-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
665 lines (548 loc) · 23.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
import glob
from bs4 import BeautifulSoup, Comment
import bs4
import re
import os
import numpy as np
from sklearn.metrics import accuracy_score, f1_score, average_precision_score, confusion_matrix, classification_report
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import MultiLabelBinarizer, OneHotEncoder
from imblearn.over_sampling import SMOTE
from imblearn.over_sampling import SMOTENC
import sys
import joblib
import csv
from itertools import zip_longest
import xgboost as xgb
import torch
from transformers import BertTokenizer, BertModel
import nltk
from tqdm import tqdm
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from sklearn.metrics import roc_curve, auc
import sklearn
"""
This function takes an HTML element as input
and checks whether it is a special HTML tag or not.
Special HTML tags are those for formatting purposes (https://www.w3schools.com/html/html_formatting.asp).
We believe that these formatting tags should not break the original
text (e.g., a paragraph) into 2 separate parts.
"""
def checkSpecialTag(e):
# {"b", "a", "strong", "i", "small", "mark", "del", "ins", "sub", "sup"}
if e.name in {"a", "i", "small", "mark", "del", "ins", "sub", "sup", "u", "strong", "b"}:
return True
return False
"""
This function takes an HTML element as input
and checks whether it has special style or not.
An HTML element that has special style will have CSS code
"display: block;" and will appear as the first child of its parent.
We believe that an HTML element with the special style should be
separated from its parent.
"""
def checkSpecialStyle(e):
display_block, isFirst = False, False
if e.has_attr("style"):
if "display" in e['style'] and "block" in e['style']:
display_block = True
if display_block and e.parent.find(text=True, recursive=False) != None:
temp = list(e.parent)
if isinstance(temp[0], bs4.element.Tag) and e.find(text=True, recursive=False) == temp[0].find(text=True, recursive=False):
isFirst = True
return display_block and isFirst
"""
This function builds filter's feature list for a single
Web page.
"""
def build_filter_features(raw_text, d):
size, rst = len(raw_text), []
for i in range(size):
word_length = len(raw_text[i].split())
relative_position = (i+1) / size
current_tag = d[i].name
parent_tag, next_tag = d[i].parent.name, "None"
if i < size - 1:
next_tag = d[i+1].name
tag_id = "None"
# if d[i].has_attr("class"):
# tag_class = d[i]['class']
if d[i].has_attr("id"):
tag_id = d[i]['id']
rst.append([word_length, relative_position, current_tag, parent_tag, next_tag, tag_id])
return rst
"""
This function builds typographic classifier's feature list for a single
Web page.
"""
def build_classifier_features(nonzero_text, d, idx_interested):
size, rst = len(nonzero_text), []
for i in range(size):
word_length = len(nonzero_text[i].split())
ratio_length_next_length, next_tag = 0, "None"
if i < size - 1:
ratio_length_next_length = word_length / len(nonzero_text[i+1].split())
next_tag = d[idx_interested[i+1]].name
num_punc_symbol = len("".join([c if not c.isalnum() and not c.isspace() else "" for c in nonzero_text[i]]))
current_tag = d[idx_interested[i]].name
rst.append([word_length, ratio_length_next_length, num_punc_symbol, current_tag, next_tag])
return rst
"""
This function creates labels for each Web document based
on the gold standard. 0 for throwing away, 1 for keeping the original text,
and 2 for including its children.
"""
def create_labels(raw_text, raw_text_test, d_test):
size = len(raw_text)
labels, start_idx = [[0] * 2 for x in range(size)], 0
for target_idx in range(len(raw_text_test)):
for i in range(start_idx, size):
if raw_text[i].lower() == raw_text_test[target_idx].lower():
labels[i][0] = 1
labels[i][1] = typographic_element[d_test[target_idx].name]
start_idx = i + 1
break
return labels
"""
This function embeds a sentence.
