Skip to content

Commit d3362bc

Browse files
committed
Update notebooks to latest nbformat
1 parent 8e466db commit d3362bc

22 files changed

+119
-240
lines changed

01_the_machine_learning_landscape.ipynb

+2-2
Original file line numberDiff line numberDiff line change
@@ -3065,7 +3065,7 @@
30653065
"name": "python",
30663066
"nbconvert_exporter": "python",
30673067
"pygments_lexer": "ipython3",
3068-
"version": "3.7.3"
3068+
"version": "3.7.6"
30693069
},
30703070
"nav_menu": {},
30713071
"toc": {
@@ -3086,5 +3086,5 @@
30863086
}
30873087
},
30883088
"nbformat": 4,
3089-
"nbformat_minor": 1
3089+
"nbformat_minor": 4
30903090
}

02_end_to_end_machine_learning_project.ipynb

+3-5
Original file line numberDiff line numberDiff line change
@@ -5032,9 +5032,7 @@
50325032
},
50335033
{
50345034
"cell_type": "markdown",
5035-
"metadata": {
5036-
"collapsed": true
5037-
},
5035+
"metadata": {},
50385036
"source": [
50395037
"Question: Try a Support Vector Machine regressor (`sklearn.svm.SVR`), with various hyperparameters such as `kernel=\"linear\"` (with various values for the `C` hyperparameter) or `kernel=\"rbf\"` (with various values for the `C` and `gamma` hyperparameters). Don't worry about what these hyperparameters mean for now. How does the best `SVR` predictor perform?"
50405038
]
@@ -6090,7 +6088,7 @@
60906088
"name": "python",
60916089
"nbconvert_exporter": "python",
60926090
"pygments_lexer": "ipython3",
6093-
"version": "3.7.3"
6091+
"version": "3.7.6"
60946092
},
60956093
"nav_menu": {
60966094
"height": "279px",
@@ -6108,5 +6106,5 @@
61086106
}
61096107
},
61106108
"nbformat": 4,
6111-
"nbformat_minor": 1
6109+
"nbformat_minor": 4
61126110
}

03_classification.ipynb

+3-5
Original file line numberDiff line numberDiff line change
@@ -2009,9 +2009,7 @@
20092009
},
20102010
{
20112011
"cell_type": "markdown",
2012-
"metadata": {
2013-
"collapsed": true
2014-
},
2012+
"metadata": {},
20152013
"source": [
20162014
"# Exercise solutions"
20172015
]
@@ -4579,7 +4577,7 @@
45794577
"name": "python",
45804578
"nbconvert_exporter": "python",
45814579
"pygments_lexer": "ipython3",
4582-
"version": "3.7.3"
4580+
"version": "3.7.6"
45834581
},
45844582
"nav_menu": {},
45854583
"toc": {
@@ -4593,5 +4591,5 @@
45934591
}
45944592
},
45954593
"nbformat": 4,
4596-
"nbformat_minor": 1
4594+
"nbformat_minor": 4
45974595
}

04_training_linear_models.ipynb

+2-2
Original file line numberDiff line numberDiff line change
@@ -2759,7 +2759,7 @@
27592759
"name": "python",
27602760
"nbconvert_exporter": "python",
27612761
"pygments_lexer": "ipython3",
2762-
"version": "3.7.3"
2762+
"version": "3.7.6"
27632763
},
27642764
"nav_menu": {},
27652765
"toc": {
@@ -2773,5 +2773,5 @@
27732773
}
27742774
},
27752775
"nbformat": 4,
2776-
"nbformat_minor": 1
2776+
"nbformat_minor": 4
27772777
}

