-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcore.py
555 lines (461 loc) · 19.5 KB
/
core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
"""Provides the `Embedding` class.
This module enables the user load in elemental representation data
and analyse it using statistical functions.
Typical usage example:
megnet16 = Embedding.load_data('megnet16')
"""
from __future__ import annotations
import fnmatch
import json
import warnings
from os import path
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from ._base import EmbeddingBase
from .utils.config import DEFAULT_ELEMENT_EMBEDDINGS, DEFAULT_SPECIES_EMBEDDINGS
from .utils.io import NumpyEncoder
from .utils.species import parse_species
module_directory = path.abspath(path.dirname(__file__))
data_directory = path.join(module_directory, "data")
pt_dir = path.join(data_directory, "element_data", "periodic-table-lookup-symbols.json")
with open(pt_dir) as f:
pt = json.load(f)
class Embedding(EmbeddingBase):
"""Represent an elemental representation.
To load an embedding distributed from the package use the load_data() method.
Works like a standard python dictionary. The keys are {element: vector} pairs.
Adds a few convenience methods related to elemental representations.
"""
@staticmethod
def load_data(embedding_name: str | None = None):
"""Create an instance of the `Embedding` class from a default embedding file.
The default embeddings are in the table below:
| **Name** | **str_name** |
|-------------------------|--------------|
| Magpie | magpie |
| Magpie (scaled) | magpie_sc |
| Mat2Vec | mat2vec |
| Matscholar | matscholar |
| Megnet (16 dimensions) | megnet16 |
| Modified Pettifor scale | mod_petti |
| Oliynyk | oliynyk |
| Oliynyk (scaled) | oliynyk_sc |
| Random (200 dimensions) | random_200 |
| SkipAtom | skipatom |
| Atomic Number | atomic |
| CrystaLLM | crystallm |
| XenonPy | xenonpy |
| Cgnf | cgnf |
Args:
----
embedding_name (str): The str_name of an embedding file.
Returns:
-------
Embedding :class:`Embedding` instance.
"""
if DEFAULT_ELEMENT_EMBEDDINGS[embedding_name].endswith(".csv"):
return Embedding.from_csv(
path.join(
data_directory,
"element_representations",
DEFAULT_ELEMENT_EMBEDDINGS[embedding_name],
),
embedding_name,
)
elif "megnet" in DEFAULT_ELEMENT_EMBEDDINGS[embedding_name]:
return Embedding.from_json(
path.join(
data_directory,
"element_representations",
DEFAULT_ELEMENT_EMBEDDINGS[embedding_name],
),
embedding_name,
).remove_elements(["Null"])
elif DEFAULT_ELEMENT_EMBEDDINGS[embedding_name].endswith(".json"):
return Embedding.from_json(
path.join(
data_directory,
"element_representations",
DEFAULT_ELEMENT_EMBEDDINGS[embedding_name],
),
embedding_name,
)
else:
return None
@staticmethod
def from_json(embedding_json, embedding_name: str | None = None):
"""Create an instance of the Embedding class from a json file.
Args:
----
embedding_json (str): Filepath of the json file
embedding_name (str): The name of the elemental representation
"""
# Need to add validation handling for JSONs in different formats
with open(embedding_json) as f:
embedding_data = json.load(f)
return Embedding(embedding_data, embedding_name)
@staticmethod
def from_csv(embedding_csv, embedding_name: str | None = None):
"""Create an instance of the Embedding class from a csv file.
The first column of the csv file must contain the elements and be named element.
Args:
----
embedding_csv (str): Filepath of the csv file
embedding_name (str): The name of the elemental representation
"""
# Need to add validation handling for csv files
df = pd.read_csv(embedding_csv)
elements = list(df["element"])
df = df.drop(["element"], axis=1)
feature_labels = list(df.columns)
embeds_array = df.to_numpy()
embedding_data = {elements[i]: embeds_array[i] for i in range(len(embeds_array))}
return Embedding(embedding_data, embedding_name, feature_labels)
def as_dataframe(self, columns: str = "components") -> pd.DataFrame:
"""Return the embedding as a pandas Dataframe.
The first column is the elements and each other
column represents a component of the embedding.
Args:
----
columns (str): A string to specify if the columns are the vector components
and the index is the elements (`columns='components'`)
or the columns are the elements (`columns='elements'`).
Returns:
-------
df (pandas.DataFrame): A pandas dataframe object
"""
embedding = self.embeddings
df = pd.DataFrame(embedding, index=self.feature_labels)
if columns == "components":
return df.T
elif columns == "elements":
return df
else:
msg = f"{columns} is not a valid keyword argument. " f"Choose either 'components' or 'elements"
raise (
ValueError(
msg,
)
)
def to(self, fmt: str = "", filename: str | None = ""):
"""Output the embedding to a file.
Args:
----
fmt (str): The file format to output the embedding to.
Options include "json" and "csv".
filename (str): The name of the file to be outputted
Returns:
-------
(str) if filename not specified, otherwise None.
