-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathsft.py
169 lines (139 loc) · 5.96 KB
/
sft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import multiprocessing
import os
import random
import uuid
import torch
from accelerate import PartialState
from accelerate.logging import get_logger
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
from trl import SFTConfig, ModelConfig
from src.callbacks.training_parameters_callback import ParameterStatsCallback
from src.collators.completions_only import DataCollatorForCompletionOnlyLM
from src.configs.additional.sft_args import SFTScriptArguments
from src.configs.prompts_optimization_comfig import PromptsOptimizationConfig
from src.trainers.prompts_optimization.prompts_sft_trainer import PromptsSFTTrainer
from src.utils.datasets import load_datasets
from src.utils.logger import setup_logging
from src.utils.model_preparation import setup_model_and_tokenizer
from src.utils.yaml_args_parser import H4ArgumentParser
logger = get_logger(__name__)
LOGGING_TASK_NAME = str(uuid.uuid4())
os.environ['WANDB_RUN_ID'] = str(random.randint(100000, 999999))
os.environ['WANDB_NAME'] = LOGGING_TASK_NAME
os.environ['CLEARML_TASK'] = LOGGING_TASK_NAME
DATASET_PROCESSING_THREADS = multiprocessing.cpu_count() // 2
def main():
parser = H4ArgumentParser((SFTScriptArguments, SFTConfig, ModelConfig, PromptsOptimizationConfig))
args, sft_config, model_config, prompts_config = parser.parse()
setup_logging(logger, sft_config)
set_seed(sft_config.seed) # in case of new tokens added without initialize...
os.environ["WANDB_PROJECT"] = args.project_name
os.environ['CLEARML_PROJECT'] = args.project_name
################
# Model & Tokenizer
################
tokenizer = AutoTokenizer.from_pretrained(model_config.model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(
model_config.model_name_or_path,
torch_dtype=torch.bfloat16 if sft_config.bf16 else torch.float16,
# max_position_embeddings=sft_config.max_seq_length,
attn_implementation=model_config.attn_implementation
)
if sft_config.use_liger:
from liger_kernel.transformers import apply_liger_kernel_to_llama, apply_liger_kernel_to_mistral, apply_liger_kernel_to_qwen2
apply_liger_kernel_to_llama(
rope=False,
swiglu=True,
cross_entropy=False,
fused_linear_cross_entropy=True,
rms_norm=True
)
apply_liger_kernel_to_mistral(
rope=False,
swiglu=True,
cross_entropy=False,
fused_linear_cross_entropy=True,
rms_norm=True
)
apply_liger_kernel_to_qwen2(
rope=False,
swiglu=True,
cross_entropy=False,
fused_linear_cross_entropy=True,
rms_norm=True
)
setup_model_and_tokenizer(args, model, tokenizer, sft_config.max_seq_length)
if PartialState().is_main_process:
logger.info(f'Tokenizer: {tokenizer}')
logger.info(f'Model config: {model.config}')
logger.info(f'Model: {model}')
################
# Dataset
################
def process_row(row, add_gen_prompt=False):
system_message = [{'role': 'system', 'content': args.system_prompt}] if args.system_prompt else []
history = row[args.conversation_field] if not add_gen_prompt else row[args.conversation_field][:-1]
history = [x for x in history if x['role'] != prompts_config.inserted_chat_role] # needed only for prompts tuning
if not args.model_support_system_role and history[0]["role"] == "system":
if len(history) > 1 and history[1]["role"] == "user":
# add sys prompt to first user message
history[1]["content"] = history[0]["content"] + "\n" + history[1]["content"]
history = history[1:]
else:
history[0]["role"] = "user"
constructed_prompt = tokenizer.apply_chat_template(
system_message + history,
tokenize=False,
add_generation_prompt=add_gen_prompt
)
if tokenizer.bos_token is not None:
if constructed_prompt.startswith(tokenizer.bos_token): # Remove extra bos token
constructed_prompt = constructed_prompt[len(tokenizer.bos_token):]
return tokenizer(constructed_prompt, truncation=True, padding=True, max_length=sft_config.max_seq_length)
ds = load_datasets(args.dataset, args.test_size, args.dataset_ratio)
signature_columns = ["input_ids", "labels", "attention_mask"]
extra_columns = list(set(ds['train'].column_names) - set(signature_columns))
with PartialState().local_main_process_first():
ds = ds.map(
process_row,
num_proc=DATASET_PROCESSING_THREADS,
keep_in_memory=True,
load_from_cache_file=True,
remove_columns=extra_columns
)
train_dataset = ds["train"]
eval_dataset = ds["test"]
if PartialState().is_main_process:
logger.info('Example from train dataset:')
logger.info(train_dataset[0])
logger.info('Example from test dataset:')
logger.info(eval_dataset[0])
collator = DataCollatorForCompletionOnlyLM(
response_prompt_template=args.assistant_message_template,
tokenizer=tokenizer
) if args.train_only_on_completions else None
PartialState().wait_for_everyone()
sft_config.dataset_kwargs = {
"skip_prepare_dataset": True
}
################
# Training
################
trainer = PromptsSFTTrainer(
model,
args=sft_config,
prompt_args=prompts_config,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=tokenizer,
peft_config=None,
data_collator=collator,
callbacks=[ParameterStatsCallback]
)
# train and save the model
trainer.train()
if trainer.is_fsdp_enabled:
trainer.accelerator.state.fsdp_plugin.set_state_dict_type("FULL_STATE_DICT")
trainer.save_model(sft_config.output_dir)
if __name__ == '__main__':
main()