forked from attapol/conll16st
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpartial_scorer.py
executable file
·209 lines (182 loc) · 8.91 KB
/
partial_scorer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Scorer for partial argument match
"""
import argparse
import json
import validator
import aligner
import scorer
from confusion_matrix import ConfusionMatrix, Alphabet
from conn_head_mapper import ConnHeadMapper
def partial_evaluate(gold_list, predicted_list, partial_match_cutoff):
"""Evaluate the parse output with partial matching for arguments
"""
print 'PARTIAL EVALUATION - For diagnostics only and not for ranking'
print 'Aligning relations - This will time out after 120 seconds'
arg1_alignment, arg2_alignment, relation_alignment = \
aligner.align_relations(gold_list, predicted_list, partial_match_cutoff)
arg1_match_prf, arg2_match_prf, total_match_prf = \
evaluate_args(arg1_alignment, arg2_alignment, partial_match_cutoff)
entire_relation_match_prf = \
evaluate_rel_arg_whole_rel(relation_alignment, partial_match_cutoff)
valid_senses = validator.identify_valid_senses(gold_list)
sense_cm = evaluate_sense(relation_alignment, valid_senses)
print 'Arg 1 extractor (partial matching) : Precision %1.4f Recall %1.4f F1 %1.4f' % arg1_match_prf
print 'Arg 2 extractor (partial matching) : Precision %1.4f Recall %1.4f F1 %1.4f' % arg2_match_prf
print 'Concatenated Arg 1 Arg 2 extractor (partial matching) : Precision %1.4f Recall %1.4f F1 %1.4f' % total_match_prf
print 'Conjunctive Arg 1 & Arg 2 extractor (partial matching) : Precision %1.4f Recall %1.4f F1 %1.4f' % entire_relation_match_prf
print 'Sense classification--------------'
sense_cm.print_summary()
print 'Overall parser performance (cutoff = %s)--------------' % partial_match_cutoff
precision, recall, f1 = sense_cm.compute_micro_average_f1()
print 'Precision %1.4f Recall %1.4f F1 %1.4f' % (precision, recall, f1)
return arg1_match_prf, arg2_match_prf, entire_relation_match_prf, \
sense_cm.compute_micro_average_f1()
def evaluate_args(arg1_alignment, arg2_alignment, partial_match_cutoff):
"""Evaluate argument matches"""
total_arg1_gold, total_arg1_predicted, total_arg1_correct = \
evaluate_arg_partial_match(arg1_alignment, 1, partial_match_cutoff)
total_arg2_gold, total_arg2_predicted, total_arg2_correct = \
evaluate_arg_partial_match(arg2_alignment, 2, partial_match_cutoff)
arg1_prf = compute_prf(
total_arg1_gold, total_arg1_predicted, total_arg1_correct)
arg2_prf = compute_prf(
total_arg2_gold, total_arg2_predicted, total_arg2_correct)
rel_arg_prf = compute_prf(
total_arg1_gold + total_arg2_gold,
total_arg1_predicted + total_arg2_predicted,
total_arg1_correct + total_arg2_correct)
return arg1_prf, arg2_prf, rel_arg_prf
def evaluate_arg_tokenwise(relation_pairs, position):
assert position == 1 or position == 2
total_correct = 0.0
total_gold = 0.0
total_predicted = 0.0
for g_relation, p_relation in relation_pairs:
assert g_relation is not None or p_relation is not None
g_arg = g_relation['Arg%s' % position]['TokenIndexSet'] \
if g_relation is not None else set([])
p_arg = p_relation['Arg%s' % position]['TokenIndexSet'] \
if p_relation is not None else set([])
total_correct += len(g_arg.intersection(p_arg))
total_gold += len(g_arg)
total_predicted += len(p_arg)
return total_gold, total_predicted, total_correct
def evaluate_arg_partial_match(relation_pairs, position, partial_match_cutoff):
"""Evaluate the argument based on partial matching criterion
We evaluate the argument as a whole.
