-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmobtree.py
668 lines (560 loc) · 29.7 KB
/
mobtree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
import os
import copy
import numpy as np
from matplotlib import pyplot as plt
from abc import ABCMeta, abstractmethod
from sklearn.utils.extmath import softmax
from sklearn.preprocessing import LabelBinarizer
from sklearn.utils import check_X_y, column_or_1d
from sklearn.utils.validation import check_is_fitted
from sklearn.base import BaseEstimator, RegressorMixin, ClassifierMixin, is_classifier, is_regressor
__all__ = ["MoBTreeRegressor", "MoBTreeClassifier"]
class MoBTree(BaseEstimator, metaclass=ABCMeta):
"""
Base class for classification and regression.
"""
@abstractmethod
def __init__(self, max_depth=3, min_samples_leaf=50, min_impurity_decrease=0, feature_names=None,
split_features=None, n_screen_grid=1, n_feature_search=10, n_split_grid=20, random_state=0):
self.EPSILON = 1e-7
self.max_depth = max_depth
self.split_features = split_features
self.min_samples_leaf = min_samples_leaf
self.min_impurity_decrease = min_impurity_decrease
self.feature_names = feature_names
self.n_screen_grid = n_screen_grid
self.n_feature_search = n_feature_search
self.n_split_grid = n_split_grid
self.random_state = random_state
def _validate_hyperparameters(self):
if not isinstance(self.max_depth, (np.int, int)):
raise ValueError("degree must be an integer, got %s." % self.max_depth)
if self.max_depth < 0:
raise ValueError("degree must be >= 0, got %s." % self.max_depth)
if self.split_features is not None:
if not isinstance(self.split_features, list):
raise ValueError("split_features must be an list or None, got %s." %
self.split_features)
if not isinstance(self.min_samples_leaf, (np.int, int)):
raise ValueError("min_samples_leaf must be an integer, got %s." % self.min_samples_leaf)
if self.min_samples_leaf < 0:
raise ValueError("min_samples_leaf must be >= 0, got %s." % self.min_samples_leaf)
if self.min_impurity_decrease < 0.:
raise ValueError("min_impurity_decrease must be >= 0, got %s." % self.min_impurity_decrease)
if self.feature_names is not None:
self.feature_names = list(self.feature_names)
if len(self.feature_names) != self.n_features:
raise ValueError("feature_names must have the same length as n_features, got %s." % self.feature_names)
else:
self.feature_names = ["X" + str(i + 1) for i in range(self.n_features)]
if not isinstance(self.n_feature_search, (np.int, int)):
raise ValueError("n_feature_search must be an integer, got %s." % self.n_feature_search)
if self.n_feature_search <= 0:
raise ValueError("n_feature_search must be > 0, got %s." % self.n_feature_search)
if not isinstance(self.n_split_grid, (np.int, int)):
raise ValueError("n_split_grid must be an integer, got %s." % self.n_split_grid)
if self.n_split_grid <= 0:
raise ValueError("n_split_grid must be > 0, got %s." % self.n_split_grid)
if not isinstance(self.n_screen_grid, (np.int, int)):
raise ValueError("n_screen_grid must be an integer, got %s." % self.n_screen_grid)
if self.n_screen_grid <= 0:
raise ValueError("n_screen_grid must be > 0, got %s." % self.n_screen_grid)
@abstractmethod
def build_root(self):
pass
@abstractmethod
def build_leaf(self, sample_indice):
pass
def screen_features(self, sample_indice):
node_x = self.x[sample_indice]
node_y = self.y[sample_indice]
n_samples, n_features = node_x.shape
feature_impurity = []
for feature_indice in self.split_features:
current_feature = node_x[:, feature_indice]
sortted_indice = np.argsort(current_feature)
sortted_feature = current_feature[sortted_indice]
feature_range = sortted_feature[-1] - sortted_feature[0]
if feature_range < self.EPSILON:
continue
split_point = 0
best_impurity = np.inf
