-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathspm_imbasics.m
497 lines (456 loc) · 16.4 KB
/
spm_imbasics.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
function varargout = spm_imbasics(varargin)
%__________________________________________________________________________
% Collection of tools for image calculation (gradient, suff stat, ...).
%
% FORMAT [V,W,C] = spm_imbasics('hist',X,...)
% FORMAT div = spm_imbasics('dive',Dx,Dy,Dz,vx)
% FORMAT [Dx,Dy,Dz] = spm_imbasics('grad',X,vx)
% FORMAT spm_imbasics('smooth_img_in_mem',img,fwhm)
% FORMAT nfname1 = spm_imbasics('create_2d_slice',fname,axis_2d,clean_up)
% FORMAT [BB,vx] = spm_imbasics('compute_bb',img,mat,dm,thr,premul)
%
% FORMAT help spm_imbasics>function
% Returns the help file of the selected function.
%__________________________________________________________________________
% Copyright (C) 2017 Wellcome Trust Centre for Neuroimaging
if nargin == 0
help spm_imbasics
error('Not enough argument. Type ''help spm_imcalc'' for help.');
end
id = varargin{1};
varargin = varargin(2:end);
switch lower(id)
case 'dive'
[varargout{1:nargout}] = dive(varargin{:});
case 'grad'
[varargout{1:nargout}] = grad(varargin{:});
case 'smooth_img'
[varargout{1:nargout}] = smooth_img_in_mem(varargin{:});
case 'hist'
[varargout{1:nargout}] = spm_hist(varargin{:});
case 'create_2d_slice'
[varargout{1:nargout}] = create_2d_slice(varargin{:});
case 'compute_bb'
[varargout{1:nargout}] = compute_bb(varargin{:});
otherwise
help spm_imcalc
error('Unknown function %s. Type ''help spm_imcalc'' for help.', id)
end
%==========================================================================
%==========================================================================
function div = dive(Dx,Dy,Dz,vx)
% Computes the divergence of an image (with voxel size)
% FORMAT div = dive(Dx,Dy,Dz,vx)
% [Dx,Dy,Dz] - Gradients in x-,y- and z-direction
% vx - Voxel size
% div - Divergence
%__________________________________________________________________________
% Copyright (C) 2018 Wellcome Trust Centre for Neuroimaging
if nargin < 4, vx = ones([1 3],'like',Dx); end
if size(Dx,3) == 1
Du = [-Dx(:,1), -diff(Dx(:,1:end-1),1,2), Dx(:,end-1)];
Dv = [-Dy(1,:); -diff(Dy(1:end-1,:),1,1); Dy(end-1,:)];
div = Du./vx(1) + Dv./vx(2);
else
Du = cat(2, -Dx(:,1,:), -diff(Dx(:,1:end-1,:),1,2), Dx(:,end-1,:));
Dv = cat(1, -Dy(1,:,:), -diff(Dy(1:end-1,:,:),1,1), Dy(end-1,:,:));
Dw = cat(3, -Dz(:,:,1), -diff(Dz(:,:,1:end-1),1,3), Dz(:,:,end-1));
div = Du./vx(1) + Dv./vx(2) + Dw./vx(3);
end
%==========================================================================
%==========================================================================
function [Dx,Dy,Dz] = grad(X,vx)
% Calculate 2D or 3D gradient of an image (with voxel size)
% FORMAT [Dx,Dy,Dz] = grad(X,vx)
% X - Image
% vx - voxel size
% [Dx,Dy,Dz] - Gradients in x-,y- and z-direction
%__________________________________________________________________________
% Copyright (C) 2018 Wellcome Trust Centre for Neuroimaging
if nargin < 2, vx = ones([1 3],'like',X); end
if size(X,3)==1
Dx = [diff(X,1,2),zeros(size(X,1),1,'like',X)]./vx(1);
Dy = [diff(X,1,1);zeros(1,size(X,2),'like',X)]./vx(2);
Dz = 0;
else
Dx = cat(2,diff(X,1,2),zeros(size(X,1),1,size(X,3),'like',X))./vx(1);
Dy = cat(1,diff(X,1,1),zeros(1,size(X,2),size(X,3),'like',X))./vx(2);
Dz = cat(3,diff(X,1,3),zeros(size(X,1),size(X,2),1,'like',X))./vx(3);
end
%==========================================================================
%==========================================================================
function simg = smooth_img_in_mem(img,fwhm,VoxelSize)
% Smooth an image with a Gaussian kernel
% FORMAT smooth_img_in_mem(img,fwhm)
% img - Image
% fwhm - Full-width at half maximum
%__________________________________________________________________________
