-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtest.py
260 lines (229 loc) · 8.46 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# coding: utf-8
__author__ = 'Roman Solovyev: https://github.com/ZFTurbo'
import torch
if __name__ == '__main__':
import segmentation_models_pytorch_3d as smp
if 1:
print('Test Unet...')
model = smp.Unet(
encoder_name="resnet34",
encoder_weights='imagenet',
in_channels=3,
classes=1,
)
o = model(torch.randn(2, 3, 128, 128, 128))
print(f'Unpooled shape: {o.shape}')
if 1:
print('Test FPN + mobileone_s0 + imagenet weights...')
model = smp.FPN(
encoder_name="mobileone_s0",
encoder_weights='imagenet',
in_channels=3,
classes=1,
)
o = model(torch.randn(2, 3, 128, 128, 128))
print(f'Unpooled shape: {o.shape}')
if 1:
print('Test UnetPlusPlus...')
model = smp.UnetPlusPlus(
encoder_name="resnet34",
encoder_weights=None,
in_channels=3,
classes=1,
)
o = model(torch.randn(2, 3, 128, 128, 128))
print(f'Unpooled shape: {o.shape}')
if 1:
print('Test MAnet...')
model = smp.MAnet(
encoder_name="resnet34",
encoder_weights=None,
in_channels=3,
classes=1,
)
o = model(torch.randn(2, 3, 128, 128, 128))
print(f'Unpooled shape: {o.shape}')
if 1:
print('Test Linknet...')
model = smp.Linknet(
encoder_name="resnet34",
encoder_weights=None,
in_channels=3,
classes=1,
)
o = model(torch.randn(2, 3, 128, 128, 128))
print(f'Unpooled shape: {o.shape}')
if 1:
print('Test PSPNet...')
model = smp.PSPNet(
encoder_name="resnet34",
encoder_weights=None,
in_channels=3,
classes=1,
)
o = model(torch.randn(2, 3, 128, 128, 128))
print(f'Unpooled shape: {o.shape}')
if 1:
print('Test PAN...')
model = smp.PAN(
encoder_name="resnet34",
encoder_weights=None,
in_channels=3,
classes=1,
)
o = model(torch.randn(2, 3, 256, 256, 256))
print(f'Unpooled shape: {o.shape}')
if 1:
print('Test DeepLabV3...')
model = smp.DeepLabV3(
encoder_name="resnet34",
encoder_weights=None,
in_channels=3,
classes=1,
)
o = model(torch.randn(2, 3, 128, 128, 128))
print(f'Unpooled shape: {o.shape}')
if 0:
print('Test DeepLabV3Plus...')
# Doesn't work. Something with shapes. Need to fix later
model = smp.DeepLabV3Plus(
encoder_name="resnet34",
encoder_weights=None,
in_channels=3,
classes=1,
)
o = model(torch.randn(2, 3, 128, 128, 128))
print(f'Unpooled shape: {o.shape}')
if 1:
from segmentation_models_pytorch_3d.encoders.resnet import resnet_encoders
print('Test all Resnet encoders + Non default strides...')
for encoder_name in list(resnet_encoders.keys()):
print('Go for {}'.format(encoder_name))
model = smp.Unet(
encoder_name=encoder_name,
encoder_weights=None,
in_channels=4,
classes=1,
strides=((1, 2, 2), (2, 2, 2), (1, 2, 2), (1, 2, 2), (1, 2, 2)),
)
o = model(torch.randn(2, 4, 10, 128, 128))
print(f'Result shape: {o.shape}')
if 1:
from segmentation_models_pytorch_3d.encoders.densenet import densenet_encoders
print('Test all Densenet encoders...')
for encoder_name in list(densenet_encoders.keys()):
print('Go for {}'.format(encoder_name))
model = smp.Unet(
encoder_name=encoder_name,
encoder_weights=None,
in_channels=3,
classes=1,
)
o = model(torch.randn(2, 3, 128, 128, 128))
print(f'Result shape: {o.shape}')
if 1:
from segmentation_models_pytorch_3d.encoders.efficientnet import efficient_net_encoders
print('Test all EfficientNet encoders...')
