-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathsft.py
180 lines (148 loc) · 6.66 KB
/
sft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import multiprocessing
import os
import random
import uuid
import warnings
import torch
from accelerate import PartialState
from accelerate.logging import get_logger
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
from transformers.integrations import is_deepspeed_zero3_enabled
from trl import SFTTrainer, SFTConfig, ModelConfig, get_peft_config
from src.callbacks.generate_examples import GenerateExamplesCallback
from src.callbacks.training_parameters_callback import ParameterStatsCallback
from src.collators.completions_only import DataCollatorForCompletionOnlyLM
from src.configs.additional.sft_args import SFTScriptArguments
from src.utils.datasets import load_datasets
from src.utils.logger import setup_logging
from src.utils.model_preparation import setup_model_and_tokenizer, unfreeze_modules_by_patterns
from src.utils.yaml_args_parser import H4ArgumentParser
logger = get_logger(__name__)
os.environ['WANDB_RUN_ID'] = str(random.randint(100000, 999999))
DATASET_PROCESSING_THREADS = min(multiprocessing.cpu_count() // 2, 16)
def main():
parser = H4ArgumentParser((SFTScriptArguments, SFTConfig, ModelConfig))
args, sft_config, model_config = parser.parse()
setup_logging(logger, sft_config)
set_seed(sft_config.seed) # in case of new tokens added without initialize...
os.environ["WANDB_PROJECT"] = args.project_name
os.environ['CLEARML_PROJECT'] = args.project_name
os.environ['WANDB_NAME'] = sft_config.run_name.split("/")[-1]
os.environ['CLEARML_TASK'] = sft_config.run_name.split("/")[-1]
################
# Model & Tokenizer
################
tokenizer = AutoTokenizer.from_pretrained(model_config.model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(
model_config.model_name_or_path,
torch_dtype=torch.bfloat16 if sft_config.bf16 else torch.float16,
# max_position_embeddings=sft_config.max_seq_length,
attn_implementation=model_config.attn_implementation
)
setup_model_and_tokenizer(args, model, tokenizer, sft_config.max_seq_length)
if model_config.use_peft:
for n, p in model.named_parameters():
p.requires_grad = False
if model_config.lora_task_type != "CAUSAL_LM":
warnings.warn(
"You are using a `task_type` that is different than `CAUSAL_LM` for PEFT. This will lead to silent bugs"
" Make sure to pass --lora_task_type CAUSAL_LM when using this script."
)
if args.unfreeze_layers_patterns:
warnings.warn(
"You can't use non-empty unfreeze_layers_patterns and peft together at this time, only peft config will be used"
)
peft_config = get_peft_config(model_config)
else:
if args.unfreeze_layers_patterns:
unfreeze_modules_by_patterns(model, args.unfreeze_layers_patterns)
peft_config = None
if PartialState().is_main_process:
logger.info(f'Tokenizer: {tokenizer}')
logger.info(f'Model config: {model.config}')
logger.info(f'Model: {model}')
################
# Dataset
################
def process_row(row, add_gen_prompt=False):
system_message = [{'role': 'system', 'content': args.system_prompt}] if args.system_prompt else []
history = row[args.conversation_field] if not add_gen_prompt else row[args.conversation_field][:-1]
if not args.model_support_system_role and history[0]["role"] == "system":
if len(history) > 1 and history[1]["role"] == "user":
# add sys prompt to first user message
history[1]["content"] = history[0]["content"] + "\n" + history[1]["content"]
history = history[1:]
else:
history[0]["role"] = "user"
constructed_prompt = tokenizer.apply_chat_template(
system_message + history,
tokenize=False,
add_generation_prompt=add_gen_prompt
)
if tokenizer.bos_token is not None:
if constructed_prompt.startswith(tokenizer.bos_token): # Remove extra bos token
constructed_prompt = constructed_prompt[len(tokenizer.bos_token):]
return tokenizer(constructed_prompt, truncation=True, padding=True, max_length=sft_config.max_seq_length)
ds = load_datasets(args.dataset, args.test_size, args.dataset_ratio)
generate_dataset = ds['test']
signature_columns = ["input_ids", "labels", "attention_mask"]
extra_columns = list(set(ds['train'].column_names) - set(signature_columns))
with PartialState().local_main_process_first():
ds = ds.map(
process_row,
num_proc=DATASET_PROCESSING_THREADS,
keep_in_memory=True,
load_from_cache_file=True,
remove_columns=extra_columns
)
generate_dataset = generate_dataset.map(
lambda row: process_row(row, add_gen_prompt=True),
num_proc=DATASET_PROCESSING_THREADS,
keep_in_memory=True,
load_from_cache_file=True,
remove_columns=extra_columns
)
train_dataset = ds["train"]
eval_dataset = ds["test"]
if PartialState().is_main_process:
logger.info('Example from train dataset:')
logger.info(train_dataset[0])
logger.info('Example from test dataset:')
logger.info(eval_dataset[0])
logger.info('Example from gen dataset:')
logger.info(generate_dataset[0])
collator = DataCollatorForCompletionOnlyLM(
response_prompt_template=args.assistant_message_template,
tokenizer=tokenizer
) if args.train_only_on_completions else None
generate_callback = GenerateExamplesCallback(
preprocessed_dataset=generate_dataset,
tokenizer=tokenizer,
num_examples=args.num_gen_examples,
is_deepspeed_zero3=is_deepspeed_zero3_enabled(),
logger_backend=sft_config.report_to[0]
)
PartialState().wait_for_everyone()
sft_config.dataset_kwargs = {
"skip_prepare_dataset": True
}
################
# Training
################
trainer = SFTTrainer(
model,
args=sft_config,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
processing_class=tokenizer,
peft_config=peft_config,
data_collator=collator,
callbacks=[generate_callback, ParameterStatsCallback] if args.generate_eval_examples else [ParameterStatsCallback]
)
# train and save the model
trainer.train()
if trainer.is_fsdp_enabled:
trainer.accelerator.state.fsdp_plugin.set_state_dict_type("FULL_STATE_DICT")
trainer.save_model(sft_config.output_dir)
if __name__ == '__main__':
main()