"""
assert position == 1 or position == 2
total_correct = 0.0
total_gold = 0.0
total_predicted = 0.0
for g_relation, p_relation in relation_pairs:
assert g_relation is not None or p_relation is not None
if g_relation is None:
total_predicted += 1
elif p_relation is None:
total_gold += 1
else:
g_arg = g_relation['Arg%s' % position]['TokenIndexSet']
p_arg = p_relation['Arg%s' % position]['TokenIndexSet']
f1_score = aligner.compute_f1_span(g_arg, p_arg)
if f1_score >= partial_match_cutoff:
total_correct += 1
total_predicted += 1
total_gold += 1
return total_gold, total_predicted, total_correct
def evaluate_rel_arg_whole_rel(relation_pairs, partial_match_cutoff):
total_correct = 0.0
total_gold = 0.0
total_predicted = 0.0
for g_relation, p_relation in relation_pairs:
assert g_relation is not None or p_relation is not None
if g_relation is None:
total_predicted += 1
elif p_relation is None:
total_gold += 1
else:
g_arg1 = g_relation['Arg1']['TokenIndexSet'] \
if g_relation is not None else set([])
p_arg1 = p_relation['Arg1']['TokenIndexSet'] \
if p_relation is not None else set([])
arg1_f1_score = aligner.compute_f1_span(g_arg1, p_arg1)
g_arg2 = g_relation['Arg2']['TokenIndexSet'] \
if g_relation is not None else set([])
p_arg2 = p_relation['Arg2']['TokenIndexSet'] \
if p_relation is not None else set([])
arg2_f1_score = aligner.compute_f1_span(g_arg2, p_arg2)
if arg1_f1_score >= partial_match_cutoff and \
arg2_f1_score >= partial_match_cutoff:
total_correct += 1
total_predicted += 1
total_gold += 1
return compute_prf(total_gold, total_predicted, total_correct)
def compute_prf(total_gold, total_predicted, total_correct):
"""Compute precision, recall, and F1
Assume binary classification where we are only interested
in the positive class. In our case, we look at argument extraction.
"""
if total_predicted == 0:
precision = 1.0
else:
precision = total_correct / total_predicted
if total_gold == 0:
recall = 1.0
else:
recall = total_correct / total_gold
f1_score = 2.0 * (precision * recall) / (precision + recall) \
if precision + recall != 0 else 0.0
return (round(precision, 4), round(recall, 4), round(f1_score,4))
def evaluate_sense(relation_pairs, valid_senses):
sense_alphabet = Alphabet()
#for g_relation, _ in relation_pairs:
#if g_relation is not None:
#sense = g_relation['Sense'][0]
#if sense in valid_senses:
#sense_alphabet.add(sense)
for sense in valid_senses:
sense_alphabet.add(sense)
sense_alphabet.add(ConfusionMatrix.NEGATIVE_CLASS)
sense_alphabet.growing = False
sense_cm = ConfusionMatrix(sense_alphabet)
for g_relation, p_relation in relation_pairs:
assert g_relation is not None or p_relation is not None
if g_relation is None:
predicted_sense = p_relation['Sense'][0]
sense_cm.add(predicted_sense, ConfusionMatrix.NEGATIVE_CLASS)
elif p_relation is None:
gold_sense = g_relation['Sense'][0]
if gold_sense in valid_senses:
sense_cm.add(ConfusionMatrix.NEGATIVE_CLASS, gold_sense)
else:
predicted_sense = p_relation['Sense'][0]
gold_sense = g_relation['Sense'][0]
if gold_sense in valid_senses:
sense_cm.add(predicted_sense, gold_sense)
return sense_cm
def main():
parser = argparse.ArgumentParser(
description="Evaluate system's output against the gold standard based on partial matches")
parser.add_argument('--cutoff', help='Cutoff value for partial matching', default=0.7, type=float)
parser.add_argument('gold', help='Gold standard file')
parser.add_argument('predicted', help='System output file')
args = parser.parse_args()
gold_list = [json.loads(x) for x in open(args.gold)]
predicted_list = [json.loads(x) for x in open(args.predicted)]
print '\n================================================'
print 'Evaluation for all discourse relations'
partial_evaluate(gold_list, predicted_list, args.cutoff)
print '\n================================================'
print 'Evaluation for explicit discourse relations only'
explicit_gold_list = [x for x in gold_list if x['Type'] == 'Explicit']
explicit_predicted_list = [x for x in predicted_list if x['Type'] == 'Explicit']
partial_evaluate(explicit_gold_list, explicit_predicted_list, args.cutoff)
print '\n================================================'
print 'Evaluation for non-explicit discourse relations only (Implicit, EntRel, AltLex)'
non_explicit_gold_list = [x for x in gold_list if x['Type'] != 'Explicit']
non_explicit_predicted_list = [x for x in predicted_list if x['Type'] != 'Explicit']
partial_evaluate(non_explicit_gold_list, non_explicit_predicted_list, args.cutoff)
if __name__ == '__main__':
main()