"""
def embed_sentence(sentence, bert_tokenizer, model):
marked_text = "[CLS] " + sentence + " [SEP]"
tokenized_text = bert_tokenizer.tokenize(marked_text)
if len(tokenized_text) > 512:
tokenized_text[511] = '[SEP]'
tokenized_text = tokenized_text[:512]
indexed_tokens = bert_tokenizer.convert_tokens_to_ids(tokenized_text)
segments_ids = [1] * len(tokenized_text)
tokens_tensor = torch.tensor([indexed_tokens])
segments_tensors = torch.tensor([segments_ids])
with torch.no_grad():
outputs = model(tokens_tensor, segments_tensors)
hidden_states = outputs[2]
layer_collection = []
for i in range(len(hidden_states)):
if i == 0:
continue
layer_collection.append(torch.mean(hidden_states[i][0], dim=0).numpy())
return np.mean(layer_collection, axis=0)
"""
This function embeds a text segment (with one
or multiple sentences).
"""
def embed_raw_text(text_collection, bert_tokenizer):
rst = []
model = BertModel.from_pretrained('bert-base-cased', output_hidden_states = True)
model.eval()
for i in tqdm(range(len(text_collection))):
a_list = nltk.tokenize.sent_tokenize(text_collection[i])
if len(a_list) <= 1:
rst.append(embed_sentence(text_collection[i], bert_tokenizer, model))
else:
sentence_collection = []
for e in a_list:
sentence_collection.append(embed_sentence(e, bert_tokenizer, model))
rst.append(np.mean(sentence_collection, axis=0))
return rst
"""
This function is a helper function for drawing
the ROC curve of the typographic classifier.
"""
def plot_multiclass_roc(clf, X_test, y_test, n_classes):
y_score = clf.predict_proba(X_test)
plt.rcParams.update({'font.size': 15})
fpr = dict()
tpr = dict()
roc_auc = dict()
plt.rcParams.update({'font.size': 18})
y_test_dummies = pd.get_dummies(y_test, drop_first=False).values
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(y_test_dummies[:, i], y_score[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
# roc for each class
# fig, ax = plt.subplots(figsize=plt.rcParams.get('figure.figsize'))
fig, ax = plt.subplots(figsize=(8,6))
ax.set_xlim([0.0, 1.0])
ax.set_ylim([0.0, 1.05])
ax.set_xlabel('False Positive Rate')
ax.set_ylabel('True Positive Rate')
ax.set_title('ROC Curve of Typographic Classifier')
l = ["title", "prose text", "miscellany"]
for i in range(3):
ax.plot(fpr[i], tpr[i], label='ROC curve (AUC = %0.2f) of %s' % (roc_auc[i], l[i]))
ax.legend(loc="lower right")
sns.despine()
plt.show()
"""
This function reads the content of HTML
and proposes the input for filter.
"""
def process_file(contents, d, skip):
s = re.sub('<br>', '<p>', contents)
s = re.sub('</br>', '<p>', s)
s = re.sub('<br/>', '<p>', s)
s = s.replace("\n", " ")
s = s.replace(" ", " ")
soup = BeautifulSoup(s, 'lxml')
# Remove Comments from HTML Tags
comments = soup.findAll(text=lambda text:isinstance(text, Comment))
for comment in comments:
comment.extract()
body = soup.body
# replace <a> tag with its child or its text
for a in body("a"):
text = a.find(text=True, recursive=False)
if text == None:
a.replaceWithChildren()
continue
a.unwrap()
if skip != "":
for script in body(skip):
script.decompose()
for script in body("script"):
script.decompose()
for style in body("style"):
style.decompose()
for nav in body("nav"):
nav.decompose()
for footer in body("footer"):
footer.decompose()
for hr in body("hr"):
hr.decompose()
# Newly Added from Java Version
for button in body("button"):
button.decompose()
for table in body("table"):
table.decompose()
for img in body("img"):
img.decompose()
for figure in body("figure"):
figure.decompose()
for code in body("code"):
code.decompose()
for details in body("details"):