for i, _ in enumerate(sortted_indice):
if i == (n_samples - 1):
continue
if ((i + 1) < self.min_samples_leaf) or ((n_samples - i - 1) < self.min_samples_leaf):
continue
if sortted_feature[i + 1] <= sortted_feature[i] + self.EPSILON:
continue
if n_samples > (self.n_screen_grid + 1) * self.min_samples_leaf:
if (i + 1) / n_samples < (split_point + 1) / (self.n_split_grid + 1):
continue
elif n_samples > 2 * self.min_samples_leaf:
if (i + 1 - self.min_samples_leaf) / (n_samples - 2 * self.min_samples_leaf) < split_point / (self.n_screen_grid - 1):
continue
split_point += 1
left_indice = sortted_indice[:(i + 1)]
if node_y[left_indice].std() == 0:
left_impurity = 0
else:
self.base_estimator.fit(node_x[left_indice], node_y[left_indice])
left_impurity = self.evaluate_estimator(self.base_estimator, node_x[left_indice], node_y[left_indice])
right_indice = sortted_indice[(i + 1):]
if node_y[right_indice].std() == 0:
right_impurity = 0
else:
self.base_estimator.fit(node_x[right_indice], node_y[right_indice])
right_impurity = self.evaluate_estimator(self.base_estimator, node_x[right_indice], node_y[right_indice])
current_impurity = (len(left_indice) * left_impurity + len(right_indice) * right_impurity) / n_samples
if current_impurity < (best_impurity - self.EPSILON):
best_impurity = current_impurity
feature_impurity.append(best_impurity)
split_feature_indices = np.argsort(feature_impurity)[:self.n_feature_search]
important_split_features = np.array(self.split_features)[split_feature_indices]
return important_split_features
def node_split(self, sample_indice):
node_x = self.x[sample_indice]
node_y = self.y[sample_indice]
n_samples, n_features = node_x.shape
best_feature = None
best_position = None
best_threshold = None
best_left_indice = None
best_right_indice = None
best_impurity = np.inf
best_left_impurity = np.inf
best_right_impurity = np.inf
for feature_indice in self.important_split_features:
current_feature = node_x[:, feature_indice]
sortted_indice = np.argsort(current_feature)
sortted_feature = current_feature[sortted_indice]
feature_range = sortted_feature[-1] - sortted_feature[0]
if feature_range < self.EPSILON:
continue
split_point = 0
for i, _ in enumerate(sortted_indice):
if i == (n_samples - 1):
continue
if ((i + 1) < self.min_samples_leaf) or ((n_samples - i - 1) < self.min_samples_leaf):
continue
if sortted_feature[i + 1] <= sortted_feature[i] + self.EPSILON:
continue
if n_samples > (self.n_split_grid + 1) * self.min_samples_leaf:
if (i + 1) / n_samples < (split_point + 1) / (self.n_split_grid + 1):
continue
elif n_samples > 2 * self.min_samples_leaf:
if (i + 1 - self.min_samples_leaf) / (n_samples - 2 * self.min_samples_leaf) < split_point / (self.n_split_grid - 1):
continue
split_point += 1
left_indice = sortted_indice[:(i + 1)]
if node_y[left_indice].std() == 0:
left_impurity = 0
else:
self.base_estimator.fit(node_x[left_indice], node_y[left_indice])
left_impurity = self.evaluate_estimator(self.base_estimator, node_x[left_indice], node_y[left_indice])
right_indice = sortted_indice[(i + 1):]
if node_y[right_indice].std() == 0:
right_impurity = 0
else:
self.base_estimator.fit(node_x[right_indice], node_y[right_indice])
right_impurity = self.evaluate_estimator(self.base_estimator, node_x[right_indice], node_y[right_indice])
current_impurity = (len(left_indice) * left_impurity + len(right_indice) * right_impurity) / n_samples
if current_impurity < (best_impurity - self.EPSILON):
best_position = i + 1
best_feature = feature_indice
best_impurity = current_impurity
best_left_impurity = left_impurity
best_right_impurity = right_impurity
best_threshold = (sortted_feature[i] + sortted_feature[i + 1]) / 2
if best_position is not None:
