forked from llvm/llvm-project
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathMLIRContext.cpp
1261 lines (1094 loc) · 48.4 KB
/
MLIRContext.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===- MLIRContext.cpp - MLIR Type Classes --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/MLIRContext.h"
#include "AffineExprDetail.h"
#include "AffineMapDetail.h"
#include "AttributeDetail.h"
#include "IntegerSetDetail.h"
#include "TypeDetail.h"
#include "mlir/IR/Action.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinDialect.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/ExtensibleDialect.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/OperationSupport.h"
#include "mlir/IR/Types.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/RWMutex.h"
#include "llvm/Support/ThreadPool.h"
#include "llvm/Support/raw_ostream.h"
#include <memory>
#include <optional>
#define DEBUG_TYPE "mlircontext"
using namespace mlir;
using namespace mlir::detail;
//===----------------------------------------------------------------------===//
// MLIRContext CommandLine Options
//===----------------------------------------------------------------------===//
namespace {
/// This struct contains command line options that can be used to initialize
/// various bits of an MLIRContext. This uses a struct wrapper to avoid the need
/// for global command line options.
struct MLIRContextOptions {
llvm::cl::opt<bool> disableThreading{
"mlir-disable-threading",
llvm::cl::desc("Disable multi-threading within MLIR, overrides any "
"further call to MLIRContext::enableMultiThreading()")};
llvm::cl::opt<bool> printOpOnDiagnostic{
"mlir-print-op-on-diagnostic",
llvm::cl::desc("When a diagnostic is emitted on an operation, also print "
"the operation as an attached note"),
llvm::cl::init(true)};
llvm::cl::opt<bool> printStackTraceOnDiagnostic{
"mlir-print-stacktrace-on-diagnostic",
llvm::cl::desc("When a diagnostic is emitted, also print the stack trace "
"as an attached note")};
};
} // namespace
static llvm::ManagedStatic<MLIRContextOptions> clOptions;
static bool isThreadingGloballyDisabled() {
#if LLVM_ENABLE_THREADS != 0
return clOptions.isConstructed() && clOptions->disableThreading;
#else
return true;
#endif
}
/// Register a set of useful command-line options that can be used to configure
/// various flags within the MLIRContext. These flags are used when constructing
/// an MLIR context for initialization.
void mlir::registerMLIRContextCLOptions() {
// Make sure that the options struct has been initialized.
*clOptions;
}
//===----------------------------------------------------------------------===//
// Locking Utilities
//===----------------------------------------------------------------------===//
namespace {
/// Utility writer lock that takes a runtime flag that specifies if we really
/// need to lock.
struct ScopedWriterLock {
ScopedWriterLock(llvm::sys::SmartRWMutex<true> &mutexParam, bool shouldLock)
: mutex(shouldLock ? &mutexParam : nullptr) {
if (mutex)
mutex->lock();
}
~ScopedWriterLock() {
if (mutex)
mutex->unlock();
}
llvm::sys::SmartRWMutex<true> *mutex;
};
} // namespace
//===----------------------------------------------------------------------===//
// MLIRContextImpl
//===----------------------------------------------------------------------===//
namespace mlir {
/// This is the implementation of the MLIRContext class, using the pImpl idiom.
/// This class is completely private to this file, so everything is public.
class MLIRContextImpl {
public:
//===--------------------------------------------------------------------===//
// Debugging
//===--------------------------------------------------------------------===//
/// An action handler for handling actions that are dispatched through this
/// context.
std::function<void(function_ref<void()>, const tracing::Action &)>
actionHandler;
//===--------------------------------------------------------------------===//
// Diagnostics
//===--------------------------------------------------------------------===//
DiagnosticEngine diagEngine;
//===--------------------------------------------------------------------===//
// Options
//===--------------------------------------------------------------------===//
/// In most cases, creating operation in unregistered dialect is not desired
/// and indicate a misconfiguration of the compiler. This option enables to
/// detect such use cases
bool allowUnregisteredDialects = false;
/// Enable support for multi-threading within MLIR.
bool threadingIsEnabled = true;
/// Track if we are currently executing in a threaded execution environment
/// (like the pass-manager): this is only a debugging feature to help reducing
/// the chances of data races one some context APIs.
#ifndef NDEBUG
std::atomic<int> multiThreadedExecutionContext{0};
#endif
/// If the operation should be attached to diagnostics printed via the
/// Operation::emit methods.
bool printOpOnDiagnostic = true;
/// If the current stack trace should be attached when emitting diagnostics.
bool printStackTraceOnDiagnostic = false;
//===--------------------------------------------------------------------===//
// Other
//===--------------------------------------------------------------------===//
/// This points to the ThreadPool used when processing MLIR tasks in parallel.
