-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel_enerv.py
318 lines (277 loc) · 14.3 KB
/
model_enerv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import torch.distributions as dist
from einops import rearrange
from model_blocks import *
import time
from lib.quant_ops import CustomConv2d, CustomLinear
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout=0., args=None):
super().__init__()
self.net = nn.Sequential(
CustomLinear(dim, hidden_dim, args=args),
nn.GELU(),
nn.Dropout(dropout),
CustomLinear(hidden_dim, dim, args=args),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads=8, dim_head=64, dropout=0., args=None):
super().__init__()
inner_dim = heads * dim_head
project_out = not(heads==1 and dim_head==dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.to_qkv = CustomLinear(dim, inner_dim * 3, bias=False, args=args)
self.to_out = nn.Sequential(
CustomLinear(inner_dim, dim, args=args),
nn.Dropout(dropout)
) if project_out else nn.Identity()
def forward(self, x):
qkv = self.to_qkv(x).chunk(3, dim=-1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class TransformerBlock(nn.Module):
def __init__(self, dim, heads, dim_head, mlp_dim, dropout=0., prenorm=False, args=None):
super(TransformerBlock, self).__init__()
if prenorm:
self.attn = PreNorm(dim, Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout, args=args))
self.ffn = PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout, args=args))
else:
self.attn = Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout, args=args)
self.ffn = FeedForward(dim, mlp_dim, dropout=dropout, args=args)
def forward(self, x):
x = self.attn(x) + x
x = self.ffn(x) + x
return x
class Conv_Up_Block(nn.Module):
def __init__(self, **kargs):
super().__init__()
ngf = kargs['ngf']
new_ngf = kargs['new_ngf']
args=kargs['args']
if ngf <= new_ngf:
factor = 4
self.conv1 = UpConv(ngf=ngf, new_ngf=ngf // factor, ks=kargs['ks'], strd=kargs['stride'], bias=kargs['bias'], conv_type=kargs['conv_type'], args=args)
self.conv2 = CustomConv2d(ngf // factor, new_ngf, 3, 1, 1, bias=kargs['bias'], args=args)
else:
self.conv1 = CustomConv2d(ngf, new_ngf, 3, 1, 1, bias=kargs['bias'], args=args)
self.conv2 = UpConv(ngf=new_ngf, new_ngf=new_ngf, ks=kargs['ks'], strd=kargs['stride'], bias=kargs['bias'], conv_type=kargs['conv_type'], args=args)
self.norm = NormLayer(kargs['norm'], kargs['new_ngf'])
self.act = ActivationLayer(kargs['act'])
args = kargs['args']
self.use_sft = ("sft" in args.sft_block)
if args.sft_block == "res_sft":
self.sft_block = ResBlock_SFT(kargs['new_ngf'], kargs['new_ngf'], cond_ch=kargs["sft_ngf"],
in_act="relu", out_act="gelu", omega=1, args=args)
def forward(self, x):
if isinstance(x, tuple):
embed = x[1]
x = self.act(self.norm(self.conv2(self.conv1(x[0]))))
x = self.sft_block((x, embed))
return x
else:
return self.act(self.norm(self.conv2(self.conv1(x))))
class ENeRV(nn.Module):
def __init__(self, expansion=3, args=None):
super().__init__()
self.encoder = nn.Identity()
# t mapping
self.pe_t = PositionEncoding(args.embed, args.lfreq)
self.fc_h, self.fc_w = [int(x) for x in args.fc_hw.split('_')]
self.fc_dim = args.fc_dim
self.block_dim = args.block_dim
mlp_dim = args.block_dim//2
mlp_dim_list = [self.pe_t.embed_length] + [self.block_dim*2] + [self.block_dim]
self.stem_t = NeRV_MLP(dim_list=mlp_dim_list, act=args.act, args=args)
self.pe_t_manipulate = PositionEncoding(args.embed, args.lfreq)
self.t_branch = NeRV_MLP(dim_list=[self.pe_t_manipulate.embed_length, 128, 128], act=args.act, args=args)
self.pe_xy = PositionEncoding(args.embed, args.lfreq)
self.stem_xy = NeRV_MLP(dim_list=[2 * self.pe_xy.embed_length, self.block_dim], act=args.act, args=args)
self.trans1 = TransformerBlock(
