 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 512--512 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `3_recursion.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 539--539 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./3_recursion.vrb -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <10.95> on input line 26. -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <8> on input line 26. -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <8> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 26. -) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[17 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 541--541 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `3_recursion.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 571--571 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./3_recursion.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[18 - -{/usr/local/texlive/2023/texmf-dist/fonts/enc/dvips/lm/lm-mathit.enc}] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 594--594 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[19 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 596--596 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `3_recursion.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 615--615 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./3_recursion.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[20 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 618--618 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[21 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 644--644 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[22 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 646--646 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `3_recursion.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 672--672 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./3_recursion.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[23 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 674--674 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `3_recursion.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 691--691 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./3_recursion.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[24 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 719--719 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -File: images/merge-sort.png Graphic file (type png) - -Package pdftex.def Info: images/merge-sort.png used on input line 719. -(pdftex.def) Requested size: 171.21019pt x 152.56133pt. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[25 - - <./images/merge-sort.png>] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 751--751 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[26 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 765--765 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[27 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 769--769 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[28 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 771--771 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `3_recursion.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 795--795 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./3_recursion.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[29 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 811--811 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[30 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 823--823 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[31 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 836--836 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[32 - -] -\tf@nav=\write6 -\openout6 = `3_recursion.nav'. - -\tf@toc=\write7 -\openout7 = `3_recursion.toc'. - -\tf@snm=\write8 -\openout8 = `3_recursion.snm'. - - (./3_recursion.aux) - *********** -LaTeX2e <2023-11-01> -L3 programming layer <2023-12-11> - *********** - ) -Here is how much of TeX's memory you used: - 33556 strings out of 474181 - 687253 string characters out of 5745946 - 1936457 words of memory out of 5000000 - 54993 multiletter control sequences out of 15000+600000 - 633388 words of font info for 140 fonts, out of 8000000 for 9000 - 1141 hyphenation exceptions out of 8191 - 128i,15n,123p,1004b,741s stack positions out of 10000i,1000n,20000p,200000b,200000s - -Output written on 3_recursion.pdf (32 pages, 1158372 bytes). -PDF statistics: - 420 PDF objects out of 1000 (max. 8388607) - 294 compressed objects within 3 object streams - 97 named destinations out of 1000 (max. 500000) - 45212 words of extra memory for PDF output out of 51595 (max. 10000000) - diff --git a/slides-resources/3_recursion/3_recursion.nav b/slides-resources/3_recursion/3_recursion.nav deleted file mode 100644 index c691581..0000000 --- a/slides-resources/3_recursion/3_recursion.nav +++ /dev/null @@ -1,84 +0,0 @@ -\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}} -\headcommand {\beamer@framepages {1}{1}} -\headcommand {\slideentry {0}{0}{2}{2/2}{}{0}} -\headcommand {\beamer@framepages {2}{2}} -\headcommand {\beamer@sectionpages {1}{2}} -\headcommand {\beamer@subsectionpages {1}{2}} -\headcommand {\sectionentry {1}{Call Stack}{3}{Call Stack}{0}} -\headcommand {\slideentry {1}{0}{1}{3/3}{}{0}} -\headcommand {\beamer@framepages {3}{3}} -\headcommand {\slideentry {1}{0}{2}{4/4}{}{0}} -\headcommand {\beamer@framepages {4}{4}} -\headcommand {\slideentry {1}{0}{3}{5/5}{}{0}} -\headcommand {\beamer@framepages {5}{5}} -\headcommand {\beamer@sectionpages {3}{5}} -\headcommand {\beamer@subsectionpages {3}{5}} -\headcommand {\sectionentry {2}{Recursion}{6}{Recursion}{0}} -\headcommand {\slideentry {2}{0}{1}{6/6}{}{0}} -\headcommand {\beamer@framepages {6}{6}} -\headcommand {\slideentry {2}{0}{2}{7/7}{}{0}} -\headcommand {\beamer@framepages {7}{7}} -\headcommand {\slideentry {2}{0}{3}{8/8}{}{0}} -\headcommand {\beamer@framepages {8}{8}} -\headcommand {\slideentry {2}{0}{4}{9/9}{}{0}} -\headcommand {\beamer@framepages {9}{9}} -\headcommand {\slideentry {2}{0}{5}{10/10}{}{0}} -\headcommand {\beamer@framepages {10}{10}} -\headcommand {\slideentry {2}{0}{6}{11/11}{}{0}} -\headcommand {\beamer@framepages {11}{11}} -\headcommand {\slideentry {2}{0}{7}{12/12}{}{0}} -\headcommand {\beamer@framepages {12}{12}} -\headcommand {\slideentry {2}{0}{8}{13/13}{}{0}} -\headcommand {\beamer@framepages {13}{13}} -\headcommand {\slideentry {2}{0}{9}{14/14}{}{0}} -\headcommand {\beamer@framepages {14}{14}} -\headcommand {\slideentry {2}{0}{10}{15/15}{}{0}} -\headcommand {\beamer@framepages {15}{15}} -\headcommand {\beamer@sectionpages {6}{15}} -\headcommand {\beamer@subsectionpages {6}{15}} -\headcommand {\sectionentry {3}{Time and Space Complexity of Recursion}{16}{Time and Space Complexity of Recursion}{0}} -\headcommand {\slideentry {3}{0}{1}{16/16}{}{0}} -\headcommand {\beamer@framepages {16}{16}} -\headcommand {\slideentry {3}{0}{2}{17/17}{}{0}} -\headcommand {\beamer@framepages {17}{17}} -\headcommand {\slideentry {3}{0}{3}{18/18}{}{0}} -\headcommand {\beamer@framepages {18}{18}} -\headcommand {\slideentry {3}{0}{4}{19/19}{}{0}} -\headcommand {\beamer@framepages {19}{19}} -\headcommand {\slideentry {3}{0}{5}{20/20}{}{0}} -\headcommand {\beamer@framepages {20}{20}} -\headcommand {\beamer@sectionpages {16}{20}} -\headcommand {\beamer@subsectionpages {16}{20}} -\headcommand {\sectionentry {4}{Mergesort}{21}{Mergesort}{0}} -\headcommand {\slideentry {4}{0}{1}{21/21}{}{0}} -\headcommand {\beamer@framepages {21}{21}} -\headcommand {\slideentry {4}{0}{2}{22/22}{}{0}} -\headcommand {\beamer@framepages {22}{22}} -\headcommand {\slideentry {4}{0}{3}{23/23}{}{0}} -\headcommand {\beamer@framepages {23}{23}} -\headcommand {\slideentry {4}{0}{4}{24/24}{}{0}} -\headcommand {\beamer@framepages {24}{24}} -\headcommand {\slideentry {4}{0}{5}{25/25}{}{0}} -\headcommand {\beamer@framepages {25}{25}} -\headcommand {\slideentry {4}{0}{6}{26/26}{}{0}} -\headcommand {\beamer@framepages {26}{26}} -\headcommand {\slideentry {4}{0}{7}{27/27}{}{0}} -\headcommand {\beamer@framepages {27}{27}} -\headcommand {\beamer@sectionpages {21}{27}} -\headcommand {\beamer@subsectionpages {21}{27}} -\headcommand {\sectionentry {5}{Recommended Problems and References}{28}{Recommended Problems and References}{0}} -\headcommand {\slideentry {5}{0}{1}{28/28}{}{0}} -\headcommand {\beamer@framepages {28}{28}} -\headcommand {\slideentry {5}{0}{2}{29/29}{}{0}} -\headcommand {\beamer@framepages {29}{29}} -\headcommand {\slideentry {5}{0}{3}{30/30}{}{0}} -\headcommand {\beamer@framepages {30}{30}} -\headcommand {\slideentry {5}{0}{4}{31/31}{}{0}} -\headcommand {\beamer@framepages {31}{31}} -\headcommand {\slideentry {5}{0}{5}{32/32}{}{0}} -\headcommand {\beamer@framepages {32}{32}} -\headcommand {\beamer@partpages {1}{32}} -\headcommand {\beamer@subsectionpages {28}{32}} -\headcommand {\beamer@sectionpages {28}{32}} -\headcommand {\beamer@documentpages {32}} -\headcommand {\gdef \inserttotalframenumber {32}} diff --git a/slides-resources/3_recursion/3_recursion.pdf b/slides-resources/3_recursion/3_recursion.pdf deleted file mode 100644 index 6382bef..0000000 Binary files a/slides-resources/3_recursion/3_recursion.pdf and /dev/null differ diff --git a/slides-resources/3_recursion/3_recursion.qmd b/slides-resources/3_recursion/3_recursion.qmd deleted file mode 100644 index f77e923..0000000 --- a/slides-resources/3_recursion/3_recursion.qmd +++ /dev/null @@ -1,363 +0,0 @@ ---- -title: "Recursion" -format: - beamer: - institute: Data Sciences Institute, UofT - theme: Boadilla - colortheme: rose -execute: - echo: true -editor: visual -author: Salaar Liaqat ---- - -## Outline - -- Call Stack - -- Recursion - -- Time and Space complexity of Recursion - -- Mergesort - -- Multiple recursive - -# Call Stack - -## How a Call Stack Works - -- Your computer internally uses a call stack (stack ADT) to execute functions - -- When you run your Python file, the `main` functions is called. `main` is pushed onto the stack - - - Sounds familiar? `if __name__ == "__main__":` - -- As the main function executes, it may call other functions, each functions is pushed to the top of the stack - - - The currently executing function is at the top of the stack - -- When each function is executed, it is popped from the stack - -- The function may return a value, which is passes to the calling function (the function below in the stack). - -- The calling function can use the return value and continue execution until the stack is empty - -## Basic Example - -- If I run `round(float("20.24"))`, I expect `20` - - - The `round` function is first to be called, it is pushed on the call stack - - - Then, `float("20.24")` is called and pushed on the call stack - -- Now, we pop each function off the call stack. - - - `float("20.24")` returns `20.24` - - - `round` uses the return value of the previous function, `20.24`. It executes `round(20.24)`, which returns `20` - - - The stack is empty, so the program finishes - -# Recursion - -## Motivating Example - -- Suppose you are looking for a key in a box, but the box contains more boxes! - -![](images/box-recursion.png){fig-align="center" width="7.9cm"} - -- 2 minutes: write down the steps of the algorithm you would take to search for the key - -## Algorithm 1: Loop - -1. Make a pile of all the boxes - -2. Grab a box and open it - -3. If it contains a box, append it to your pile of boxes - -4. If it contains the key, you're done! - -5. Repeat - -## Algorithm 2: Recursion - -1. Grab a box and open it - -2. If it contains a box, repeat step 1 - -3. If it contains the key, you're done! - -\vspace{1cm} - -*Which algorithm do you like more?* - -- Notice the function is recursive because it calls itself - -- Both algorithms achieve the same thing, but recursion is clearer (to me) - -## Formula to write a recursive function - -- Since recursive functions call themselves, its easy to write an infinite loop - -- Let's write a function that does a countdown - -```{python} -def countdown(i): - print(i) - countdown(i - 1) -``` - -- This runs forever, so we need a *base case* to tell the code when to stop - -```{python} -def countdown(i): - print(i) - if i <= 0: - return - else: - countdown(i - 1) -``` - -## Factorial - -- The *factorial* is the product of all positive integers less than or equal to the given integer - - - $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$ - - - We define $1! = 1$ - -- Let's use recursion to calculate factorials - -```{python} -def factorial(n): - if x == 1: - return 1 - else: - return x * factorial(x - 1) -``` - -- Let's examine the call stack when we call `factorial(3)` - -## Recursion and the Call Stack - -![](images/rec-call-1.png){fig-align="center" width="5.9cm"} - -## Recursion and the Call Stack - -![](images/rec-call-2.png){fig-align="center" width="5.9cm"} - -## Recursion and the Call Stack - -![](images/rec-call-3.png){fig-align="center" width="5.9cm"} - -## Multiple Recursive Calls: Fibonacci Sequence - -- In calculating the factorial, each recursion only calls itself once. This doesn't have to be the case - -- The Fibonacci Sequence is a sequence of numbers where the first two numbers are 0 and 1, with each subsequent number being being the sum of the previous two numbers in the sequence. - - - Notice how the problem is defined recursively - -```{python} -def fib(n): - if n <= 1: - return n - else: - return fib(n - 1) + fib(n - 2) -``` - -2 minutes: what is its time and space complexity? - -# Time and Space Complexity of Recursion - -## Time Complexity of Recursion - -- Generally, recursion doesn't have performance benefits compared to loops (in problems like finding a key in nested boxes) - - - However, it is simpler to understand - -- The time complexity of recursion depends on the number of time the function calls itself (branches) - - - Factorial: the `fact` is called $n$ times before reaching the base case so its $O(1^n) = O(n)$ - - - If a recursive function called itself twice, then its $(2^n)$ - -- When a recursive function makes multiple calls, the run time will often be $O(branches^{depth})$ - -## Tricky Example - -```{python} -#| eval: false -def recursive(n): - for i in range(n): - # Something happens - i += 2 - if n <= 0: - return 1 - else: - return 1 + recursive(n - 3) -``` - -- Loop takes $n/2$ steps, because we increase `i` by 2 - -- Recursion takes $n/3$ steps **and** the loop is called recursively. - - - In other words, for each recursion, run the loop. - -- The time complexity is $n/2 \times n/3 = \frac{n^2}{6} = O(n^2)$ - -## Space complexity of recursion - -- Notice the call stack takes up space in memory. How much depends on the depth of the recursion - -- Think about the maximum amount of space the call stack will need - - - Factorial: $O(n)$, when recursion reaches the base case - -- Even when you have multiple branches, it's possible only 1 branch at depth $n$ is in memory at a time - -- 2 minutes: to find the key in nested boxes, what is the memory complexity of the recursive approach versus the loop approach? - -## Live Coding - -Given an list of positive integers and an integer x, we want to find all unique combinations in the list where the sum is equal to x. A number in the list can be used multiple times. - -### Example - -```{python} -#| eval: false -# INPUT -lst = [1,2,5,6] -x = 6 -# OUTPUT -[1, 5] -[6] -``` - -# Mergesort - -## Divide and Conquer Algorithms - -- Divide and Conquer (D&C) is a general method to solve problems utilizing recursion. - - - Figure out the simplest case and use it as the base case - - - Figure out how to reduce your problem to the base case - -- Let's start with a trivial example: how would you sum a list of integers? - - - Solution is obvious with a loop - - - Let's do it recursively - -## Divide and Conquer Algorithms - -Step 1 - -- What is the simplest array to sum? - -- Arrays with no elements or 1 element - - - sum of `[]` is 0, sum of `[8]` is 8 - -Step 2 - -- How can we reduce all arrays to empty array? - -- Notice `sum[2, 4, 5]` = 2 + `sum[4, 5]`, but the second version reduced the problem - -## Divide and Conquer Algorithms - -```{python} -def rec_sum(lst): - if not lst: - return 0 - else: - return lst[0] + rec_sum(lst[1:]) -``` - -- Let's work on a real problem next! - -## Mergesort - -::: columns -::: {.column width="50%"} -- Some lists don't need to be sorted - - - Lists of size 1! This is our base case - -- We can split lists in half until they contain 1 element, then merge all of the sub-lists - -- Python's sort function uses a hybrid of merge and insertion sort, both of which you've learned! -::: - -::: {.column width="50%"} -![](images/merge-sort.png) -::: -::: - -## Big-O of Merge Sort - -First consider the non-recursive part of the code - -- The "divide" step takes linear time, since slicing operations take roughly $n/2$ steps to make a left and right copy respectively. - -- The merge operation also takes $n$ steps approximately - -- All other operations are constants - -- Together, the non-recursive part of this algorithm is $O(n)$ - -Next consider the recursive calls - -- Recall the big-O of recursion depends on the recursion depth and number of calls. $O(branches^{depth})$ - -- The depth in Merge Sort is the number of times you need to divide to get to a list of length 1. - -- Mathematically, $2^{\text{depth}} = n$, then $\text{depth} = \text{log}n$. So there are approximately log $n$ levels - -## Big-O of Mergesort - -- Since the $O(n)$ steps must be performed each recursion, the total run time is $O(n\text{log}n)$. Our analysis only depended on the size of the list, so the best and worst case of mergesort is the same - -- This is much faster than insertion sort! - -- 2 minutes: does it have less space complexity than insertion sort? - -# Recommended Problems and References - -## Recommended Problems - -- Bhargava: Chapter 4 exercises - - - 4.1 to 4.8 - -- Write a recursive function that produces the `RecursionError: maximum recursion depth exceeded` error. - -- Write a iterative function to calculate the $n$th Fibonacci number. What is its time and space complexity? - -- Write a recursive function to determine if a string is a palindrome. What is its time and space complexity? - -- Write a recursive function to check if a given positive integer is a prime number. What is its time and space complexity? - -## Recommended Problems - -- Suppose you have a plot of land and want to divide the land into even square plots, while keeping the plots as big as possible. How would you do this using D&C? See Bhargava pg. 52. - -- Explain why the "merge" step in mergesort is $O(n)$ - -- Implement mergesort. You might find using helper functions useful. - -- Write a recursive function to perform binary search on a sorted list - -## Bonus Readings - -- You may be interested in learning more about quicksort in Bhargava chapter 4 or [here](https://www.teach.cs.toronto.edu/~csc148h/winter/notes/recursive-sorting/recursive_sorting.html). Quicksort is another recursive sorting method - -## References - -- Bhargava, A. Y. (2016). *Grokking algorithms: An illustrated guide for programmers and other curious people.* Manning. Chapter 3 and 4. - -- Cormen, T. H. (Ed.). (2009). *Introduction to algorithms* (3rd ed). MIT Press. Chapter 4. diff --git a/slides-resources/3_recursion/3_recursion.snm b/slides-resources/3_recursion/3_recursion.snm deleted file mode 100644 index e69de29..0000000 diff --git a/slides-resources/3_recursion/3_recursion.tex b/slides-resources/3_recursion/3_recursion.tex deleted file mode 100644 index 17625a1..0000000 --- a/slides-resources/3_recursion/3_recursion.tex +++ /dev/null @@ -1,840 +0,0 @@ -% Options for packages loaded elsewhere -\PassOptionsToPackage{unicode}{hyperref} -\PassOptionsToPackage{hyphens}{url} -% -\documentclass[ - ignorenonframetext, -]{beamer} -\usepackage{pgfpages} -\setbeamertemplate{caption}[numbered] -\setbeamertemplate{caption label separator}{: } -\setbeamercolor{caption name}{fg=normal text.fg} -\beamertemplatenavigationsymbolsempty -% Prevent slide breaks in the middle of a paragraph -\widowpenalties 1 10000 -\raggedbottom -\setbeamertemplate{part page}{ - \centering - \begin{beamercolorbox}[sep=16pt,center]{part title} - \usebeamerfont{part title}\insertpart\par - \end{beamercolorbox} -} -\setbeamertemplate{section page}{ - \centering - \begin{beamercolorbox}[sep=12pt,center]{part title} - \usebeamerfont{section title}\insertsection\par - \end{beamercolorbox} -} -\setbeamertemplate{subsection page}{ - \centering - \begin{beamercolorbox}[sep=8pt,center]{part title} - \usebeamerfont{subsection title}\insertsubsection\par - \end{beamercolorbox} -} -\AtBeginPart{ - \frame{\partpage} -} -\AtBeginSection{ - \ifbibliography - \else - \frame{\sectionpage} - \fi -} -\AtBeginSubsection{ - \frame{\subsectionpage} -} - -\usepackage{amsmath,amssymb} -\usepackage{iftex} -\ifPDFTeX - \usepackage[T1]{fontenc} - \usepackage[utf8]{inputenc} - \usepackage{textcomp} % provide euro and other symbols -\else % if luatex or xetex - \usepackage{unicode-math} - \defaultfontfeatures{Scale=MatchLowercase} - \defaultfontfeatures[\rmfamily]{Ligatures=TeX,Scale=1} -\fi -\usepackage{lmodern} -\usetheme[]{Boadilla} -\usecolortheme{rose} -\ifPDFTeX\else - % xetex/luatex font selection -\fi -% Use upquote if available, for straight quotes in verbatim environments -\IfFileExists{upquote.sty}{\usepackage{upquote}}{} -\IfFileExists{microtype.sty}{% use microtype if available - \usepackage[]{microtype} - \UseMicrotypeSet[protrusion]{basicmath} % disable protrusion for tt fonts -}{} -\makeatletter -\@ifundefined{KOMAClassName}{% if non-KOMA class - \IfFileExists{parskip.sty}{% - \usepackage{parskip} - }{% else - \setlength{\parindent}{0pt} - \setlength{\parskip}{6pt plus 2pt minus 1pt}} -}{% if KOMA class - \KOMAoptions{parskip=half}} -\makeatother -\usepackage{xcolor} -\newif\ifbibliography -\setlength{\emergencystretch}{3em} % prevent overfull lines -\setcounter{secnumdepth}{-\maxdimen} % remove section numbering - -\usepackage{color} -\usepackage{fancyvrb} -\newcommand{\VerbBar}{|} -\newcommand{\VERB}{\Verb[commandchars=\\\{\}]} -\DefineVerbatimEnvironment{Highlighting}{Verbatim}{commandchars=\\\{\}} -% Add ',fontsize=\small' for more characters per line -\usepackage{framed} -\definecolor{shadecolor}{RGB}{241,243,245} -\newenvironment{Shaded}{\begin{snugshade}}{\end{snugshade}} -\newcommand{\AlertTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\AnnotationTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{#1}} -\newcommand{\AttributeTok}[1]{\textcolor[rgb]{0.40,0.45,0.13}{#1}} -\newcommand{\BaseNTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\BuiltInTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\CharTok}[1]{\textcolor[rgb]{0.13,0.47,0.30}{#1}} -\newcommand{\CommentTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{#1}} -\newcommand{\CommentVarTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{\textit{#1}}} -\newcommand{\ConstantTok}[1]{\textcolor[rgb]{0.56,0.35,0.01}{#1}} -\newcommand{\ControlFlowTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\DataTypeTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\DecValTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\DocumentationTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{\textit{#1}}} -\newcommand{\ErrorTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\ExtensionTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\FloatTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\FunctionTok}[1]{\textcolor[rgb]{0.28,0.35,0.67}{#1}} -\newcommand{\ImportTok}[1]{\textcolor[rgb]{0.00,0.46,0.62}{#1}} -\newcommand{\InformationTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{#1}} -\newcommand{\KeywordTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\NormalTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\OperatorTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{#1}} -\newcommand{\OtherTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\PreprocessorTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\RegionMarkerTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\SpecialCharTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{#1}} -\newcommand{\SpecialStringTok}[1]{\textcolor[rgb]{0.13,0.47,0.30}{#1}} -\newcommand{\StringTok}[1]{\textcolor[rgb]{0.13,0.47,0.30}{#1}} -\newcommand{\VariableTok}[1]{\textcolor[rgb]{0.07,0.07,0.07}{#1}} -\newcommand{\VerbatimStringTok}[1]{\textcolor[rgb]{0.13,0.47,0.30}{#1}} -\newcommand{\WarningTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{\textit{#1}}} - -\providecommand{\tightlist}{% - \setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}\usepackage{longtable,booktabs,array} -\usepackage{calc} % for calculating minipage widths -\usepackage{caption} -% Make caption package work with longtable -\makeatletter -\def\fnum@table{\tablename~\thetable} -\makeatother -\usepackage{graphicx} -\makeatletter -\def\maxwidth{\ifdim\Gin@nat@width>\linewidth\linewidth\else\Gin@nat@width\fi} -\def\maxheight{\ifdim\Gin@nat@height>\textheight\textheight\else\Gin@nat@height\fi} -\makeatother -% Scale images if necessary, so that they will not overflow the page -% margins by default, and it is still possible to overwrite the defaults -% using explicit options in \includegraphics[width, height, ...]{} -\setkeys{Gin}{width=\maxwidth,height=\maxheight,keepaspectratio} -% Set default figure placement to htbp -\makeatletter -\def\fps@figure{htbp} -\makeatother - -\makeatletter -\makeatother -\makeatletter -\makeatother -\makeatletter -\@ifpackageloaded{caption}{}{\usepackage{caption}} -\AtBeginDocument{% -\ifdefined\contentsname - \renewcommand*\contentsname{Table of contents} -\else - \newcommand\contentsname{Table of contents} -\fi -\ifdefined\listfigurename - \renewcommand*\listfigurename{List of Figures} -\else - \newcommand\listfigurename{List of Figures} -\fi -\ifdefined\listtablename - \renewcommand*\listtablename{List of Tables} -\else - \newcommand\listtablename{List of Tables} -\fi -\ifdefined\figurename - \renewcommand*\figurename{Figure} -\else - \newcommand\figurename{Figure} -\fi -\ifdefined\tablename - \renewcommand*\tablename{Table} -\else - \newcommand\tablename{Table} -\fi -} -\@ifpackageloaded{float}{}{\usepackage{float}} -\floatstyle{ruled} -\@ifundefined{c@chapter}{\newfloat{codelisting}{h}{lop}}{\newfloat{codelisting}{h}{lop}[chapter]} -\floatname{codelisting}{Listing} -\newcommand*\listoflistings{\listof{codelisting}{List of Listings}} -\makeatother -\makeatletter -\@ifpackageloaded{caption}{}{\usepackage{caption}} -\@ifpackageloaded{subcaption}{}{\usepackage{subcaption}} -\makeatother -\makeatletter -\@ifpackageloaded{tcolorbox}{}{\usepackage[skins,breakable]{tcolorbox}} -\makeatother -\makeatletter -\@ifundefined{shadecolor}{\definecolor{shadecolor}{rgb}{.97, .97, .97}} -\makeatother -\makeatletter -\makeatother -\makeatletter -\makeatother -\ifLuaTeX - \usepackage{selnolig} % disable illegal ligatures -\fi -\IfFileExists{bookmark.sty}{\usepackage{bookmark}}{\usepackage{hyperref}} -\IfFileExists{xurl.sty}{\usepackage{xurl}}{} % add URL line breaks if available -\urlstyle{same} % disable monospaced font for URLs -\hypersetup{ - pdftitle={Recursion}, - pdfauthor={Salaar Liaqat}, - hidelinks, - pdfcreator={LaTeX via pandoc}} - -\title{Recursion} -\author{Salaar Liaqat} -\date{} -\institute{Data Sciences Institute, UofT} - -\begin{document} -\frame{\titlepage} -\ifdefined\Shaded\renewenvironment{Shaded}{\begin{tcolorbox}[frame hidden, interior hidden, borderline west={3pt}{0pt}{shadecolor}, enhanced, sharp corners, boxrule=0pt, breakable]}{\end{tcolorbox}}\fi - -\begin{frame}{Outline} -\protect\hypertarget{outline}{} -\begin{itemize} -\item - Call Stack -\item - Recursion -\item - Time and Space complexity of Recursion -\item - Mergesort -\item - Multiple recursive -\end{itemize} -\end{frame} - -\hypertarget{call-stack}{% -\section{Call Stack}\label{call-stack}} - -\begin{frame}[fragile]{How a Call Stack Works} -\protect\hypertarget{how-a-call-stack-works}{} -\begin{itemize} -\item - Your computer internally uses a call stack (stack ADT) to execute - functions -\item - When you run your Python file, the \texttt{main} functions is called. - \texttt{main} is pushed onto the stack - - \begin{itemize} - \tightlist - \item - Sounds familiar? \texttt{if\ \_\_name\_\_\ ==\ "\_\_main\_\_":} - \end{itemize} -\item - As the main function executes, it may call other functions, each - functions is pushed to the top of the stack - - \begin{itemize} - \tightlist - \item - The currently executing function is at the top of the stack - \end{itemize} -\item - When each function is executed, it is popped from the stack -\item - The function may return a value, which is passes to the calling - function (the function below in the stack). -\item - The calling function can use the return value and continue execution - until the stack is empty -\end{itemize} -\end{frame} - -\begin{frame}[fragile]{Basic Example} -\protect\hypertarget{basic-example}{} -\begin{itemize} -\item - If I run \texttt{round(float("20.24"))}, I expect \texttt{20} - - \begin{itemize} - \item - The \texttt{round} function is first to be called, it is pushed on - the call stack - \item - Then, \texttt{float("20.24")} is called and pushed on the call stack - \end{itemize} -\item - Now, we pop each function off the call stack. - - \begin{itemize} - \item - \texttt{float("20.24")} returns \texttt{20.24} - \item - \texttt{round} uses the return value of the previous function, - \texttt{20.24}. It executes \texttt{round(20.24)}, which returns - \texttt{20} - \item - The stack is empty, so the program finishes - \end{itemize} -\end{itemize} -\end{frame} - -\hypertarget{recursion}{% -\section{Recursion}\label{recursion}} - -\begin{frame}{Motivating Example} -\protect\hypertarget{motivating-example}{} -\begin{itemize} -\tightlist -\item - Suppose you are looking for a key in a box, but the box contains more - boxes! -\end{itemize} - -\begin{figure} - -{\centering \includegraphics[width=7.9cm,height=\textheight]{images/box-recursion.png} - -} - -\end{figure} - -\begin{itemize} -\tightlist -\item - 2 minutes: write down the steps of the algorithm you would take to - search for the key -\end{itemize} -\end{frame} - -\begin{frame}{Algorithm 1: Loop} -\protect\hypertarget{algorithm-1-loop}{} -\begin{enumerate} -\item - Make a pile of all the boxes -\item - Grab a box and open it -\item - If it contains a box, append it to your pile of boxes -\item - If it contains the key, you're done! -\item - Repeat -\end{enumerate} -\end{frame} - -\begin{frame}{Algorithm 2: Recursion} -\protect\hypertarget{algorithm-2-recursion}{} -\begin{enumerate} -\item - Grab a box and open it -\item - If it contains a box, repeat step 1 -\item - If it contains the key, you're done! -\end{enumerate} - -\vspace{1cm} - -\emph{Which algorithm do you like more?} - -\begin{itemize} -\item - Notice the function is recursive because it calls itself -\item - Both algorithms achieve the same thing, but recursion is clearer (to - me) -\end{itemize} -\end{frame} - -\begin{frame}[fragile]{Formula to write a recursive function} -\protect\hypertarget{formula-to-write-a-recursive-function}{} -\begin{itemize} -\item - Since recursive functions call themselves, its easy to write an - infinite loop -\item - Let's write a function that does a countdown -\end{itemize} - -\begin{Shaded} -\begin{Highlighting}[] -\KeywordTok{def}\NormalTok{ countdown(i):} - \BuiltInTok{print}\NormalTok{(i)} -\NormalTok{ countdown(i }\OperatorTok{{-}} \DecValTok{1}\NormalTok{)} -\end{Highlighting} -\end{Shaded} - -\begin{itemize} -\tightlist -\item - This runs forever, so we need a \emph{base case} to tell the code when - to stop -\end{itemize} - -\begin{Shaded} -\begin{Highlighting}[] -\KeywordTok{def}\NormalTok{ countdown(i):} - \BuiltInTok{print}\NormalTok{(i)} - \ControlFlowTok{if}\NormalTok{ i }\OperatorTok{\textless{}=} \DecValTok{0}\NormalTok{:} - \ControlFlowTok{return} - \ControlFlowTok{else}\NormalTok{:} -\NormalTok{ countdown(i }\OperatorTok{{-}} \DecValTok{1}\NormalTok{)} -\end{Highlighting} -\end{Shaded} -\end{frame} - -\begin{frame}[fragile]{Factorial} -\protect\hypertarget{factorial}{} -\begin{itemize} -\item - The \emph{factorial} is the product of all positive integers less than - or equal to the given integer - - \begin{itemize} - \item - \(5! = 5 \times 4 \times 3 \times 2 \times 1 = 120\) - \item - We define \(1! = 1\) - \end{itemize} -\item - Let's use recursion to calculate factorials -\end{itemize} - -\begin{Shaded} -\begin{Highlighting}[] -\KeywordTok{def}\NormalTok{ factorial(n):} - \ControlFlowTok{if}\NormalTok{ x }\OperatorTok{==} \DecValTok{1}\NormalTok{:} - \ControlFlowTok{return} \DecValTok{1} - \ControlFlowTok{else}\NormalTok{:} - \ControlFlowTok{return}\NormalTok{ x }\OperatorTok{*}\NormalTok{ factorial(x }\OperatorTok{{-}} \DecValTok{1}\NormalTok{)} -\end{Highlighting} -\end{Shaded} - -\begin{itemize} -\tightlist -\item - Let's examine the call stack when we call \texttt{factorial(3)} -\end{itemize} -\end{frame} - -\begin{frame}{Recursion and the Call Stack} -\protect\hypertarget{recursion-and-the-call-stack}{} -\begin{figure} - -{\centering \includegraphics[width=5.9cm,height=\textheight]{images/rec-call-1.png} - -} - -\end{figure} -\end{frame} - -\begin{frame}{Recursion and the Call Stack} -\protect\hypertarget{recursion-and-the-call-stack-1}{} -\begin{figure} - -{\centering \includegraphics[width=5.9cm,height=\textheight]{images/rec-call-2.png} - -} - -\end{figure} -\end{frame} - -\begin{frame}{Recursion and the Call Stack} -\protect\hypertarget{recursion-and-the-call-stack-2}{} -\begin{figure} - -{\centering \includegraphics[width=5.9cm,height=\textheight]{images/rec-call-3.png} - -} - -\end{figure} -\end{frame} - -\begin{frame}[fragile]{Multiple Recursive Calls: Fibonacci Sequence} -\protect\hypertarget{multiple-recursive-calls-fibonacci-sequence}{} -\begin{itemize} -\item - In calculating the factorial, each recursion only calls itself once. - This doesn't have to be the case -\item - The Fibonacci Sequence is a sequence of numbers where the first two - numbers are 0 and 1, with each subsequent number being being the sum - of the previous two numbers in the sequence. - - \begin{itemize} - \tightlist - \item - Notice how the problem is defined recursively - \end{itemize} -\end{itemize} - -\begin{Shaded} -\begin{Highlighting}[] -\KeywordTok{def}\NormalTok{ fib(n):} - \ControlFlowTok{if}\NormalTok{ n }\OperatorTok{\textless{}=} \DecValTok{1}\NormalTok{:} - \ControlFlowTok{return}\NormalTok{ n} - \ControlFlowTok{else}\NormalTok{:} - \ControlFlowTok{return}\NormalTok{ fib(n }\OperatorTok{{-}} \DecValTok{1}\NormalTok{) }\OperatorTok{+}\NormalTok{ fib(n }\OperatorTok{{-}} \DecValTok{2}\NormalTok{)} -\end{Highlighting} -\end{Shaded} - -2 minutes: what is its time and space complexity? -\end{frame} - -\hypertarget{time-and-space-complexity-of-recursion}{% -\section{Time and Space Complexity of -Recursion}\label{time-and-space-complexity-of-recursion}} - -\begin{frame}[fragile]{Time Complexity of Recursion} -\protect\hypertarget{time-complexity-of-recursion}{} -\begin{itemize} -\item - Generally, recursion doesn't have performance benefits compared to - loops (in problems like finding a key in nested boxes) - - \begin{itemize} - \tightlist - \item - However, it is simpler to understand - \end{itemize} -\item - The time complexity of recursion depends on the number of time the - function calls itself (branches) - - \begin{itemize} - \item - Factorial: the \texttt{fact} is called \(n\) times before reaching - the base case so its \(O(1^n) = O(n)\) - \item - If a recursive function called itself twice, then its \((2^n)\) - \end{itemize} -\item - When a recursive function makes multiple calls, the run time will - often be \(O(branches^{depth})\) -\end{itemize} -\end{frame} - -\begin{frame}[fragile]{Tricky Example} -\protect\hypertarget{tricky-example}{} -\begin{Shaded} -\begin{Highlighting}[] -\KeywordTok{def}\NormalTok{ recursive(n):} - \ControlFlowTok{for}\NormalTok{ i }\KeywordTok{in} \BuiltInTok{range}\NormalTok{(n):} - \CommentTok{\# Something happens} -\NormalTok{ i }\OperatorTok{+=} \DecValTok{2} - \ControlFlowTok{if}\NormalTok{ n }\OperatorTok{\textless{}=} \DecValTok{0}\NormalTok{:} - \ControlFlowTok{return} \DecValTok{1} - \ControlFlowTok{else}\NormalTok{:} - \ControlFlowTok{return} \DecValTok{1} \OperatorTok{+}\NormalTok{ recursive(n }\OperatorTok{{-}} \DecValTok{3}\NormalTok{)} -\end{Highlighting} -\end{Shaded} - -\begin{itemize} -\item - Loop takes \(n/2\) steps, because we increase \texttt{i} by 2 -\item - Recursion takes \(n/3\) steps \textbf{and} the loop is called - recursively. - - \begin{itemize} - \tightlist - \item - In other words, for each recursion, run the loop. - \end{itemize} -\item - The time complexity is \(n/2 \times n/3 = \frac{n^2}{6} = O(n^2)\) -\end{itemize} -\end{frame} - -\begin{frame}{Space complexity of recursion} -\protect\hypertarget{space-complexity-of-recursion}{} -\begin{itemize} -\item - Notice the call stack takes up space in memory. How much depends on - the depth of the recursion -\item - Think about the maximum amount of space the call stack will need - - \begin{itemize} - \tightlist - \item - Factorial: \(O(n)\), when recursion reaches the base case - \end{itemize} -\item - Even when you have multiple branches, it's possible only 1 branch at - depth \(n\) is in memory at a time -\item - 2 minutes: to find the key in nested boxes, what is the memory - complexity of the recursive approach versus the loop approach? -\end{itemize} -\end{frame} - -\begin{frame}[fragile]{Live Coding} -\protect\hypertarget{live-coding}{} -Given an list of positive integers and an integer x, we want to find all -unique combinations in the list where the sum is equal to x. A number in -the list can be used multiple times. - -\begin{block}{Example} -\protect\hypertarget{example}{} -\begin{Shaded} -\begin{Highlighting}[] -\CommentTok{\# INPUT} -\NormalTok{lst }\OperatorTok{=}\NormalTok{ [}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{5}\NormalTok{,}\DecValTok{6}\NormalTok{]} -\NormalTok{x }\OperatorTok{=} \DecValTok{6} -\CommentTok{\# OUTPUT} -\NormalTok{[}\DecValTok{1}\NormalTok{, }\DecValTok{5}\NormalTok{]} -\NormalTok{[}\DecValTok{6}\NormalTok{]} -\end{Highlighting} -\end{Shaded} -\end{block} -\end{frame} - -\hypertarget{mergesort}{% -\section{Mergesort}\label{mergesort}} - -\begin{frame}{Divide and Conquer Algorithms} -\protect\hypertarget{divide-and-conquer-algorithms}{} -\begin{itemize} -\item - Divide and Conquer (D\&C) is a general method to solve problems - utilizing recursion. - - \begin{itemize} - \item - Figure out the simplest case and use it as the base case - \item - Figure out how to reduce your problem to the base case - \end{itemize} -\item - Let's start with a trivial example: how would you sum a list of - integers? - - \begin{itemize} - \item - Solution is obvious with a loop - \item - Let's do it recursively - \end{itemize} -\end{itemize} -\end{frame} - -\begin{frame}[fragile]{Divide and Conquer Algorithms} -\protect\hypertarget{divide-and-conquer-algorithms-1}{} -Step 1 - -\begin{itemize} -\item - What is the simplest array to sum? -\item - Arrays with no elements or 1 element - - \begin{itemize} - \tightlist - \item - sum of \texttt{{[}{]}} is 0, sum of \texttt{{[}8{]}} is 8 - \end{itemize} -\end{itemize} - -Step 2 - -\begin{itemize} -\item - How can we reduce all arrays to empty array? -\item - Notice \texttt{sum{[}2,\ 4,\ 5{]}} = 2 + \texttt{sum{[}4,\ 5{]}}, but - the second version reduced the problem -\end{itemize} -\end{frame} - -\begin{frame}[fragile]{Divide and Conquer Algorithms} -\protect\hypertarget{divide-and-conquer-algorithms-2}{} -\begin{Shaded} -\begin{Highlighting}[] -\KeywordTok{def}\NormalTok{ rec\_sum(lst):} - \ControlFlowTok{if} \KeywordTok{not}\NormalTok{ lst:} - \ControlFlowTok{return} \DecValTok{0} - \ControlFlowTok{else}\NormalTok{:} - \ControlFlowTok{return}\NormalTok{ lst[}\DecValTok{0}\NormalTok{] }\OperatorTok{+}\NormalTok{ rec\_sum(lst[}\DecValTok{1}\NormalTok{:])} -\end{Highlighting} -\end{Shaded} - -\begin{itemize} -\tightlist -\item - Let's work on a real problem next! -\end{itemize} -\end{frame} - -\begin{frame}{Mergesort} -\protect\hypertarget{mergesort-1}{} -\begin{columns}[T] -\begin{column}{0.5\textwidth} -\begin{itemize} -\item - Some lists don't need to be sorted - - \begin{itemize} - \tightlist - \item - Lists of size 1! This is our base case - \end{itemize} -\item - We can split lists in half until they contain 1 element, then merge - all of the sub-lists -\item - Python's sort function uses a hybrid of merge and insertion sort, both - of which you've learned! -\end{itemize} -\end{column} - -\begin{column}{0.5\textwidth} -\includegraphics{images/merge-sort.png} -\end{column} -\end{columns} -\end{frame} - -\begin{frame}{Big-O of Merge Sort} -\protect\hypertarget{big-o-of-merge-sort}{} -First consider the non-recursive part of the code - -\begin{itemize} -\item - The ``divide'' step takes linear time, since slicing operations take - roughly \(n/2\) steps to make a left and right copy respectively. -\item - The merge operation also takes \(n\) steps approximately -\item - All other operations are constants -\item - Together, the non-recursive part of this algorithm is \(O(n)\) -\end{itemize} - -Next consider the recursive calls - -\begin{itemize} -\item - Recall the big-O of recursion depends on the recursion depth and - number of calls. \(O(branches^{depth})\) -\item - The depth in Merge Sort is the number of times you need to divide to - get to a list of length 1. -\item - Mathematically, \(2^{\text{depth}} = n\), then - \(\text{depth} = \text{log}n\). So there are approximately log \(n\) - levels -\end{itemize} -\end{frame} - -\begin{frame}{Big-O of Mergesort} -\protect\hypertarget{big-o-of-mergesort}{} -\begin{itemize} -\item - Since the \(O(n)\) steps must be performed each recursion, the total - run time is \(O(n\text{log}n)\). Our analysis only depended on the - size of the list, so the best and worst case of mergesort is the same -\item - This is much faster than insertion sort! -\item - 2 minutes: does it have less space complexity than insertion sort? -\end{itemize} -\end{frame} - -\hypertarget{recommended-problems-and-references}{% -\section{Recommended Problems and -References}\label{recommended-problems-and-references}} - -\begin{frame}[fragile]{Recommended Problems} -\protect\hypertarget{recommended-problems}{} -\begin{itemize} -\item - Bhargava: Chapter 4 exercises - - \begin{itemize} - \tightlist - \item - 4.1 to 4.8 - \end{itemize} -\item - Write a recursive function that produces the - \texttt{RecursionError:\ maximum\ recursion\ depth\ exceeded} error. -\item - Write a iterative function to calculate the \(n\)th Fibonacci number. - What is its time and space complexity? -\item - Write a recursive function to determine if a string is a palindrome. - What is its time and space complexity? -\item - Write a recursive function to check if a given positive integer is a - prime number. What is its time and space complexity? -\end{itemize} -\end{frame} - -\begin{frame}{Recommended Problems} -\protect\hypertarget{recommended-problems-1}{} -\begin{itemize} -\item - Suppose you have a plot of land and want to divide the land into even - square plots, while keeping the plots as big as possible. How would - you do this using D\&C? See Bhargava pg. 52. -\item - Explain why the ``merge'' step in mergesort is \(O(n)\) -\item - Implement mergesort. You might find using helper functions useful. -\item - Write a recursive function to perform binary search on a sorted list -\end{itemize} -\end{frame} - -\begin{frame}{Bonus Readings} -\protect\hypertarget{bonus-readings}{} -\begin{itemize} -\tightlist -\item - You may be interested in learning more about quicksort in Bhargava - chapter 4 or - \href{https://www.teach.cs.toronto.edu/~csc148h/winter/notes/recursive-sorting/recursive_sorting.html}{here}. - Quicksort is another recursive sorting method -\end{itemize} -\end{frame} - -\begin{frame}{References} -\protect\hypertarget{references}{} -\begin{itemize} -\item - Bhargava, A. Y. (2016). \emph{Grokking algorithms: An illustrated - guide for programmers and other curious people.