-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathspm_gmm_lib.m
3052 lines (2697 loc) · 94 KB
/
spm_gmm_lib.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
function varargout = spm_gmm_lib(varargin)
%__________________________________________________________________________
%
% Library of functions for Gaussian Mixture modelling
%
%--------------------------------------------------------------------------
% Main function
% -------------
% * Loop >> Core fit (assumes well formatted input)
%--------------------------------------------------------------------------
% Main helpers
% ------------
% * InferMissing >> Infer missing values
% * Marginal >> Compute log marginal distribution: E[log p(X|...)]
% * Responsibility >> Compute posterior responsibilities: q(Z|...)
% * SuffStat >> Compute sufficient statistics 0th/1st/2nd order
% * Normalisation >> Compute normalisation term of the log marginal
%--------------------------------------------------------------------------
% Update parameters
% -----------------
% * UpdateClusters >> Update posterior cluster parameters: q(MU,A)
% * UpdateProportions >> Update posterior proportion parameters: q(PI)
% * updateHyperPars >> Update prior cluster parameters: MU0,b0,V0,n0
%--------------------------------------------------------------------------
% Lower bound
%------------
% * MarginalSum >> Compute the sum of the log marginal from suff stat
% * KL >> Useful KL divergences
%--------------------------------------------------------------------------
% "Missing code" image
%---------------------
% * obs2cell >> Convert obs matrix to missing-friendly cell
% * cell2obs >> Convert missing-friendly cell to obs matrix
%--------------------------------------------------------------------------
% Plot
%-----
% * Plot >> Plotting utilitites
%--------------------------------------------------------------------------
% Extras
%-------
% * Extras >> Extra utilitites
%__________________________________________________________________________
%--------------------------------------------------------------------------
% Convention
% ----------
% N - Number of observations
% Nm - Number of observations that correspond to a given "missing code"
% P - Dimension of observations
% Po - Number of non-missing observations in a given "missing code"
% Pm - Number of missing observations in a given "missing code"
% K - Number of clusters
% M - Number of unique "missing codes"
%
% X - N x P Observations (+ inferred missing)
% Z - N x K Clusters' responsibility
% PI - [N] x K Clusters' proportions
% a - 1 x K Proportions concentration (Dirichlet prior)
% W - [N] x 1 Observations weights (Histogram GMM)
% MU - P x K Clusters' [expected] mean
% A - P x P x K Clusters' [expected] precision matrix
% b - 1 x K Mean degrees of freedom (Gauss prior)
% V - P x P x K Precision scale matrix (Wishart prior)
% n - 1 x K Precision degrees of freedom (Wishart prior)
% U - [N] x P Uncertainty about observations (Histogram GMM)
% SS0 - 1 x K Zeroth order sufficient statistics
% SS1 - P x K First order sufficient statistics
% SS2 - P x P x K Second order sufficient statistics
% C - N x 1 Code image: one code / missing combination
% mask- M x P Mask of observed channels per 'missing code'
%--------------------------------------------------------------------------
% $Id$
if nargin == 0
help spm_gmm_lib
error('Not enough argument. Type ''help spm_gmm_lib'' for help.');
end
id = varargin{1};
varargin = varargin(2:end);
switch lower(id)
case 'loop'
[varargout{1:nargout}] = loop(varargin{:});
%--------------------------------------------------------------------------
% Main helpers
%--------------------------------------------------------------------------
case 'infermissing'
[varargout{1:nargout}] = infermissing(varargin{:});
% X = spm_gmm_lib('InferMissing', X, Z, {MU,A}, {code_im,code_list})
% > Infer missing values (this should only be done once, at the end)
case 'marginal'
[varargout{1:nargout}] = marginal(varargin{:});
% logp = spm_gmm_lib('Marginal', X, {MU,A}, const, mask, U)
% logp = spm_gmm_lib('Marginal', X, {MU,V,n}, const, mask, U)
% > Observation's marginal log probability within each cluster
case 'responsibility'
[varargout{1:nargout}] = responsibility(varargin{:});
% Z = spm_gmm_lib('Responsibility', logpX, logPI)
% > Compute & normalise responsibilities (safe softmax)
case 'suffstat'
[varargout{1:nargout}] = suffstat(varargin{:});
% FORMAT [SS0,SS1,SS2] = spm_gmm_lib('SuffStat', X, Z, W, (mask))
