|
302 | 302 | "|**task**|forecasting|\n",
|
303 | 303 | "|**primary_metric**|This is the metric that you want to optimize.<br> Forecasting supports the following primary metrics <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>|\n",
|
304 | 304 | "|**blacklist_models**|Models in blacklist won't be used by AutoML. All supported models can be found at [here](https://docs.microsoft.com/en-us/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels.forecasting?view=azure-ml-py).|\n",
|
305 |
| - "|**experiment_timeout_minutes**|Maximum amount of time in minutes that the experiment take before it terminates.|\n", |
| 305 | + "|**experiment_timeout_hours**|Maximum amount of time in hours that the experiment take before it terminates.|\n", |
306 | 306 | "|**training_data**|The training data to be used within the experiment.|\n",
|
307 | 307 | "|**label_column_name**|The name of the label column.|\n",
|
308 | 308 | "|**compute_target**|The remote compute for training.|\n",
|
|
316 | 316 | "cell_type": "markdown",
|
317 | 317 | "metadata": {},
|
318 | 318 | "source": [
|
319 |
| - "This notebook uses the blacklist_models parameter to exclude some models that take a longer time to train on this dataset. You can choose to remove models from the blacklist_models list but you may need to increase the experiment_timeout_minutes parameter value to get results." |
| 319 | + "This notebook uses the blacklist_models parameter to exclude some models that take a longer time to train on this dataset. You can choose to remove models from the blacklist_models list but you may need to increase the experiment_timeout_hours parameter value to get results." |
320 | 320 | ]
|
321 | 321 | },
|
322 | 322 | {
|
|
333 | 333 | "automl_config = AutoMLConfig(task='forecasting', \n",
|
334 | 334 | " primary_metric='normalized_root_mean_squared_error',\n",
|
335 | 335 | " blacklist_models = ['ExtremeRandomTrees', 'AutoArima', 'Prophet'], \n",
|
336 |
| - " experiment_timeout_minutes=20,\n", |
| 336 | + " experiment_timeout_hours=0.3,\n", |
337 | 337 | " training_data=train,\n",
|
338 | 338 | " label_column_name=target_column_name,\n",
|
339 | 339 | " compute_target=compute_target,\n",
|
|
578 | 578 | "automl_config = AutoMLConfig(task='forecasting', \n",
|
579 | 579 | " primary_metric='normalized_root_mean_squared_error',\n",
|
580 | 580 | " blacklist_models = ['ElasticNet','ExtremeRandomTrees','GradientBoosting','XGBoostRegressor','ExtremeRandomTrees', 'AutoArima', 'Prophet'], #These models are blacklisted for tutorial purposes, remove this for real use cases. \n",
|
581 |
| - " experiment_timeout_minutes=20,\n", |
| 581 | + " experiment_timeout_hours=0.3,\n", |
582 | 582 | " training_data=train,\n",
|
583 | 583 | " label_column_name=target_column_name,\n",
|
584 | 584 | " compute_target=compute_target,\n",
|
|
0 commit comments