} Manning. Chapter 3 - and 4. -\item - Cormen, T. H. (Ed.). (2009). \emph{Introduction to algorithms} (3rd - ed). MIT Press. Chapter 4. -\end{itemize} -\end{frame} - - - -\end{document} diff --git a/slides-resources/3_recursion/3_recursion.toc b/slides-resources/3_recursion/3_recursion.toc deleted file mode 100644 index 29289e6..0000000 --- a/slides-resources/3_recursion/3_recursion.toc +++ /dev/null @@ -1,5 +0,0 @@ -\beamer@sectionintoc {1}{Call Stack}{3}{0}{1} -\beamer@sectionintoc {2}{Recursion}{6}{0}{2} -\beamer@sectionintoc {3}{Time and Space Complexity of Recursion}{16}{0}{3} -\beamer@sectionintoc {4}{Mergesort}{21}{0}{4} -\beamer@sectionintoc {5}{Recommended Problems and References}{28}{0}{5} diff --git a/slides-resources/3_recursion/3_recursion.vrb b/slides-resources/3_recursion/3_recursion.vrb deleted file mode 100644 index b408223..0000000 --- a/slides-resources/3_recursion/3_recursion.vrb +++ /dev/null @@ -1,24 +0,0 @@ -\frametitle{Recommended Problems} -\protect\hypertarget{recommended-problems}{} -\begin{itemize} -\item - Bhargava: Chapter 4 exercises - - \begin{itemize} - \tightlist - \item - 4.1 to 4.8 - \end{itemize} -\item - Write a recursive function that produces the - \texttt{RecursionError:\ maximum\ recursion\ depth\ exceeded} error. -\item - Write a iterative function to calculate the \(n\)th Fibonacci number. - What is its time and space complexity? -\item - Write a recursive function to determine if a string is a palindrome. - What is its time and space complexity? -\item - Write a recursive function to check if a given positive integer is a - prime number. What is its time and space complexity? -\end{itemize} diff --git a/slides-resources/4_recursive-ds/.Rhistory b/slides-resources/4_recursive-ds/.Rhistory deleted file mode 100644 index e69de29..0000000 diff --git a/slides-resources/4_recursive-ds/4_recursive-ds.aux b/slides-resources/4_recursive-ds/4_recursive-ds.aux deleted file mode 100644 index 7d05c30..0000000 --- a/slides-resources/4_recursive-ds/4_recursive-ds.aux +++ /dev/null @@ -1,128 +0,0 @@ -\relax -\providecommand\hyper@newdestlabel[2]{} -\providecommand\HyField@AuxAddToFields[1]{} -\providecommand\HyField@AuxAddToCoFields[2]{} -\providecommand\BKM@entry[2]{} -\@writefile{nav}{\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {1}{1}}} -\@writefile{nav}{\headcommand {\slideentry {0}{0}{2}{2/2}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {2}{2}}} -\BKM@entry{id=1,open,dest={4F75746C696E65302E31},srcline={239}}{5C3337365C3337375C303030545C303030725C303030655C303030655C30303073} -\@writefile{toc}{\beamer@sectionintoc {1}{Trees}{3}{0}{1}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {1}{2}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {1}{2}}} -\@writefile{nav}{\headcommand {\sectionentry {1}{Trees}{3}{Trees}{0}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{1}{3/3}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {3}{3}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{2}{4/4}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {4}{4}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{3}{5/5}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {5}{5}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{4}{6/6}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {6}{6}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{5}{7/7}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {7}{7}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{6}{8/8}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {8}{8}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{7}{9/9}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {9}{9}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{8}{10/10}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {10}{10}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{9}{11/11}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {11}{11}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{10}{12/12}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {12}{12}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{11}{13/13}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {13}{13}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{12}{14/14}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {14}{14}}} -\BKM@entry{id=2,open,dest={4F75746C696E65302E32},srcline={515}}{5C3337365C3337375C303030425C303030695C3030306E5C303030615C303030725C303030795C3030305C3034305C303030535C303030655C303030615C303030725C303030635C303030685C3030305C3034305C303030545C303030725C303030655C303030655C30303073} -\@writefile{toc}{\beamer@sectionintoc {2}{Binary Search Trees}{15}{0}{2}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {3}{14}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {3}{14}}} -\@writefile{nav}{\headcommand {\sectionentry {2}{Binary Search Trees}{15}{Binary Search Trees}{0}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{1}{15/15}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {15}{15}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{2}{16/16}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {16}{16}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{3}{17/17}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {17}{17}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{4}{18/18}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {18}{18}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{5}{19/19}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {19}{19}}} -\BKM@entry{id=3,open,dest={4F75746C696E65302E33},srcline={600}}{5C3337365C3337375C303030475C303030725C303030615C303030705C303030685C30303073} -\@writefile{toc}{\beamer@sectionintoc {3}{Graphs}{20}{0}{3}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {15}{19}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {15}{19}}} -\@writefile{nav}{\headcommand {\sectionentry {3}{Graphs}{20}{Graphs}{0}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{1}{20/20}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {20}{20}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{2}{21/21}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {21}{21}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{3}{22/22}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {22}{22}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{4}{23/23}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {23}{23}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{5}{24/24}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {24}{24}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{6}{25/25}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {25}{25}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{7}{26/26}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {26}{26}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{8}{27/27}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {27}{27}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{9}{28/28}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {28}{28}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{10}{29/29}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {29}{29}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{11}{30/30}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {30}{30}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{12}{31/31}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {31}{31}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{13}{32/32}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {32}{32}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{14}{33/33}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {33}{33}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{15}{34/34}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {34}{34}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{16}{35/35}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {35}{35}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{17}{36/36}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {36}{36}}} -\BKM@entry{id=4,open,dest={4F75746C696E65302E34},srcline={981}}{5C3337365C3337375C3030304E5C303030655C303030615C303030725C303030655C303030735C303030745C3030305C3034305C3030304E5C303030655C303030695C303030675C303030685C3030306F5C303030755C303030725C3030305C3034305C303030505C303030725C3030306F5C303030625C3030306C5C303030655C3030306D} -\@writefile{toc}{\beamer@sectionintoc {4}{Nearest Neighour Problem}{37}{0}{4}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {20}{36}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {20}{36}}} -\@writefile{nav}{\headcommand {\sectionentry {4}{Nearest Neighour Problem}{37}{Nearest Neighour Problem}{0}}} -\@writefile{nav}{\headcommand {\slideentry {4}{0}{1}{37/37}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {37}{37}}} -\@writefile{nav}{\headcommand {\slideentry {4}{0}{2}{38/38}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {38}{38}}} -\@writefile{nav}{\headcommand {\slideentry {4}{0}{3}{39/39}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {39}{39}}} -\@writefile{nav}{\headcommand {\slideentry {4}{0}{4}{40/40}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {40}{40}}} -\@writefile{nav}{\headcommand {\slideentry {4}{0}{5}{41/41}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {41}{41}}} -\BKM@entry{id=5,open,dest={4F75746C696E65302E35},srcline={1064}}{5C3337365C3337375C303030525C303030655C303030635C3030306F5C3030306D5C3030306D5C303030655C3030306E5C303030645C303030655C303030645C3030305C3034305C303030505C303030725C3030306F5C303030625C3030306C5C303030655C3030306D5C303030735C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030525C303030655C303030665C303030655C303030725C303030655C3030306E5C303030635C303030655C30303073} -\@writefile{toc}{\beamer@sectionintoc {5}{Recommended Problems and References}{42}{0}{5}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {37}{41}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {37}{41}}} -\@writefile{nav}{\headcommand {\sectionentry {5}{Recommended Problems and References}{42}{Recommended Problems and References}{0}}} -\@writefile{nav}{\headcommand {\slideentry {5}{0}{1}{42/42}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {42}{42}}} -\@writefile{nav}{\headcommand {\slideentry {5}{0}{2}{43/43}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {43}{43}}} -\@writefile{nav}{\headcommand {\slideentry {5}{0}{3}{44/44}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {44}{44}}} -\@writefile{nav}{\headcommand {\slideentry {5}{0}{4}{45/45}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {45}{45}}} -\@writefile{nav}{\headcommand {\slideentry {5}{0}{5}{46/46}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {46}{46}}} -\@writefile{nav}{\headcommand {\beamer@partpages {1}{46}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {42}{46}}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {42}{46}}} -\@writefile{nav}{\headcommand {\beamer@documentpages {46}}} -\@writefile{nav}{\headcommand {\gdef \inserttotalframenumber {46}}} -\gdef \@abspage@last{46} diff --git a/slides-resources/4_recursive-ds/4_recursive-ds.log b/slides-resources/4_recursive-ds/4_recursive-ds.log deleted file mode 100644 index 40430d8..0000000 --- a/slides-resources/4_recursive-ds/4_recursive-ds.log +++ /dev/null @@ -1,2062 +0,0 @@ -This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) (preloaded format=pdflatex 2023.12.23) 14 FEB 2024 14:21 -entering extended mode - restricted \write18 enabled. - %&-line parsing enabled. -**4_recursive-ds -(./4_recursive-ds.tex -LaTeX2e <2023-11-01> -L3 programming layer <2023-12-11> -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamer.cls -Document Class: beamer 2023/05/15 v3.70 A class for typesetting presentations -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasemodes.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/etoolbox/etoolbox.sty -Package: etoolbox 2020/10/05 v2.5k e-TeX tools for LaTeX (JAW) -\etb@tempcnta=\count187 -) -\beamer@tempbox=\box51 -\beamer@tempcount=\count188 -\c@beamerpauses=\count189 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasedecode.sty -\beamer@slideinframe=\count190 -\beamer@minimum=\count191 -\beamer@decode@box=\box52 -) -\beamer@commentbox=\box53 -\beamer@modecount=\count192 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/iftex/iftex.sty -Package: iftex 2022/02/03 v1.0f TeX engine tests -) -\headdp=\dimen140 -\footheight=\dimen141 -\sidebarheight=\dimen142 -\beamer@tempdim=\dimen143 -\beamer@finalheight=\dimen144 -\beamer@animht=\dimen145 -\beamer@animdp=\dimen146 -\beamer@animwd=\dimen147 -\beamer@leftmargin=\dimen148 -\beamer@rightmargin=\dimen149 -\beamer@leftsidebar=\dimen150 -\beamer@rightsidebar=\dimen151 -\beamer@boxsize=\dimen152 -\beamer@vboxoffset=\dimen153 -\beamer@descdefault=\dimen154 -\beamer@descriptionwidth=\dimen155 -\beamer@lastskip=\skip48 -\beamer@areabox=\box54 -\beamer@animcurrent=\box55 -\beamer@animshowbox=\box56 -\beamer@sectionbox=\box57 -\beamer@logobox=\box58 -\beamer@linebox=\box59 -\beamer@sectioncount=\count193 -\beamer@subsubsectionmax=\count194 -\beamer@subsectionmax=\count195 -\beamer@sectionmax=\count196 -\beamer@totalheads=\count197 -\beamer@headcounter=\count198 -\beamer@partstartpage=\count199 -\beamer@sectionstartpage=\count266 -\beamer@subsectionstartpage=\count267 -\beamer@animationtempa=\count268 -\beamer@animationtempb=\count269 -\beamer@xpos=\count270 -\beamer@ypos=\count271 -\beamer@ypos@offset=\count272 -\beamer@showpartnumber=\count273 -\beamer@currentsubsection=\count274 -\beamer@coveringdepth=\count275 -\beamer@sectionadjust=\count276 -\beamer@toclastsection=\count277 -\beamer@tocsectionnumber=\count278 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseoptions.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics/keyval.sty -Package: keyval 2022/05/29 v1.15 key=value parser (DPC) -\KV@toks@=\toks17 -)) -\beamer@paperwidth=\skip49 -\beamer@paperheight=\skip50 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/geometry/geometry.sty -Package: geometry 2020/01/02 v5.9 Page Geometry - -(/usr/local/texlive/2023/texmf-dist/tex/generic/iftex/ifvtex.sty -Package: ifvtex 2019/10/25 v1.7 ifvtex legacy package. Use iftex instead. -) -\Gm@cnth=\count279 -\Gm@cntv=\count280 -\c@Gm@tempcnt=\count281 -\Gm@bindingoffset=\dimen156 -\Gm@wd@mp=\dimen157 -\Gm@odd@mp=\dimen158 -\Gm@even@mp=\dimen159 -\Gm@layoutwidth=\dimen160 -\Gm@layoutheight=\dimen161 -\Gm@layouthoffset=\dimen162 -\Gm@layoutvoffset=\dimen163 -\Gm@dimlist=\toks18 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/math/pgfmath.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/utilities/pgfrcs.sty -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgfutil-common.te -x -\pgfutil@everybye=\toks19 -\pgfutil@tempdima=\dimen164 -\pgfutil@tempdimb=\dimen165 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgfutil-latex.def -\pgfutil@abb=\box60 -) (/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgfrcs.code.tex -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/pgf.revision.tex) -Package: pgfrcs 2023-01-15 v3.1.10 (3.1.10) -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/utilities/pgfkeys.sty -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex -\pgfkeys@pathtoks=\toks20 -\pgfkeys@temptoks=\toks21 - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgfkeyslibraryfil -tered.code.tex -\pgfkeys@tmptoks=\toks22 -))) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathutil.code.tex -\pgf@x=\dimen166 -\pgf@xa=\dimen167 -\pgf@xb=\dimen168 -\pgf@xc=\dimen169 -\pgf@y=\dimen170 -\pgf@ya=\dimen171 -\pgf@yb=\dimen172 -\pgf@yc=\dimen173 -\c@pgf@counta=\count282 -\c@pgf@countb=\count283 -\c@pgf@countc=\count284 -\c@pgf@countd=\count285 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathparser.code.tex -\pgfmath@dimen=\dimen174 -\pgfmath@count=\count286 -\pgfmath@box=\box61 -\pgfmath@toks=\toks23 -\pgfmath@stack@operand=\toks24 -\pgfmath@stack@operation=\toks25 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.code. -tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.basic -.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.trigo -nometric.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.rando -m.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.compa -rison.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.base. -code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.round -.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.misc. -code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.integ -erarithmetics.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathcalc.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfloat.code.tex -\c@pgfmathroundto@lastzeros=\count287 -))) (/usr/local/texlive/2023/texmf-dist/tex/latex/base/size11.clo -File: size11.clo 2023/05/17 v1.4n Standard LaTeX file (size option) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/basiclayer/pgfcore.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics/graphicx.sty -Package: graphicx 2021/09/16 v1.2d Enhanced LaTeX Graphics (DPC,SPQR) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics/graphics.sty -Package: graphics 2022/03/10 v1.4e Standard LaTeX Graphics (DPC,SPQR) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics/trig.sty -Package: trig 2021/08/11 v1.11 sin cos tan (DPC) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics-cfg/graphics.cfg -File: graphics.cfg 2016/06/04 v1.11 sample graphics configuration -) -Package graphics Info: Driver file: pdftex.def on input line 107. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics-def/pdftex.def -File: pdftex.def 2022/09/22 v1.2b Graphics/color driver for pdftex -)) -\Gin@req@height=\dimen175 -\Gin@req@width=\dimen176 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/systemlayer/pgfsys.sty -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgfsys.code.tex -Package: pgfsys 2023-01-15 v3.1.10 (3.1.10) -\pgf@x=\dimen177 -\pgf@y=\dimen178 -\pgf@xa=\dimen179 -\pgf@ya=\dimen180 -\pgf@xb=\dimen181 -\pgf@yb=\dimen182 -\pgf@xc=\dimen183 -\pgf@yc=\dimen184 -\pgf@xd=\dimen185 -\pgf@yd=\dimen186 -\w@pgf@writea=\write3 -\r@pgf@reada=\read2 -\c@pgf@counta=\count288 -\c@pgf@countb=\count289 -\c@pgf@countc=\count290 -\c@pgf@countd=\count291 -\t@pgf@toka=\toks26 -\t@pgf@tokb=\toks27 -\t@pgf@tokc=\toks28 -\pgf@sys@id@count=\count292 -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgf.cfg -File: pgf.cfg 2023-01-15 v3.1.10 (3.1.10) -) -Driver file for pgf: pgfsys-pdftex.def - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-pdftex.d -ef -File: pgfsys-pdftex.def 2023-01-15 v3.1.10 (3.1.10) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-common-p -df.def -File: pgfsys-common-pdf.def 2023-01-15 v3.1.10 (3.1.10) -))) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgfsyssoftpath. -code.tex -File: pgfsyssoftpath.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfsyssoftpath@smallbuffer@items=\count293 -\pgfsyssoftpath@bigbuffer@items=\count294 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgfsysprotocol. -code.tex -File: pgfsysprotocol.code.tex 2023-01-15 v3.1.10 (3.1.10) -)) (/usr/local/texlive/2023/texmf-dist/tex/latex/xcolor/xcolor.sty -Package: xcolor 2023/11/15 v3.01 LaTeX color extensions (UK) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics-cfg/color.cfg -File: color.cfg 2016/01/02 v1.6 sample color configuration -) -Package xcolor Info: Driver file: pdftex.def on input line 274. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics/mathcolor.ltx) -Package xcolor Info: Model `cmy' substituted by `cmy0' on input line 1350. -Package xcolor Info: Model `hsb' substituted by `rgb' on input line 1354. -Package xcolor Info: Model `RGB' extended on input line 1366. -Package xcolor Info: Model `HTML' substituted by `rgb' on input line 1368. -Package xcolor Info: Model `Hsb' substituted by `hsb' on input line 1369. -Package xcolor Info: Model `tHsb' substituted by `hsb' on input line 1370. -Package xcolor Info: Model `HSB' substituted by `hsb' on input line 1371. -Package xcolor Info: Model `Gray' substituted by `gray' on input line 1372. -Package xcolor Info: Model `wave' substituted by `hsb' on input line 1373. -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcore.code.tex -Package: pgfcore 2023-01-15 v3.1.10 (3.1.10) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfint.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepoints.co -de.tex -File: pgfcorepoints.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@picminx=\dimen187 -\pgf@picmaxx=\dimen188 -\pgf@picminy=\dimen189 -\pgf@picmaxy=\dimen190 -\pgf@pathminx=\dimen191 -\pgf@pathmaxx=\dimen192 -\pgf@pathminy=\dimen193 -\pgf@pathmaxy=\dimen194 -\pgf@xx=\dimen195 -\pgf@xy=\dimen196 -\pgf@yx=\dimen197 -\pgf@yy=\dimen198 -\pgf@zx=\dimen199 -\pgf@zy=\dimen256 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathconst -ruct.code.tex -File: pgfcorepathconstruct.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@path@lastx=\dimen257 -\pgf@path@lasty=\dimen258 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathusage -.code.tex -File: pgfcorepathusage.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@shorten@end@additional=\dimen259 -\pgf@shorten@start@additional=\dimen260 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorescopes.co -de.tex -File: pgfcorescopes.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfpic=\box62 -\pgf@hbox=\box63 -\pgf@layerbox@main=\box64 -\pgf@picture@serial@count=\count295 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoregraphicst -ate.code.tex -File: pgfcoregraphicstate.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgflinewidth=\dimen261 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransform -ations.code.tex -File: pgfcoretransformations.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@pt@x=\dimen262 -\pgf@pt@y=\dimen263 -\pgf@pt@temp=\dimen264 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorequick.cod -e.tex -File: pgfcorequick.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreobjects.c -ode.tex -File: pgfcoreobjects.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathproce -ssing.code.tex -File: pgfcorepathprocessing.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorearrows.co -de.tex -File: pgfcorearrows.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfarrowsep=\dimen265 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreshade.cod -e.tex -File: pgfcoreshade.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@max=\dimen266 -\pgf@sys@shading@range@num=\count296 -\pgf@shadingcount=\count297 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreimage.cod -e.tex -File: pgfcoreimage.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreexternal. -code.tex -File: pgfcoreexternal.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfexternal@startupbox=\box65 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorelayers.co -de.tex -File: pgfcorelayers.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretranspare -ncy.code.tex -File: pgfcoretransparency.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepatterns. -code.tex -File: pgfcorepatterns.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorerdf.code. -tex -File: pgfcorerdf.code.tex 2023-01-15 v3.1.10 (3.1.10) -))) (/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/utilities/xxcolor.sty -Package: xxcolor 2003/10/24 ver 0.1 -\XC@nummixins=\count298 -\XC@countmixins=\count299 -) (/usr/local/texlive/2023/texmf-dist/tex/latex/base/atbegshi-ltx.sty -Package: atbegshi-ltx 2021/01/10 v1.0c Emulation of the original atbegshi -package with kernel methods -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/hyperref/hyperref.sty -Package: hyperref 2023-11-26 v7.01g Hypertext links for LaTeX - -(/usr/local/texlive/2023/texmf-dist/tex/generic/infwarerr/infwarerr.sty -Package: infwarerr 2019/12/03 v1.5 Providing info/warning/error messages (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/kvsetkeys/kvsetkeys.sty -Package: kvsetkeys 2022-10-05 v1.19 Key value parser (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/kvdefinekeys/kvdefinekeys.sty -Package: kvdefinekeys 2019-12-19 v1.6 Define keys (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pdfescape/pdfescape.sty -Package: pdfescape 2019/12/09 v1.15 Implements pdfTeX's escape features (HO) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/ltxcmds/ltxcmds.sty -Package: ltxcmds 2023-12-04 v1.26 LaTeX kernel commands for general use (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pdftexcmds/pdftexcmds.sty -Package: pdftexcmds 2020-06-27 v0.33 Utility functions of pdfTeX for LuaTeX (HO -) -Package pdftexcmds Info: \pdf@primitive is available. -Package pdftexcmds Info: \pdf@ifprimitive is available. -Package pdftexcmds Info: \pdfdraftmode found. -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/hycolor/hycolor.sty -Package: hycolor 2020-01-27 v1.10 Color options for hyperref/bookmark (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/letltxmacro/letltxmacro.sty -Package: letltxmacro 2019/12/03 v1.6 Let assignment for LaTeX macros (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/auxhook/auxhook.sty -Package: auxhook 2019-12-17 v1.6 Hooks for auxiliary files (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/hyperref/nameref.sty -Package: nameref 2023-11-26 v2.56 Cross-referencing by name of section - -(/usr/local/texlive/2023/texmf-dist/tex/latex/refcount/refcount.sty -Package: refcount 2019/12/15 v3.6 Data extraction from label references (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/gettitlestring/gettitlestring.s -ty -Package: gettitlestring 2019/12/15 v1.6 Cleanup title references (HO) - (/usr/local/texlive/2023/texmf-dist/tex/latex/kvoptions/kvoptions.sty -Package: kvoptions 2022-06-15 v3.15 Key value format for package options (HO) -)) -\c@section@level=\count300 -) -\@linkdim=\dimen267 -\Hy@linkcounter=\count301 -\Hy@pagecounter=\count302 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/hyperref/pd1enc.def -File: pd1enc.def 2023-11-26 v7.01g Hyperref: PDFDocEncoding definition (HO) -Now handling font encoding PD1 ... -... no UTF-8 mapping file for font encoding PD1 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/intcalc/intcalc.sty -Package: intcalc 2019/12/15 v1.3 Expandable calculations with integers (HO) -) -\Hy@SavedSpaceFactor=\count303 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/hyperref/puenc.def -File: puenc.def 2023-11-26 v7.01g Hyperref: PDF Unicode definition (HO) -Now handling font encoding PU ... -... no UTF-8 mapping file for font encoding PU -) -Package hyperref Info: Option `unicode' set `true' on input line 4064. -Package hyperref Info: Option `bookmarks' set `true' on input line 4064. -Package hyperref Info: Option `bookmarksopen' set `true' on input line 4064. -Package hyperref Info: Option `implicit' set `false' on input line 4064. -Package hyperref Info: Hyper figures OFF on input line 4181. -Package hyperref Info: Link nesting OFF on input line 4186. -Package hyperref Info: Hyper index ON on input line 4189. -Package hyperref Info: Plain pages OFF on input line 4196. -Package hyperref Info: Backreferencing OFF on input line 4201. -Package hyperref Info: Implicit mode OFF; no redefinition of LaTeX internals. -Package hyperref Info: Bookmarks ON on input line 4448. -\c@Hy@tempcnt=\count304 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/url/url.sty -\Urlmuskip=\muskip16 -Package: url 2013/09/16 ver 3.4 Verb mode for urls, etc. -) -LaTeX Info: Redefining \url on input line 4786. -\XeTeXLinkMargin=\dimen268 - -(/usr/local/texlive/2023/texmf-dist/tex/generic/bitset/bitset.sty -Package: bitset 2019/12/09 v1.3 Handle bit-vector datatype (HO) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/bigintcalc/bigintcalc.sty -Package: bigintcalc 2019/12/15 v1.5 Expandable calculations on big integers (HO -) -)) -\Fld@menulength=\count305 -\Field@Width=\dimen269 -\Fld@charsize=\dimen270 -Package hyperref Info: Hyper figures OFF on input line 6065. -Package hyperref Info: Link nesting OFF on input line 6070. -Package hyperref Info: Hyper index ON on input line 6073. -Package hyperref Info: backreferencing OFF on input line 6080. -Package hyperref Info: Link coloring OFF on input line 6085. -Package hyperref Info: Link coloring with OCG OFF on input line 6090. -Package hyperref Info: PDF/A mode OFF on input line 6095. -\Hy@abspage=\count306 - - -Package hyperref Message: Stopped early. - -) -Package hyperref Info: Driver (autodetected): hpdftex. - (/usr/local/texlive/2023/texmf-dist/tex/latex/hyperref/hpdftex.def -File: hpdftex.def 2023-11-26 v7.01g Hyperref driver for pdfTeX - -(/usr/local/texlive/2023/texmf-dist/tex/latex/base/atveryend-ltx.sty -Package: atveryend-ltx 2020/08/19 v1.0a Emulation of the original atveryend pac -kage -with kernel methods -) -\Fld@listcount=\count307 -\c@bookmark@seq@number=\count308 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/rerunfilecheck/rerunfilecheck.sty -Package: rerunfilecheck 2022-07-10 v1.10 Rerun checks for auxiliary files (HO) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/uniquecounter/uniquecounter.sty -Package: uniquecounter 2019/12/15 v1.4 Provide unlimited unique counter (HO) -) -Package uniquecounter Info: New unique counter `rerunfilecheck' on input line 2 -85. -)) (/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaserequires.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasecompatibility.st -y) (/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasefont.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsfonts/amssymb.sty -Package: amssymb 2013/01/14 v3.01 AMS font symbols - -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsfonts/amsfonts.sty -Package: amsfonts 2013/01/14 v3.01 Basic AMSFonts support -\@emptytoks=\toks29 -\symAMSa=\mathgroup4 -\symAMSb=\mathgroup5 -LaTeX Font Info: Redeclaring math symbol \hbar on input line 98. -LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold' -(Font) U/euf/m/n --> U/euf/b/n on input line 106. -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/sansmathaccent/sansmathaccent.sty -Package: sansmathaccent 2020/01/31 -(/usr/local/texlive/2023/texmf-dist/tex/latex/koma-script/scrlfile.sty -Package: scrlfile 2023/07/07 v3.41 KOMA-Script package (file load hooks) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/koma-script/scrlfile-hook.sty -Package: scrlfile-hook 2023/07/07 v3.41 KOMA-Script package (using LaTeX hooks) - - -(/usr/local/texlive/2023/texmf-dist/tex/latex/koma-script/scrlogo.sty -Package: scrlogo 2023/07/07 v3.41 KOMA-Script package (logo) -))))) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetranslator.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator.sty -Package: translator 2021-05-31 v1.12d Easy translation of strings in LaTeX -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasemisc.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetwoscreens.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseoverlay.sty -\beamer@argscount=\count309 -\beamer@lastskipcover=\skip51 -\beamer@trivlistdepth=\count310 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetitle.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasesection.sty -\c@lecture=\count311 -\c@part=\count312 -\c@section=\count313 -\c@subsection=\count314 -\c@subsubsection=\count315 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseframe.sty -\beamer@framebox=\box66 -\beamer@frametitlebox=\box67 -\beamer@zoombox=\box68 -\beamer@zoomcount=\count316 -\beamer@zoomframecount=\count317 -\beamer@frametextheight=\dimen271 -\c@subsectionslide=\count318 -\beamer@frametopskip=\skip52 -\beamer@framebottomskip=\skip53 -\beamer@frametopskipautobreak=\skip54 -\beamer@framebottomskipautobreak=\skip55 -\beamer@envbody=\toks30 -\framewidth=\dimen272 -\c@framenumber=\count319 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseverbatim.sty -\beamer@verbatimfileout=\write4 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseframesize.sty -\beamer@splitbox=\box69 -\beamer@autobreakcount=\count320 -\beamer@autobreaklastheight=\dimen273 -\beamer@frametitletoks=\toks31 -\beamer@framesubtitletoks=\toks32 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseframecomponents. -sty -\beamer@footins=\box70 -) (/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasecolor.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasenotes.sty -\beamer@frameboxcopy=\box71 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetoc.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetemplates.sty -\beamer@sbttoks=\toks33 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseauxtemplates.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseboxes.sty -\bmb@box=\box72 -\bmb@colorbox=\box73 -\bmb@boxwidth=\dimen274 -\bmb@boxheight=\dimen275 -\bmb@prevheight=\dimen276 -\bmb@temp=\dimen277 -\bmb@dima=\dimen278 -\bmb@dimb=\dimen279 -\bmb@prevheight=\dimen280 -) -\beamer@blockheadheight=\dimen281 -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaselocalstructure.s -ty (/usr/local/texlive/2023/texmf-dist/tex/latex/tools/enumerate.sty -Package: enumerate 2023/07/04 v3.00 enumerate extensions (DPC) -\@enLab=\toks34 -) -\beamer@bibiconwidth=\skip56 -\c@figure=\count321 -\c@table=\count322 -\abovecaptionskip=\skip57 -\belowcaptionskip=\skip58 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasenavigation.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasenavigationsymbol -s.tex) -\beamer@section@min@dim=\dimen282 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetheorems.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsmath/amsmath.sty -Package: amsmath 2023/05/13 v2.17o AMS math features -\@mathmargin=\skip59 - -For additional information on amsmath, use the `?' option. -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsmath/amstext.sty -Package: amstext 2021/08/26 v2.01 AMS text - -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsmath/amsgen.sty -File: amsgen.sty 1999/11/30 v2.0 generic functions -\@emptytoks=\toks35 -\ex@=\dimen283 -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsmath/amsbsy.sty -Package: amsbsy 1999/11/29 v1.2d Bold Symbols -\pmbraise@=\dimen284 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsmath/amsopn.sty -Package: amsopn 2022/04/08 v2.04 operator names -) -\inf@bad=\count323 -LaTeX Info: Redefining \frac on input line 234. -\uproot@=\count324 -\leftroot@=\count325 -LaTeX Info: Redefining \overline on input line 399. -LaTeX Info: Redefining \colon on input line 410. -\classnum@=\count326 -\DOTSCASE@=\count327 -LaTeX Info: Redefining \ldots on input line 496. -LaTeX Info: Redefining \dots on input line 499. -LaTeX Info: Redefining \cdots on input line 620. -\Mathstrutbox@=\box74 -\strutbox@=\box75 -LaTeX Info: Redefining \big on input line 722. -LaTeX Info: Redefining \Big on input line 723. -LaTeX Info: Redefining \bigg on input line 724. -LaTeX Info: Redefining \Bigg on input line 725. -\big@size=\dimen285 -LaTeX Font Info: Redeclaring font encoding OML on input line 743. -LaTeX Font Info: Redeclaring font encoding OMS on input line 744. -\macc@depth=\count328 -LaTeX Info: Redefining \bmod on input line 905. -LaTeX Info: Redefining \pmod on input line 910. -LaTeX Info: Redefining \smash on input line 940. -LaTeX Info: Redefining \relbar on input line 970. -LaTeX Info: Redefining \Relbar on input line 971. -\c@MaxMatrixCols=\count329 -\dotsspace@=\muskip17 -\c@parentequation=\count330 -\dspbrk@lvl=\count331 -\tag@help=\toks36 -\row@=\count332 -\column@=\count333 -\maxfields@=\count334 -\andhelp@=\toks37 -\eqnshift@=\dimen286 -\alignsep@=\dimen287 -\tagshift@=\dimen288 -\tagwidth@=\dimen289 -\totwidth@=\dimen290 -\lineht@=\dimen291 -\@envbody=\toks38 -\multlinegap=\skip60 -\multlinetaggap=\skip61 -\mathdisplay@stack=\toks39 -LaTeX Info: Redefining \[ on input line 2953. -LaTeX Info: Redefining \] on input line 2954. -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/amscls/amsthm.sty -Package: amsthm 2020/05/29 v2.20.6 -\thm@style=\toks40 -\thm@bodyfont=\toks41 -\thm@headfont=\toks42 -\thm@notefont=\toks43 -\thm@headpunct=\toks44 -\thm@preskip=\skip62 -\thm@postskip=\skip63 -\thm@headsep=\skip64 -\dth@everypar=\toks45 -) -\c@theorem=\count335 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasethemes.sty)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerthemedefault.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerfontthemedefault.sty -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamercolorthemedefault.st -y) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerinnerthemedefault.st -y -\beamer@dima=\dimen292 -\beamer@dimb=\dimen293 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerouterthemedefault.st -y))) (/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/utilities/pgfpages.sty -Package: pgfpages 2011/01/05 ver 0.02 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/tools/calc.sty -Package: calc 2023/07/08 v4.3 Infix arithmetic (KKT,FJ) -\calc@Acount=\count336 -\calc@Bcount=\count337 -\calc@Adimen=\dimen294 -\calc@Bdimen=\dimen295 -\calc@Askip=\skip65 -\calc@Bskip=\skip66 -LaTeX Info: Redefining \setlength on input line 80. -LaTeX Info: Redefining \addtolength on input line 81. -\calc@Ccount=\count338 -\calc@Cskip=\skip67 -) -\pgf@logicalpages=\count339 -\pgf@firstshipout=\count340 -\pgf@lastshipout=\count341 -\pgf@currentshipout=\count342 -\pgf@cpn=\count343 -\pgf@shipoutnextto=\count344 -\pgfphysicalheight=\dimen296 -\pgfphysicalwidth=\dimen297 -\pgfpages@shipoutbox=\box76 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/base/fontenc.sty -Package: fontenc 2021/04/29 v2.0v Standard LaTeX package -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/base/inputenc.sty -Package: inputenc 2021/02/14 v1.3d Input encoding file -\inpenc@prehook=\toks46 -\inpenc@posthook=\toks47 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/base/textcomp.sty -Package: textcomp 2020/02/02 v2.0n Standard LaTeX package -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/lmodern.sty -Package: lmodern 2015/05/01 v1.6.1 Latin Modern Fonts -LaTeX Font Info: Overwriting symbol font `operators' in version `normal' -(Font) OT1/cmr/m/n --> OT1/lmr/m/n on input line 22. -LaTeX Font Info: Overwriting symbol font `letters' in version `normal' -(Font) OML/cmm/m/it --> OML/lmm/m/it on input line 23. -LaTeX Font Info: Overwriting symbol font `symbols' in version `normal' -(Font) OMS/cmsy/m/n --> OMS/lmsy/m/n on input line 24. -LaTeX Font Info: Overwriting symbol font `largesymbols' in version `normal' -(Font) OMX/cmex/m/n --> OMX/lmex/m/n on input line 25. -LaTeX Font Info: Overwriting symbol font `operators' in version `bold' -(Font) OT1/cmr/bx/n --> OT1/lmr/bx/n on input line 26. -LaTeX Font Info: Overwriting symbol font `letters' in version `bold' -(Font) OML/cmm/b/it --> OML/lmm/b/it on input line 27. -LaTeX Font Info: Overwriting symbol font `symbols' in version `bold' -(Font) OMS/cmsy/b/n --> OMS/lmsy/b/n on input line 28. -LaTeX Font Info: Overwriting symbol font `largesymbols' in version `bold' -(Font) OMX/cmex/m/n --> OMX/lmex/m/n on input line 29. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `normal' -(Font) OT1/cmr/bx/n --> OT1/lmr/bx/n on input line 31. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `normal' -(Font) OT1/cmss/m/n --> OT1/lmss/m/n on input line 32. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `normal' -(Font) OT1/cmr/m/it --> OT1/lmr/m/it on input line 33. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `normal' -(Font) OT1/cmtt/m/n --> OT1/lmtt/m/n on input line 34. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `bold' -(Font) OT1/cmr/bx/n --> OT1/lmr/bx/n on input line 35. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `bold' -(Font) OT1/cmss/bx/n --> OT1/lmss/bx/n on input line 36. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `bold' -(Font) OT1/cmr/bx/it --> OT1/lmr/bx/it on input line 37. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `bold' -(Font) OT1/cmtt/m/n --> OT1/lmtt/m/n on input line 38. -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerthemeBoadilla.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamercolorthemerose.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerinnerthemerounded.st -y) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamercolorthemedolphin.st -y) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerouterthemeinfolines. -sty)) (/usr/local/texlive/2023/texmf-dist/tex/latex/upquote/upquote.sty -Package: upquote 2012/04/19 v1.3 upright-quote and grave-accent glyphs in verba -tim -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/microtype/microtype.sty -Package: microtype 2023/03/13 v3.1a Micro-typographical refinements (RS) -\MT@toks=\toks48 -\MT@tempbox=\box77 -\MT@count=\count345 -LaTeX Info: Redefining \noprotrusionifhmode on input line 1059. -LaTeX Info: Redefining \leftprotrusion on input line 1060. -\MT@prot@toks=\toks49 -LaTeX Info: Redefining \rightprotrusion on input line 1078. -LaTeX Info: Redefining \textls on input line 1368. -\MT@outer@kern=\dimen298 -LaTeX Info: Redefining \textmicrotypecontext on input line 1988. -\MT@listname@count=\count346 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/microtype/microtype-pdftex.def -File: microtype-pdftex.def 2023/03/13 v3.1a Definitions specific to pdftex (RS) - -LaTeX Info: Redefining \lsstyle on input line 902. -LaTeX Info: Redefining \lslig on input line 902. -\MT@outer@space=\skip68 -) -Package microtype Info: Loading configuration file microtype.cfg. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/microtype/microtype.cfg -File: microtype.cfg 2023/03/13 v3.1a microtype main configuration file (RS) -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/parskip/parskip.sty -Package: parskip 2021-03-14 v2.0h non-zero parskip adjustments -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/fancyvrb/fancyvrb.sty -Package: fancyvrb 2023/11/06 4.5b verbatim text (tvz,hv) -\FV@CodeLineNo=\count347 -\FV@InFile=\read3 -\FV@TabBox=\box78 -\c@FancyVerbLine=\count348 -\FV@StepNumber=\count349 -\FV@OutFile=\write5 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/framed/framed.sty -Package: framed 2011/10/22 v 0.96: framed or shaded text with page breaks -\OuterFrameSep=\skip69 -\fb@frw=\dimen299 -\fb@frh=\dimen300 -\FrameRule=\dimen301 -\FrameSep=\dimen302 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tools/longtable.sty -Package: longtable 2023-11-01 v4.19 Multi-page Table package (DPC) -\LTleft=\skip70 -\LTright=\skip71 -\LTpre=\skip72 -\LTpost=\skip73 -\LTchunksize=\count350 -\LTcapwidth=\dimen303 -\LT@head=\box79 -\LT@firsthead=\box80 -\LT@foot=\box81 -\LT@lastfoot=\box82 -\LT@gbox=\box83 -\LT@cols=\count351 -\LT@rows=\count352 -\c@LT@tables=\count353 -\c@LT@chunks=\count354 -\LT@p@ftn=\toks50 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/booktabs/booktabs.sty -Package: booktabs 2020/01/12 v1.61803398 Publication quality tables -\heavyrulewidth=\dimen304 -\lightrulewidth=\dimen305 -\cmidrulewidth=\dimen306 -\belowrulesep=\dimen307 -\belowbottomsep=\dimen308 -\aboverulesep=\dimen309 -\abovetopsep=\dimen310 -\cmidrulesep=\dimen311 -\cmidrulekern=\dimen312 -\defaultaddspace=\dimen313 -\@cmidla=\count355 -\@cmidlb=\count356 -\@aboverulesep=\dimen314 -\@belowrulesep=\dimen315 -\@thisruleclass=\count357 -\@lastruleclass=\count358 -\@thisrulewidth=\dimen316 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tools/array.sty -Package: array 2023/10/16 v2.5g Tabular extension package (FMi) -\col@sep=\dimen317 -\ar@mcellbox=\box84 -\extrarowheight=\dimen318 -\NC@list=\toks51 -\extratabsurround=\skip74 -\backup@length=\skip75 -\ar@cellbox=\box85 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/caption/caption.sty -Package: caption 2023/08/05 v3.6o Customizing captions (AR) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/caption/caption3.sty -Package: caption3 2023/07/31 v2.4d caption3 kernel (AR) -\caption@tempdima=\dimen319 -\captionmargin=\dimen320 -\caption@leftmargin=\dimen321 -\caption@rightmargin=\dimen322 -\caption@width=\dimen323 -\caption@indent=\dimen324 -\caption@parindent=\dimen325 -\caption@hangindent=\dimen326 -Package caption Info: beamer document class detected. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/caption/caption-beamer.sto -File: caption-beamer.sto 2022/01/06 v2.0c Adaption of the caption package to th -e beamer document classes (AR) -)) -\c@caption@flags=\count359 -\c@continuedfloat=\count360 -Package caption Info: hyperref package is loaded. -Package caption Info: Hyperref support is turned off -(caption) because hyperref has stopped early. -Package caption Info: longtable package is loaded. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/caption/ltcaption.sty -Package: ltcaption 2021/01/08 v1.4c longtable captions (AR) -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/float/float.sty -Package: float 2001/11/08 v1.3d Float enhancements (AL) -\c@float@type=\count361 -\float@exts=\toks52 -\float@box=\box86 -\@float@everytoks=\toks53 -\@floatcapt=\box87 -) -\@float@every@codelisting=\toks54 -\c@codelisting=\count362 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/caption/subcaption.sty -Package: subcaption 2023/07/28 v1.6b Sub-captions (AR) -Package caption Info: New subtype `subfigure' on input line 238. -\c@subfigure=\count363 -Package caption Info: New subtype `subtable' on input line 238. -\c@subtable=\count364 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tcolorbox/tcolorbox.sty -Package: tcolorbox 2023/09/26 version 6.1.0 text color boxes - -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/basiclayer/pgf.sty -Package: pgf 2023-01-15 v3.1.10 (3.1.10) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/modules/pgfmoduleshapes.cod -e.tex -File: pgfmoduleshapes.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfnodeparttextbox=\box88 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/modules/pgfmoduleplot.code. -tex -File: pgfmoduleplot.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version --0-65.sty -Package: pgfcomp-version-0-65 2023-01-15 v3.1.10 (3.1.10) -\pgf@nodesepstart=\dimen327 -\pgf@nodesepend=\dimen328 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version --1-18.sty -Package: pgfcomp-version-1-18 2023-01-15 v3.1.10 (3.1.10) -)) (/usr/local/texlive/2023/texmf-dist/tex/latex/tools/verbatim.sty -Package: verbatim 2023-11-06 v1.5v LaTeX2e package for verbatim enhancements -\every@verbatim=\toks55 -\verbatim@line=\toks56 -\verbatim@in@stream=\read4 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/environ/environ.sty -Package: environ 2014/05/04 v0.3 A new way to define environments - -(/usr/local/texlive/2023/texmf-dist/tex/latex/trimspaces/trimspaces.sty -Package: trimspaces 2009/09/17 v1.1 Trim spaces around a token list -)) -\tcb@titlebox=\box89 -\tcb@upperbox=\box90 -\tcb@lowerbox=\box91 -\tcb@phantombox=\box92 -\c@tcbbreakpart=\count365 -\c@tcblayer=\count366 -\c@tcolorbox@number=\count367 -\tcb@temp=\box93 -\tcb@temp=\box94 -\tcb@temp=\box95 -\tcb@temp=\box96 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/tcolorbox/tcbskins.code.tex -Library (tcolorbox): 'tcbskins.code.tex' version '6.1.0' -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/frontendlayer/tikz.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/utilities/pgffor.sty -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgffor.code.tex -Package: pgffor 2023-01-15 v3.1.10 (3.1.10) -\pgffor@iter=\dimen329 -\pgffor@skip=\dimen330 -\pgffor@stack=\toks57 -\pgffor@toks=\toks58 -)) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/frontendlayer/tikz/tikz.cod -e.tex -Package: tikz 2023-01-15 v3.1.10 (3.1.10) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/libraries/pgflibraryplothan -dlers.code.tex -File: pgflibraryplothandlers.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@plot@mark@count=\count368 -\pgfplotmarksize=\dimen331 -) -\tikz@lastx=\dimen332 -\tikz@lasty=\dimen333 -\tikz@lastxsaved=\dimen334 -\tikz@lastysaved=\dimen335 -\tikz@lastmovetox=\dimen336 -\tikz@lastmovetoy=\dimen337 -\tikzleveldistance=\dimen338 -\tikzsiblingdistance=\dimen339 -\tikz@figbox=\box97 -\tikz@figbox@bg=\box98 -\tikz@tempbox=\box99 -\tikz@tempbox@bg=\box100 -\tikztreelevel=\count369 -\tikznumberofchildren=\count370 -\tikznumberofcurrentchild=\count371 -\tikz@fig@count=\count372 - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/modules/pgfmodulematrix.cod -e.tex -File: pgfmodulematrix.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfmatrixcurrentrow=\count373 -\pgfmatrixcurrentcolumn=\count374 -\pgf@matrix@numberofcolumns=\count375 -) -\tikz@expandcount=\count376 - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/frontendlayer/tikz/librarie -s/tikzlibrarytopaths.code.tex -File: tikzlibrarytopaths.code.tex 2023-01-15 v3.1.10 (3.1.10) -))) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tikzfill/tikzfill.image.sty -Package: tikzfill.image 2023/08/08 v1.0.1 Image filling library for TikZ - -(/usr/local/texlive/2023/texmf-dist/tex/latex/tikzfill/tikzfill-common.sty -Package: tikzfill-common 2023/08/08 v1.0.1 Auxiliary code for tikzfill -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tikzfill/tikzlibraryfill.image.co -de.tex -File: tikzlibraryfill.image.code.tex 2023/08/08 v1.0.1 Image filling library -\l__tikzfill_img_box=\box101 -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tcolorbox/tcbskinsjigsaw.code.tex -Library (tcolorbox): 'tcbskinsjigsaw.code.tex' version '6.1.0' -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tcolorbox/tcbbreakable.code.tex -Library (tcolorbox): 'tcbbreakable.code.tex' version '6.1.0' -(/usr/local/texlive/2023/texmf-dist/tex/latex/pdfcol/pdfcol.sty -Package: pdfcol 2022-09-21 v1.7 Handle new color stacks for pdfTeX (HO) -) -Package pdfcol Info: New color stack `tcb@breakable' = 1 on input line 23. -\tcb@testbox=\box102 -\tcb@totalupperbox=\box103 -\tcb@totallowerbox=\box104 -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/bookmark/bookmark.sty -Package: bookmark 2023-12-10 v1.31 PDF bookmarks (HO) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/bookmark/bkm-pdftex.def -File: bkm-pdftex.def 2023-12-10 v1.31 bookmark driver for pdfTeX and luaTeX (HO -) -\BKM@id=\count377 -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/xurl/xurl.sty -Package: xurl 2022/01/09 v 0.10 modify URL breaks -) -LaTeX Font Info: Trying to load font information for T1+lmss on input line 2 -18. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/t1lmss.fd -File: t1lmss.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def -File: l3backend-pdftex.def 2023-11-09 L3 backend support: PDF output (pdfTeX) -\l__color_backend_stack_int=\count378 -\l__pdf_internal_box=\box105 -) -No file 4_recursive-ds.aux. -\openout1 = `4_recursive-ds.aux'. - -LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for TS1/cmr/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for PU/pdf/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -*geometry* driver: auto-detecting -*geometry* detected driver: pdftex -*geometry* verbose mode - [ preamble ] result: -* driver: pdftex -* paper: custom -* layout: -* layoutoffset:(h,v)=(0.0pt,0.0pt) -* modes: includehead includefoot -* h-part:(L,W,R)=(10.88002pt, 342.43532pt, 10.88002pt) -* v-part:(T,H,B)=(0.0pt, 273.14662pt, 0.0pt) -* \paperwidth=364.19536pt -* \paperheight=273.14662pt -* \textwidth=342.43532pt -* \textheight=244.6939pt -* \oddsidemargin=-61.38997pt -* \evensidemargin=-61.38997pt -* \topmargin=-72.26999pt -* \headheight=14.22636pt -* \headsep=0.0pt -* \topskip=11.0pt -* \footskip=14.22636pt -* \marginparwidth=4.0pt -* \marginparsep=10.0pt -* \columnsep=10.0pt -* \skip\footins=10.0pt plus 4.0pt minus 2.0pt -* \hoffset=0.0pt -* \voffset=0.0pt -* \mag=1000 -* \@twocolumnfalse -* \@twosidefalse -* \@mparswitchfalse -* \@reversemarginfalse -* (1in=72.27pt=25.4mm, 1cm=28.453pt) - -(/usr/local/texlive/2023/texmf-dist/tex/context/base/mkii/supp-pdf.mkii -[Loading MPS to PDF converter (version 2006.09.02).] -\scratchcounter=\count379 -\scratchdimen=\dimen340 -\scratchbox=\box106 -\nofMPsegments=\count380 -\nofMParguments=\count381 -\everyMPshowfont=\toks59 -\MPscratchCnt=\count382 -\MPscratchDim=\dimen341 -\MPnumerator=\count383 -\makeMPintoPDFobject=\count384 -\everyMPtoPDFconversion=\toks60 -) (/usr/local/texlive/2023/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty -Package: epstopdf-base 2020-01-24 v2.11 Base part for package epstopdf -Package epstopdf-base Info: Redefining graphics rule for `.eps' on input line 4 -85. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg -File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Liv -e -)) -Package hyperref Info: Link coloring OFF on input line 218. -LaTeX Font Info: Overwriting symbol font `operators' in version `normal' -(Font) OT1/lmr/m/n --> OT1/cmss/m/n on input line 218. -LaTeX Font Info: Overwriting symbol font `operators' in version `bold' -(Font) OT1/lmr/bx/n --> OT1/cmss/b/n on input line 218. -LaTeX Font Info: Overwriting symbol font `operators' in version `normal' -(Font) OT1/cmss/m/n --> OT1/lmss/m/n on input line 218. -LaTeX Font Info: Overwriting symbol font `operators' in version `bold' -(Font) OT1/cmss/b/n --> OT1/lmss/b/n on input line 218. -\symnumbers=\mathgroup6 -\sympureletters=\mathgroup7 -LaTeX Font Info: Overwriting math alphabet `\mathrm' in version `normal' -(Font) OT1/lmss/m/n --> T1/lmr/m/n on input line 218. -LaTeX Font Info: Redeclaring math alphabet \mathbf on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `normal' -(Font) OT1/lmr/bx/n --> T1/lmss/b/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `bold' -(Font) OT1/lmr/bx/n --> T1/lmss/b/n on input line 218. -LaTeX Font Info: Redeclaring math alphabet \mathsf on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `normal' -(Font) OT1/lmss/m/n --> T1/lmss/m/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `bold' -(Font) OT1/lmss/bx/n --> T1/lmss/m/n on input line 218. -LaTeX Font Info: Redeclaring math alphabet \mathit on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `normal' -(Font) OT1/lmr/m/it --> T1/lmss/m/it on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `bold' -(Font) OT1/lmr/bx/it --> T1/lmss/m/it on input line 218. -LaTeX Font Info: Redeclaring math alphabet \mathtt on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `normal' -(Font) OT1/lmtt/m/n --> T1/lmtt/m/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `bold' -(Font) OT1/lmtt/m/n --> T1/lmtt/m/n on input line 218. -LaTeX Font Info: Overwriting symbol font `numbers' in version `bold' -(Font) T1/lmss/m/n --> T1/lmss/b/n on input line 218. -LaTeX Font Info: Overwriting symbol font `pureletters' in version `bold' -(Font) T1/lmss/m/it --> T1/lmss/b/it on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathrm' in version `bold' -(Font) OT1/lmss/b/n --> T1/lmr/b/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `bold' -(Font) T1/lmss/b/n --> T1/lmss/b/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `bold' -(Font) T1/lmss/m/n --> T1/lmss/b/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `bold' -(Font) T1/lmss/m/it --> T1/lmss/b/it on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `bold' -(Font) T1/lmtt/m/n --> T1/lmtt/b/n on input line 218. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-basic-dicti -onary-English.dict -Dictionary: translator-basic-dictionary, Language: English -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-bibliograph -y-dictionary-English.dict -Dictionary: translator-bibliography-dictionary, Language: English -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-environment --dictionary-English.dict -Dictionary: translator-environment-dictionary, Language: English -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-months-dict -ionary-English.dict -Dictionary: translator-months-dictionary, Language: English -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-numbers-dic -tionary-English.dict -Dictionary: translator-numbers-dictionary, Language: English -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-theorem-dic -tionary-English.dict -Dictionary: translator-theorem-dictionary, Language: English -) -LaTeX Info: Redefining \microtypecontext on input line 218. -Package microtype Info: Applying patch `item' on input line 218. -Package microtype Info: Applying patch `toc' on input line 218. -Package microtype Info: Applying patch `eqnum' on input line 218. -Package microtype Info: Applying patch `footnote' on input line 218. -Package microtype Info: Applying patch `verbatim' on input line 218. -Package microtype Info: Generating PDF output. -Package microtype Info: Character protrusion enabled (level 2). -Package microtype Info: Using protrusion set `basicmath'. -Package microtype Info: Automatic font expansion enabled (level 2), -(microtype) stretch: 20, shrink: 20, step: 1, non-selected. -Package microtype Info: Using default expansion set `alltext-nott'. -LaTeX Info: Redefining \showhyphens on input line 218. -Package microtype Info: No adjustment of tracking. -Package microtype Info: No adjustment of interword spacing. -Package microtype Info: No adjustment of character kerning. -Package microtype Info: Loading generic protrusion settings for font family -(microtype) `lmss' (encoding: T1). -(microtype) For optimal results, create family-specific settings. -(microtype) See the microtype manual for details. -Package caption Info: Begin \AtBeginDocument code. -Package caption Info: float package is loaded. -Package caption Info: End \AtBeginDocument code. - -No file 4_recursive-ds.nav. - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 218--218 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 219--219 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[1 - -{/usr/local/texlive/2023/texmf-var/fonts/map/pdftex/updmap/pdftex.map}{/usr/loc -al/texlive/2023/texmf-dist/fonts/enc/dvips/lm/lm-ec.enc}] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 236--236 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[2 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 239--239 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[3 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 261--261 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <10.95> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 261. -LaTeX Font Info: Trying to load font information for OT1+lmss on input line -261. -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/ot1lmss.fd -File: ot1lmss.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -LaTeX Font Info: Trying to load font information for OML+lmm on input line 2 -61. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/omllmm.fd -File: omllmm.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -LaTeX Font Info: Trying to load font information for OMS+lmsy on input line -261. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/omslmsy.fd -File: omslmsy.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -LaTeX Font Info: Trying to load font information for OMX+lmex on input line -261. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/omxlmex.fd -File: omxlmex.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <6> on input line 261. -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <5> on input line 261. -LaTeX Font Info: Trying to load font information for U+msa on input line 261 -. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsfonts/umsa.fd -File: umsa.fd 2013/01/14 v3.01 AMS symbols A -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/microtype/mt-msa.cfg -File: mt-msa.cfg 2006/02/04 v1.1 microtype config. file: AMS symbols (a) (RS) -) -LaTeX Font Info: Trying to load font information for U+msb on input line 261 -. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsfonts/umsb.fd -File: umsb.fd 2013/01/14 v3.01 AMS symbols B -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/microtype/mt-msb.cfg -File: mt-msb.cfg 2005/06/01 v1.0 microtype config. file: AMS symbols (b) (RS) -) -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <6> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 261. -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <5> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 261. -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <10> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 261. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[4 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 283--283 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -File: images/tree.png Graphic file (type png) - -Package pdftex.def Info: images/tree.png used on input line 283. -(pdftex.def) Requested size: 136.97174pt x 120.50299pt. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[5 - - <./images/tree.png>] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 309--309 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -File: images/tree.png Graphic file (type png) - -Package pdftex.def Info: images/tree.png used on input line 309. -(pdftex.def) Requested size: 136.97174pt x 120.50299pt. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[6 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 331--331 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[7 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 355--355 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -File: images/tree-num.png Graphic file (type png) - -Package pdftex.def Info: images/tree-num.png used on input line 355. -(pdftex.def) Requested size: 136.9695pt x 96.95998pt. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[8 - - <./images/tree-num.png>] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 357--357 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `4_recursive-ds.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 378--378 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./4_recursive-ds.vrb -LaTeX Font Info: Trying to load font information for T1+lmtt on input line 6 -. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/t1lmtt.fd -File: t1lmtt.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -)) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[9 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 380--380 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `4_recursive-ds.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 400--400 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./4_recursive-ds.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[10 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 421--421 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -Package microtype Info: Loading generic protrusion settings for font family -(microtype) `lmss' (encoding: OT1). -(microtype) For optimal results, create family-specific settings. -(microtype) See the microtype manual for details. -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <10.95> on input line 421. -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <8> on input line 421. -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <8> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 421. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[11 - -{/usr/local/texlive/2023/texmf-dist/fonts/enc/dvips/lm/lm-rm.enc}] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 447--447 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -File: images/tree-num.png Graphic file (type png) - -Package pdftex.def Info: images/tree-num.png used on input line 447. -(pdftex.def) Requested size: 136.9695pt x 96.95998pt. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[12 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 473--473 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -File: images/tree-num.png Graphic file (type png) - -Package pdftex.def Info: images/tree-num.png used on input line 473. -(pdftex.def) Requested size: 136.9695pt x 96.95998pt. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[13 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 512--512 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -File: images/tree-num.png Graphic file (type png) - -Package pdftex.def Info: images/tree-num.png used on input line 512. -(pdftex.def) Requested size: 136.9695pt x 96.95998pt. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[14 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 515--515 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[15 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 538--538 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[16 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 572--572 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <10> on input line 572. -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <7> on input line 572. -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <7> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 572. - -File: images/tree-unbal.png Graphic file (type png) - -Package pdftex.def Info: images/tree-unbal.png used on input line 572. -(pdftex.def) Requested size: 102.73108pt x 152.19418pt. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[17 - -{/usr/local/texlive/2023/texmf-dist/fonts/enc/dvips/lm/lm-mathsy.enc} <./images -/tree-unbal.png>] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 590--590 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[18 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 597--597 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -File: images/insertion.png Graphic file (type png) - -Package pdftex.def Info: images/insertion.png used on input line 597. -(pdftex.def) Requested size: 347.05228pt x 188.05518pt. - -Overfull \hbox (4.61696pt too wide) in paragraph at lines 597--597 -[][] - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[19 - - <./images/insertion.png (PNG copy)>] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 600--600 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[20 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 632--632 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -File: images/graph-anat.png Graphic file (type png) - -Package pdftex.def Info: images/graph-anat.png used on input line 632. -(pdftex.def) Requested size: 117.43788pt x 82.9088pt. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[21 - - <./images/graph-anat.png>] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 662--662 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -File: images/graph-weight.png Graphic file (type png) - -Package pdftex.def Info: images/graph-weight.png used on input line 662. -(pdftex.def) Requested size: 136.97327pt x 123.80959pt. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[22 - - <./images/graph-weight.png>] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 697--697 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[23 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 719--719 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -File: images/graph-bfs.png Graphic file (type png) - -Package pdftex.def Info: images/graph-bfs.png used on input line 719. -(pdftex.def) Requested size: 136.97261pt x 184.72453pt. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[24 - - <./images/graph-bfs.png>] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 741--741 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -File: images/graph-bfs.png Graphic file (type png) - -Package pdftex.def Info: images/graph-bfs.png used on input line 741. -(pdftex.def) Requested size: 136.97261pt x 184.72453pt. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[25 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 766--766 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -File: images/graph-bfs.png Graphic file (type png) - -Package pdftex.def Info: images/graph-bfs.png used on input line 766. -(pdftex.def) Requested size: 136.97261pt x 184.72453pt. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[26 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 789--789 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -File: images/graph-bfs.png Graphic file (type png) - -Package pdftex.def Info: images/graph-bfs.png used on input line 789. -(pdftex.def) Requested size: 136.97261pt x 184.72453pt. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[27 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 811--811 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -File: images/graph-bfs.png Graphic file (type png) - -Package pdftex.def Info: images/graph-bfs.png used on input line 811. -(pdftex.def) Requested size: 136.97261pt x 184.72453pt. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[28 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 834--834 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -File: images/graph-bfs.png Graphic file (type png) - -Package pdftex.def Info: images/graph-bfs.png used on input line 834. -(pdftex.def) Requested size: 136.97261pt x 184.72453pt. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[29 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 856--856 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -File: images/graph-bfs.png Graphic file (type png) - -Package pdftex.def Info: images/graph-bfs.png used on input line 856. -(pdftex.def) Requested size: 136.97261pt x 184.72453pt. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[30 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 868--868 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[31 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 870--870 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `4_recursive-ds.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 892--892 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./4_recursive-ds.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[32 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 894--894 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `4_recursive-ds.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 916--916 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./4_recursive-ds.vrb -LaTeX Font Info: Trying to load font information for TS1+lmtt on input line -14. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/ts1lmtt.fd -File: ts1lmtt.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -)) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[33 - -{/usr/local/texlive/2023/texmf-dist/fonts/enc/dvips/lm/lm-ts1.enc}] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 918--918 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `4_recursive-ds.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 938--938 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./4_recursive-ds.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[34 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 940--940 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `4_recursive-ds.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 965--965 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./4_recursive-ds.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[35 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 967--967 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `4_recursive-ds.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 978--978 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./4_recursive-ds.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[36 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 981--981 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[37 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 1001--1001 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[38 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 1036--1036 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[39 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 1041--1041 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[40 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 1060--1060 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[41 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 1064--1064 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[42 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 1074--1074 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[43 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 1096--1096 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[44 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 1098--1098 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `4_recursive-ds.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 1129--1129 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./4_recursive-ds.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[45 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 1146--1146 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[46 - -] -\tf@nav=\write6 -\openout6 = `4_recursive-ds.nav'. - -\tf@toc=\write7 -\openout7 = `4_recursive-ds.toc'. - -\tf@snm=\write8 -\openout8 = `4_recursive-ds.snm'. - - (./4_recursive-ds.aux) - *********** -LaTeX2e <2023-11-01> -L3 programming layer <2023-12-11> - *********** - ) -Here is how much of TeX's memory you used: - 33553 strings out of 474181 - 685936 string characters out of 5745946 - 1937457 words of memory out of 5000000 - 54944 multiletter control sequences out of 15000+600000 - 628585 words of font info for 143 fonts, out of 8000000 for 9000 - 1141 hyphenation exceptions out of 8191 - 128i,15n,123p,1007b,860s stack positions out of 10000i,1000n,20000p,200000b,200000s - -Output written on 4_recursive-ds.pdf (46 pages, 313124 bytes). -PDF statistics: - 522 PDF objects out of 1000 (max. 8388607) - 377 compressed objects within 4 object streams - 138 named destinations out of 1000 (max. 500000) - 41084 words of extra memory for PDF output out of 42996 (max. 10000000) - diff --git a/slides-resources/4_recursive-ds/4_recursive-ds.nav b/slides-resources/4_recursive-ds/4_recursive-ds.nav deleted file mode 100644 index 7a1fa51..0000000 --- a/slides-resources/4_recursive-ds/4_recursive-ds.nav +++ /dev/null @@ -1,112 +0,0 @@ -\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}} -\headcommand {\beamer@framepages {1}{1}} -\headcommand {\slideentry {0}{0}{2}{2/2}{}{0}} -\headcommand {\beamer@framepages {2}{2}} -\headcommand {\beamer@sectionpages {1}{2}} -\headcommand {\beamer@subsectionpages {1}{2}} -\headcommand {\sectionentry {1}{Trees}{3}{Trees}{0}} -\headcommand {\slideentry {1}{0}{1}{3/3}{}{0}} -\headcommand {\beamer@framepages {3}{3}} -\headcommand {\slideentry {1}{0}{2}{4/4}{}{0}} -\headcommand {\beamer@framepages {4}{4}} -\headcommand {\slideentry {1}{0}{3}{5/5}{}{0}} -\headcommand {\beamer@framepages {5}{5}} -\headcommand {\slideentry {1}{0}{4}{6/6}{}{0}} -\headcommand {\beamer@framepages {6}{6}} -\headcommand {\slideentry {1}{0}{5}{7/7}{}{0}} -\headcommand {\beamer@framepages {7}{7}} -\headcommand {\slideentry {1}{0}{6}{8/8}{}{0}} -\headcommand {\beamer@framepages {8}{8}} -\headcommand {\slideentry {1}{0}{7}{9/9}{}{0}} -\headcommand {\beamer@framepages {9}{9}} -\headcommand {\slideentry {1}{0}{8}{10/10}{}{0}} -\headcommand {\beamer@framepages {10}{10}} -\headcommand {\slideentry {1}{0}{9}{11/11}{}{0}} -\headcommand {\beamer@framepages {11}{11}} -\headcommand {\slideentry {1}{0}{10}{12/12}{}{0}} -\headcommand {\beamer@framepages {12}{12}} -\headcommand {\slideentry {1}{0}{11}{13/13}{}{0}} -\headcommand {\beamer@framepages {13}{13}} -\headcommand {\slideentry {1}{0}{12}{14/14}{}{0}} -\headcommand {\beamer@framepages {14}{14}} -\headcommand {\beamer@sectionpages {3}{14}} -\headcommand {\beamer@subsectionpages {3}{14}} -\headcommand {\sectionentry {2}{Binary Search Trees}{15}{Binary Search Trees}{0}} -\headcommand {\slideentry {2}{0}{1}{15/15}{}{0}} -\headcommand {\beamer@framepages {15}{15}} -\headcommand {\slideentry {2}{0}{2}{16/16}{}{0}} -\headcommand {\beamer@framepages {16}{16}} -\headcommand {\slideentry {2}{0}{3}{17/17}{}{0}} -\headcommand {\beamer@framepages {17}{17}} -\headcommand {\slideentry {2}{0}{4}{18/18}{}{0}} -\headcommand {\beamer@framepages {18}{18}} -\headcommand {\slideentry {2}{0}{5}{19/19}{}{0}} -\headcommand {\beamer@framepages {19}{19}} -\headcommand {\beamer@sectionpages {15}{19}} -\headcommand {\beamer@subsectionpages {15}{19}} -\headcommand {\sectionentry {3}{Graphs}{20}{Graphs}{0}} -\headcommand {\slideentry {3}{0}{1}{20/20}{}{0}} -\headcommand {\beamer@framepages {20}{20}} -\headcommand {\slideentry {3}{0}{2}{21/21}{}{0}} -\headcommand {\beamer@framepages {21}{21}} -\headcommand {\slideentry {3}{0}{3}{22/22}{}{0}} -\headcommand {\beamer@framepages {22}{22}} -\headcommand {\slideentry {3}{0}{4}{23/23}{}{0}} -\headcommand {\beamer@framepages {23}{23}} -\headcommand {\slideentry {3}{0}{5}{24/24}{}{0}} -\headcommand {\beamer@framepages {24}{24}} -\headcommand {\slideentry {3}{0}{6}{25/25}{}{0}} -\headcommand {\beamer@framepages {25}{25}} -\headcommand {\slideentry {3}{0}{7}{26/26}{}{0}} -\headcommand {\beamer@framepages {26}{26}} -\headcommand {\slideentry {3}{0}{8}{27/27}{}{0}} -\headcommand {\beamer@framepages {27}{27}} -\headcommand {\slideentry {3}{0}{9}{28/28}{}{0}} -\headcommand {\beamer@framepages {28}{28}} -\headcommand {\slideentry {3}{0}{10}{29/29}{}{0}} -\headcommand {\beamer@framepages {29}{29}} -\headcommand {\slideentry {3}{0}{11}{30/30}{}{0}} -\headcommand {\beamer@framepages {30}{30}} -\headcommand {\slideentry {3}{0}{12}{31/31}{}{0}} -\headcommand {\beamer@framepages {31}{31}} -\headcommand {\slideentry {3}{0}{13}{32/32}{}{0}} -\headcommand {\beamer@framepages {32}{32}} -\headcommand {\slideentry {3}{0}{14}{33/33}{}{0}} -\headcommand {\beamer@framepages {33}{33}} -\headcommand {\slideentry {3}{0}{15}{34/34}{}{0}} -\headcommand {\beamer@framepages {34}{34}} -\headcommand {\slideentry {3}{0}{16}{35/35}{}{0}} -\headcommand {\beamer@framepages {35}{35}} -\headcommand {\slideentry {3}{0}{17}{36/36}{}{0}} -\headcommand {\beamer@framepages {36}{36}} -\headcommand {\beamer@sectionpages {20}{36}} -\headcommand {\beamer@subsectionpages {20}{36}} -\headcommand {\sectionentry {4}{Nearest Neighour Problem}{37}{Nearest Neighour Problem}{0}} -\headcommand {\slideentry {4}{0}{1}{37/37}{}{0}} -\headcommand {\beamer@framepages {37}{37}} -\headcommand {\slideentry {4}{0}{2}{38/38}{}{0}} -\headcommand {\beamer@framepages {38}{38}} -\headcommand {\slideentry {4}{0}{3}{39/39}{}{0}} -\headcommand {\beamer@framepages {39}{39}} -\headcommand {\slideentry {4}{0}{4}{40/40}{}{0}} -\headcommand {\beamer@framepages {40}{40}} -\headcommand {\slideentry {4}{0}{5}{41/41}{}{0}} -\headcommand {\beamer@framepages {41}{41}} -\headcommand {\beamer@sectionpages {37}{41}} -\headcommand {\beamer@subsectionpages {37}{41}} -\headcommand {\sectionentry {5}{Recommended Problems and References}{42}{Recommended Problems and References}{0}} -\headcommand {\slideentry {5}{0}{1}{42/42}{}{0}} -\headcommand {\beamer@framepages {42}{42}} -\headcommand {\slideentry {5}{0}{2}{43/43}{}{0}} -\headcommand {\beamer@framepages {43}{43}} -\headcommand {\slideentry {5}{0}{3}{44/44}{}{0}} -\headcommand {\beamer@framepages {44}{44}} -\headcommand {\slideentry {5}{0}{4}{45/45}{}{0}} -\headcommand {\beamer@framepages {45}{45}} -\headcommand {\slideentry {5}{0}{5}{46/46}{}{0}} -\headcommand {\beamer@framepages {46}{46}} -\headcommand {\beamer@partpages {1}{46}} -\headcommand {\beamer@subsectionpages {42}{46}} -\headcommand {\beamer@sectionpages {42}{46}} -\headcommand {\beamer@documentpages {46}} -\headcommand {\gdef \inserttotalframenumber {46}} diff --git a/slides-resources/4_recursive-ds/4_recursive-ds.pdf b/slides-resources/4_recursive-ds/4_recursive-ds.pdf deleted file mode 100644 index c8c37eb..0000000 Binary files a/slides-resources/4_recursive-ds/4_recursive-ds.pdf and /dev/null differ diff --git a/slides-resources/4_recursive-ds/4_recursive-ds.qmd b/slides-resources/4_recursive-ds/4_recursive-ds.qmd deleted file mode 100644 index 556091d..0000000 --- a/slides-resources/4_recursive-ds/4_recursive-ds.qmd +++ /dev/null @@ -1,622 +0,0 @@ ---- -title: "Recursive Data Structures" -format: - beamer: - institute: Data Sciences Institute, UofT - theme: Boadilla - colortheme: rose -execute: - echo: true -editor: visual -author: Salaar Liaqat ---- - -## Outline - -- Trees - -- Anatomy, tree traversal methods - -- Binary Search Trees - -- Graphs - -- Nearest Neighbor Problem - -# Trees - -## Introduction to Trees - -- Not all data has a natural linear order. Organization charts and file storage systems have a *hierarchical structure*, in which each entity is linked to multiple entities below it - -- This type of data is represented using a *tree*. A tree is either - - - Empty - - - Has a *root value* connected to any number of other trees, called *subtrees* - -- We draw the root at the top of the tree - -## Anatomy of a Tree - -::: columns -::: {.column width="60%"} -- The *size* of a tree is the number of values in the tree - -- A *leaf* is a value with no subtrees. The leaves of this tree are labeled E, F, G, J, and I - -- The *height* of a tree is the longest path from its root to its leaves. The height of this tree is 4 -::: - -::: {.column width="40%"} -![](images/tree.png) -::: -::: - -## Anatomy of a Tree - -::: columns -::: {.column width="60%"} -- The *children* of a value are all values directly connected underneath that value. The children of A are B, C, and D - -- The *descendants* of a value are it's children, the children of its children, etc. This can be defined recursively - -- The *parent* of a value is the value immediately above and connected to it. The parent of H is C - -- The *ancestors* of a value are its parent, the parent of its parent, etc. -::: - -::: {.column width="40%"} -![](images/tree.png) -::: -::: - -## Tree Traversal Methods - -- Linear data structures only have one logical way to traverse them. Trees can be traversed in different ways - -- We'll look at the following methods of tree traversal and their applications - - - *Depth First Search* (DFS): Inorder, Preorder, and Postorder traversal - - - *Breadth First Search* (BFS) - -- Note there are other methods not covered - -## DFS: Inorder Traversal - -::: columns -::: {.column width="60%"} -1. Traverse the left subtree - -2. Visit the root - -3. Traverse the right subtree - -\vspace{1cm} - -Result: 4 2 5 1 6 3 -::: - -::: {.column width="40%"} -![](images/tree-num.png) -::: -::: - -## DFS: Inorder Traversal Code - -Let's look at the code to do this - -```{python} -class Node: - """Tree class - """ - def __init__(self, key): - self.left = None - self.right = None - self.val = key - -def print_inorder(root): - if root: - print_inorder(root.left) - print(root.val, end = " ") - print_inorder(root.right) -``` - -## DFS: Inorder Traversal Code - -```{python} -root = Node(1) -root.left = Node(2) -root.right = Node(3) -root.left.left = Node(4) -root.left.right = Node(5) -root.right.left = Node(6) -print_inorder(root) -``` - -In binary search trees (next section), inorder traversal gives the nodes in a non-decreasing order. - -## DFS: Inorder Traversal Complexity - -Time complexity - -- Each node is visited exactly once. The work done at each node is constant. $O(n)$ - -Space complexity - -- Dependent on the maximum depth of the recursion, which is the height of the tree. $O(h)$ - -## DFS: Preorder Traversal - -::: columns -::: {.column width="60%"} -1. Visit the root - -2. Traverse the left subtree - -3. Traverse the right subtree - -\vspace{1cm} - -Result: 1 2 4 5 3 6 - -Preorder traversal is used to create a copy of the tree -::: - -::: {.column width="40%"} -![](images/tree-num.png) -::: -::: - -## DFS: Postorder Traversal - -::: columns -::: {.column width="60%"} -1. Traverse the left subtree - -2. Traverse the right subtree - -3. Visit the root - -\vspace{1cm} - -Result: 4 5 2 6 3 1 - -Preorder traversal is used to delete subtrees. (why?) -::: - -::: {.column width="40%"} -![](images/tree-num.png) -::: -::: - -## BFS - -::: columns -::: {.column width="60%"} -BFS (or Level Order Traversal) traverses nodes present in the same level before traversing the next level - -1. For each node - -- The node is visited - -- The child nodes are enqueued in a FIFO queue - -2. First node is dequeued - -3. Child nodes are enqueued - -4. Repeat until the queue is empty - -Result: 1 2 3 4 5 6 -::: - -::: {.column width="40%"} -![](images/tree-num.png) -::: -::: - -# Binary Search Trees - -## BST Definitions - -- You can think of a BST as a sorted tree - -- A *binary tree* is a tree in which every item has at most two subtrees - - - The tree used in illustrating DFS and BFS methods is a binary tree - -- A binary tree is a *binary search tree property* if its value is greater than or equal to all items in the left subtree - -- A binary tree is a *binary search tree* if every item in the tree satisfies the binary search tree property - -## BST Efficiency - -::: columns -::: {.column width="70%"} -- Consider the BST on the right. Verify that it is a BST. - -- The worst-case run time is $O(h)$, $h$ being the height of the tree - - - So the tree on the right is $O(n)$ - -- A tree of height $h$ can have at most $2^h - 1$ nodes. So we need at least log$n$ height to store all of them. - - - So if the tree was balanced, then it would be $O(\text{log}n)$ -::: - -::: {.column width="30%"} -![](images/tree-unbal.png) -::: -::: - -## BST Efficiency - -- Convince yourself that for a balanced BST the search, insert, and delete Big-O is all $O(\text{log}n)$ - -- Ensuring that a tree is balanced is important - - - Red-Black trees (not covered) are trees that balance themselves - - - You may also be interested in B-trees, which are used in databases - -## Live Coding - -Given a BST, insert a new node in this BST. - -![](images/insertion.png){width="461"} - -# Graphs - -## Introduction - -- We looked at lists and trees, which represent linear and hierarchical relationships respectively - - - But many relationships are neither - - - Friend networks, internet connections, flight connections - -- Graphs consist of two parts, *nodes* and *edges* - - - A node connected to another is a *neighbor* \vspace{1cm} - -![](images/graph-anat.png){fig-align="center" width="156"} - -## Types of Graphs - -::: columns -::: {.column width="60%"} -There are directed and undirected graphs to represent different situations - -- Friendships: undirected - -- Twitter followers: directed - -- Who owes who money: directed - -- Note that trees are special cases of directed graphs - -Graphs can also be weighted, to differentiate strengths between nodes - -There are two questions we ask about graphs: Is there a path from node A to B? What is the shortest path from node A to B? BFS answers both! -::: - -::: {.column width="40%"} -![](images/graph-weight.png) -::: -::: - -## BFS of Graphs - -- *Breadth First Search* (BFS) searches graph for a node that meets a set of criteria. It starts at the root of the graph and visits all nodes at the current depth level before moving on to the nodes at the next depth level - - - If there are multiple nodes meeting the criteria, then BFS will also find the nearest node! - -- The issue is that graphs contain *cycles*, so we may visit the same node more than once - - - Let's split edges into visited and not visited - -- We use a list to keep track of visited nodes - -- All the adjacent unvisited nodes of the current level are pushed into the queue and the nodes of the current level are marked visited and popped from the queue - -- Is BFS a recursive or iterative graph search method? - -## BFS Example - -::: columns -::: {.column width="60%"} -- Let's traverse a graph with BFS starting at node "1" - -- Visited list and queue start as empty \vspace{1cm} - -Visited: \[ , , , , \] - -Queue: \[ , , , , \] -::: - -::: {.column width="40%"} -![](images/graph-bfs.png) -::: -::: - -## BFS Example - -::: columns -::: {.column width="60%"} -- We're at node 1, so we push it onto the visited list and push it onto the queue \vspace{1cm} - -Visited: \[1, , , , \] - -Queue: \[1, , , , \] -::: - -::: {.column width="40%"} -![](images/graph-bfs.png) -::: -::: - -## BFS Example - -::: columns -::: {.column width="60%"} -- Now we visited 1, so it is dequeued. - -- At the first level away from node 1, there is 3 and 6. - -- We visit 3 and 6, but we have not visited any of it's neighbors (other than 1), so 3 and 6 are enqueued. \vspace{1cm} - -Visited: \[1, 3, 6, , \] - -Queue: \[3, 6, , , \] -::: - -::: {.column width="40%"} -![](images/graph-bfs.png) -::: -::: - -## BFS Example - -::: columns -::: {.column width="60%"} -- Visit the neighbors of node 3, so we dequeue it - -- But we need to enqueue 10, because we haven't visited its neighbors \vspace{1cm} - -Visited: \[1, 3, 6, 10, \] - -Queue: \[6, 10, , \] -::: - -::: {.column width="40%"} -![](images/graph-bfs.png) -::: -::: - -## BFS Example - -::: columns -::: {.column width="60%"} -- Visit the neighbors of node 6, which is just 7, so we dequeue it - -- But we need to enqueue 7 \vspace{1cm} - -Visited: \[1, 3, 6, 10, 7\] - -Queue: \[10, 7, , \] -::: - -::: {.column width="40%"} -![](images/graph-bfs.png) -::: -::: - -## BFS Example - -::: columns -::: {.column width="60%"} -- Visit the neighbors of node 10, and dequeue 10 - -- But we already visited those nodes, so the visited list does not change \vspace{1cm} - -Visited: \[1, 3, 6, 10, 7\] - -Queue: \[7, , , , \] -::: - -::: {.column width="40%"} -![](images/graph-bfs.png) -::: -::: - -## BFS Example - -::: columns -::: {.column width="60%"} -- Visit neighbors of 7, which are also all visited - -- The queue is empty, so the algorithm ends \vspace{1cm} - -Visited: \[1, 3, 6, 10, 7\] - -Queue: \[ , , , , \] -::: - -::: {.column width="40%"} -![](images/graph-bfs.png) -::: -::: - -## Time and Space Complexity of BFS - -- Each edge and each node must be visited once, so the time complexity is $O(n + e)$ - -- Since we need to store each node of the graph by the end of the algorithm, the space complexity is $O(n)$ - -## Implementing Graphs and BFS - -We can represent graphs using the *adjacency list* representation - -- Other options include adjacency matrix or using a Python library - -```{python} -from collections import deque - -class Graph: - def __init__(self): - self.graph = {} - - def add_edge(self, vertex, neighbors): - self.graph[vertex] = neighbors -``` - -## Implementing Graphs and BFS - -```{python} -def bfs(graph, start): - visited = set() - queue = deque([start]) - - while queue: - current_vertex = queue.popleft() - - if current_vertex not in visited: - # Process the current vertex - print(current_vertex, end=' ') - visited.add(current_vertex) - - # Enqueue unvisited neighbors - for neighbor in graph.graph.get(current_vertex, []): - if neighbor not in visited: - queue.append(neighbor) -``` - -## Implementing Graphs and BFS - -```{python} -# Represent graph from above -ex_graph = Graph() -ex_graph.add_edge(1, [3, 6]) -ex_graph.add_edge(3, [10, 6]) -ex_graph.add_edge(6, [3, 7]) -ex_graph.add_edge(10, [3, 7]) -ex_graph.add_edge(7, [10, 6]) - -# Perform BFS starting from vertex 1 -bfs(ex_graph, 1) -``` - -## Recursive Graph Search: Preorder Traversal - -- Using the same `Graph` class, let's implement preorder traversal - -```{python} -def recursive_preorder_traversal(graph, start, visited=None): - if visited is None: - visited = set() - - # Process the current vertex - print(start, end=' ') - visited.add(start) - - # Recursive traversal of neighbors - for neighbor in graph.graph.get(start, []): - if neighbor not in visited: - recursive_preorder_traversal(graph, neighbor, visited) -``` - -## Recursive Graph Search: Preorder Traversal - -```{python} -bfs(ex_graph, 1) -``` - -# Nearest Neighour Problem - -## Nearest Neighbour Problem - -- As you may have encountered already, machine learning and statistical methods often depend on finding the nearest neighbor to a data point - - - K-nearest neighbors regression, propensity score matching - -- In a $k$ dimensional space, if we conduct a linear search for points, the running time will be $O(kn)$ for $n$ data points. - -- Can we do better? - -## k-d Trees - -- k-d trees is short for k dimensional tree (notation is a bit unfortunate, different K than KNN) - - - It is useful for multidimensional searches - -- Let's discuss the properties of k-d trees and why they work - -- Binary tree where each node represents an axis-aligned hyperrectangle in the k-dimensional space - - - hyperrectangle: rectangle in higher dimensions - -- Nodes in the left subtree have coordinates less than the splitting dimension of the current node, while nodes in the right subtree have coordinates greater than the splitting dimension. - -- At each level of the tree, a specific dimension is chosen to split the data. The choice of dimension alternates as we traverse down the tree. - -- Each leaf represents a single point in the k-dimensional space - -## k-d Trees Animation - - - -## Applications and Issues - -- Notice k-d trees can also find values within a certain range very quickly, not just a specific point - -- GIS (geographic information systems) queries - -- KNN algorithm - -- Computer graphics, such as ray tracing to facilitate efficient space partitioning - -- Issues occur in high-dimensional spaces and trees can become imbalanced - -# Recommended Problems and References - -## Recommended Readings - -- Bhargava: Chapter 6 - -- Bhargava: Chapter 11, pages 203 to 206 about Trees - -## Recommended Problems - -- Cormen: Chapter 10 exercises - - - 10.3-1, 10.3-2, 10.3-3 - -- Bhargava: Chapter 6 exercises - - - 6.1 to 6.5 - -## Recommended Problems - -- Implement preorder, postorder, and level order traversal. Determine the time and space complexity in each case - -- Implement a function that find an element in a BST and deletes it. The descendants of the deleted node are given to the deleted node's parent. - -- Using the `graph` class from the slides, implement BST search such that it stops and tell you the distance the node is from the starting point. - - - For instance, if we searched for 7 in the graph given in the slides, it would return `"Found! Distance 2"`. - - - If we searched for 100 in the graph, it would return `"Not found!"` - -- Implement postorder graph traversal using the `graph` class from the slides. - -- Implement a function using recursion to find the sum heterogeneous nested lists such as \[\[1, \[2\]\], \[\[\[3\]\]\], 4, \[\[5, 6\], \[\[\[7\]\]\]\]\]. - -## References - -- Bhargava, A. Y. (2016). *Grokking algorithms: An illustrated guide for programmers and other curious people.* Manning. Chapter 6, 10, 11. - -- Cormen, T. H. (Ed.). (2009). *Introduction to algorithms* (3rd ed). MIT Press. Chapter 12 and 20. - -- Horton, D., & Liu, D. (2023, November 19). *CSC148 Lecture Notes*. https://www.teach.cs.toronto.edu/\~csc148h/winter/notes/ diff --git a/slides-resources/4_recursive-ds/4_recursive-ds.snm b/slides-resources/4_recursive-ds/4_recursive-ds.snm deleted file mode 100644 index e69de29..0000000 diff --git a/slides-resources/4_recursive-ds/4_recursive-ds.tex b/slides-resources/4_recursive-ds/4_recursive-ds.tex deleted file mode 100644 index f30b233..0000000 --- a/slides-resources/4_recursive-ds/4_recursive-ds.tex +++ /dev/null @@ -1,1150 +0,0 @@ -% Options for packages loaded elsewhere -\PassOptionsToPackage{unicode}{hyperref} -\PassOptionsToPackage{hyphens}{url} -% -\documentclass[ - ignorenonframetext, -]{beamer} -\usepackage{pgfpages} -\setbeamertemplate{caption}[numbered] -\setbeamertemplate{caption label separator}{: } -\setbeamercolor{caption name}{fg=normal text.fg} -\beamertemplatenavigationsymbolsempty -% Prevent slide breaks in the middle of a paragraph -\widowpenalties 1 10000 -\raggedbottom -\setbeamertemplate{part page}{ - \centering - \begin{beamercolorbox}[sep=16pt,center]{part title} - \usebeamerfont{part title}\insertpart\par - \end{beamercolorbox} -} -\setbeamertemplate{section page}{ - \centering - \begin{beamercolorbox}[sep=12pt,center]{part title} - \usebeamerfont{section title}\insertsection\par - \end{beamercolorbox} -} -\setbeamertemplate{subsection page}{ - \centering - \begin{beamercolorbox}[sep=8pt,center]{part title} - \usebeamerfont{subsection title}\insertsubsection\par - \end{beamercolorbox} -} -\AtBeginPart{ - \frame{\partpage} -} -\AtBeginSection{ - \ifbibliography - \else - \frame{\sectionpage} - \fi -} -\AtBeginSubsection{ - \frame{\subsectionpage} -} - -\usepackage{amsmath,amssymb} -\usepackage{iftex} -\ifPDFTeX - \usepackage[T1]{fontenc} - \usepackage[utf8]{inputenc} - \usepackage{textcomp} % provide euro and other symbols -\else % if luatex or xetex - \usepackage{unicode-math} - \defaultfontfeatures{Scale=MatchLowercase} - \defaultfontfeatures[\rmfamily]{Ligatures=TeX,Scale=1} -\fi -\usepackage{lmodern} -\usetheme[]{Boadilla} -\usecolortheme{rose} -\ifPDFTeX\else - % xetex/luatex font selection -\fi -% Use upquote if available, for straight quotes in verbatim environments -\IfFileExists{upquote.sty}{\usepackage{upquote}}{} -\IfFileExists{microtype.sty}{% use microtype if available - \usepackage[]{microtype} - \UseMicrotypeSet[protrusion]{basicmath} % disable protrusion for tt fonts -}{} -\makeatletter -\@ifundefined{KOMAClassName}{% if non-KOMA class - \IfFileExists{parskip.sty}{% - \usepackage{parskip} - }{% else - \setlength{\parindent}{0pt} - \setlength{\parskip}{6pt plus 2pt minus 1pt}} -}{% if KOMA class - \KOMAoptions{parskip=half}} -\makeatother -\usepackage{xcolor} -\newif\ifbibliography -\setlength{\emergencystretch}{3em} % prevent overfull lines -\setcounter{secnumdepth}{-\maxdimen} % remove section numbering - -\usepackage{color} -\usepackage{fancyvrb} -\newcommand{\VerbBar}{|} -\newcommand{\VERB}{\Verb[commandchars=\\\{\}]} -\DefineVerbatimEnvironment{Highlighting}{Verbatim}{commandchars=\\\{\}} -% Add ',fontsize=\small' for more characters per line -\usepackage{framed} -\definecolor{shadecolor}{RGB}{241,243,245} -\newenvironment{Shaded}{\begin{snugshade}}{\end{snugshade}} -\newcommand{\AlertTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\AnnotationTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{#1}} -\newcommand{\AttributeTok}[1]{\textcolor[rgb]{0.40,0.45,0.13}{#1}} -\newcommand{\BaseNTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\BuiltInTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\CharTok}[1]{\textcolor[rgb]{0.13,0.47,0.30}{#1}} -\newcommand{\CommentTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{#1}} -\newcommand{\CommentVarTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{\textit{#1}}} -\newcommand{\ConstantTok}[1]{\textcolor[rgb]{0.56,0.35,0.01}{#1}} -\newcommand{\ControlFlowTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\DataTypeTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\DecValTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\DocumentationTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{\textit{#1}}} -\newcommand{\ErrorTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\ExtensionTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\FloatTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\FunctionTok}[1]{\textcolor[rgb]{0.28,0.35,0.67}{#1}} -\newcommand{\ImportTok}[1]{\textcolor[rgb]{0.00,0.46,0.62}{#1}} -\newcommand{\InformationTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{#1}} -\newcommand{\KeywordTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\NormalTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\OperatorTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{#1}} -\newcommand{\OtherTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\PreprocessorTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\RegionMarkerTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\SpecialCharTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{#1}} -\newcommand{\SpecialStringTok}[1]{\textcolor[rgb]{0.13,0.47,0.30}{#1}} -\newcommand{\StringTok}[1]{\textcolor[rgb]{0.13,0.47,0.30}{#1}} -\newcommand{\VariableTok}[1]{\textcolor[rgb]{0.07,0.07,0.07}{#1}} -\newcommand{\VerbatimStringTok}[1]{\textcolor[rgb]{0.13,0.47,0.30}{#1}} -\newcommand{\WarningTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{\textit{#1}}} - -\providecommand{\tightlist}{% - \setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}\usepackage{longtable,booktabs,array} -\usepackage{calc} % for calculating minipage widths -\usepackage{caption} -% Make caption package work with longtable -\makeatletter -\def\fnum@table{\tablename~\thetable} -\makeatother -\usepackage{graphicx} -\makeatletter -\def\maxwidth{\ifdim\Gin@nat@width>\linewidth\linewidth\else\Gin@nat@width\fi} -\def\maxheight{\ifdim\Gin@nat@height>\textheight\textheight\else\Gin@nat@height\fi} -\makeatother -% Scale images if necessary, so that they will not overflow the page -% margins by default, and it is still possible to overwrite the defaults -% using explicit options in \includegraphics[width, height, ...]