/// It can't be nullptr when multi-threading is enabled. Otherwise if
/// multi-threading is disabled, and the threadpool wasn't externally provided
/// using `setThreadPool`, this will be nullptr.
llvm::ThreadPoolInterface *threadPool = nullptr;
/// In case where the thread pool is owned by the context, this ensures
/// destruction with the context.
std::unique_ptr<llvm::ThreadPoolInterface> ownedThreadPool;
/// An allocator used for AbstractAttribute and AbstractType objects.
llvm::BumpPtrAllocator abstractDialectSymbolAllocator;
/// This is a mapping from operation name to the operation info describing it.
llvm::StringMap<std::unique_ptr<OperationName::Impl>> operations;
/// A vector of operation info specifically for registered operations.
llvm::DenseMap<TypeID, RegisteredOperationName> registeredOperations;
llvm::StringMap<RegisteredOperationName> registeredOperationsByName;
/// This is a sorted container of registered operations for a deterministic
/// and efficient `getRegisteredOperations` implementation.
SmallVector<RegisteredOperationName, 0> sortedRegisteredOperations;
/// This is a list of dialects that are created referring to this context.
/// The MLIRContext owns the objects. These need to be declared after the
/// registered operations to ensure correct destruction order.
DenseMap<StringRef, std::unique_ptr<Dialect>> loadedDialects;
DialectRegistry dialectsRegistry;
/// A mutex used when accessing operation information.
llvm::sys::SmartRWMutex<true> operationInfoMutex;
//===--------------------------------------------------------------------===//
// Affine uniquing
//===--------------------------------------------------------------------===//
// Affine expression, map and integer set uniquing.
StorageUniquer affineUniquer;
//===--------------------------------------------------------------------===//
// Type uniquing
//===--------------------------------------------------------------------===//
DenseMap<TypeID, AbstractType *> registeredTypes;
StorageUniquer typeUniquer;
/// This is a mapping from type name to the abstract type describing it.
/// It is used by `AbstractType::lookup` to get an `AbstractType` from a name.
/// As this map needs to be populated before `StringAttr` is loaded, we
/// cannot use `StringAttr` as the key. The context does not take ownership
/// of the key, so the `StringRef` must outlive the context.
llvm::DenseMap<StringRef, AbstractType *> nameToType;
/// Cached Type Instances.
BFloat16Type bf16Ty;
Float16Type f16Ty;
FloatTF32Type tf32Ty;
Float32Type f32Ty;
Float64Type f64Ty;
Float80Type f80Ty;
Float128Type f128Ty;
IndexType indexTy;
IntegerType int1Ty, int8Ty, int16Ty, int32Ty, int64Ty, int128Ty;
NoneType noneType;
//===--------------------------------------------------------------------===//
// Attribute uniquing
//===--------------------------------------------------------------------===//
DenseMap<TypeID, AbstractAttribute *> registeredAttributes;
StorageUniquer attributeUniquer;
/// This is a mapping from attribute name to the abstract attribute describing
/// it. It is used by `AbstractType::lookup` to get an `AbstractType` from a
/// name.
/// As this map needs to be populated before `StringAttr` is loaded, we
/// cannot use `StringAttr` as the key. The context does not take ownership
/// of the key, so the `StringRef` must outlive the context.
llvm::DenseMap<StringRef, AbstractAttribute *> nameToAttribute;
/// Cached Attribute Instances.
BoolAttr falseAttr, trueAttr;
UnitAttr unitAttr;
UnknownLoc unknownLocAttr;
DictionaryAttr emptyDictionaryAttr;
StringAttr emptyStringAttr;
/// Map of string attributes that may reference a dialect, that are awaiting
/// that dialect to be loaded.
llvm::sys::SmartMutex<true> dialectRefStrAttrMutex;
DenseMap<StringRef, SmallVector<StringAttrStorage *>>
dialectReferencingStrAttrs;
/// A distinct attribute allocator that allocates every time since the
/// address of the distinct attribute storage serves as unique identifier. The
/// allocator is thread safe and frees the allocated storage after its
/// destruction.
DistinctAttributeAllocator distinctAttributeAllocator;
public:
MLIRContextImpl(bool threadingIsEnabled)
: threadingIsEnabled(threadingIsEnabled) {
if (threadingIsEnabled) {
ownedThreadPool = std::make_unique<llvm::DefaultThreadPool>();
threadPool = ownedThreadPool.get();
}
}
~MLIRContextImpl() {
for (auto typeMapping : registeredTypes)
typeMapping.second->~AbstractType();
for (auto attrMapping : registeredAttributes)
attrMapping.second->~AbstractAttribute();
}
};
} // namespace mlir
MLIRContext::MLIRContext(Threading setting)
: MLIRContext(DialectRegistry(), setting) {}
MLIRContext::MLIRContext(const DialectRegistry ®istry, Threading setting)
: impl(new MLIRContextImpl(setting == Threading::ENABLED &&
!isThreadingGloballyDisabled())) {
// Initialize values based on the command line flags if they were provided.
if (clOptions.isConstructed()) {
printOpOnDiagnostic(clOptions->printOpOnDiagnostic);
printStackTraceOnDiagnostic(clOptions->printStackTraceOnDiagnostic);
}
// Pre-populate the registry.
registry.appendTo(impl->dialectsRegistry);
// Ensure the builtin dialect is always pre-loaded.
getOrLoadDialect<BuiltinDialect>();
// Initialize several common attributes and types to avoid the need to lock
// the context when accessing them.