details.decompose()
for svg in body("svg"):
svg.decompos
children = [c for c in body.findChildren() if len(list(c)) != 0]
size, idx, raw_text, idx_back, i = len(children), 0, [], -1, 0
# preserve the order of each HTML element
while idx < size:
temp = [x for x in list(children[idx]) if not (isinstance(x, str) and x.strip() == "")]
# if len(temp) == 0 or children[idx].find(text=True, recursive=False) == None:
if len(temp) == 0:
idx += 1
continue
if idx_back < idx and isinstance(temp[0], bs4.element.Tag):
idx_back = idx + 1
while idx_back < size and isinstance(list(children[idx_back]), bs4.element.Tag):
idx_back += 1
if idx_back < size:
children[idx: idx_back+1] = children[idx: idx_back+1][::-1]
temp = list(children[idx])
if checkSpecialTag(children[idx]) and not checkSpecialStyle(children[idx]):
idx += 1
continue
for j in range(len(temp)):
if checkSpecialTag(temp[j]) and not checkSpecialStyle(temp[j]):
temp[j] = str(temp[j].text)
text = "".join([t for t in temp if isinstance(t, str)])
children_d = children[idx]
# remove some unreadable characters
text = text.replace("\xa0", " ")
trimmed = text.lower().strip().replace("\n", " ").replace(" ", " ")
idx += 1
if trimmed == "none" or trimmed == "":
continue
# remove extra white spaces
removed = text.strip().replace("\n", " ").replace(" ", " ").split()
raw_text.append(" ".join(removed))
d[i] = children_d
i += 1
return raw_text, d
"""
This function reads an HTML document. It takes
the directory of the file as input. It returns
a list of text segments along with their HTML elements.
"""
def read_file(file, skip=""):
with open(file, "r", encoding="utf-8", errors='ignore') as f:
contents = f.read()
raw_text, d = process_file(contents, {}, skip)
return raw_text, d
def make_confusion_matrix(cf,
group_names=None,
categories='auto',
count=True,
percent=True,
cbar=True,
xyticks=True,
xyplotlabels=True,
sum_stats=True,
figsize=None,
cmap='Blues',
title=None,
m=0):
# CODE TO GENERATE TEXT INSIDE EACH SQUARE
blanks = ['' for i in range(cf.size)]
if group_names and len(group_names)==cf.size:
group_labels = ["{}\n".format(value) for value in group_names]
else:
group_labels = blanks
if count:
group_counts = ["{0:0.0f}\n".format(value) for value in cf.flatten()]
else:
group_counts = blanks
if percent:
group_percentages = ["{0:.2%}".format(value) for value in cf.flatten()/np.sum(cf)]
else:
group_percentages = blanks
box_labels = [f"{v1}{v2}{v3}".strip() for v1, v2, v3 in zip(group_labels,group_counts,group_percentages)]
box_labels = np.asarray(box_labels).reshape(cf.shape[0],cf.shape[1])
# CODE TO GENERATE SUMMARY STATISTICS & TEXT FOR SUMMARY STATS
if sum_stats:
#Accuracy is sum of diagonal divided by total observations
accuracy = np.trace(cf) / float(np.sum(cf))
#if it is a binary confusion matrix, show some more stats
if len(cf)==2:
#Metrics for Binary Confusion Matrices
precision = cf[1,1] / sum(cf[:,1])
recall = cf[1,1] / sum(cf[1,:])
f1_score = 2*precision*recall / (precision + recall)
stats_text = "\n\nAccuracy={:0.3f}\nPrecision={:0.3f}\nRecall={:0.3f}\nF1 Score={:0.3f}".format(
accuracy,precision,recall,f1_score)
else:
stats_text = "\n\nAccuracy={:0.3f}".format(accuracy)
else:
stats_text = ""
plt.rcParams.update({'font.size': 15})
# SET FIGURE PARAMETERS ACCORDING TO OTHER ARGUMENTS
if figsize==None:
#Get default figure size if not set
figsize = plt.rcParams.get('figure.figsize')
if xyticks==False:
#Do not show categories if xyticks is False
categories=False
# MAKE THE HEATMAP VISUALIZATION
plt.figure(figsize=figsize)