{} -\setkeys{Gin}{width=\maxwidth,height=\maxheight,keepaspectratio} -% Set default figure placement to htbp -\makeatletter -\def\fps@figure{htbp} -\makeatother - -\makeatletter -\makeatother -\makeatletter -\makeatother -\makeatletter -\@ifpackageloaded{caption}{}{\usepackage{caption}} -\AtBeginDocument{% -\ifdefined\contentsname - \renewcommand*\contentsname{Table of contents} -\else - \newcommand\contentsname{Table of contents} -\fi -\ifdefined\listfigurename - \renewcommand*\listfigurename{List of Figures} -\else - \newcommand\listfigurename{List of Figures} -\fi -\ifdefined\listtablename - \renewcommand*\listtablename{List of Tables} -\else - \newcommand\listtablename{List of Tables} -\fi -\ifdefined\figurename - \renewcommand*\figurename{Figure} -\else - \newcommand\figurename{Figure} -\fi -\ifdefined\tablename - \renewcommand*\tablename{Table} -\else - \newcommand\tablename{Table} -\fi -} -\@ifpackageloaded{float}{}{\usepackage{float}} -\floatstyle{ruled} -\@ifundefined{c@chapter}{\newfloat{codelisting}{h}{lop}}{\newfloat{codelisting}{h}{lop}[chapter]} -\floatname{codelisting}{Listing} -\newcommand*\listoflistings{\listof{codelisting}{List of Listings}} -\makeatother -\makeatletter -\@ifpackageloaded{caption}{}{\usepackage{caption}} -\@ifpackageloaded{subcaption}{}{\usepackage{subcaption}} -\makeatother -\makeatletter -\@ifpackageloaded{tcolorbox}{}{\usepackage[skins,breakable]{tcolorbox}} -\makeatother -\makeatletter -\@ifundefined{shadecolor}{\definecolor{shadecolor}{rgb}{.97, .97, .97}} -\makeatother -\makeatletter -\makeatother -\makeatletter -\makeatother -\ifLuaTeX - \usepackage{selnolig} % disable illegal ligatures -\fi -\IfFileExists{bookmark.sty}{\usepackage{bookmark}}{\usepackage{hyperref}} -\IfFileExists{xurl.sty}{\usepackage{xurl}}{} % add URL line breaks if available -\urlstyle{same} % disable monospaced font for URLs -\hypersetup{ - pdftitle={Recursive Data Structures}, - pdfauthor={Salaar Liaqat}, - hidelinks, - pdfcreator={LaTeX via pandoc}} - -\title{Recursive Data Structures} -\author{Salaar Liaqat} -\date{} -\institute{Data Sciences Institute, UofT} - -\begin{document} -\frame{\titlepage} -\ifdefined\Shaded\renewenvironment{Shaded}{\begin{tcolorbox}[borderline west={3pt}{0pt}{shadecolor}, boxrule=0pt, frame hidden, interior hidden, sharp corners, breakable, enhanced]}{\end{tcolorbox}}\fi - -\begin{frame}{Outline} -\protect\hypertarget{outline}{} -\begin{itemize} -\item - Trees -\item - Anatomy, tree traversal methods -\item - Binary Search Trees -\item - Graphs -\item - Nearest Neighbor Problem -\end{itemize} -\end{frame} - -\hypertarget{trees}{% -\section{Trees}\label{trees}} - -\begin{frame}{Introduction to Trees} -\protect\hypertarget{introduction-to-trees}{} -\begin{itemize} -\item - Not all data has a natural linear order. Organization charts and file - storage systems have a \emph{hierarchical structure}, in which each - entity is linked to multiple entities below it -\item - This type of data is represented using a \emph{tree}. A tree is either - - \begin{itemize} - \item - Empty - \item - Has a \emph{root value} connected to any number of other trees, - called \emph{subtrees} - \end{itemize} -\item - We draw the root at the top of the tree -\end{itemize} -\end{frame} - -\begin{frame}{Anatomy of a Tree} -\protect\hypertarget{anatomy-of-a-tree}{} -\begin{columns}[T] -\begin{column}{0.6\textwidth} -\begin{itemize} -\item - The \emph{size} of a tree is the number of values in the tree -\item - A \emph{leaf} is a value with no subtrees. The leaves of this tree are - labeled E, F, G, J, and I -\item - The \emph{height} of a tree is the longest path from its root to its - leaves. The height of this tree is 4 -\end{itemize} -\end{column} - -\begin{column}{0.4\textwidth} -\includegraphics{images/tree.png} -\end{column} -\end{columns} -\end{frame} - -\begin{frame}{Anatomy of a Tree} -\protect\hypertarget{anatomy-of-a-tree-1}{} -\begin{columns}[T] -\begin{column}{0.6\textwidth} -\begin{itemize} -\item - The \emph{children} of a value are all values directly connected - underneath that value. The children of A are B, C, and D -\item - The \emph{descendants} of a value are it's children, the children of - its children, etc. This can be defined recursively -\item - The \emph{parent} of a value is the value immediately above and - connected to it. The parent of H is C -\item - The \emph{ancestors} of a value are its parent, the parent of its - parent, etc. -\end{itemize} -\end{column} - -\begin{column}{0.4\textwidth} -\includegraphics{images/tree.png} -\end{column} -\end{columns} -\end{frame} - -\begin{frame}{Tree Traversal Methods} -\protect\hypertarget{tree-traversal-methods}{} -\begin{itemize} -\item - Linear data structures only have one logical way to traverse them. - Trees can be traversed in different ways -\item - We'll look at the following methods of tree traversal and their - applications - - \begin{itemize} - \item - \emph{Depth First Search} (DFS): Inorder, Preorder, and Postorder - traversal - \item - \emph{Breadth First Search} (BFS) - \end{itemize} -\item - Note there are other methods not covered -\end{itemize} -\end{frame} - -\begin{frame}{DFS: Inorder Traversal} -\protect\hypertarget{dfs-inorder-traversal}{} -\begin{columns}[T] -\begin{column}{0.6\textwidth} -\begin{enumerate} -\item - Traverse the left subtree -\item - Visit the root -\item - Traverse the right subtree -\end{enumerate} - -\vspace{1cm} - -Result: 4 2 5 1 6 3 -\end{column} - -\begin{column}{0.4\textwidth} -\includegraphics{images/tree-num.png} -\end{column} -\end{columns} -\end{frame} - -\begin{frame}[fragile]{DFS: Inorder Traversal Code} -\protect\hypertarget{dfs-inorder-traversal-code}{} -Let's look at the code to do this - -\begin{Shaded} -\begin{Highlighting}[] -\KeywordTok{class}\NormalTok{ Node:} - \CommentTok{"""Tree class} -\CommentTok{ """} - \KeywordTok{def} \FunctionTok{\_\_init\_\_}\NormalTok{(}\VariableTok{self}\NormalTok{, key):} - \VariableTok{self}\NormalTok{.left }\OperatorTok{=} \VariableTok{None} - \VariableTok{self}\NormalTok{.right }\OperatorTok{=} \VariableTok{None} - \VariableTok{self}\NormalTok{.val }\OperatorTok{=}\NormalTok{ key} - -\KeywordTok{def}\NormalTok{ print\_inorder(root):} - \ControlFlowTok{if}\NormalTok{ root:} -\NormalTok{ print\_inorder(root.left)} - \BuiltInTok{print}\NormalTok{(root.val, end }\OperatorTok{=} \StringTok{" "}\NormalTok{)} -\NormalTok{ print\_inorder(root.right)} -\end{Highlighting} -\end{Shaded} -\end{frame} - -\begin{frame}[fragile]{DFS: Inorder Traversal Code} -\protect\hypertarget{dfs-inorder-traversal-code-1}{} -\begin{Shaded} -\begin{Highlighting}[] -\NormalTok{root }\OperatorTok{=}\NormalTok{ Node(}\DecValTok{1}\NormalTok{)} -\NormalTok{root.left }\OperatorTok{=}\NormalTok{ Node(}\DecValTok{2}\NormalTok{)} -\NormalTok{root.right }\OperatorTok{=}\NormalTok{ Node(}\DecValTok{3}\NormalTok{)} -\NormalTok{root.left.left }\OperatorTok{=}\NormalTok{ Node(}\DecValTok{4}\NormalTok{)} -\NormalTok{root.left.right }\OperatorTok{=}\NormalTok{ Node(}\DecValTok{5}\NormalTok{)} -\NormalTok{root.right.left }\OperatorTok{=}\NormalTok{ Node(}\DecValTok{6}\NormalTok{)} -\NormalTok{print\_inorder(root)} -\end{Highlighting} -\end{Shaded} - -\begin{verbatim} -4 2 5 1 6 3 -\end{verbatim} - -In binary search trees (next section), inorder traversal gives the nodes -in a non-decreasing order. -\end{frame} - -\begin{frame}{DFS: Inorder Traversal Complexity} -\protect\hypertarget{dfs-inorder-traversal-complexity}{} -Time complexity - -\begin{itemize} -\tightlist -\item - Each node is visited exactly once. The work done at each node is - constant. \(O(n)\) -\end{itemize} - -Space complexity - -\begin{itemize} -\tightlist -\item - Dependent on the maximum depth of the recursion, which is the height - of the tree. \(O(h)\) -\end{itemize} -\end{frame} - -\begin{frame}{DFS: Preorder Traversal} -\protect\hypertarget{dfs-preorder-traversal}{} -\begin{columns}[T] -\begin{column}{0.6\textwidth} -\begin{enumerate} -\item - Visit the root -\item - Traverse the left subtree -\item - Traverse the right subtree -\end{enumerate} - -\vspace{1cm} - -Result: 1 2 4 5 3 6 - -Preorder traversal is used to create a copy of the tree -\end{column} - -\begin{column}{0.4\textwidth} -\includegraphics{images/tree-num.png} -\end{column} -\end{columns} -\end{frame} - -\begin{frame}{DFS: Postorder Traversal} -\protect\hypertarget{dfs-postorder-traversal}{} -\begin{columns}[T] -\begin{column}{0.6\textwidth} -\begin{enumerate} -\item - Traverse the left subtree -\item - Traverse the right subtree -\item - Visit the root -\end{enumerate} - -\vspace{1cm} - -Result: 4 5 2 6 3 1 - -Preorder traversal is used to delete subtrees. (why?) -\end{column} - -\begin{column}{0.4\textwidth} -\includegraphics{images/tree-num.png} -\end{column} -\end{columns} -\end{frame} - -\begin{frame}{BFS} -\protect\hypertarget{bfs}{} -\begin{columns}[T] -\begin{column}{0.6\textwidth} -BFS (or Level Order Traversal) traverses nodes present in the same level -before traversing the next level - -\begin{enumerate} -\tightlist -\item - For each node -\end{enumerate} - -\begin{itemize} -\item - The node is visited -\item - The child nodes are enqueued in a FIFO queue -\end{itemize} - -\begin{enumerate} -\setcounter{enumi}{1} -\item - First node is dequeued -\item - Child nodes are enqueued -\item - Repeat until the queue is empty -\end{enumerate} - -Result: 1 2 3 4 5 6 -\end{column} - -\begin{column}{0.4\textwidth} -\includegraphics{images/tree-num.png} -\end{column} -\end{columns} -\end{frame} - -\hypertarget{binary-search-trees}{% -\section{Binary Search Trees}\label{binary-search-trees}} - -\begin{frame}{BST Definitions} -\protect\hypertarget{bst-definitions}{} -\begin{itemize} -\item - You can think of a BST as a sorted tree -\item - A \emph{binary tree} is a tree in which every item has at most two - subtrees - - \begin{itemize} - \tightlist - \item - The tree used in illustrating DFS and BFS methods is a binary tree - \end{itemize} -\item - A binary tree is a \emph{binary search tree property} if its value is - greater than or equal to all items in the left subtree -\item - A binary tree is a \emph{binary search tree} if every item in the tree - satisfies the binary search tree property -\end{itemize} -\end{frame} - -\begin{frame}{BST Efficiency} -\protect\hypertarget{bst-efficiency}{} -\begin{columns}[T] -\begin{column}{0.7\textwidth} -\begin{itemize} -\item - Consider the BST on the right. Verify that it is a BST. -\item - The worst-case run time is \(O(h)\), \(h\) being the height of the - tree - - \begin{itemize} - \tightlist - \item - So the tree on the right is \(O(n)\) - \end{itemize} -\item - A tree of height \(h\) can have at most \(2^h - 1\) nodes. So we need - at least log\(n\) height to store all of them. - - \begin{itemize} - \tightlist - \item - So if the tree was balanced, then it would be \(O(\text{log}n)\) - \end{itemize} -\end{itemize} -\end{column} - -\begin{column}{0.3\textwidth} -\includegraphics{images/tree-unbal.png} -\end{column} -\end{columns} -\end{frame} - -\begin{frame}{BST Efficiency} -\protect\hypertarget{bst-efficiency-1}{} -\begin{itemize} -\item - Convince yourself that for a balanced BST the search, insert, and - delete Big-O is all \(O(\text{log}n)\) -\item - Ensuring that a tree is balanced is important - - \begin{itemize} - \item - Red-Black trees (not covered) are trees that balance themselves - \item - You may also be interested in B-trees, which are used in databases - \end{itemize} -\end{itemize} -\end{frame} - -\begin{frame}{Live Coding} -\protect\hypertarget{live-coding}{} -Given a BST, insert a new node in this BST. - -\includegraphics[width=4.80208in,height=\textheight]{images/insertion.png} -\end{frame} - -\hypertarget{graphs}{% -\section{Graphs}\label{graphs}} - -\begin{frame}{Introduction} -\protect\hypertarget{introduction}{} -\begin{itemize} -\item - We looked at lists and trees, which represent linear and hierarchical - relationships respectively - - \begin{itemize} - \item - But many relationships are neither - \item - Friend networks, internet connections, flight connections - \end{itemize} -\item - Graphs consist of two parts, \emph{nodes} and \emph{edges} - - \begin{itemize} - \tightlist - \item - A node connected to another is a \emph{neighbor} \vspace{1cm} - \end{itemize} -\end{itemize} - -\begin{figure} - -{\centering \includegraphics[width=1.625in,height=\textheight]{images/graph-anat.png} - -} - -\end{figure} -\end{frame} - -\begin{frame}{Types of Graphs} -\protect\hypertarget{types-of-graphs}{} -\begin{columns}[T] -\begin{column}{0.6\textwidth} -There are directed and undirected graphs to represent different -situations - -\begin{itemize} -\item - Friendships: undirected -\item - Twitter followers: directed -\item - Who owes who money: directed -\item - Note that trees are special cases of directed graphs -\end{itemize} - -Graphs can also be weighted, to differentiate strengths between nodes - -There are two questions we ask about graphs: Is there a path from node A -to B? What is the shortest path from node A to B? BFS answers both! -\end{column} - -\begin{column}{0.4\textwidth} -\includegraphics{images/graph-weight.png} -\end{column} -\end{columns} -\end{frame} - -\begin{frame}{BFS of Graphs} -\protect\hypertarget{bfs-of-graphs}{} -\begin{itemize} -\item - \emph{Breadth First Search} (BFS) searches graph for a node that meets - a set of criteria. It starts at the root of the graph and visits all - nodes at the current depth level before moving on to the nodes at the - next depth level - - \begin{itemize} - \tightlist - \item - If there are multiple nodes meeting the criteria, then BFS will also - find the nearest node! - \end{itemize} -\item - The issue is that graphs contain \emph{cycles}, so we may visit the - same node more than once - - \begin{itemize} - \tightlist - \item - Let's split edges into visited and not visited - \end{itemize} -\item - We use a list to keep track of visited nodes -\item - All the adjacent unvisited nodes of the current level are pushed into - the queue and the nodes of the current level are marked visited and - popped from the queue -\item - Is BFS a recursive or iterative graph search method? -\end{itemize} -\end{frame} - -\begin{frame}{BFS Example} -\protect\hypertarget{bfs-example}{} -\begin{columns}[T] -\begin{column}{0.6\textwidth} -\begin{itemize} -\item - Let's traverse a graph with BFS starting at node ``1'' -\item - Visited list and queue start as empty \vspace{1cm} -\end{itemize} - -Visited: {[} , , , , {]} - -Queue: {[} , , , , {]} -\end{column} - -\begin{column}{0.4\textwidth} -\includegraphics{images/graph-bfs.png} -\end{column} -\end{columns} -\end{frame} - -\begin{frame}{BFS Example} -\protect\hypertarget{bfs-example-1}{} -\begin{columns}[T] -\begin{column}{0.6\textwidth} -\begin{itemize} -\tightlist -\item - We're at node 1, so we push it onto the visited list and push it onto - the queue \vspace{1cm} -\end{itemize} - -Visited: {[}1, , , , {]} - -Queue: {[}1, , , , {]} -\end{column} - -\begin{column}{0.4\textwidth} -\includegraphics{images/graph-bfs.png} -\end{column} -\end{columns} -\end{frame} - -\begin{frame}{BFS Example} -\protect\hypertarget{bfs-example-2}{} -\begin{columns}[T] -\begin{column}{0.6\textwidth} -\begin{itemize} -\item - Now we visited 1, so it is dequeued. -\item - At the first level away from node 1, there is 3 and 6. -\item - We visit 3 and 6, but we have not visited any of it's neighbors (other - than 1), so 3 and 6 are enqueued. \vspace{1cm} -\end{itemize} - -Visited: {[}1, 3, 6, , {]} - -Queue: {[}3, 6, , , {]} -\end{column} - -\begin{column}{0.4\textwidth} -\includegraphics{images/graph-bfs.png} -\end{column} -\end{columns} -\end{frame} - -\begin{frame}{BFS Example} -\protect\hypertarget{bfs-example-3}{} -\begin{columns}[T] -\begin{column}{0.6\textwidth} -\begin{itemize} -\item - Visit the neighbors of node 3, so we dequeue it -\item - But we need to enqueue 10, because we haven't visited its neighbors - \vspace{1cm} -\end{itemize} - -Visited: {[}1, 3, 6, 10, {]} - -Queue: {[}6, 10, , {]} -\end{column} - -\begin{column}{0.4\textwidth} -\includegraphics{images/graph-bfs.png} -\end{column} -\end{columns} -\end{frame} - -\begin{frame}{BFS Example} -\protect\hypertarget{bfs-example-4}{} -\begin{columns}[T] -\begin{column}{0.6\textwidth} -\begin{itemize} -\item - Visit the neighbors of node 6, which is just 7, so we dequeue it -\item - But we need to enqueue 7 \vspace{1cm} -\end{itemize} - -Visited: {[}1, 3, 6, 10, 7{]} - -Queue: {[}10, 7, , {]} -\end{column} - -\begin{column}{0.4\textwidth} -\includegraphics{images/graph-bfs.png} -\end{column} -\end{columns} -\end{frame} - -\begin{frame}{BFS Example} -\protect\hypertarget{bfs-example-5}{} -\begin{columns}[T] -\begin{column}{0.6\textwidth} -\begin{itemize} -\item - Visit the neighbors of node 10, and dequeue 10 -\item - But we already visited those nodes, so the visited list does not - change \vspace{1cm} -\end{itemize} - -Visited: {[}1, 3, 6, 10, 7{]} - -Queue: {[}7, , , , {]} -\end{column} - -\begin{column}{0.4\textwidth} -\includegraphics{images/graph-bfs.png} -\end{column} -\end{columns} -\end{frame} - -\begin{frame}{BFS Example} -\protect\hypertarget{bfs-example-6}{} -\begin{columns}[T] -\begin{column}{0.6\textwidth} -\begin{itemize} -\item - Visit neighbors of 7, which are also all visited -\item - The queue is empty, so the algorithm ends \vspace{1cm} -\end{itemize} - -Visited: {[}1, 3, 6, 10, 7{]} - -Queue: {[} , , , , {]} -\end{column} - -\begin{column}{0.4\textwidth} -\includegraphics{images/graph-bfs.png} -\end{column} -\end{columns} -\end{frame} - -\begin{frame}{Time and Space Complexity of BFS} -\protect\hypertarget{time-and-space-complexity-of-bfs}{} -\begin{itemize} -\item - Each edge and each node must be visited once, so the time complexity - is \(O(n + e)\) -\item - Since we need to store each node of the graph by the end of the - algorithm, the space complexity is \(O(n)\) -\end{itemize} -\end{frame} - -\begin{frame}[fragile]{Implementing Graphs and BFS} -\protect\hypertarget{implementing-graphs-and-bfs}{} -We can represent graphs using the \emph{adjacency list} representation - -\begin{itemize} -\tightlist -\item - Other options include adjacency matrix or using a Python library -\end{itemize} - -\begin{Shaded} -\begin{Highlighting}[] -\ImportTok{from}\NormalTok{ collections }\ImportTok{import}\NormalTok{ deque} - -\KeywordTok{class}\NormalTok{ Graph:} - \KeywordTok{def} \FunctionTok{\_\_init\_\_}\NormalTok{(}\VariableTok{self}\NormalTok{):} - \VariableTok{self}\NormalTok{.graph }\OperatorTok{=}\NormalTok{ \{\}} - - \KeywordTok{def}\NormalTok{ add\_edge(}\VariableTok{self}\NormalTok{, vertex, neighbors):} - \VariableTok{self}\NormalTok{.graph[vertex] }\OperatorTok{=}\NormalTok{ neighbors} -\end{Highlighting} -\end{Shaded} -\end{frame} - -\begin{frame}[fragile]{Implementing Graphs and BFS} -\protect\hypertarget{implementing-graphs-and-bfs-1}{} -\begin{Shaded} -\begin{Highlighting}[] -\KeywordTok{def}\NormalTok{ bfs(graph, start):} -\NormalTok{ visited }\OperatorTok{=} \BuiltInTok{set}\NormalTok{()} -\NormalTok{ queue }\OperatorTok{=}\NormalTok{ deque([start])} - - \ControlFlowTok{while}\NormalTok{ queue:} -\NormalTok{ current\_vertex }\OperatorTok{=}\NormalTok{ queue.popleft()} - - \ControlFlowTok{if}\NormalTok{ current\_vertex }\KeywordTok{not} \KeywordTok{in}\NormalTok{ visited:} - \CommentTok{\# Process the current vertex} - \BuiltInTok{print}\NormalTok{(current\_vertex, end}\OperatorTok{=}\StringTok{\textquotesingle{} \textquotesingle{}}\NormalTok{)} -\NormalTok{ visited.add(current\_vertex)} - - \CommentTok{\# Enqueue unvisited neighbors} - \ControlFlowTok{for}\NormalTok{ neighbor }\KeywordTok{in}\NormalTok{ graph.graph.get(current\_vertex, []):} - \ControlFlowTok{if}\NormalTok{ neighbor }\KeywordTok{not} \KeywordTok{in}\NormalTok{ visited:} -\NormalTok{ queue.append(neighbor)} -\end{Highlighting} -\end{Shaded} -\end{frame} - -\begin{frame}[fragile]{Implementing Graphs and BFS} -\protect\hypertarget{implementing-graphs-and-bfs-2}{} -\begin{Shaded} -\begin{Highlighting}[] -\CommentTok{\# Represent graph from above} -\NormalTok{ex\_graph }\OperatorTok{=}\NormalTok{ Graph()} -\NormalTok{ex\_graph.add\_edge(}\DecValTok{1}\NormalTok{, [}\DecValTok{3}\NormalTok{, }\DecValTok{6}\NormalTok{])} -\NormalTok{ex\_graph.add\_edge(}\DecValTok{3}\NormalTok{, [}\DecValTok{10}\NormalTok{, }\DecValTok{6}\NormalTok{])} -\NormalTok{ex\_graph.add\_edge(}\DecValTok{6}\NormalTok{, [}\DecValTok{3}\NormalTok{, }\DecValTok{7}\NormalTok{])} -\NormalTok{ex\_graph.add\_edge(}\DecValTok{10}\NormalTok{, [}\DecValTok{3}\NormalTok{, }\DecValTok{7}\NormalTok{])} -\NormalTok{ex\_graph.add\_edge(}\DecValTok{7}\NormalTok{, [}\DecValTok{10}\NormalTok{, }\DecValTok{6}\NormalTok{])} - -\CommentTok{\# Perform BFS starting from vertex 1} -\NormalTok{bfs(ex\_graph, }\DecValTok{1}\NormalTok{)} -\end{Highlighting} -\end{Shaded} - -\begin{verbatim} -1 3 6 10 7 -\end{verbatim} -\end{frame} - -\begin{frame}[fragile]{Recursive Graph Search: Preorder Traversal} -\protect\hypertarget{recursive-graph-search-preorder-traversal}{} -\begin{itemize} -\tightlist -\item - Using the same \texttt{Graph} class, let's implement preorder - traversal -\end{itemize} - -\begin{Shaded} -\begin{Highlighting}[] -\KeywordTok{def}\NormalTok{ recursive\_preorder\_traversal(graph, start, visited}\OperatorTok{=}\VariableTok{None}\NormalTok{):} - \ControlFlowTok{if}\NormalTok{ visited }\KeywordTok{is} \VariableTok{None}\NormalTok{:} -\NormalTok{ visited }\OperatorTok{=} \BuiltInTok{set}\NormalTok{()} - - \CommentTok{\# Process the current vertex} - \BuiltInTok{print}\NormalTok{(start, end}\OperatorTok{=}\StringTok{\textquotesingle{} \textquotesingle{}}\NormalTok{)} -\NormalTok{ visited.add(start)} - - \CommentTok{\# Recursive traversal of neighbors} - \ControlFlowTok{for}\NormalTok{ neighbor }\KeywordTok{in}\NormalTok{ graph.graph.get(start, []):} - \ControlFlowTok{if}\NormalTok{ neighbor }\KeywordTok{not} \KeywordTok{in}\NormalTok{ visited:} -\NormalTok{ recursive\_preorder\_traversal(graph, neighbor, visited)} -\end{Highlighting} -\end{Shaded} -\end{frame} - -\begin{frame}[fragile]{Recursive Graph Search: Preorder Traversal} -\protect\hypertarget{recursive-graph-search-preorder-traversal-1}{} -\begin{Shaded} -\begin{Highlighting}[] -\NormalTok{bfs(ex\_graph, }\DecValTok{1}\NormalTok{)} -\end{Highlighting} -\end{Shaded} - -\begin{verbatim} -1 3 6 10 7 -\end{verbatim} -\end{frame} - -\hypertarget{nearest-neighour-problem}{% -\section{Nearest Neighour Problem}\label{nearest-neighour-problem}} - -\begin{frame}{Nearest Neighbour Problem} -\protect\hypertarget{nearest-neighbour-problem}{} -\begin{itemize} -\item - As you may have encountered already, machine learning and statistical - methods often depend on finding the nearest neighbor to a data point - - \begin{itemize} - \tightlist - \item - K-nearest neighbors regression, propensity score matching - \end{itemize} -\item - In a \(k\) dimensional space, if we conduct a linear search for - points, the running time will be \(O(kn)\) for \(n\) data points. -\item - Can we do better? -\end{itemize} -\end{frame} - -\begin{frame}{k-d Trees} -\protect\hypertarget{k-d-trees}{} -\begin{itemize} -\item - k-d trees is short for k dimensional tree (notation is a bit - unfortunate, different K than KNN) - - \begin{itemize} - \tightlist - \item - It is useful for multidimensional searches - \end{itemize} -\item - Let's discuss the properties of k-d trees and why they work -\item - Binary tree where each node represents an axis-aligned hyperrectangle - in the k-dimensional space - - \begin{itemize} - \tightlist - \item - hyperrectangle: rectangle in higher dimensions - \end{itemize} -\item - Nodes in the left subtree have coordinates less than the splitting - dimension of the current node, while nodes in the right subtree have - coordinates greater than the splitting dimension. -\item - At each level of the tree, a specific dimension is chosen to split the - data. The choice of dimension alternates as we traverse down the tree. -\item - Each leaf represents a single point in the k-dimensional space -\end{itemize} -\end{frame} - -\begin{frame}{k-d Trees Animation} -\protect\hypertarget{k-d-trees-animation}{} -\url{https://commons.wikimedia.org/wiki/File:KDTree-animation.gif} -\end{frame} - -\begin{frame}{Applications and Issues} -\protect\hypertarget{applications-and-issues}{} -\begin{itemize} -\item - Notice k-d trees can also find values within a certain range very - quickly, not just a specific point -\item - GIS (geographic information systems) queries -\item - KNN algorithm -\item - Computer graphics, such as ray tracing to facilitate efficient space - partitioning -\item - Issues occur in high-dimensional spaces and trees can become - imbalanced -\end{itemize} -\end{frame} - -\hypertarget{recommended-problems-and-references}{% -\section{Recommended Problems and -References}\label{recommended-problems-and-references}} - -\begin{frame}{Recommended Readings} -\protect\hypertarget{recommended-readings}{} -\begin{itemize} -\item - Bhargava: Chapter 6 -\item - Bhargava: Chapter 11, pages 203 to 206 about Trees -\end{itemize} -\end{frame} - -\begin{frame}{Recommended Problems} -\protect\hypertarget{recommended-problems}{} -\begin{itemize} -\item - Cormen: Chapter 10 exercises - - \begin{itemize} - \tightlist - \item - 10.3-1, 10.3-2, 10.3-3 - \end{itemize} -\item - Bhargava: Chapter 6 exercises - - \begin{itemize} - \tightlist - \item - 6.1 to 6.5 - \end{itemize} -\end{itemize} -\end{frame} - -\begin{frame}[fragile]{Recommended Problems} -\protect\hypertarget{recommended-problems-1}{} -\begin{itemize} -\item - Implement preorder, postorder, and level order traversal. Determine - the time and space complexity in each case -\item - Implement a function that find an element in a BST and deletes it. The - descendants of the deleted node are given to the deleted node's - parent. -\item - Using the \texttt{graph} class from the slides, implement BST search - such that it stops and tell you the distance the node is from the - starting point. - - \begin{itemize} - \item - For instance, if we searched for 7 in the graph given in the slides, - it would return \texttt{"Found!\ Distance\ 2"}. - \item - If we searched for 100 in the graph, it would return - \texttt{"Not\ found!"} - \end{itemize} -\item - Implement postorder graph traversal using the \texttt{graph} class - from the slides. -\item - Implement a function using recursion to find the sum heterogeneous - nested lists such as {[}{[}1, {[}2{]}{]}, {[}{[}{[}3{]}{]}{]}, 4, - {[}{[}5, 6{]}, {[}{[}{[}7{]}{]}{]}{]}{]}. -\end{itemize} -\end{frame} - -\begin{frame}{References} -\protect\hypertarget{references}{} -\begin{itemize} -\item - Bhargava, A. Y. (2016). \emph{Grokking algorithms: An illustrated - guide for programmers and other curious people.} Manning. Chapter 6, - 10, 11. -\item - Cormen, T. H. (Ed.). (2009). \emph{Introduction to algorithms} (3rd - ed). MIT Press. Chapter 12 and 20. -\item - Horton, D., \& Liu, D. (2023, November 19). \emph{CSC148 Lecture - Notes}. - https://www.teach.cs.toronto.edu/\textasciitilde csc148h/winter/notes/ -\end{itemize} -\end{frame} - - - -\end{document} diff --git a/slides-resources/4_recursive-ds/4_recursive-ds.toc b/slides-resources/4_recursive-ds/4_recursive-ds.toc deleted file mode 100644 index 111d446..0000000 --- a/slides-resources/4_recursive-ds/4_recursive-ds.toc +++ /dev/null @@ -1,5 +0,0 @@ -\beamer@sectionintoc {1}{Trees}{3}{0}{1} -\beamer@sectionintoc {2}{Binary Search Trees}{15}{0}{2} -\beamer@sectionintoc {3}{Graphs}{20}{0}{3} -\beamer@sectionintoc {4}{Nearest Neighour Problem}{37}{0}{4} -\beamer@sectionintoc {5}{Recommended Problems and References}{42}{0}{5} diff --git a/slides-resources/4_recursive-ds/4_recursive-ds.vrb b/slides-resources/4_recursive-ds/4_recursive-ds.vrb deleted file mode 100644 index 31bb525..0000000 --- a/slides-resources/4_recursive-ds/4_recursive-ds.vrb +++ /dev/null @@ -1,31 +0,0 @@ -\frametitle{Recommended Problems} -\protect\hypertarget{recommended-problems-1}{} -\begin{itemize} -\item - Implement preorder, postorder, and level order traversal. Determine - the time and space complexity in each case -\item - Implement a function that find an element in a BST and deletes it. The - descendants of the deleted node are given to the deleted node's - parent. -\item - Using the \texttt{graph} class from the slides, implement BST search - such that it stops and tell you the distance the node is from the - starting point. - - \begin{itemize} - \item - For instance, if we searched for 7 in the graph given in the slides, - it would return \texttt{"Found!\ Distance\ 2"}. - \item - If we searched for 100 in the graph, it would return - \texttt{"Not\ found!"} - \end{itemize} -\item - Implement postorder graph traversal using the \texttt{graph} class - from the slides. -\item - Implement a function using recursion to find the sum heterogeneous - nested lists such as {[}{[}1, {[}2{]}{]}, {[}{[}{[}3{]}{]}{]}, 4, - {[}{[}5, 6{]}, {[}{[}{[}7{]}{]}{]}{]}{]}. -\end{itemize} diff --git a/slides-resources/5_optimization/.Rhistory b/slides-resources/5_optimization/.Rhistory deleted file mode 100644 index dbc71ec..0000000 --- a/slides-resources/5_optimization/.Rhistory +++ /dev/null @@ -1,3 +0,0 @@ -python -reticulate::repl_python() -- Suppose we want to hold as many classes in a classroom as possible. diff --git a/slides-resources/5_optimization/5_optimization.aux b/slides-resources/5_optimization/5_optimization.aux deleted file mode 100644 index 7738a7d..0000000 --- a/slides-resources/5_optimization/5_optimization.aux +++ /dev/null @@ -1,91 +0,0 @@ -\relax -\providecommand\hyper@newdestlabel[2]{} -\providecommand\HyField@AuxAddToFields[1]{} -\providecommand\HyField@AuxAddToCoFields[2]{} -\providecommand\BKM@entry[2]{} -\@writefile{nav}{\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {1}{1}}} -\@writefile{nav}{\headcommand {\slideentry {0}{0}{2}{2/2}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {2}{2}}} -\BKM@entry{id=1,open,dest={4F75746C696E65302E31},srcline={234}}{5C3337365C3337375C303030535C303030655C303030745C303030745C303030695C3030306E5C303030675C3030305C3034305C303030755C303030705C3030305C3034305C303030615C3030306E5C3030305C3034305C3030304F5C303030705C303030745C303030695C3030306D5C303030695C3030307A5C303030615C303030745C303030695C3030306F5C3030306E5C3030305C3034305C303030505C303030725C3030306F5C303030625C3030306C5C303030655C3030306D} -\@writefile{toc}{\beamer@sectionintoc {1}{Setting up an Optimization Problem}{3}{0}{1}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {1}{2}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {1}{2}}} -\@writefile{nav}{\headcommand {\sectionentry {1}{Setting up an Optimization Problem}{3}{Setting up an Optimization Problem}{0}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{1}{3/3}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {3}{3}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{2}{4/4}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {4}{4}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{3}{5/5}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {5}{5}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{4}{6/6}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {6}{6}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{5}{7/7}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {7}{7}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{6}{8/8}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {8}{8}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{7}{9/9}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {9}{9}}} -\BKM@entry{id=2,open,dest={4F75746C696E65302E32},srcline={398}}{5C3337365C3337375C3030304C5C303030695C3030306E5C303030655C303030615C303030725C3030305C3034305C303030505C303030725C3030306F5C303030675C303030725C303030615C3030306D5C3030306D5C303030695C3030306E5C30303067} -\@writefile{toc}{\beamer@sectionintoc {2}{Linear Programming}{10}{0}{2}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {3}{9}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {3}{9}}} -\@writefile{nav}{\headcommand {\sectionentry {2}{Linear Programming}{10}{Linear Programming}{0}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{1}{10/10}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {10}{10}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{2}{11/11}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {11}{11}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{3}{12/12}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {12}{12}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{4}{13/13}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {13}{13}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{5}{14/14}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {14}{14}}} -\BKM@entry{id=3,open,dest={4F75746C696E65302E33},srcline={489}}{5C3337365C3337375C303030445C303030795C3030306E5C303030615C3030306D5C303030695C303030635C3030305C3034305C303030505C303030725C3030306F5C303030675C303030725C303030615C3030306D5C3030306D5C303030695C3030306E5C30303067} -\@writefile{toc}{\beamer@sectionintoc {3}{Dynamic Programming}{15}{0}{3}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {10}{14}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {10}{14}}} -\@writefile{nav}{\headcommand {\sectionentry {3}{Dynamic Programming}{15}{Dynamic Programming}{0}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{1}{15/15}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {15}{15}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{2}{16/16}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {16}{16}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{3}{17/17}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {17}{17}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{4}{18/18}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {18}{18}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{5}{19/19}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {19}{19}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{6}{20/20}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {20}{20}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{7}{21/21}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {21}{21}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{8}{22/22}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {22}{22}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{9}{23/23}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {23}{23}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{10}{24/24}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {24}{24}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{11}{25/25}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {25}{25}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{12}{26/26}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {26}{26}}} -\BKM@entry{id=4,open,dest={4F75746C696E65302E34},srcline={727}}{5C3337365C3337375C303030525C303030655C303030635C3030306F5C3030306D5C3030306D5C303030655C3030306E5C303030645C303030655C303030645C3030305C3034305C303030505C303030725C3030306F5C303030625C3030306C5C303030655C3030306D5C303030735C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030525C303030655C303030665C303030655C303030725C303030655C3030306E5C303030635C303030655C30303073} -\@writefile{toc}{\beamer@sectionintoc {4}{Recommended Problems and References}{27}{0}{4}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {15}{26}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {15}{26}}} -\@writefile{nav}{\headcommand {\sectionentry {4}{Recommended Problems and References}{27}{Recommended Problems and References}{0}}} -\@writefile{nav}{\headcommand {\slideentry {4}{0}{1}{27/27}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {27}{27}}} -\@writefile{nav}{\headcommand {\slideentry {4}{0}{2}{28/28}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {28}{28}}} -\@writefile{nav}{\headcommand {\slideentry {4}{0}{3}{29/29}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {29}{29}}} -\@writefile{nav}{\headcommand {\slideentry {4}{0}{4}{30/30}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {30}{30}}} -\@writefile{nav}{\headcommand {\beamer@partpages {1}{30}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {27}{30}}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {27}{30}}} -\@writefile{nav}{\headcommand {\beamer@documentpages {30}}} -\@writefile{nav}{\headcommand {\gdef \inserttotalframenumber {30}}} -\gdef \@abspage@last{30} diff --git a/slides-resources/5_optimization/5_optimization.log b/slides-resources/5_optimization/5_optimization.log deleted file mode 100644 index 4e2ccf3..0000000 --- a/slides-resources/5_optimization/5_optimization.log +++ /dev/null @@ -1,1811 +0,0 @@ -This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) (preloaded format=pdflatex 2023.12.23) 10 JAN 2024 15:59 -entering extended mode - restricted \write18 enabled. - %&-line parsing enabled. -**5_optimization -(./5_optimization.tex -LaTeX2e <2023-11-01> -L3 programming layer <2023-12-11> -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamer.cls -Document Class: beamer 2023/05/15 v3.70 A class for typesetting presentations -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasemodes.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/etoolbox/etoolbox.sty -Package: etoolbox 2020/10/05 v2.5k e-TeX tools for LaTeX (JAW) -\etb@tempcnta=\count187 -) -\beamer@tempbox=\box51 -\beamer@tempcount=\count188 -\c@beamerpauses=\count189 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasedecode.sty -\beamer@slideinframe=\count190 -\beamer@minimum=\count191 -\beamer@decode@box=\box52 -) -\beamer@commentbox=\box53 -\beamer@modecount=\count192 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/iftex/iftex.sty -Package: iftex 2022/02/03 v1.0f TeX engine tests -) -\headdp=\dimen140 -\footheight=\dimen141 -\sidebarheight=\dimen142 -\beamer@tempdim=\dimen143 -\beamer@finalheight=\dimen144 -\beamer@animht=\dimen145 -\beamer@animdp=\dimen146 -\beamer@animwd=\dimen147 -\beamer@leftmargin=\dimen148 -\beamer@rightmargin=\dimen149 -\beamer@leftsidebar=\dimen150 -\beamer@rightsidebar=\dimen151 -\beamer@boxsize=\dimen152 -\beamer@vboxoffset=\dimen153 -\beamer@descdefault=\dimen154 -\beamer@descriptionwidth=\dimen155 -\beamer@lastskip=\skip48 -\beamer@areabox=\box54 -\beamer@animcurrent=\box55 -\beamer@animshowbox=\box56 -\beamer@sectionbox=\box57 -\beamer@logobox=\box58 -\beamer@linebox=\box59 -\beamer@sectioncount=\count193 -\beamer@subsubsectionmax=\count194 -\beamer@subsectionmax=\count195 -\beamer@sectionmax=\count196 -\beamer@totalheads=\count197 -\beamer@headcounter=\count198 -\beamer@partstartpage=\count199 -\beamer@sectionstartpage=\count266 -\beamer@subsectionstartpage=\count267 -\beamer@animationtempa=\count268 -\beamer@animationtempb=\count269 -\beamer@xpos=\count270 -\beamer@ypos=\count271 -\beamer@ypos@offset=\count272 -\beamer@showpartnumber=\count273 -\beamer@currentsubsection=\count274 -\beamer@coveringdepth=\count275 -\beamer@sectionadjust=\count276 -\beamer@toclastsection=\count277 -\beamer@tocsectionnumber=\count278 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseoptions.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics/keyval.sty -Package: keyval 2022/05/29 v1.15 key=value parser (DPC) -\KV@toks@=\toks17 -)) -\beamer@paperwidth=\skip49 -\beamer@paperheight=\skip50 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/geometry/geometry.sty -Package: geometry 2020/01/02 v5.9 Page Geometry - -(/usr/local/texlive/2023/texmf-dist/tex/generic/iftex/ifvtex.sty -Package: ifvtex 2019/10/25 v1.7 ifvtex legacy package. Use iftex instead. -) -\Gm@cnth=\count279 -\Gm@cntv=\count280 -\c@Gm@tempcnt=\count281 -\Gm@bindingoffset=\dimen156 -\Gm@wd@mp=\dimen157 -\Gm@odd@mp=\dimen158 -\Gm@even@mp=\dimen159 -\Gm@layoutwidth=\dimen160 -\Gm@layoutheight=\dimen161 -\Gm@layouthoffset=\dimen162 -\Gm@layoutvoffset=\dimen163 -\Gm@dimlist=\toks18 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/math/pgfmath.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/utilities/pgfrcs.sty -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgfutil-common.te -x -\pgfutil@everybye=\toks19 -\pgfutil@tempdima=\dimen164 -\pgfutil@tempdimb=\dimen165 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgfutil-latex.def -\pgfutil@abb=\box60 -) (/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgfrcs.code.tex -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/pgf.revision.tex) -Package: pgfrcs 2023-01-15 v3.1.10 (3.1.10) -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/utilities/pgfkeys.sty -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex -\pgfkeys@pathtoks=\toks20 -\pgfkeys@temptoks=\toks21 - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgfkeyslibraryfil -tered.code.tex -\pgfkeys@tmptoks=\toks22 -))) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathutil.code.tex -\pgf@x=\dimen166 -\pgf@xa=\dimen167 -\pgf@xb=\dimen168 -\pgf@xc=\dimen169 -\pgf@y=\dimen170 -\pgf@ya=\dimen171 -\pgf@yb=\dimen172 -\pgf@yc=\dimen173 -\c@pgf@counta=\count282 -\c@pgf@countb=\count283 -\c@pgf@countc=\count284 -\c@pgf@countd=\count285 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathparser.code.tex -\pgfmath@dimen=\dimen174 -\pgfmath@count=\count286 -\pgfmath@box=\box61 -\pgfmath@toks=\toks23 -\pgfmath@stack@operand=\toks24 -\pgfmath@stack@operation=\toks25 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.code. -tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.basic -.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.trigo -nometric.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.rando -m.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.compa -rison.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.base. -code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.round -.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.misc. -code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.integ -erarithmetics.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathcalc.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfloat.code.tex -\c@pgfmathroundto@lastzeros=\count287 -))) (/usr/local/texlive/2023/texmf-dist/tex/latex/base/size11.clo -File: size11.clo 2023/05/17 v1.4n Standard LaTeX file (size option) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/basiclayer/pgfcore.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics/graphicx.sty -Package: graphicx 2021/09/16 v1.2d Enhanced LaTeX Graphics (DPC,SPQR) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics/graphics.sty -Package: graphics 2022/03/10 v1.4e Standard LaTeX Graphics (DPC,SPQR) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics/trig.sty -Package: trig 2021/08/11 v1.11 sin cos tan (DPC) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics-cfg/graphics.cfg -File: graphics.cfg 2016/06/04 v1.11 sample graphics configuration -) -Package graphics Info: Driver file: pdftex.def on input line 107. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics-def/pdftex.def -File: pdftex.def 2022/09/22 v1.2b Graphics/color driver for pdftex -)) -\Gin@req@height=\dimen175 -\Gin@req@width=\dimen176 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/systemlayer/pgfsys.sty -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgfsys.code.tex -Package: pgfsys 2023-01-15 v3.1.10 (3.1.10) -\pgf@x=\dimen177 -\pgf@y=\dimen178 -\pgf@xa=\dimen179 -\pgf@ya=\dimen180 -\pgf@xb=\dimen181 -\pgf@yb=\dimen182 -\pgf@xc=\dimen183 -\pgf@yc=\dimen184 -\pgf@xd=\dimen185 -\pgf@yd=\dimen186 -\w@pgf@writea=\write3 -\r@pgf@reada=\read2 -\c@pgf@counta=\count288 -\c@pgf@countb=\count289 -\c@pgf@countc=\count290 -\c@pgf@countd=\count291 -\t@pgf@toka=\toks26 -\t@pgf@tokb=\toks27 -\t@pgf@tokc=\toks28 -\pgf@sys@id@count=\count292 -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgf.cfg -File: pgf.cfg 2023-01-15 v3.1.10 (3.1.10) -) -Driver file for pgf: pgfsys-pdftex.def - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-pdftex.d -ef -File: pgfsys-pdftex.def 2023-01-15 v3.1.10 (3.1.10) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-common-p -df.def -File: pgfsys-common-pdf.def 2023-01-15 v3.1.10 (3.1.10) -))) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgfsyssoftpath. -code.tex -File: pgfsyssoftpath.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfsyssoftpath@smallbuffer@items=\count293 -\pgfsyssoftpath@bigbuffer@items=\count294 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgfsysprotocol. -code.tex -File: pgfsysprotocol.code.tex 2023-01-15 v3.1.10 (3.1.10) -)) (/usr/local/texlive/2023/texmf-dist/tex/latex/xcolor/xcolor.sty -Package: xcolor 2023/11/15 v3.01 LaTeX color extensions (UK) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics-cfg/color.cfg -File: color.cfg 2016/01/02 v1.6 sample color configuration -) -Package xcolor Info: Driver file: pdftex.def on input line 274. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics/mathcolor.ltx) -Package xcolor Info: Model `cmy' substituted by `cmy0' on input line 1350. -Package xcolor Info: Model `hsb' substituted by `rgb' on input line 1354. -Package xcolor Info: Model `RGB' extended on input line 1366. -Package xcolor Info: Model `HTML' substituted by `rgb' on input line 1368. -Package xcolor Info: Model `Hsb' substituted by `hsb' on input line 1369. -Package xcolor Info: Model `tHsb' substituted by `hsb' on input line 1370. -Package xcolor Info: Model `HSB' substituted by `hsb' on input line 1371. -Package xcolor Info: Model `Gray' substituted by `gray' on input line 1372. -Package xcolor Info: Model `wave' substituted by `hsb' on input line 1373. -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcore.code.tex -Package: pgfcore 2023-01-15 v3.1.10 (3.1.10) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfint.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepoints.co -de.tex -File: pgfcorepoints.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@picminx=\dimen187 -\pgf@picmaxx=\dimen188 -\pgf@picminy=\dimen189 -\pgf@picmaxy=\dimen190 -\pgf@pathminx=\dimen191 -\pgf@pathmaxx=\dimen192 -\pgf@pathminy=\dimen193 -\pgf@pathmaxy=\dimen194 -\pgf@xx=\dimen195 -\pgf@xy=\dimen196 -\pgf@yx=\dimen197 -\pgf@yy=\dimen198 -\pgf@zx=\dimen199 -\pgf@zy=\dimen256 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathconst -ruct.code.tex -File: pgfcorepathconstruct.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@path@lastx=\dimen257 -\pgf@path@lasty=\dimen258 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathusage -.code.tex -File: pgfcorepathusage.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@shorten@end@additional=\dimen259 -\pgf@shorten@start@additional=\dimen260 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorescopes.co -de.tex -File: pgfcorescopes.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfpic=\box62 -\pgf@hbox=\box63 -\pgf@layerbox@main=\box64 -\pgf@picture@serial@count=\count295 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoregraphicst -ate.code.tex -File: pgfcoregraphicstate.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgflinewidth=\dimen261 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransform -ations.code.tex -File: pgfcoretransformations.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@pt@x=\dimen262 -\pgf@pt@y=\dimen263 -\pgf@pt@temp=\dimen264 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorequick.cod -e.tex -File: pgfcorequick.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreobjects.c -ode.tex -File: pgfcoreobjects.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathproce -ssing.code.tex -File: pgfcorepathprocessing.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorearrows.co -de.tex -File: pgfcorearrows.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfarrowsep=\dimen265 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreshade.cod -e.tex -File: pgfcoreshade.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@max=\dimen266 -\pgf@sys@shading@range@num=\count296 -\pgf@shadingcount=\count297 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreimage.cod -e.tex -File: pgfcoreimage.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreexternal. -code.tex -File: pgfcoreexternal.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfexternal@startupbox=\box65 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorelayers.co -de.tex -File: pgfcorelayers.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretranspare -ncy.code.tex -File: pgfcoretransparency.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepatterns. -code.tex -File: pgfcorepatterns.