-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
39 lines (36 loc) · 1.13 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import pandas as pd
import numpy as np
import sklearn
import joblib
from flask import Flask,render_template,request
app=Flask(__name__)
@app.route('/')
def home():
return render_template('home.html')
@app.route('/predict',methods=['GET','POST'])
def predict():
if request.method =='POST':
print(request.form.get('var_1'))
print(request.form.get('var_2'))
print(request.form.get('var_3'))
print(request.form.get('var_4'))
print(request.form.get('var_5'))
try:
var_1=float(request.form['var_1'])
var_2=float(request.form['var_2'])
var_3=float(request.form['var_3'])
var_4=float(request.form['var_4'])
var_5=float(request.form['var_5'])
pred_args=[var_1,var_2,var_3,var_4,var_5]
pred_arr=np.array(pred_args)
print(pred_arr)
preds=pred_arr.reshape(1,-1)
model=open("linear_regression_model.pkl","rb")
lr_model=joblib.load(model)
model_prediction=lr_model.predict(preds)
model_prediction=round(float(model_prediction),2)
except ValueError:
return "Please Enter valid values"
return render_template('predict.html',prediction=model_prediction)
if __name__=='__main__':
app.run(host='0.0.0.0')