% FORMAT [SS0,SS1,SS2] = spm_gmm_lib('SuffStat', 'infer', SS0, SS1, SS2, {MU,A}, mask)
% FORMAT [SS2] = spm_gmm_lib('SuffStat', 'uncertainty', U, Z, W, (mask))
% > Compute sufficient statistics (0th, 1st, 2nd order)
% default: no missing data => E[z], E[z]*x, E[z]*xx'
% with mising data => E[z], E[z]*g, E[z]*gg'
% 'infer': base to full statistics => E[z], E[z*x], E[z*xx']
% 'uncertainty': observed uncertainty => Tr(S\cov[gg'])
case {'normalisation' 'normalization'}
[varargout{1:nargout}] = normalisation(varargin{:});
% const = spm_gmm_lib('Normalisation', MU, A, (mask))
% const = spm_gmm_lib('Normalisation', {MU,b}, {V,n}, (mask))
% > Normalisation term of a Gaussian log-distribution
% If mask is provided -> marginal distributions
%--------------------------------------------------------------------------
% Update parameters
%--------------------------------------------------------------------------
case 'updateclusters'
[varargout{1:nargout}] = updateclusters(varargin{:});
% [MU,A] = spm_gmm_lib('UpdateClusters', SS0, SS1, SS2)
% [MU,A,b,V,n] = spm_gmm_lib('UpdateClusters', SS0, SS1, SS2, {MU0,b0,V0,n0})
% > Update GMM parameters (ML or Bayesian posterior)
case 'updateproportions'
[varargout{1:nargout}] = updateproportions(varargin{:});
% [PI,logPI,a] = spm_gmm_lib('UpdateProportions', SS0, a0)
% > Update cluster proportions
case 'updatehyperpars'
[varargout{1:nargout}] = updatehyperpars(varargin{:});
% [GaussPrior,extras] = spm_gmm_lib('updatehyperpars',cluster,GaussPrior,varargin)
% > Update VB-GMM hyper-parameters (MU,b,V,n)
%--------------------------------------------------------------------------
% Lower bound
%--------------------------------------------------------------------------
case 'marginalsum'
[varargout{1:nargout}] = marginalsum(varargin{:});
% [lb,const] = spm_gmm_lib('MarginalSum', SS0, SS1, SS2, MU, A, mask, SS2u)
% [lb,const] = spm_gmm_lib('MarginalSum', SS0, SS1, SS2, {MU,b}, {V,n}, mask, SS2u)
% > Compute conditional datasum: E[ln p(g|MU,A,Z)]
% Also returns the result of spm_gmm_lib('const')
case 'kl'
[varargout{1:nargout}] = kl(varargin{:});
% [klMU,klA] = spm_gmm_lib('KL', 'GaussWishart', {MU,b}, {V,n}, {MU0,b0}, {V0,n0})
% > KL divergence between two Gauss-Wishart distributions
%
% klP = spm_gmm_lib('KL', 'Dirichlet', a, a0)
% > KL divergence between two Dirichlet distributions
%
% klZ = spm_gmm_lib('KL', 'Categorical', Z, W, logPI)
% > KL divergence between two Categorical distributions
%--------------------------------------------------------------------------
% "Missing code" image
%--------------------------------------------------------------------------
case 'obs2cell'
[varargout{1:nargout}] = obs2cell(varargin{:});
% [X,code_im,mask] = spm_gmm_lib('obs2cell', X)
% > Transform a matrix of observations into a cell of matrices for
% each missing pattern.
case 'cell2obs'
[varargout{1:nargout}] = cell2obs(varargin{:});
% X = spm_gmm_lib('cell2obs', X, code_im, mask)
% > Create a matrix of observations from a cell of matrices.
%--------------------------------------------------------------------------
% Visualisation
%--------------------------------------------------------------------------
case 'plot'
[varargout{1:nargout}] = gmmplot(varargin{:});
% spm_gmm_lib('Plot', 'LB', lb)
% > Plot lower bound
%
% spm_gmm_lib('Plot', 'GMM', X, W, mask, {MU,A}, PI)
% > Plot mixture fit
%
% spm_gmm_lib('plot', 'cat', dm, Z, Template, (wintitle))
% > Plot (categorical) responsibilities and template (if available)
%
% spm_gmm_lib('plot', 'gaussprior', GaussPrior, (wintitle))
% > Plot VB-GMM hyper-parameters
%
% c = spm_gmm_lib('plot', 'cat2rgb', f, pal)
% > Generate an RGB volume from a categorical (e.g. responsibilities) volume.
%--------------------------------------------------------------------------
% Extras
%--------------------------------------------------------------------------
case 'extras'
[varargout{1:nargout}] = gmm_extras(varargin{:});
% gmm = spm_gmm_lib('extras', 'more_gmms', gmm, part)
% > A crude heuristic to replace a single Gaussian by a bunch of Gaussians.
otherwise
help spm_gmm_lib
error('Unknown function %s. Type ''help spm_gmm_lib'' for help.', id)
end
%--------------------------------------------------------------------------
% Main loop
%--------------------------------------------------------------------------
function [Z,cluster,prop,lb,mg_w] = loop(X, weights, cluster, props, varargin)
%__________________________________________________________________________
%
% Fit a [Bayesian] Gaussian mixture model to observed [weighted] data.