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorerdf.code. -tex -File: pgfcorerdf.code.tex 2023-01-15 v3.1.10 (3.1.10) -))) (/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/utilities/xxcolor.sty -Package: xxcolor 2003/10/24 ver 0.1 -\XC@nummixins=\count298 -\XC@countmixins=\count299 -) (/usr/local/texlive/2023/texmf-dist/tex/latex/base/atbegshi-ltx.sty -Package: atbegshi-ltx 2021/01/10 v1.0c Emulation of the original atbegshi -package with kernel methods -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/hyperref/hyperref.sty -Package: hyperref 2023-11-26 v7.01g Hypertext links for LaTeX - -(/usr/local/texlive/2023/texmf-dist/tex/generic/infwarerr/infwarerr.sty -Package: infwarerr 2019/12/03 v1.5 Providing info/warning/error messages (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/kvsetkeys/kvsetkeys.sty -Package: kvsetkeys 2022-10-05 v1.19 Key value parser (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/kvdefinekeys/kvdefinekeys.sty -Package: kvdefinekeys 2019-12-19 v1.6 Define keys (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pdfescape/pdfescape.sty -Package: pdfescape 2019/12/09 v1.15 Implements pdfTeX's escape features (HO) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/ltxcmds/ltxcmds.sty -Package: ltxcmds 2023-12-04 v1.26 LaTeX kernel commands for general use (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pdftexcmds/pdftexcmds.sty -Package: pdftexcmds 2020-06-27 v0.33 Utility functions of pdfTeX for LuaTeX (HO -) -Package pdftexcmds Info: \pdf@primitive is available. -Package pdftexcmds Info: \pdf@ifprimitive is available. -Package pdftexcmds Info: \pdfdraftmode found. -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/hycolor/hycolor.sty -Package: hycolor 2020-01-27 v1.10 Color options for hyperref/bookmark (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/letltxmacro/letltxmacro.sty -Package: letltxmacro 2019/12/03 v1.6 Let assignment for LaTeX macros (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/auxhook/auxhook.sty -Package: auxhook 2019-12-17 v1.6 Hooks for auxiliary files (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/hyperref/nameref.sty -Package: nameref 2023-11-26 v2.56 Cross-referencing by name of section - -(/usr/local/texlive/2023/texmf-dist/tex/latex/refcount/refcount.sty -Package: refcount 2019/12/15 v3.6 Data extraction from label references (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/gettitlestring/gettitlestring.s -ty -Package: gettitlestring 2019/12/15 v1.6 Cleanup title references (HO) - (/usr/local/texlive/2023/texmf-dist/tex/latex/kvoptions/kvoptions.sty -Package: kvoptions 2022-06-15 v3.15 Key value format for package options (HO) -)) -\c@section@level=\count300 -) -\@linkdim=\dimen267 -\Hy@linkcounter=\count301 -\Hy@pagecounter=\count302 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/hyperref/pd1enc.def -File: pd1enc.def 2023-11-26 v7.01g Hyperref: PDFDocEncoding definition (HO) -Now handling font encoding PD1 ... -... no UTF-8 mapping file for font encoding PD1 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/intcalc/intcalc.sty -Package: intcalc 2019/12/15 v1.3 Expandable calculations with integers (HO) -) -\Hy@SavedSpaceFactor=\count303 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/hyperref/puenc.def -File: puenc.def 2023-11-26 v7.01g Hyperref: PDF Unicode definition (HO) -Now handling font encoding PU ... -... no UTF-8 mapping file for font encoding PU -) -Package hyperref Info: Option `unicode' set `true' on input line 4064. -Package hyperref Info: Option `bookmarks' set `true' on input line 4064. -Package hyperref Info: Option `bookmarksopen' set `true' on input line 4064. -Package hyperref Info: Option `implicit' set `false' on input line 4064. -Package hyperref Info: Hyper figures OFF on input line 4181. -Package hyperref Info: Link nesting OFF on input line 4186. -Package hyperref Info: Hyper index ON on input line 4189. -Package hyperref Info: Plain pages OFF on input line 4196. -Package hyperref Info: Backreferencing OFF on input line 4201. -Package hyperref Info: Implicit mode OFF; no redefinition of LaTeX internals. -Package hyperref Info: Bookmarks ON on input line 4448. -\c@Hy@tempcnt=\count304 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/url/url.sty -\Urlmuskip=\muskip16 -Package: url 2013/09/16 ver 3.4 Verb mode for urls, etc. -) -LaTeX Info: Redefining \url on input line 4786. -\XeTeXLinkMargin=\dimen268 - -(/usr/local/texlive/2023/texmf-dist/tex/generic/bitset/bitset.sty -Package: bitset 2019/12/09 v1.3 Handle bit-vector datatype (HO) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/bigintcalc/bigintcalc.sty -Package: bigintcalc 2019/12/15 v1.5 Expandable calculations on big integers (HO -) -)) -\Fld@menulength=\count305 -\Field@Width=\dimen269 -\Fld@charsize=\dimen270 -Package hyperref Info: Hyper figures OFF on input line 6065. -Package hyperref Info: Link nesting OFF on input line 6070. -Package hyperref Info: Hyper index ON on input line 6073. -Package hyperref Info: backreferencing OFF on input line 6080. -Package hyperref Info: Link coloring OFF on input line 6085. -Package hyperref Info: Link coloring with OCG OFF on input line 6090. -Package hyperref Info: PDF/A mode OFF on input line 6095. -\Hy@abspage=\count306 - - -Package hyperref Message: Stopped early. - -) -Package hyperref Info: Driver (autodetected): hpdftex. - (/usr/local/texlive/2023/texmf-dist/tex/latex/hyperref/hpdftex.def -File: hpdftex.def 2023-11-26 v7.01g Hyperref driver for pdfTeX - -(/usr/local/texlive/2023/texmf-dist/tex/latex/base/atveryend-ltx.sty -Package: atveryend-ltx 2020/08/19 v1.0a Emulation of the original atveryend pac -kage -with kernel methods -) -\Fld@listcount=\count307 -\c@bookmark@seq@number=\count308 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/rerunfilecheck/rerunfilecheck.sty -Package: rerunfilecheck 2022-07-10 v1.10 Rerun checks for auxiliary files (HO) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/uniquecounter/uniquecounter.sty -Package: uniquecounter 2019/12/15 v1.4 Provide unlimited unique counter (HO) -) -Package uniquecounter Info: New unique counter `rerunfilecheck' on input line 2 -85. -)) (/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaserequires.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasecompatibility.st -y) (/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasefont.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsfonts/amssymb.sty -Package: amssymb 2013/01/14 v3.01 AMS font symbols - -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsfonts/amsfonts.sty -Package: amsfonts 2013/01/14 v3.01 Basic AMSFonts support -\@emptytoks=\toks29 -\symAMSa=\mathgroup4 -\symAMSb=\mathgroup5 -LaTeX Font Info: Redeclaring math symbol \hbar on input line 98. -LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold' -(Font) U/euf/m/n --> U/euf/b/n on input line 106. -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/sansmathaccent/sansmathaccent.sty -Package: sansmathaccent 2020/01/31 -(/usr/local/texlive/2023/texmf-dist/tex/latex/koma-script/scrlfile.sty -Package: scrlfile 2023/07/07 v3.41 KOMA-Script package (file load hooks) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/koma-script/scrlfile-hook.sty -Package: scrlfile-hook 2023/07/07 v3.41 KOMA-Script package (using LaTeX hooks) - - -(/usr/local/texlive/2023/texmf-dist/tex/latex/koma-script/scrlogo.sty -Package: scrlogo 2023/07/07 v3.41 KOMA-Script package (logo) -))))) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetranslator.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator.sty -Package: translator 2021-05-31 v1.12d Easy translation of strings in LaTeX -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasemisc.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetwoscreens.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseoverlay.sty -\beamer@argscount=\count309 -\beamer@lastskipcover=\skip51 -\beamer@trivlistdepth=\count310 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetitle.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasesection.sty -\c@lecture=\count311 -\c@part=\count312 -\c@section=\count313 -\c@subsection=\count314 -\c@subsubsection=\count315 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseframe.sty -\beamer@framebox=\box66 -\beamer@frametitlebox=\box67 -\beamer@zoombox=\box68 -\beamer@zoomcount=\count316 -\beamer@zoomframecount=\count317 -\beamer@frametextheight=\dimen271 -\c@subsectionslide=\count318 -\beamer@frametopskip=\skip52 -\beamer@framebottomskip=\skip53 -\beamer@frametopskipautobreak=\skip54 -\beamer@framebottomskipautobreak=\skip55 -\beamer@envbody=\toks30 -\framewidth=\dimen272 -\c@framenumber=\count319 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseverbatim.sty -\beamer@verbatimfileout=\write4 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseframesize.sty -\beamer@splitbox=\box69 -\beamer@autobreakcount=\count320 -\beamer@autobreaklastheight=\dimen273 -\beamer@frametitletoks=\toks31 -\beamer@framesubtitletoks=\toks32 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseframecomponents. -sty -\beamer@footins=\box70 -) (/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasecolor.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasenotes.sty -\beamer@frameboxcopy=\box71 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetoc.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetemplates.sty -\beamer@sbttoks=\toks33 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseauxtemplates.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseboxes.sty -\bmb@box=\box72 -\bmb@colorbox=\box73 -\bmb@boxwidth=\dimen274 -\bmb@boxheight=\dimen275 -\bmb@prevheight=\dimen276 -\bmb@temp=\dimen277 -\bmb@dima=\dimen278 -\bmb@dimb=\dimen279 -\bmb@prevheight=\dimen280 -) -\beamer@blockheadheight=\dimen281 -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaselocalstructure.s -ty (/usr/local/texlive/2023/texmf-dist/tex/latex/tools/enumerate.sty -Package: enumerate 2023/07/04 v3.00 enumerate extensions (DPC) -\@enLab=\toks34 -) -\beamer@bibiconwidth=\skip56 -\c@figure=\count321 -\c@table=\count322 -\abovecaptionskip=\skip57 -\belowcaptionskip=\skip58 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasenavigation.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasenavigationsymbol -s.tex) -\beamer@section@min@dim=\dimen282 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetheorems.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsmath/amsmath.sty -Package: amsmath 2023/05/13 v2.17o AMS math features -\@mathmargin=\skip59 - -For additional information on amsmath, use the `?' option. -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsmath/amstext.sty -Package: amstext 2021/08/26 v2.01 AMS text - -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsmath/amsgen.sty -File: amsgen.sty 1999/11/30 v2.0 generic functions -\@emptytoks=\toks35 -\ex@=\dimen283 -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsmath/amsbsy.sty -Package: amsbsy 1999/11/29 v1.2d Bold Symbols -\pmbraise@=\dimen284 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsmath/amsopn.sty -Package: amsopn 2022/04/08 v2.04 operator names -) -\inf@bad=\count323 -LaTeX Info: Redefining \frac on input line 234. -\uproot@=\count324 -\leftroot@=\count325 -LaTeX Info: Redefining \overline on input line 399. -LaTeX Info: Redefining \colon on input line 410. -\classnum@=\count326 -\DOTSCASE@=\count327 -LaTeX Info: Redefining \ldots on input line 496. -LaTeX Info: Redefining \dots on input line 499. -LaTeX Info: Redefining \cdots on input line 620. -\Mathstrutbox@=\box74 -\strutbox@=\box75 -LaTeX Info: Redefining \big on input line 722. -LaTeX Info: Redefining \Big on input line 723. -LaTeX Info: Redefining \bigg on input line 724. -LaTeX Info: Redefining \Bigg on input line 725. -\big@size=\dimen285 -LaTeX Font Info: Redeclaring font encoding OML on input line 743. -LaTeX Font Info: Redeclaring font encoding OMS on input line 744. -\macc@depth=\count328 -LaTeX Info: Redefining \bmod on input line 905. -LaTeX Info: Redefining \pmod on input line 910. -LaTeX Info: Redefining \smash on input line 940. -LaTeX Info: Redefining \relbar on input line 970. -LaTeX Info: Redefining \Relbar on input line 971. -\c@MaxMatrixCols=\count329 -\dotsspace@=\muskip17 -\c@parentequation=\count330 -\dspbrk@lvl=\count331 -\tag@help=\toks36 -\row@=\count332 -\column@=\count333 -\maxfields@=\count334 -\andhelp@=\toks37 -\eqnshift@=\dimen286 -\alignsep@=\dimen287 -\tagshift@=\dimen288 -\tagwidth@=\dimen289 -\totwidth@=\dimen290 -\lineht@=\dimen291 -\@envbody=\toks38 -\multlinegap=\skip60 -\multlinetaggap=\skip61 -\mathdisplay@stack=\toks39 -LaTeX Info: Redefining \[ on input line 2953. -LaTeX Info: Redefining \] on input line 2954. -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/amscls/amsthm.sty -Package: amsthm 2020/05/29 v2.20.6 -\thm@style=\toks40 -\thm@bodyfont=\toks41 -\thm@headfont=\toks42 -\thm@notefont=\toks43 -\thm@headpunct=\toks44 -\thm@preskip=\skip62 -\thm@postskip=\skip63 -\thm@headsep=\skip64 -\dth@everypar=\toks45 -) -\c@theorem=\count335 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasethemes.sty)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerthemedefault.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerfontthemedefault.sty -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamercolorthemedefault.st -y) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerinnerthemedefault.st -y -\beamer@dima=\dimen292 -\beamer@dimb=\dimen293 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerouterthemedefault.st -y))) (/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/utilities/pgfpages.sty -Package: pgfpages 2011/01/05 ver 0.02 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/tools/calc.sty -Package: calc 2023/07/08 v4.3 Infix arithmetic (KKT,FJ) -\calc@Acount=\count336 -\calc@Bcount=\count337 -\calc@Adimen=\dimen294 -\calc@Bdimen=\dimen295 -\calc@Askip=\skip65 -\calc@Bskip=\skip66 -LaTeX Info: Redefining \setlength on input line 80. -LaTeX Info: Redefining \addtolength on input line 81. -\calc@Ccount=\count338 -\calc@Cskip=\skip67 -) -\pgf@logicalpages=\count339 -\pgf@firstshipout=\count340 -\pgf@lastshipout=\count341 -\pgf@currentshipout=\count342 -\pgf@cpn=\count343 -\pgf@shipoutnextto=\count344 -\pgfphysicalheight=\dimen296 -\pgfphysicalwidth=\dimen297 -\pgfpages@shipoutbox=\box76 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/base/fontenc.sty -Package: fontenc 2021/04/29 v2.0v Standard LaTeX package -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/base/inputenc.sty -Package: inputenc 2021/02/14 v1.3d Input encoding file -\inpenc@prehook=\toks46 -\inpenc@posthook=\toks47 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/base/textcomp.sty -Package: textcomp 2020/02/02 v2.0n Standard LaTeX package -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/lmodern.sty -Package: lmodern 2015/05/01 v1.6.1 Latin Modern Fonts -LaTeX Font Info: Overwriting symbol font `operators' in version `normal' -(Font) OT1/cmr/m/n --> OT1/lmr/m/n on input line 22. -LaTeX Font Info: Overwriting symbol font `letters' in version `normal' -(Font) OML/cmm/m/it --> OML/lmm/m/it on input line 23. -LaTeX Font Info: Overwriting symbol font `symbols' in version `normal' -(Font) OMS/cmsy/m/n --> OMS/lmsy/m/n on input line 24. -LaTeX Font Info: Overwriting symbol font `largesymbols' in version `normal' -(Font) OMX/cmex/m/n --> OMX/lmex/m/n on input line 25. -LaTeX Font Info: Overwriting symbol font `operators' in version `bold' -(Font) OT1/cmr/bx/n --> OT1/lmr/bx/n on input line 26. -LaTeX Font Info: Overwriting symbol font `letters' in version `bold' -(Font) OML/cmm/b/it --> OML/lmm/b/it on input line 27. -LaTeX Font Info: Overwriting symbol font `symbols' in version `bold' -(Font) OMS/cmsy/b/n --> OMS/lmsy/b/n on input line 28. -LaTeX Font Info: Overwriting symbol font `largesymbols' in version `bold' -(Font) OMX/cmex/m/n --> OMX/lmex/m/n on input line 29. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `normal' -(Font) OT1/cmr/bx/n --> OT1/lmr/bx/n on input line 31. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `normal' -(Font) OT1/cmss/m/n --> OT1/lmss/m/n on input line 32. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `normal' -(Font) OT1/cmr/m/it --> OT1/lmr/m/it on input line 33. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `normal' -(Font) OT1/cmtt/m/n --> OT1/lmtt/m/n on input line 34. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `bold' -(Font) OT1/cmr/bx/n --> OT1/lmr/bx/n on input line 35. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `bold' -(Font) OT1/cmss/bx/n --> OT1/lmss/bx/n on input line 36. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `bold' -(Font) OT1/cmr/bx/it --> OT1/lmr/bx/it on input line 37. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `bold' -(Font) OT1/cmtt/m/n --> OT1/lmtt/m/n on input line 38. -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerthemeBoadilla.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamercolorthemerose.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerinnerthemerounded.st -y) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamercolorthemedolphin.st -y) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerouterthemeinfolines. -sty)) (/usr/local/texlive/2023/texmf-dist/tex/latex/upquote/upquote.sty -Package: upquote 2012/04/19 v1.3 upright-quote and grave-accent glyphs in verba -tim -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/microtype/microtype.sty -Package: microtype 2023/03/13 v3.1a Micro-typographical refinements (RS) -\MT@toks=\toks48 -\MT@tempbox=\box77 -\MT@count=\count345 -LaTeX Info: Redefining \noprotrusionifhmode on input line 1059. -LaTeX Info: Redefining \leftprotrusion on input line 1060. -\MT@prot@toks=\toks49 -LaTeX Info: Redefining \rightprotrusion on input line 1078. -LaTeX Info: Redefining \textls on input line 1368. -\MT@outer@kern=\dimen298 -LaTeX Info: Redefining \textmicrotypecontext on input line 1988. -\MT@listname@count=\count346 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/microtype/microtype-pdftex.def -File: microtype-pdftex.def 2023/03/13 v3.1a Definitions specific to pdftex (RS) - -LaTeX Info: Redefining \lsstyle on input line 902. -LaTeX Info: Redefining \lslig on input line 902. -\MT@outer@space=\skip68 -) -Package microtype Info: Loading configuration file microtype.cfg. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/microtype/microtype.cfg -File: microtype.cfg 2023/03/13 v3.1a microtype main configuration file (RS) -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/parskip/parskip.sty -Package: parskip 2021-03-14 v2.0h non-zero parskip adjustments -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/fancyvrb/fancyvrb.sty -Package: fancyvrb 2023/11/06 4.5b verbatim text (tvz,hv) -\FV@CodeLineNo=\count347 -\FV@InFile=\read3 -\FV@TabBox=\box78 -\c@FancyVerbLine=\count348 -\FV@StepNumber=\count349 -\FV@OutFile=\write5 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/framed/framed.sty -Package: framed 2011/10/22 v 0.96: framed or shaded text with page breaks -\OuterFrameSep=\skip69 -\fb@frw=\dimen299 -\fb@frh=\dimen300 -\FrameRule=\dimen301 -\FrameSep=\dimen302 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tools/longtable.sty -Package: longtable 2023-11-01 v4.19 Multi-page Table package (DPC) -\LTleft=\skip70 -\LTright=\skip71 -\LTpre=\skip72 -\LTpost=\skip73 -\LTchunksize=\count350 -\LTcapwidth=\dimen303 -\LT@head=\box79 -\LT@firsthead=\box80 -\LT@foot=\box81 -\LT@lastfoot=\box82 -\LT@gbox=\box83 -\LT@cols=\count351 -\LT@rows=\count352 -\c@LT@tables=\count353 -\c@LT@chunks=\count354 -\LT@p@ftn=\toks50 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/booktabs/booktabs.sty -Package: booktabs 2020/01/12 v1.61803398 Publication quality tables -\heavyrulewidth=\dimen304 -\lightrulewidth=\dimen305 -\cmidrulewidth=\dimen306 -\belowrulesep=\dimen307 -\belowbottomsep=\dimen308 -\aboverulesep=\dimen309 -\abovetopsep=\dimen310 -\cmidrulesep=\dimen311 -\cmidrulekern=\dimen312 -\defaultaddspace=\dimen313 -\@cmidla=\count355 -\@cmidlb=\count356 -\@aboverulesep=\dimen314 -\@belowrulesep=\dimen315 -\@thisruleclass=\count357 -\@lastruleclass=\count358 -\@thisrulewidth=\dimen316 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tools/array.sty -Package: array 2023/10/16 v2.5g Tabular extension package (FMi) -\col@sep=\dimen317 -\ar@mcellbox=\box84 -\extrarowheight=\dimen318 -\NC@list=\toks51 -\extratabsurround=\skip74 -\backup@length=\skip75 -\ar@cellbox=\box85 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/caption/caption.sty -Package: caption 2023/08/05 v3.6o Customizing captions (AR) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/caption/caption3.sty -Package: caption3 2023/07/31 v2.4d caption3 kernel (AR) -\caption@tempdima=\dimen319 -\captionmargin=\dimen320 -\caption@leftmargin=\dimen321 -\caption@rightmargin=\dimen322 -\caption@width=\dimen323 -\caption@indent=\dimen324 -\caption@parindent=\dimen325 -\caption@hangindent=\dimen326 -Package caption Info: beamer document class detected. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/caption/caption-beamer.sto -File: caption-beamer.sto 2022/01/06 v2.0c Adaption of the caption package to th -e beamer document classes (AR) -)) -\c@caption@flags=\count359 -\c@continuedfloat=\count360 -Package caption Info: hyperref package is loaded. -Package caption Info: Hyperref support is turned off -(caption) because hyperref has stopped early. -Package caption Info: longtable package is loaded. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/caption/ltcaption.sty -Package: ltcaption 2021/01/08 v1.4c longtable captions (AR) -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/float/float.sty -Package: float 2001/11/08 v1.3d Float enhancements (AL) -\c@float@type=\count361 -\float@exts=\toks52 -\float@box=\box86 -\@float@everytoks=\toks53 -\@floatcapt=\box87 -) -\@float@every@codelisting=\toks54 -\c@codelisting=\count362 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/caption/subcaption.sty -Package: subcaption 2023/07/28 v1.6b Sub-captions (AR) -Package caption Info: New subtype `subfigure' on input line 238. -\c@subfigure=\count363 -Package caption Info: New subtype `subtable' on input line 238. -\c@subtable=\count364 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tcolorbox/tcolorbox.sty -Package: tcolorbox 2023/09/26 version 6.1.0 text color boxes - -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/basiclayer/pgf.sty -Package: pgf 2023-01-15 v3.1.10 (3.1.10) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/modules/pgfmoduleshapes.cod -e.tex -File: pgfmoduleshapes.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfnodeparttextbox=\box88 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/modules/pgfmoduleplot.code. -tex -File: pgfmoduleplot.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version --0-65.sty -Package: pgfcomp-version-0-65 2023-01-15 v3.1.10 (3.1.10) -\pgf@nodesepstart=\dimen327 -\pgf@nodesepend=\dimen328 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version --1-18.sty -Package: pgfcomp-version-1-18 2023-01-15 v3.1.10 (3.1.10) -)) (/usr/local/texlive/2023/texmf-dist/tex/latex/tools/verbatim.sty -Package: verbatim 2023-11-06 v1.5v LaTeX2e package for verbatim enhancements -\every@verbatim=\toks55 -\verbatim@line=\toks56 -\verbatim@in@stream=\read4 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/environ/environ.sty -Package: environ 2014/05/04 v0.3 A new way to define environments - -(/usr/local/texlive/2023/texmf-dist/tex/latex/trimspaces/trimspaces.sty -Package: trimspaces 2009/09/17 v1.1 Trim spaces around a token list -)) -\tcb@titlebox=\box89 -\tcb@upperbox=\box90 -\tcb@lowerbox=\box91 -\tcb@phantombox=\box92 -\c@tcbbreakpart=\count365 -\c@tcblayer=\count366 -\c@tcolorbox@number=\count367 -\tcb@temp=\box93 -\tcb@temp=\box94 -\tcb@temp=\box95 -\tcb@temp=\box96 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/tcolorbox/tcbskins.code.tex -Library (tcolorbox): 'tcbskins.code.tex' version '6.1.0' -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/frontendlayer/tikz.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/utilities/pgffor.sty -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgffor.code.tex -Package: pgffor 2023-01-15 v3.1.10 (3.1.10) -\pgffor@iter=\dimen329 -\pgffor@skip=\dimen330 -\pgffor@stack=\toks57 -\pgffor@toks=\toks58 -)) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/frontendlayer/tikz/tikz.cod -e.tex -Package: tikz 2023-01-15 v3.1.10 (3.1.10) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/libraries/pgflibraryplothan -dlers.code.tex -File: pgflibraryplothandlers.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@plot@mark@count=\count368 -\pgfplotmarksize=\dimen331 -) -\tikz@lastx=\dimen332 -\tikz@lasty=\dimen333 -\tikz@lastxsaved=\dimen334 -\tikz@lastysaved=\dimen335 -\tikz@lastmovetox=\dimen336 -\tikz@lastmovetoy=\dimen337 -\tikzleveldistance=\dimen338 -\tikzsiblingdistance=\dimen339 -\tikz@figbox=\box97 -\tikz@figbox@bg=\box98 -\tikz@tempbox=\box99 -\tikz@tempbox@bg=\box100 -\tikztreelevel=\count369 -\tikznumberofchildren=\count370 -\tikznumberofcurrentchild=\count371 -\tikz@fig@count=\count372 - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/modules/pgfmodulematrix.cod -e.tex -File: pgfmodulematrix.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfmatrixcurrentrow=\count373 -\pgfmatrixcurrentcolumn=\count374 -\pgf@matrix@numberofcolumns=\count375 -) -\tikz@expandcount=\count376 - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/frontendlayer/tikz/librarie -s/tikzlibrarytopaths.code.tex -File: tikzlibrarytopaths.code.tex 2023-01-15 v3.1.10 (3.1.10) -))) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tikzfill/tikzfill.image.sty -Package: tikzfill.image 2023/08/08 v1.0.1 Image filling library for TikZ - -(/usr/local/texlive/2023/texmf-dist/tex/latex/tikzfill/tikzfill-common.sty -Package: tikzfill-common 2023/08/08 v1.0.1 Auxiliary code for tikzfill -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tikzfill/tikzlibraryfill.image.co -de.tex -File: tikzlibraryfill.image.code.tex 2023/08/08 v1.0.1 Image filling library -\l__tikzfill_img_box=\box101 -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tcolorbox/tcbskinsjigsaw.code.tex -Library (tcolorbox): 'tcbskinsjigsaw.code.tex' version '6.1.0' -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tcolorbox/tcbbreakable.code.tex -Library (tcolorbox): 'tcbbreakable.code.tex' version '6.1.0' -(/usr/local/texlive/2023/texmf-dist/tex/latex/pdfcol/pdfcol.sty -Package: pdfcol 2022-09-21 v1.7 Handle new color stacks for pdfTeX (HO) -) -Package pdfcol Info: New color stack `tcb@breakable' = 1 on input line 23. -\tcb@testbox=\box102 -\tcb@totalupperbox=\box103 -\tcb@totallowerbox=\box104 -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/bookmark/bookmark.sty -Package: bookmark 2023-12-10 v1.31 PDF bookmarks (HO) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/bookmark/bkm-pdftex.def -File: bkm-pdftex.def 2023-12-10 v1.31 bookmark driver for pdfTeX and luaTeX (HO -) -\BKM@id=\count377 -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/xurl/xurl.sty -Package: xurl 2022/01/09 v 0.10 modify URL breaks -) -LaTeX Font Info: Trying to load font information for T1+lmss on input line 2 -18. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/t1lmss.fd -File: t1lmss.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def -File: l3backend-pdftex.def 2023-11-09 L3 backend support: PDF output (pdfTeX) -\l__color_backend_stack_int=\count378 -\l__pdf_internal_box=\box105 -) -No file 5_optimization.aux. -\openout1 = `5_optimization.aux'. - -LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for TS1/cmr/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for PU/pdf/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -*geometry* driver: auto-detecting -*geometry* detected driver: pdftex -*geometry* verbose mode - [ preamble ] result: -* driver: pdftex -* paper: custom -* layout: -* layoutoffset:(h,v)=(0.0pt,0.0pt) -* modes: includehead includefoot -* h-part:(L,W,R)=(10.88002pt, 342.43532pt, 10.88002pt) -* v-part:(T,H,B)=(0.0pt, 273.14662pt, 0.0pt) -* \paperwidth=364.19536pt -* \paperheight=273.14662pt -* \textwidth=342.43532pt -* \textheight=244.6939pt -* \oddsidemargin=-61.38997pt -* \evensidemargin=-61.38997pt -* \topmargin=-72.26999pt -* \headheight=14.22636pt -* \headsep=0.0pt -* \topskip=11.0pt -* \footskip=14.22636pt -* \marginparwidth=4.0pt -* \marginparsep=10.0pt -* \columnsep=10.0pt -* \skip\footins=10.0pt plus 4.0pt minus 2.0pt -* \hoffset=0.0pt -* \voffset=0.0pt -* \mag=1000 -* \@twocolumnfalse -* \@twosidefalse -* \@mparswitchfalse -* \@reversemarginfalse -* (1in=72.27pt=25.4mm, 1cm=28.453pt) - -(/usr/local/texlive/2023/texmf-dist/tex/context/base/mkii/supp-pdf.mkii -[Loading MPS to PDF converter (version 2006.09.02).] -\scratchcounter=\count379 -\scratchdimen=\dimen340 -\scratchbox=\box106 -\nofMPsegments=\count380 -\nofMParguments=\count381 -\everyMPshowfont=\toks59 -\MPscratchCnt=\count382 -\MPscratchDim=\dimen341 -\MPnumerator=\count383 -\makeMPintoPDFobject=\count384 -\everyMPtoPDFconversion=\toks60 -) (/usr/local/texlive/2023/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty -Package: epstopdf-base 2020-01-24 v2.11 Base part for package epstopdf -Package epstopdf-base Info: Redefining graphics rule for `.eps' on input line 4 -85. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg -File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Liv -e -)) -Package hyperref Info: Link coloring OFF on input line 218. -LaTeX Font Info: Overwriting symbol font `operators' in version `normal' -(Font) OT1/lmr/m/n --> OT1/cmss/m/n on input line 218. -LaTeX Font Info: Overwriting symbol font `operators' in version `bold' -(Font) OT1/lmr/bx/n --> OT1/cmss/b/n on input line 218. -LaTeX Font Info: Overwriting symbol font `operators' in version `normal' -(Font) OT1/cmss/m/n --> OT1/lmss/m/n on input line 218. -LaTeX Font Info: Overwriting symbol font `operators' in version `bold' -(Font) OT1/cmss/b/n --> OT1/lmss/b/n on input line 218. -\symnumbers=\mathgroup6 -\sympureletters=\mathgroup7 -LaTeX Font Info: Overwriting math alphabet `\mathrm' in version `normal' -(Font) OT1/lmss/m/n --> T1/lmr/m/n on input line 218. -LaTeX Font Info: Redeclaring math alphabet \mathbf on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `normal' -(Font) OT1/lmr/bx/n --> T1/lmss/b/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `bold' -(Font) OT1/lmr/bx/n --> T1/lmss/b/n on input line 218. -LaTeX Font Info: Redeclaring math alphabet \mathsf on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `normal' -(Font) OT1/lmss/m/n --> T1/lmss/m/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `bold' -(Font) OT1/lmss/bx/n --> T1/lmss/m/n on input line 218. -LaTeX Font Info: Redeclaring math alphabet \mathit on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `normal' -(Font) OT1/lmr/m/it --> T1/lmss/m/it on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `bold' -(Font) OT1/lmr/bx/it --> T1/lmss/m/it on input line 218. -LaTeX Font Info: Redeclaring math alphabet \mathtt on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `normal' -(Font) OT1/lmtt/m/n --> T1/lmtt/m/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `bold' -(Font) OT1/lmtt/m/n --> T1/lmtt/m/n on input line 218. -LaTeX Font Info: Overwriting symbol font `numbers' in version `bold' -(Font) T1/lmss/m/n --> T1/lmss/b/n on input line 218. -LaTeX Font Info: Overwriting symbol font `pureletters' in version `bold' -(Font) T1/lmss/m/it --> T1/lmss/b/it on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathrm' in version `bold' -(Font) OT1/lmss/b/n --> T1/lmr/b/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `bold' -(Font) T1/lmss/b/n --> T1/lmss/b/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `bold' -(Font) T1/lmss/m/n --> T1/lmss/b/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `bold' -(Font) T1/lmss/m/it --> T1/lmss/b/it on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `bold' -(Font) T1/lmtt/m/n --> T1/lmtt/b/n on input line 218. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-basic-dicti -onary-English.dict -Dictionary: translator-basic-dictionary, Language: English -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-bibliograph -y-dictionary-English.dict -Dictionary: translator-bibliography-dictionary, Language: English -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-environment --dictionary-English.dict -Dictionary: translator-environment-dictionary, Language: English -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-months-dict -ionary-English.dict -Dictionary: translator-months-dictionary, Language: English -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-numbers-dic -tionary-English.dict -Dictionary: translator-numbers-dictionary, Language: English -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-theorem-dic -tionary-English.dict -Dictionary: translator-theorem-dictionary, Language: English -) -LaTeX Info: Redefining \microtypecontext on input line 218. -Package microtype Info: Applying patch `item' on input line 218. -Package microtype Info: Applying patch `toc' on input line 218. -Package microtype Info: Applying patch `eqnum' on input line 218. -Package microtype Info: Applying patch `footnote' on input line 218. -Package microtype Info: Applying patch `verbatim' on input line 218. -Package microtype Info: Generating PDF output. -Package microtype Info: Character protrusion enabled (level 2). -Package microtype Info: Using protrusion set `basicmath'. -Package microtype Info: Automatic font expansion enabled (level 2), -(microtype) stretch: 20, shrink: 20, step: 1, non-selected. -Package microtype Info: Using default expansion set `alltext-nott'. -LaTeX Info: Redefining \showhyphens on input line 218. -Package microtype Info: No adjustment of tracking. -Package microtype Info: No adjustment of interword spacing. -Package microtype Info: No adjustment of character kerning. -Package microtype Info: Loading generic protrusion settings for font family -(microtype) `lmss' (encoding: T1). -(microtype) For optimal results, create family-specific settings. -(microtype) See the microtype manual for details. -Package caption Info: Begin \AtBeginDocument code. -Package caption Info: float package is loaded. -Package caption Info: End \AtBeginDocument code. - -No file 5_optimization.nav. - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 218--218 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 219--219 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[1 - -{/usr/local/texlive/2023/texmf-var/fonts/map/pdftex/updmap/pdftex.map}{/usr/loc -al/texlive/2023/texmf-dist/fonts/enc/dvips/lm/lm-ec.enc}] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 230--230 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[2 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 234--234 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[3 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 257--257 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <10.95> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 257. -LaTeX Font Info: Trying to load font information for OT1+lmss on input line -257. -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/ot1lmss.fd -File: ot1lmss.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -LaTeX Font Info: Trying to load font information for OML+lmm on input line 2 -57. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/omllmm.fd -File: omllmm.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -LaTeX Font Info: Trying to load font information for OMS+lmsy on input line -257. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/omslmsy.fd -File: omslmsy.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -LaTeX Font Info: Trying to load font information for OMX+lmex on input line -257. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/omxlmex.fd -File: omxlmex.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <6> on input line 257. -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <5> on input line 257. -LaTeX Font Info: Trying to load font information for U+msa on input line 257 -. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsfonts/umsa.fd -File: umsa.fd 2013/01/14 v3.01 AMS symbols A -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/microtype/mt-msa.cfg -File: mt-msa.cfg 2006/02/04 v1.1 microtype config. file: AMS symbols (a) (RS) -) -LaTeX Font Info: Trying to load font information for U+msb on input line 257 -. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsfonts/umsb.fd -File: umsb.fd 2013/01/14 v3.01 AMS symbols B -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/microtype/mt-msb.cfg -File: mt-msb.cfg 2005/06/01 v1.0 microtype config. file: AMS symbols (b) (RS) -) -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <6> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 257. -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <5> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 257. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[4 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 283--283 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[5 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 303--303 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[6 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 345--345 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[7 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 362--362 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[8 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 395--395 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -Package microtype Info: Loading generic protrusion settings for font family -(microtype) `lmss' (encoding: OT1). -(microtype) For optimal results, create family-specific settings. -(microtype) See the microtype manual for details. -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <10> on input line 395. -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <7> on input line 395. -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <10> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 395. -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <7> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 395. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[9 - -{/usr/local/texlive/2023/texmf-dist/fonts/enc/dvips/lm/lm-mathsy.enc}{/usr/loca -l/texlive/2023/texmf-dist/fonts/enc/dvips/lm/lm-rm.enc}{/usr/local/texlive/2023 -/texmf-dist/fonts/enc/dvips/lm/lm-mathit.enc}] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 398--398 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[10 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 419--419 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[11 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 421--421 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `5_optimization.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 441--441 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./5_optimization.vrb -LaTeX Font Info: Trying to load font information for T1+lmtt on input line 1 -7. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/t1lmtt.fd -File: t1lmtt.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -)) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[12 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 443--443 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `5_optimization.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 465--465 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./5_optimization.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[13 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 467--467 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `5_optimization.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 486--486 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./5_optimization.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[14 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 489--489 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[15 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 514--514 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[16 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 537--537 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -File: images/dynamic.png Graphic file (type png) - -Package pdftex.def Info: images/dynamic.png used on input line 537. -(pdftex.def) Requested size: 171.21838pt x 89.18137pt. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[17 - - <./images/dynamic.png>] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 557--557 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -File: images/dynamic.png Graphic file (type png) - -Package pdftex.def Info: images/dynamic.png used on input line 557. -(pdftex.def) Requested size: 171.21838pt x 89.18137pt. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[18 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 581--581 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -File: images/dynamic.png Graphic file (type png) - -Package pdftex.def Info: images/dynamic.png used on input line 581. -(pdftex.def) Requested size: 171.21838pt x 89.18137pt. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[19 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 600--600 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -File: images/dynamic.png Graphic file (type png) - -Package pdftex.def Info: images/dynamic.png used on input line 600. -(pdftex.def) Requested size: 171.21838pt x 89.18137pt. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[20 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 623--623 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <10.95> on input line 623. -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <8> on input line 623. -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <8> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 623. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[21 - -{/usr/local/texlive/2023/texmf-dist/fonts/enc/dvips/lm/lm-mathex.enc}] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 625--625 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `5_optimization.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 633--633 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./5_optimization.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[22 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 635--635 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `5_optimization.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 658--658 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./5_optimization.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[23 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 660--660 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `5_optimization.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 678--678 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./5_optimization.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[24 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 680--680 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `5_optimization.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 700--700 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./5_optimization.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[25 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 702--702 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `5_optimization.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 723--723 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./5_optimization.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[26 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 727--727 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[27 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 750--750 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[28 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 752--752 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `5_optimization.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 766--766 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./5_optimization.