//// Types.
/// Floating-point Types.
impl->bf16Ty = TypeUniquer::get<BFloat16Type>(this);
impl->f16Ty = TypeUniquer::get<Float16Type>(this);
impl->tf32Ty = TypeUniquer::get<FloatTF32Type>(this);
impl->f32Ty = TypeUniquer::get<Float32Type>(this);
impl->f64Ty = TypeUniquer::get<Float64Type>(this);
impl->f80Ty = TypeUniquer::get<Float80Type>(this);
impl->f128Ty = TypeUniquer::get<Float128Type>(this);
/// Index Type.
impl->indexTy = TypeUniquer::get<IndexType>(this);
/// Integer Types.
impl->int1Ty = TypeUniquer::get<IntegerType>(this, 1, IntegerType::Signless);
impl->int8Ty = TypeUniquer::get<IntegerType>(this, 8, IntegerType::Signless);
impl->int16Ty =
TypeUniquer::get<IntegerType>(this, 16, IntegerType::Signless);
impl->int32Ty =
TypeUniquer::get<IntegerType>(this, 32, IntegerType::Signless);
impl->int64Ty =
TypeUniquer::get<IntegerType>(this, 64, IntegerType::Signless);
impl->int128Ty =
TypeUniquer::get<IntegerType>(this, 128, IntegerType::Signless);
/// None Type.
impl->noneType = TypeUniquer::get<NoneType>(this);
//// Attributes.
//// Note: These must be registered after the types as they may generate one
//// of the above types internally.
/// Unknown Location Attribute.
impl->unknownLocAttr = AttributeUniquer::get<UnknownLoc>(this);
/// Bool Attributes.
impl->falseAttr = IntegerAttr::getBoolAttrUnchecked(impl->int1Ty, false);
impl->trueAttr = IntegerAttr::getBoolAttrUnchecked(impl->int1Ty, true);
/// Unit Attribute.
impl->unitAttr = AttributeUniquer::get<UnitAttr>(this);
/// The empty dictionary attribute.
impl->emptyDictionaryAttr = DictionaryAttr::getEmptyUnchecked(this);
/// The empty string attribute.
impl->emptyStringAttr = StringAttr::getEmptyStringAttrUnchecked(this);
// Register the affine storage objects with the uniquer.
impl->affineUniquer
.registerParametricStorageType<AffineBinaryOpExprStorage>();
impl->affineUniquer
.registerParametricStorageType<AffineConstantExprStorage>();
impl->affineUniquer.registerParametricStorageType<AffineDimExprStorage>();
impl->affineUniquer.registerParametricStorageType<AffineMapStorage>();
impl->affineUniquer.registerParametricStorageType<IntegerSetStorage>();
}
MLIRContext::~MLIRContext() = default;
/// Copy the specified array of elements into memory managed by the provided
/// bump pointer allocator. This assumes the elements are all PODs.
template <typename T>
static ArrayRef<T> copyArrayRefInto(llvm::BumpPtrAllocator &allocator,
ArrayRef<T> elements) {
auto result = allocator.Allocate<T>(elements.size());
std::uninitialized_copy(elements.begin(), elements.end(), result);
return ArrayRef<T>(result, elements.size());
}
//===----------------------------------------------------------------------===//
// Action Handling
//===----------------------------------------------------------------------===//
void MLIRContext::registerActionHandler(HandlerTy handler) {
getImpl().actionHandler = std::move(handler);
}
/// Dispatch the provided action to the handler if any, or just execute it.
void MLIRContext::executeActionInternal(function_ref<void()> actionFn,
const tracing::Action &action) {
assert(getImpl().actionHandler);
getImpl().actionHandler(actionFn, action);
}
bool MLIRContext::hasActionHandler() { return (bool)getImpl().actionHandler; }
//===----------------------------------------------------------------------===//
// Diagnostic Handlers
//===----------------------------------------------------------------------===//
/// Returns the diagnostic engine for this context.