%
% This function is the core of the fitting process. However, it needs all
% inputs to be well formatted and initialised and is, thus, not the usual
% entry point. To fit a GMM without having to bother with these issues, use
% spm_gmm instead.
%
% FORMAT [resp,cluster,prop,lb,mg_w] = spm_gmm_lib('loop',obs,weights,cluster,prop,...)
%
% MANDATORY
% ---------
%
% obs <- X
% X - {NoxPo} observations
%
% weights <- W
% W - {Nox1} weights [1]
%
% cluster <- {MU,A}, {{MU,b},A}, {MU,{V,n}}, or {{MU,b},{V,n}}
% MU - PxK means
% b - 1xK mean d.f. [0=ML]
% A - PxPxK precision matrices
% V - PxPxK scale matrices
% n - 1xK precision d.f. [0=ML]
%
% prop <- LogPi or {('LogProp', LogPi), ('Prop', Pi), ('Dir', a)}
% LogPi - {NoxK} Fixed voxel-wise log-proportions
% 1xK Pre-computed log(Pi) or E[log(Pi)]
% Pi - {NoxK} Fixed voxel-wise proportions
% 1xK Pre-computed Pi or E[Pi]
% a - 1xK Posterior concentration parameter (Dirichlet)
%
% KEYWORD
% -------
%
% LowerBound - Pre-computed lower bound structure with fields:
% sum, last, X, Z, P, MU, A
% GaussPrior - {MU0,b0,V0,n0} [{}=ML]
% PropPrior - a0 [0=ML]
% Missing - Infer missing data [true]
% Missing - MxP Mask of observed channels per code
% IterMax - Max number of EM iterations [1024]
% Tolerance - Gain tolerance to stop the EM algorithm [1e-4]
% SubIterMax - Max number of sub-EM iterations (Missing == true) [1024]
% SubTolerance - Sub-EM gain tolerance (Missing == true) [1e-4]
% ObsUncertainty - 1xP Uncertainty (= variance) about the observations
% {NoxPo} Voxel-wise uncertainty
% Verbose - Verbosity level: [0]= quiet
% 1 = write (lower bound)
% 2 = plot (lower bound)
% 3 = plot more (gmm fit)
% Labels - {NoxK} Log of voxel-wise labels (from, e.g., manual
% segmentations) [[]]
% MultGaussPi - {[1xKmg],[1xKmg]} For using multiple Gaussians per class in
% proportions (Pi). Defined by a cell array with: the first
% element being a vector of length Kmg that maps indices of
% Gaussians to classes in Pi; the second element being a
% vector of the same length with mixing proportions [{}]
%
% OUTPUT
% ------
% resp - Responsibilities
% cluster - Structure with fields: MU, b, A, V, n
% prop - Structure with fields: LogProp, Prop, Dir
% lb - Structure with fields: sum, last, X, Z, P, MU, A
% mg_w - Vector with weights
%
%__________________________________________________________________________
% Copyright (C) 2018 Wellcome Centre for Human Neuroimaging
lb0 = struct('sum', NaN, ...
'X', [], 'Z', [], 'P', [], 'MU', [], 'A', []);
% -------------------------------------------------------------------------
% Parse inputs
p = inputParser;
p.FunctionName = 'spm_gmm_loop';
p.addParameter('LowerBound', lb0, @isstruct);
p.addParameter('Resp', [], @(X) isnumeric(X) || iscell(X));
p.addParameter('GaussPrior', {}, @iscell);
p.addParameter('PropPrior', 0, @isnumeric);
p.addParameter('Missing', {}, @(X) islogical(X) || iscell(X));
p.addParameter('IterMax', 1024, @(X) isscalar(X) && isnumeric(X));
p.addParameter('Tolerance', 1e-4, @(X) isscalar(X) && isnumeric(X));
p.addParameter('SubIterMax', 1024, @(X) isscalar(X) && isnumeric(X));
p.addParameter('SubTolerance', 1e-4, @(X) isscalar(X) && isnumeric(X));
p.addParameter('ObsUncertainty', 0, @(X) isnumeric(X) || iscell(X));
p.addParameter('Verbose', 0, @(X) isnumeric(X) || islogical(X));
p.addParameter('Labels', [], @(X) isnumeric(X) || iscell(X));
p.addParameter('MultGaussPi', {}, @iscell);
p.parse(varargin{:});
lb = p.Results.LowerBound;
Z = p.Results.Resp;
prop_prior = p.Results.PropPrior;
obs_channels = p.Results.Missing;
obs_uncertainty = p.Results.ObsUncertainty;
gauss_prior = p.Results.GaussPrior;
iter_max = p.Results.IterMax;
tolerance = p.Results.Tolerance;
subiter_max = p.Results.SubIterMax;
subtolerance = p.Results.SubTolerance;
verbose = p.Results.Verbose;
labels = p.Results.Labels;
mult_gauss = p.Results.MultGaussPi;
% -------------------------------------------------------------------------
% Unfold inputs
b = 0; % Mean degrees of freedom (posterior)
n = 0; % Precision degrees of freedom (posterior)
