|
5 | 5 | </table>
|
6 | 6 |
|
7 | 7 |
|
8 |
| -The Xilinx Machine Learning (ML) Suite provides users with the tools to develop and deploy Machine Learning applications for Real-time Inference. It provides support for many common machine learning frameworks such as Caffe, Tensorflow, and MXNet. |
9 |
| - |
10 |
| -<p align="left"> |
11 |
| - <img width="700" height="350" src="docs/img/stack.png"> |
12 |
| -</p> |
13 |
| - |
14 |
| -The ML Suite is composed of three basic parts: |
15 |
| -1. **ML Framework and Open Source Support** - Support for high level ML Frameworks and other open source projects. |
16 |
| -2. **xfDNN Middleware** - Software Library and Tools to Interface with ML Frameworks and optimize networks for Real-time Inference. |
17 |
| -3. **xDNN IP** - High Performance CNN processing engine. |
18 |
| - |
19 |
| -**Learn More:** [ML Suite Overview][] |
20 |
| -**Watch:** [Webinar on Xilinx FPGA Accelerated Inference][] |
21 |
| -**Forum:** [ML Suite Forum][] |
22 |
| - |
23 |
| -## [See What's New](docs/release-notes/1.x.md) |
24 |
| - - [Release Notes][] |
25 |
| - - Integration of Deephi DECENT Quantizer for TensorFlow |
26 |
| - - TensorFlow Jupyter Notebook |
27 |
| - - TensorFlow Command Line Examples |
28 |
| - - New precompiled Face Detection example applied to video |
29 |
| - - Ease of use enhancements |
30 |
| - - Docker Images for both Caffe and Tensorflow |
31 |
| - - Can run directly on the FPGA using Caffe or Tensorflow |
32 |
| - |
33 |
| -## Getting Started |
34 |
| - - [Install XRT](docs/xrt.md) (Only necessary for On-Premise deployment) |
35 |
| - - [Start Docker Container](docs/container.md) |
36 |
| - - [Jupyter Notebook Tutorials](notebooks/README.md) |
37 |
| - - [TensorFlow Image Classification](notebooks/image_classification_tensorflow.ipynb) |
38 |
| - - [Caffe Image Classification](notebooks/image_classification_caffe.ipynb) |
39 |
| - - [Caffe Object Detection w/ YOLOv2](notebooks/object_detection_yolov2.ipynb) |
40 |
| - - Command Line Examples |
41 |
| - - [TensorFlow ImageNet Benchmark Models](examples/tensorflow/README.md) |
42 |
| - - [Caffe ImageNet Benchmark Models](examples/caffe/README.md) |
43 |
| - - [Caffe VOC SSD Example](examples/caffe/ssd-detect/README.md) |
44 |
| - - [Deployment Mode Examples](examples/deployment_modes/README.md) |
45 |
| - - [In-Browser GoogLeNet Demo](apps/perpetual_demo/README.md) |
46 |
| - - [REST Server Example](examples/caffe/REST/README.md) |
47 |
| - - [Container Pipeline Example](docs/container_pipeline.md) |
48 |
| - |
49 |
| -## References |
50 |
| -- [ML Suite Overview][] |
51 |
| -- [Performance Whitepaper][] |
52 |
| -- [Accuracy Benchmarks](examples/caffe/Benchmark_README.md) |
53 |
| - |
54 |
| -## [System Requirements](https://github.com/Xilinx/XRT/blob/master/src/runtime_src/doc/toc/system_requirements.rst) |
55 |
| - |
56 |
| -## Questions and Support |
57 |
| -- [FAQ][] |
58 |
| -- [ML Suite Forum][] |
59 |
| -- [AWS F1 Application Execution on Xilinx Virtex UltraScale Devices][] |
60 |
| - |
61 |
| -[models]: docs/models.md |
62 |
| -[Amazon AWS EC2 F1]: https://aws.amazon.com/marketplace/pp/B077FM2JNS |
63 |
| -[Xilinx Virtex UltraScale+ FPGA VCU1525 Acceleration Development Kit]: https://www.xilinx.com/products/boards-and-kits/vcu1525-a.html |
64 |
| -[AWS F1 Application Execution on Xilinx Virtex UltraScale Devices]: https://github.com/aws/aws-fpga/blob/master/SDAccel/README.md |
65 |
| -[SDAccel Forums]: https://forums.xilinx.com/t5/SDAccel/bd-p/SDx |
66 |
| -[Release Notes]: docs/release-notes/1.x.md |
67 |
| -[UG1023]: https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1023-sdaccel-user-guide.pdf |
68 |
| -[FAQ]: docs/faq.md |
69 |
| -[ML Suite Overview]: docs/ml-suite-overview.md |
70 |
| -[Webinar on Xilinx FPGA Accelerated Inference]: https://event.on24.com/wcc/r/1625401/2D3B69878E21E0A3DA63B4CDB5531C23?partnerref=Mlsuite |
71 |
| -[ML Suite Forum]: https://forums.xilinx.com/t5/Xilinx-ML-Suite/bd-p/ML |
72 |
| -[ML Suite Lounge]: https://www.xilinx.com/products/boards-and-kits/alveo/applications/xilinx-machine-learning-suite.html |
73 |
| -[Models]: https://www.xilinx.com/products/boards-and-kits/alveo/applications/xilinx-machine-learning-suite.html#gettingStartedCloud |
74 |
| -[whitepaper here]: https://www.xilinx.com/support/documentation/white_papers/wp504-accel-dnns.pdf |
75 |
| -[Performance Whitepaper]: https://www.xilinx.com/support/documentation/white_papers/wp504-accel-dnns.pdf |
| 8 | +Xilinx ML Suite is now deprecated. Please use [Vitis AI](https://github.com/Xilinx/Vitis-AI) in the place of ML Suite and for all AI acceleration on Xilinx platforms. |
0 commit comments