-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathetl.py
138 lines (105 loc) · 4.44 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import glob
import psycopg2
import pandas as pd
from sql_queries import *
def process_song_file(cur, filepath):
"""
Description: This function used to read all the files in the filepath folder (data/song_data)
this will get the user and time data and used to populate in the SONGS and ARTISTS tables
Arguments:
cur: the cursor object.
filepath: file path for song_data API file (json).
Returns:
None
"""
# open song file
df = pd.read_json(filepath, lines=True)
# insert song record
song_data = song_data = df[['song_id','title','artist_id','year','duration']].values[0].tolist()
cur.execute(song_table_insert, song_data)
# insert artist record
artist_data = df[['artist_id','artist_name','artist_location','artist_latitude', 'artist_longitude']].values[0].tolist()
cur.execute(artist_table_insert, artist_data)
def process_log_file(cur, filepath):
"""
Description:This function used to read all the files in the filepath folder (data/log_data)
this will get the user and time data and used to populate in the USERS and TIME tables
Arguments:
cur: the cursor object.
filepath: file path for song_data API file (json).
Returns:
None
"""
# open log file
df = pd.read_json(filepath, lines=True)
# filter by NextSong action
df = df[df.get('page') == 'NextSong']
# convert timestamp column to datetime
t = pd.to_datetime(df.get('ts'), unit='ms')
# insert time data records
time_data = ([t,t.dt.hour, t.dt.day, t.dt.weekofyear, t.dt.month, t.dt.year, t.dt.weekday])
column_labels = ('timestamp', 'hour','day','week of year','month','year','weekday')
time_df = pd.DataFrame.from_dict(dict(zip(column_labels, time_data)))
for i, row in time_df.iterrows():
cur.execute(time_table_insert, list(row))
# load user table
user_df = pd.DataFrame.from_dict(dict(zip(('userId','firstname','lastname','gender','level'),
([df['userId'],df['firstName'],df['lastName'],df['gender'],df['level']]))))
# insert user records
for i, row in user_df.iterrows():
cur.execute(user_table_insert, row)
# insert songplay records
for index, row in df.iterrows():
# get songid and artistid from song and artist tables
cur.execute(song_select, (row.song, row.artist, row.length))
results = cur.fetchone()
if results:
songid, artistid = results
else:
songid, artistid = None, None
# insert songplay record
songplay_data = (index, pd.Timestamp(row.ts, unit='ms'),row.userId,row.level, songid, artistid, row.sessionId,row.location, row.userAgent)
cur.execute(songplay_table_insert, songplay_data)
def process_data(cur, conn, filepath, func):
"""
Description: This function is use to process the data. By calling function through func arguments and show the process message via console
Arguments:
cur: the cursor object.
conn: for connection to PostgreSQL in order to interacted with DB
filepath: log data file path.
func: for input function to run/call inside this function
Returns:
None
"""
# get all files matching extension from directory
all_files = []
for root, dirs, files in os.walk(filepath):
files = glob.glob(os.path.join(root,'*.json'))
for f in files :
all_files.append(os.path.abspath(f))
# get total number of files found
num_files = len(all_files)
print('{} files found in {}'.format(num_files, filepath))
# iterate over files and process
for i, datafile in enumerate(all_files, 1):
func(cur, datafile)
conn.commit()
print('{}/{} files processed.'.format(i, num_files))
def main():
"""
Description: Main function to run all of the code in this file. First it will start the connection with DATABASE.
Then it will process the data in song_file, and log_file.
Finally, it will close the connection.
Arguments:
None
Returns:
None
"""
conn = psycopg2.connect("host=127.0.0.1 dbname=sparkifydb user=student password=student")
cur = conn.cursor()
process_data(cur, conn, filepath='data/song_data', func=process_song_file)
process_data(cur, conn, filepath='data/log_data', func=process_log_file)
conn.close()
if __name__ == "__main__":
main()