V = []; % Scale matrix (posterior)
if ~iscell(cluster) || numel(cluster) < 2
error('At least one mean and one precision matrix are needed.');
else
if ~iscell(cluster{1})
MU = cluster{1};
else
MU = cluster{1}{1};
if numel(cluster{1}) >= 2
b = cluster{1}{2};
end
end
if ~iscell(cluster{2})
A = cluster{2};
else
A = cluster{2}{1};
if numel(cluster{2}) >= 2
n = cluster{2}{2};
if sum(n) > 0
V = A;
A = bsxfun(@times, V, reshape(n, 1, 1, []));
end
end
end
end
if sum(b) > 0
mean = {MU,b};
else
mean = MU;
end
if sum(n) > 0
prec = {V,n};
else
prec = A;
end
% --- Gauss-Wishart prior
b0 = 0; % Mean degrees of freedom (prior)
n0 = 0; % Precision degrees of freedom (prior)
MU0 = []; % Mean (prior)
V0 = []; % Scale matrix (prior)
if numel(gauss_prior) >= 1
MU0 = gauss_prior{1};
if numel(gauss_prior) >= 2
b0 = gauss_prior{2};
if numel(gauss_prior) >= 3
V0 = gauss_prior{3};
if numel(gauss_prior) >= 4
n0 = gauss_prior{4};
end
end
end
end
mean0 = {MU0 b0};
prec0 = {V0 n0};
% --- Proportions
log_prop = []; % [expected] log-proportions
prop = []; % [expected] proportions
prop_posterior = []; % Dirichlet posterior
if ~iscell(props)
log_prop = props;
else
i = 1;
while i < numel(props)
switch lower(props{i})
case 'logprop'
i = i + 1;
log_prop = props{i};
case 'prop'
i = i + 1;
prop = props{i};
case 'dir'
i = i + 1;
prop_posterior = props{i};
otherwise
log_prop = props{i};
end
i = i + 1;
end
end
% -------------------------------------------------------------------------
% For multiple Gaussians per class in Pi
if isempty(mult_gauss)
mg_ix = 1:size(MU,2);
mg_w = ones([1 size(MU,2)]);
else
mg_ix = mult_gauss{1};
mg_w = mult_gauss{2};
end
% -------------------------------------------------------------------------
% Compute log-prop if needed
if isempty(log_prop)
if sum(prop_posterior) > 0
if isempty(prop)
prop = prop_posterior ./ sum(prop_posterior);
end
log_prop = psi(prop_posterior) - psi(sum(prop_posterior));
elseif ~isempty(prop)
log_prop = log(bsxfun(@rdivide, prop+eps, sum(prop+eps, 2)));
else
error('At least one of Prop, LogProp or Dir must be provided.');
end
end
% -------------------------------------------------------------------------
% logpX (needed to initialise Z)
norm_term = normalisation(mean, prec, obs_channels);
logpX = marginal(X, [{MU} prec], norm_term, obs_channels, obs_uncertainty);
% -------------------------------------------------------------------------
% EM loop
for em=1:iter_max
% ---------------------------------------------------------------------
% Compute responsibilities
Z = responsibility(logpX, log_prop, labels, log(mg_w));
clear logpX
% ---------------------------------------------------------------------
% Compute sufficient statistics (bin uncertainty part)
if iscell(obs_uncertainty) || sum(obs_uncertainty) > 0
SS2u = suffstat_uncertainty(obs_uncertainty, Z, weights, obs_channels);
else
SS2u = 0;
end
if ~isempty(obs_channels)
% ---------------------------------------------------------------------
% sub-EM algorithm to update Mean/Precision with missing data
% . Responsibilities (E[z]) are kept fixed
% . Missing values (E[z*h], E[z*hh']) are updated
% . Cluster parameters (MU,b,A/V,n) are updated
% -----------------------------------------------------------------
% Compute fast sufficient statistics:
% > sum{E[z]}, sum{E[z]*g}, sum{E[z]*gg'}
% for each configuration of missing data
[SS0m,SS1m,SS2m] = suffstat_missing(X, Z, weights, obs_channels);
% -----------------------------------------------------------------
% Initialise objective function
[LMU,LA] = kl_gausswishart(mean, prec, mean0, prec0);
[LX,norm_term] = marginalsum(SS0m, SS1m, SS2m, mean, prec, obs_channels, SS2u);
LB = NaN(1,subiter_max);
LB(1) = LMU + LA + LX;
for i=1:subiter_max
% -------------------------------------------------------------
% Save previous value
Ap = A;
Vp = V;
np = n;
if numel(SS0m)==1, subsubiter_max = 1; else subsubiter_max = 4; end
for ii=1:subsubiter_max
% -------------------------------------------------------------
% Infer missing suffstat
% sum{E[z]}, sum{E[z*x]}, sum{E[z*xx']}
