-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstudy_dataSet.py
208 lines (179 loc) · 7.36 KB
/
study_dataSet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import os
import torch as tc
import torchvision as tv
import torch.nn as nn
from cffi.model import global_lock
from torch.autograd import Variable as var
import torch.utils.data as data
import matplotlib.pyplot as plt
import numpy as np
import torch.nn.functional as F
import pickle as pk
TRAIN_SUM = tc.zeros((3, 32, 32)).float()
TRAIN_VARIANCE = tc.zeros((3, 32, 32)).float()
# super parameters
isNeedDownload = False
batchSize = 100
learningRate = 1e-3
EPOCH = 15
varifyNum = 10
testNum = 200
def showImg(img):
img = img / 2 + 0.5 # unnormalize
npImg = img.numpy()
ss = np.transpose(npImg, (1, 2, 0))
plt.imshow(ss) # permute the dim of array,row*column*channel
plt.show()
# import data from pytorch's torchvision
if not (os.path.exists('./CIFAR10/')) or not os.listdir('./CIFAR10/'):
isNeedDownload = True
# transform will normalize the data to 0~1 and then transform what you want by specified the value of para(transform).
trainSet = tv.datasets.CIFAR10(root='./CIFAR10', transform=tv.transforms.ToTensor(), train=True,
download=isNeedDownload)
trainLoader = data.DataLoader(dataset=trainSet, batch_size=batchSize, shuffle=True, num_workers=16)
# get mean and variance###########################################
if not os.path.exists("./CIFAR10/average.pkl") or not os.path.exists("./CIFAR10/variance.pkl"):
for x, y in trainLoader:
tc.sum(x, 0)
TRAIN_SUM += tc.sum(x, 0)
TRAIN_SUM /= len(trainSet) # mean value
for x, y in trainLoader:
tmp = -TRAIN_SUM
tmp.repeat(x.size(0), 1, 1, 1) # repeat()'s using way is very especial,i should understand and remember it
TRAIN_VARIANCE += tc.sum((tmp + x) ** 2, 0)
TRAIN_VARIANCE = tc.sqrt(TRAIN_VARIANCE / len(trainSet)) # variance value
output_average = open("./CIFAR10/average.pkl", 'wb')
pk.dump(TRAIN_SUM, output_average)
output_variance = open("./CIFAR10/variance.pkl", 'wb')
pk.dump(TRAIN_VARIANCE, output_variance)
else:
output_average = open("./CIFAR10/average.pkl", 'rb')
output_variance = open("./CIFAR10/variance.pkl", 'rb')
TRAIN_SUM = pk.load(output_average)
TRAIN_VARIANCE = pk.load(output_variance)
testSet = tv.datasets.CIFAR10('./CIFAR10', False, tv.transforms.ToTensor())
# print(len(testSet))#10000
tmp_test_x = tc.from_numpy(np.transpose((testSet.test_data[:testNum] / 255), (0, 3, 1, 2))).type(tc.FloatTensor)
tmp_average = TRAIN_SUM.repeat(len(tmp_test_x), 1, 1, 1)
tmp_variance = TRAIN_VARIANCE.repeat(len(tmp_test_x), 1, 1, 1)
tmp_test_x = (tmp_test_x - tmp_average) / tmp_variance
test_x = var(tmp_test_x)
test_xx = tc.from_numpy(np.transpose((testSet.test_data[:varifyNum] / 255), (0, 3, 1, 2))).type(tc.FloatTensor)
showImg(tv.utils.make_grid(test_xx)) # make grid to compose all the pics to 1 pic
test_x = test_x.cuda()
test_y = tc.from_numpy(np.array(testSet.test_labels[:testNum])).type(tc.LongTensor).cuda()
# data labels is number 0-9,corresponding to the trainLabel as below, respectively
trainLabel = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# <editor-fold desc="Description">
# this simple constructor is not flexible(elastic) sometimes,so i think it is worse than class constructor
cnn = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=48, kernel_size=3, stride=1, padding=1, bias=True),
