-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
125 lines (103 loc) · 3.8 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import torch
import numpy as np
from models import m1_baseline, m2_trees, m3_linear, m4_cnn, m5_lstm, m6_transformer, m7_lstm_att, m8_deepconvlstm, \
m9_dclstm_att
from models.utils import dataset as u_dataset, evaluate as u_test
from models.utils.common import set_logger
from models.utils.dataset import Dataset
from models.utils.hparams import iter_hparams
np.random.seed(42)
torch.manual_seed(42)
def run(model_choice, ds=Dataset.WAVEGLOVE_MULTI,
model_name='Some model', hp=None, prefold=None):
if hp is None:
hp = {}
(x_train, x_test, y_train, y_test), class_count = u_dataset.load_split_dataset(ds, prefold)
x_train, x_test = \
model_choice.feature_extraction(x_train), model_choice.feature_extraction(x_test)
m = model_choice.train(x_train, y_train, class_count, **hp)
u_test.create_results(m, model_choice.test,
x_train, x_test, y_train, y_test, class_count,
ds, model_name)
if __name__ == '__main__':
# Configure this
for dataset in [
Dataset.WAVEGLOVE_SINGLE,
Dataset.WAVEGLOVE_MULTI,
Dataset.UWAVE,
Dataset.OPPORTUNITY,
Dataset.PAMAP2,
Dataset.SKODA,
Dataset.MHEALTH,
Dataset.J_LOSO_MHEALTH,
Dataset.J_LOSO_USCHAD,
Dataset.J_LOSO_UTD_MHAD1_1s,
Dataset.J_LOSO_UTD_MHAD2_1s,
Dataset.J_LOSO_WHARF,
Dataset.J_LOSO_WISDM,
Dataset.J_LOTO_MHEALTH,
Dataset.J_LOTO_USCHAD,
Dataset.J_LOTO_UTD_MHAD1_1s,
Dataset.J_LOTO_UTD_MHAD2_1s,
Dataset.J_LOTO_WHARF,
Dataset.J_LOTO_WISDM,
]:
for model, name, hparams_sweep in [
(m1_baseline, 'baseline', {}),
(m2_trees, 'trees', {}),
(m3_linear, 'nn1', {
'l1': [256],
'l2': [128],
'lr': [0.001],
'folds': [None],
}),
(m4_cnn, 'cnn1', {
'filters1': [18],
'kernel_width1': [12],
'filters2': [36],
'kernel_width2': [13],
'filters3': [24],
'kernel_width3': [12],
'lr': [0.001],
'folds': [None],
}),
(m5_lstm, 'lstm1', {
'layer_count': [1],
'pre_length': [60],
'hidden_size': [256],
'drop_prob': [0.1],
'lr': [0.001],
'folds': [None],
}),
(m6_transformer, 'tfm1', {
'sensor_embed_dim': [32],
'dropout': [0.2],
'encoder_heads': [8], # Must divide sensor embed
'encoder_hidden': [128],
'encoder_layers': [4],
'temporal_attention_heads': [4], # Must divide sensor embed
'lr': [0.001],
'folds': [None],
}),
(m7_lstm_att, 'lstmatt', {
'layer_count': [1],
'hidden_size': [64],
'drop_prob': [0.2],
'lr': [0.001],
'folds': [None],
}),
(m8_deepconvlstm, 'deepconvlstm', {
'lr': [0.001],
'folds': [None],
}),
(m9_dclstm_att, 'dclstm_att', {
'lr': [0.0001],
'folds': [None],
})
]:
for prefold in Dataset.get_prefold_range(dataset):
for hp_id, hparams in enumerate(iter_hparams(hparams_sweep)):
set_logger(name, dataset, hp_id, hparams, prefold)
run(model, dataset, name, hparams, prefold)
# Just so these are not code-styled away
t = [m1_baseline, m2_trees, m3_linear, m4_cnn, m5_lstm, m6_transformer, m7_lstm_att, m8_deepconvlstm, m9_dclstm_att]