-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsim.py
361 lines (283 loc) · 11.4 KB
/
sim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import numpy as np
from copy import deepcopy
from matplotlib import gridspec
import matplotlib.pyplot as plt
from sklearn.linear_model import Lasso
from sklearn.utils.extmath import softmax
from sklearn.preprocessing import LabelBinarizer
from sklearn.utils import check_X_y, column_or_1d
from sklearn.model_selection import train_test_split
from sklearn.utils.validation import check_is_fitted
from sklearn.base import BaseEstimator, RegressorMixin, ClassifierMixin, is_classifier, is_regressor
from abc import ABCMeta, abstractmethod
from .smspline import SMSplineRegressor, SMSplineClassifier
__all__ = ["SimRegressor", "SimClassifier"]
class BaseSim(BaseEstimator, metaclass=ABCMeta):
@abstractmethod
def __init__(self, reg_lambda=0, reg_gamma=1e-5, knot_num=5, degree=3, random_state=0):
self.reg_lambda = reg_lambda
self.reg_gamma = reg_gamma
self.knot_num = knot_num
self.degree = degree
self.random_state = random_state
def _first_order_thres(self, x, y):
"""calculate the projection indice using the first order stein's identity subject to hard thresholding
Parameters
---------
x : array-like of shape (n_samples, n_features)
containing the input dataset
y : array-like of shape (n_samples,)
containing target values
Returns
-------
np.array of shape (n_features, 1)
the normalized projection inidce
"""
if self.reg_lambda == 0:
mu = np.average(x, axis=0)
cov = np.cov(x.T)
inv_cov = np.linalg.pinv(cov, 1e-7)
s1 = np.dot(inv_cov, (x - mu).T).T
zbar = np.average(y.reshape(-1, 1) * s1, axis=0)
else:
mx = x.mean(0)
sx = x.std(0) + 1e-7
nx = (x - mx) / sx
lr = Lasso(alpha=self.reg_lambda)
lr.fit(nx, y)
zbar = lr.coef_ / sx
if np.linalg.norm(zbar) > 0:
beta = zbar / np.linalg.norm(zbar)
else:
beta = zbar
return beta.reshape([-1, 1])
def fit(self, x, y):
"""fit the Sim model
Parameters
---------
x : array-like of shape (n_samples, n_features)
containing the input dataset
y : array-like of shape (n_samples,)
containing target values
Returns
-------
object
self : Estimator instance.
"""
np.random.seed(self.random_state)
x, y = self._validate_input(x, y)
n_samples, n_features = x.shape
self.beta_ = self._first_order_thres(x, y)
if len(self.beta_[np.abs(self.beta_) > 0]) > 0:
if (self.beta_[np.argmax(np.abs(self.beta_))] < 0):
self.beta_ = - self.beta_
xb = np.dot(x, self.beta_)
self._estimate_shape(xb, y, np.min(xb), np.max(xb))
return self
def decision_function(self, x):
"""output f(beta^T x) for given samples
Parameters
---------
x : array-like of shape (n_samples, n_features)
containing the input dataset
Returns
-------
np.array of shape (n_samples,)
containing f(beta^T x)
"""
check_is_fitted(self, "beta_")
check_is_fitted(self, "shape_fit_")
xb = np.dot(x, self.beta_)
pred = self.shape_fit_.decision_function(xb)
return pred
def visualize(self):
"""draw the fitted projection indices and ridge function
"""
check_is_fitted(self, "beta_")
check_is_fitted(self, "shape_fit_")
xlim_min = - max(np.abs(self.beta_.min() - 0.1), np.abs(self.beta_.max() + 0.1))
xlim_max = max(np.abs(self.beta_.min() - 0.1), np.abs(self.beta_.max() + 0.1))
fig = plt.figure(figsize=(12, 4))
outer = gridspec.GridSpec(1, 2, wspace=0.15)
inner = gridspec.GridSpecFromSubplotSpec(2, 1, subplot_spec=outer[0], wspace=0.1, hspace=0.1, height_ratios=[6, 1])
ax1_main = plt.Subplot(fig, inner[0])
xgrid = np.linspace(self.shape_fit_.xmin, self.shape_fit_.xmax, 100).reshape([-1, 1])
ygrid = self.shape_fit_.decision_function(xgrid)
ax1_main.plot(xgrid, ygrid)
ax1_main.set_xticklabels([])
ax1_main.set_title("Shape Function", fontsize=12)
fig.add_subplot(ax1_main)
ax1_density = plt.Subplot(fig, inner[1])
xint = ((np.array(self.shape_fit_.bins_[1:]) + np.array(self.shape_fit_.bins_[:-1])) / 2).reshape([-1, 1]).reshape([-1])
ax1_density.bar(xint, self.shape_fit_.density_, width=xint[1] - xint[0])
ax1_main.get_shared_x_axes().join(ax1_main, ax1_density)
ax1_density.set_yticklabels([])
ax1_density.autoscale()
fig.add_subplot(ax1_density)
ax2 = plt.Subplot(fig, outer[1])
if len(self.beta_) <= 50:
ax2.barh(np.arange(len(self.beta_)), [beta for beta in self.beta_.ravel()][::-1])
ax2.set_yticks(np.arange(len(self.beta_)))
ax2.set_yticklabels(["X" + str(idx + 1) for idx in range(len(self.beta_.ravel()))][::-1])
ax2.set_xlim(xlim_min, xlim_max)
ax2.set_ylim(-1, len(self.beta_))
ax2.axvline(0, linestyle="dotted", color="black")
else:
right = np.round(np.linspace(0, np.round(len(self.beta_) * 0.45).astype(int), 5))
left = len(self.beta_) - 1 - right
input_ticks = np.unique(np.hstack([left, right])).astype(int)
ax2.barh(np.arange(len(self.beta_)), [beta for beta in self.beta_.ravel()][::-1])
ax2.set_yticks(input_ticks)
ax2.set_yticklabels(["X" + str(idx + 1) for idx in input_ticks][::-1])
ax2.set_xlim(xlim_min, xlim_max)
ax2.set_ylim(-1, len(self.beta_))
ax2.axvline(0, linestyle="dotted", color="black")
ax2.set_title("Projection Indice", fontsize=12)
fig.add_subplot(ax2)
plt.show()
class SimRegressor(BaseSim, RegressorMixin):
"""
Sim regression.