sns.heatmap(cf,annot=box_labels,fmt="",cmap=cmap,cbar=cbar,xticklabels=categories,yticklabels=categories)
if xyplotlabels:
plt.ylabel('True label')
plt.xlabel('Predicted label' + stats_text)
else:
plt.xlabel(stats_text)
if title:
plt.title(title)
if m == 0:
plt.yticks(np.arange(2)+0.5,('Irrelevance','Pertinence'), va="center")
else:
plt.yticks(np.arange(3)+0.5,("Title", "Prose Text", "Miscellany"), va="center")
typographic_element = {"h2": 1, "p": 2, "div": 3}
def main():
# set a seed to get deterministic results
np.random.seed(1)
torch.manual_seed(1)
torch.cuda.manual_seed_all(1)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
avoid = {'Data/Misc/squarespace/Misc.html','Data/Misc/Feat/Misc.html','Data/TOS/CBSLocal/TOS.html','Data/TOS/MS/TOS.html','Data/TOS/meetup/TOS.html', 'Data/PP/conservativereview.com/priv.html'}
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
# data_misc = glob.glob(os.path.join('Data/Misc', '*', 'Misc.html'))
# data_tos = glob.glob(os.path.join('Data/TOS', '*', 'TOS.html'))
# data_pp = glob.glob(os.path.join('Data/PP', '*', 'priv.html'))
data_misc, data_tos, data_pp = [], [], []
with open ("data_misc.txt", "r") as f:
temp_list = f.readlines()
for t in temp_list:
data_misc.append(t.replace("\n", ""))
with open ("data_tos.txt", "r") as f:
temp_list = f.readlines()
for t in temp_list:
data_tos.append(t.replace("\n", ""))
with open ("data_pp.txt", "r") as f:
temp_list = f.readlines()
for t in temp_list:
data_pp.append(t.replace("\n", ""))
vali_test_idx = np.random.choice(291, 116, False)
vali_idx, test_idx = vali_test_idx[:58], vali_test_idx[58:]
data, filter_features, classifier_features, labels_train, data_train, data_vali, data_test = data_pp + data_misc + data_tos, [], [], [], [], [], []
count = 0
s33 = set(vali_idx)
for e in test_idx:
s33.add(e)
for i in range(len(data)):
if data[i] in avoid:
continue
if i in vali_idx:
data_vali.append(data[i])
elif i in test_idx:
data_test.append(data[i])
else:
data_train.append(data[i])
print("test id:", test_idx)
text_train, text_vali, text_test = [], [], []
for file in data_train:
if file in avoid:
continue
raw_text, d = read_file(file)
text_train += raw_text
file_break = file.split("/")
file_break[-1] = "gold.html"
test_file = "/".join([f for f in file_break])
raw_text_test, d_test = read_file(test_file)
len1 = len(raw_text_test)
file_label = create_labels(raw_text, raw_text_test, d_test)
filter_features += build_filter_features(raw_text, d)
idx_interested = [i for i in range(len(raw_text)) if file_label[i][0] == 1]
nonzero_text = [raw_text[i] for i in idx_interested]
classifier_features += build_classifier_features(nonzero_text, d, idx_interested)
labels_train = labels_train + file_label
filter_features_vali, classifier_features_vali, labels_vali = [], [], []
for file in data_vali:
if file in avoid:
continue
raw_text, d = read_file(file)
text_vali += raw_text
file_break = file.split("/")
file_break[-1] = "gold.html"
test_file = "/".join([f for f in file_break])
raw_text_test, d_test = read_file(test_file)
file_label = create_labels(raw_text, raw_text_test, d_test)
filter_features_vali += build_filter_features(raw_text, d)
idx_interested = [i for i in range(len(raw_text)) if file_label[i][0] == 1]
nonzero_text = [raw_text[i] for i in idx_interested]
classifier_features_vali += build_classifier_features(nonzero_text, d, idx_interested)
labels_vali = labels_vali + file_label
filter_features_test, classifier_features_test, labels_test, size_each_test = [], [], [], []
for file in data_test:
raw_text, d = read_file(file)
size_each_test.append(len(raw_text))
