|
| 1 | +class Solution: |
| 2 | + # output: (dist, node_no) |
| 3 | + def furthest_vertex(self, curr_node: int, edges: DefaultDict[int, Set[int]], visited: Set[int] = None) -> Tuple[int, int] : |
| 4 | + if not visited : |
| 5 | + visited = set() |
| 6 | + nxt_to_visit = deque([(1, curr_node)]) |
| 7 | + farthest = (-1, -1) |
| 8 | + while nxt_to_visit : |
| 9 | + dist, curr = nxt_to_visit.popleft() |
| 10 | + |
| 11 | + if curr in visited : |
| 12 | + continue |
| 13 | + visited.add(curr) |
| 14 | + |
| 15 | + if dist > farthest[0] : |
| 16 | + farthest = (dist, curr) |
| 17 | + |
| 18 | + for nxt in edges[curr] : |
| 19 | + if nxt in visited : |
| 20 | + continue |
| 21 | + nxt_to_visit.append((dist + 1, nxt)) |
| 22 | + |
| 23 | + return farthest |
| 24 | + |
| 25 | + def odd_cycle_len(self, |
| 26 | + curr_node: int, |
| 27 | + traversal_no: int, |
| 28 | + edges: DefaultDict[int, Set[int]], |
| 29 | + visited: Dict[int, int] = None) -> bool : |
| 30 | + if curr_node in visited : |
| 31 | + return (traversal_no - visited[curr_node]) % 2 != 0 |
| 32 | + |
| 33 | + visited[curr_node] = traversal_no |
| 34 | + |
| 35 | + return any(self.odd_cycle_len(x, traversal_no + 1, edges, visited) for x in edges[curr_node]) |
| 36 | + |
| 37 | + def magnificentSets(self, n: int, edges: List[List[int]]) -> int: |
| 38 | + # Edge list from each vertex |
| 39 | + e = defaultdict(set) |
| 40 | + for u, v in edges : |
| 41 | + e[u].add(v) |
| 42 | + e[v].add(u) |
| 43 | + |
| 44 | + groups = 0 |
| 45 | + |
| 46 | + to_visit = set(range(1, n + 1)) |
| 47 | + while to_visit : |
| 48 | + curr = to_visit.pop() |
| 49 | + |
| 50 | + visited = {} |
| 51 | + if self.odd_cycle_len(curr, 1, e, visited) : |
| 52 | + return -1 |
| 53 | + |
| 54 | + to_visit -= visited.keys() |
| 55 | + groups += max([self.furthest_vertex(x, e) for x in visited.keys()])[0] |
| 56 | + |
| 57 | + return groups |
0 commit comments