sortted_indice = np.argsort(node_x[:, best_feature])
best_left_indice = sample_indice[sortted_indice[:best_position]]
best_right_indice = sample_indice[sortted_indice[best_position:]]
node = {"feature": best_feature, "threshold": best_threshold, "left": best_left_indice, "right": best_right_indice,
"impurity": best_impurity, "left_impurity": best_left_impurity, "right_impurity": best_right_impurity}
return node
def add_node(self, parent_id, is_left, is_leaf, depth, feature, threshold, impurity, sample_indice):
self.node_count += 1
if parent_id is not None:
if is_left:
self.tree[parent_id].update({"left_child_id":self.node_count})
else:
self.tree[parent_id].update({"right_child_id":self.node_count})
node_id = self.node_count
n_samples = len(sample_indice)
if is_leaf:
predict_func, estimator, best_impurity = self.build_leaf(sample_indice)
node = {"node_id": node_id, "parent_id": parent_id, "depth": depth, "feature": feature, "impurity": best_impurity,
"n_samples": n_samples, "is_left": is_left, "is_leaf": is_leaf, "value": np.mean(self.y[sample_indice]),
"predict_func": predict_func, "estimator":estimator}
self.leaf_estimators_.update({node_id: estimator})
else:
node = {"node_id": node_id, "parent_id": parent_id, "depth": depth,"feature": feature, "impurity": impurity,
"n_samples": n_samples, "is_left": is_left, "is_leaf": is_leaf, "value": np.mean(self.y[sample_indice]),
"left_child_id":None, "right_child_id": None, "threshold": threshold}
self.tree.update({node_id: node})
return node_id
def fit(self, x, y):
self.tree = {}
self.node_count = 0
self.leaf_estimators_ = {}
n_samples, n_features = x.shape
self.n_features = n_features
sample_indice = np.arange(n_samples)
self.x, self.y = self._validate_input(x, y)
self._validate_hyperparameters()
if self.split_features is None:
self.split_features = np.arange(n_features).tolist()
if self.n_feature_search > len(self.split_features) and (self.max_depth >= 0):
self.important_split_features = self.split_features
else:
self.important_split_features = self.screen_features(sample_indice)
np.random.seed(self.random_state)
root_impurity = self.build_root()
root_node = {"sample_indice": sample_indice,
"parent_id": None,
"depth": 0,
"impurity": root_impurity,
"is_left": False}
pending_node_list = [root_node]
while len(pending_node_list) > 0:
stack_record = pending_node_list.pop()
sample_indice = stack_record["sample_indice"]
parent_id = stack_record["parent_id"]
depth = stack_record["depth"]
impurity = stack_record["impurity"]
is_left = stack_record["is_left"]
if sample_indice is None:
is_leaf = True
else:
n_samples = len(sample_indice)
is_leaf = (depth >= self.max_depth or
n_samples < 2 * self.min_samples_leaf)
if not is_leaf:
split = self.node_split(sample_indice)
impurity_improvement = impurity - split["impurity"]
is_leaf = (is_leaf or (impurity_improvement < (self.min_impurity_decrease + self.EPSILON)) or
(split["left"] is None) or (split["right"] is None))
if is_leaf:
node_id = self.add_node(parent_id, is_left, is_leaf, depth,
None, None, impurity, sample_indice)
else:
node_id = self.add_node(parent_id, is_left, is_leaf, depth,
split["feature"], split["threshold"], impurity, sample_indice)
pending_node_list.append({"sample_indice": split["left"],
"parent_id": node_id,
"depth": depth + 1,
"impurity": split["left_impurity"],
"is_left": True})
pending_node_list.append({"sample_indice": split["right"],
"parent_id": node_id,
"depth": depth + 1,
"impurity": split["right_impurity"],
"is_left": False})
self.leaf_idx_list = [key for key, item in self.tree.items() if item["is_leaf"]]
return self
def plot_tree(self, draw_depth=np.inf, start_node_id=1, folder="./results/", name="demo", save_png=False, save_eps=False):
idx = 0
draw_subtree = {}