[SS0,SS1,SS2] = suffstat_infer(SS0m, SS1m, SS2m, {MU,A}, obs_channels);
SS2 = SS2 + SS2u;
% -------------------------------------------------------------
% Update GMM
[MU,A,b,V,n] = updateclusters(SS0, SS1, SS2, [mean0 prec0]);
for k=1:size(MU,2)
[~,cholp] = chol(A(:,:,k));
if cholp ~= 0
warning('A not positive definite - reverting to previous version')
A(:,:,k) = Ap(:,:,k);
if sum(n) > 0
V(:,:,k) = Vp(:,:,k);
n(k) = np(k);
end
end
end
mean = {MU,b};
if ~sum(n), prec = {A};
else prec = {V,n}; end
end
% -------------------------------------------------------------
% Marginal / Objective function
[LMU,LA] = kl_gausswishart(mean, prec, mean0, prec0);
[LX,norm_term] = marginalsum(SS0m, SS1m, SS2m, mean, prec, obs_channels, SS2u);
LB(i+1) = LMU+LA+LX;
subgain = (LB(i+1)-LB(i))/(max(LB(2:i+1), [], 'omitnan')-min(LB(2:i+1), [], 'omitnan'));
subgain1 = (LB(i+1)-LB(i))/abs(LB(i+1));
% -------------------------------------------------------------
% Print stuff
if numel(verbose) > 1 && verbose(2) > 0
switch sign(subgain)
case 1, incr = '(+)';
case -1, incr = '(-)';
case 0, incr = '(=)';
otherwise, incr = '';
end
fprintf('%-5s | %4d | lb = %-12.6g | gain = %-10.4g | %3s\n', 'sub', i, LB(i+1), subgain, incr);
end
if numel(SS0m)==1 || subgain < subtolerance || subgain1 < eps('single')
break
end
end
else
% ---------------------------------------------------------------------
% Classical M-step
% -----------------------------------------------------------------
% Compute sufficient statistics
[SS0,SS1,SS2] = suffstat_classic(X, Z, weights);
SS2 = SS2 + SS2u;
% -------------------------------------------------------------
% Update GMM
[MU,A,b,V,n] = updateclusters(SS0, SS1, SS2, [mean0 prec0]);
for k=1:size(MU,2)
[~,cholp] = chol(A(:,:,k));
if cholp ~= 0
warning('A not positive definite');
end
end
mean = {MU,b};
if ~sum(n), prec = {A};
else prec = {V,n}; end
norm_term = normalisation(mean, prec);
end
% ---------------------------------------------------------------------
% Update Proportions
if size(prop,1) == 1
[prop,log_prop,prop_posterior] = updateproportions(SS0, prop_prior);
end
% ---------------------------------------------------------------------
% Update weight for multiple Gaussians per prop class
for k=1:size(MU,2)
tmp = SS0(mg_ix == mg_ix(k));
mg_w(k) = (SS0(k) + eps*eps)/sum(tmp + eps*eps);
end
% ---------------------------------------------------------------------
% Plot GMM
if verbose(1) >= 3
plot_gmm(X, weights, obs_channels, {MU,A}, prop);
end
% ---------------------------------------------------------------------
% Marginal / Objective function
logpX = marginal(X, [{MU} prec], norm_term, obs_channels, obs_uncertainty);
% ---------------------------------------------------------------------
% Compute lower bound
lb.P(end+1) = kl_dirichlet(prop_posterior, prop_prior);
lb.Z(end+1) = kl_categorical(Z, weights, log_prop, labels, log(mg_w));
if isempty(obs_channels)
[lb.MU(end+1),lb.A(end+1)] = kl_gausswishart({MU,b}, prec, {MU0,b0}, {V0,n0});
lb.X(end+1) = sum(sum(bsxfun(@times, logpX, bsxfun(@times, Z, weights)),2),'double');
else
lb.MU(end+1) = LMU;
lb.A(end+1) = LA;
lb.X(end+1) = LX;
end
if isfield(lb, 'XB')
if isempty(lb.XB)
lb.XB = 0;
else
lb.XB(:,end+1) = lb.XB(:,end); % < Add bias normalisation term
end
end
% ---------------------------------------------------------------------
% Check convergence
[lb,gain] = check_convergence(lb, em, verbose(1));
if gain < tolerance
break;
end
end
% ---------------------------------------------------------------------
% Compute final responsibilities
Z = responsibility(logpX, log_prop, labels, log(mg_w));
clear logpX
% ---------------------------------------------------------------------
% Recompute parts of lower bound that depends on responsibilities
lb.Z(end+1) = kl_categorical(Z, weights, log_prop, labels, log(mg_w));
if isempty(obs_channels)
lb.X(end+1) = sum(sum(bsxfun(@times, logpX, bsxfun(@times, Z, weights)),2),'double');
else
[SS0m,SS1m,SS2m] = suffstat_missing(X, Z, weights, obs_channels);
LX = marginalsum(SS0m, SS1m, SS2m, mean, prec, obs_channels, SS2u);
lb.X(end+1) = LX;
end
