-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConMod.m
35 lines (30 loc) · 1.24 KB
/
ConMod.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
function [ modulesfinal ] = ConMod( multiNetworks, N, K, lambda, xita, maxIter )
% The implement of ConMod method for identifying conserved functional
% modules in multiple networks
%
% INPUT:
% multiNetworks : a cell contains multiple networks, each of which is
% presented by edgelist format or a full matrix
% with N nodes
% N: the number of all nodes
% K: the number of hidden factors
% lambda: a vector which contains the parameters for balancing the relative
% weight among different views
% xita: the parameter for selecting nodes
% maxIter: the maximum number of iterations for multi-view NMF
%
% OUTPUT:
% modulesfinal: a cell which contains the final conserved modules
%
% Peizhuo Wang ([email protected])
%% Calculting the feature matrices
disp('Calculating the strengh matrix and the uniformity matrix...')
[Strength, Distribution] = featureNets(multiNetworks, N);
%% Obtaining the candidate modules by multi-view NMF
disp('Obtaining candidate modules by multi-view NMF...')
disp(['K=', num2str(K)])
X = {Strength, Distribution};
[ H, Hc, objValue ] = multiViewNMF( X, K, lambda, maxIter );
%% Selecting nodes from the consensus factors
modulesfinal = moduleNodesSelection( Hc, xita );
end