forked from IntelPython/scikit-learn_bench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdbscan.py
58 lines (46 loc) · 2.35 KB
/
dbscan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# ===============================================================================
# Copyright 2020-2021 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===============================================================================
import argparse
import bench
def main():
from sklearn.cluster import DBSCAN
# Load generated data
X, _, _, _ = bench.load_data(params, add_dtype=True)
# Create our clustering object
dbscan = DBSCAN(eps=params.eps, n_jobs=params.n_jobs,
min_samples=params.min_samples, metric='euclidean',
algorithm='auto')
# N.B. algorithm='auto' will select oneAPI Data Analytics Library (oneDAL)
# brute force method when running daal4py-patched scikit-learn, and probably
# 'kdtree' when running unpatched scikit-learn.
# Time fit
time, _ = bench.measure_function_time(dbscan.fit, X, params=params)
labels = dbscan.labels_
params.n_clusters = len(set(labels)) - (1 if -1 in labels else 0)
acc = bench.davies_bouldin_score(X, labels)
bench.print_output(library='sklearn', algorithm='dbscan', stages=['training'],
params=params, functions=['DBSCAN'], times=[time],
metrics=[acc], metric_type='davies_bouldin_score',
data=[X], alg_instance=dbscan)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='scikit-learn DBSCAN benchmark')
parser.add_argument('-e', '--eps', '--epsilon', type=float, default=10.,
help='Radius of neighborhood of a point')
parser.add_argument('-m', '--min-samples', default=5, type=int,
help='The minimum number of samples required in a '
'neighborhood to consider a point a core point')
params = bench.parse_args(parser)
bench.run_with_context(params, main)