-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPerturbationSim.m
43 lines (39 loc) · 1.31 KB
/
PerturbationSim.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
function [ Ap ] = PerturbationSim( deltaA, V, D )
% Compute the perturbated matrix based on a perturbation term and the
% eigenvectors and eigenvectors of the original matrix
%
% INPUT:
% deltaA (N,N): The pertubation item between two matrices
% V (N,N): Each column is a eigenvector of the original matrix
% D (N,N): The diagonal elements are eigenvalues corresponding to the
% eigenvectors
%
% OUTPUT:
% Ap (N,N): The final perturbated matrix
%
% Author: Peizhuo Wang <[email protected]>
% Sep. 2016
n = size(deltaA,1);
% For a large matrix, we can just use the large eigenvalues whose percentage
% of cumulative sum is more than 0.9. This can decrease noise and reduce
% computing time.
[Y,I] = sort(abs(diag(D)),'descend');
cs = cumsum(Y)/sum(Y);
Ymin = Y(cs<0.9); r = length(Ymin);
Ddelta = zeros(n);
for i = 1:r
index = I(i);
x = V(1:n,index);
Ddelta(index,index) = x'*deltaA*x/(x'*x);
end
D(I(r+1:end),I(r+1:end)) = 0;
Ap = V*(D+Ddelta)*V';
Ap(Ap<0) = 0;
% The result is transformed using a logistic function, such that for the
% element less than 0.3, we make it close to 0; for the element more than
% 0.6, we make it close to 1.
Ap_max = max(max(Ap));
Ap_min = min(min(Ap));
Ap = (Ap - ones(n)*Ap_min) ./ (Ap_max-Ap_min);
Ap = 1./(1+exp(log(9999)-2*log(9999)*Ap));
end