% Copyright (C) 2018 Wellcome Trust Centre for Neuroimaging
if nargin<2, fwhm = 10; end
if nargin<3, VoxelSize = 1; end
if numel(fwhm) == 1
fwhm = fwhm*ones(1,3);
end
if numel(VoxelSize) == 1
VoxelSize = VoxelSize*ones(1,3);
end
simg = zeros(size(img));
fwhm = fwhm./VoxelSize; % voxel anisotropy
s1 = fwhm/sqrt(8*log(2)); % FWHM -> Gaussian parameter
x = round(6*s1(1)); x = -x:x; x = spm_smoothkern(fwhm(1),x,1); x = x/sum(x);
y = round(6*s1(2)); y = -y:y; y = spm_smoothkern(fwhm(2),y,1); y = y/sum(y);
z = round(6*s1(3)); z = -z:z; z = spm_smoothkern(fwhm(3),z,1); z = z/sum(z);
i = (length(x) - 1)/2;
j = (length(y) - 1)/2;
k = (length(z) - 1)/2;
spm_conv_vol(img,simg,x,y,z,-[i,j,k]);
%==========================================================================
%==========================================================================
function [V,W,C,BW,El] = spm_hist(X,varargin)
% _________________________________________________________________________
%
% Compute the (joint) histogram of a (multidimensional) dataset
%
% FORMAT [V,W,C] = spm_misc('hist',X,B..)
% FORMAT [V,W] = spm_misc('hist',X,C..)
%
% MANDATORY
% ---------
% X - NxP matrix of observed values
%
% OPTIONAL
% --------
% B - 1x1 or 1xP number of bins [64]
% or
% C - Bx1 ordered bin centres (or 1xP cell of bin centres)
%
% KEYWORD
% -------
% KeepZero - Keep bins with zero observations [true]
% Missing - Keep rows with missing data [false]
% Additional bins are created for missing values.
% Reshape - Reshape W and V so that their lattice is B1xB2x... [false]
% Smooth - FWHM of the smoothing kernel (in bins) [0]
% Verbose - Verbosity level [0]
%
% OUTPUT
% ------
% V - prod(Bp) x P matrix of multidimensional values (bin centres)
% W - prod(Bp) x 1 vector of weights (bin counts)
% C - 1xP cell of Bx1 bin centres
% BW - 1xP bin widths
%
% (B can be smaller that the specified number of bins if KeepZero = false)
%__________________________________________________________________________
% Copyright (C) 2018 Wellcome Centre for Human Neuroimaging
% -------------------------------------------------------------------------
% Parse inputs
p = inputParser;
p.FunctionName = 'spm_imbasics(''hist'')';
p.addRequired('X', @isnumeric);
p.addOptional('B', 64, @(X) isnumeric(X) || iscell(X));
p.addParameter('KeepZero', true, @isscalar);
p.addParameter('Missing', false, @isscalar);
p.addParameter('Reshape', false, @isscalar);
p.addParameter('Smooth', 0, @isnumeric);
p.addParameter('Verbose', 0, @isscalar);
p.addParameter('Labels', {}, @iscell);
p.parse(X, varargin{:});
B = p.Results.B;
Labels = p.Results.Labels;
% -------------------------------------------------------------------------
% Discard missing values
if ~p.Results.Missing
missing = any(isnan(X),2);
X = X(~missing,:);
end
% -------------------------------------------------------------------------
% Compute bin centres / edges
P = size(X,2); % Number of channels
N = size(X,1); % Number of observations
minval = min(X, [], 1, 'omitnan'); % Min value / channel
maxval = max(X, [], 1, 'omitnan'); % Max value / channel
if ~iscell(B) && size(B,1) == 1
% Number of bins provided
E = B;
if numel(B) < P
E = padarray(E, [0, P-numel(B)], 'replicate', 'post');
end
BW = (maxval - minval)./B;
E = num2cell(E);
else
% Bin centres provided
if ~iscell(B)
if size(B,2) == 1
B = repmat(B(:),1,P);
end
B = num2cell(B, 1);
end
E = cell(1,P);
BW = cell(1,P);
for c=1:P
E{c} = (B{c}(2:end) + B{c}(1:end-1))/2;
E{c} = [minval(c); E{c}; maxval(c)]';
BW{c} = E{c}(2:end) - E{c}(1:end-1);
end
end
clear B
% -------------------------------------------------------------------------
% Discretize data
I = cell(1,P);
V = cell(1,P);
dim = zeros(1,P);
hasnan = zeros(1,P,'logical');
for c=1:P
[I{c},V{c}] = discretize(X(:,c),E{c});
I{c} = single(I{c});
I{c}(isnan(I{c})) = numel(V{c});
V{c} = (V{c}(2:end) + V{c}(1:end-1))/2;
hasnan(c) = any(isnan(X(:,c)));