lb = check_convergence(lb, em, verbose(1)); % Make sure lb.sum is correct
% -------------------------------------------------------------------------
% Format output
cluster = struct('MU', MU, 'b', b, 'A', A, 'V', V, 'n', n);
prop = struct('LogProp', log_prop, 'Prop', prop, 'Dir', prop_posterior);
% =========================================================================
function [lb,gain] = check_convergence(lb, em, verbose)
% FORMAT [lb,gain] = check_convergence(lb, em, verbose)
% lb - Lower bound structure with fields X, Z, P, MU, A, sum, last
% em - EM iteration
% verbose - Verbosity level (>= 0)
%
% Compute lower bound (by summing its parts) and its gain
% + print info
fields = fieldnames(lb);
lb.sum(end+1) = 0;
for i=1:numel(fields)
field = fields{i};
if ~any(strcmpi(field, {'sum' 'last'})) && ~isempty(lb.(field)) && ~isnan(lb.(field)(end))
lb.sum(end) = lb.sum(end) + sum(lb.(field)(:,end));
end
end
gain = (lb.sum(end) - lb.sum(end-1))/(max(lb.sum(:), [], 'omitnan')-min(lb.sum(:), [], 'omitnan'));
if verbose >= 1
if verbose >= 2
plot_lowerbound(lb);
end
switch sign(gain)
case 1, incr = '(+)';
case -1, incr = '(-)';
case 0, incr = '(=)';
otherwise, incr = '';
end
fprintf('%-5s | %4d | lb = %-12.6g | gain = %-10.4g | %3s\n', 'gmm', em, lb.sum(end), gain, incr);
end
gain = abs(gain);
%--------------------------------------------------------------------------
% Update functions
%--------------------------------------------------------------------------
% =========================================================================
function X = infermissing(X, Z, cluster, codes, sample)
% FORMAT X = spm_gmm_lib('missing', X, Z, {MU,A}, {C,L})
% X - NxP observations
% Z - NxK responsibilities
% MU - PxK (expected) means
% A - PxPxK (expected) precision matrices
% C - Nx1 "missing value" code image
% L - list of existing codes
%
% X - NxP observations with inferred values
%
% Compute the mean expected value of missing voxels.
if nargin < 5
sample = false;
end
MU = [];
A = [];
C = [];
L = [];
%--------------------------------------------------------------------------
% Read input arguments
if ~iscell(cluster)
MU = cluster;
else
if numel(cluster) >= 1
MU = cluster{1};
if numel(cluster) >= 2
A = cluster{2};
end
end
end
if nargin >= 4
if ~iscell(codes)
C = codes;
else
if numel(codes) >= 1
C = codes{1};
if numel(codes) >= 2
L = codes{2};
end
end
end
if isempty(L)
L = unique(C);
end
end
%--------------------------------------------------------------------------
% Dimensions
P = size(X, 2);
K = size(Z, 2);
if isempty(L)
L = 2^P - 1; % None missing
end
% -------------------------------------------------------------------------
% For each missing combination
for i=1:numel(L)
% ---------------------------------------------------------------------
% Get code / mask / missing modalities
c = L(i);
io = code2bin(c, P);
im = ~io;
Pm = sum(im);
if Pm == 0, continue; end
msk = (C == c);
Nm = sum(msk);
if Nm == 0, continue; end
% ---------------------------------------------------------------------
% Initialise
X(msk,im) = 0;
% ---------------------------------------------------------------------
% Compute posterior mean (expected value)
% 1) t = sum_k {z * ( mu[m] + A[m]/A[m,o]*(mu[o]-g) ) }
for k=1:K
X1k = zeros(1, 'like', X);
X1k = bsxfun(@plus,X1k,MU(im,k).');
X1k = bsxfun(@plus,X1k,bsxfun(@minus, MU(io,k).', X(msk,io)) * (A(io,im,k) / A(im,im,k)));
if sample
%Smk = inv(A(im,im,k));
X1k = X1k + chol(A(im,im,k))\randn(sum(im),Nm); % mvnrnd(zeros(1,Pm),Smk,Nm); %% mvnrnd is part of the statistics toolbox
end
X(msk,im) = X(msk,im) + bsxfun(@times, X1k, Z(msk,k));
end
end
% =========================================================================
function logpX = marginal(X, cluster, const, L, E)
% logp = spm_gmm_lib('marginal', X, {MU,A}, const, [L], [E])
% logp = spm_gmm_lib('marginal', X, {MU,V,n}, const, [L], [E])
%
% X - {NoxP} Observed values
% MU - PxK (Expected) means
% A - PxPxK (Expected) precision matrices
% V - PxPxK Wishart scale matrices
% n - 1xK Wishart degrees of freedom
% const - MxK Constant terms.