05_support_vector_machines.ipynb

+4-8
Original file line numberDiff line numberDiff line change
@@ -544,9 +544,7 @@
544544
},
545545
{
546546
"cell_type": "markdown",
547-
"metadata": {
548-
"collapsed": true
549-
},
547+
"metadata": {},
550548
"source": [
551549
"# Non-linear classification"
552550
]
@@ -1868,9 +1866,7 @@
18681866
},
18691867
{
18701868
"cell_type": "markdown",
1871-
"metadata": {
1872-
"collapsed": true
1873-
},
1869+
"metadata": {},
18741870
"source": [
18751871
"See appendix A."
18761872
]
@@ -2947,7 +2943,7 @@
29472943
"name": "python",
29482944
"nbconvert_exporter": "python",
29492945
"pygments_lexer": "ipython3",
2950-
"version": "3.7.3"
2946+
"version": "3.7.6"
29512947
},
29522948
"nav_menu": {},
29532949
"toc": {
@@ -2961,5 +2957,5 @@
29612957
}
29622958
},
29632959
"nbformat": 4,
2964-
"nbformat_minor": 1
2960+
"nbformat_minor": 4
29652961
}

06_decision_trees.ipynb

+4-8
Original file line numberDiff line numberDiff line change
@@ -900,9 +900,7 @@
900900
},
901901
{
902902
"cell_type": "markdown",
903-
"metadata": {
904-
"collapsed": true
905-
},
903+
"metadata": {},
906904
"source": [
907905
"# Exercise solutions"
908906
]
@@ -923,9 +921,7 @@
923921
},
924922
{
925923
"cell_type": "markdown",
926-
"metadata": {
927-
"collapsed": true
928-
},
924+
"metadata": {},
929925
"source": [
930926
"## 7."
931927
]
@@ -1253,7 +1249,7 @@
12531249
"name": "python",
12541250
"nbconvert_exporter": "python",
12551251
"pygments_lexer": "ipython3",
1256-
"version": "3.7.3"
1252+
"version": "3.7.6"
12571253
},
12581254
"nav_menu": {
12591255
"height": "309px",
@@ -1270,5 +1266,5 @@
12701266
}
12711267
},
12721268
"nbformat": 4,
1273-
"nbformat_minor": 1
1269+
"nbformat_minor": 4
12741270
}

07_ensemble_learning_and_random_forests.ipynb

+3-5
Original file line numberDiff line numberDiff line change
@@ -1922,9 +1922,7 @@
19221922
},
19231923
{
19241924
"cell_type": "markdown",
1925-
"metadata": {
1926-
"collapsed": true
1927-
},
1925+
"metadata": {},
19281926
"source": [
19291927
"# Exercise solutions"
19301928
]
@@ -2676,7 +2674,7 @@
26762674
"name": "python",
26772675
"nbconvert_exporter": "python",
26782676
"pygments_lexer": "ipython3",
2679-
"version": "3.7.3"
2677+
"version": "3.7.6"
26802678
},
26812679
"nav_menu": {
26822680
"height": "252px",
@@ -2693,5 +2691,5 @@
26932691
}
26942692
},
26952693
"nbformat": 4,
2696-
"nbformat_minor": 1
2694+
"nbformat_minor": 4
26972695
}

08_dimensionality_reduction.ipynb

+6-14
Original file line numberDiff line numberDiff line change
@@ -253,9 +253,7 @@
253253
},
254254
{
255255
"cell_type": "markdown",
256-
"metadata": {
257-
"collapsed": true
258-
},
256+
"metadata": {},
259257
"source": [
260258
"Notice that running PCA multiple times on slightly different datasets may result in different results. In general the only difference is that some axes may be flipped. In this example, PCA using Scikit-Learn gives the same projection as the one given by the SVD approach, except both axes are flipped:"
261259
]
@@ -2135,9 +2133,7 @@
21352133
},
21362134
{
21372135
"cell_type": "markdown",
2138-
"metadata": {
2139-
"collapsed": true
2140-
},
2136+
"metadata": {},
21412137
"source": [
21422138
"# Exercise solutions"
21432139
]
@@ -2158,9 +2154,7 @@
21582154
},
21592155
{
21602156
"cell_type": "markdown",
2161-
"metadata": {
2162-
"collapsed": true
2163-
},
2157+
"metadata": {},
21642158
"source": [
21652159
"## 9."
21662160
]
@@ -2704,9 +2698,7 @@
27042698
},
27052699
{
27062700
"cell_type": "markdown",
2707-
"metadata": {
2708-
"collapsed": true
2709-
},
2701+
"metadata": {},
27102702
"source": [
27112703
"*Exercise: Alternatively, you can write colored digits at the location of each instance, or even plot scaled-down versions of the digit images themselves (if you plot all digits, the visualization will be too cluttered, so you should either draw a random sample or plot an instance only if no other instance has already been plotted at a close distance). You should get a nice visualization with well-separated clusters of digits.*"
27122704
]
@@ -3258,9 +3250,9 @@
32583250
"name": "python",
32593251
"nbconvert_exporter": "python",
32603252
"pygments_lexer": "ipython3",
3261-
"version": "3.7.3"
3253+
"version": "3.7.6"
32623254
}
32633255
},
32643256
"nbformat": 4,
3265-
"nbformat_minor": 2
3257+
"nbformat_minor": 4
32663258
}

