-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRoutines.py
executable file
·51 lines (41 loc) · 1.76 KB
/
Routines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from mpmath import mp as math
import numpy as np
math.dps = 60
def kullbackLeiblerDivergence(sample,reference_sample):
return -math.fsum(np.asarray(sample)*list(map(math.log,np.asarray(sample)/np.asarray(reference_sample))))
def Entropy(sample):
return -math.fsum(list(map(math.fmul, np.asarray(sample), list(map(math.log, list(map(math.fmul, np.asarray(sample), [len(sample)]*len(sample))))))))
def GoodEnergy(energy, threshold):
if energy > threshold:
return -1.0
else:
return 1.0
# Score for optimization of both Energy and Entropy
def Score(sample, beta):
return -S(sample, beta)*min(sample)
# Score penalizing bad energies
def ScoreThreshold(sample, beta, threshold):
result = S(sample, beta)*GoodEnergy(min(sample), threshold)
#print("ENTROPY: %s"%result)
return result
def ZPS(sample, beta=0.01):
Z = math.fsum(list(map(math.exp, list(map(math.fmul, [-beta]*len(sample), np.asarray(sample))))))
P = list(map(math.fdiv, list(map(math.exp, list(map(math.fmul, [-beta]*len(sample), np.asarray(sample))))), np.asarray([Z]*len(sample))))
S = Entropy(P)
return Z, P, S
def S(sample, beta=0.01):
#print("ENTROPY: %s"%ZPS(sample, beta)[2])
return ZPS(sample, beta)[2]
#choose the best set of positions by their free energies
def best_position(self, positions_s, free_energies):
best_index = np.argsort(np.asarray(free_energies))
return positions_s[best_index[0]]
#choose complex candidates by their entropies
def choose_candidates(self, entropies, sequences, threshold=0.0):
best_sequences = []
best_entropy_id = np.argsort(np.asarray(entropies))
best_entropy = entropies[best_entropy_id]
for index, entropy in enumerate(entropies):
if entropy <= best_entropy + threshold:
best_sequences.append(sequences[index])
return sequences