forked from IntelPython/scikit-learn_bench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_test_split.py
72 lines (60 loc) · 2.86 KB
/
train_test_split.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# ===============================================================================
# Copyright 2020-2021 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===============================================================================
import argparse
from typing import Iterable
import bench
def main():
from sklearn.model_selection import train_test_split
# Load generated data
X, y, _, _ = bench.load_data(params)
data_args: Iterable
if params.include_y:
data_args = (X, y)
else:
data_args = (X, )
tts_params = {
'train_size': params.train_size,
'test_size': params.test_size,
'shuffle': not params.do_not_shuffle,
'random_state': params.seed
}
if params.rng is not None:
tts_params['rng'] = params.rng
time, _ = bench.measure_function_time(
train_test_split, *data_args, params=params, **tts_params)
bench.print_output(library='sklearn', algorithm='train_test_split',
stages=['training'], params=params,
functions=['train_test_split'], times=[time], metrics=[None],
metric_type=None, data=[X], alg_params=tts_params)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='scikit-learn train_test_split benchmark')
parser.add_argument('--train-size', type=float, default=0.75,
help='Size of training subset')
parser.add_argument('--test-size', type=float, default=0.25,
help='Size of testing subset')
parser.add_argument('--do-not-shuffle', default=False, action='store_true',
help='Do not perform data shuffle before splitting')
parser.add_argument('--include-y', default=False, action='store_true',
help='Include label (Y) in splitting')
parser.add_argument('--rng', default=None,
choices=('MT19937', 'SFMT19937', 'MT2203', 'R250', 'WH',
'MCG31', 'MCG59', 'MRG32K3A', 'PHILOX4X32X10',
'NONDETERM', None),
help='Random numbers generator for shuffling '
'(only for IDP scikit-learn)')
params = bench.parse_args(parser)
bench.run_with_context(params, main)