1
+ # -*- coding: utf-8 -*-
2
+ """
3
+ Created on Sun Aug 12 14:28:52 2018
4
+
5
+ @author: Administrator
6
+ """
7
+
8
+ import mglearn
9
+ from sklearn .model_selection import train_test_split
10
+ from sklearn .preprocessing import MinMaxScaler
11
+ from sklearn .svm import LinearSVC , SVC
12
+ from sklearn .datasets import load_breast_cancer
13
+
14
+ mglearn .plots .plot_scaling ()
15
+
16
+ def test_prep ():
17
+ cancer = load_breast_cancer ()
18
+
19
+ X_train , X_test , y_train , y_test = train_test_split (
20
+ cancer .data , cancer .target , stratify = cancer .target
21
+ , random_state = 1 )
22
+
23
+ scale = MinMaxScaler ()
24
+ scale .fit (X_train )
25
+
26
+ X_scaled = scale .transform (X_train )
27
+ print (X_scaled )
28
+
29
+ def test_SVC ():
30
+
31
+ cancer = load_breast_cancer ()
32
+
33
+ X_train , X_test , y_train , y_test = train_test_split (
34
+ cancer .data , cancer .target , stratify = cancer .target
35
+ , random_state = 42 )
36
+
37
+ svc = SVC (C = 100 )
38
+ svc .fit (X_train ,y_train )
39
+
40
+ print (svc .score (X_train ,y_train ))
41
+ print ("the test score is {:.2f}" .format (svc .score (X_test
42
+ ,y_test )))
43
+ scale = MinMaxScaler ()
44
+ scale .fit (X_train )
45
+ X_test_scaled = scale .transform (X_test )
46
+ X_scaled = scale .transform (X_train )
47
+
48
+ svc .fit (X_scaled , y_train )
49
+ print ("the test score scaled is {:.2f}" .format (svc .score (X_test_scaled
50
+ ,y_test )))
51
+
52
+
0 commit comments