"""
fmt = fmt.lower()
if fmt == "json" or fnmatch.fnmatch(filename, "*.json"):
j = json.dumps(self.embeddings, cls=NumpyEncoder)
if filename:
if not filename.endswith(".json"):
filename = filename + ".json"
with open(filename, "w") as file:
file.write(j)
return None
else:
return j
elif fmt == "csv" or fnmatch.fnmatch(filename, "*.csv"):
if filename:
if not filename.endswith(".csv"):
filename = filename + ".csv"
self.as_dataframe().to_csv(filename, index_label="element")
return None
else:
return self.as_dataframe().to_csv(index_label="element")
else:
msg = f"{fmt!s} is an invalid file format"
raise ValueError(msg)
@property
def element_list(self) -> list:
"""Return the elements of the embedding."""
return self._embeddings_keys_list()
def remove_elements(self, elements: str | list[str], inplace: bool = False):
# TO-DO allow removal by atomic numbers
"""Remove elements from the Embedding instance.
Args:
----
elements (str,list(str)): An element symbol or a list of element symbols
inplace (bool): If True, elements are removed from the Embedding instance.
If false, the original embedding instance is unchanged
and a new embedding instance with the elements removed is created.
"""
if inplace:
if isinstance(elements, str):
del self.embeddings[elements]
elif isinstance(elements, list):
for el in elements:
del self.embeddings[el]
return None
else:
embeddings_copy = self.embeddings.copy()
if isinstance(elements, str):
del embeddings_copy[elements]
elif isinstance(elements, list):
for el in elements:
del embeddings_copy[el]
return Embedding(embeddings_copy, self.embedding_name)
def standardise(self, inplace: bool = False):
"""Standardise the embeddings.
Mean is 0 and standard deviation is 1.
"""
if self._is_standardised():
warnings.warn(
"Embedding is already standardised. " "Returning None and not changing the embedding.",
)
return None
else:
embeddings_copy = self.embeddings.copy()
embeddings_array = np.array(list(embeddings_copy.values()))
embeddings_array = StandardScaler().fit_transform(embeddings_array)
for el, emb in zip(embeddings_copy.keys(), embeddings_array, strict=False):
embeddings_copy[el] = emb
if inplace:
self.embeddings = embeddings_copy
self.is_standardised = True
return None
else:
return Embedding(embeddings_copy, self.embedding_name)
@property
def element_groups_dict(self) -> dict[str, str]:
"""Return a dictionary of {element: element type} pairs.
e.g. {'He':'Noble gas'}
"""
with open(path.join(data_directory, "element_data/element_group.json")) as f:
_dict = json.load(f)
return {i: _dict[i] for i in self.element_list}
class SpeciesEmbedding(EmbeddingBase):
"""Represent an ion representation.
To load an embedding distributed from the package use the load_data() method.
Works like a standard python dictionary. The keys are {species: vector} pairs.
"""
@staticmethod
def load_data(embedding_name: str, include_neutral: bool = False):
"""Create a `SpeciesEmbedding` from a preset embedding file.
The default embeddings are in the table below:
| **Name** | **str_name** |
|-------------------------|--------------|
| SkipSpecies (200 dim, MPv2022) | skipspecies |
| SkipSpecies (induced, 200 dim, MPv2022) | skipspecies_induced |
Args:
----
embedding_name (str): The str_name of the species representation
include_neutral (bool): If True, neutral species are
included in the embedding
Returns:
-------
SpeciesEmbedding :class:`SpeciesEmbedding` instance.
"""
if DEFAULT_SPECIES_EMBEDDINGS[embedding_name].endswith(".csv"):
embedding = SpeciesEmbedding.from_csv(
path.join(
data_directory,
"species_representations",
DEFAULT_SPECIES_EMBEDDINGS[embedding_name],
),
embedding_name,
)
if not include_neutral:
embedding.remove_neutral_species(inplace=True)
return embedding
elif DEFAULT_SPECIES_EMBEDDINGS[embedding_name].endswith(".json"):
embedding = SpeciesEmbedding.from_json(
path.join(
data_directory,
"species_representations",
DEFAULT_SPECIES_EMBEDDINGS[embedding_name],
),
embedding_name,
)
if not include_neutral:
embedding.remove_neutral_species(inplace=True)
return embedding
else:
return None
@staticmethod
def from_csv(csv_path, embedding_name: str | None = None):
"""Create an instance of the SpeciesEmbedding class from a csv file.
The first column of the csv file must contain the species and be named species.
Args:
----
csv_path (str): Filepath of the csv file
embedding_name (str): The name of the species representation
Returns:
-------
SpeciesEmbedding :class:`SpeciesEmbedding` instance.
"""
# Need to add validation handling for csv files
df = pd.read_csv(csv_path)
species = list(df["species"])
df = df.drop(["species"], axis=1)
feature_labels = list(df.columns)
embeds_array = df.to_numpy()
embedding_data = {species[i]: embeds_array[i] for i in range(len(embeds_array))}
return SpeciesEmbedding(embedding_data, embedding_name, feature_labels)
@staticmethod
def from_json(json_path, embedding_name: str | None = None):
"""Create an instance of the SpeciesEmbedding class from a json file.