text_test += raw_text
file_break = file.split("/")
file_break[-1] = "gold.html"
test_file = "/".join([f for f in file_break])
raw_text_test, d_test = read_file(test_file)
file_label = create_labels(raw_text, raw_text_test, d_test)
len2 = np.count_nonzero(np.array(file_label) > 0)
filter_features_test += build_filter_features(raw_text, d)
idx_interested = [i for i in range(len(raw_text)) if file_label[i][0] == 1]
nonzero_text = [raw_text[i] for i in idx_interested]
classifier_features_test += build_classifier_features(nonzero_text, d, idx_interested)
labels_test = labels_test + file_label
# create 3 lists that hold all the sets of categorical features from filter and classifier
f_set, c_set = [], []
for i in range(4):
s = set()
for f in filter_features:
s.add(f[i + 2])
for f in filter_features_vali:
s.add(f[i + 2])
for f in filter_features_test:
s.add(f[i + 2])
order_l = list(s)
order_l.sort(reverse=True)
f_set.append(order_l)
for i in range(2):
s = set()
for f in classifier_features:
s.add(f[i + 3])
for f in classifier_features_vali:
s.add(f[i + 3])
for f in classifier_features_test:
s.add(f[i + 3])
order_l = list(s)
order_l.sort(reverse=True)
c_set.append(order_l)
# save categorical_features of both classifier and filter to a csv file
with open('output/categorical_features.csv', 'w') as f:
w = csv.writer(f)
for r1, r2, r3, r4, r5, r6 in zip_longest(f_set[0], f_set[1], f_set[2], f_set[3], c_set[0], c_set[1]):
w.writerow([r1, r2, r3, r4, r5, r6])
bert_feature = embed_raw_text(text_train, tokenizer)
bert_feature_vali = embed_raw_text(text_vali, tokenizer)
bert_feature_test = embed_raw_text(text_test, tokenizer)
bert_feature, bert_feature_vali = np.array(bert_feature), np.array(bert_feature_vali)
bert_feature_test = np.array(bert_feature_test)
filter_numerical, filter_categorical, size_F = [], [], len(filter_features)
size_F_vali = len(filter_features_vali)
for row in filter_features:
filter_numerical.append([row[0], row[1]])
filter_categorical.append([row[2], row[3], row[4], row[5]])
for row in filter_features_vali:
filter_numerical.append([row[0], row[1]])
filter_categorical.append([row[2], row[3], row[4], row[5]])
for row in filter_features_test:
filter_numerical.append([row[0], row[1]])
filter_categorical.append([row[2], row[3], row[4], row[5]])
enc_filter = OneHotEncoder(handle_unknown='ignore', sparse=False)
encoded_F = enc_filter.fit_transform(filter_categorical)
train_x_F, train_y_F = np.hstack((np.array(filter_numerical)[:size_F, :], encoded_F[:size_F, :], bert_feature)), np.array([l[0] for l in labels_train])
vali_x_F, vali_y_F = np.hstack((np.array(filter_numerical)[size_F:(size_F+size_F_vali), :], encoded_F[size_F:(size_F+size_F_vali), :], bert_feature_vali)), np.array([l[0] for l in labels_vali])
test_x_F, test_y_F = np.hstack((np.array(filter_numerical)[(size_F+size_F_vali):, :], encoded_F[(size_F+size_F_vali):, :], bert_feature_test)), np.array([l[0] for l in labels_test])
joblib.dump(enc_filter, 'output/encoder_F.joblib')
print("The encoder for the filter is successfully saved!")
l = [x for x in range(2, encoded_F[:size_F, :].shape[1] + 2)]
num_0 = np.count_nonzero(train_y_F == 0)
print("Upsampling for preparing the data for the filter")
smote_nc = SMOTENC(categorical_features=l, sampling_strategy={1: num_0}, random_state=0)
train_x_F_over, train_y_F_over = smote_nc.fit_sample(train_x_F, train_y_F)
##### Test on Filter #####
target_names = ['class 0', 'class 1']
xgb_F = xgb.XGBClassifier(learning_rate=0.1)
print("Fitting the training model for the filter...")