DiagnosticEngine &MLIRContext::getDiagEngine() { return getImpl().diagEngine; }
//===----------------------------------------------------------------------===//
// Dialect and Operation Registration
//===----------------------------------------------------------------------===//
void MLIRContext::appendDialectRegistry(const DialectRegistry ®istry) {
if (registry.isSubsetOf(impl->dialectsRegistry))
return;
assert(impl->multiThreadedExecutionContext == 0 &&
"appending to the MLIRContext dialect registry while in a "
"multi-threaded execution context");
registry.appendTo(impl->dialectsRegistry);
// For the already loaded dialects, apply any possible extensions immediately.
registry.applyExtensions(this);
}
const DialectRegistry &MLIRContext::getDialectRegistry() {
return impl->dialectsRegistry;
}
/// Return information about all registered IR dialects.
std::vector<Dialect *> MLIRContext::getLoadedDialects() {
std::vector<Dialect *> result;
result.reserve(impl->loadedDialects.size());
for (auto &dialect : impl->loadedDialects)
result.push_back(dialect.second.get());
llvm::array_pod_sort(result.begin(), result.end(),
[](Dialect *const *lhs, Dialect *const *rhs) -> int {
return (*lhs)->getNamespace() < (*rhs)->getNamespace();
});
return result;
}
std::vector<StringRef> MLIRContext::getAvailableDialects() {
std::vector<StringRef> result;
for (auto dialect : impl->dialectsRegistry.getDialectNames())
result.push_back(dialect);
return result;
}
/// Get a registered IR dialect with the given namespace. If none is found,
/// then return nullptr.
Dialect *MLIRContext::getLoadedDialect(StringRef name) {
// Dialects are sorted by name, so we can use binary search for lookup.
auto it = impl->loadedDialects.find(name);
return (it != impl->loadedDialects.end()) ? it->second.get() : nullptr;
}
Dialect *MLIRContext::getOrLoadDialect(StringRef name) {
Dialect *dialect = getLoadedDialect(name);
if (dialect)
return dialect;
DialectAllocatorFunctionRef allocator =
impl->dialectsRegistry.getDialectAllocator(name);
return allocator ? allocator(this) : nullptr;
}
/// Get a dialect for the provided namespace and TypeID: abort the program if a
/// dialect exist for this namespace with different TypeID. Returns a pointer to
/// the dialect owned by the context.
Dialect *
MLIRContext::getOrLoadDialect(StringRef dialectNamespace, TypeID dialectID,
function_ref<std::unique_ptr<Dialect>()> ctor) {
auto &impl = getImpl();
// Get the correct insertion position sorted by namespace.
auto dialectIt = impl.loadedDialects.try_emplace(dialectNamespace, nullptr);
if (dialectIt.second) {
LLVM_DEBUG(llvm::dbgs()
<< "Load new dialect in Context " << dialectNamespace << "\n");
#ifndef NDEBUG
if (impl.multiThreadedExecutionContext != 0)
llvm::report_fatal_error(
"Loading a dialect (" + dialectNamespace +
") while in a multi-threaded execution context (maybe "
"the PassManager): this can indicate a "
"missing `dependentDialects` in a pass for example.");
#endif // NDEBUG
// loadedDialects entry is initialized to nullptr, indicating that the
// dialect is currently being loaded. Re-lookup the address in
// loadedDialects because the table might have been rehashed by recursive
// dialect loading in ctor().
std::unique_ptr<Dialect> &dialectOwned =
impl.loadedDialects[dialectNamespace] = ctor();
Dialect *dialect = dialectOwned.get();
assert(dialect && "dialect ctor failed");
// Refresh all the identifiers dialect field, this catches cases where a
// dialect may be loaded after identifier prefixed with this dialect name
// were already created.
auto stringAttrsIt = impl.dialectReferencingStrAttrs.find(dialectNamespace);
if (stringAttrsIt != impl.dialectReferencingStrAttrs.end()) {
for (StringAttrStorage *storage : stringAttrsIt->second)
storage->referencedDialect = dialect;
impl.dialectReferencingStrAttrs.erase(stringAttrsIt);
}
// Apply any extensions to this newly loaded dialect.
impl.dialectsRegistry.applyExtensions(dialect);
return dialect;
}
#ifndef NDEBUG
if (dialectIt.first->second == nullptr)
llvm::report_fatal_error(
"Loading (and getting) a dialect (" + dialectNamespace +
") while the same dialect is still loading: use loadDialect instead "
"of getOrLoadDialect.");
#endif // NDEBUG
// Abort if dialect with namespace has already been registered.
std::unique_ptr<Dialect> &dialect = dialectIt.first->second;
if (dialect->getTypeID() != dialectID)
llvm::report_fatal_error("a dialect with namespace '" + dialectNamespace +
"' has already been registered");
return dialect.get();
}
bool MLIRContext::isDialectLoading(StringRef dialectNamespace) {
auto it = getImpl().loadedDialects.find(dialectNamespace);
// nullptr indicates that the dialect is currently being loaded.