Args:
----
json_path (str): Filepath of the json file
embedding_name (str): The name of the species representation
Returns:
-------
SpeciesEmbedding :class:`SpeciesEmbedding` instance.
"""
# Need to add validation handling for json files
with open(json_path) as f:
embedding_data = json.load(f)
return SpeciesEmbedding(embedding_data, embedding_name)
@property
def species_list(self) -> list:
"""Return the species of the embedding."""
return list(self.embeddings.keys())
@property
def element_list(self) -> list:
"""Return the elements of the embedding."""
return list({parse_species(species)[0] for species in self.species_list})
def remove_neutral_species(self, inplace: bool = False):
"""Remove neutral species from the SpeciesEmbedding instance.
Args:
----
inplace (bool): If True, neutral species are removed
from the SpeciesEmbedding instance.
If false, the original SpeciesEmbedding instance is unchanged
and a new SpeciesEmbedding instance with the
neutral species removed is created.
"""
neutral_species = [s for s in self.species_list if parse_species(s)[1] == 0]
return self.remove_species(neutral_species, inplace)
def get_element_oxi_states(self, el: str) -> list:
"""Return the oxidation states for a given element.
Args:
----
el (str): An element symbol
Returns:
-------
oxidation_states (list[int]): A list of oxidation states
"""
assert el in self.element_list, f"There are no species of the element {el} in this SpeciesEmbedding"
parsed_species = [parse_species(species) for species in self.species_list]
el_species_list = [species for species in parsed_species if species[0] == el]
oxidation_states = [species[1] for species in el_species_list]
return sorted(oxidation_states)
def remove_species(self, species: str | list[str], inplace: bool = False):
"""Remove species from the SpeciesEmbedding instance.
Args:
----
species (str,list(str)): A species or a list of species
inplace (bool): If True, species are removed
from the SpeciesEmbedding instance.
If false, the original SpeciesEmbedding instance is unchanged
and a new SpeciesEmbedding instance with the species removed is created.
"""
if inplace:
if isinstance(species, str):
try:
del self.embeddings[species]
except KeyError:
warnings.warn(
f"{species} is not in the SpeciesEmbedding. " "Skipping this species.",
)
elif isinstance(species, list):
for sp in species:
try:
del self.embeddings[sp]
except KeyError:
warnings.warn(
f"{sp} is not in the SpeciesEmbedding. " "Skipping this species.",
)
return None
else:
embeddings_copy = self.embeddings.copy()
if isinstance(species, str):
try:
del embeddings_copy[species]
except KeyError:
warnings.warn(
f"{species} is not in the SpeciesEmbedding. " "Skipping this species.",
)
elif isinstance(species, list):
for sp in species:
try:
del embeddings_copy[sp]
except KeyError:
warnings.warn(
f"{sp} is not in the SpeciesEmbedding. " "Skipping this species.",
)
return SpeciesEmbedding(embeddings_copy, self.embedding_name)
@property
def ion_type_dict(self) -> dict[str, str]:
"""Return a dictionary of {species: ion type} pairs.
e.g. {'Fe2+':'cation'}
"""
ion_dict = {}
for species in self.species_list:
el, charge = parse_species(species)
if charge > 0:
ion_dict[species] = "Cation"
elif charge < 0:
ion_dict[species] = "Anion"
else:
ion_dict[species] = "Neutral"
return ion_dict
@property
def species_groups_dict(self) -> dict[str, str]:
"""Return a dictionary of {species: element type} pairs.
e.g. {'Fe2+':'transition metal'}
"""
with open(path.join(data_directory, "element_data/element_group.json")) as f:
_dict = json.load(f)
return {i: _dict[parse_species(i)[0]] for i in self.species_list}
def distance_df(self, metric="euclidean") -> pd.DataFrame:
"""Return a dataframe of the distance between species.
Args:
----
metric (str): The metric to use to calculate the distance.
Options are 'euclidean', 'cosine', 'manhattan' and 'chebyshev'.
Returns:
-------
df (pandas.DataFrame): A pandas dataframe object
"""
return super().distance_df(metric).rename(mapper={"ele_1": "species_1", "ele_2": "species_2"}, axis=1)
def correlation_df(self, metric: str = "pearson") -> pd.DataFrame:
"""Return a dataframe of the correlation between species.
Args:
----
metric (str): The metric to use to calculate the correlation.
Options are 'pearson' and 'spearman'.
Returns:
-------
df (pandas.DataFrame): A pandas dataframe object
"""
return super().correlation_df(metric).rename(mapper={"ele_1": "species_1", "ele_2": "species_2"}, axis=1)
def to(self, fmt: str = "", filename: str | None = ""):
"""Output the embedding to a file.
Args:
----
fmt (str): The file format to output the embedding to.
Options include "json" and "csv".
filename (str): The name of the file to be outputted
Returns:
-------
(str) if filename not specified, otherwise None.
"""
fmt = fmt.lower()
if fmt == "json" or fnmatch.fnmatch(filename, "*.json"):
j = json.dumps(self.embeddings, cls=NumpyEncoder)
if filename:
if not filename.endswith(".json"):
filename = filename + ".json"
with open(filename, "w") as file:
file.write(j)
return None
else:
return j
return None