Skip to content

Commit de765a8

Browse files
committed
SVM
1 parent a975514 commit de765a8

File tree

2 files changed

+77
-0
lines changed

2 files changed

+77
-0
lines changed

Diff for: Supervised_learn/Nerual_Network.py

+23
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,23 @@
1+
# -*- coding: utf-8 -*-
2+
"""
3+
Created on Tue Aug 7 18:25:15 2018
4+
5+
@author: Administrator
6+
"""
7+
8+
from sklearn.neural_network import MLPClassifier
9+
from sklearn.datasets import make_moons
10+
from sklearn.model_selection import train_test_split
11+
import mglearn
12+
13+
def Muti_Layer_perceptron():
14+
'''test'''
15+
display(mglearn.plots.plot_logistic_regression_graph())
16+
X, y= make_moons(n_samples=100, noise=0.25, random_state=3)
17+
X_train, X_test, y_train, y_test = train_test_split(
18+
X, y ,random_state=0)
19+
20+
mlp = MLPClassifier(solver='lbfgs', random_state=0).fit(X_train,y_train)
21+
22+
mglearn.plots.plot_2d_separator(mlp, X_train, fill=True, alpha=0.3)
23+
mglearn.discrete_scatter(X_train[:,0], X_train[:,1], y_train)

Diff for: Supervised_learn/SVM.py

+54
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,54 @@
1+
# -*- coding: utf-8 -*-
2+
"""
3+
Created on Tue Aug 7 17:57:41 2018
4+
5+
@author: Administrator
6+
"""
7+
8+
from sklearn.svm import LinearSVC, SVC
9+
import mglearn
10+
import matplotlib.pyplot as plt
11+
from sklearn.datasets import make_blobs
12+
from sklearn.datasets import load_breast_cancer
13+
from sklearn.model_selection import train_test_split
14+
15+
def SVC_test():
16+
from sklearn.datasets import make_blobs
17+
X, y = make_blobs(centers=4, random_state=8)
18+
y = y % 2
19+
20+
mglearn.discrete_scatter(X[:,0],X[:,1], y)
21+
plt.xlabel("F0"); plt.ylabel("F1")
22+
23+
lin_svm = LinearSVC().fit(X, y)
24+
svm = SVC(kernel='rbf', C=10,gamma=0.1).fit(X,y)
25+
mglearn.plots.plot_2d_separator(lin_svm, X)
26+
mglearn.discrete_scatter(X[:,0],X[:,1], y)
27+
plt.xlabel("F0"); plt.ylabel("F1")
28+
29+
print(svm.dual_coef_)
30+
31+
fig,axes = plt.subplots(3, 3, figsize=(15,10))
32+
33+
for ax, c in zip(axes, [-1, 0, 3]):
34+
for a, gamma in zip(ax, range(-1,2)):
35+
mglearn.plots.plot_svm(log_C=c, log_gamma=gamma, ax=a)
36+
37+
axes[0,0].legend(["class 0", "class 1", "sv class 0", "sv class 1"],
38+
ncol=4, loc=(.9,1.2))
39+
40+
def SVC_fit():
41+
42+
cancer = load_breast_cancer()
43+
44+
X_train, X_test, y_train, y_test = train_test_split(
45+
cancer.data, cancer.target, stratify=cancer.target
46+
, random_state=42)
47+
48+
svc = SVC()
49+
svc.fit(X_train,y_train)
50+
51+
print(svc.score(X_train,y_train))
52+
print(svc.score(X_test
53+
,y_test))
54+

0 commit comments

Comments
 (0)