return it != getImpl().loadedDialects.end() && it->second == nullptr;
}
DynamicDialect *MLIRContext::getOrLoadDynamicDialect(
StringRef dialectNamespace, function_ref<void(DynamicDialect *)> ctor) {
auto &impl = getImpl();
// Get the correct insertion position sorted by namespace.
auto dialectIt = impl.loadedDialects.find(dialectNamespace);
if (dialectIt != impl.loadedDialects.end()) {
if (auto *dynDialect = dyn_cast<DynamicDialect>(dialectIt->second.get()))
return dynDialect;
llvm::report_fatal_error("a dialect with namespace '" + dialectNamespace +
"' has already been registered");
}
LLVM_DEBUG(llvm::dbgs() << "Load new dynamic dialect in Context "
<< dialectNamespace << "\n");
#ifndef NDEBUG
if (impl.multiThreadedExecutionContext != 0)
llvm::report_fatal_error(
"Loading a dynamic dialect (" + dialectNamespace +
") while in a multi-threaded execution context (maybe "
"the PassManager): this can indicate a "
"missing `dependentDialects` in a pass for example.");
#endif
auto name = StringAttr::get(this, dialectNamespace);
auto *dialect = new DynamicDialect(name, this);
(void)getOrLoadDialect(name, dialect->getTypeID(), [dialect, ctor]() {
ctor(dialect);
return std::unique_ptr<DynamicDialect>(dialect);
});
// This is the same result as `getOrLoadDialect` (if it didn't failed),
// since it has the same TypeID, and TypeIDs are unique.
return dialect;
}
void MLIRContext::loadAllAvailableDialects() {
for (StringRef name : getAvailableDialects())
getOrLoadDialect(name);
}
llvm::hash_code MLIRContext::getRegistryHash() {
llvm::hash_code hash(0);
// Factor in number of loaded dialects, attributes, operations, types.
hash = llvm::hash_combine(hash, impl->loadedDialects.size());
hash = llvm::hash_combine(hash, impl->registeredAttributes.size());
hash = llvm::hash_combine(hash, impl->registeredOperations.size());
hash = llvm::hash_combine(hash, impl->registeredTypes.size());
return hash;
}
bool MLIRContext::allowsUnregisteredDialects() {
return impl->allowUnregisteredDialects;
}
void MLIRContext::allowUnregisteredDialects(bool allowing) {
assert(impl->multiThreadedExecutionContext == 0 &&
"changing MLIRContext `allow-unregistered-dialects` configuration "
"while in a multi-threaded execution context");
impl->allowUnregisteredDialects = allowing;
}
/// Return true if multi-threading is enabled by the context.
bool MLIRContext::isMultithreadingEnabled() {
return impl->threadingIsEnabled && llvm::llvm_is_multithreaded();
}
/// Set the flag specifying if multi-threading is disabled by the context.
void MLIRContext::disableMultithreading(bool disable) {
// This API can be overridden by the global debugging flag
// --mlir-disable-threading
if (isThreadingGloballyDisabled())
return;
assert(impl->multiThreadedExecutionContext == 0 &&
"changing MLIRContext `disable-threading` configuration while "
"in a multi-threaded execution context");
impl->threadingIsEnabled = !disable;
// Update the threading mode for each of the uniquers.
impl->affineUniquer.disableMultithreading(disable);
impl->attributeUniquer.disableMultithreading(disable);
impl->typeUniquer.disableMultithreading(disable);
// Destroy thread pool (stop all threads) if it is no longer needed, or create
// a new one if multithreading was re-enabled.
if (disable) {
// If the thread pool is owned, explicitly set it to nullptr to avoid
// keeping a dangling pointer around. If the thread pool is externally
// owned, we don't do anything.
if (impl->ownedThreadPool) {
assert(impl->threadPool);
impl->threadPool = nullptr;
impl->ownedThreadPool.reset();
}
} else if (!impl->threadPool) {
// The thread pool isn't externally provided.
assert(!impl->ownedThreadPool);
impl->ownedThreadPool = std::make_unique<llvm::DefaultThreadPool>();
impl->threadPool = impl->ownedThreadPool.get();
}
}
void MLIRContext::setThreadPool(llvm::ThreadPoolInterface &pool) {
assert(!isMultithreadingEnabled() &&
"expected multi-threading to be disabled when setting a ThreadPool");
impl->threadPool = &pool;
impl->ownedThreadPool.reset();
enableMultithreading();
}
unsigned MLIRContext::getNumThreads() {
if (isMultithreadingEnabled()) {
assert(impl->threadPool &&
"multi-threading is enabled but threadpool not set");
return impl->threadPool->getMaxConcurrency();
}
// No multithreading or active thread pool. Return 1 thread.
