2
2
# on Windows or when using a GPU. Please see the installation
3
3
# instructions in INSTALL.md
4
4
5
+
5
6
##### Core scientific packages
6
7
jupyter == 1.0.0
7
- matplotlib == 3.1.3
8
- numpy == 1.18.1
9
- pandas == 1.0.3
10
- scipy == 1.4.1
11
-
8
+ matplotlib == 3.3.2
9
+ numpy == 1.18.5
10
+ pandas == 1.1.3
11
+ scipy == 1.5.3
12
12
13
13
##### Machine Learning packages
14
- scikit-learn == 0.22
14
+ scikit-learn == 0.23.2
15
15
16
16
# Optional: the XGBoost library is only used in chapter 7
17
- xgboost == 1.0.2
17
+ xgboost == 1.2.1
18
18
19
19
# Optional: the transformers library is only using in chapter 16
20
- transformers == 2.8.0
20
+ transformers == 3.3.1
21
21
22
22
##### TensorFlow-related packages
23
23
24
24
# If you have a TF-compatible GPU and you want to enable GPU support, then
25
- # replace tensorflow with tensorflow-gpu, and replace tensorflow-serving-api
26
- # with tensorflow-serving-api-gpu.
25
+ # replace tensorflow-serving-api with tensorflow-serving-api-gpu.
27
26
# Your GPU must have CUDA Compute Capability 3.5 or higher support, and
28
27
# you must install CUDA, cuDNN and more: see tensorflow.org for the detailed
29
28
# installation instructions.
30
29
31
- tensorflow == 2.1.0
32
-
30
+ tensorflow == 2.3.1
33
31
# Optional: the TF Serving API library is just needed for chapter 19.
34
- tensorflow-serving-api == 2.1.0
35
- #tensorflow-serving-api-gpu==2.1.0
32
+ tensorflow-serving-api == 2.3.0 # or tensorflow-serving-api-gpu if gpu
36
33
37
- tensorboard == 2.1.1
38
- tensorboard-plugin-profile == 2.2 .0
39
- tensorflow-datasets == 2.1.0
40
- tensorflow-hub == 0.7 .0
41
- tensorflow-probability == 0.9.0
34
+ tensorboard == 2.3.0
35
+ tensorboard-plugin-profile == 2.3 .0
36
+ tensorflow-datasets == 4.0.1
37
+ tensorflow-hub == 0.9 .0
38
+ tensorflow-probability == 0.11.1
42
39
43
40
# Optional: only used in chapter 13.
44
41
# NOT AVAILABLE ON WINDOWS
45
- tfx == 0.21.2
42
+ tfx == 0.24.1
46
43
47
44
# Optional: only used in chapter 16.
48
45
# NOT AVAILABLE ON WINDOWS
49
- tensorflow-addons == 0.8.3
46
+ tensorflow-addons == 0.11.2
50
47
51
48
##### Reinforcement Learning library (chapter 18)
52
49
53
50
# There are a few dependencies you need to install first, check out:
54
51
# https://github.com/openai/gym#installing-everything
55
- gym [atari ]== 0.17.1
52
+ gym [atari ]== 0.17.3
56
53
# On Windows, install atari_py using:
57
54
# pip install --no-index -f https://github.com/Kojoley/atari-py/releases atari_py
58
55
59
- tf-agents == 0.3.0
60
-
56
+ tf-agents == 0.6.0
61
57
62
58
##### Image manipulation
63
- imageio == 2.6.1
64
- Pillow == 7.0.0
65
- scikit-image == 0.16.2
66
- graphviz == 0.13.2
67
- pydot == 1.4.1
68
- opencv-python == 4.2.0.32
69
- pyglet == 1.5.0
59
+ Pillow == 8.0.0
60
+ graphviz == 0.14.2
61
+ opencv-python == 4.4.0.44
62
+ pyglet == 1.4.11
70
63
71
64
#pyvirtualdisplay # needed in chapter 16, if on a headless server
72
65
# (i.e., without screen, e.g., Colab or VM)
@@ -78,24 +71,32 @@ pyglet==1.5.0
78
71
joblib == 0.14.1
79
72
80
73
# Easy http requests
81
- requests == 2.23 .0
74
+ requests == 2.24 .0
82
75
83
76
# Nice utility to diff Jupyter Notebooks.
84
- nbdime == 2.0 .0
77
+ nbdime == 2.1 .0
85
78
86
79
# May be useful with Pandas for complex "where" clauses (e.g., Pandas
87
80
# tutorial).
88
81
numexpr == 2.7.1
89
82
90
83
# Optional: these libraries can be useful in the classification chapter,
91
84
# exercise 4.
92
- nltk == 3.4. 5
93
- urlextract == 0.14 .0
85
+ nltk == 3.5
86
+ urlextract == 1.1 .0
94
87
95
88
# Optional: these libraries are only used in chapter 16
96
- spacy == 2.2.4
97
- ftfy == 5.7
89
+ ftfy == 5.8
98
90
99
91
# Optional: tqdm displays nice progress bars, ipywidgets for tqdm's notebook support
100
- tqdm == 4.43.0
92
+ tqdm == 4.50.2
101
93
ipywidgets == 7.5.1
94
+
95
+
96
+
97
+ # Specific lib versions to avoid conflicts
98
+ attrs == 19.3.0
99
+ cloudpickle == 1.3.0
100
+ dill == 0.3.1.1
101
+ gast == 0.3.3
102
+ httplib2 == 0.17.4
0 commit comments