-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
154 lines (119 loc) · 4.62 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import numpy as np
import time
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils
import torch.nn.functional as F
from PIL import Image,ImageDraw
import cv2
import simpleModel as trackModel
import dataloader as dl
import os
def saveResultImg(imgs,label_caculate,savepath,batchNum):
for i in range(imgs.size(0)):
img=imgs[i,:,:,:]
img = torch.squeeze(img, 0)
img=img*255
label=label_caculate[i,:]
label=label.cpu().numpy()
label[0]=label[0]*672
label[1]=label[1]*360
label[2]=label[2]*672
label[3]=label[3]*360
# print(label.shape)
img = img.cpu().numpy()
img_cv = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
cv2.circle(img_cv,(label[0],label[1]),2,(255, 0, 0),-1)
cv2.circle(img_cv,(label[2],label[3]),2,(0, 255, 0),-1)
cv2.imwrite(savepath+'%04d'%batchNum+'_'+'%04d'%i+'.png', img_cv)
# img_pil.save(savepath+'%04d'%batchNum+'_'+'%04d'%i+'.png')
def saveHeatmapResultImg(imgs,heatmaps,savepath,batchNum):
for i in range(imgs.size(0)):
img=imgs[i,:,:,:]
img = torch.squeeze(img, 0)
img=img*255
img = img.cpu().numpy()
# print(heatmaps.size())
hms=heatmaps[i,:,:,:]
hms=torch.squeeze(hms, 0)
hms=hms.cpu().numpy()
points=getPointFromHeatmap(hms)
img_cv = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
for j in range(len(points)):
cv2.circle(img_cv,(points[j][1],points[j][0]),2,(255, 0, 0),-1)
cv2.imwrite(savepath+'%04d'%batchNum+'_'+'%04d'%i+'.png', img_cv)
# print(hms.shape)
# print(hms[1,:,:].max())
# cv2.imwrite(savepath+'%04d'%batchNum+'_'+'%04d'%i+'_hp.png', hms[1,:,:]) # write out heatmap
return
def getPointFromHeatmap(heatmaps):
points=[]
for heatmap in heatmaps:
pos=np.unravel_index(np.argmax(heatmap), heatmap.shape)
# print(np.argmax(heatmap))
# print(pos)
points.append(pos)
return points
def getDistanceError(ref,caculate):
for i in range(ref.size(0)):
ref_hm=ref[i,:,:,:].cpu().numpy()
caculate_hm=caculate[i,:,:,:].cpu().numpy()
ref_points=getPointFromHeatmap(ref_hm)
caculate_points=getPointFromHeatmap(caculate_hm)
dist=0
pdist=[]
for j in range(len(ref_points)):
d=np.linalg.norm(np.array(ref_points[j])-np.array(caculate_points[j]))
dist=dist+d
pdist.append(d)
return dist,np.array(pdist)
if __name__ == "__main__":
device=torch.device("cuda:2" if torch.cuda.is_available() else "cpu")
# device=torch.device("cpu")
modelPath='./model/trackKeyPointModel_0618_unet_320crop.pt'
model=trackModel.load_network(device, path=modelPath)
model=model.to(device)
loss_function=torch.nn.MSELoss()
savepath='./dataset/keyPoint220618_320crop/test/check_unet320crop/'
if not os.path.exists(savepath):
os.makedirs(savepath)
testPath="./dataset/keyPoint220618_320crop/test/"
test_loader=dl.TrackingKeyPointDataset(testPath)
batchSize=4
test_dataloader = torch.utils.data.DataLoader(test_loader, batch_size = batchSize, shuffle = False, num_workers = 1)
testSize=len(test_dataloader.dataset)
print("test size: ", testSize)
testPixelError=0
headErrorCount=0
tailErrorCount=0
model.eval()
for i, data in enumerate(test_dataloader):
with torch.set_grad_enabled(False):
img,label = data[0].to(device), data[1].to(device)
label_caculate=model(img)
error,p_error=getDistanceError(label,label_caculate) # ERROR, ERROR of each point
testPixelError=testPixelError+error
if(p_error[0]>3):
headErrorCount=headErrorCount+1
if(p_error[1]>5):
tailErrorCount=tailErrorCount+1
saveHeatmapResultImg(img,label,savepath,i)
print("total pixel distance error: ",testPixelError)
print("average error: ",testPixelError/testSize)
print("head accuracy: ",(testSize-headErrorCount)/testSize)
print("tail accuracy: ",(testSize-tailErrorCount)/testSize)
# speed test
y_size = 320
x_size = 320
no_channels = 1
batch_size = 1
example_source = torch.rand((batch_size, no_channels, y_size, x_size))
for j in range(10):
T1 = time.clock()
for i in range(1000):
example_source = example_source.to(device)
matrix_caculate=model(example_source)
T2 =time.clock()
print('模型运行1000次:%s毫秒' % ((T2 - T1)*1000))
print('平均时间:%s毫秒' % ((T2 - T1)))