return 1;
}
llvm::ThreadPoolInterface &MLIRContext::getThreadPool() {
assert(isMultithreadingEnabled() &&
"expected multi-threading to be enabled within the context");
assert(impl->threadPool &&
"multi-threading is enabled but threadpool not set");
return *impl->threadPool;
}
void MLIRContext::enterMultiThreadedExecution() {
#ifndef NDEBUG
++impl->multiThreadedExecutionContext;
#endif
}
void MLIRContext::exitMultiThreadedExecution() {
#ifndef NDEBUG
--impl->multiThreadedExecutionContext;
#endif
}
/// Return true if we should attach the operation to diagnostics emitted via
/// Operation::emit.
bool MLIRContext::shouldPrintOpOnDiagnostic() {
return impl->printOpOnDiagnostic;
}
/// Set the flag specifying if we should attach the operation to diagnostics
/// emitted via Operation::emit.
void MLIRContext::printOpOnDiagnostic(bool enable) {
assert(impl->multiThreadedExecutionContext == 0 &&
"changing MLIRContext `print-op-on-diagnostic` configuration while in "
"a multi-threaded execution context");
impl->printOpOnDiagnostic = enable;
}
/// Return true if we should attach the current stacktrace to diagnostics when
/// emitted.
bool MLIRContext::shouldPrintStackTraceOnDiagnostic() {
return impl->printStackTraceOnDiagnostic;
}
/// Set the flag specifying if we should attach the current stacktrace when
/// emitting diagnostics.
void MLIRContext::printStackTraceOnDiagnostic(bool enable) {
assert(impl->multiThreadedExecutionContext == 0 &&
"changing MLIRContext `print-stacktrace-on-diagnostic` configuration "
"while in a multi-threaded execution context");
impl->printStackTraceOnDiagnostic = enable;
}
/// Return information about all registered operations.
ArrayRef<RegisteredOperationName> MLIRContext::getRegisteredOperations() {
return impl->sortedRegisteredOperations;
}
/// Return information for registered operations by dialect.
ArrayRef<RegisteredOperationName>
MLIRContext::getRegisteredOperationsByDialect(StringRef dialectName) {
auto lowerBound =
std::lower_bound(impl->sortedRegisteredOperations.begin(),
impl->sortedRegisteredOperations.end(), dialectName,
[](auto &lhs, auto &rhs) {
return lhs.getDialect().getNamespace().compare(rhs);
});
if (lowerBound == impl->sortedRegisteredOperations.end() ||
lowerBound->getDialect().getNamespace() != dialectName)
return ArrayRef<RegisteredOperationName>();
auto upperBound =
std::upper_bound(lowerBound, impl->sortedRegisteredOperations.end(),
dialectName, [](auto &lhs, auto &rhs) {
return lhs.compare(rhs.getDialect().getNamespace());
});
size_t count = std::distance(lowerBound, upperBound);
return ArrayRef(&*lowerBound, count);
}
bool MLIRContext::isOperationRegistered(StringRef name) {
return RegisteredOperationName::lookup(name, this).has_value();
}
void Dialect::addType(TypeID typeID, AbstractType &&typeInfo) {
auto &impl = context->getImpl();
assert(impl.multiThreadedExecutionContext == 0 &&
"Registering a new type kind while in a multi-threaded execution "
"context");
auto *newInfo =
new (impl.abstractDialectSymbolAllocator.Allocate<AbstractType>())
AbstractType(std::move(typeInfo));
if (!impl.registeredTypes.insert({typeID, newInfo}).second)
llvm::report_fatal_error("Dialect Type already registered.");
if (!impl.nameToType.insert({newInfo->getName(), newInfo}).second)
llvm::report_fatal_error("Dialect Type with name " + newInfo->getName() +
" is already registered.");
}
void Dialect::addAttribute(TypeID typeID, AbstractAttribute &&attrInfo) {
auto &impl = context->getImpl();
assert(impl.multiThreadedExecutionContext == 0 &&
"Registering a new attribute kind while in a multi-threaded execution "
"context");
auto *newInfo =
new (impl.abstractDialectSymbolAllocator.Allocate<AbstractAttribute>())
AbstractAttribute(std::move(attrInfo));
if (!impl.registeredAttributes.insert({typeID, newInfo}).second)
llvm::report_fatal_error("Dialect Attribute already registered.");
if (!impl.nameToAttribute.insert({newInfo->getName(), newInfo}).second)
llvm::report_fatal_error("Dialect Attribute with name " +
newInfo->getName() + " is already registered.");
}
//===----------------------------------------------------------------------===//
// AbstractAttribute
//===----------------------------------------------------------------------===//
/// Get the dialect that registered the attribute with the provided typeid.
