-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbinClass.py
184 lines (157 loc) · 7.65 KB
/
binClass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import numpy as np
import pandas as pd
import Utils as ut
from matplotlib.ticker import FormatStrFormatter
import matplotlib.pyplot as plt
root = "./statisticLearning/proj2_data/"
logEpochFlag = "==============================================================================\n"
class BinClassfier(object):
def __init__(self):
super(BinClassfier, self).__init__()
self.label = None
self.trainData = None
self.px = None
self.pt_x = None
self.testData = None
def lineRegressioner(self, order, train, train_label, test, test_label, lamda=0):
matrix = np.zeros([len(train), order * 2])
matrix_test = np.zeros([len(test), order * 2])
for i in range(order):
matrix[:, 2 * i:2 * (i + 1)] = train ** (i + 1)
matrix_test[:, 2 * i:2 * (i + 1)] = test ** (i + 1)
w = np.matmul(
np.matmul(np.linalg.inv(lamda * np.eye(order * 2, order * 2) + np.matmul(matrix.T, matrix)),
matrix.T), train_label)
predict = np.abs(np.matmul(matrix_test, w))
error = self.calculateLoss(predict, test_label)
return w, error
# default select 5-cross validation
def lineRegressionerWithCrossValidation(self, order, k=5, lamda=1,isComputeTest=False):
if isComputeTest:
ww, error = self.lineRegressioner(order, self.trainData, self.label,self.testData, None,lamda)
else:
dataNum = int(len(self.label) / k)
tmp = np.concatenate([self.trainData, self.label[:, np.newaxis]], 1)
error = np.zeros(k)
ww=[]
for i in range(k):
s = i * dataNum
if i == k - 1:
test = tmp[s:, :]
train = np.delete(tmp, np.s_[s:], 0)
else:
test = tmp[s:s + dataNum, :]
train = np.delete(tmp, np.s_[s:s + dataNum], 0)
w, error[i] = self.lineRegressioner(order, train[:, :-1], train[:, -1], test[:, :-1], test[:, -1], lamda)
ww.append(w)
ww=ww[np.argmin(error)]
error = np.mean(error)
return ww,error
def getData(self):
self.label = pd.read_csv(root + "ctrain.txt", sep=',', dtype=float, header=None).dropna(axis=1,
how='all').as_matrix()
self.trainData = pd.read_csv(root + "xtrain.txt", sep=',', dtype=float, header=None).dropna(axis=1,
how='all').as_matrix()
# disorder the trainData
tmp = np.concatenate([self.trainData, self.label], 1)
np.random.shuffle(tmp)
self.label = tmp[:, -1].astype(int)
self.trainData = tmp[:, :-1]
self.px = pd.read_csv(root + "ptest.txt", sep=',', dtype=float, header=None).dropna(axis=1,
how='all').as_matrix()
self.pt_x = pd.read_csv(root + "c1test.txt", sep=',', dtype=float, header=None).dropna(axis=1,
how='all').as_matrix()
self.testData = pd.read_csv(root + "xtest.txt", sep=',', dtype=float, header=None).dropna(axis=1,
how='all').as_matrix()
return self
# label is None representing that use test data to calculate loss,unless using cross validation or train set to calculate loss
def calculateLoss(self, predict, label):
if isinstance(label,np.ndarray):
predict = np.around(predict)
right = len(predict[predict == label])
error = (len(label) - right) / len(label)
else:
n0 = [index for index, element in enumerate(predict) if element < 0.5]
n1 = [index for index, element in enumerate(predict) if element >= 0.5]
error = sum(self.px[n0] * self.pt_x[n0]) + sum(self.px[n1] * (1 - self.pt_x[n1]))
return error
def logisticRegression(self,order,train,train_label,test, test_label):
matrix = np.zeros([len(train), order * 2])
matrix_test = np.zeros([len(test), order * 2])
# init the weighted 'w' stocastically
w=np.random.rand(order*2)
for i in range(order):
matrix[:, 2 * i:2 * (i + 1)] = train ** (i + 1)
matrix_test[:, 2 * i:2 * (i + 1)] = test ** (i + 1)
# use Newton Raphson algorithm to solve the best solution of 'w'
for i in range(20):
y=np.squeeze(1/(1+np.exp(-np.matmul(matrix,w))))
# converge condition:
if len(train)-(len(y[y<1e-3])+len(y[y>1-1e-3]))<30:
break
else:
w=w-np.matmul(np.matmul(np.linalg.inv(np.matmul(np.matmul(matrix.T,np.diag(y*(1-y))),matrix)),matrix.T),(y-train_label))
# model evidence
predict = 1/(1+np.exp(-np.matmul(matrix,w)))
label1,label0=np.where(self.label==1),np.where(self.label==0)
product=np.prod(predict[label1])*np.prod(1-predict[label0])
evi=np.sum(np.log(np.abs(product)))-order*np.log(len(train))/2
# use test set to calculate the errorRate
predict_test = 1/(1+np.exp(-np.matmul(matrix_test,w)))
error = self.calculateLoss(predict_test, test_label)
return w, error,evi
@ut.log(None)
def main():
def plot(error, xValue):
xmajorFormatter = FormatStrFormatter('%d')
ax = plt.subplot(111)
ax.xaxis.set_major_formatter(xmajorFormatter)
index = np.argmin(error)
value = error[index]
plt.plot(np.arange(len(error)), error)
plt.plot(index, value, 'gs')
plt.grid()
show_max = '[' + str(index) + ' ' + str(value) + ']'
plt.annotate(show_max, xytext=(index, value), xy=(index, value))
plt.xlabel(xValue)
plt.ylabel("errorRate")
plt.savefig("/home/jiangyiheng/fig.jpg")
plt.show()
binC = BinClassfier()
binC.getData()
# test different lambda value,result appearence that lambda is useless ,so we needn't use it
# ==============================================================================
# error=np.zeros(20)
# for lamda in range(20):
# w,error[lamda] = binC.lineRegressioner(1,binC.trainData,binC.label,binC.trainData,binC.label,lamda)
# print(error)
# plot(error, "lambda")
# cross validation to find out an optimal set of basis functions
# ==============================================================================
# error = np.zeros(20)
# ww = []
# for order in range(1, 21):
# w,error[order - 1] = binC.lineRegressionerWithCrossValidation(order)
# ww.append(w)
# print(error)
# plot(error, "order")
# with ut.Log(str(ww)+"\n"+str(error)+"\n") as l:
# pass
# varify the best choice of order using the test data
# ==============================================================================
# error = np.zeros(20)
# for order in range(1, 21):
# w,error[order - 1] = binC.lineRegressionerWithCrossValidation(order,isComputeTest=True)
# print(error)
# plot(error, "order")
# logistic regression
# ==============================================================================
error = np.zeros(20)
for order in range(1, 21):
w,error[order - 1],evidence = binC.logisticRegression(order,binC.trainData,binC.label,binC.testData,None)
print(w)
plot(error, "order")
return logEpochFlag
main()