-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathrewards.py
148 lines (119 loc) · 5.52 KB
/
rewards.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import multiprocessing
import os
import sys
import random
import uuid
import warnings
from dataclasses import dataclass
import torch
from accelerate import PartialState
from accelerate.logging import get_logger
from transformers import AutoModelForSequenceClassification, AutoTokenizer, set_seed, HfArgumentParser
from trl import RewardTrainer, RewardConfig, ModelConfig, get_peft_config
from src.configs.additional.reward_args import RMScriptArguments
from src.utils.logger import setup_logging
from src.callbacks.training_parameters_callback import ParameterStatsCallback
from src.utils.datasets import load_datasets
from src.utils.model_preparation import setup_model_and_tokenizer, unfreeze_modules_by_patterns
logger = get_logger(__name__)
os.environ['WANDB_RUN_ID'] = str(random.randint(100000, 999999))
DATASET_PROCESSING_THREADS = min(multiprocessing.cpu_count() // 2, 16)
def main():
parser = HfArgumentParser((RMScriptArguments, RewardConfig, ModelConfig))
args, reward_config, model_config = parser.parse_yaml_file(os.path.abspath(sys.argv[1]))
setup_logging(logger, reward_config)
set_seed(reward_config.seed) # in case of new tokens added without initialize...
os.environ["WANDB_PROJECT"] = args.project_name
os.environ['CLEARML_PROJECT'] = args.project_name
os.environ['WANDB_NAME'] = reward_config.run_name.split("/")[-1]
os.environ['CLEARML_TASK'] = reward_config.run_name.split("/")[-1]
################
# Model & Tokenizer
################
tokenizer = AutoTokenizer.from_pretrained(model_config.model_name_or_path)
model = AutoModelForSequenceClassification.from_pretrained(
model_config.model_name_or_path,
torch_dtype=torch.bfloat16 if reward_config.bf16 else torch.float16,
attn_implementation=model_config.attn_implementation,
num_labels=1
)
setup_model_and_tokenizer(args, model, tokenizer, reward_config.max_length)
if model_config.use_peft:
for n, p in model.named_parameters():
p.requires_grad = False
if model_config.lora_task_type != "SEQ_CLS":
warnings.warn(
"You are using a `task_type` that is different than `SEQ_CLS` for PEFT. This will lead to silent bugs"
" Make sure to pass --lora_task_type SEQ_CLS when using this script."
)
if args.unfreeze_layers_patterns:
warnings.warn(
"You can't use non-empty unfreeze_layers_patterns and peft together at this time, only peft config will be used"
)
peft_config = get_peft_config(model_config)
else:
if args.unfreeze_layers_patterns:
unfreeze_modules_by_patterns(model, args.unfreeze_layers_patterns)
peft_config = None
if PartialState().is_main_process:
logger.info(f'Tokenizer: {tokenizer}')
logger.info(f'Model config: {model.config}')
logger.info(f'Model: {model}')
################
# Dataset
################
ds = load_datasets(args.dataset, args.test_size, args.dataset_ratio)
def preprocess_function(examples):
new_examples = {
"input_ids_chosen": [],
"attention_mask_chosen": [],
"input_ids_rejected": [],
"attention_mask_rejected": [],
}
for prompt, chosen, rejected in zip(examples["prompt"], examples["chosen"], examples["rejected"]):
chosen = tokenizer.apply_chat_template(prompt + chosen, tokenize=False, add_generation_prompt=False)
rejected = tokenizer.apply_chat_template(prompt + rejected, tokenize=False, add_generation_prompt=False)
tokenized_chosen = tokenizer(text=chosen, truncation=True, max_length=reward_config.max_length)
tokenized_rejected = tokenizer(text=rejected, truncation=True, max_length=reward_config.max_length)
new_examples["input_ids_chosen"].append(tokenized_chosen["input_ids"])
new_examples["attention_mask_chosen"].append(tokenized_chosen["attention_mask"])
new_examples["input_ids_rejected"].append(tokenized_rejected["input_ids"])
new_examples["attention_mask_rejected"].append(tokenized_rejected["attention_mask"])
return new_examples
# Preprocess the dataset and filter out examples that are longer than args.max_length
with PartialState().local_main_process_first():
ds = ds.map(
preprocess_function,
batched=True,
num_proc=DATASET_PROCESSING_THREADS,
keep_in_memory=True,
load_from_cache_file=True
)
train_dataset = ds["train"]
eval_dataset = ds["test"]
if PartialState().is_main_process:
logger.info('Example from train dataset:')
logger.info(train_dataset[0])
logger.info('Example from test dataset:')
logger.info(eval_dataset[0])
PartialState().wait_for_everyone()
################
# Training
################
trainer = RewardTrainer(
model=model,
processing_class=tokenizer,
args=reward_config,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
peft_config=peft_config,
callbacks=[ParameterStatsCallback]
)
# train and save the model
trainer.train()
if trainer.is_fsdp_enabled:
trainer.accelerator.state.fsdp_plugin.set_state_dict_type("FULL_STATE_DICT")
trainer.save_model(reward_config.output_dir)
if __name__ == '__main__':
assert len(sys.argv) >= 2 and sys.argv[1].endswith(".yaml"), "You must provide .yaml file with training config as argument"
main()