const AbstractAttribute &AbstractAttribute::lookup(TypeID typeID,
MLIRContext *context) {
const AbstractAttribute *abstract = lookupMutable(typeID, context);
if (!abstract)
llvm::report_fatal_error("Trying to create an Attribute that was not "
"registered in this MLIRContext.");
return *abstract;
}
AbstractAttribute *AbstractAttribute::lookupMutable(TypeID typeID,
MLIRContext *context) {
auto &impl = context->getImpl();
return impl.registeredAttributes.lookup(typeID);
}
std::optional<std::reference_wrapper<const AbstractAttribute>>
AbstractAttribute::lookup(StringRef name, MLIRContext *context) {
MLIRContextImpl &impl = context->getImpl();
const AbstractAttribute *type = impl.nameToAttribute.lookup(name);
if (!type)
return std::nullopt;
return {*type};
}
//===----------------------------------------------------------------------===//
// OperationName
//===----------------------------------------------------------------------===//
OperationName::Impl::Impl(StringRef name, Dialect *dialect, TypeID typeID,
detail::InterfaceMap interfaceMap)
: Impl(StringAttr::get(dialect->getContext(), name), dialect, typeID,
std::move(interfaceMap)) {}
OperationName::OperationName(StringRef name, MLIRContext *context) {
MLIRContextImpl &ctxImpl = context->getImpl();
// Check for an existing name in read-only mode.
bool isMultithreadingEnabled = context->isMultithreadingEnabled();
if (isMultithreadingEnabled) {
// Check the registered info map first. In the overwhelmingly common case,
// the entry will be in here and it also removes the need to acquire any
// locks.
auto registeredIt = ctxImpl.registeredOperationsByName.find(name);
if (LLVM_LIKELY(registeredIt != ctxImpl.registeredOperationsByName.end())) {
impl = registeredIt->second.impl;
return;
}
llvm::sys::SmartScopedReader<true> contextLock(ctxImpl.operationInfoMutex);
auto it = ctxImpl.operations.find(name);
if (it != ctxImpl.operations.end()) {
impl = it->second.get();
return;
}
}
// Acquire a writer-lock so that we can safely create the new instance.
ScopedWriterLock lock(ctxImpl.operationInfoMutex, isMultithreadingEnabled);
auto it = ctxImpl.operations.insert({name, nullptr});
if (it.second) {
auto nameAttr = StringAttr::get(context, name);
it.first->second = std::make_unique<UnregisteredOpModel>(
nameAttr, nameAttr.getReferencedDialect(), TypeID::get<void>(),
detail::InterfaceMap());
}
impl = it.first->second.get();
}
StringRef OperationName::getDialectNamespace() const {
if (Dialect *dialect = getDialect())
return dialect->getNamespace();
return getStringRef().split('.').first;
}
LogicalResult
OperationName::UnregisteredOpModel::foldHook(Operation *, ArrayRef<Attribute>,
SmallVectorImpl<OpFoldResult> &) {
return failure();
}
void OperationName::UnregisteredOpModel::getCanonicalizationPatterns(
RewritePatternSet &, MLIRContext *) {}
bool OperationName::UnregisteredOpModel::hasTrait(TypeID) { return false; }
OperationName::ParseAssemblyFn
OperationName::UnregisteredOpModel::getParseAssemblyFn() {
llvm::report_fatal_error("getParseAssemblyFn hook called on unregistered op");
}
void OperationName::UnregisteredOpModel::populateDefaultAttrs(
const OperationName &, NamedAttrList &) {}
void OperationName::UnregisteredOpModel::printAssembly(
Operation *op, OpAsmPrinter &p, StringRef defaultDialect) {
p.printGenericOp(op);
}
LogicalResult
OperationName::UnregisteredOpModel::verifyInvariants(Operation *) {
return success();
}
LogicalResult
OperationName::UnregisteredOpModel::verifyRegionInvariants(Operation *) {
return success();
}
std::optional<Attribute>
OperationName::UnregisteredOpModel::getInherentAttr(Operation *op,
StringRef name) {
auto dict = dyn_cast_or_null<DictionaryAttr>(getPropertiesAsAttr(op));
if (!dict)
return std::nullopt;
if (Attribute attr = dict.get(name))
return attr;
return std::nullopt;
}
void OperationName::UnregisteredOpModel::setInherentAttr(Operation *op,
StringAttr name,
Attribute value) {
auto dict = dyn_cast_or_null<DictionaryAttr>(getPropertiesAsAttr(op));
assert(dict);
NamedAttrList attrs(dict);
attrs.set(name, value);
*op->getPropertiesStorage().as<Attribute *>() =
attrs.getDictionary(op->getContext());
}
void OperationName::UnregisteredOpModel::populateInherentAttrs(
Operation *op, NamedAttrList &attrs) {}
LogicalResult OperationName::UnregisteredOpModel::verifyInherentAttrs(
OperationName opName, NamedAttrList &attributes,