Parameters
----------
reg_lambda : float, optional. default=0
Sparsity strength
reg_gamma : float or list of float, optional. default=0.1
Roughness penalty strength of the spline algorithm
degree : int, optional. default=3
The order of the spline. Possible values include 1 and 3.
knot_num : int, optional. default=5
Number of knots
random_state : int, optional. default=0
Random seed
"""
def __init__(self, reg_lambda=0, reg_gamma=1e-5, knot_num=5, degree=3, random_state=0):
super(SimRegressor, self).__init__(reg_lambda=reg_lambda,
reg_gamma=reg_gamma,
knot_num=knot_num,
degree=degree,
random_state=random_state)
def _validate_input(self, x, y):
"""method to validate data
Parameters
---------
x : array-like of shape (n_samples, n_features)
containing the input dataset
y : array-like of shape (n_samples,)
containing the output dataset
"""
x, y = check_X_y(x, y, accept_sparse=["csr", "csc", "coo"],
multi_output=True, y_numeric=True)
return x, y.ravel()
def _estimate_shape(self, x, y, xmin, xmax):
"""estimate the ridge function
Parameters
---------
x : array-like of shape (n_samples, n_features)
containing the input dataset
y : array-like of shape (n_samples,)
containing the output dataset
xmin : float
the minimum value of beta ^ x
xmax : float
the maximum value of beta ^ x
"""
self.shape_fit_ = SMSplineRegressor(knot_num=self.knot_num, reg_gamma=self.reg_gamma,
xmin=xmin, xmax=xmax, degree=self.degree)
self.shape_fit_.fit(x, y)
def predict(self, x):
"""output f(beta^T x) for given samples
Parameters
---------
x : array-like of shape (n_samples, n_features)
containing the input dataset
Returns
-------
np.array of shape (n_samples,)
containing f(beta^T x)
"""
pred = self.decision_function(x)
return pred
class SimClassifier(BaseSim, ClassifierMixin):
"""
Sim classification.
Parameters
----------
reg_lambda : float, optional. default=0
Sparsity strength
reg_gamma : float or list of float, optional. default=0.1
Roughness penalty strength of the spline algorithm
degree : int, optional. default=3
The order of the spline
knot_num : int, optional. default=5
Number of knots
random_state : int, optional. default=0
Random seed
"""
def __init__(self, reg_lambda=0, reg_gamma=1e-5, knot_num=5, degree=3, random_state=0):
super(SimClassifier, self).__init__(reg_lambda=reg_lambda,
reg_gamma=reg_gamma,
knot_num=knot_num,
degree=degree,
random_state=random_state)
def _validate_input(self, x, y):
"""method to validate data
Parameters
---------
x : array-like of shape (n_samples, n_features)
containing the input dataset
y : array-like of shape (n_samples,)
containing target values
"""
x, y = check_X_y(x, y, accept_sparse=["csr", "csc", "coo"],
multi_output=True)
if y.ndim == 2 and y.shape[1] == 1:
y = column_or_1d(y, warn=False)
self._label_binarizer = LabelBinarizer()
self._label_binarizer.fit(y)
self.classes_ = self._label_binarizer.classes_
y = self._label_binarizer.transform(y) * 1.0
return x, y.ravel()
def _estimate_shape(self, x, y, xmin, xmax):
"""estimate the ridge function
Parameters
---------
x : array-like of shape (n_samples, n_features)
containing the input dataset
y : array-like of shape (n_samples,)
containing the output dataset
xmin : float
the minimum value of beta ^ x
xmax : float
the maximum value of beta ^ x
"""
self.shape_fit_ = SMSplineClassifier(knot_num=self.knot_num, reg_gamma=self.reg_gamma,
xmin=xmin, xmax=xmax, degree=self.degree)
self.shape_fit_.fit(x, y)
def predict_proba(self, x):
"""output probability prediction for given samples
Parameters
---------
x : array-like of shape (n_samples, n_features)
containing the input dataset
Returns
-------
np.array of shape (n_samples, 2)
containing probability prediction
"""
pred = self.decision_function(x)
pred_proba = softmax(np.vstack([-pred, pred]).T / 2, copy=False)
return pred_proba
def predict(self, x):
"""output binary prediction for given samples
Parameters
---------
x : array-like of shape (n_samples, n_features)
containing the input dataset
Returns
-------
np.array of shape (n_samples,)
containing binary prediction
"""
pred_proba = self.predict_proba(x)[:, 1]
return self._label_binarizer.inverse_transform(pred_proba)