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[29 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 778--778 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[30 - -] -\tf@nav=\write6 -\openout6 = `5_optimization.nav'. - -\tf@toc=\write7 -\openout7 = `5_optimization.toc'. - -\tf@snm=\write8 -\openout8 = `5_optimization.snm'. - - (./5_optimization.aux) - *********** -LaTeX2e <2023-11-01> -L3 programming layer <2023-12-11> - *********** - ) -Here is how much of TeX's memory you used: - 33517 strings out of 474181 - 686394 string characters out of 5745946 - 1936457 words of memory out of 5000000 - 54964 multiletter control sequences out of 15000+600000 - 630301 words of font info for 138 fonts, out of 8000000 for 9000 - 1141 hyphenation exceptions out of 8191 - 128i,15n,123p,1007b,653s stack positions out of 10000i,1000n,20000p,200000b,200000s - -Output written on 5_optimization.pdf (30 pages, 223179 bytes). -PDF statistics: - 393 PDF objects out of 1000 (max. 8388607) - 279 compressed objects within 3 object streams - 91 named destinations out of 1000 (max. 500000) - 43136 words of extra memory for PDF output out of 51595 (max. 10000000) - diff --git a/slides-resources/5_optimization/5_optimization.nav b/slides-resources/5_optimization/5_optimization.nav deleted file mode 100644 index 2fa5dbd..0000000 --- a/slides-resources/5_optimization/5_optimization.nav +++ /dev/null @@ -1,77 +0,0 @@ -\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}} -\headcommand {\beamer@framepages {1}{1}} -\headcommand {\slideentry {0}{0}{2}{2/2}{}{0}} -\headcommand {\beamer@framepages {2}{2}} -\headcommand {\beamer@sectionpages {1}{2}} -\headcommand {\beamer@subsectionpages {1}{2}} -\headcommand {\sectionentry {1}{Setting up an Optimization Problem}{3}{Setting up an Optimization Problem}{0}} -\headcommand {\slideentry {1}{0}{1}{3/3}{}{0}} -\headcommand {\beamer@framepages {3}{3}} -\headcommand {\slideentry {1}{0}{2}{4/4}{}{0}} -\headcommand {\beamer@framepages {4}{4}} -\headcommand {\slideentry {1}{0}{3}{5/5}{}{0}} -\headcommand {\beamer@framepages {5}{5}} -\headcommand {\slideentry {1}{0}{4}{6/6}{}{0}} -\headcommand {\beamer@framepages {6}{6}} -\headcommand {\slideentry {1}{0}{5}{7/7}{}{0}} -\headcommand {\beamer@framepages {7}{7}} -\headcommand {\slideentry {1}{0}{6}{8/8}{}{0}} -\headcommand {\beamer@framepages {8}{8}} -\headcommand {\slideentry {1}{0}{7}{9/9}{}{0}} -\headcommand {\beamer@framepages {9}{9}} -\headcommand {\beamer@sectionpages {3}{9}} -\headcommand {\beamer@subsectionpages {3}{9}} -\headcommand {\sectionentry {2}{Linear Programming}{10}{Linear Programming}{0}} -\headcommand {\slideentry {2}{0}{1}{10/10}{}{0}} -\headcommand {\beamer@framepages {10}{10}} -\headcommand {\slideentry {2}{0}{2}{11/11}{}{0}} -\headcommand {\beamer@framepages {11}{11}} -\headcommand {\slideentry {2}{0}{3}{12/12}{}{0}} -\headcommand {\beamer@framepages {12}{12}} -\headcommand {\slideentry {2}{0}{4}{13/13}{}{0}} -\headcommand {\beamer@framepages {13}{13}} -\headcommand {\slideentry {2}{0}{5}{14/14}{}{0}} -\headcommand {\beamer@framepages {14}{14}} -\headcommand {\beamer@sectionpages {10}{14}} -\headcommand {\beamer@subsectionpages {10}{14}} -\headcommand {\sectionentry {3}{Dynamic Programming}{15}{Dynamic Programming}{0}} -\headcommand {\slideentry {3}{0}{1}{15/15}{}{0}} -\headcommand {\beamer@framepages {15}{15}} -\headcommand {\slideentry {3}{0}{2}{16/16}{}{0}} -\headcommand {\beamer@framepages {16}{16}} -\headcommand {\slideentry {3}{0}{3}{17/17}{}{0}} -\headcommand {\beamer@framepages {17}{17}} -\headcommand {\slideentry {3}{0}{4}{18/18}{}{0}} -\headcommand {\beamer@framepages {18}{18}} -\headcommand {\slideentry {3}{0}{5}{19/19}{}{0}} -\headcommand {\beamer@framepages {19}{19}} -\headcommand {\slideentry {3}{0}{6}{20/20}{}{0}} -\headcommand {\beamer@framepages {20}{20}} -\headcommand {\slideentry {3}{0}{7}{21/21}{}{0}} -\headcommand {\beamer@framepages {21}{21}} -\headcommand {\slideentry {3}{0}{8}{22/22}{}{0}} -\headcommand {\beamer@framepages {22}{22}} -\headcommand {\slideentry {3}{0}{9}{23/23}{}{0}} -\headcommand {\beamer@framepages {23}{23}} -\headcommand {\slideentry {3}{0}{10}{24/24}{}{0}} -\headcommand {\beamer@framepages {24}{24}} -\headcommand {\slideentry {3}{0}{11}{25/25}{}{0}} -\headcommand {\beamer@framepages {25}{25}} -\headcommand {\slideentry {3}{0}{12}{26/26}{}{0}} -\headcommand {\beamer@framepages {26}{26}} -\headcommand {\beamer@sectionpages {15}{26}} -\headcommand {\beamer@subsectionpages {15}{26}} -\headcommand {\sectionentry {4}{Recommended Problems and References}{27}{Recommended Problems and References}{0}} -\headcommand {\slideentry {4}{0}{1}{27/27}{}{0}} -\headcommand {\beamer@framepages {27}{27}} -\headcommand {\slideentry {4}{0}{2}{28/28}{}{0}} -\headcommand {\beamer@framepages {28}{28}} -\headcommand {\slideentry {4}{0}{3}{29/29}{}{0}} -\headcommand {\beamer@framepages {29}{29}} -\headcommand {\slideentry {4}{0}{4}{30/30}{}{0}} -\headcommand {\beamer@framepages {30}{30}} -\headcommand {\beamer@partpages {1}{30}} -\headcommand {\beamer@subsectionpages {27}{30}} -\headcommand {\beamer@sectionpages {27}{30}} -\headcommand {\beamer@documentpages {30}} -\headcommand {\gdef \inserttotalframenumber {30}} diff --git a/slides-resources/5_optimization/5_optimization.pdf b/slides-resources/5_optimization/5_optimization.pdf deleted file mode 100644 index e1860ee..0000000 Binary files a/slides-resources/5_optimization/5_optimization.pdf and /dev/null differ diff --git a/slides-resources/5_optimization/5_optimization.qmd b/slides-resources/5_optimization/5_optimization.qmd deleted file mode 100644 index 6d40bcf..0000000 --- a/slides-resources/5_optimization/5_optimization.qmd +++ /dev/null @@ -1,366 +0,0 @@ ---- -title: "Optimization" -format: - beamer: - institute: Data Sciences Institute, UofT - theme: Boadilla - colortheme: rose -execute: - echo: true -editor: visual -author: Salaar Liaqat ---- - -## Outline - -- Setting up an Optimization Problem - -- Dynamic Programming - -# Setting up an Optimization Problem - -## Types of Optimization Problems - -- *Optimization* refers to maximizing or minimizing a function with respect to its inputs - -- Continuous optimization is when all the variables in the problem are continuous - -- Discrete optimization occurs when some or all of the variables in the problem are discrete - - - Continuous: how many hours should workers in a factory work to maximize profits? - - - Discrete: how do I allocate TAs to teach within a department? - -## Autocorrect Example - -- Autocorrect in an optimization algorithm. It has two parts - - - We need a list of known words and their use frequency - - - Classify errors are either: add a letter, remove a letter, substitute a letter, or switched two adjacent letters - -- We quantify the error distance as the of errors in a string. - - - "ovon" -\> "oven" is error distance 1 - - - "ovvvn" -\> "ovven" -\> "oven" is error distance 2 - -## Autocorrect Example - -1. Check whether a word is in the dictionary - -2. If the word is not in the dictionary, generate words that are error distance 1 or 2 from the given word - -3. Rank the most likely correction given the error distance and use frequency - -- "thene" could be "then" or "the," but but "the" is more common - -## Autocorrect Example - -What are the steps to model the problem? - -- We have the specification of possible inputs - - - Text, discrete - -- The *objective function* is the function you are trying to maximize more minimize - - - Function with 2 variables: error distance and frequency - -- Are we maximizing or minimizing the objective function - - - Minimize error distance and maximize frequency - -- Identify the *constraints* in the problem - - - Only looking for words in the dictionary, only looking for words with error distance 1 or 2 - -## Shortest Path in a Graph Example - -- Finding the shortest path between two nodes on a graph is a discrete optimization problem - -- The range of inputs are all possible paths from A to B - -- The objective function is the length of the path - -- We are minimizing the objective function - -- And there are no constraints - -## Brute Force - -Consider the following problems and proposed solutions - -- You want to consume all necessary nutrients and calories at the lowest cost. So, you find all valid combinations of foods and find their cost. - - - If there are 10 foods, and 15 nutritional categories, then there are $2^{10 \times 15} = 1.42 \times 10^{45}$ combinations to evaluate - - - We will fix this with *linear programming* - -- You are robbing a store but the escape vent can only carry 4 kg of goods. To steal the maximum money's worth of goods, you calculate every set of goods and find the one giving the most value - - - If there are 3 goods in the store, then there are 8 combinations. But with 4 goods, there are 16 combinations. This solution is $O(2^n)$ time. - - - We will fix this with *dynamic programming* - -# Linear Programming - -## Linear Programming - -- Linear programming (LP) takes advantage of a program being linear. (what does that mean?) - -- If we're considering a food that already fills one nutrition category, we can eliminate all other combinations that use the food - - - Sounds obvious, but brute forcing doesn't consider this! - -- By this process of elimination, we make the problem much faster to solve. - -## Implementing LP in Python - -Let's consider a very simple diet problem where the goal is to minimize the cost. There are 3 foods: apples (\$3), bananas (\$1), and oranges (\$3). We want to meet 3 constraints: of vitamin A, a number of vitamin B, and a number of calories. - -- Assume there is no upper limit on calories or vitamins - -- The PuLP library is a popular linear programming library to do this in Python - -```{python} -from pulp import LpProblem, LpMinimize, LpVariable, lpSum -``` - -## Implementing LP in Python - -```{python} -#| output: false -diet_problem = LpProblem("Diet_Problem", LpMinimize) - -# Define output variables -x1 = LpVariable("Apples", lowBound=0) -x2 = LpVariable("Bananas", lowBound=0) -x3 = LpVariable("Oranges", lowBound=0) - -# Define objective function (minimize cost) -diet_problem += 3 * x1 + x2 + 3 * x3, "Total_Cost" - -# Define nutritional constraints -diet_problem += 50 * x1 + 120 * x2 + 60 * x3 >= 2000, "Calories" -diet_problem += 2 * x1 + 3 * x2 + 5 * x3>= 40, "Vitamin A" -diet_problem += 12 * x1 + x2 + 2 * x3>= 50, "Vitamin B" - -diet_problem.solve() -``` - -## Implementing LP in Python - -```{python} -print("Optimal Diet:") -print(f"Apples: {round(x1.value(), 2)} units") -print(f"Bananas: {round(x2.value(), 2)} units") -print(f"Oranges: {round(x3.value(), 2)} units") -print(f"Total Cost: {round(diet_problem.objective.value(), 2)}") -``` - -# Dynamic Programming - -## Problem - -The escape vent can carry only 4 kg of goods. The items are: - -- Stereo: \$3000, 4 kg - -- Laptop: \$2000, 3 kg - -- Guitar: \$1500, 1 kg - -We've established the brute force is not a valid general solution (although feasible in this case) - -- The idea behind dynamic programming is that we'll solve subproblems that will lead to a solution to the big problem. We can pack items starting by considering smaller, sub backpacks - -## Guitar Row - -::: columns -::: {.column width="50%"} -- Each dynamic programming problem starts with a grid - -- Each cell contains a list of items that can fit at that point - -- For cell Guitar 1, a guitar will fit there. It will also fit in cell Guitar 2, 3, 4 - -- Sounds redundant, but let's keep going -::: - -::: {.column width="50%"} -![](images/dynamic.png) -::: -::: - -## Stereo Row - -::: columns -::: {.column width="50%"} -- In the second row, we can steal the stereo or the guitar. - -- At 1 kg, you can only steal the guitar, same as for every other cell until Stereo 4, at which point you can steal the stereo and only the stereo. -::: - -::: {.column width="50%"} -![](images/dynamic.png) -::: -::: - -## Laptop Row - -::: columns -::: {.column width="50%"} -- Now we can steal all 3 items - -- In the first two columns, we still can only steal the guitar. But in Laptop 3, we can steal the laptop - -- Laptop 4 is the interesting step. We could steal only the stereo, or the laptop and something else for 1 kg. What is that 1 kg item? - -- According to the above row, the max value for 1 kg is the guitar! -::: - -::: {.column width="50%"} -![](images/dynamic.png) -::: -::: - -## Solution - -::: columns -::: {.column width="50%"} -- If we stole the guitar and laptop, the total value is 3500, which is greater than just stealing the stereo - -- Thus, we should steal guitar and laptop -::: - -::: {.column width="50%"} -![](images/dynamic.png) -::: -::: - -## Formula for each cell - -- We skipped some very trivial steps in calculating cells aside from the last one - -- Here's the explicit formula to calculate each cell's value - -Let $i$ be the row and $j$ be the column. - -$$ -\text{cell}[i][j] = \max - \begin{cases} - \text{the previous max at cell}[i-1][j]\\ - \text{value of current item + value of remaining space} - \end{cases} -$$ - -The value of remaining space is cell\[i-1\]\[j-item's weight\] - -## Python Implementation - -```{python} -def initialize_table(rows, cols): - return [[0] * cols for _ in range(rows)] -``` - -## Python Implementation - -```{python} -def knapsack_dynamic_programming(values, weights, capacity): - n = len(values) - dp = initialize_table(n + 1, capacity + 1) - - # Fill the table using dynamic programming - for i in range(1, n + 1): - for w in range(capacity + 1): - # Include the current item if it fits in the knapsack - if weights[i - 1] <= w: - dp[i][w] = max(dp[i - 1][w], \ - values[i - 1] + dp[i - 1][w - weights[i - 1]]) - else: - dp[i][w] = dp[i - 1][w] - - selected_items = traceback(dp, values, weights, capacity) - - return dp[n][capacity], selected_items -``` - -## Python Implementation - -```{python} -def traceback(dp, values, weights, capacity): - selected_items = [] - i, w = len(dp) - 1, capacity - - while i > 0 and w > 0: - if dp[i][w] != dp[i - 1][w]: - selected_items.append(i - 1) - w -= weights[i - 1] - i -= 1 - - selected_items.reverse() - return selected_items -``` - -## Python Implementation - -```{python} -values = [3000, 2000, 1500] -weights = [4, 3, 1] -capacity = 4 - -max_value, selected_items = \ -knapsack_dynamic_programming(values, weights, capacity) - -print("Maximum value:", max_value) -print("Selected items:", selected_items) -``` - -## Live Coding - -Let a substring be *upper-lower* if for every letter of the alphabet that the string contains, it appears both in uppercase and lowercase. For example, `aaA` is upper-lower because it has both "A" and "a." `aAbb` is not upper-lower because it lacks an upper case "B." - -Given string, return the longest substring that is *upper-lower.* - -### Example - -```{python} -#| eval: false -# INPUT -string = "AqeQEfa" -# OUTPUT -"qeQE" -``` - -# Recommended Problems and References - -## Recommended Problems and Readings - -- Cormen (highly optional): - -- Chapter 14, more advanced dynamic programming - -- Chapter 29, more advanced linear programming - -- Bhargava: Chapter 9 exercises - - - 9.1, 9.2 - - - Read the knapsack problem FAQs on page 171 - - - Follow the example about longest common substring on page 178 - -## Recommended Problems - -- Write the code to brute force the diet problem. Compare the run times using the `timeit` library. - -- Modify the code from the slide such that there is an upper bound for calories and vitamins. - -- Page 17 of Bhargava covered the travelling sales person problem. Is it possible to improve the proposed solution using any method we learned today? - -## References - -- Bhargava, A. Y. (2016). *Grokking algorithms: An illustrated guide for programmers and other curious people.* Manning. Chapter 1. - -- Cormen, T. H. (Ed.). (2009). *Introduction to algorithms* (3rd ed). MIT Press. Chapter 1 and 3. diff --git a/slides-resources/5_optimization/5_optimization.snm b/slides-resources/5_optimization/5_optimization.snm deleted file mode 100644 index e69de29..0000000 diff --git a/slides-resources/5_optimization/5_optimization.tex b/slides-resources/5_optimization/5_optimization.tex deleted file mode 100644 index 61015ed..0000000 --- a/slides-resources/5_optimization/5_optimization.tex +++ /dev/null @@ -1,782 +0,0 @@ -% Options for packages loaded elsewhere -\PassOptionsToPackage{unicode}{hyperref} -\PassOptionsToPackage{hyphens}{url} -% -\documentclass[ - ignorenonframetext, -]{beamer} -\usepackage{pgfpages} -\setbeamertemplate{caption}[numbered] -\setbeamertemplate{caption label separator}{: } -\setbeamercolor{caption name}{fg=normal text.fg} -\beamertemplatenavigationsymbolsempty -% Prevent slide breaks in the middle of a paragraph -\widowpenalties 1 10000 -\raggedbottom -\setbeamertemplate{part page}{ - \centering - \begin{beamercolorbox}[sep=16pt,center]{part title} - \usebeamerfont{part title}\insertpart\par - \end{beamercolorbox} -} -\setbeamertemplate{section page}{ - \centering - \begin{beamercolorbox}[sep=12pt,center]{part title} - \usebeamerfont{section title}\insertsection\par - \end{beamercolorbox} -} -\setbeamertemplate{subsection page}{ - \centering - \begin{beamercolorbox}[sep=8pt,center]{part title} - \usebeamerfont{subsection title}\insertsubsection\par - \end{beamercolorbox} -} -\AtBeginPart{ - \frame{\partpage} -} -\AtBeginSection{ - \ifbibliography - \else - \frame{\sectionpage} - \fi -} -\AtBeginSubsection{ - \frame{\subsectionpage} -} - -\usepackage{amsmath,amssymb} -\usepackage{iftex} -\ifPDFTeX - \usepackage[T1]{fontenc} - \usepackage[utf8]{inputenc} - \usepackage{textcomp} % provide euro and other symbols -\else % if luatex or xetex - \usepackage{unicode-math} - \defaultfontfeatures{Scale=MatchLowercase} - \defaultfontfeatures[\rmfamily]{Ligatures=TeX,Scale=1} -\fi -\usepackage{lmodern} -\usetheme[]{Boadilla} -\usecolortheme{rose} -\ifPDFTeX\else - % xetex/luatex font selection -\fi -% Use upquote if available, for straight quotes in verbatim environments -\IfFileExists{upquote.sty}{\usepackage{upquote}}{} -\IfFileExists{microtype.sty}{% use microtype if available - \usepackage[]{microtype} - \UseMicrotypeSet[protrusion]{basicmath} % disable protrusion for tt fonts -}{} -\makeatletter -\@ifundefined{KOMAClassName}{% if non-KOMA class - \IfFileExists{parskip.sty}{% - \usepackage{parskip} - }{% else - \setlength{\parindent}{0pt} - \setlength{\parskip}{6pt plus 2pt minus 1pt}} -}{% if KOMA class - \KOMAoptions{parskip=half}} -\makeatother -\usepackage{xcolor} -\newif\ifbibliography -\setlength{\emergencystretch}{3em} % prevent overfull lines -\setcounter{secnumdepth}{-\maxdimen} % remove section numbering - -\usepackage{color} -\usepackage{fancyvrb} -\newcommand{\VerbBar}{|} -\newcommand{\VERB}{\Verb[commandchars=\\\{\}]} -\DefineVerbatimEnvironment{Highlighting}{Verbatim}{commandchars=\\\{\}} -% Add ',fontsize=\small' for more characters per line -\usepackage{framed} -\definecolor{shadecolor}{RGB}{241,243,245} -\newenvironment{Shaded}{\begin{snugshade}}{\end{snugshade}} -\newcommand{\AlertTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\AnnotationTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{#1}} -\newcommand{\AttributeTok}[1]{\textcolor[rgb]{0.40,0.45,0.13}{#1}} -\newcommand{\BaseNTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\BuiltInTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\CharTok}[1]{\textcolor[rgb]{0.13,0.47,0.30}{#1}} -\newcommand{\CommentTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{#1}} -\newcommand{\CommentVarTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{\textit{#1}}} -\newcommand{\ConstantTok}[1]{\textcolor[rgb]{0.56,0.35,0.01}{#1}} -\newcommand{\ControlFlowTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\DataTypeTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\DecValTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\DocumentationTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{\textit{#1}}} -\newcommand{\ErrorTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\ExtensionTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\FloatTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\FunctionTok}[1]{\textcolor[rgb]{0.28,0.35,0.67}{#1}} -\newcommand{\ImportTok}[1]{\textcolor[rgb]{0.00,0.46,0.62}{#1}} -\newcommand{\InformationTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{#1}} -\newcommand{\KeywordTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\NormalTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\OperatorTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{#1}} -\newcommand{\OtherTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\PreprocessorTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\RegionMarkerTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\SpecialCharTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{#1}} -\newcommand{\SpecialStringTok}[1]{\textcolor[rgb]{0.13,0.47,0.30}{#1}} -\newcommand{\StringTok}[1]{\textcolor[rgb]{0.13,0.47,0.30}{#1}} -\newcommand{\VariableTok}[1]{\textcolor[rgb]{0.07,0.07,0.07}{#1}} -\newcommand{\VerbatimStringTok}[1]{\textcolor[rgb]{0.13,0.47,0.30}{#1}} -\newcommand{\WarningTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{\textit{#1}}} - -\providecommand{\tightlist}{% - \setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}\usepackage{longtable,booktabs,array} -\usepackage{calc} % for calculating minipage widths -\usepackage{caption} -% Make caption package work with longtable -\makeatletter -\def\fnum@table{\tablename~\thetable} -\makeatother -\usepackage{graphicx} -\makeatletter -\def\maxwidth{\ifdim\Gin@nat@width>\linewidth\linewidth\else\Gin@nat@width\fi} -\def\maxheight{\ifdim\Gin@nat@height>\textheight\textheight\else\Gin@nat@height\fi} -\makeatother -% Scale images if necessary, so that they will not overflow the page -% margins by default, and it is still possible to overwrite the defaults -% using explicit options in \includegraphics[width, height, ...]{} -\setkeys{Gin}{width=\maxwidth,height=\maxheight,keepaspectratio} -% Set default figure placement to htbp -\makeatletter -\def\fps@figure{htbp} -\makeatother - -\makeatletter -\makeatother -\makeatletter -\makeatother -\makeatletter -\@ifpackageloaded{caption}{}{\usepackage{caption}} -\AtBeginDocument{% -\ifdefined\contentsname - \renewcommand*\contentsname{Table of contents} -\else - \newcommand\contentsname{Table of contents} -\fi -\ifdefined\listfigurename - \renewcommand*\listfigurename{List of Figures} -\else - \newcommand\listfigurename{List of Figures} -\fi -\ifdefined\listtablename - \renewcommand*\listtablename{List of Tables} -\else - \newcommand\listtablename{List of Tables} -\fi -\ifdefined\figurename - \renewcommand*\figurename{Figure} -\else - \newcommand\figurename{Figure} -\fi -\ifdefined\tablename - \renewcommand*\tablename{Table} -\else - \newcommand\tablename{Table} -\fi -} -\@ifpackageloaded{float}{}{\usepackage{float}} -\floatstyle{ruled} -\@ifundefined{c@chapter}{\newfloat{codelisting}{h}{lop}}{\newfloat{codelisting}{h}{lop}[chapter]} -\floatname{codelisting}{Listing} -\newcommand*\listoflistings{\listof{codelisting}{List of Listings}} -\makeatother -\makeatletter -\@ifpackageloaded{caption}{}{\usepackage{caption}} -\@ifpackageloaded{subcaption}{}{\usepackage{subcaption}} -\makeatother -\makeatletter -\@ifpackageloaded{tcolorbox}{}{\usepackage[skins,breakable]{tcolorbox}} -\makeatother -\makeatletter -\@ifundefined{shadecolor}{\definecolor{shadecolor}{rgb}{.97, .97, .97}} -\makeatother -\makeatletter -\makeatother -\makeatletter -\makeatother -\ifLuaTeX - \usepackage{selnolig} % disable illegal ligatures -\fi -\IfFileExists{bookmark.sty}{\usepackage{bookmark}}{\usepackage{hyperref}} -\IfFileExists{xurl.sty}{\usepackage{xurl}}{} % add URL line breaks if available -\urlstyle{same} % disable monospaced font for URLs -\hypersetup{ - pdftitle={Optimization}, - pdfauthor={Salaar Liaqat}, - hidelinks, - pdfcreator={LaTeX via pandoc}} - -\title{Optimization} -\author{Salaar Liaqat} -\date{} -\institute{Data Sciences Institute, UofT} - -\begin{document} -\frame{\titlepage} -\ifdefined\Shaded\renewenvironment{Shaded}{\begin{tcolorbox}[boxrule=0pt, interior hidden, borderline west={3pt}{0pt}{shadecolor}, enhanced, frame hidden, breakable, sharp corners]}{\end{tcolorbox}}\fi - -\begin{frame}{Outline} -\protect\hypertarget{outline}{} -\begin{itemize} -\item - Setting up an Optimization Problem -\item - Dynamic Programming -\end{itemize} -\end{frame} - -\hypertarget{setting-up-an-optimization-problem}{% -\section{Setting up an Optimization -Problem}\label{setting-up-an-optimization-problem}} - -\begin{frame}{Types of Optimization Problems} -\protect\hypertarget{types-of-optimization-problems}{} -\begin{itemize} -\item - \emph{Optimization} refers to maximizing or minimizing a function with - respect to its inputs -\item - Continuous optimization is when all the variables in the problem are - continuous -\item - Discrete optimization occurs when some or all of the variables in the - problem are discrete - - \begin{itemize} - \item - Continuous: how many hours should workers in a factory work to - maximize profits? - \item - Discrete: how do I allocate TAs to teach within a department? - \end{itemize} -\end{itemize} -\end{frame} - -\begin{frame}{Autocorrect Example} -\protect\hypertarget{autocorrect-example}{} -\begin{itemize} -\item - Autocorrect in an optimization algorithm. It has two parts - - \begin{itemize} - \item - We need a list of known words and their use frequency - \item - Classify errors are either: add a letter, remove a letter, - substitute a letter, or switched two adjacent letters - \end{itemize} -\item - We quantify the error distance as the of errors in a string. - - \begin{itemize} - \item - ``ovon'' -\textgreater{} ``oven'' is error distance 1 - \item - ``ovvvn'' -\textgreater{} ``ovven'' -\textgreater{} ``oven'' is - error distance 2 - \end{itemize} -\end{itemize} -\end{frame} - -\begin{frame}{Autocorrect Example} -\protect\hypertarget{autocorrect-example-1}{} -\begin{enumerate} -\item - Check whether a word is in the dictionary -\item - If the word is not in the dictionary, generate words that are error - distance 1 or 2 from the given word -\item - Rank the most likely correction given the error distance and use - frequency -\end{enumerate} - -\begin{itemize} -\tightlist -\item - ``thene'' could be ``then'' or ``the,'' but but ``the'' is more common -\end{itemize} -\end{frame} - -\begin{frame}{Autocorrect Example} -\protect\hypertarget{autocorrect-example-2}{} -What are the steps to model the problem? - -\begin{itemize} -\item - We have the specification of possible inputs - - \begin{itemize} - \tightlist - \item - Text, discrete - \end{itemize} -\item - The \emph{objective function} is the function you are trying to - maximize more minimize - - \begin{itemize} - \tightlist - \item - Function with 2 variables: error distance and frequency - \end{itemize} -\item - Are we maximizing or minimizing the objective function - - \begin{itemize} - \tightlist - \item - Minimize error distance and maximize frequency - \end{itemize} -\item - Identify the \emph{constraints} in the problem - - \begin{itemize} - \tightlist - \item - Only looking for words in the dictionary, only looking for words - with error distance 1 or 2 - \end{itemize} -\end{itemize} -\end{frame} - -\begin{frame}{Shortest Path in a Graph Example} -\protect\hypertarget{shortest-path-in-a-graph-example}{} -\begin{itemize} -\item - Finding the shortest path between two nodes on a graph is a discrete - optimization problem -\item - The range of inputs are all possible paths from A to B -\item - The objective function is the length of the path -\item - We are minimizing the objective function -\item - And there are no constraints -\end{itemize} -\end{frame} - -\begin{frame}{Brute Force} -\protect\hypertarget{brute-force}{} -Consider the following problems and proposed solutions - -\begin{itemize} -\item - You want to consume all necessary nutrients and calories at the lowest - cost. So, you find all valid combinations of foods and find their - cost. - - \begin{itemize} - \item - If there are 10 foods, and 15 nutritional categories, then there are - \(2^{10 \times 15} = 1.42 \times 10^{45}\) combinations to evaluate - \item - We will fix this with \emph{linear programming} - \end{itemize} -\item - You are robbing a store but the escape vent can only carry 4 kg of - goods. To steal the maximum money's worth of goods, you calculate - every set of goods and find the one giving the most value - - \begin{itemize} - \item - If there are 3 goods in the store, then there are 8 combinations. - But with 4 goods, there are 16 combinations. This solution is - \(O(2^n)\) time. - \item - We will fix this with \emph{dynamic programming} - \end{itemize} -\end{itemize} -\end{frame} - -\hypertarget{linear-programming}{% -\section{Linear Programming}\label{linear-programming}} - -\begin{frame}{Linear Programming} -\protect\hypertarget{linear-programming-1}{} -\begin{itemize} -\item - Linear programming (LP) takes advantage of a program being linear. - (what does that mean?) -\item - If we're considering a food that already fills one nutrition category, - we can eliminate all other combinations that use the food - - \begin{itemize} - \tightlist - \item - Sounds obvious, but brute forcing doesn't consider this! - \end{itemize} -\item - By this process of elimination, we make the problem much faster to - solve. -\end{itemize} -\end{frame} - -\begin{frame}[fragile]{Implementing LP in Python} -\protect\hypertarget{implementing-lp-in-python}{} -Let's consider a very simple diet problem where the goal is to minimize -the cost. There are 3 foods: apples (\$3), bananas (\$1), and oranges -(\$3). We want to meet 3 constraints: of vitamin A, a number of vitamin -B, and a number of calories. - -\begin{itemize} -\item - Assume there is no upper limit on calories or vitamins -\item - The PuLP library is a popular linear programming library to do this in - Python -\end{itemize} - -\begin{Shaded} -\begin{Highlighting}[] -\ImportTok{from}\NormalTok{ pulp }\ImportTok{import}\NormalTok{ LpProblem, LpMinimize, LpVariable, lpSum} -\end{Highlighting} -\end{Shaded} -\end{frame} - -\begin{frame}[fragile]{Implementing LP in Python} -\protect\hypertarget{implementing-lp-in-python-1}{} -\begin{Shaded} -\begin{Highlighting}[] -\NormalTok{diet\_problem }\OperatorTok{=}\NormalTok{ LpProblem(}\StringTok{"Diet\_Problem"}\NormalTok{, LpMinimize)} - -\CommentTok{\# Define output variables} -\NormalTok{x1 }\OperatorTok{=}\NormalTok{ LpVariable(}\StringTok{"Apples"}\NormalTok{, lowBound}\OperatorTok{=}\DecValTok{0}\NormalTok{)} -\NormalTok{x2 }\OperatorTok{=}\NormalTok{ LpVariable(}\StringTok{"Bananas"}\NormalTok{, lowBound}\OperatorTok{=}\DecValTok{0}\NormalTok{)} -\NormalTok{x3 }\OperatorTok{=}\NormalTok{ LpVariable(}\StringTok{"Oranges"}\NormalTok{, lowBound}\OperatorTok{=}\DecValTok{0}\NormalTok{)} - -\CommentTok{\# Define objective function (minimize cost)} -\NormalTok{diet\_problem }\OperatorTok{+=} \DecValTok{3} \OperatorTok{*}\NormalTok{ x1 }\OperatorTok{+}\NormalTok{ x2 }\OperatorTok{+} \DecValTok{3} \OperatorTok{*}\NormalTok{ x3, }\StringTok{"Total\_Cost"} - -\CommentTok{\# Define nutritional constraints} -\NormalTok{diet\_problem }\OperatorTok{+=} \DecValTok{50} \OperatorTok{*}\NormalTok{ x1 }\OperatorTok{+} \DecValTok{120} \OperatorTok{*}\NormalTok{ x2 }\OperatorTok{+} \DecValTok{60} \OperatorTok{*}\NormalTok{ x3 }\OperatorTok{\textgreater{}=} \DecValTok{2000}\NormalTok{, }\StringTok{"Calories"} -\NormalTok{diet\_problem }\OperatorTok{+=} \DecValTok{2} \OperatorTok{*}\NormalTok{ x1 }\OperatorTok{+} \DecValTok{3} \OperatorTok{*}\NormalTok{ x2 }\OperatorTok{+} \DecValTok{5} \OperatorTok{*}\NormalTok{ x3}\OperatorTok{\textgreater{}=} \DecValTok{40}\NormalTok{, }\StringTok{"Vitamin A"} -\NormalTok{diet\_problem }\OperatorTok{+=} \DecValTok{12} \OperatorTok{*}\NormalTok{ x1 }\OperatorTok{+}\NormalTok{ x2 }\OperatorTok{+} \DecValTok{2} \OperatorTok{*}\NormalTok{ x3}\OperatorTok{\textgreater{}=} \DecValTok{50}\NormalTok{, }\StringTok{"Vitamin B"} - -\NormalTok{diet\_problem.solve()} -\end{Highlighting} -\end{Shaded} -\end{frame} - -\begin{frame}[fragile]{Implementing LP in Python} -\protect\hypertarget{implementing-lp-in-python-2}{} -\begin{Shaded} -\begin{Highlighting}[] -\BuiltInTok{print}\NormalTok{(}\StringTok{"Optimal Diet:"}\NormalTok{)} -\BuiltInTok{print}\NormalTok{(}\SpecialStringTok{f"Apples: }\SpecialCharTok{\{}\BuiltInTok{round}\NormalTok{(x1.value(), }\DecValTok{2}\NormalTok{)}\SpecialCharTok{\}}\SpecialStringTok{ units"}\NormalTok{)} -\BuiltInTok{print}\NormalTok{(}\SpecialStringTok{f"Bananas: }\SpecialCharTok{\{}\BuiltInTok{round}\NormalTok{(x2.value(), }\DecValTok{2}\NormalTok{)}\SpecialCharTok{\}}\SpecialStringTok{ units"}\NormalTok{)} -\BuiltInTok{print}\NormalTok{(}\SpecialStringTok{f"Oranges: }\SpecialCharTok{\{}\BuiltInTok{round}\NormalTok{(x3.value(), }\DecValTok{2}\NormalTok{)}\SpecialCharTok{\}}\SpecialStringTok{ units"}\NormalTok{)} -\BuiltInTok{print}\NormalTok{(}\SpecialStringTok{f"Total Cost: }\SpecialCharTok{\{}\BuiltInTok{round}\NormalTok{(diet\_problem.objective.value(), }\DecValTok{2}\NormalTok{)}\SpecialCharTok{\}}\SpecialStringTok{"}\NormalTok{)} -\end{Highlighting} -\end{Shaded} - -\begin{verbatim} -Optimal Diet: -Apples: 2.88 units -Bananas: 15.47 units -Oranges: 0.0 units -Total Cost: 24.1 -\end{verbatim} -\end{frame} - -\hypertarget{dynamic-programming}{% -\section{Dynamic Programming}\label{dynamic-programming}} - -\begin{frame}{Problem} -\protect\hypertarget{problem}{} -The escape vent can carry only 4 kg of goods. The items are: - -\begin{itemize} -\item - Stereo: \$3000, 4 kg -\item - Laptop: \$2000, 3 kg -\item - Guitar: \$1500, 1 kg -\end{itemize} - -We've established the brute force is not a valid general solution -(although feasible in this case) - -\begin{itemize} -\tightlist -\item - The idea behind dynamic programming is that we'll solve subproblems - that will lead to a solution to the big problem. We can pack items - starting by considering smaller, sub backpacks -\end{itemize} -\end{frame} - -\begin{frame}{Guitar Row} -\protect\hypertarget{guitar-row}{} -\begin{columns}[T] -\begin{column}{0.5\textwidth} -\begin{itemize} -\item - Each dynamic programming problem starts with a grid -\item - Each cell contains a list of items that can fit at that point -\item - For cell Guitar 1, a guitar will fit there. It will also fit in cell - Guitar 2, 3, 4 -\item - Sounds redundant, but let's keep going -\end{itemize} -\end{column} - -\begin{column}{0.5\textwidth} -\includegraphics{images/dynamic.png} -\end{column} -\end{columns} -\end{frame} - -\begin{frame}{Stereo Row} -\protect\hypertarget{stereo-row}{} -\begin{columns}[T] -\begin{column}{0.5\textwidth} -\begin{itemize} -\item - In the second row, we can steal the stereo or the guitar. -\item - At 1 kg, you can only steal the guitar, same as for every other cell - until Stereo 4, at which point you can steal the stereo and only the - stereo. -\end{itemize} -\end{column} - -\begin{column}{0.5\textwidth} -\includegraphics{images/dynamic.png} -\end{column} -\end{columns} -\end{frame} - -\begin{frame}{Laptop Row} -\protect\hypertarget{laptop-row}{} -\begin{columns}[T] -\begin{column}{0.5\textwidth} -\begin{itemize} -\item - Now we can steal all 3 items -\item - In the first two columns, we still can only steal the guitar. But in - Laptop 3, we can steal the laptop -\item - Laptop 4 is the interesting step. We could steal only the stereo, or - the laptop and something else for 1 kg. What is that 1 kg item? -\item - According to the above row, the max value for 1 kg is the guitar! -\end{itemize} -\end{column} - -\begin{column}{0.5\textwidth} -\includegraphics{images/dynamic.png} -\end{column} -\end{columns} -\end{frame} - -\begin{frame}{Solution} -\protect\hypertarget{solution}{} -\begin{columns}[T] -\begin{column}{0.5\textwidth} -\begin{itemize} -\item - If we stole the guitar and laptop, the total value is 3500, which is - greater than just stealing the stereo -\item - Thus, we should steal guitar and laptop -\end{itemize} -\end{column} - -\begin{column}{0.5\textwidth} -\includegraphics{images/dynamic.png} -\end{column} -\end{columns} -\end{frame} - -\begin{frame}{Formula for each cell} -\protect\hypertarget{formula-for-each-cell}{} -\begin{itemize} -\item - We skipped some very trivial steps in calculating cells aside from the - last one -\item - Here's the explicit formula to calculate each cell's value -\end{itemize} - -Let \(i\) be the row and \(j\) be the column. - -\[ -\text{cell}[i][j] = \max - \begin{cases} - \text{the previous max at cell}[i-1][j]\\ - \text{value of current item + value of remaining space} - \end{cases} -\] - -The value of remaining space is cell{[}i-1{]}{[}j-item's weight{]} -\end{frame} - -\begin{frame}[fragile]{Python Implementation} -\protect\hypertarget{python-implementation}{} -\begin{Shaded} -\begin{Highlighting}[] -\KeywordTok{def}\NormalTok{ initialize\_table(rows, cols):} - \ControlFlowTok{return}\NormalTok{ [[}\DecValTok{0}\NormalTok{] }\OperatorTok{*}\NormalTok{ cols }\ControlFlowTok{for}\NormalTok{ \_ }\KeywordTok{in} \BuiltInTok{range}\NormalTok{(rows)]} -\end{Highlighting} -\end{Shaded} -\end{frame} - -\begin{frame}[fragile]{Python Implementation} -\protect\hypertarget{python-implementation-1}{} -\begin{Shaded} -\begin{Highlighting}[] -\KeywordTok{def}\NormalTok{ knapsack\_dynamic\_programming(values, weights, capacity):} -\NormalTok{ n }\OperatorTok{=} \BuiltInTok{len}\NormalTok{(values)} -\NormalTok{ dp }\OperatorTok{=}\NormalTok{ initialize\_table(n }\OperatorTok{+} \DecValTok{1}\NormalTok{, capacity }\OperatorTok{+} \DecValTok{1}\NormalTok{)} - - \CommentTok{\# Fill the table using dynamic programming} - \ControlFlowTok{for}\NormalTok{ i }\KeywordTok{in} \BuiltInTok{range}\NormalTok{(}\DecValTok{1}\NormalTok{, n }\OperatorTok{+} \DecValTok{1}\NormalTok{):} - \ControlFlowTok{for}\NormalTok{ w }\KeywordTok{in} \BuiltInTok{range}\NormalTok{(capacity }\OperatorTok{+} \DecValTok{1}\NormalTok{):} - \CommentTok{\# Include the current item if it fits in the knapsack} - \ControlFlowTok{if}\NormalTok{ weights[i }\OperatorTok{{-}} \DecValTok{1}\NormalTok{] }\OperatorTok{\textless{}=}\NormalTok{ w:} -\NormalTok{ dp[i][w] }\OperatorTok{=} \BuiltInTok{max}\NormalTok{(dp[i }\OperatorTok{{-}} \DecValTok{1}\NormalTok{][w], }\OperatorTok{\textbackslash{}} -\NormalTok{ values[i }\OperatorTok{{-}} \DecValTok{1}\NormalTok{] }\OperatorTok{+}\NormalTok{ dp[i }\OperatorTok{{-}} \DecValTok{1}\NormalTok{][w }\OperatorTok{{-}}\NormalTok{ weights[i }\OperatorTok{{-}} \DecValTok{1}\NormalTok{]])} - \ControlFlowTok{else}\NormalTok{:} -\NormalTok{ dp[i][w] }\OperatorTok{=}\NormalTok{ dp[i }\OperatorTok{{-}} \DecValTok{1}\NormalTok{][w]} - -\NormalTok{ selected\_items }\OperatorTok{=}\NormalTok{ traceback(dp, values, weights, capacity)} - - \ControlFlowTok{return}\NormalTok{ dp[n][capacity], selected\_items} -\end{Highlighting} -\end{Shaded} -\end{frame} - -\begin{frame}[fragile]{Python Implementation} -\protect\hypertarget{python-implementation-2}{} -\begin{Shaded} -\begin{Highlighting}[] -\KeywordTok{def}\NormalTok{ traceback(dp, values, weights, capacity):} -\NormalTok{ selected\_items }\OperatorTok{=}\NormalTok{ []} -\NormalTok{ i, w }\OperatorTok{=} \BuiltInTok{len}\NormalTok{(dp) }\OperatorTok{{-}} \DecValTok{1}\NormalTok{, capacity} - - \ControlFlowTok{while}\NormalTok{ i }\OperatorTok{\textgreater{}} \DecValTok{0} \KeywordTok{and}\NormalTok{ w }\OperatorTok{\textgreater{}} \DecValTok{0}\NormalTok{:} - \ControlFlowTok{if}\NormalTok{ dp[i][w] }\OperatorTok{!=}\NormalTok{ dp[i }\OperatorTok{{-}} \DecValTok{1}\NormalTok{][w]:} -\NormalTok{ selected\_items.append(i }\OperatorTok{{-}} \DecValTok{1}\NormalTok{)} -\NormalTok{ w }\OperatorTok{{-}=}\NormalTok{ weights[i }\OperatorTok{{-}} \DecValTok{1}\NormalTok{]} -\NormalTok{ i }\OperatorTok{{-}=} \DecValTok{1} - -\NormalTok{ selected\_items.reverse()} - \ControlFlowTok{return}\NormalTok{ selected\_items} -\end{Highlighting} -\end{Shaded} -\end{frame} - -\begin{frame}[fragile]{Python Implementation} -\protect\hypertarget{python-implementation-3}{} -\begin{Shaded} -\begin{Highlighting}[] -\NormalTok{values }\OperatorTok{=}\NormalTok{ [}\DecValTok{3000}\NormalTok{, }\DecValTok{2000}\NormalTok{, }\DecValTok{1500}\NormalTok{]} -\NormalTok{weights }\OperatorTok{=}\NormalTok{ [}\DecValTok{4}\NormalTok{, }\DecValTok{3}\NormalTok{, }\DecValTok{1}\NormalTok{]} -\NormalTok{capacity }\OperatorTok{=} \DecValTok{4} - -\NormalTok{max\_value, selected\_items }\OperatorTok{=} \OperatorTok{\textbackslash{}} -\NormalTok{knapsack\_dynamic\_programming(values, weights, capacity)} - -\BuiltInTok{print}\NormalTok{(}\StringTok{"Maximum value:"}\NormalTok{, max\_value)} -\BuiltInTok{print}\NormalTok{(}\StringTok{"Selected items:"}\NormalTok{, selected\_items)} -\end{Highlighting} -\end{Shaded} - -\begin{verbatim} -Maximum value: 3500 -Selected items: [1, 2] -\end{verbatim} -\end{frame} - -\begin{frame}[fragile]{Live Coding} -\protect\hypertarget{live-coding}{} -Let a substring be \emph{upper-lower} if for every letter of the -alphabet that the string contains, it appears both in uppercase and -lowercase. For example, \texttt{aaA} is upper-lower because it has both -``A'' and ``a.'' \texttt{aAbb} is not upper-lower because it lacks an -upper case ``B.'' - -Given string, return the longest substring that is \emph{upper-lower.} - -\begin{block}{Example} -\protect\hypertarget{example}{} -\begin{Shaded} -\begin{Highlighting}[] -\CommentTok{\# INPUT} -\NormalTok{string }\OperatorTok{=} \StringTok{"AqeQEfa"} -\CommentTok{\# OUTPUT} -\CommentTok{"qeQE"} -\end{Highlighting} -\end{Shaded} -\end{block} -\end{frame} - -\hypertarget{recommended-problems-and-references}{% -\section{Recommended Problems and -References}\label{recommended-problems-and-references}} - -\begin{frame}{Recommended Problems and Readings} -\protect\hypertarget{recommended-problems-and-readings}{} -\begin{itemize} -\item - Cormen (highly optional): -\item - Chapter 14, more advanced dynamic programming -\item - Chapter 29, more advanced linear programming -\item - Bhargava: Chapter 9 exercises - - \begin{itemize} - \item - 9.1, 9.2 - \item - Read the knapsack problem FAQs on page 171 - \item - Follow the example about longest common substring on page 178 - \end{itemize} -\end{itemize} -\end{frame} - -\begin{frame}[fragile]{Recommended Problems} -\protect\hypertarget{recommended-problems}{} -\begin{itemize} -\item - Write the code to brute force the diet problem. Compare the run times - using the \texttt{timeit} library. -\item - Modify the code from the slide such that there is an upper bound for - calories and vitamins. -\item - Page 17 of Bhargava covered the travelling sales person problem. Is it - possible to improve the proposed solution using any method we learned - today? -\end{itemize} -\end{frame} - -\begin{frame}{References} -\protect\hypertarget{references}{} -\begin{itemize} -\item - Bhargava, A. Y. (2016). \emph{Grokking algorithms: An illustrated - guide for programmers and other curious people.} Manning. Chapter 1. -\item - Cormen, T. H. (Ed.). (2009). \emph{Introduction to algorithms} (3rd - ed). MIT Press. Chapter 1 and 3. -\end{itemize} -\end{frame} - - - -\end{document} diff --git a/slides-resources/5_optimization/5_optimization.toc b/slides-resources/5_optimization/5_optimization.toc deleted file mode 100644 index 454eb07..0000000 --- a/slides-resources/5_optimization/5_optimization.toc +++ /dev/null @@ -1,4 +0,0 @@ -\beamer@sectionintoc {1}{Setting up an Optimization Problem}{3}{0}{1} -\beamer@sectionintoc {2}{Linear Programming}{10}{0}{2} -\beamer@sectionintoc {3}{Dynamic Programming}{15}{0}{3} -\beamer@sectionintoc {4}{Recommended Problems and References}{27}{0}{4} diff --git a/slides-resources/5_optimization/5_optimization.vrb b/slides-resources/5_optimization/5_optimization.vrb deleted file mode 100644 index dd3f144..0000000 --- a/slides-resources/5_optimization/5_optimization.vrb +++ /dev/null @@ -1,14 +0,0 @@ -\frametitle{Recommended Problems} -\protect\hypertarget{recommended-problems}{} -\begin{itemize} -\item - Write the code to brute force the diet problem. Compare the run times - using the \texttt{timeit} library. -\item - Modify the code from the slide such that there is an upper bound for - calories and vitamins. -\item - Page 17 of Bhargava covered the travelling sales person problem. Is it - possible to improve the proposed solution using any method we learned - today? -\end{itemize} diff --git a/slides-resources/5_optimization/texput.log b/slides-resources/5_optimization/texput.log deleted file mode 100644 index 6079117..0000000 --- a/slides-resources/5_optimization/texput.log +++ /dev/null @@ -1,21 +0,0 @@ -This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) (preloaded format=pdflatex 2023.12.23) 1 JAN 2024 19:59 -entering extended mode - restricted \write18 enabled. - %&-line parsing enabled. -** - -! Emergency stop. -<*> - -End of file on the terminal! - - -Here is how much of TeX's memory you used: - 3 strings out of 474181 - 98 string characters out of 5745946 - 1924457 words of memory out of 5000000 - 22404 multiletter control sequences out of 15000+600000 - 558069 words of font info for 36 fonts, out of 8000000 for 9000 - 1141 hyphenation exceptions out of 8191 - 0i,0n,0p,1b,6s stack positions out of 10000i,1000n,20000p,200000b,200000s -! ==> Fatal error occurred, no output PDF file produced! diff --git a/slides-resources/6_slow-code/6_slow-code.aux b/slides-resources/6_slow-code/6_slow-code.aux deleted file mode 100644 index 3916186..0000000 --- a/slides-resources/6_slow-code/6_slow-code.aux +++ /dev/null @@ -1,98 +0,0 @@ -\relax -\providecommand\hyper@newdestlabel[2]{} -\providecommand\HyField@AuxAddToFields[1]{} -\providecommand\HyField@AuxAddToCoFields[2]{} -\providecommand\BKM@entry[2]{} -\@writefile{nav}{\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {1}{1}}} -\@writefile{nav}{\headcommand {\slideentry {0}{0}{2}{2/2}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {2}{2}}} -\BKM@entry{id=1,open,dest={4F75746C696E65302E31},srcline={238}}{5C3337365C3337375C303030435C303030615C303030635C303030685C303030695C3030306E5C303030675C3030302C5C3030305C3034305C3030304D5C303030655C3030306D5C3030306F5C303030695C3030307A5C303030615C303030745C303030695C3030306F5C3030306E5C3030302C5C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030565C303030655C303030635C303030745C3030306F5C303030725C303030695C3030307A5C303030615C303030745C303030695C3030306F5C3030306E} -\@writefile{toc}{\beamer@sectionintoc {1}{Caching, Memoization, and Vectorization}{3}{0}{1}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {1}{2}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {1}{2}}} -\@writefile{nav}{\headcommand {\sectionentry {1}{Caching, Memoization, and Vectorization}{3}{Caching, Memoization, and Vectorization}{0}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{1}{3/3}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {3}{3}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{2}{4/4}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {4}{4}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{3}{5/5}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {5}{5}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{4}{6/6}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {6}{6}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{5}{7/7}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {7}{7}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{6}{8/8}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {8}{8}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{7}{9/9}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {9}{9}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{8}{10/10}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {10}{10}}} -\@writefile{nav}{\headcommand {\slideentry {1}{0}{9}{11/11}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {11}{11}}} -\BKM@entry{id=2,open,dest={4F75746C696E65302E32},srcline={412}}{5C3337365C3337375C303030505C303030615C303030725C303030615C3030306C5C3030306C5C303030655C3030306C5C3030305C3034305C303030435C3030306F5C3030306D5C303030705C303030755C303030745C303030695C3030306E5C30303067} -\@writefile{toc}{\beamer@sectionintoc {2}{Parallel Computing}{12}{0}{2}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {3}{11}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {3}{11}}} -\@writefile{nav}{\headcommand {\sectionentry {2}{Parallel Computing}{12}{Parallel Computing}{0}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{1}{12/12}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {12}{12}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{2}{13/13}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {13}{13}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{3}{14/14}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {14}{14}}} -\@writefile{nav}{\headcommand {\slideentry {2}{0}{4}{15/15}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {15}{15}}} -\BKM@entry{id=3,open,dest={4F75746C696E65302E33},srcline={467}}{5C3337365C3337375C303030475C303030725C303030655C303030655C303030645C303030795C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030455C303030785C303030685C303030615C303030755C303030735C303030745C303030695C303030765C303030655C3030305C3034305C303030415C3030306C5C303030675C3030306F5C303030725C303030695C303030745C303030685C3030306D5C30303073} -\@writefile{toc}{\beamer@sectionintoc {3}{Greedy and Exhaustive Algorithms}{16}{0}{3}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {12}{15}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {12}{15}}} -\@writefile{nav}{\headcommand {\sectionentry {3}{Greedy and Exhaustive Algorithms}{16}{Greedy and Exhaustive Algorithms}{0}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{1}{16/16}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {16}{16}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{2}{17/17}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {17}{17}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{3}{18/18}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {18}{18}}} -\gdef \LT@i {\LT@entry - {2}{68.50624pt}\LT@entry - {2}{53.82321pt}\LT@entry - {2}{47.82321pt}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{4}{19/19}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {19}{19}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{5}{20/20}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {20}{20}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{6}{21/21}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {21}{21}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{7}{22/22}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {22}{22}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{8}{23/23}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {23}{23}}} -\@writefile{nav}{\headcommand {\slideentry {3}{0}{9}{24/24}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {24}{24}}} -\BKM@entry{id=4,open,dest={4F75746C696E65302E34},srcline={678}}{5C3337365C3337375C303030465C303030615C303030735C303030745C303030655C303030725C3030305C3034305C303030495C3030306D5C303030705C3030306C5C303030655C3030306D5C303030655C3030306E5C303030745C303030615C303030745C303030695C3030306F5C3030306E5C303030735C3030305C3034305C303030765C303030655C303030725C303030735C303030755C303030735C3030305C3034305C303030465C303030615C303030735C303030745C303030655C303030725C3030305C3034305C303030415C3030306C5C303030675C3030306F5C303030725C303030695C303030745C303030685C3030306D5C30303073} -\@writefile{toc}{\beamer@sectionintoc {4}{Faster Implementations versus Faster Algorithms}{25}{0}{4}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {16}{24}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {16}{24}}} -\@writefile{nav}{\headcommand {\sectionentry {4}{Faster Implementations versus Faster Algorithms}{25}{Faster Implementations versus Faster Algorithms}{0}}} -\@writefile{nav}{\headcommand {\slideentry {4}{0}{1}{25/25}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {25}{25}}} -\@writefile{nav}{\headcommand {\slideentry {4}{0}{2}{26/26}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {26}{26}}} -\BKM@entry{id=5,open,dest={4F75746C696E65302E35},srcline={701}}{5C3337365C3337375C303030525C303030655C303030635C3030306F5C3030306D5C3030306D5C303030655C3030306E5C303030645C303030655C303030645C3030305C3034305C303030505C303030725C3030306F5C303030625C3030306C5C303030655C3030306D5C303030735C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030525C303030655C303030665C303030655C303030725C303030655C3030306E5C303030635C303030655C30303073} -\@writefile{toc}{\beamer@sectionintoc {5}{Recommended Problems and References}{27}{0}{5}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {25}{26}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {25}{26}}} -\@writefile{nav}{\headcommand {\sectionentry {5}{Recommended Problems and References}{27}{Recommended Problems and References}{0}}} -\@writefile{nav}{\headcommand {\slideentry {5}{0}{1}{27/27}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {27}{27}}} -\@writefile{nav}{\headcommand {\slideentry {5}{0}{2}{28/28}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {28}{28}}} -\@writefile{nav}{\headcommand {\slideentry {5}{0}{3}{29/29}{}{0}}} -\@writefile{nav}{\headcommand {\beamer@framepages {29}{29}}} -\@writefile{nav}{\headcommand {\beamer@partpages {1}{29}}} -\@writefile{nav}{\headcommand {\beamer@subsectionpages {27}{29}}} -\@writefile{nav}{\headcommand {\beamer@sectionpages {27}{29}}} -\@writefile{nav}{\headcommand {\beamer@documentpages {29}}} -\@writefile{nav}{\headcommand {\gdef \inserttotalframenumber {29}}} -\gdef \@abspage@last{29} diff --git a/slides-resources/6_slow-code/6_slow-code.log b/slides-resources/6_slow-code/6_slow-code.log deleted file mode 100644 index 53ac4cd..0000000 --- a/slides-resources/6_slow-code/6_slow-code.log +++ /dev/null @@ -1,1781 +0,0 @@ -This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) (preloaded format=pdflatex 2023.12.23) 10 JAN 2024 16:06 -entering extended mode - restricted \write18 enabled. - %&-line parsing enabled. -**6_slow-code -(./6_slow-code.tex -LaTeX2e <2023-11-01> -L3 programming layer <2023-12-11> -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamer.cls -Document Class: beamer 2023/05/15 v3.70 A class for typesetting presentations -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasemodes.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/etoolbox/etoolbox.sty -Package: etoolbox 2020/10/05 v2.5k e-TeX tools for LaTeX (JAW) -\etb@tempcnta=\count187 -) -\beamer@tempbox=\box51 -\beamer@tempcount=\count188 -\c@beamerpauses=\count189 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasedecode.sty -\beamer@slideinframe=\count190 -\beamer@minimum=\count191 -\beamer@decode@box=\box52 -) -\beamer@commentbox=\box53 -\beamer@modecount=\count192 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/iftex/iftex.sty -Package: iftex 2022/02/03 v1.0f TeX engine tests -) -\headdp=\dimen140 -\footheight=\dimen141 -\sidebarheight=\dimen142 -\beamer@tempdim=\dimen143 -\beamer@finalheight=\dimen144 -\beamer@animht=\dimen145 -\beamer@animdp=\dimen146 -\beamer@animwd=\dimen147 -\beamer@leftmargin=\dimen148 -\beamer@rightmargin=\dimen149 -\beamer@leftsidebar=\dimen150 -\beamer@rightsidebar=\dimen151 -\beamer@boxsize=\dimen152 -\beamer@vboxoffset=\dimen153 -\beamer@descdefault=\dimen154 -\beamer@descriptionwidth=\dimen155 -\beamer@lastskip=\skip48 -\beamer@areabox=\box54 -\beamer@animcurrent=\box55 -\beamer@animshowbox=\box56 -\beamer@sectionbox=\box57 -\beamer@logobox=\box58 -\beamer@linebox=\box59 -\beamer@sectioncount=\count193 -\beamer@subsubsectionmax=\count194 -\beamer@subsectionmax=\count195 -\beamer@sectionmax=\count196 -\beamer@totalheads=\count197 -\beamer@headcounter=\count198 -\beamer@partstartpage=\count199 -\beamer@sectionstartpage=\count266 -\beamer@subsectionstartpage=\count267 -\beamer@animationtempa=\count268 -\beamer@animationtempb=\count269 -\beamer@xpos=\count270 -\beamer@ypos=\count271 -\beamer@ypos@offset=\count272 -\beamer@showpartnumber=\count273 -\beamer@currentsubsection=\count274 -\beamer@coveringdepth=\count275 -\beamer@sectionadjust=\count276 -\beamer@toclastsection=\count277 -\beamer@tocsectionnumber=\count278 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseoptions.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics/keyval.sty -Package: keyval 2022/05/29 v1.15 key=value parser (DPC) -\KV@toks@=\toks17 -)) -\beamer@paperwidth=\skip49 -\beamer@paperheight=\skip50 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/geometry/geometry.sty -Package: geometry 2020/01/02 v5.9 Page Geometry - -(/usr/local/texlive/2023/texmf-dist/tex/generic/iftex/ifvtex.sty -Package: ifvtex 2019/10/25 v1.7 ifvtex legacy package. Use iftex instead. -) -\Gm@cnth=\count279 -\Gm@cntv=\count280 -\c@Gm@tempcnt=\count281 -\Gm@bindingoffset=\dimen156 -\Gm@wd@mp=\dimen157 -\Gm@odd@mp=\dimen158 -\Gm@even@mp=\dimen159 -\Gm@layoutwidth=\dimen160 -\Gm@layoutheight=\dimen161 -\Gm@layouthoffset=\dimen162 -\Gm@layoutvoffset=\dimen163 -\Gm@dimlist=\toks18 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/math/pgfmath.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/utilities/pgfrcs.sty -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgfutil-common.te -x -\pgfutil@everybye=\toks19 -\pgfutil@tempdima=\dimen164 -\pgfutil@tempdimb=\dimen165 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgfutil-latex.def -\pgfutil@abb=\box60 -) (/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgfrcs.code.tex -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/pgf.revision.tex) -Package: pgfrcs 2023-01-15 v3.1.10 (3.1.10) -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/utilities/pgfkeys.sty -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex -\pgfkeys@pathtoks=\toks20 -\pgfkeys@temptoks=\toks21 - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgfkeyslibraryfil -tered.code.tex -\pgfkeys@tmptoks=\toks22 -))) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathutil.code.tex -\pgf@x=\dimen166 -\pgf@xa=\dimen167 -\pgf@xb=\dimen168 -\pgf@xc=\dimen169 -\pgf@y=\dimen170 -\pgf@ya=\dimen171 -\pgf@yb=\dimen172 -\pgf@yc=\dimen173 -\c@pgf@counta=\count282 -\c@pgf@countb=\count283 -\c@pgf@countc=\count284 -\c@pgf@countd=\count285 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathparser.code.tex -\pgfmath@dimen=\dimen174 -\pgfmath@count=\count286 -\pgfmath@box=\box61 -\pgfmath@toks=\toks23 -\pgfmath@stack@operand=\toks24 -\pgfmath@stack@operation=\toks25 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.code. -tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.basic -.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.trigo -nometric.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.rando -m.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.compa -rison.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.base. -code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.round -.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.misc. -code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.integ -erarithmetics.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathcalc.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfmathfloat.code.tex -\c@pgfmathroundto@lastzeros=\count287 -))) (/usr/local/texlive/2023/texmf-dist/tex/latex/base/size11.clo -File: size11.clo 2023/05/17 v1.4n Standard LaTeX file (size option) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/basiclayer/pgfcore.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics/graphicx.sty -Package: graphicx 2021/09/16 v1.2d Enhanced LaTeX Graphics (DPC,SPQR) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics/graphics.sty -Package: graphics 2022/03/10 v1.4e Standard LaTeX Graphics (DPC,SPQR) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics/trig.sty -Package: trig 2021/08/11 v1.11 sin cos tan (DPC) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics-cfg/graphics.cfg -File: graphics.cfg 2016/06/04 v1.11 sample graphics configuration -) -Package graphics Info: Driver file: pdftex.def on input line 107. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics-def/pdftex.def -File: pdftex.def 2022/09/22 v1.2b Graphics/color driver for pdftex -)) -\Gin@req@height=\dimen175 -\Gin@req@width=\dimen176 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/systemlayer/pgfsys.sty -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgfsys.code.tex -Package: pgfsys 2023-01-15 v3.1.10 (3.1.10) -\pgf@x=\dimen177 -\pgf@y=\dimen178 -\pgf@xa=\dimen179 -\pgf@ya=\dimen180 -\pgf@xb=\dimen181 -\pgf@yb=\dimen182 -\pgf@xc=\dimen183 -\pgf@yc=\dimen184 -\pgf@xd=\dimen185 -\pgf@yd=\dimen186 -\w@pgf@writea=\write3 -\r@pgf@reada=\read2 -\c@pgf@counta=\count288 -\c@pgf@countb=\count289 -\c@pgf@countc=\count290 -\c@pgf@countd=\count291 -\t@pgf@toka=\toks26 -\t@pgf@tokb=\toks27 -\t@pgf@tokc=\toks28 -\pgf@sys@id@count=\count292 -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgf.cfg -File: pgf.cfg 2023-01-15 v3.1.10 (3.1.10) -) -Driver file for pgf: pgfsys-pdftex.def - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-pdftex.d -ef -File: pgfsys-pdftex.def 2023-01-15 v3.1.10 (3.1.10) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-common-p -df.def -File: pgfsys-common-pdf.def 2023-01-15 v3.1.10 (3.1.10) -))) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgfsyssoftpath. -code.tex -File: pgfsyssoftpath.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfsyssoftpath@smallbuffer@items=\count293 -\pgfsyssoftpath@bigbuffer@items=\count294 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/systemlayer/pgfsysprotocol. -code.tex -File: pgfsysprotocol.code.tex 2023-01-15 v3.1.10 (3.1.10) -)) (/usr/local/texlive/2023/texmf-dist/tex/latex/xcolor/xcolor.sty -Package: xcolor 2023/11/15 v3.01 LaTeX color extensions (UK) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics-cfg/color.cfg -File: color.cfg 2016/01/02 v1.6 sample color configuration -) -Package xcolor Info: Driver file: pdftex.def on input line 274. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/graphics/mathcolor.ltx) -Package xcolor Info: Model `cmy' substituted by `cmy0' on input line 1350. -Package xcolor Info: Model `hsb' substituted by `rgb' on input line 1354. -Package xcolor Info: Model `RGB' extended on input line 1366. -Package xcolor Info: Model `HTML' substituted by `rgb' on input line 1368. -Package xcolor Info: Model `Hsb' substituted by `hsb' on input line 1369. -Package xcolor Info: Model `tHsb' substituted by `hsb' on input line 1370. -Package xcolor Info: Model `HSB' substituted by `hsb' on input line 1371. -Package xcolor Info: Model `Gray' substituted by `gray' on input line 1372. -Package xcolor Info: Model `wave' substituted by `hsb' on input line 1373. -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcore.code.tex -Package: pgfcore 2023-01-15 v3.1.10 (3.1.10) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/math/pgfint.code.tex) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepoints.co -de.tex -File: pgfcorepoints.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@picminx=\dimen187 -\pgf@picmaxx=\dimen188 -\pgf@picminy=\dimen189 -\pgf@picmaxy=\dimen190 -\pgf@pathminx=\dimen191 -\pgf@pathmaxx=\dimen192 -\pgf@pathminy=\dimen193 -\pgf@pathmaxy=\dimen194 -\pgf@xx=\dimen195 -\pgf@xy=\dimen196 -\pgf@yx=\dimen197 -\pgf@yy=\dimen198 -\pgf@zx=\dimen199 -\pgf@zy=\dimen256 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathconst -ruct.code.tex -File: pgfcorepathconstruct.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@path@lastx=\dimen257 -\pgf@path@lasty=\dimen258 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathusage -.code.tex -File: pgfcorepathusage.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@shorten@end@additional=\dimen259 -\pgf@shorten@start@additional=\dimen260 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorescopes.co -de.tex -File: pgfcorescopes.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfpic=\box62 -\pgf@hbox=\box63 -\pgf@layerbox@main=\box64 -\pgf@picture@serial@count=\count295 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoregraphicst -ate.code.tex -File: pgfcoregraphicstate.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgflinewidth=\dimen261 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransform -ations.code.tex -File: pgfcoretransformations.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@pt@x=\dimen262 -\pgf@pt@y=\dimen263 -\pgf@pt@temp=\dimen264 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorequick.cod -e.tex -File: pgfcorequick.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreobjects.c -ode.tex -File: pgfcoreobjects.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathproce -ssing.code.tex -File: pgfcorepathprocessing.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorearrows.co -de.tex -File: pgfcorearrows.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfarrowsep=\dimen265 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreshade.cod -e.tex -File: pgfcoreshade.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@max=\dimen266 -\pgf@sys@shading@range@num=\count296 -\pgf@shadingcount=\count297 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreimage.cod -e.tex -File: pgfcoreimage.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreexternal. -code.tex -File: pgfcoreexternal.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfexternal@startupbox=\box65 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorelayers.co -de.tex -File: pgfcorelayers.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretranspare -ncy.code.tex -File: pgfcoretransparency.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepatterns. -code.tex -File: pgfcorepatterns.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/basiclayer/pgfcorerdf.code. -tex -File: pgfcorerdf.code.tex 2023-01-15 v3.1.10 (3.1.10) -))) (/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/utilities/xxcolor.sty -Package: xxcolor 2003/10/24 ver 0.1 -\XC@nummixins=\count298 -\XC@countmixins=\count299 -) (/usr/local/texlive/2023/texmf-dist/tex/latex/base/atbegshi-ltx.sty -Package: atbegshi-ltx 2021/01/10 v1.0c Emulation of the original atbegshi -package with kernel methods -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/hyperref/hyperref.sty -Package: hyperref 2023-11-26 v7.01g Hypertext links for LaTeX - -(/usr/local/texlive/2023/texmf-dist/tex/generic/infwarerr/infwarerr.sty -Package: infwarerr 2019/12/03 v1.5 Providing info/warning/error messages (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/kvsetkeys/kvsetkeys.sty -Package: kvsetkeys 2022-10-05 v1.19 Key value parser (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/kvdefinekeys/kvdefinekeys.sty -Package: kvdefinekeys 2019-12-19 v1.6 Define keys (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pdfescape/pdfescape.sty -Package: pdfescape 2019/12/09 v1.15 Implements pdfTeX's escape features (HO) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/ltxcmds/ltxcmds.sty -Package: ltxcmds 2023-12-04 v1.26 LaTeX kernel commands for general use (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pdftexcmds/pdftexcmds.sty -Package: pdftexcmds 2020-06-27 v0.33 Utility functions of pdfTeX for LuaTeX (HO -) -Package pdftexcmds Info: \pdf@primitive is available. -Package pdftexcmds Info: \pdf@ifprimitive is available. -Package pdftexcmds Info: \pdfdraftmode found. -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/hycolor/hycolor.sty -Package: hycolor 2020-01-27 v1.10 Color options for hyperref/bookmark (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/letltxmacro/letltxmacro.sty -Package: letltxmacro 2019/12/03 v1.6 Let assignment for LaTeX macros (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/auxhook/auxhook.sty -Package: auxhook 2019-12-17 v1.6 Hooks for auxiliary files (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/hyperref/nameref.sty -Package: nameref 2023-11-26 v2.56 Cross-referencing by name of section - -(/usr/local/texlive/2023/texmf-dist/tex/latex/refcount/refcount.sty -Package: refcount 2019/12/15 v3.6 Data extraction from label references (HO) -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/gettitlestring/gettitlestring.s -ty -Package: gettitlestring 2019/12/15 v1.6 Cleanup title references (HO) - (/usr/local/texlive/2023/texmf-dist/tex/latex/kvoptions/kvoptions.sty -Package: kvoptions 2022-06-15 v3.15 Key value format for package options (HO) -)) -\c@section@level=\count300 -) -\@linkdim=\dimen267 -\Hy@linkcounter=\count301 -\Hy@pagecounter=\count302 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/hyperref/pd1enc.def -File: pd1enc.def 2023-11-26 v7.01g Hyperref: PDFDocEncoding definition (HO) -Now handling font encoding PD1 ... -... no UTF-8 mapping file for font encoding PD1 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/intcalc/intcalc.sty -Package: intcalc 2019/12/15 v1.3 Expandable calculations with integers (HO) -) -\Hy@SavedSpaceFactor=\count303 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/hyperref/puenc.def -File: puenc.def 2023-11-26 v7.01g Hyperref: PDF Unicode definition (HO) -Now handling font encoding PU ... -... no UTF-8 mapping file for font encoding PU -) -Package hyperref Info: Option `unicode' set `true' on input line 4064. -Package hyperref Info: Option `bookmarks' set `true' on input line 4064. -Package hyperref Info: Option `bookmarksopen' set `true' on input line 4064. -Package hyperref Info: Option `implicit' set `false' on input line 4064. -Package hyperref Info: Hyper figures OFF on input line 4181. -Package hyperref Info: Link nesting OFF on input line 4186. -Package hyperref Info: Hyper index ON on input line 4189. -Package hyperref Info: Plain pages OFF on input line 4196. -Package hyperref Info: Backreferencing OFF on input line 4201. -Package hyperref Info: Implicit mode OFF; no redefinition of LaTeX internals. -Package hyperref Info: Bookmarks ON on input line 4448. -\c@Hy@tempcnt=\count304 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/url/url.sty -\Urlmuskip=\muskip16 -Package: url 2013/09/16 ver 3.4 Verb mode for urls, etc. -) -LaTeX Info: Redefining \url on input line 4786. -\XeTeXLinkMargin=\dimen268 - -(/usr/local/texlive/2023/texmf-dist/tex/generic/bitset/bitset.sty -Package: bitset 2019/12/09 v1.3 Handle bit-vector datatype (HO) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/bigintcalc/bigintcalc.sty -Package: bigintcalc 2019/12/15 v1.5 Expandable calculations on big integers (HO -) -)) -\Fld@menulength=\count305 -\Field@Width=\dimen269 -\Fld@charsize=\dimen270 -Package hyperref Info: Hyper figures OFF on input line 6065. -Package hyperref Info: Link nesting OFF on input line 6070. -Package hyperref Info: Hyper index ON on input line 6073. -Package hyperref Info: backreferencing OFF on input line 6080. -Package hyperref Info: Link coloring OFF on input line 6085. -Package hyperref Info: Link coloring with OCG OFF on input line 6090. -Package hyperref Info: PDF/A mode OFF on input line 6095. -\Hy@abspage=\count306 - - -Package hyperref Message: Stopped early. - -) -Package hyperref Info: Driver (autodetected): hpdftex. - (/usr/local/texlive/2023/texmf-dist/tex/latex/hyperref/hpdftex.def -File: hpdftex.def 2023-11-26 v7.01g Hyperref driver for pdfTeX - -(/usr/local/texlive/2023/texmf-dist/tex/latex/base/atveryend-ltx.sty -Package: atveryend-ltx 2020/08/19 v1.0a Emulation of the original atveryend pac -kage -with kernel methods -) -\Fld@listcount=\count307 -\c@bookmark@seq@number=\count308 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/rerunfilecheck/rerunfilecheck.sty -Package: rerunfilecheck 2022-07-10 v1.10 Rerun checks for auxiliary files (HO) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/uniquecounter/uniquecounter.sty -Package: uniquecounter 2019/12/15 v1.4 Provide unlimited unique counter (HO) -) -Package uniquecounter Info: New unique counter `rerunfilecheck' on input line 2 -85. -)) (/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaserequires.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasecompatibility.st -y) (/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasefont.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsfonts/amssymb.sty -Package: amssymb 2013/01/14 v3.01 AMS font symbols - -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsfonts/amsfonts.sty -Package: amsfonts 2013/01/14 v3.01 Basic AMSFonts support -\@emptytoks=\toks29 -\symAMSa=\mathgroup4 -\symAMSb=\mathgroup5 -LaTeX Font Info: Redeclaring math symbol \hbar on input line 98. -LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold' -(Font) U/euf/m/n --> U/euf/b/n on input line 106. -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/sansmathaccent/sansmathaccent.sty -Package: sansmathaccent 2020/01/31 -(/usr/local/texlive/2023/texmf-dist/tex/latex/koma-script/scrlfile.sty -Package: scrlfile 2023/07/07 v3.41 KOMA-Script package (file load hooks) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/koma-script/scrlfile-hook.sty -Package: scrlfile-hook 2023/07/07 v3.41 KOMA-Script package (using LaTeX hooks) - - -(/usr/local/texlive/2023/texmf-dist/tex/latex/koma-script/scrlogo.sty -Package: scrlogo 2023/07/07 v3.41 KOMA-Script package (logo) -))))) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetranslator.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator.sty -Package: translator 2021-05-31 v1.12d Easy translation of strings in LaTeX -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasemisc.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetwoscreens.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseoverlay.sty -\beamer@argscount=\count309 -\beamer@lastskipcover=\skip51 -\beamer@trivlistdepth=\count310 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetitle.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasesection.sty -\c@lecture=\count311 -\c@part=\count312 -\c@section=\count313 -\c@subsection=\count314 -\c@subsubsection=\count315 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseframe.sty -\beamer@framebox=\box66 -\beamer@frametitlebox=\box67 -\beamer@zoombox=\box68 -\beamer@zoomcount=\count316 -\beamer@zoomframecount=\count317 -\beamer@frametextheight=\dimen271 -\c@subsectionslide=\count318 -\beamer@frametopskip=\skip52 -\beamer@framebottomskip=\skip53 -\beamer@frametopskipautobreak=\skip54 -\beamer@framebottomskipautobreak=\skip55 -\beamer@envbody=\toks30 -\framewidth=\dimen272 -\c@framenumber=\count319 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseverbatim.sty -\beamer@verbatimfileout=\write4 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseframesize.sty -\beamer@splitbox=\box69 -\beamer@autobreakcount=\count320 -\beamer@autobreaklastheight=\dimen273 -\beamer@frametitletoks=\toks31 -\beamer@framesubtitletoks=\toks32 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseframecomponents. -sty -\beamer@footins=\box70 -) (/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasecolor.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasenotes.sty -\beamer@frameboxcopy=\box71 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetoc.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetemplates.sty -\beamer@sbttoks=\toks33 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseauxtemplates.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaseboxes.sty -\bmb@box=\box72 -\bmb@colorbox=\box73 -\bmb@boxwidth=\dimen274 -\bmb@boxheight=\dimen275 -\bmb@prevheight=\dimen276 -\bmb@temp=\dimen277 -\bmb@dima=\dimen278 -\bmb@dimb=\dimen279 -\bmb@prevheight=\dimen280 -) -\beamer@blockheadheight=\dimen281 -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbaselocalstructure.s -ty (/usr/local/texlive/2023/texmf-dist/tex/latex/tools/enumerate.sty -Package: enumerate 2023/07/04 v3.00 enumerate extensions (DPC) -\@enLab=\toks34 -) -\beamer@bibiconwidth=\skip56 -\c@figure=\count321 -\c@table=\count322 -\abovecaptionskip=\skip57 -\belowcaptionskip=\skip58 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasenavigation.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasenavigationsymbol -s.tex) -\beamer@section@min@dim=\dimen282 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasetheorems.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsmath/amsmath.sty -Package: amsmath 2023/05/13 v2.17o AMS math features -\@mathmargin=\skip59 - -For additional information on amsmath, use the `?' option. -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsmath/amstext.sty -Package: amstext 2021/08/26 v2.01 AMS text - -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsmath/amsgen.sty -File: amsgen.sty 1999/11/30 v2.0 generic functions -\@emptytoks=\toks35 -\ex@=\dimen283 -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsmath/amsbsy.sty -Package: amsbsy 1999/11/29 v1.2d Bold Symbols -\pmbraise@=\dimen284 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsmath/amsopn.sty -Package: amsopn 2022/04/08 v2.04 operator names -) -\inf@bad=\count323 -LaTeX Info: Redefining \frac on input line 234. -\uproot@=\count324 -\leftroot@=\count325 -LaTeX Info: Redefining \overline on input line 399. -LaTeX Info: Redefining \colon on input line 410. -\classnum@=\count326 -\DOTSCASE@=\count327 -LaTeX Info: Redefining \ldots on input line 496. -LaTeX Info: Redefining \dots on input line 499. -LaTeX Info: Redefining \cdots on input line 620. -\Mathstrutbox@=\box74 -\strutbox@=\box75 -LaTeX Info: Redefining \big on input line 722. -LaTeX Info: Redefining \Big on input line 723. -LaTeX Info: Redefining \bigg on input line 724. -LaTeX Info: Redefining \Bigg on input line 725. -\big@size=\dimen285 -LaTeX Font Info: Redeclaring font encoding OML on input line 743. -LaTeX Font Info: Redeclaring font encoding OMS on input line 744. -\macc@depth=\count328 -LaTeX Info: Redefining \bmod on input line 905. -LaTeX Info: Redefining \pmod on input line 910. -LaTeX Info: Redefining \smash on input line 940. -LaTeX Info: Redefining \relbar on input line 970. -LaTeX Info: Redefining \Relbar on input line 971. -\c@MaxMatrixCols=\count329 -\dotsspace@=\muskip17 -\c@parentequation=\count330 -\dspbrk@lvl=\count331 -\tag@help=\toks36 -\row@=\count332 -\column@=\count333 -\maxfields@=\count334 -\andhelp@=\toks37 -\eqnshift@=\dimen286 -\alignsep@=\dimen287 -\tagshift@=\dimen288 -\tagwidth@=\dimen289 -\totwidth@=\dimen290 -\lineht@=\dimen291 -\@envbody=\toks38 -\multlinegap=\skip60 -\multlinetaggap=\skip61 -\mathdisplay@stack=\toks39 -LaTeX Info: Redefining \[ on input line 2953. -LaTeX Info: Redefining \] on input line 2954. -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/amscls/amsthm.sty -Package: amsthm 2020/05/29 v2.20.6 -\thm@style=\toks40 -\thm@bodyfont=\toks41 -\thm@headfont=\toks42 -\thm@notefont=\toks43 -\thm@headpunct=\toks44 -\thm@preskip=\skip62 -\thm@postskip=\skip63 -\thm@headsep=\skip64 -\dth@everypar=\toks45 -) -\c@theorem=\count335 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerbasethemes.sty)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerthemedefault.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerfontthemedefault.sty -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamercolorthemedefault.st -y) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerinnerthemedefault.st -y -\beamer@dima=\dimen292 -\beamer@dimb=\dimen293 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerouterthemedefault.st -y))) (/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/utilities/pgfpages.sty -Package: pgfpages 2011/01/05 ver 0.02 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/tools/calc.sty -Package: calc 2023/07/08 v4.3 Infix arithmetic (KKT,FJ) -\calc@Acount=\count336 -\calc@Bcount=\count337 -\calc@Adimen=\dimen294 -\calc@Bdimen=\dimen295 -\calc@Askip=\skip65 -\calc@Bskip=\skip66 -LaTeX Info: Redefining \setlength on input line 80. -LaTeX Info: Redefining \addtolength on input line 81. -\calc@Ccount=\count338 -\calc@Cskip=\skip67 -) -\pgf@logicalpages=\count339 -\pgf@firstshipout=\count340 -\pgf@lastshipout=\count341 -\pgf@currentshipout=\count342 -\pgf@cpn=\count343 -\pgf@shipoutnextto=\count344 -\pgfphysicalheight=\dimen296 -\pgfphysicalwidth=\dimen297 -\pgfpages@shipoutbox=\box76 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/base/fontenc.sty -Package: fontenc 2021/04/29 v2.0v Standard LaTeX package -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/base/inputenc.sty -Package: inputenc 2021/02/14 v1.3d Input encoding file -\inpenc@prehook=\toks46 -\inpenc@posthook=\toks47 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/base/textcomp.sty -Package: textcomp 2020/02/02 v2.0n Standard LaTeX package -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/lmodern.sty -Package: lmodern 2015/05/01 v1.6.1 Latin Modern Fonts -LaTeX Font Info: Overwriting symbol font `operators' in version `normal' -(Font) OT1/cmr/m/n --> OT1/lmr/m/n on input line 22. -LaTeX Font Info: Overwriting symbol font `letters' in version `normal' -(Font) OML/cmm/m/it --> OML/lmm/m/it on input line 23. -LaTeX Font Info: Overwriting symbol font `symbols' in version `normal' -(Font) OMS/cmsy/m/n --> OMS/lmsy/m/n on input line 24. -LaTeX Font Info: Overwriting symbol font `largesymbols' in version `normal' -(Font) OMX/cmex/m/n --> OMX/lmex/m/n on input line 25. -LaTeX Font Info: Overwriting symbol font `operators' in version `bold' -(Font) OT1/cmr/bx/n --> OT1/lmr/bx/n on input line 26. -LaTeX Font Info: Overwriting symbol font `letters' in version `bold' -(Font) OML/cmm/b/it --> OML/lmm/b/it on input line 27. -LaTeX Font Info: Overwriting symbol font `symbols' in version `bold' -(Font) OMS/cmsy/b/n --> OMS/lmsy/b/n on input line 28. -LaTeX Font Info: Overwriting symbol font `largesymbols' in version `bold' -(Font) OMX/cmex/m/n --> OMX/lmex/m/n on input line 29. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `normal' -(Font) OT1/cmr/bx/n --> OT1/lmr/bx/n on input line 31. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `normal' -(Font) OT1/cmss/m/n --> OT1/lmss/m/n on input line 32. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `normal' -(Font) OT1/cmr/m/it --> OT1/lmr/m/it on input line 33. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `normal' -(Font) OT1/cmtt/m/n --> OT1/lmtt/m/n on input line 34. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `bold' -(Font) OT1/cmr/bx/n --> OT1/lmr/bx/n on input line 35. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `bold' -(Font) OT1/cmss/bx/n --> OT1/lmss/bx/n on input line 36. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `bold' -(Font) OT1/cmr/bx/it --> OT1/lmr/bx/it on input line 37. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `bold' -(Font) OT1/cmtt/m/n --> OT1/lmtt/m/n on input line 38. -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerthemeBoadilla.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamercolorthemerose.sty) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerinnerthemerounded.st -y) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamercolorthemedolphin.st -y) -(/usr/local/texlive/2023/texmf-dist/tex/latex/beamer/beamerouterthemeinfolines. -sty)) (/usr/local/texlive/2023/texmf-dist/tex/latex/upquote/upquote.sty -Package: upquote 2012/04/19 v1.3 upright-quote and grave-accent glyphs in verba -tim -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/microtype/microtype.sty -Package: microtype 2023/03/13 v3.1a Micro-typographical refinements (RS) -\MT@toks=\toks48 -\MT@tempbox=\box77 -\MT@count=\count345 -LaTeX Info: Redefining \noprotrusionifhmode on input line 1059. -LaTeX Info: Redefining \leftprotrusion on input line 1060. -\MT@prot@toks=\toks49 -LaTeX Info: Redefining \rightprotrusion on input line 1078. -LaTeX Info: Redefining \textls on input line 1368. -\MT@outer@kern=\dimen298 -LaTeX Info: Redefining \textmicrotypecontext on input line 1988. -\MT@listname@count=\count346 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/microtype/microtype-pdftex.def -File: microtype-pdftex.def 2023/03/13 v3.1a Definitions specific to pdftex (RS) - -LaTeX Info: Redefining \lsstyle on input line 902. -LaTeX Info: Redefining \lslig on input line 902. -\MT@outer@space=\skip68 -) -Package microtype Info: Loading configuration file microtype.cfg. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/microtype/microtype.cfg -File: microtype.cfg 2023/03/13 v3.1a microtype main configuration file (RS) -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/parskip/parskip.sty -Package: parskip 2021-03-14 v2.0h non-zero parskip adjustments -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/fancyvrb/fancyvrb.sty -Package: fancyvrb 2023/11/06 4.5b verbatim text (tvz,hv) -\FV@CodeLineNo=\count347 -\FV@InFile=\read3 -\FV@TabBox=\box78 -\c@FancyVerbLine=\count348 -\FV@StepNumber=\count349 -\FV@OutFile=\write5 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/framed/framed.sty -Package: framed 2011/10/22 v 0.96: framed or shaded text with page breaks -\OuterFrameSep=\skip69 -\fb@frw=\dimen299 -\fb@frh=\dimen300 -\FrameRule=\dimen301 -\FrameSep=\dimen302 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tools/longtable.sty -Package: longtable 2023-11-01 v4.19 Multi-page Table package (DPC) -\LTleft=\skip70 -\LTright=\skip71 -\LTpre=\skip72 -\LTpost=\skip73 -\LTchunksize=\count350 -\LTcapwidth=\dimen303 -\LT@head=\box79 -\LT@firsthead=\box80 -\LT@foot=\box81 -\LT@lastfoot=\box82 -\LT@gbox=\box83 -\LT@cols=\count351 -\LT@rows=\count352 -\c@LT@tables=\count353 -\c@LT@chunks=\count354 -\LT@p@ftn=\toks50 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/booktabs/booktabs.sty -Package: booktabs 2020/01/12 v1.61803398 Publication quality tables -\heavyrulewidth=\dimen304 -\lightrulewidth=\dimen305 -\cmidrulewidth=\dimen306 -\belowrulesep=\dimen307 -\belowbottomsep=\dimen308 -\aboverulesep=\dimen309 -\abovetopsep=\dimen310 -\cmidrulesep=\dimen311 -\cmidrulekern=\dimen312 -\defaultaddspace=\dimen313 -\@cmidla=\count355 -\@cmidlb=\count356 -\@aboverulesep=\dimen314 -\@belowrulesep=\dimen315 -\@thisruleclass=\count357 -\@lastruleclass=\count358 -\@thisrulewidth=\dimen316 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tools/array.sty -Package: array 2023/10/16 v2.5g Tabular extension package (FMi) -\col@sep=\dimen317 -\ar@mcellbox=\box84 -\extrarowheight=\dimen318 -\NC@list=\toks51 -\extratabsurround=\skip74 -\backup@length=\skip75 -\ar@cellbox=\box85 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/caption/caption.sty -Package: caption 2023/08/05 v3.6o Customizing captions (AR) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/caption/caption3.sty -Package: caption3 2023/07/31 v2.4d caption3 kernel (AR) -\caption@tempdima=\dimen319 -\captionmargin=\dimen320 -\caption@leftmargin=\dimen321 -\caption@rightmargin=\dimen322 -\caption@width=\dimen323 -\caption@indent=\dimen324 -\caption@parindent=\dimen325 -\caption@hangindent=\dimen326 -Package caption Info: beamer document class detected. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/caption/caption-beamer.sto -File: caption-beamer.sto 2022/01/06 v2.0c Adaption of the caption package to th -e beamer document classes (AR) -)) -\c@caption@flags=\count359 -\c@continuedfloat=\count360 -Package caption Info: hyperref package is loaded. -Package caption Info: Hyperref support is turned off -(caption) because hyperref has stopped early. -Package caption Info: longtable package is loaded. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/caption/ltcaption.sty -Package: ltcaption 2021/01/08 v1.4c longtable captions (AR) -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/float/float.sty -Package: float 2001/11/08 v1.3d Float enhancements (AL) -\c@float@type=\count361 -\float@exts=\toks52 -\float@box=\box86 -\@float@everytoks=\toks53 -\@floatcapt=\box87 -) -\@float@every@codelisting=\toks54 -\c@codelisting=\count362 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/caption/subcaption.sty -Package: subcaption 2023/07/28 v1.6b Sub-captions (AR) -Package caption Info: New subtype `subfigure' on input line 238. -\c@subfigure=\count363 -Package caption Info: New subtype `subtable' on input line 238. -\c@subtable=\count364 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tcolorbox/tcolorbox.sty -Package: tcolorbox 2023/09/26 version 6.1.0 text color boxes - -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/basiclayer/pgf.sty -Package: pgf 2023-01-15 v3.1.10 (3.1.10) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/modules/pgfmoduleshapes.cod -e.tex -File: pgfmoduleshapes.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfnodeparttextbox=\box88 -) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/modules/pgfmoduleplot.code. -tex -File: pgfmoduleplot.code.tex 2023-01-15 v3.1.10 (3.1.10) -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version --0-65.sty -Package: pgfcomp-version-0-65 2023-01-15 v3.1.10 (3.1.10) -\pgf@nodesepstart=\dimen327 -\pgf@nodesepend=\dimen328 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version --1-18.sty -Package: pgfcomp-version-1-18 2023-01-15 v3.1.10 (3.1.10) -)) (/usr/local/texlive/2023/texmf-dist/tex/latex/tools/verbatim.sty -Package: verbatim 2023-11-06 v1.5v LaTeX2e package for verbatim enhancements -\every@verbatim=\toks55 -\verbatim@line=\toks56 -\verbatim@in@stream=\read4 -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/environ/environ.sty -Package: environ 2014/05/04 v0.3 A new way to define environments - -(/usr/local/texlive/2023/texmf-dist/tex/latex/trimspaces/trimspaces.sty -Package: trimspaces 2009/09/17 v1.1 Trim spaces around a token list -)) -\tcb@titlebox=\box89 -\tcb@upperbox=\box90 -\tcb@lowerbox=\box91 -\tcb@phantombox=\box92 -\c@tcbbreakpart=\count365 -\c@tcblayer=\count366 -\c@tcolorbox@number=\count367 -\tcb@temp=\box93 -\tcb@temp=\box94 -\tcb@temp=\box95 -\tcb@temp=\box96 - -(/usr/local/texlive/2023/texmf-dist/tex/latex/tcolorbox/tcbskins.code.tex -Library (tcolorbox): 'tcbskins.code.tex' version '6.1.0' -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/frontendlayer/tikz.sty -(/usr/local/texlive/2023/texmf-dist/tex/latex/pgf/utilities/pgffor.sty -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/utilities/pgffor.code.tex -Package: pgffor 2023-01-15 v3.1.10 (3.1.10) -\pgffor@iter=\dimen329 -\pgffor@skip=\dimen330 -\pgffor@stack=\toks57 -\pgffor@toks=\toks58 -)) -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/frontendlayer/tikz/tikz.cod -e.tex -Package: tikz 2023-01-15 v3.1.10 (3.1.10) - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/libraries/pgflibraryplothan -dlers.code.tex -File: pgflibraryplothandlers.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgf@plot@mark@count=\count368 -\pgfplotmarksize=\dimen331 -) -\tikz@lastx=\dimen332 -\tikz@lasty=\dimen333 -\tikz@lastxsaved=\dimen334 -\tikz@lastysaved=\dimen335 -\tikz@lastmovetox=\dimen336 -\tikz@lastmovetoy=\dimen337 -\tikzleveldistance=\dimen338 -\tikzsiblingdistance=\dimen339 -\tikz@figbox=\box97 -\tikz@figbox@bg=\box98 -\tikz@tempbox=\box99 -\tikz@tempbox@bg=\box100 -\tikztreelevel=\count369 -\tikznumberofchildren=\count370 -\tikznumberofcurrentchild=\count371 -\tikz@fig@count=\count372 - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/modules/pgfmodulematrix.cod -e.tex -File: pgfmodulematrix.code.tex 2023-01-15 v3.1.10 (3.1.10) -\pgfmatrixcurrentrow=\count373 -\pgfmatrixcurrentcolumn=\count374 -\pgf@matrix@numberofcolumns=\count375 -) -\tikz@expandcount=\count376 - -(/usr/local/texlive/2023/texmf-dist/tex/generic/pgf/frontendlayer/tikz/librarie -s/tikzlibrarytopaths.code.tex -File: tikzlibrarytopaths.code.tex 2023-01-15 v3.1.10 (3.1.10) -))) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tikzfill/tikzfill.image.sty -Package: tikzfill.image 2023/08/08 v1.0.1 Image filling library for TikZ - -(/usr/local/texlive/2023/texmf-dist/tex/latex/tikzfill/tikzfill-common.sty -Package: tikzfill-common 2023/08/08 v1.0.1 Auxiliary code for tikzfill -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tikzfill/tikzlibraryfill.image.co -de.tex -File: tikzlibraryfill.image.code.tex 2023/08/08 v1.0.1 Image filling library -\l__tikzfill_img_box=\box101 -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tcolorbox/tcbskinsjigsaw.code.tex -Library (tcolorbox): 'tcbskinsjigsaw.code.tex' version '6.1.0' -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/tcolorbox/tcbbreakable.code.tex -Library (tcolorbox): 'tcbbreakable.code.tex' version '6.1.0' -(/usr/local/texlive/2023/texmf-dist/tex/latex/pdfcol/pdfcol.sty -Package: pdfcol 2022-09-21 v1.7 Handle new color stacks for pdfTeX (HO) -) -Package pdfcol Info: New color stack `tcb@breakable' = 1 on input line 23. -\tcb@testbox=\box102 -\tcb@totalupperbox=\box103 -\tcb@totallowerbox=\box104 -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/bookmark/bookmark.sty -Package: bookmark 2023-12-10 v1.31 PDF bookmarks (HO) - -(/usr/local/texlive/2023/texmf-dist/tex/latex/bookmark/bkm-pdftex.def -File: bkm-pdftex.def 2023-12-10 v1.31 bookmark driver for pdfTeX and luaTeX (HO -) -\BKM@id=\count377 -)) -(/usr/local/texlive/2023/texmf-dist/tex/latex/xurl/xurl.sty -Package: xurl 2022/01/09 v 0.10 modify URL breaks -) -LaTeX Font Info: Trying to load font information for T1+lmss on input line 2 -18. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/t1lmss.fd -File: t1lmss.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def -File: l3backend-pdftex.def 2023-11-09 L3 backend support: PDF output (pdfTeX) -\l__color_backend_stack_int=\count378 -\l__pdf_internal_box=\box105 -) -No file 6_slow-code.aux. -\openout1 = `6_slow-code.aux'. - -LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for TS1/cmr/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -LaTeX Font Info: Checking defaults for PU/pdf/m/n on input line 218. -LaTeX Font Info: ... okay on input line 218. -*geometry* driver: auto-detecting -*geometry* detected driver: pdftex -*geometry* verbose mode - [ preamble ] result: -* driver: pdftex -* paper: custom -* layout: -* layoutoffset:(h,v)=(0.0pt,0.0pt) -* modes: includehead includefoot -* h-part:(L,W,R)=(10.88002pt, 342.43532pt, 10.88002pt) -* v-part:(T,H,B)=(0.0pt, 273.14662pt, 0.0pt) -* \paperwidth=364.19536pt -* \paperheight=273.14662pt -* \textwidth=342.43532pt -* \textheight=244.6939pt -* \oddsidemargin=-61.38997pt -* \evensidemargin=-61.38997pt -* \topmargin=-72.26999pt -* \headheight=14.22636pt -* \headsep=0.0pt -* \topskip=11.0pt -* \footskip=14.22636pt -* \marginparwidth=4.0pt -* \marginparsep=10.0pt -* \columnsep=10.0pt -* \skip\footins=10.0pt plus 4.0pt minus 2.0pt -* \hoffset=0.0pt -* \voffset=0.0pt -* \mag=1000 -* \@twocolumnfalse -* \@twosidefalse -* \@mparswitchfalse -* \@reversemarginfalse -* (1in=72.27pt=25.4mm, 1cm=28.453pt) - -(/usr/local/texlive/2023/texmf-dist/tex/context/base/mkii/supp-pdf.mkii -[Loading MPS to PDF converter (version 2006.09.02).] -\scratchcounter=\count379 -\scratchdimen=\dimen340 -\scratchbox=\box106 -\nofMPsegments=\count380 -\nofMParguments=\count381 -\everyMPshowfont=\toks59 -\MPscratchCnt=\count382 -\MPscratchDim=\dimen341 -\MPnumerator=\count383 -\makeMPintoPDFobject=\count384 -\everyMPtoPDFconversion=\toks60 -) (/usr/local/texlive/2023/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty -Package: epstopdf-base 2020-01-24 v2.11 Base part for package epstopdf -Package epstopdf-base Info: Redefining graphics rule for `.eps' on input line 4 -85. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg -File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Liv -e -)) -Package hyperref Info: Link coloring OFF on input line 218. -LaTeX Font Info: Overwriting symbol font `operators' in version `normal' -(Font) OT1/lmr/m/n --> OT1/cmss/m/n on input line 218. -LaTeX Font Info: Overwriting symbol font `operators' in version `bold' -(Font) OT1/lmr/bx/n --> OT1/cmss/b/n on input line 218. -LaTeX Font Info: Overwriting symbol font `operators' in version `normal' -(Font) OT1/cmss/m/n --> OT1/lmss/m/n on input line 218. -LaTeX Font Info: Overwriting symbol font `operators' in version `bold' -(Font) OT1/cmss/b/n --> OT1/lmss/b/n on input line 218. -\symnumbers=\mathgroup6 -\sympureletters=\mathgroup7 -LaTeX Font Info: Overwriting math alphabet `\mathrm' in version `normal' -(Font) OT1/lmss/m/n --> T1/lmr/m/n on input line 218. -LaTeX Font Info: Redeclaring math alphabet \mathbf on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `normal' -(Font) OT1/lmr/bx/n --> T1/lmss/b/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `bold' -(Font) OT1/lmr/bx/n --> T1/lmss/b/n on input line 218. -LaTeX Font Info: Redeclaring math alphabet \mathsf on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `normal' -(Font) OT1/lmss/m/n --> T1/lmss/m/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `bold' -(Font) OT1/lmss/bx/n --> T1/lmss/m/n on input line 218. -LaTeX Font Info: Redeclaring math alphabet \mathit on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `normal' -(Font) OT1/lmr/m/it --> T1/lmss/m/it on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `bold' -(Font) OT1/lmr/bx/it --> T1/lmss/m/it on input line 218. -LaTeX Font Info: Redeclaring math alphabet \mathtt on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `normal' -(Font) OT1/lmtt/m/n --> T1/lmtt/m/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `bold' -(Font) OT1/lmtt/m/n --> T1/lmtt/m/n on input line 218. -LaTeX Font Info: Overwriting symbol font `numbers' in version `bold' -(Font) T1/lmss/m/n --> T1/lmss/b/n on input line 218. -LaTeX Font Info: Overwriting symbol font `pureletters' in version `bold' -(Font) T1/lmss/m/it --> T1/lmss/b/it on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathrm' in version `bold' -(Font) OT1/lmss/b/n --> T1/lmr/b/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `bold' -(Font) T1/lmss/b/n --> T1/lmss/b/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathsf' in version `bold' -(Font) T1/lmss/m/n --> T1/lmss/b/n on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `bold' -(Font) T1/lmss/m/it --> T1/lmss/b/it on input line 218. -LaTeX Font Info: Overwriting math alphabet `\mathtt' in version `bold' -(Font) T1/lmtt/m/n --> T1/lmtt/b/n on input line 218. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-basic-dicti -onary-English.dict -Dictionary: translator-basic-dictionary, Language: English -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-bibliograph -y-dictionary-English.dict -Dictionary: translator-bibliography-dictionary, Language: English -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-environment --dictionary-English.dict -Dictionary: translator-environment-dictionary, Language: English -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-months-dict -ionary-English.dict -Dictionary: translator-months-dictionary, Language: English -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-numbers-dic -tionary-English.dict -Dictionary: translator-numbers-dictionary, Language: English -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/translator/translator-theorem-dic -tionary-English.dict -Dictionary: translator-theorem-dictionary, Language: English -) -LaTeX Info: Redefining \microtypecontext on input line 218. -Package microtype Info: Applying patch `item' on input line 218. -Package microtype Info: Applying patch `toc' on input line 218. -Package microtype Info: Applying patch `eqnum' on input line 218. -Package microtype Info: Applying patch `footnote' on input line 218. -Package microtype Info: Applying patch `verbatim' on input line 218. -Package microtype Info: Generating PDF output. -Package microtype Info: Character protrusion enabled (level 2). -Package microtype Info: Using protrusion set `basicmath'. -Package microtype Info: Automatic font expansion enabled (level 2), -(microtype) stretch: 20, shrink: 20, step: 1, non-selected. -Package microtype Info: Using default expansion set `alltext-nott'. -LaTeX Info: Redefining \showhyphens on input line 218. -Package microtype Info: No adjustment of tracking. -Package microtype Info: No adjustment of interword spacing. -Package microtype Info: No adjustment of character kerning. -Package microtype Info: Loading generic protrusion settings for font family -(microtype) `lmss' (encoding: T1). -(microtype) For optimal results, create family-specific settings. -(microtype) See the microtype manual for details. -Package caption Info: Begin \AtBeginDocument code. -Package caption Info: float package is loaded. -Package caption Info: End \AtBeginDocument code. - -No file 6_slow-code.nav. - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 218--218 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 219--219 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[1 - -{/usr/local/texlive/2023/texmf-var/fonts/map/pdftex/updmap/pdftex.map}{/usr/loc -al/texlive/2023/texmf-dist/fonts/enc/dvips/lm/lm-ec.enc}] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 234--234 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[2 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 238--238 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[3 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 262--262 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <10.95> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 262. -LaTeX Font Info: Trying to load font information for OT1+lmss on input line -262. -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/ot1lmss.fd -File: ot1lmss.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -LaTeX Font Info: Trying to load font information for OML+lmm on input line 2 -62. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/omllmm.fd -File: omllmm.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -LaTeX Font Info: Trying to load font information for OMS+lmsy on input line -262. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/omslmsy.fd -File: omslmsy.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -LaTeX Font Info: Trying to load font information for OMX+lmex on input line -262. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/lm/omxlmex.fd -File: omxlmex.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <6> on input line 262. -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <5> on input line 262. -LaTeX Font Info: Trying to load font information for U+msa on input line 262 -. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsfonts/umsa.fd -File: umsa.fd 2013/01/14 v3.01 AMS symbols A -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/microtype/mt-msa.cfg -File: mt-msa.cfg 2006/02/04 v1.1 microtype config. file: AMS symbols (a) (RS) -) -LaTeX Font Info: Trying to load font information for U+msb on input line 262 -. - -(/usr/local/texlive/2023/texmf-dist/tex/latex/amsfonts/umsb.fd -File: umsb.fd 2013/01/14 v3.01 AMS symbols B -) -(/usr/local/texlive/2023/texmf-dist/tex/latex/microtype/mt-msb.cfg -File: mt-msb.cfg 2005/06/01 v1.0 microtype config. file: AMS symbols (b) (RS) -) -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <6> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 262. -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <5> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 262. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[4 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 264--264 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `6_slow-code.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 292--292 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./6_slow-code.vrb -LaTeX Font Info: Trying to load font information for T1+lmtt on input line 1 -8. - (/usr/local/texlive/2023/texmf-dist/tex/latex/lm/t1lmtt.fd -File: t1lmtt.fd 2015/05/01 v1.6.1 Font defs for Latin Modern -) -Package microtype Info: Loading generic protrusion settings for font family -(microtype) `lmss' (encoding: OT1). -(microtype) For optimal results, create family-specific settings. -(microtype) See the microtype manual for details. -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <10.95> on input line 26. -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <8> on input line 26. -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <8> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 26. -) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[5 - -{/usr/local/texlive/2023/texmf-dist/fonts/enc/dvips/lm/lm-rm.enc}] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 307--307 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <9> on input line 307. -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <9> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 307. - -File: images/memo.png Graphic file (type png) - -Package pdftex.def Info: images/memo.png used on input line 307. -(pdftex.def) Requested size: 321.45291pt x 150.53192pt. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[6 - - <./images/memo.png>] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 309--309 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `6_slow-code.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 326--326 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./6_slow-code.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[7 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 328--328 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `6_slow-code.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 350--350 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./6_slow-code.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[8 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 352--352 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `6_slow-code.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 366--366 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./6_slow-code.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[9 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 393--393 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[10 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 409--409 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[11 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 412--412 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[12 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 414--414 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `6_slow-code.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 427--427 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./6_slow-code.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[13 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 429--429 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `6_slow-code.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 443--443 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./6_slow-code.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[14 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 463--463 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[15 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 467--467 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[16 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 499--499 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <10> on input line 499. -LaTeX Font Info: External font `lmex10' loaded for size -(Font) <7> on input line 499. -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <10> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 499. -LaTeX Font Info: Font shape `T1/lmss/m/it' in size <7> not available -(Font) Font shape `T1/lmss/m/sl' tried instead on input line 499. - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[17 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 520--520 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[18 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 545--545 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Package longtable Warning: Column widths have changed -(longtable) in table 1 on input line 545. - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[19 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 565--565 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[20 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 597--597 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[21 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 624--624 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[22 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 651--651 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[23 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 653--653 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -\openout4 = `6_slow-code.vrb'. - - -Overfull \hbox (0.61255pt too wide) in paragraph at lines 674--674 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -(./6_slow-code.vrb) -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[24 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 678--678 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[25 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 697--697 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[26 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 701--701 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[27 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 725--725 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[28 - -] -Overfull \hbox (0.61255pt too wide) in paragraph at lines 738--738 - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - - -Overfull \hbox (0.61255pt too wide) has occurred while \output is active - [][] \T1/lmss/m/n/6 (-20) ([]) - [] - -[29 - -] -\tf@nav=\write6 -\openout6 = `6_slow-code.nav'. - -\tf@toc=\write7 -\openout7 = `6_slow-code.toc'. - -\tf@snm=\write8 -\openout8 = `6_slow-code.snm'. - - - -Package longtable Warning: Table widths have changed. Rerun LaTeX. - -(./6_slow-code.aux) - *********** -LaTeX2e <2023-11-01> -L3 programming layer <2023-12-11> - *********** - ) -Here is how much of TeX's memory you used: - 33440 strings out of 474181 - 683553 string characters out of 5745946 - 1935457 words of memory out of 5000000 - 54883 multiletter control sequences out of 15000+600000 - 637803 words of font info for 150 fonts, out of 8000000 for 9000 - 1141 hyphenation exceptions out of 8191 - 128i,15n,123p,1004b,573s stack positions out of 10000i,1000n,20000p,200000b,200000s - -Output written on 6_slow-code.pdf (29 pages, 250201 bytes). -PDF statistics: - 354 PDF objects out of 1000 (max. 8388607) - 258 compressed objects within 3 object streams - 87 named destinations out of 1000 (max. 500000) - 47198 words of extra memory for PDF output out of 51595 (max. 10000000) - diff --git a/slides-resources/6_slow-code/6_slow-code.nav b/slides-resources/6_slow-code/6_slow-code.nav deleted file mode 100644 index 3fdc50f..0000000 --- a/slides-resources/6_slow-code/6_slow-code.nav +++ /dev/null @@ -1,78 +0,0 @@ -\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}} -\headcommand {\beamer@framepages {1}{1}} -\headcommand {\slideentry {0}{0}{2}{2/2}{}{0}} -\headcommand {\beamer@framepages {2}{2}} -\headcommand {\beamer@sectionpages {1}{2}} -\headcommand {\beamer@subsectionpages {1}{2}} -\headcommand {\sectionentry {1}{Caching, Memoization, and Vectorization}{3}{Caching, Memoization, and Vectorization}{0}} -\headcommand {\slideentry {1}{0}{1}{3/3}{}{0}} -\headcommand {\beamer@framepages {3}{3}} -\headcommand {\slideentry {1}{0}{2}{4/4}{}{0}} -\headcommand {\beamer@framepages {4}{4}} -\headcommand {\slideentry {1}{0}{3}{5/5}{}{0}} -\headcommand {\beamer@framepages {5}{5}} -\headcommand {\slideentry {1}{0}{4}{6/6}{}{0}} -\headcommand {\beamer@framepages {6}{6}} -\headcommand {\slideentry {1}{0}{5}{7/7}{}{0}} -\headcommand {\beamer@framepages {7}{7}} -\headcommand {\slideentry {1}{0}{6}{8/8}{}{0}} -\headcommand {\beamer@framepages {8}{8}} -\headcommand {\slideentry {1}{0}{7}{9/9}{}{0}} -\headcommand {\beamer@framepages {9}{9}} -\headcommand {\slideentry {1}{0}{8}{10/10}{}{0}} -\headcommand {\beamer@framepages {10}{10}} -\headcommand {\slideentry {1}{0}{9}{11/11}{}{0}} -\headcommand {\beamer@framepages {11}{11}} -\headcommand {\beamer@sectionpages {3}{11}} -\headcommand {\beamer@subsectionpages {3}{11}} -\headcommand {\sectionentry {2}{Parallel Computing}{12}{Parallel Computing}{0}} -\headcommand {\slideentry {2}{0}{1}{12/12}{}{0}} -\headcommand {\beamer@framepages {12}{12}} -\headcommand {\slideentry {2}{0}{2}{13/13}{}{0}} -\headcommand {\beamer@framepages {13}{13}} -\headcommand {\slideentry {2}{0}{3}{14/14}{}{0}} -\headcommand {\beamer@framepages {14}{14}} -\headcommand {\slideentry {2}{0}{4}{15/15}{}{0}} -\headcommand {\beamer@framepages {15}{15}} -\headcommand {\beamer@sectionpages {12}{15}} -\headcommand {\beamer@subsectionpages {12}{15}} -\headcommand {\sectionentry {3}{Greedy and Exhaustive Algorithms}{16}{Greedy and Exhaustive Algorithms}{0}} -\headcommand {\slideentry {3}{0}{1}{16/16}{}{0}} -\headcommand {\beamer@framepages {16}{16}} -\headcommand {\slideentry {3}{0}{2}{17/17}{}{0}} -\headcommand {\beamer@framepages {17}{17}} -\headcommand {\slideentry {3}{0}{3}{18/18}{}{0}} -\headcommand {\beamer@framepages {18}{18}} -\headcommand {\slideentry {3}{0}{4}{19/19}{}{0}} -\headcommand {\beamer@framepages {19}{19}} -\headcommand {\slideentry {3}{0}{5}{20/20}{}{0}} -\headcommand {\beamer@framepages {20}{20}} -\headcommand {\slideentry {3}{0}{6}{21/21}{}{0}} -\headcommand {\beamer@framepages {21}{21}} -\headcommand {\slideentry {3}{0}{7}{22/22}{}{0}} -\headcommand {\beamer@framepages {22}{22}} -\headcommand {\slideentry {3}{0}{8}{23/23}{}{0}} -\headcommand {\beamer@framepages {23}{23}} -\headcommand {\slideentry {3}{0}{9}{24/24}{}{0}} -\headcommand {\beamer@framepages {24}{24}} -\headcommand {\beamer@sectionpages {16}{24}} -\headcommand {\beamer@subsectionpages {16}{24}} -\headcommand {\sectionentry {4}{Faster Implementations versus Faster Algorithms}{25}{Faster Implementations versus Faster Algorithms}{0}} -\headcommand {\slideentry {4}{0}{1}{25/25}{}{0}} -\headcommand {\beamer@framepages {25}{25}} -\headcommand {\slideentry {4}{0}{2}{26/26}{}{0}} -\headcommand {\beamer@framepages {26}{26}} -\headcommand {\beamer@sectionpages {25}{26}} -\headcommand {\beamer@subsectionpages {25}{26}} -\headcommand {\sectionentry {5}{Recommended Problems and References}{27}{Recommended Problems and References}{0}} -\headcommand {\slideentry {5}{0}{1}{27/27}{}{0}} -\headcommand {\beamer@framepages {27}{27}} -\headcommand {\slideentry {5}{0}{2}{28/28}{}{0}} -\headcommand {\beamer@framepages {28}{28}} -\headcommand {\slideentry {5}{0}{3}{29/29}{}{0}} -\headcommand {\beamer@framepages {29}{29}} -\headcommand {\beamer@partpages {1}{29}} -\headcommand {\beamer@subsectionpages {27}{29}} -\headcommand {\beamer@sectionpages {27}{29}} -\headcommand {\beamer@documentpages {29}} -\headcommand {\gdef \inserttotalframenumber {29}} diff --git a/slides-resources/6_slow-code/6_slow-code.pdf b/slides-resources/6_slow-code/6_slow-code.pdf deleted file mode 100644 index 33c6f85..0000000 Binary files a/slides-resources/6_slow-code/6_slow-code.pdf and /dev/null differ diff --git a/slides-resources/6_slow-code/6_slow-code.qmd b/slides-resources/6_slow-code/6_slow-code.qmd deleted file mode 100644 index aeb5cb0..0000000 --- a/slides-resources/6_slow-code/6_slow-code.qmd +++ /dev/null @@ -1,318 +0,0 @@ ---- -title: "Why is my code slow?" -format: - beamer: - institute: Data Sciences Institute, UofT - theme: Boadilla - colortheme: rose -execute: - echo: true -editor: visual -author: Salaar Liaqat ---- - -## Outline - -- Caching, Memoization, and Vectorization - -- Parallel Computing - -- Greedy and Exhaustive Algorithms - -- Faster Implementations versus Faster Algorithms - -# Caching, Memoization, and Vectorization - -## Caching - -- *Caching* refers to storing things for later use - - - Your browser probably does by temporarily downloading page details on your local disk - - - Faster, reduces server load - - - Other examples include 3D rendering and saving common database queries - -- However, caching usually takes space in exchange for faster run times - -- The *space-time* trade off is a case where an algorithm trades increased space usage for faster runtimes - -## Memoization - -- *Memoization* refers to storing results of function calls to use for later - - - Specific method of caching - -- This is useful for methods with a lot of repeated computations - -- For instance, in our recursive Fibonacci number function. - -- `fib(12)` is called by `fib(13)`, `fib(14)` etc. - - - And `fib(3)` is called many many times - -- $F(5) = F(4) + F(3) = F(3) + F(2) + F(2) + F(1)$ Which calculates repeated subproblems - -## How Memoization Works - -- Since we store the results, each function call is only made once, making the time complexity $O(n)$, much better than $O(2^n)$ [^1] - -- Memoization can also avoid the maximum recursion depth error because the call stack is smaller - -[^1]: From Bhargava chapter 8 - -![](images/memo.png){width="427"} - -## Memoization Python - -```{python} -cache = {0: 0, 1: 1} - -def fib(n): - if n in cache: - return cache[n] - else: - cache[n] = fib(n - 1) + fib(n - 2) - return cache[n] -``` - -For the base cases, we replace calling `fib(0)` and `fib(1)` by getting the values from the dictionary - -## Memoization Python - -- We can use the `functools` library, which is included in the standard library (no pip install needed!) - - - `functools` does memoization for you! - -- We can use the `@cache` decorator, but the cached dictionary can grow to massive sizes - -- Instead, `@lru_cache(maxsize = n)` uses the LRU (least recently used) `n` computations - -- Alternatively, we can use `joblib` to store the memoized results in a file - -## Memoization Python - -```{python} -from functools import lru_cache - -@lru_cache(maxsize=10) -def fib_rec(n): - if n == 0 or n == 1: - return n - else: - return fib_rec(n-1) + fib_rec(n-2) -``` - -## Vectorized Operations - -- *Vectorization* is a technique of implementing array operations without for loops - -- We use functions defined by various modules that are highly optimized for the specific problem - -- NumPy provides a lot of functions that vectorized and are faster than for loops - - - Array add/subtract/multiply/divide by scalar - - - Sum of array - - - Max/min of array - -- Keep this in mind for some ML processes that are iterative, such as gradient descent - -## Why Vectorized Operations Work - -- Python (and R) are interpreted languages. There is no compiler and the languages are dynamic - -- C language, for instance, makes optimization at the compiler level (before execution) to speed up your code - -- Thus, NumPy implements arrays in C, which speeds things up - -- The other reason vectorization works in because of parallelization - -# Parallel Computing - -## Parallelization - -Compare the following codes. What are their run times? - -```{python} -def fib(n): - if n <= 1: - return n - else: - return fib(n - 1) + fib(n - 2) -``` - -## Parallelization - -```{python} -import numpy - -def add_one(n, x): - y = np.zeros(n) - for i in range(n): - y[i] = x[i] + 1 - - return y -``` - -## Parallelization - -- Both are $O(n)$, but the second code chunk can be done in *parallel* because the $n$ computations are independent. - -- Fibonacci depends on the previous two values - -- The requirements for code to the parallelized and vectorized are similar, but not the same - -- The Numba library can help will parallelizing your code - -- Note parallel means the process takes place on one machine, but *distributed* means the computation is shared across many machines - -# Greedy and Exhaustive Algorithms - -## Greedy Approach (literally) - -- Let's revisit the knapsack problem, taking a different approach. - -- The items are: - - - Stereo: \$3000, 4 kg - - - Laptop: \$2000, 3 kg - - - Guitar: \$1500, 1 kg - -- If we follow the rule "get the most valuable item, then get second most valuable etc." we would make \$3000 by taking the stereo, which isn't the optimal \$3500 - -- A *greedy algorithm* picks the optimal move at each step, which hopefully leads to the overall optimal solution - - - But it finds the solution in $O(n)$ time - -## Greedy Apporach - -- Let's say you could take fractions of an item and we tried the greedy approach - - - Peanuts: \$7/kg - - - Rice: \$5/kg - - - Tea: \$12/kg - -- We would take tea until it runs out, followed by peanuts and rice. This is the optimal solution in $O(n)$ time! - -## Classroom Scheduling Problem - -- Suppose we want to hold as many classes in a classroom as possible [^2] - -[^2]: From Bhargava chapter 8 - -| Class | Start | End | -|--------------|---------|---------| -| Yoga | 9AM | 10AM | -| Music Theory | 9:30AM | 11AM | -| Painting | 10AM | 11AM | -| Algorithms | 10:30AM | 11:30AM | -| Calculus | 11AM | 12PM | - -2 Minutes: write down a greedy algorithm to solve this problem - -## Classroom Scheduling Problem - -Algorithm - -1. Pick the class that ends the soonest. This is the first class you’ll hold in this classroom - -2. Now, you have to pick a class that starts after the first class. Again, pick the class that ends the soonest. This is the second class you’ll hold - -3. Repeat the second step - -This not only produces the correct solution but also does so in $O(n)$ time, for $n$ classes! - -## Classroom Scheduling Problem - -- An alternative algorithm is the *exhaustive approach* - - - We try every combination of classes. At the end, we see which solution fits the most classes - - - We try every combination of items to steal. At the end, we see which solution has the most value - -- While brute forcing might sound always unnecessary, there are cases where it is needed to get the optimal solution - - - When performing subset selection for regression or decision tree, we can't guarantee the variables are uncorrelated. So forward/backward stepwise selection isn't guaranteed to produce the best outcome - - More on this in a few slides - -- 2 minutes: what is the time complexity of best subset selection? - -## Greedy Approximation Algorithms - -- Problems involving finding the best subset of a variable to max/min an objective value are generalized as the problem of finding the best *power set*. - - - There are $2^n$ power sets, which becomes impossible to calculate past $n=100$ (depending on the constants) - -- *Approximation algorithms* are judged by how fast they are and how close they are to the optimal solution - - - Forward/backwards stepwise selection is an approximation algorithm to best subset selection - -## N-P Complete Problems - -- In the power set problem, we need to brute force all combinations and test them. Such problems are called *N-P Complete* - - - A lot of smart people think it's not possible to solve these with efficient algorithms - -- It's hard to tell if a problem is N-P complete - - - Finding the shortest path between two points is N-P complete (travelling salesman) - - - But the knapsack problem isn't N-P complete because we can solve it using dynamic programming - -## Live Coding - -You are given an integer array prices where `prices[i]` is the price of a given stock on the $i$th day.On each day, you may decide to buy and/or sell the stock. You can only hold at most one share of the stock at any time. However, you can buy it then immediately sell it on the same day. - -Find and return the maximum profit you can achieve. - -```{python} -#| eval: false -# INPUT -prices = [7,1,5,3,6,4] -# OUTPUT -7 -``` - -From [leetcode](https://leetcode.com/problems/best-time-to-buy-and-sell-stock-ii/description/) - -# Faster Implementations versus Faster Algorithms - -## Faster Implementations versus Faster Algorithms - -- There are two ways we speed up our code - - - Use a faster algorithm, such as dynamic programming instead of brute force. Algorithms are concerned with the approach to the problem - - - Use a faster implementation, such as vectorization instead of loops - -- It is useful to think about these separately when developing a programming, then combining them to create a super-fast approach! - -# Recommended Problems and References - -## Recommended Problems and Readings - -- Cormen: Chapter 34 on NP-Completeness (highly optional) - -- Bhargava: Chapter 8 exercises - - - 8.1 - 8.8 - -- Vectorize the second code chunk in the Parallelization section - -- [Find the longest palindrome from a string](https://leetcode.com/problems/longest-palindrome/) Hint: use a greedy alogrithm - -- [Computing Pascal's triangle](https://leetcode.com/problems/pascals-triangle/) Hint: use dynamic programming - -## References - -- Bhargava, A. Y. (2016). *Grokking algorithms: An illustrated guide for programmers and other curious people.* Manning. Chapter 1. - -- Cormen, T. H. (Ed.). (2009). *Introduction to algorithms* (3rd ed). MIT Press. Chapter 1 and 3. - -- diff --git a/slides-resources/6_slow-code/6_slow-code.snm b/slides-resources/6_slow-code/6_slow-code.snm deleted file mode 100644 index e69de29..0000000 diff --git a/slides-resources/6_slow-code/6_slow-code.tex b/slides-resources/6_slow-code/6_slow-code.tex deleted file mode 100644 index 0cb18c9..0000000 --- a/slides-resources/6_slow-code/6_slow-code.tex +++ /dev/null @@ -1,742 +0,0 @@ -% Options for packages loaded elsewhere -\PassOptionsToPackage{unicode}{hyperref} -\PassOptionsToPackage{hyphens}{url} -% -\documentclass[ - ignorenonframetext, -]{beamer} -\usepackage{pgfpages} -\setbeamertemplate{caption}[numbered] -\setbeamertemplate{caption label separator}{: } -\setbeamercolor{caption name}{fg=normal text.fg} -\beamertemplatenavigationsymbolsempty -% Prevent slide breaks in the middle of a paragraph -\widowpenalties 1 10000 -\raggedbottom -\setbeamertemplate{part page}{ - \centering - \begin{beamercolorbox}[sep=16pt,center]{part title} - \usebeamerfont{part title}\insertpart\par - \end{beamercolorbox} -} -\setbeamertemplate{section page}{ - \centering - \begin{beamercolorbox}[sep=12pt,center]{part title} - \usebeamerfont{section title}\insertsection\par - \end{beamercolorbox} -} -\setbeamertemplate{subsection page}{ - \centering - \begin{beamercolorbox}[sep=8pt,center]{part title} - \usebeamerfont{subsection title}\insertsubsection\par - \end{beamercolorbox} -} -\AtBeginPart{ - \frame{\partpage} -} -\AtBeginSection{ - \ifbibliography - \else - \frame{\sectionpage} - \fi -} -\AtBeginSubsection{ - \frame{\subsectionpage} -} - -\usepackage{amsmath,amssymb} -\usepackage{iftex} -\ifPDFTeX - \usepackage[T1]{fontenc} - \usepackage[utf8]{inputenc} - \usepackage{textcomp} % provide euro and other symbols -\else % if luatex or xetex - \usepackage{unicode-math} - \defaultfontfeatures{Scale=MatchLowercase} - \defaultfontfeatures[\rmfamily]{Ligatures=TeX,Scale=1} -\fi -\usepackage{lmodern} -\usetheme[]{Boadilla} -\usecolortheme{rose} -\ifPDFTeX\else - % xetex/luatex font selection -\fi -% Use upquote if available, for straight quotes in verbatim environments -\IfFileExists{upquote.sty}{\usepackage{upquote}}{} -\IfFileExists{microtype.sty}{% use microtype if available - \usepackage[]{microtype} - \UseMicrotypeSet[protrusion]{basicmath} % disable protrusion for tt fonts -}{} -\makeatletter -\@ifundefined{KOMAClassName}{% if non-KOMA class - \IfFileExists{parskip.sty}{% - \usepackage{parskip} - }{% else - \setlength{\parindent}{0pt} - \setlength{\parskip}{6pt plus 2pt minus 1pt}} -}{% if KOMA class - \KOMAoptions{parskip=half}} -\makeatother -\usepackage{xcolor} -\newif\ifbibliography -\setlength{\emergencystretch}{3em} % prevent overfull lines -\setcounter{secnumdepth}{-\maxdimen} % remove section numbering - -\usepackage{color} -\usepackage{fancyvrb} -\newcommand{\VerbBar}{|} -\newcommand{\VERB}{\Verb[commandchars=\\\{\}]} -\DefineVerbatimEnvironment{Highlighting}{Verbatim}{commandchars=\\\{\}} -% Add ',fontsize=\small' for more characters per line -\usepackage{framed} -\definecolor{shadecolor}{RGB}{241,243,245} -\newenvironment{Shaded}{\begin{snugshade}}{\end{snugshade}} -\newcommand{\AlertTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\AnnotationTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{#1}} -\newcommand{\AttributeTok}[1]{\textcolor[rgb]{0.40,0.45,0.13}{#1}} -\newcommand{\BaseNTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\BuiltInTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\CharTok}[1]{\textcolor[rgb]{0.13,0.47,0.30}{#1}} -\newcommand{\CommentTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{#1}} -\newcommand{\CommentVarTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{\textit{#1}}} -\newcommand{\ConstantTok}[1]{\textcolor[rgb]{0.56,0.35,0.01}{#1}} -\newcommand{\ControlFlowTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\DataTypeTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\DecValTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\DocumentationTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{\textit{#1}}} -\newcommand{\ErrorTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\ExtensionTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\FloatTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\FunctionTok}[1]{\textcolor[rgb]{0.28,0.35,0.67}{#1}} -\newcommand{\ImportTok}[1]{\textcolor[rgb]{0.00,0.46,0.62}{#1}} -\newcommand{\InformationTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{#1}} -\newcommand{\KeywordTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\NormalTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\OperatorTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{#1}} -\newcommand{\OtherTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\PreprocessorTok}[1]{\textcolor[rgb]{0.68,0.00,0.00}{#1}} -\newcommand{\RegionMarkerTok}[1]{\textcolor[rgb]{0.00,0.23,0.31}{#1}} -\newcommand{\SpecialCharTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{#1}} -\newcommand{\SpecialStringTok}[1]{\textcolor[rgb]{0.13,0.47,0.30}{#1}} -\newcommand{\StringTok}[1]{\textcolor[rgb]{0.13,0.47,0.30}{#1}} -\newcommand{\VariableTok}[1]{\textcolor[rgb]{0.07,0.07,0.07}{#1}} -\newcommand{\VerbatimStringTok}[1]{\textcolor[rgb]{0.13,0.47,0.30}{#1}} -\newcommand{\WarningTok}[1]{\textcolor[rgb]{0.37,0.37,0.37}{\textit{#1}}} - -\providecommand{\tightlist}{% - \setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}\usepackage{longtable,booktabs,array} -\usepackage{calc} % for calculating minipage widths -\usepackage{caption} -% Make caption package work with longtable -\makeatletter -\def\fnum@table{\tablename~\thetable} -\makeatother -\usepackage{graphicx} -\makeatletter -\def\maxwidth{\ifdim\Gin@nat@width>\linewidth\linewidth\else\Gin@nat@width\fi} -\def\maxheight{\ifdim\Gin@nat@height>\textheight\textheight\else\Gin@nat@height\fi} -\makeatother -% Scale images if necessary, so that they will not overflow the page -% margins by default, and it is still possible to overwrite the defaults -% using explicit options in \includegraphics[width, height, ...]{} -\setkeys{Gin}{width=\maxwidth,height=\maxheight,keepaspectratio} -% Set default figure placement to htbp -\makeatletter -\def\fps@figure{htbp} -\makeatother - -\makeatletter -\makeatother -\makeatletter -\makeatother -\makeatletter -\@ifpackageloaded{caption}{}{\usepackage{caption}} -\AtBeginDocument{% -\ifdefined\contentsname - \renewcommand*\contentsname{Table of contents} -\else - \newcommand\contentsname{Table of contents} -\fi -\ifdefined\listfigurename - \renewcommand*\listfigurename{List of Figures} -\else - \newcommand\listfigurename{List of Figures} -\fi -\ifdefined\listtablename - \renewcommand*\listtablename{List of Tables} -\else - \newcommand\listtablename{List of Tables} -\fi -\ifdefined\figurename - \renewcommand*\figurename{Figure} -\else - \newcommand\figurename{Figure} -\fi -\ifdefined\tablename - \renewcommand*\tablename{Table} -\else - \newcommand\tablename{Table} -\fi -} -\@ifpackageloaded{float}{}{\usepackage{float}} -\floatstyle{ruled} -\@ifundefined{c@chapter}{\newfloat{codelisting}{h}{lop}}{\newfloat{codelisting}{h}{lop}[chapter]} -\floatname{codelisting}{Listing} -\newcommand*\listoflistings{\listof{codelisting}{List of Listings}} -\makeatother -\makeatletter -\@ifpackageloaded{caption}{}{\usepackage{caption}} -\@ifpackageloaded{subcaption}{}{\usepackage{subcaption}} -\makeatother -\makeatletter -\@ifpackageloaded{tcolorbox}{}{\usepackage[skins,breakable]{tcolorbox}} -\makeatother -\makeatletter -\@ifundefined{shadecolor}{\definecolor{shadecolor}{rgb}{.97, .97, .97}} -\makeatother -\makeatletter -\makeatother -\makeatletter -\makeatother -\ifLuaTeX - \usepackage{selnolig} % disable illegal ligatures -\fi -\IfFileExists{bookmark.sty}{\usepackage{bookmark}}{\usepackage{hyperref}} -\IfFileExists{xurl.sty}{\usepackage{xurl}}{} % add URL line breaks if available -\urlstyle{same} % disable monospaced font for URLs -\hypersetup{ - pdftitle={Why is my code slow?}, - pdfauthor={Salaar Liaqat}, - hidelinks, - pdfcreator={LaTeX via pandoc}} - -\title{Why is my code slow?} -\author{Salaar Liaqat} -\date{} -\institute{Data Sciences Institute, UofT} - -\begin{document} -\frame{\titlepage} -\ifdefined\Shaded\renewenvironment{Shaded}{\begin{tcolorbox}[enhanced, interior hidden, sharp corners, frame hidden, borderline west={3pt}{0pt}{shadecolor}, breakable, boxrule=0pt]}{\end{tcolorbox}}\fi - -\begin{frame}{Outline} -\protect\hypertarget{outline}{} -\begin{itemize} -\item - Caching, Memoization, and Vectorization -\item - Parallel Computing -\item - Greedy and Exhaustive Algorithms -\item - Faster Implementations versus Faster Algorithms -\end{itemize} -\end{frame} - -\hypertarget{caching-memoization-and-vectorization}{% -\section{Caching, Memoization, and -Vectorization}\label{caching-memoization-and-vectorization}} - -\begin{frame}{Caching} -\protect\hypertarget{caching}{} -\begin{itemize} -\item - \emph{Caching} refers to storing things for later use - - \begin{itemize} - \item - Your browser probably does by temporarily downloading page details - on your local disk - \item - Faster, reduces server load - \item - Other examples include 3D rendering and saving common database - queries - \end{itemize} -\item - However, caching usually takes space in exchange for faster run times -\item - The \emph{space-time} trade off is a case where an algorithm trades - increased space usage for faster runtimes -\end{itemize} -\end{frame} - -\begin{frame}[fragile]{Memoization} -\protect\hypertarget{memoization}{} -\begin{itemize} -\item - \emph{Memoization} refers to storing results of function calls to use - for later - - \begin{itemize} - \tightlist - \item - Specific method of caching - \end{itemize} -\item - This is useful for methods with a lot of repeated computations -\item - For instance, in our recursive Fibonacci number function. -\item - \texttt{fib(12)} is called by \texttt{fib(13)}, \texttt{fib(14)} etc. - - \begin{itemize} - \tightlist - \item - And \texttt{fib(3)} is called many many times - \end{itemize} -\item - \(F(5) = F(4) + F(3) = F(3) + F(2) + F(2) + F(1)\) Which calculates - repeated subproblems -\end{itemize} -\end{frame} - -\begin{frame}{How Memoization Works} -\protect\hypertarget{how-memoization-works}{} -\begin{itemize} -\item - Since we store the results, each function call is only made once, - making the time complexity \(O(n)\), much better than \(O(2^n)\) - \footnote<.->{From Bhargava chapter 8} -\item - Memoization can also avoid the maximum recursion depth error because - the call stack is smaller -\end{itemize} - -\includegraphics[width=4.44792in,height=\textheight]{images/memo.png} -\end{frame} - -\begin{frame}[fragile]{Memoization Python} -\protect\hypertarget{memoization-python}{} -\begin{Shaded} -\begin{Highlighting}[] -\NormalTok{cache }\OperatorTok{=}\NormalTok{ \{}\DecValTok{0}\NormalTok{: }\DecValTok{0}\NormalTok{, }\DecValTok{1}\NormalTok{: }\DecValTok{1}\NormalTok{\}} - -\KeywordTok{def}\NormalTok{ fib(n):} - \ControlFlowTok{if}\NormalTok{ n }\KeywordTok{in}\NormalTok{ cache:} - \ControlFlowTok{return}\NormalTok{ cache[n]} - \ControlFlowTok{else}\NormalTok{:} -\NormalTok{ cache[n] }\OperatorTok{=}\NormalTok{ fib(n }\OperatorTok{{-}} \DecValTok{1}\NormalTok{) }\OperatorTok{+}\NormalTok{ fib(n }\OperatorTok{{-}} \DecValTok{2}\NormalTok{)} - \ControlFlowTok{return}\NormalTok{ cache[n]} -\end{Highlighting} -\end{Shaded} - -For the base cases, we replace calling \texttt{fib(0)} and -\texttt{fib(1)} by getting the values from the dictionary -\end{frame} - -\begin{frame}[fragile]{Memoization Python} -\protect\hypertarget{memoization-python-1}{} -\begin{itemize} -\item - We can use the \texttt{functools} library, which is included in the - standard library (no pip install needed!) - - \begin{itemize} - \tightlist - \item - \texttt{functools} does memoization for you! - \end{itemize} -\item - We can use the \texttt{@cache} decorator, but the cached dictionary - can grow to massive sizes -\item - Instead, \texttt{@lru\_cache(maxsize\ =\ n)} uses the LRU (least - recently used) \texttt{n} computations -\item - Alternatively, we can use \texttt{joblib} to store the memoized - results in a file -\end{itemize} -\end{frame} - -\begin{frame}[fragile]{Memoization Python} -\protect\hypertarget{memoization-python-2}{} -\begin{Shaded} -\begin{Highlighting}[] -\ImportTok{from}\NormalTok{ functools }\ImportTok{import}\NormalTok{ lru\_cache} - -\AttributeTok{@lru\_cache}\NormalTok{(maxsize}\OperatorTok{=}\DecValTok{10}\NormalTok{)} -\KeywordTok{def}\NormalTok{ fib\_rec(n):} - \ControlFlowTok{if}\NormalTok{ n }\OperatorTok{==} \DecValTok{0} \KeywordTok{or}\NormalTok{ n }\OperatorTok{==} \DecValTok{1}\NormalTok{:} - \ControlFlowTok{return}\NormalTok{ n} - \ControlFlowTok{else}\NormalTok{:} - \ControlFlowTok{return}\NormalTok{ fib\_rec(n}\OperatorTok{{-}}\DecValTok{1}\NormalTok{) }\OperatorTok{+}\NormalTok{ fib\_rec(n}\OperatorTok{{-}}\DecValTok{2}\NormalTok{)} -\end{Highlighting} -\end{Shaded} -\end{frame} - -\begin{frame}{Vectorized Operations} -\protect\hypertarget{vectorized-operations}{} -\begin{itemize} -\item - \emph{Vectorization} is a technique of implementing array operations - without for loops -\item - We use functions defined by various modules that are highly optimized - for the specific problem -\item - NumPy provides a lot of functions that vectorized and are faster than - for loops - - \begin{itemize} - \item - Array add/subtract/multiply/divide by scalar - \item - Sum of array - \item - Max/min of array - \end{itemize} -\item - Keep this in mind for some ML processes that are iterative, such as - gradient descent -\end{itemize} -\end{frame} - -\begin{frame}{Why Vectorized Operations Work} -\protect\hypertarget{why-vectorized-operations-work}{} -\begin{itemize} -\item - Python (and R) are interpreted languages. There is no compiler and the - languages are dynamic -\item - C language, for instance, makes optimization at the compiler level - (before execution) to speed up your code -\item - Thus, NumPy implements arrays in C, which speeds things up -\item - The other reason vectorization works in because of parallelization -\end{itemize} -\end{frame} - -\hypertarget{parallel-computing}{% -\section{Parallel Computing}\label{parallel-computing}} - -\begin{frame}[fragile]{Parallelization} -\protect\hypertarget{parallelization}{} -Compare the following codes. What are their run times? - -\begin{Shaded} -\begin{Highlighting}[] -\KeywordTok{def}\NormalTok{ fib(n):} - \ControlFlowTok{if}\NormalTok{ n }\OperatorTok{\textless{}=} \DecValTok{1}\NormalTok{:} - \ControlFlowTok{return}\NormalTok{ n} - \ControlFlowTok{else}\NormalTok{:} - \ControlFlowTok{return}\NormalTok{ fib(n }\OperatorTok{{-}} \DecValTok{1}\NormalTok{) }\OperatorTok{+}\NormalTok{ fib(n }\OperatorTok{{-}} \DecValTok{2}\NormalTok{)} -\end{Highlighting} -\end{Shaded} -\end{frame} - -\begin{frame}[fragile]{Parallelization} -\protect\hypertarget{parallelization-1}{} -\begin{Shaded} -\begin{Highlighting}[] -\ImportTok{import}\NormalTok{ numpy} - -\KeywordTok{def}\NormalTok{ add\_one(n, x):} -\NormalTok{ y }\OperatorTok{=}\NormalTok{ np.zeros(n)} - \ControlFlowTok{for}\NormalTok{ i }\KeywordTok{in} \BuiltInTok{range}\NormalTok{(n):} -\NormalTok{ y[i] }\OperatorTok{=}\NormalTok{ x[i] }\OperatorTok{+} \DecValTok{1} - - \ControlFlowTok{return}\NormalTok{ y} -\end{Highlighting} -\end{Shaded} -\end{frame} - -\begin{frame}{Parallelization} -\protect\hypertarget{parallelization-2}{} -\begin{itemize} -\item - Both are \(O(n)\), but the second code chunk can be done in - \emph{parallel} because the \(n\) computations are independent. -\item - Fibonacci depends on the previous two values -\item - The requirements for code to the parallelized and vectorized are - similar, but not the same -\item - The Numba library can help will parallelizing your code -\item - Note parallel means the process takes place on one machine, but - \emph{distributed} means the computation is shared across many - machines -\end{itemize} -\end{frame} - -\hypertarget{greedy-and-exhaustive-algorithms}{% -\section{Greedy and Exhaustive -Algorithms}\label{greedy-and-exhaustive-algorithms}} - -\begin{frame}{Greedy Approach (literally)} -\protect\hypertarget{greedy-approach-literally}{} -\begin{itemize} -\item - Let's revisit the knapsack problem, taking a different approach. -\item - The items are: - - \begin{itemize} - \item - Stereo: \$3000, 4 kg - \item - Laptop: \$2000, 3 kg - \item - Guitar: \$1500, 1 kg - \end{itemize} -\item - If we follow the rule ``get the most valuable item, then get second - most valuable etc.'' we would make \$3000 by taking the stereo, which - isn't the optimal \$3500 -\item - A \emph{greedy algorithm} picks the optimal move at each step, which - hopefully leads to the overall optimal solution - - \begin{itemize} - \tightlist - \item - But it finds the solution in \(O(n)\) time - \end{itemize} -\end{itemize} -\end{frame} - -\begin{frame}{Greedy Apporach} -\protect\hypertarget{greedy-apporach}{} -\begin{itemize} -\item - Let's say you could take fractions of an item and we tried the greedy - approach - - \begin{itemize} - \item - Peanuts: \$7/kg - \item - Rice: \$5/kg - \item - Tea: \$12/kg - \end{itemize} -\item - We would take tea until it runs out, followed by peanuts and rice. - This is the optimal solution in \(O(n)\) time! -\end{itemize} -\end{frame} - -\begin{frame}{Classroom Scheduling Problem} -\protect\hypertarget{classroom-scheduling-problem}{} -\begin{itemize} -\tightlist -\item - Suppose we want to hold as many classes in a classroom as possible - \footnote<.->{From Bhargava chapter 8} -\end{itemize} - -\begin{longtable}[]{@{}lll@{}} -\toprule\noalign{} -Class & Start & End \\ -\midrule\noalign{} -\endhead -Yoga & 9AM & 10AM \\ -Music Theory & 9:30AM & 11AM \\ -Painting & 10AM & 11AM \\ -Algorithms & 10:30AM & 11:30AM \\ -Calculus & 11AM & 12PM \\ -\bottomrule\noalign{} -\end{longtable} - -2 Minutes: write down a greedy algorithm to solve this problem -\end{frame} - -\begin{frame}{Classroom Scheduling Problem} -\protect\hypertarget{classroom-scheduling-problem-1}{} -Algorithm - -\begin{enumerate} -\item - Pick the class that ends the soonest. This is the first class you'll - hold in this classroom -\item - Now, you have to pick a class that starts after the first class. - Again, pick the class that ends the soonest. This is the second class - you'll hold -\item - Repeat the second step -\end{enumerate} - -This not only produces the correct solution but also does so in \(O(n)\) -time, for \(n\) classes! -\end{frame} - -\begin{frame}{Classroom Scheduling Problem} -\protect\hypertarget{classroom-scheduling-problem-2}{} -\begin{itemize} -\item - An alternative algorithm is the \emph{exhaustive approach} - - \begin{itemize} - \item - We try every combination of classes. At the end, we see which - solution fits the most classes - \item - We try every combination of items to steal. At the end, we see which - solution has the most value - \end{itemize} -\item - While brute forcing might sound always unnecessary, there are cases - where it is needed to get the optimal solution - - \begin{itemize} - \tightlist - \item - When performing subset selection for regression or decision tree, we - can't guarantee the variables are uncorrelated. So forward/backward - stepwise selection isn't guaranteed to produce the best outcome - \item - More on this in a few slides - \end{itemize} -\item - 2 minutes: what is the time complexity of best subset selection? -\end{itemize} -\end{frame} - -\begin{frame}{Greedy Approximation Algorithms} -\protect\hypertarget{greedy-approximation-algorithms}{} -\begin{itemize} -\item - Problems involving finding the best subset of a variable to max/min an - objective value are generalized as the problem of finding the best - \emph{power set}. - - \begin{itemize} - \tightlist - \item - There are \(2^n\) power sets, which becomes impossible to calculate - past \(n=100\) (depending on the constants) - \end{itemize} -\item - \emph{Approximation algorithms} are judged by how fast they are and - how close they are to the optimal solution - - \begin{itemize} - \tightlist - \item - Forward/backwards stepwise selection is an approximation algorithm - to best subset selection - \end{itemize} -\end{itemize} -\end{frame} - -\begin{frame}{N-P Complete Problems} -\protect\hypertarget{n-p-complete-problems}{} -\begin{itemize} -\item - In the power set problem, we need to brute force all combinations and - test them. Such problems are called \emph{N-P Complete} - - \begin{itemize} - \tightlist - \item - A lot of smart people think it's not possible to solve these with - efficient algorithms - \end{itemize} -\item - It's hard to tell if a problem is N-P complete - - \begin{itemize} - \item - Finding the shortest path between two points is N-P complete - (travelling salesman) - \item - But the knapsack problem isn't N-P complete because we can solve it - using dynamic programming - \end{itemize} -\end{itemize} -\end{frame} - -\begin{frame}[fragile]{Live Coding} -\protect\hypertarget{live-coding}{} -You are given an integer array prices where \texttt{prices{[}i{]}} is -the price of a given stock on the \(i\)th day.On each day, you may -decide to buy and/or sell the stock. You can only hold at most one share -of the stock at any time. However, you can buy it then immediately sell -it on the same day. - -Find and return the maximum profit you can achieve. - -\begin{Shaded} -\begin{Highlighting}[] -\CommentTok{\# INPUT} -\NormalTok{prices }\OperatorTok{=}\NormalTok{ [}\DecValTok{7}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{5}\NormalTok{,}\DecValTok{3}\NormalTok{,}\DecValTok{6}\NormalTok{,}\DecValTok{4}\NormalTok{]} -\CommentTok{\# OUTPUT} -\DecValTok{7} -\end{Highlighting} -\end{Shaded} - -From -\href{https://leetcode.com/problems/best-time-to-buy-and-sell-stock-ii/description/}{leetcode} -\end{frame} - -\hypertarget{faster-implementations-versus-faster-algorithms}{% -\section{Faster Implementations versus Faster -Algorithms}\label{faster-implementations-versus-faster-algorithms}} - -\begin{frame}{Faster Implementations versus Faster Algorithms} -\protect\hypertarget{faster-implementations-versus-faster-algorithms-1}{} -\begin{itemize} -\item - There are two ways we speed up our code - - \begin{itemize} - \item - Use a faster algorithm, such as dynamic programming instead of brute - force. Algorithms are concerned with the approach to the problem - \item - Use a faster implementation, such as vectorization instead of loops - \end{itemize} -\item - It is useful to think about these separately when developing a - programming, then combining them to create a super-fast approach! -\end{itemize} -\end{frame} - -\hypertarget{recommended-problems-and-references}{% -\section{Recommended Problems and -References}\label{recommended-problems-and-references}} - -\begin{frame}{Recommended Problems and Readings} -\protect\hypertarget{recommended-problems-and-readings}{} -\begin{itemize} -\item - Cormen: Chapter 34 on NP-Completeness (highly optional) -\item - Bhargava: Chapter 8 exercises - - \begin{itemize} - \tightlist - \item - 8.1 - 8.8 - \end{itemize} -\item - Vectorize the second code chunk in the Parallelization section -\item - \href{https://leetcode.com/problems/longest-palindrome/}{Find the - longest palindrome from a string} Hint: use a greedy alogrithm -\item - \href{https://leetcode.com/problems/pascals-triangle/}{Computing - Pascal's triangle} Hint: use dynamic programming -\end{itemize} -\end{frame} - -\begin{frame}{References} -\protect\hypertarget{references}{} -\begin{itemize} -\item - Bhargava, A. Y. (2016). \emph{Grokking algorithms: An illustrated - guide for programmers and other curious people.} Manning. Chapter 1. -\item - Cormen, T. H. (Ed.). (2009). \emph{Introduction to algorithms} (3rd - ed). MIT Press. Chapter 1 and 3. -\item -\end{itemize} -\end{frame} - - - -\end{document} diff --git a/slides-resources/6_slow-code/6_slow-code.toc b/slides-resources/6_slow-code/6_slow-code.toc deleted file mode 100644 index 830bc5a..0000000 --- a/slides-resources/6_slow-code/6_slow-code.toc +++ /dev/null @@ -1,5 +0,0 @@ -\beamer@sectionintoc {1}{Caching, Memoization, and Vectorization}{3}{0}{1} -\beamer@sectionintoc {2}{Parallel Computing}{12}{0}{2} -\beamer@sectionintoc {3}{Greedy and Exhaustive Algorithms}{16}{0}{3} -\beamer@sectionintoc {4}{Faster Implementations versus Faster Algorithms}{25}{0}{4} -\beamer@sectionintoc {5}{Recommended Problems and References}{27}{0}{5} diff --git a/slides-resources/6_slow-code/6_slow-code.vrb b/slides-resources/6_slow-code/6_slow-code.vrb deleted file mode 100644 index cec6085..0000000 --- a/slides-resources/6_slow-code/6_slow-code.vrb +++ /dev/null @@ -1,21 +0,0 @@ -\frametitle{Live Coding} -\protect\hypertarget{live-coding}{} -You are given an integer array prices where \texttt{prices{[}i{]}} is -the price of a given stock on the \(i\)th day.On each day, you may -decide to buy and/or sell the stock. You can only hold at most one share -of the stock at any time. However, you can buy it then immediately sell -it on the same day. - -Find and return the maximum profit you can achieve. - -\begin{Shaded} -\begin{Highlighting}[] -\CommentTok{\# INPUT} -\NormalTok{prices }\OperatorTok{=}\NormalTok{ [}\DecValTok{7}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{5}\NormalTok{,}\DecValTok{3}\NormalTok{,}\DecValTok{6}\NormalTok{,}\DecValTok{4}\NormalTok{]} -\CommentTok{\# OUTPUT} -\DecValTok{7} -\end{Highlighting} -\end{Shaded} - -From -\href{https://leetcode.com/problems/best-time-to-buy-and-sell-stock-ii/description/}{leetcode} diff --git a/steps_to_ask_for_help.png b/steps_to_ask_for_help.png new file mode 100644 index 0000000..edc07a2 Binary files /dev/null and b/steps_to_ask_for_help.png differ