xgb_F.fit(train_x_F_over, train_y_F_over)
pred_F = xgb_F.predict(test_x_F)
print(accuracy_score(test_y_F, pred_F))
print(classification_report(test_y_F, pred_F, target_names=target_names, digits=5))
matrix_F = confusion_matrix(test_y_F, pred_F, labels=[0, 1])
categories = ["Irrelevance", "Pertinence"]
make_confusion_matrix(matrix_F, categories=categories, sum_stats=False, title="Confusion Matrix of Filter")
joblib.dump(xgb_F, 'output/xgb_F.pkl')
print("The filter is successfully saved!")
plt.rcParams.update({'font.size': 15})
sklearn.metrics.plot_roc_curve(xgb_F, test_x_F, test_y_F, response_method="predict_proba",drop_intermediate=False, name="ROC Curve")
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.title("ROC Curver of Filter\n(Positive label: Pertinence)")
plt.show()
bert_feature_C = np.array([bert_feature[i] for i in range(len(labels_train)) if labels_train[i][0] == 1])
bert_feature_vali_C = np.array([bert_feature_vali[i] for i in range(len(labels_vali)) if labels_vali[i][0] == 1])
bert_feature_test_C = np.array([bert_feature_test[i] for i in range(len(labels_test)) if labels_test[i][0] == 1])
classifier_numerical, classifier_categorical, size_C, size_C_vali = [], [], len(classifier_features), len(classifier_features_vali)
for row in classifier_features:
classifier_numerical.append([row[0], row[1], row[2]])
classifier_categorical.append([row[3], row[4]])
for row in classifier_features_vali:
classifier_numerical.append([row[0], row[1], row[2]])
classifier_categorical.append([row[3], row[4]])
for row in classifier_features_test:
classifier_numerical.append([row[0], row[1], row[2]])
classifier_categorical.append([row[3], row[4]])
enc_classifier = OneHotEncoder(handle_unknown='ignore', sparse=False)
encoded_C = enc_classifier.fit_transform(classifier_categorical)
train_x_C, train_y_C = np.hstack((np.array(classifier_numerical)[:size_C, :], encoded_C[:size_C, :], bert_feature_C)), np.array([l[1] for l in labels_train if l[0] == 1])
vali_x_C, vali_y_C = np.hstack((np.array(classifier_numerical)[size_C: (size_C+size_C_vali), :], encoded_C[size_C: (size_C+size_C_vali), :], bert_feature_vali_C)), np.array([l[1] for l in labels_vali if l[0] == 1])
test_x_C, test_y_C = np.hstack((np.array(classifier_numerical)[(size_C+size_C_vali):, :], encoded_C[(size_C+size_C_vali):, :], bert_feature_test_C)), np.array([l[1] for l in labels_test if l[0] == 1])
joblib.dump(enc_classifier, 'output/encoder_C.joblib')
print("The encoder for the typographic classifier is successfully saved!")
num_2 = np.count_nonzero(train_y_C == 2)
l = [x for x in range(3, encoded_C[:size_C, :].shape[1] + 3)]
print("Upsampling for preparing the data for the typographic classifier")
sm = SMOTENC(categorical_features=l, sampling_strategy={1: num_2, 3: num_2}, random_state = 0)
train_x_C_over, train_y_C_over = sm.fit_sample(train_x_C, train_y_C)
##### Test on Classifier #####
target_names = ['class 1', 'class 2', 'class 3']
xgb_C = xgb.XGBClassifier(objective='multi:softmax', learning_rate=0.65)
print("Fitting the training model for the typographic classifier...")
xgb_C.fit(train_x_C_over, train_y_C_over)
pred_C = xgb_C.predict(test_x_C)
print(accuracy_score(test_y_C, pred_C))
print(classification_report(test_y_C, pred_C, target_names=target_names, digits=8))
matrix_C, categories = confusion_matrix(test_y_C, pred_C, labels=[1, 2, 3]), ["Title", "Prose Text", "Miscellany"]
make_confusion_matrix(matrix_C, categories=categories, sum_stats=False, title="Confusion Matrix of Typographic Classifier", m=1)
joblib.dump(xgb_C, 'output/xgb_C.pkl')
print("The typographic classifier is successfully saved!")
plot_multiclass_roc(xgb_C, test_x_C, test_y_C, n_classes=3)
if __name__ == "__main__":
main()