dim(c) = numel(V{c}) + hasnan(c);
if hasnan(c)
V{c}(end+1) = NaN;
end
end
clear E X
% -------------------------------------------------------------------------
% Count
if numel(dim) == 1
linI = [I{:}];
else
linI = sub2ind(dim, I{:});
end
clear I
% if ~isempty(Labels)
% nlabels = size(Labels{2},1);
% El = zeros([prod(dim) nlabels],'single');
%
% if 0
% [a,b] = unique(linI);
% for i=1:numel(a)
% msk_rhs = linI==a(i);
% msk_lhs = find(msk_rhs);
% labels_i = Labels{1}(msk_rhs);
% for l=1:nlabels
% El(msk_lhs,l) = sum(labels_i==(l - 1));
% end
% end
% else
% for i=1:prod(dim)
% for l=1:nlabels
% El(i,l) = sum(Labels{1}(linI==i)==(l - 1));
% end
% El(i,:)
% end
% end
%
% El = bsxfun(@rdivide,El,sum(El,2));
% else
% El = [];
% end
W = histcounts(linI, 1:prod(dim)+1); clear linI
C = V;
V = combvec(V{:});
V = V.';
W = W.';
if p.Results.Reshape && ~p.Results.KeepZero
error('spm_imbasics::hist - Cannot Reshape and not KeepZero')
end
% -------------------------------------------------------------------------
% Smooth
if p.Results.Smooth
W = reshape(W, dim);
lim = ceil(4/2.355*p.Results.Smooth);
ker = spm_smoothkern(p.Results.Smooth, -lim:lim, 0);
ker = ker(ker~=0);
for c=1:P
if hasnan(c)
W1 = W;
subs = cell(1,P);
[subs{:}] = deal(':');
subs{c} = 1:size(W,c)-1;
W = subsref(W1, struct('type', '()', 'subs', {subs}));
end
W = convn(W, reshape(ker, [ones(1,c-1) numel(ker) 1]), 'same');
if hasnan(c)
[W1,W] = deal(W,W1);
W = subsasgn(W, struct('type', '()', 'subs', {subs}), W1);
clear W1
end
end
W = W(:);
end
% -------------------------------------------------------------------------
% Reshape
if p.Results.Reshape
W = reshape(W, dim);
V = reshape(V, [dim P]);
end
% -------------------------------------------------------------------------
% Remove empty bins
if ~p.Results.KeepZero
empty = W == 0;
W = W(~empty);
V = V(~empty,:);
end
%==========================================================================
%==========================================================================
function nfname1 = create_2d_slice(fname,deg,axis_2d,clean_up)
% Extract the central 2D slice from a 3D volume.
% FORMAT nfname1 = create_2d_slice(fname,axis_2d,clean_up)
% fname - Input filename
% axis_2d - Axis to extract along [axis_2d=3]
% nfname1 - Filename of 2d image
%__________________________________________________________________________
% Copyright (C) 2018 Wellcome Trust Centre for Neuroimaging
if nargin<2, deg = 0; end
if nargin<3, axis_2d = 3; end
if nargin<4, clean_up = true; end
% Create bounding box
V = spm_vol(fname);
dm = V.dim;
if axis_2d == 1
d1 = floor(dm(1)/2) + 1;
bb = [d1 d1;-inf inf;-inf inf];
elseif axis_2d == 2
d1 = floor(dm(2)/2) + 1;
bb = [-inf inf;d1 d1;-inf inf];
elseif axis_2d == 3
d1 = floor(dm(3)/2) + 1;
bb = [-inf inf;-inf inf;d1 d1];
end
% Crop according to bounding-box
spm_impreproc('subvol',V,bb','2d_',deg);
[pth,nam,ext] = fileparts(fname);
nfname1 = fullfile(pth,['2d_' nam ext]);
if clean_up, delete(fname); end
if axis_2d == 1 || axis_2d == 2
% Make sure 1D plane is in z dimension
Nii = nifti(nfname1);
mat = Nii.mat;
% Permute image data and apply permutation matrix to orientation matrix
if axis_2d == 1
img = permute(Nii.dat(:,:,:),[2 3 1]);
P = [0 1 0 0; 0 0 1 0; 1 0 0 0; 0 0 0 1];
else
img = permute(Nii.dat(:,:,:),[1 3 2]);
P = [1 0 0 0; 0 0 1 0; 0 1 0 0; 0 0 0 1];
end
mat = P*mat*P';
dm = [size(img) 1];
% Overwrite image data
VO = spm_vol(nfname1);
VO.dim(1:3) = dm(1:3);
VO.mat = mat;
VO = spm_create_vol(VO);
Nii = nifti(VO.fname);
Nii.dat(:,:,:) = img;
end
%==========================================================================
%==========================================================================
function [BB,vx] = compute_bb(img,mat,dm,thr,premul)
% Compute volume's bounding box, for full field of view or object bounds
% Modified version of Ged's spm_get_bbox.