nn.ReLU(),
nn.MaxPool2d(2), # 48*16*16
nn.Conv2d(48, 96, 3, 1, 1),
nn.ReLU(),
nn.MaxPool2d(2), # 96*8*8
nn.Linear(96 * 8 * 8, 10) # have 10 classes ,so fully connect to 10 output neurens
)
# </editor-fold>
class cnnC(nn.Module):
def __init__(self):
super(cnnC, self).__init__()
# self.cnnC1 = nn.Sequential(
# nn.Conv2d(in_channels=3, out_channels=48, kernel_size=3, stride=1, padding=1, bias=True),
# nn.ReLU(),
# nn.MaxPool2d(2), # 48*16*16
# )
# self.cnnC2 = nn.Sequential(
# nn.Conv2d(48, 96, 3, 1, 1),
# nn.ReLU(),
# nn.MaxPool2d(2), # 96*8*8
# )
self.fulC = nn.Linear(96 * 8 * 8, 10)
self.s1 = nn.Conv2d(in_channels=3, out_channels=48, kernel_size=3, stride=1, padding=1, bias=True)
self.s2 = nn.ReLU()
self.s3 = nn.MaxPool2d(2)
self.s4 = nn.Conv2d(48, 96, 3, 1, 1)
self.s5 = nn.AvgPool2d(2)
nn.init.normal(self.s1.weight, 0, 0.001)
nn.init.normal(self.s4.weight, 0, 0.01)
nn.init.constant(self.s1.bias, 0)
nn.init.constant(self.s4.bias, 0)
def forward(self, x):
# x = self.cnnC1(x)
# x = self.cnnC2(x)
# x = x.view(x.size(0), -1)
# out = self.fulC(x)
x = self.s1(x)
x = self.s2(x)
x = self.s3(x)
x = self.s4(x)
x = self.s2(x)
x = self.s5(x)
x = x.view(x.size(0), -1)
out = self.fulC(x)
return out
class cnnC2(nn.Module):
def __init__(self):
super(cnnC2, self).__init__()
self.conv1 = nn.Conv2d(3, 32, 5, 1, 2)
self.active = nn.ReLU()
self.poolMax = nn.MaxPool2d(3, 2) # 32*15*15
self.conv2 = nn.Conv2d(32, 32, 5, 1, 2)
self.poolMean = nn.AvgPool2d(3, 2) # conv2:32*7*7 conv3:64*3*3
self.conv3 = nn.Conv2d(32, 64, 5, 1, 2)
self.fullConn = nn.Linear(64 * 3 * 3, 10)
self.outActive = nn.Softmax(dim=1)
nn.init.normal(self.conv1.weight, 0, 0.0001)
nn.init.normal(self.conv2.weight, 0, 0.01)
nn.init.normal(self.conv3.weight, 0, 0.01)
nn.init.normal(self.fullConn.weight, 0, 0.1)
nn.init.constant(self.conv1.bias, 0)
nn.init.constant(self.conv2.bias, 0)
nn.init.constant(self.conv3.bias, 0)
nn.init.constant(self.fullConn.bias, 0)
def forward(self, x):
x = self.conv1(x)
x = self.active(x)
x = self.poolMax(x)
x = self.conv2(x)
x = self.active(x)
x = self.poolMean(x)
x = self.conv3(x)
x = self.active(x)
x = self.poolMean(x)
x = self.fullConn(x.view(x.size(0), -1))
x = self.outActive(x)
return x
# def iniPara(self):
# #classname=m.__class__.__name__ can get the name of class
# nn.init.normal(self.conv1.weight,)
# should init the parameters in instant the class
cnn2 = cnnC().cuda()
optimizer = tc.optim.Adam(params=cnn2.parameters(), lr=learningRate)
lossFunc = nn.CrossEntropyLoss().cuda()
for epoch in range(EPOCH):
for step, (train_x, train_y) in enumerate(trainLoader):
tmp_average = TRAIN_SUM.repeat(len(train_x), 1, 1, 1)
tmp_variance = TRAIN_VARIANCE.repeat(len(train_x), 1, 1, 1)
tmp_x = (train_x - tmp_average) / tmp_variance
train_x = var(tmp_x).cuda()
train_y = var(train_y).cuda()
out = cnn2(train_x)
loss = lossFunc(out, train_y)
# backPropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (step % 500 == 0):
test_out = cnn2(test_x)
pre_y = tc.max(test_out, 1)[1].data.squeeze()
accuracy = sum(pre_y == test_y) / len(test_y)
print("epoch:", epoch, " step:", step, " accuracy:", accuracy)
prin_out = cnn2(test_x[:varifyNum])
pre_y = tc.max(prin_out, 1)[1].data.squeeze()
print(" ".join("%5s" % trainLabel[pre_y[j]] for j in range(varifyNum)))
# test if cuda can use
# print(tc.cuda.is_available())