% L - MxP Mask of missing patterns
% E - {NoxP} Uncertainty (or 1xP)
%
% logpX - {NoxK} (Expected) log-likelihood of belonging to each class
%
% Compute the expected log-likelihood of each observation belonging to each
% cluster: logpx(i,k) = E[ln p(g(i) | MU_k,A_k)]
%--------------------------------------------------------------------------
% Read input arguments
arraymode = ~iscell(X);
if ~iscell(X)
X = {X};
L = ones(1,size(X,2));
end
MU = double(cluster{1});
A = double(cluster{2});
n = [];
if numel(cluster) >= 3
V = A;
n = double(cluster{3});
end
% -------------------------------------------------------------------------
% Allocate output
P = size(MU,1);
K = size(MU,2);
logpX = cell(1,numel(X));
if nargin < 5, E = zeros(1,P); end
if isscalar(E), E = E*ones(1,P); end
% -------------------------------------------------------------------------
% For each combination of missing voxels
for i=1:size(L,1)
% ---------------------------------------------------------------------
% Get mask of missing values and modalities (with this particular code)
Nm = size(X{i},1); % Number of voxels with that code
if Nm == 0, continue; end
io = L(i,:); % Observed channels
Po = sum(io); % Number of observed channels
im = ~io; % Missing channels
Pm = sum(im); % Number of missing channels
if Po == 0, continue; end
if iscell(E), E1 = E{i}; else E1 = E(:,io); end % Uncertainty
% ---------------------------------------------------------------------
% Allocate logpX
logpX{i} = zeros([Nm K], 'like', X{i});
% ---------------------------------------------------------------------
% Non constant terms
for k=1:K
% /!\ Sub-covariance is different from the inverse sub-precision
% ML case:
% inv(S(o,o)) = A(o,o) - A(o,m)*A(m,m)\A(m,o)
% Bayesian case:
% inv(S(o,o)) ~ W(V(o,o) - V(o,m)*V(m,m)\V(m,o), n - Pm)
% >> See Theorem 3.4.6 in:
% Mardia, K.V., Kent, J.T., Bibby, J.M., 1980.
% Multivariate Analysis, 1st edition. Academic Press.
if sum(n) > 0
Ao = V(io,io,k) - V(io,im,k)*(V(im,im,k)\V(im,io,k));
Ao = (n(k)-Pm) * Ao;
else
Ao = A(io,io,k) - A(io,im,k)*(A(im,im,k)\A(im,io,k));
end
% Quadratic term in observed values: (obs-mean) x (obs-mean)
l = bsxfun(@minus, X{i}, 2*MU(io,k)') * Ao;
l = -0.5 * dot(l, X{i}, 2);
% Binning uncertainty
if ~isempty(E1) && any(any(E1))
if size(E1,1)==1
l = l - 0.5 * trace(diag(E1) * Ao);
else
l = l - 0.5 * sum(bsxfun(@times,diag(Ao)',E1),2);
end
end
% Reshape as a column vector
logpX{i}(:,k) = const(i,k) + l;
end
end
if arraymode, logpX = logpX{1}; end
% =========================================================================
function [Z,lb] = responsibility(varargin)
% FORMAT [Z,lb] = spm_gmm_lib('responsibility', logpX, logPI, ...)
% logpX - {NoxK} Marginal log-likelihood
% logPI - {NoxK} Prior log-probabilities (or 1XK)
% ... - Other log-priors
%
% Compute responsibilities.
% Responsibilities are the posterior expected value of class-indexing
% vectors z_n.