dim=self.block_dim, heads=1, dim_head=64, mlp_dim=mlp_dim, dropout=0., prenorm=False, args=args
)
self.trans2 = TransformerBlock(
dim=self.block_dim, heads=8, dim_head=64, mlp_dim=mlp_dim, dropout=0., prenorm=False, args=args
)
if self.block_dim == self.fc_dim:
self.toconv = nn.Identity()
else:
self.toconv = NeRV_MLP(dim_list=[self.block_dim, self.fc_dim], act=args.act, args=args)
# BUILD CONV LAYERS
self.layers, self.t_layers, self.norm_layers = [nn.ModuleList() for _ in range(3)]
ngf = self.fc_dim
ks_enc, ks_dec1, ks_dec2 = [int(x) for x in args.ks.split('_')]
for i, stride in enumerate(args.dec_strds):
if i == 0:
# expand channel width at first stage
new_ngf = int(ngf * expansion)
else:
# change the channel width for each stage
new_ngf = int(max(ngf // (1 if stride == 1 else args.reduce), args.lower_width))
for j in range(args.dec_blks[i]):
self.t_layers.append(NeRV_MLP(dim_list=[128, 2*ngf], act=args.act, args=args))
self.norm_layers.append(nn.InstanceNorm2d(ngf, affine=False))
if i == 0:
self.layers.append(Conv_Up_Block(ngf=ngf, new_ngf=new_ngf, ks=min(ks_dec1+2*i, ks_dec2), stride=1 if j else stride,
bias=True, norm=args.norm, act=args.act, conv_type=args.conv_type[1], sft_ngf=args.ch_t, args=args))
else:
self.layers.append(NeRVBlock(dec_block=True, conv_type=args.conv_type[1], ngf=ngf, new_ngf=new_ngf,
ks=min(ks_dec1+2*i, ks_dec2), strd=1 if j else stride, bias=True, norm=args.norm, act=args.act, sft_ngf=args.ch_t, args=args)
)
ngf = new_ngf
# build head classifier, upscale feature layer, upscale img layer
self.head_layer = CustomConv2d(ngf, 3, 1, 1, bias=True, args=args)
self.out_bias = args.out_bias
def fuse_t(self, x, t):
# x: [B, C, H, W], normalized among C
# t: [B, 2* C]
f_dim = t.shape[-1] // 2
gamma = t[:, :f_dim]
beta = t[:, f_dim:]
gamma = gamma[..., None, None]
beta = beta[..., None, None]
out = x * gamma + beta
return out
def forward(self, input, input_embed=None, norm_idx=None):
device = next(self.parameters()).device
xy_coord = torch.stack(torch.meshgrid(torch.arange(self.fc_h) / self.fc_h,
torch.arange(self.fc_w) / self.fc_w), dim=0).flatten(1, 2).to(device) # [2, h*w]
dec_start = time.time()
batchsize = input.size(0)
t = input[:,None].float()
t_emb = self.stem_t(self.pe_t(t)).view(batchsize, -1) # [B, L, 1, 1]
t_manipulate = self.t_branch(self.pe_t_manipulate(t)) # [B, 128, 1, 1]
x_coord = self.pe_xy(xy_coord[0][:, None]) # [h*w, C, 1, 1]
y_coord = self.pe_xy(xy_coord[1][:, None]) # [h*w, C, 1, 1]
xy_emb = torch.cat([x_coord, y_coord], dim=1) #[h*w, 2C, 1, 1]
xy_emb = self.stem_xy(xy_emb).view(1, int(self.fc_h*self.fc_w), -1).expand(batchsize, -1, -1) # [B, h*w, L]
xy_emb = self.trans1(xy_emb)
# fuse t into xy map
t_emb_list = [t_emb for i in range(xy_emb.shape[1])]
t_emb_map = torch.stack(t_emb_list, dim=1) # [B, h*w, L]
emb = xy_emb * t_emb_map
emb = self.trans2(emb)
emb = emb.reshape(emb.shape[0], self.fc_h, self.fc_w, emb.shape[-1])
emb = emb.permute(0, 3, 1, 2)
emb = self.toconv(emb) #[B, fc_dim, h, w]
output = emb
out_list = []
for layer, t_layer, norm_layer in zip(self.layers, self.t_layers, self.norm_layers):
# t_manipulate
output = norm_layer(output)
t_feat = t_layer(t_manipulate).view(batchsize, -1)
output = self.fuse_t(output, t_feat)
# conv
output = layer(output)
out_list.append(output)
img_out = self.head_layer(output)
# normalize the final output iwth sigmoid or tanh function
img_out = OutImg(img_out, self.out_bias) #torch.sigmoid(img_out) if self.sigmoid else (torch.tanh(img_out) + 1) * 0.5
if torch.cuda.is_available():
torch.cuda.synchronize()
dec_time = time.time() - dec_start
return img_out, out_list, dec_time
def decoder_params(self):
decoder_param = (sum([p.data.nelement() for p in self.parameters()])) /1e6