draw_tree = copy.deepcopy(self.tree)
pending_node_list = [draw_tree[start_node_id]]
start_depth = draw_tree[start_node_id]["depth"]
total_depth = 1 + min(np.max([item["depth"] for key, item in self.tree.items()]) - start_depth, draw_depth)
max_depth = min(np.max([item["depth"] for key, item in self.tree.items()]), start_depth + draw_depth)
while len(pending_node_list) > 0:
item = pending_node_list.pop()
if item["depth"] > max_depth:
continue
if item["parent_id"] is None or idx == 0:
xy = (0.5, 0)
parent_xy = None
else:
parent_xy = draw_subtree[item["parent_id"]]["xy"]
if item["is_left"]:
xy = (parent_xy[0] - 1 / 2 ** (item["depth"] - start_depth + 1), 3 * (item["depth"] - start_depth) / (3 * total_depth - 2))
else:
xy = (parent_xy[0] + 1 / 2 ** (item["depth"] - start_depth + 1), 3 * (item["depth"] - start_depth) / (3 * total_depth - 2))
idx += 1
draw_subtree[item["node_id"]] = item
if item["is_leaf"]:
if is_regressor(self):
draw_subtree[item["node_id"]].update({"xy": xy,
"parent_xy": parent_xy,
"estimator": item["estimator"],
"label": "____Node " + str(item["node_id"]) + "____" +
"\nMSE: " + str(np.round(item["impurity"], 3))
+ "\nSize: " + str(int(item["n_samples"]))
+ "\nMean: " + str(np.round(item["value"], 3))})
elif is_classifier(self):
draw_subtree[item["node_id"]].update({"xy": xy,
"parent_xy": parent_xy,
"estimator": item["estimator"],
"label": "____Node " + str(item["node_id"]) + "____" +
"\nCEntropy: " + str(np.round(item["impurity"], 3))
+ "\nSize: " + str(int(item["n_samples"]))
+ "\nMean: " + str(np.round(item["value"], 3))})
else:
fill_width = len(self.feature_names[item["feature"]] + " <=" + str(np.round(item["threshold"], 3)))
fill_width = int(round((fill_width - 2) / 2))
if is_regressor(self):
draw_subtree[item["node_id"]].update({"xy": xy,
"parent_xy": parent_xy,
"label": "_" * fill_width + "Node " + str(item["node_id"]) + "_" * fill_width
+ "\n" + self.feature_names[item["feature"]] + " <=" + str(np.round(item["threshold"], 3))
+ "\nMSE: " + str(np.round(item["impurity"], 3))
+ "\nSize: " + str(int(item["n_samples"]))
+ "\nMean: " + str(np.round(item["value"], 3))})
elif is_classifier(self):
draw_subtree[item["node_id"]].update({"xy": xy,
"parent_xy": parent_xy,
"label": "_" * fill_width + "Node " + str(item["node_id"]) + "_" * fill_width
+ "\n" + self.feature_names[item["feature"]] + " <=" + str(np.round(item["threshold"], 3))
+ "\nCEntropy: " + str(np.round(item["impurity"], 3))
+ "\nSize: " + str(int(item["n_samples"]))
+ "\nMean: " + str(np.round(item["value"], 3))})
pending_node_list.append(self.tree[item["left_child_id"]])
pending_node_list.append(self.tree[item["right_child_id"]])
fig = plt.figure(figsize=(2 ** total_depth, (total_depth - 0.8) * 2))
tree = fig.add_axes([0.0, 0.0, 1, 1])
ax_width = tree.get_window_extent().width
ax_height = tree.get_window_extent().height
color_list = [229, 129, 57]
color_leaf_list = [57, 157, 229]
values = np.array([item["value"] for key, item in self.tree.items()])
min_value, max_value = values.min(), values.max()
idx = 0
for key, item in draw_subtree.items():
if max_value == min_value:
if item["is_leaf"]:
color = color_leaf_list
else:
color = color_list
else:
alpha = (item["value"] - min_value) / (max_value - min_value)
alpha = np.clip(alpha, 0.1, 0.9)
if item["is_leaf"]:
color = [int(round(alpha * c + (1 - alpha) * 255, 0)) for c in color_leaf_list]
else:
color = [int(round(alpha * c + (1 - alpha) * 255, 0)) for c in color_list]
kwargs = dict(bbox={"fc": '#%2x%2x%2x' % tuple(color), "boxstyle": "round"}, arrowprops={"arrowstyle": "<-"},
ha='center', va='center', zorder=100 - 10 * (item["depth"] - start_depth), xycoords='axes pixels', fontsize=14)
if item["parent_id"] is None or idx == 0:
tree.annotate(item["label"], (item["xy"][0] * ax_width, (1 - item["xy"][1]) * ax_height), **kwargs)
else:
if item["is_left"]:
tree.annotate(item["label"], ((item["parent_xy"][0] - 0.01 / 2 ** (item["depth"] - start_depth + 1)) * ax_width,
(1 - item["parent_xy"][1] - 0.1 / total_depth) * ax_height),
(item["xy"][0] * ax_width, (1 - item["xy"][1]) * ax_height), **kwargs)
else:
tree.annotate(item["label"], ((item["parent_xy"][0] + 0.01 / 2 ** (item["depth"] - start_depth + 1)) * ax_width,
(1 - item["parent_xy"][1] - 0.1 / total_depth) * ax_height),
(item["xy"][0] * ax_width, (1 - item["xy"][1]) * ax_height), **kwargs)
idx += 1
tree.set_axis_off()
plt.show()
if max_depth > 0:
save_path = folder + name
if save_eps:
if not os.path.exists(folder):
os.makedirs(folder)
fig.savefig("%s.eps" % save_path, bbox_inches="tight", dpi=100)
if save_png:
if not os.path.exists(folder):
os.makedirs(folder)
fig.savefig("%s.png" % save_path, bbox_inches="tight")
def decision_rule(self, node_id):
rule_dict = {}
current_node = self.tree[node_id]
while True:
if current_node["parent_id"] is None:
break
parent_node = self.tree[current_node["parent_id"]]
key = str(parent_node["feature"])
if key not in rule_dict.keys():
if current_node["is_left"]:
rule_dict.update({key:{"left": parent_node["threshold"]}})
else:
rule_dict.update({key:{"right": parent_node["threshold"]}})
else:
if current_node["is_left"]:
if "left" not in rule_dict[key].keys():
rule_dict[key].update({"left": parent_node["threshold"]})
else:
rule_dict[key].update({"left": min(parent_node["threshold"], rule_dict[key]["left"])})
else:
if "right" not in rule_dict[key].keys():
rule_dict[key].update({"right": parent_node["threshold"]})
else:
rule_dict[key].update({"right": max(parent_node["threshold"], rule_dict[key]["right"])})
current_node = parent_node
rule_list = []
for key, item in rule_dict.items():
rule = ""
if "right" in item.keys():
rule += str(round(item["right"], 3)) + "<"
rule += self.feature_names[int(key)]
if "left" in item.keys():
rule += "<=" + str(round(item["left"], 3))
rule_list.append(rule)
return rule_list
def decision_path_indice(self, x, node_id):
sample_indice = np.where(self.decision_path(x)[:, node_id - 1])[0]
return sample_indice
def decision_path(self, x):
check_is_fitted(self, "tree")
n_samples = x.shape[0]
path_all = np.zeros((n_samples, self.node_count))
for node_id in self.leaf_idx_list:
path = []
idx = node_id
sample_indice = np.ones((x.shape[0], )).astype(np.bool)
while True:
path.append(idx - 1)
current_node = self.tree[idx]
if current_node["parent_id"] is None:
break
else:
parent_node = self.tree[current_node["parent_id"]]
if current_node["is_left"]:
sample_indice = np.logical_and(sample_indice, x[:, parent_node["feature"]] <= parent_node["threshold"])
else:
sample_indice = np.logical_and(sample_indice, x[:, parent_node["feature"]] > parent_node["threshold"])
idx = current_node["parent_id"]
if sample_indice.sum() > 0:
path_all[np.ix_(np.where(sample_indice)[0], path)] = 1
return path_all
def decision_function(self, x):
check_is_fitted(self, "tree")
x = np.array(x)
n_samples = x.shape[0]
pred = np.zeros((n_samples))
for node_id in self.leaf_idx_list:
idx = node_id
sample_indice = np.ones((x.shape[0], )).astype(np.bool)
while True:
current_node = self.tree[idx]
if current_node["parent_id"] is None:
break
else:
parent_node = self.tree[current_node["parent_id"]]
if current_node["is_left"]:
sample_indice = np.logical_and(sample_indice, x[:, parent_node["feature"]] <= parent_node["threshold"])
else:
sample_indice = np.logical_and(sample_indice, x[:, parent_node["feature"]] > parent_node["threshold"])
idx = current_node["parent_id"]
if sample_indice.sum() > 0:
pred[sample_indice] = self.tree[node_id]['predict_func'](x[sample_indice, :]).ravel()
return pred
class MoBTreeRegressor(MoBTree, RegressorMixin):
def __init__(self, max_depth=3, min_samples_leaf=50, min_impurity_decrease=0, feature_names=None,
split_features=None, n_screen_grid=1, n_feature_search=10, n_split_grid=20, random_state=0):
super(MoBTreeRegressor, self).__init__(max_depth=max_depth,
min_samples_leaf=min_samples_leaf,
min_impurity_decrease=min_impurity_decrease,
split_features=split_features,
feature_names=feature_names,
n_screen_grid=n_screen_grid,
n_feature_search=n_feature_search,
n_split_grid=n_split_grid,
random_state=random_state)
def _validate_input(self, x, y):
x, y = check_X_y(x, y, accept_sparse=["csr", "csc", "coo"],
multi_output=True, y_numeric=True)
return x, y.ravel()
def get_loss(self, label, pred):
"""method to calculate the MSE loss
Parameters
---------
label : array-like of shape (n_samples,)
containing the response dataset
pred : array-like of shape (n_samples,)
containing the output dataset
Returns
-------
float
the MSE loss
"""
loss = np.average((label.ravel() - pred.ravel()) ** 2, axis=0)
return loss
def evaluate_estimator(self, estimator, x, y):
"""method to calculate the MSE loss
Parameters
---------
estimator : the base model object
x : array-like of shape (n_samples, n_features)
containing the input dataset
y : array-like of shape (n_samples,)
containing the response dataset
Returns
-------
float
the MSE loss
"""
pred = estimator.predict(x)
loss = self.get_loss(y, pred)
return loss
def predict(self, x):
return self.decision_function(x)
class MoBTreeClassifier(MoBTree, ClassifierMixin):
def __init__(self, max_depth=3, min_samples_leaf=50, min_impurity_decrease=0, feature_names=None,
split_features=None, n_screen_grid=1, n_feature_search=10, n_split_grid=20, random_state=0):
super(MoBTreeClassifier, self).__init__(max_depth=max_depth,
min_samples_leaf=min_samples_leaf,
min_impurity_decrease=min_impurity_decrease,
split_features=split_features,
feature_names=feature_names,
n_screen_grid=n_screen_grid,
n_feature_search=n_feature_search,
n_split_grid=n_split_grid,
random_state=random_state)
def _validate_input(self, x, y):
x, y = check_X_y(x, y, accept_sparse=["csr", "csc", "coo"],
multi_output=True)
if y.ndim == 2 and y.shape[1] == 1:
y = column_or_1d(y, warn=False)
self._label_binarizer = LabelBinarizer()
self._label_binarizer.fit(y)
self.classes_ = self._label_binarizer.classes_
y = self._label_binarizer.transform(y) * 1.0
return x, y.ravel()
def get_loss(self, label, pred):
"""method to calculate the cross entropy loss
Parameters
---------
label : array-like of shape (n_samples,)
containing the input dataset
pred : array-like of shape (n_samples,)
containing the output dataset
Returns
-------
float
the cross entropy loss
"""
with np.errstate(divide="ignore", over="ignore"):
pred = np.clip(pred, self.EPSILON, 1. - self.EPSILON)
loss = - np.average(label.ravel() * np.log(pred.ravel()) + (1 - label.ravel()) * np.log(1 - pred.ravel()), axis=0)
return loss
def evaluate_estimator(self, estimator, x, y):
"""method to calculate the cross entropy loss
Parameters
---------
estimator : the base model object
x : array-like of shape (n_samples, n_features)
containing the input dataset
y : array-like of shape (n_samples,)
containing the response dataset
Returns
-------
float
the cross entropy loss
"""
pred = estimator.predict_proba(x)[:, 1]
loss = self.get_loss(y, pred)
return loss
def predict_proba(self, x):
pred = self.decision_function(x).reshape(-1, 1)
pred_proba = softmax(np.hstack([-pred, pred]) / 2, copy=False)
return pred_proba
def predict(self, x):
pred_proba = self.predict_proba(x)
return self._label_binarizer.inverse_transform(pred_proba)