% The posterior is computed as:
% r_nk = exp(E[log Pi_k] + E[log p(x_n | Theta_k)]) / sum_k {r_nk}
%
% Extra terms can be added to the responsibilities prior to softmax by the
% varargin argument. These arguments need to be compatible (w.r.t. size) with
% the following function call: bsxfun(@plus, Z, varargin{i}).
arraymode = ~iscell(varargin{1});
if arraymode
varargin{1} = varargin(1);
end
Z = cell(1,numel(varargin{1}));
[Z{:}] = deal(0);
for j=1:numel(varargin)
Zj = varargin{j};
if ~isempty(Zj)
for i=1:numel(Z)
if iscell(Zj), Zji = Zj{i};
else Zji = Zj; end
Z{i} = bsxfun(@plus, Z{i}, Zji);
end
end
end
% Exponentiate and normalise
lb = 0;
for i=1:numel(Z)
mx = max(Z{i}, [], 2);
Z{i} = bsxfun(@minus, Z{i}, mx);
Z{i} = exp(Z{i});
sz = sum(Z{i}, 2);
if nargout>=2
lb = lb + sum(log(sz),1) + sum(mx,1);
end
Z{i} = bsxfun(@rdivide, Z{i}, sz);
end
if arraymode, Z = Z{1}; end
% =========================================================================
function varargout = suffstat(varargin)
% FORMAT [SS0,SS1,SS2] = spm_gmm_lib('suffstat', X, Z, W, [L])
% >> Compute sufficient statistics (per code)
% FORMAT [SS0,SS1,SS2] = spm_gmm_lib('suffstat', 'infer', SS0, SS1, SS2, {MU,A}, L)
% >> Compute expected sufficient statics (from per-code suff stat)
% FORMAT [SS2] = spm_gmm_lib('suffstat', 'bin', E, Z, W, [L])
% >> Compute uncertainty-related statistics
%
% X - {NoxP} Observed + Inferred values
% W - {Nox1} Observation weights
% E - {NoxP} Observation uncertainty (or 1xP)
% Z - {NoxK} Responsibilities
% L - Mx1 List of missing codes
%
% SS0 - 1xK 0th order suff stat (sum of resp)
% SS1 - PxK 1st order suff stat (weighted sum of intensities)
% SS2 - PxPxK 2nd order suff stat (weighted sum of squared intensities)
%
% Compute sufficient statistics up to 2nd order, taking into account
% inferred values and their uncertainty.
if nargin == 0
help spm_gmm_lib>suffstat
error('Not enough argument. Type ''help spm_gmm_lib>suffstat'' for help.');
end
if ~ischar(varargin{1})
id = 'base';
else
id = varargin{1};
varargin = varargin(2:end);
end
switch lower(id)
case {'base'}
if iscell(varargin{1})
[varargout{1:nargout}] = suffstat_missing(varargin{:});
else
[varargout{1:nargout}] = suffstat_classic(varargin{:});
end
case {'infer'}
[varargout{1:nargout}] = suffstat_infer(varargin{:});
case {'uncertainty'}
[varargout{1:nargout}] = suffstat_uncertainty(varargin{:});
otherwise
help spm_gmm_lib>suffstat
error('Unknown function %s. Type ''help spm_gmm_lib>suffstat'' for help.', id)
end
% =========================================================================
function [SS0,SS1,SS2] = suffstat_classic(X, Z, W, varargin)
% FORMAT [SS0,SS1,SS2] = suffstat_classic(X, Z, W)
%
% X - NxP Observed + Inferred values
% Z - NxK Responsibilities
% W - Nx1 Observation weights
%
% Compute sufficient statistics (up to 2nd order)
if nargin < 3, W = 1; end
%--------------------------------------------------------------------------
% Dimensions
N = size(X, 1);
P = size(X, 2);
K = size(Z, 2);
%--------------------------------------------------------------------------
% Weight responsibilities
Z = bsxfun(@times, Z, W);
%--------------------------------------------------------------------------
% Oth order
SS0 = sum(Z, 1, 'omitnan', 'double');
%--------------------------------------------------------------------------
% 1st order
SS1 = sum(bsxfun(@times, X, reshape(Z, [N 1 K])), 1, 'omitnan', 'double');
SS1 = reshape(SS1, [P K]);
%--------------------------------------------------------------------------
% 1nd order
SS2 = zeros(P,P,K, 'double');
for i=1:P
SS2(i,i,:) = reshape(sum(bsxfun(@times, Z, X(:,i).^2),1,'omitnan', 'double'), [1 1 K]);
for j=i+1:P
SS2(i,j,:) = reshape(sum(bsxfun(@times, Z, X(:,i).*X(:,j)),1,'omitnan', 'double'), [1 1 K]);
SS2(j,i,:) = SS2(i,j,:);
end
end
% =========================================================================
function [SS0,SS1,SS2] = suffstat_missing(X, Z, W, L)
% FORMAT [{SS0},{SS1},{SS2}] = suffstat_missing(X, Z, W, L)
%
% X - {NoxP} Observed + Inferred values
% Z - {NoxK} Responsibilities
% W - {Nox1} Observation weights
% L - MxP Mask of missing channels
%
% Compute sufficient statistics for each missing pattern.
if nargin < 3, W = 1; end