diff --git a/demo/mixed_poisson_dlrbnicsx_distributed/dlrbnicsx_mixed_poisson_distributed.py b/demo/mixed_poisson_dlrbnicsx_distributed/dlrbnicsx_mixed_poisson_distributed.py index 6851b18..7fe09cf 100644 --- a/demo/mixed_poisson_dlrbnicsx_distributed/dlrbnicsx_mixed_poisson_distributed.py +++ b/demo/mixed_poisson_dlrbnicsx_distributed/dlrbnicsx_mixed_poisson_distributed.py @@ -308,7 +308,7 @@ def norm_error_u(self, u_true, u_rb): rstart_u, rend_u = u_sol.vector.getOwnershipRange() num_dofs_u = mesh_comm.allreduce(rend_u, op=MPI.MAX) - mesh_comm.allreduce(rstart_u, op=MPI.MIN) -num_pod_samples_sigma = [5, 3, 4, 3, 2] +num_pod_samples_sigma = [5, 3, 4, 3, 1] num_ann_samples_sigma = [2, 2, 2, 2, 2] num_error_analysis_samples_sigma = [2, 2, 2, 2, 2] num_snapshots_sigma = np.product(num_pod_samples_sigma) @@ -323,7 +323,7 @@ def generate_training_set(samples=num_pod_samples_sigma): training_set_1 = np.linspace(0.2, 0.8, samples[1]) training_set_2 = np.linspace(0.2, 0.8, samples[2]) training_set_3 = np.linspace(0.2, 0.8, samples[3]) - training_set_4 = np.linspace(1., 5., samples[4]) + training_set_4 = np.linspace(2., 2., samples[4]) training_set = np.array(list(itertools.product(training_set_0, training_set_1, training_set_2,