All prompts are owned by LeetCode. To view the prompt, click the title link above.
First completed : June 27, 2024
Last updated : June 27, 2024
Related Topics : Array, Stack, Tree, Binary Search Tree, Monotonic Stack, Binary Tree
Acceptance Rate : 83.09 %
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode bstFromPreorder(int[] preorder) {
TreeNode root = new TreeNode(preorder[0]);
bstHelper(preorder, root, 1, Integer.MIN_VALUE, Integer.MAX_VALUE);
return root;
}
private int bstHelper(int[] preorder, TreeNode curr, int indx, int lowerbound, int upperbound) {
if (indx >= preorder.length) {
return indx;
}
if (lowerbound < preorder[indx] && preorder[indx] < curr.val) {
curr.left = new TreeNode(preorder[indx]);
indx = bstHelper(preorder, curr.left, indx + 1, lowerbound, curr.val);
}
if (indx >= preorder.length) {
return indx;
}
if (preorder[indx] < upperbound && preorder[indx] > curr.val) {
curr.right = new TreeNode(preorder[indx]);
indx = bstHelper(preorder, curr.right, indx + 1, curr.val, upperbound);
}
return indx;
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* struct TreeNode *left;
* struct TreeNode *right;
* };
*/
int bstHelper(int* preorder, int preorderSize, struct TreeNode* curr, int indx, int lowerbound, int upperbound) {
if (indx >= preorderSize) {
return indx;
}
if (lowerbound < preorder[indx] && preorder[indx] < curr->val) {
curr->left = (struct TreeNode*) malloc(sizeof(struct TreeNode));
curr->left->val = preorder[indx];
curr->left->left = NULL;
curr->left->right = NULL;
indx = bstHelper(preorder, preorderSize, curr->left, indx + 1, lowerbound, curr->val);
}
if (indx >= preorderSize) {
return indx;
}
if (preorder[indx] < upperbound && preorder[indx] > curr->val) {
curr->right = (struct TreeNode*) malloc(sizeof(struct TreeNode));
curr->right->val = preorder[indx];
curr->right->right = NULL;
curr->right->left = NULL;
indx = bstHelper(preorder, preorderSize, curr->right, indx + 1, curr->val, upperbound);
}
return indx;
}
struct TreeNode* bstFromPreorder(int* preorder, int preorderSize) {
struct TreeNode* root = (struct TreeNode*) malloc(sizeof(struct TreeNode));
root->val = preorder[0];
root->left = NULL;
root->right = NULL;
bstHelper(preorder, preorderSize, root, 1, INT_MIN, INT_MAX);
return root;
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* bstFromPreorder(vector<int>& preorder) {
TreeNode* root = new TreeNode(preorder[0]);
bstHelper(preorder, root, 1, INT_MIN, INT_MAX);
return root;
}
int bstHelper(vector<int>& preorder, TreeNode* curr, int indx, int lowerbound, int upperbound) {
if (indx >= preorder.size()) {
return indx;
}
if (lowerbound < preorder[indx] && preorder[indx] < curr->val) {
curr->left = new TreeNode(preorder[indx]);
indx = bstHelper(preorder, curr->left, indx + 1, lowerbound, curr->val);
}
if (indx >= preorder.size()) {
return indx;
}
if (preorder[indx] < upperbound && preorder[indx] > curr->val) {
curr->right = new TreeNode(preorder[indx]);
indx = bstHelper(preorder, curr->right, indx + 1, curr->val, upperbound);
}
return indx;
}
};