return decoder_param
def cal_params(self, entropy_model=None):
for m in self.modules():
if type(m) in [CustomConv2d, CustomLinear]:
code_w, quant_w, dequant_w = m.weight_quantizer(m.weight)
m.dequant_w = dequant_w
if m.bias is not None:
code_b, quant_b, dequant_b = m.bias_quantizer(m.bias)
m.dequant_b = dequant_b
if entropy_model is not None:
m.bitrate_w_dict.update(entropy_model.cal_bitrate(code_w, quant_w, self.training))
if m.bias is not None:
m.bitrate_b_dict.update(entropy_model.cal_bitrate(code_b, quant_b, self.training))
def get_bitrate_sum(self, name="bitrate"):
sum = 0
for m in self.modules():
if type(m) in [CustomConv2d, CustomLinear]:
sum += m.bitrate_w_dict[name]
if name in m.bitrate_b_dict.keys():
sum += m.bitrate_b_dict[name]
return sum
def init_data(self):
for m in self.modules():
if type(m) in [CustomConv2d, CustomLinear]:
m.weight_quantizer.init_data(m.weight)
if m.bias is not None:
m.bias_quantizer.init_data(m.bias)
class ENeRV_Boost(ENeRV):
def __init__(self, expansion=3, args=None):
super().__init__(expansion, args)
self.t_branch = NeRV_MLP(dim_list=[self.pe_t_manipulate.embed_length, args.ch_t * 2, args.ch_t], act=args.act, args=args)
self.t_layers, self.norm_layers = None, None
self.layers = nn.ModuleList()
ngf = self.fc_dim
ks_enc, ks_dec1, ks_dec2 = [int(x) for x in args.ks.split('_')]
for i, stride in enumerate(args.dec_strds):
if i == 0:
# expand channel width at first stage
new_ngf = int(ngf * expansion)
else:
# change the channel width for each stage
new_ngf = int(max(ngf // (1 if stride == 1 else args.reduce), args.lower_width))
for j in range(args.dec_blks[i]):
if i == 0:
self.layers.append(Conv_Up_Block(ngf=ngf, new_ngf=new_ngf, ks=min(ks_dec1+2*i, ks_dec2), stride=1 if j else stride,
bias=True, norm=args.norm, act=args.act, conv_type=args.conv_type[1], sft_ngf=args.ch_t, args=args))
else:
self.layers.append(NeRVBlock(dec_block=True, conv_type=args.conv_type[1], ngf=ngf, new_ngf=new_ngf,
ks=min(ks_dec1+2*i, ks_dec2), strd=1 if j else stride, bias=True, norm=args.norm, act=args.act, sft_ngf=args.ch_t, args=args)
)
ngf = new_ngf
def forward(self, input, input_embed=None, norm_idx=False):
device = next(self.parameters()).device
xy_coord = torch.stack(torch.meshgrid(torch.arange(self.fc_h) / self.fc_h,
torch.arange(self.fc_w) / self.fc_w), dim=0).flatten(1, 2).to(device) # [2, h*w]
dec_start = time.time()
batchsize = input.size(0)
t = input[:,None].float()
t_emb = self.stem_t(self.pe_t(t)).view(batchsize, -1) # [B, L, 1, 1]
t_manipulate = self.t_branch(self.pe_t_manipulate(t)) # [B, ch_t, 1, 1]
x_coord = self.pe_xy(xy_coord[0][:, None]) # [h*w, C, 1, 1]
y_coord = self.pe_xy(xy_coord[1][:, None]) # [h*w, C, 1, 1]
xy_emb = torch.cat([x_coord, y_coord], dim=1) #[h*w, 2C, 1, 1]
xy_emb = self.stem_xy(xy_emb).view(1, int(self.fc_h*self.fc_w), -1).expand(batchsize, -1, -1) # [B, h*w, L]
xy_emb = self.trans1(xy_emb)
# fuse t into xy map
t_emb_list = [t_emb for i in range(xy_emb.shape[1])]
t_emb_map = torch.stack(t_emb_list, dim=1) # [B, h*w, L]
emb = xy_emb * t_emb_map
emb = self.trans2(emb)
emb = emb.reshape(emb.shape[0], self.fc_h, self.fc_w, emb.shape[-1])
emb = emb.permute(0, 3, 1, 2)
emb = self.toconv(emb) #[B, fc_dim, h, w]
output = emb
out_list = [t_manipulate]
for layer in self.layers:
output = layer((output, t_manipulate))
out_list.append(output)
img_out = self.head_layer(output)
# normalize the final output iwth sigmoid or tanh function
img_out = OutImg(img_out, self.out_bias) #torch.sigmoid(img_out) if self.sigmoid else (torch.tanh(img_out) + 1) * 0.5
if torch.cuda.is_available():
torch.cuda.synchronize()
dec_time = time.time() - dec_start
return img_out, out_list, dec_time