09_unsupervised_learning.ipynb

+5-11
Original file line numberDiff line numberDiff line change
@@ -1367,9 +1367,7 @@
13671367
{
13681368
"cell_type": "code",
13691369
"execution_count": 47,
1370-
"metadata": {
1371-
"scrolled": false
1372-
},
1370+
"metadata": {},
13731371
"outputs": [
13741372
{
13751373
"data": {
@@ -2031,9 +2029,7 @@
20312029
{
20322030
"cell_type": "code",
20332031
"execution_count": 71,
2034-
"metadata": {
2035-
"scrolled": false
2036-
},
2032+
"metadata": {},
20372033
"outputs": [
20382034
{
20392035
"name": "stdout",
@@ -2560,9 +2556,7 @@
25602556
{
25612557
"cell_type": "code",
25622558
"execution_count": 91,
2563-
"metadata": {
2564-
"scrolled": false
2565-
},
2559+
"metadata": {},
25662560
"outputs": [
25672561
{
25682562
"data": {
@@ -8145,9 +8139,9 @@
81458139
"name": "python",
81468140
"nbconvert_exporter": "python",
81478141
"pygments_lexer": "ipython3",
8148-
"version": "3.7.3"
8142+
"version": "3.7.6"
81498143
}
81508144
},
81518145
"nbformat": 4,
8152-
"nbformat_minor": 2
8146+
"nbformat_minor": 4
81538147
}

10_neural_nets_with_keras.ipynb

+4-8
Original file line numberDiff line numberDiff line change
@@ -3072,9 +3072,7 @@
30723072
},
30733073
{
30743074
"cell_type": "markdown",
3075-
"metadata": {
3076-
"collapsed": true
3077-
},
3075+
"metadata": {},
30783076
"source": [
30793077
"# Exercise solutions"
30803078
]
@@ -3088,9 +3086,7 @@
30883086
},
30893087
{
30903088
"cell_type": "markdown",
3091-
"metadata": {
3092-
"collapsed": true
3093-
},
3089+
"metadata": {},
30943090
"source": [
30953091
"See appendix A."
30963092
]
@@ -3716,7 +3712,7 @@
37163712
"name": "python",
37173713
"nbconvert_exporter": "python",
37183714
"pygments_lexer": "ipython3",
3719-
"version": "3.7.3"
3715+
"version": "3.7.6"
37203716
},
37213717
"nav_menu": {
37223718
"height": "264px",
@@ -3733,5 +3729,5 @@
37333729
}
37343730
},
37353731
"nbformat": 4,
3736-
"nbformat_minor": 1
3732+
"nbformat_minor": 4
37373733
}

11_training_deep_neural_networks.ipynb

+3-5
Original file line numberDiff line numberDiff line change
@@ -3732,9 +3732,7 @@
37323732
},
37333733
{
37343734
"cell_type": "markdown",
3735-
"metadata": {
3736-
"collapsed": true
3737-
},
3735+
"metadata": {},
37383736
"source": [
37393737
"# Exercises"
37403738
]
@@ -4800,7 +4798,7 @@
48004798
"name": "python",
48014799
"nbconvert_exporter": "python",
48024800
"pygments_lexer": "ipython3",
4803-
"version": "3.7.3"
4801+
"version": "3.7.6"
48044802
},
48054803
"nav_menu": {
48064804
"height": "360px",
@@ -4817,5 +4815,5 @@
48174815
}
48184816
},
48194817
"nbformat": 4,
4820-
"nbformat_minor": 1
4818+
"nbformat_minor": 4
48214819
}

0 commit comments

Comments
 (0)