-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodels.py
120 lines (103 loc) · 4.28 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import keras
from keras import layers as L
from keras import Model, Sequential
import tensorflow as tf
def build_model():
ch = 32
kernel = (3, 3)
stride1 = (1, 1)
stride2 = (2, 2)
i = L.Input((288, 512, 3))
e1 = L.Conv2D(ch * 1, kernel_size=kernel, strides=(1, 1), padding='same')(i)
e1 = L.BatchNormalization()(e1)
e1 = L.Activation('relu')(e1)
e2 = L.MaxPooling2D()(e1)
e2 = L.Conv2D(ch * 1, kernel_size=kernel, strides=stride1, padding='same')(e2)
e2 = L.BatchNormalization()(e2)
e2 = L.Activation('relu')(e2)
e3 = L.MaxPooling2D()(e2)
e3 = L.Conv2D(ch * 2, kernel_size=kernel, strides=stride1, padding='same')(e3)
e3 = L.BatchNormalization()(e3)
e3 = L.Activation('relu')(e3)
e4 = L.MaxPooling2D()(e3)
e4 = L.Conv2D(ch * 4, kernel_size=kernel, strides=stride1, padding='same')(e4)
e4 = L.BatchNormalization()(e4)
e4 = L.Activation('relu')(e4)
e5 = L.MaxPooling2D()(e4)
e5 = L.Conv2D(ch * 8, kernel_size=kernel, strides=stride1, padding='same')(e5)
e5 = L.BatchNormalization()(e5)
e5 = L.Activation('relu')(e5)
e6 = L.MaxPooling2D()(e5)
e6 = L.Conv2D(ch * 16, kernel_size=kernel, strides=stride1, padding='same')(e6)
e6 = L.BatchNormalization()(e6)
e6 = L.Activation('relu')(e6)
d6 = L.Conv2DTranspose(ch * 16, kernel_size=kernel, strides=stride2, padding='same')(e6)
d6 = L.BatchNormalization()(d6)
d6 = L.Activation('relu')(d6)
d6 = L.Concatenate()([d6, e5])
d5 = L.Conv2DTranspose(ch * 8, kernel_size=kernel, strides=stride2, padding='same')(d6)
d5 = L.BatchNormalization()(d5)
d5 = L.Activation('relu')(d5)
d5 = L.Concatenate()([d5, e4])
d4 = L.Conv2DTranspose(ch * 4, kernel_size=kernel, strides=stride2, padding='same')(d5)
d4 = L.BatchNormalization()(d4)
d4 = L.Activation('relu')(d4)
d4 = L.Concatenate()([d4, e3])
d3 = L.Conv2DTranspose(ch * 2, kernel_size=kernel, strides=stride2, padding='same')(d4)
d3 = L.BatchNormalization()(d3)
d3 = L.Activation('relu')(d3)
d3 = L.Concatenate()([d3, e2])
d2 = L.Conv2DTranspose(ch * 1, kernel_size=kernel, strides=stride2, padding='same')(d3)
d2 = L.BatchNormalization()(d2)
d2 = L.Activation('relu')(d2)
d2 = L.Concatenate()([d2, e1])
d1 = L.Conv2D(3, kernel_size=(1, 1), strides=(1, 1))(d2)
d1 = L.BatchNormalization()(d1)
d1 = L.Activation('softmax')(d1)
model = Model(inputs=[i], outputs=[d1])
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc', 'mae'])
model.summary()
return model
# def build_model2(height=720, width=1280, kernel=80, stride=80):
# i = L.Input(batch_shape=(None, height, width, 3))
# x = L.Lambda(lambda x: tf.extract_image_patches(
# x, ksizes=[1, kernel, kernel, 1], strides=[1, stride, stride, 1], rates=[1, 1, 1, 1], padding='VALID'))(i)
#
# out_width = int((width - kernel)/stride + 1)
# out_height = int((height - kernel)/stride + 1)
# print(out_height, out_width)
#
# x = L.Reshape([out_height, out_width, kernel, kernel, 3])(x)
# x = L.Reshape([out_height*out_width, kernel, kernel, 3])(x) # [144, 80, 80, 3]
#
# x = Dist(L.Conv2D(64, (3, 3), strides=(2, 2), padding='same'))(x)
# x = Dist(L.BatchNormalization())(x)
# x = Dist(L.Activation('relu'))(x)
# x = Dist(L.MaxPool2D())(x)
#
# x = Dist(L.Conv2D(128, (3, 3), strides=(2, 2), padding='same'))(x)
# x = Dist(L.BatchNormalization())(x)
# x = Dist(L.Activation('relu'))(x)
# x = Dist(L.MaxPool2D())(x)
#
# x = Dist(L.Conv2D(256, (3, 3), strides=(2, 2), padding='same'))(x)
# x = Dist(L.BatchNormalization())(x)
# x = Dist(L.Activation('relu'))(x)
# x = Dist(L.MaxPool2D())(x)
#
# x = Dist(L.Conv2D(512, (3, 3), strides=(2, 2), padding='same'))(x)
# x = Dist(L.BatchNormalization())(x)
# x = Dist(L.Activation('relu'))(x)
#
# x = Dist(L.Flatten())(x)
# x = L.Bidirectional(L.CuDNNLSTM(64, return_sequences=True))(x)
# x = L.Bidirectional(L.CuDNNLSTM(64, return_sequences=True))(x)
# x = Dist(L.Dense(3, activation='softmax'))(x)
# x = L.Reshape([out_height, out_width, 3])(x)
#
# model = Model(inputs=[i], outputs=[x])
#
# model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc', 'mae'])
# model.summary()
#
# return model