-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnet.py
58 lines (44 loc) · 1.5 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import torch
import matplotlib.pyplot as plt
from torch.autograd.variable import Variable
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # x data (tensor), shape=(100, 1)
y = x.pow(2) + 0.2 * torch.rand(x.size()) # noisy y data (tensor), shape=(100, 1)
# torch can only train on Variable, so convert them to Variable
x, y = Variable(x), Variable(y)
class Net(torch.nn.Module):
def __init__(self, input, hidden, output):
super(Net, self).__init__()
self.hidden = torch.nn.Linear(input, hidden)
self.active = torch.nn.ReLU()
self.out = torch.nn.Linear(hidden, output)
def forward(self, input):
x = self.hidden(input)
x = self.active(x)
x = self.out(x)
return x
net1 = Net(1, 10, 1)
def Net2(input, hidden, output):
return torch.nn.Sequential(
torch.nn.Linear(input, hidden),
torch.nn.ReLU(),
torch.nn.Linear(hidden, output)
)
net2 = Net2(1, 10, 1)
print(net1)
print(net2)
optimizer1 = torch.optim.SGD(net1.parameters(), lr=0.5)
optimizer2 = torch.optim.SGD(net2.parameters(), lr=0.5)
lossFunc = torch.nn.MSELoss()
prediction = Variable(torch.FloatTensor(y.data.size()).zero_())
for i in range(100):
prediction = net1(x)
loss = lossFunc(prediction, y)
print(loss)
optimizer1.zero_grad()
loss.backward()
optimizer1.step()
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
plt.show()