for encoder_name in list(efficient_net_encoders.keys()):
print('Go for {}'.format(encoder_name))
model = smp.Unet(
encoder_name=encoder_name,
encoder_weights=None,
in_channels=4,
classes=1,
)
o = model(torch.randn(2, 4, 128, 128, 128))
print(f'Result shape: {o.shape}')
if 1:
from segmentation_models_pytorch_3d.encoders.vgg import vgg_encoders
print('Test all VGG encoders...')
for encoder_name in list(vgg_encoders.keys()):
print('Go for {}'.format(encoder_name))
model = smp.Unet(
encoder_name=encoder_name,
encoder_weights=None,
in_channels=4,
classes=1,
)
o = model(torch.randn(2, 4, 128, 128, 128))
print(f'Result shape: {o.shape}')
if 1:
from segmentation_models_pytorch_3d.encoders.dpn import dpn_encoders
print('Test all DPN encoders...')
for encoder_name in list(dpn_encoders.keys()):
print('Go for {}'.format(encoder_name))
model = smp.Unet(
encoder_name=encoder_name,
encoder_weights=None,
in_channels=4,
classes=1,
)
o = model(torch.randn(2, 4, 128, 128, 128))
print(f'Result shape: {o.shape}')
if 1:
from segmentation_models_pytorch_3d.encoders.mix_transformer import mix_transformer_encoders
print('Test all MixTransformer encoders...')
for encoder_name in list(mix_transformer_encoders.keys()):
print('Go for {}'.format(encoder_name))
model = smp.Unet(
encoder_name=encoder_name,
encoder_weights=None,
in_channels=3,
classes=1,
)
o = model(torch.randn(2, 3, 128, 128, 128))
print(f'Result shape: {o.shape}')
if 1:
from segmentation_models_pytorch_3d.encoders.mobileone import mobileone_encoders
print('Test all Mobileone encoders...')
for encoder_name in list(mobileone_encoders.keys()):
print('Go for {}'.format(encoder_name))
model = smp.Unet(
encoder_name=encoder_name,
encoder_weights=None,
in_channels=3,
classes=2,
)
o = model(torch.randn(4, 3, 64, 64, 64))
print(f'Result shape: {o.shape}')
if 1:
from segmentation_models_pytorch_3d.encoders.densenet import densenet_encoders
print('Test Densenet non-default strides ...')
for encoder_name in list(densenet_encoders.keys())[:1]:
print('Go for {}'.format(encoder_name))
model = smp.Unet(
encoder_name=encoder_name,
encoder_weights=None,
in_channels=3,
classes=1,
strides=((2, 2, 2), (1, 2, 2), (2, 2, 2), (2, 2, 2), (2, 2, 2)),
)
o = model(torch.randn(2, 3, 32, 64, 128))
print(f'Result shape: {o.shape}')
if 0:
# Doesn't work need to find a workaround with paddings in EffNet
from segmentation_models_pytorch_3d.encoders.efficientnet import efficient_net_encoders
print('Test EfficientNet non-default strides ...')
for encoder_name in list(efficient_net_encoders.keys()):
print('Go for {}'.format(encoder_name))
model = smp.Unet(
encoder_name=encoder_name,
encoder_weights=None,
in_channels=3,
classes=1,
strides=((1, 2, 2), (2, 2, 2), (2, 2, 2), (2, 2, 2), (2, 2, 2)),
)
o = model(torch.randn(2, 3, 32, 64, 128))
print(f'Result shape: {o.shape}')
if 1:
encoder_name = 'tu-maxvit_base_tf_224.in21k'
print('Test Timm 3d model: {}...'.format(encoder_name))
print('Go for {}'.format(encoder_name))
model = smp.Unet(
encoder_name=encoder_name,
encoder_weights=None,
in_channels=3,
classes=1,
)
o = model(torch.randn(2, 3, 128, 64, 64))
print(f'Result shape: {o.shape}')