function_ref<InFlightDiagnostic()> emitError) {
return success();
}
int OperationName::UnregisteredOpModel::getOpPropertyByteSize() {
return sizeof(Attribute);
}
void OperationName::UnregisteredOpModel::initProperties(
OperationName opName, OpaqueProperties storage, OpaqueProperties init) {
new (storage.as<Attribute *>()) Attribute();
}
void OperationName::UnregisteredOpModel::deleteProperties(
OpaqueProperties prop) {
prop.as<Attribute *>()->~Attribute();
}
void OperationName::UnregisteredOpModel::populateDefaultProperties(
OperationName opName, OpaqueProperties properties) {}
LogicalResult OperationName::UnregisteredOpModel::setPropertiesFromAttr(
OperationName opName, OpaqueProperties properties, Attribute attr,
function_ref<InFlightDiagnostic()> emitError) {
*properties.as<Attribute *>() = attr;
return success();
}
Attribute
OperationName::UnregisteredOpModel::getPropertiesAsAttr(Operation *op) {
return *op->getPropertiesStorage().as<Attribute *>();
}
void OperationName::UnregisteredOpModel::copyProperties(OpaqueProperties lhs,
OpaqueProperties rhs) {
*lhs.as<Attribute *>() = *rhs.as<Attribute *>();
}
bool OperationName::UnregisteredOpModel::compareProperties(
OpaqueProperties lhs, OpaqueProperties rhs) {
return *lhs.as<Attribute *>() == *rhs.as<Attribute *>();
}
llvm::hash_code
OperationName::UnregisteredOpModel::hashProperties(OpaqueProperties prop) {
return llvm::hash_combine(*prop.as<Attribute *>());
}
//===----------------------------------------------------------------------===//
// RegisteredOperationName
//===----------------------------------------------------------------------===//
std::optional<RegisteredOperationName>
RegisteredOperationName::lookup(TypeID typeID, MLIRContext *ctx) {
auto &impl = ctx->getImpl();
auto it = impl.registeredOperations.find(typeID);
if (it != impl.registeredOperations.end())
return it->second;
return std::nullopt;
}
std::optional<RegisteredOperationName>
RegisteredOperationName::lookup(StringRef name, MLIRContext *ctx) {
auto &impl = ctx->getImpl();
auto it = impl.registeredOperationsByName.find(name);
if (it != impl.registeredOperationsByName.end())
return it->getValue();
return std::nullopt;
}
void RegisteredOperationName::insert(
std::unique_ptr<RegisteredOperationName::Impl> ownedImpl,
ArrayRef<StringRef> attrNames) {
RegisteredOperationName::Impl *impl = ownedImpl.get();
MLIRContext *ctx = impl->getDialect()->getContext();
auto &ctxImpl = ctx->getImpl();
assert(ctxImpl.multiThreadedExecutionContext == 0 &&
"registering a new operation kind while in a multi-threaded execution "
"context");
// Register the attribute names of this operation.
MutableArrayRef<StringAttr> cachedAttrNames;
if (!attrNames.empty()) {
cachedAttrNames = MutableArrayRef<StringAttr>(
ctxImpl.abstractDialectSymbolAllocator.Allocate<StringAttr>(
attrNames.size()),
attrNames.size());
for (unsigned i : llvm::seq<unsigned>(0, attrNames.size()))
new (&cachedAttrNames[i]) StringAttr(StringAttr::get(ctx, attrNames[i]));
impl->attributeNames = cachedAttrNames;
}
StringRef name = impl->getName().strref();
// Insert the operation info if it doesn't exist yet.
ctxImpl.operations[name] = std::move(ownedImpl);
// Update the registered info for this operation.
auto emplaced = ctxImpl.registeredOperations.try_emplace(
impl->getTypeID(), RegisteredOperationName(impl));
assert(emplaced.second && "operation name registration must be successful");
auto emplacedByName = ctxImpl.registeredOperationsByName.try_emplace(
name, RegisteredOperationName(impl));
(void)emplacedByName;
assert(emplacedByName.second &&
"operation name registration must be successful");
// Add emplaced operation name to the sorted operations container.
RegisteredOperationName &value = emplaced.first->second;
ctxImpl.sortedRegisteredOperations.insert(
llvm::upper_bound(ctxImpl.sortedRegisteredOperations, value,
[](auto &lhs, auto &rhs) {
return lhs.getIdentifier().compare(
rhs.getIdentifier());
}),
value);
}
//===----------------------------------------------------------------------===//
// AbstractType
//===----------------------------------------------------------------------===//
const AbstractType &AbstractType::lookup(TypeID typeID, MLIRContext *context) {
const AbstractType *type = lookupMutable(typeID, context);
if (!type)
llvm::report_fatal_error(
"Trying to create a Type that was not registered in this MLIRContext.");
return *type;
}