-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathenergy_profile.py
58 lines (51 loc) · 2.6 KB
/
energy_profile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np
from numba import jit
from logging_config import log_exceptions, get_logger
from config import EnergyProfileConfig
from typing import List
class EnergyProfile:
def __init__(self, config: EnergyProfileConfig):
self.logger = get_logger(self.__class__.__name__)
self.pumps_power = config.pumps_power
self.programmer_power = config.programmer_power
self.dosing_pump_power = config.dosing_pump_power
self.irrigation_months = np.array(config.irrigation_months)
self.staking_nodes = config.staking_nodes
self.staking_power = config.staking_power
self.cooling_efficiency = config.cooling_efficiency
self.gpu_power = config.gpu_power
self.gpu_utilization_range = np.array(config.gpu_utilization_range)
self.num_gpus = config.num_gpus
@log_exceptions
def irrigation_need(self, month: int, hour: int, weather: int):
return self._irrigation_need_optimized(
month, weather['is_raining'], self.irrigation_months,
self.pumps_power, self.dosing_pump_power, self.programmer_power
)
@staticmethod
@jit(nopython=True)
def _irrigation_need_optimized(month: int, is_raining: bool, irrigation_months: List[int], pumps_power: float, dosing_pump_power: float, programmer_power: float):
if month in irrigation_months and not is_raining:
return pumps_power + dosing_pump_power + programmer_power
return 0
@log_exceptions
def server_power_consumption(self, hour: int):
return self._server_power_consumption_optimized(
hour, self.staking_nodes, self.staking_power
)
@staticmethod
@jit(nopython=True)
# Staking servers should run 24/7 disregarding the demand but considering cooling efficiency
def _server_power_consumption_optimized(hour: int, staking_nodes: int, staking_power: float) -> float:
return staking_power * 1.3 # Simplified cooling load
@log_exceptions
def gpu_power_consumption(self, available_energy: float):
return self._gpu_power_consumption_optimized(
available_energy, self.gpu_power, self.num_gpus, self.gpu_utilization_range
)
@staticmethod
@jit(nopython=True)
def _gpu_power_consumption_optimized(available_energy: float, gpu_power: float, num_gpus: int, gpu_utilization_range: List[float]):
max_gpu_power = gpu_power * num_gpus * 1.3 # added simplified cooling load
utilization = min(1, available_energy / max_gpu_power)
return max_gpu_power * utilization * np.random.uniform(gpu_utilization_range[0], gpu_utilization_range[1])