% FORMAT [BB,vx] = compute_bb(img,mat,dm,thr,premul)
% img - image volume
% mat - orientation matrix
% dm - image dimensions
% thr - threshold, such that BB contains voxels with intensities > thr
% or strings 'nz', 'nn', fv', for non-zero, non-NaN, or field of view
% where 'fv' (the default) uses only the image's header information.
%
% BB - a [2 x 3] array of the min and max X, Y, and Z coordinates {mm},
% i.e. BB = [minX minY minZ; maxX maxY maxZ].
% vx - a [1 x 3] vector of voxel dimensions {mm}.
%__________________________________________________________________________
% Copyright (C) 2011-2013 Wellcome Trust Centre for Neuroimaging
% Ged Ridgway
% $Id: spm_get_bbox.m 5398 2013-04-12 12:37:00Z ged $
% Undocumented expert options:
% V - can be a 4D @nifti object (but not 5D), image-based BBs
% will be computed using "all" along the 4th dimension.
% thr = 'old' - reproduce spm_write_sn/bbvox_from_V (and elsewhere)
% premul - a matrix that premultiplies V.mat, as used in spm_orthviews
%-Compute voxel dimensions (for compatibility with bbvox_from_V)
%--------------------------------------------------------------------------
P = spm_imatrix(mat);
vx = P(7:9);
% the above agrees with sqrt(sum(V.mat(1:3,1:3).^2)) for simple rotations,
% and seems more appropriate if there are reflections and/or skews.
% Note that spm_imatrix(diag([-1 1 1 1])) is [-1 1 1] as expected.
%-Compute bounding box
%--------------------------------------------------------------------------
if nargin < 2 || isempty(thr) || strcmpi(thr, 'fv')
% overall field-of-view bounding box from header information
corners = [
1 1 1 1
1 1 dm(3) 1
1 dm(2) 1 1
1 dm(2) dm(3) 1
dm(1) 1 1 1
dm(1) 1 dm(3) 1
dm(1) dm(2) 1 1
dm(1) dm(2) dm(3) 1
]';
XYZ = mat(1:3, :) * corners;
elseif strcmpi(thr, 'old')
% code from spm_write_sn/bbvox_from_V (and other places)
% NB: main difference is that vx(1)<0 gives descending BB(:,1),
% shouldn't be used if V.mat contains rotations or skews.
o = mat\[0 0 0 1]';
o = o(1:3)';
BB = [-vx.*(o-1) ; vx.*(dm(1:3)-o)];
if exist('premul', 'var')
warning('spm_get_bbox:old_and_premul', 'old method ignores premul')
end
else
% image-based bounding box using voxel intensities
if ischar(thr)
switch lower(thr)
case 'nn' % non-NaN, though include +/- Inf in computation
img = ~isnan(img);
case 'nz' % special case of non-zero (rather than > 0)
img = ~isnan(img) & img ~= 0;
otherwise
error('Unknown threshold type %s', thr)
end
else
% treat thr as numeric threshold
img = img > thr;
end
if ndims(img) == 4
img = all(img, 4);
end
if nnz(img) == 0
warning('spm_get_bbox:nothing', ...
'Threshold leaves no voxels, returning full field of view');
if exist('premul', 'var')
[BB,vx] = compute_bb(img, mat, dm, 'fv', premul);
else
[BB,vx] = compute_bb(img, mat, dm, 'fv');
end
return
else
img = find(img); % (clears img to save memory)
[X Y Z] = ind2sub(dm, img);
XYZ = mat(1:3, :) * [X Y Z ones(size(X))]';
end
end
if ~exist('BB', 'var') % exists already if 'old' case chosen above
if exist('premul', 'var')
XYZ = premul(1:3, :) * [XYZ; ones(1, size(XYZ, 2))];
end
BB = [
min(XYZ, [], 2)'
max(XYZ, [], 2)'
];
end
%==========================================================================
%==========================================================================
% HELPER FUNCTIONS
%==========================================================================
%==========================================================================
function out = get_type(var)
tmp = whos('var');
out = tmp.class;
%==========================================================================