|
| 1 | +import{_ as u,o as s,c as r,p,e as h,a as t,f as m,b as e,w as o,d as g,g as f,F as k}from"./NRmH45FU.js";import{_ as b}from"./R3PhC717.js";import{_ as y}from"./BZuIh1sg.js";import"./D8rPkWOK.js";import"./gFzsWSki.js";const T={},l=a=>(p("data-v-96987dbc"),a=a(),h(),a),v={class: "header-background flex flex-col items-center justify-center space-y-8 bg-cover bg-center bg-no-repeat py-10 md:py-16 lg:py-24 text-gray-200"},w=l(()=>t("h1",{class: "text-6xl"},"Hate Speech Detection",-1)),x=l(()=>t("hr",{class: "w-1/12"},null,-1)),B=l(()=>t("p",{class: "text-2xl"},null,-1)),E=[w,x,B];function R(a,c){return s(),r("header",v,E)}const z=u(T,[["render",R],["__scopeId","data-v-96987dbc"]]),S={class: "inner pt-10"},H=t("h3",null,"HateSpeech Detection with TurkishBERTweet",-1),C=t("p",null,"In this section, we will guide you through the process of using TurkishBERTweet for detecting hate speech. TurkishBERTweet is specifically designed to analyze Turkish social media content, making it a powerful tool for identifying harmful language, ensuring a safer online environment. ",-1),$=t("h3",null,"Setting Up the Environment for TurkishBERTweet",-1),V=t("br",null,null,-1),I=t("br",null,null,-1),M=t("h5",null,"1. Clone the Repository: Begin by cloning the TurkishBERTweet repository from GitHub.",-1),N=t("h5",null,"2. Navigate to the Directory: Move into the newly cloned directory.",-1),P=t("h5",null,"3. Set Up a Virtual Environment: Create a virtual environment to manage dependencies.",-1),A=t("h5",null,"4. Activate the Virtual Environment: Activate the virtual environment.",-1),F=t("h5",null,"5. Install Required Libraries: Install PyTorch and other essential libraries to run TurkishBERTweet.",-1),L=t("h5",null,"6. Below is a Python script that uses TurkishBERTweet to detect hate speech in sample texts:",-1),q=t("br",null,null,-1),D="git clone [email protected]:ViralLab/TurkishBERTweet.git",U="cd TurkishBERTweet",Y="python -m venv venv",j="source venv/bin/activate",G=`pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 |
| 2 | +pip install peft |
| 3 | +pip install transformers |
| 4 | +pip install urlextract`,O=`import torch |
| 5 | +from peft import ( |
| 6 | + PeftModel, |
| 7 | + PeftConfig, |
| 8 | +) |
| 9 | +
|
| 10 | +from transformers import ( |
| 11 | + AutoModelForSequenceClassification, |
| 12 | + AutoTokenizer) |
| 13 | +from Preprocessor import preprocess |
| 14 | + |
| 15 | +
|
| 16 | +peft_model = "VRLLab/TurkishBERTweet-Lora-HS" |
| 17 | +peft_config = PeftConfig.from_pretrained(peft_model) |
| 18 | +
|
| 19 | +# loading Tokenizer |
| 20 | +padding_side = "right" |
| 21 | +tokenizer = AutoTokenizer.from_pretrained( |
| 22 | + peft_config.base_model_name_or_path, padding_side=padding_side |
| 23 | +) |
| 24 | +if getattr(tokenizer, "pad_token_id") is None: |
| 25 | + tokenizer.pad_token_id = tokenizer.eos_token_id |
| 26 | +
|
| 27 | +id2label_hs = {0: "No", 1: "Yes"} |
| 28 | +turkishBERTweet_hs = AutoModelForSequenceClassification.from_pretrained( |
| 29 | + peft_config.base_model_name_or_path, return_dict=True, num_labels=len(id2label_hs), id2label=id2label_hs |
| 30 | +) |
| 31 | +turkishBERTweet_hs = PeftModel.from_pretrained(turkishBERTweet_hs, peft_model) |
| 32 | +
|
| 33 | +
|
| 34 | +sample_texts = [ |
| 35 | + "Viral lab da insanlar hep birlikte çalışıyorlar. hepbirlikte çalışan insanlar birbirlerine yakın oluyorlar.", |
| 36 | + "kasmayin artik ya kac kere tanik olduk bu azgin tehlikeli “multecilerin” yaptiklarina? bir afgan taragindan kafasi tasla ezilip tecavuz edilen kiza da git boyle cihangir solculugu yap yerse?", |
| 37 | + ] |
| 38 | +
|
| 39 | +
|
| 40 | +preprocessed_texts = [preprocess(s) for s in sample_texts] |
| 41 | +with torch.no_grad(): |
| 42 | + for s in preprocessed_texts: |
| 43 | + ids = tokenizer.encode_plus(s, return_tensors="pt") |
| 44 | + label_id = turkishBERTweet_hs(**ids).logits.argmax(-1).item() |
| 45 | + print(id2label_hs[label_id],":", s) |
| 46 | +`,J=`No : viral lab da insanlar hep birlikte çalışıyorlar. hepbirlikte çalışan insanlar birbirlerine yakın oluyorlar. |
| 47 | +Yes : kasmayin artik ya kac kere tanik olduk bu azgin tehlikeli “multecilerin” yaptiklarina? bir afgan taragindan kafasi tasla ezilip tecavuz edilen kiza da git boyle cihangir solculugu yap yerse? |
| 48 | +`,K=m({__name:"HateSpeechMain",setup(a){return(c,_)=>{const n=b,i=f,d=y;return s(),r("main",S,[e(d,null,{default:o(()=>[t("div",null,[H,C,$,g(" To begin using the TurkishBERTweet model for sentiment analysis, you'll first need to set up your development environment. This involves cloning the TurkishBERTweet repository, creating a virtual environment, and installing the necessary libraries. Follow these steps to get started: "),V,I,M,e(i,null,{default:o(()=>[e(n,{code:D,language:"bash"})]),_:1}),N,e(i,null,{default:o(()=>[e(n,{code:U,language:"bash"})]),_:1}),P,e(i,null,{default:o(()=>[e(n,{code:Y,language:"bash"})]),_:1}),A,e(i,null,{default:o(()=>[e(n,{code:j,language:"bash"})]),_:1}),F,e(i,null,{default:o(()=>[e(n,{code:G,language:"bash"})]),_:1}),L,e(i,null,{default:o(()=>[e(n,{code:O,language:"python"})]),_:1}),e(i,null,{default:o(()=>[e(n,{code:J})]),_:1})]),q]),_:1})])}}}),Q={};function W(a,c){const _=z,n=K;return s(),r(k,null,[e(_),e(n)],64)}const oe=u(Q,[["render",W]]);export{oe as default}; |
0 commit comments